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Abstract. In the recent literature certain BMO-type seminorms provide characterizations of Sobolev functions. In
the same order of ideas, we obtain the norm of the gradient of a function in Lp(Ω), where Ω ⊂ Rn, n > 1 and p > 1,
as limit of BMO-type seminorms involving families of pairwise disjoint sets with arbitrary orientation, the sets
being not necessarily cubes or tessellation cells. An analogous result is obtained when rotations are not allowed.

1. Introduction

In [4], the Authors introduced a new function space B, defined through a generalization of the well known
space of functions with bounded mean oscillation (BMO) introduced by John and Nirenberg.

For n ≥ 1, given Q = (0, 1)n, f ∈ L1(Q) the space B is defined as

B =
{
f ∈ L1(Q) : ‖ f ‖B < ∞

}
where

‖ f ‖B = sup
0<ε≤1

εn−1 sup
Fε

∑
Qε∈Fε

?
Qε

∣∣∣∣∣∣ f (x) −
?

Qε

f

∣∣∣∣∣∣ dx ,

and the supremum is taken over all collections Fε of disjoint ε-cubes Qε ⊂ Q with faces parallel to the coordi-
nate axes such that ]Fε ≤ ε1−n. Clearly, when n = 1, B = BMO; otherwise, for n ≥ 2 the space BMO and BV
(the space of bounded variation functions) are strictly embedded in B.

Later, some of the ideas contained in [4] have been extended in [1] in order to give a new characterization of
sets of finite perimeter.

Recently, in [10], the Authors introduced a new BMO seminorm and they gave a representation formula of
the norm of the gradient for a Sobolev function which does not make use of the distributional derivatives. In
particular, given an open set Ω ⊂ Rn, a function f ∈ Lp

loc(Ω), p ≥ 1, for any ε > 0, they consider

kε( f , p,Ω) := εn−p sup
Gε

∑
Q′∈Gε

?
Q′

∣∣∣∣∣∣ f (x) −
?

Q′
f

∣∣∣∣∣∣p dx ,

where the supremum is taken over all familiesGε of disjoint ε-cubes Q′ of side length ε and arbitrary orientation
contained in Ω. They proved that, if 1 < p < ∞, given f ∈ Lp

loc(Ω)

(1.1) f ∈ W1,p(Ω) ⇐⇒ lim inf
ε→0+

kε( f , p,Ω) < ∞.

Moreover, if f ∈ W1,p(Ω) and p ≥ 1, then

lim
ε→0

kε( f , p,Ω) = γ(n, p)
∫

Ω

|∇ f |p dx,

where γ(n, p) := maxν∈Sn−1

∫
Q |x · ν|

p dx.
Very recently, a similar representation formula for the gradient norm of a Sobolev function is studied in [6],

by considering tessellations of Ω inspired by M.C. Escher, not necessarily generated by cubic cells.
In this paper, we give a representation formula for the gradient norm of a Sobolev function, by considering

the more general case of an isotropic family formed by copies of pairwise ε dilation of a bounded connected
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open set with locally Lipschitz boundary D, with arbitrary orientation. We extend the previous representation
formulae in [10] and [6] since the sets involved are not necessarily cubes or tessellation cells.

Let Ω ⊂ Rn, n > 1, be an open set, and let D ⊂ Rn be a bounded connected open set with locally Lipschitz
boundary. Given a function f ∈ Lp(Ω), 1 ≤ p < ∞, for ε > 0 we consider the following seminorm:

(1.2) KD
ε ( f , p,Ω) := εn−p sup

Kε

∑
D′∈Kε

?
D′

∣∣∣∣∣ f (x) −
?

D′
f
∣∣∣∣∣p dx ,

where the supremum on the right hand side is computed over all the familiesKε constituted by pairwise disjoint
images D′ of εD by isometries of Rn contained in Ω. In this case, we will say that Kε is a collection of disjoint
translations D′ of εD with arbitrary orientation.

Our main result reads as follows.

Theorem 1.1. Let Ω ⊂ Rn and D ⊂ Rn as above. If p > 1 and f ∈ Lp
loc(Ω), then

(1.3) |∇ f | ∈ Lp(Ω) ⇐⇒ lim inf
ε→0

KD
ε ( f , p,Ω) < ∞.

Moreover, if f ∈ W1,p(Ω) and p ≥ 1, we have also

(1.4) lim
ε→0

KD
ε ( f , p,Ω) = γp

∫
Ω

|∇ f |p dx

where γp = γp(n, p,D) is a constant such that

(1.5) γp ≤
1
|D|2

max
ν∈Sn−1

∫
D
|x · ν|p dx.

When D = Q = (−1/2, 1/2)n is the unit cube, the exact value of γp is known and

γp = max
ν∈Sn−1

∫
D
|x · ν|p dx := γ(n, p)

as stated in Theorem 2.2 of [10]. We recall that the exact value of γ(n, p) is known for few values of n and p: it
easy to see that γ(n, 1) = 1/4, γ(n, 2) = 1/12 and γ(2, p) ≥ 21−p/2/(p + 1)(p + 2).

It is interesting to analyze the equality case in (1.5). In order to obtain γp = γ(n, p) it seems to be necessary
to “cover” the whole Ω without gaps or overlaps with copies of D. In [6], considering the smaller class of
tessellation objects D, the Authors proved a version of Theorem 1.1 with the equality in (1.5). We extend the
main result of [6] by considering other techniques.

A crucial fact for the validity of the representation formula (1.4) is that the sets D′ can be chosen with
arbitary orientation. Things goes very differently when rotations are not allowed. This theme has been further
investigated in [2] where the Authors considered the more general case of anisotropic coverings formed by
translations of ε-dilation of the set D, to give a new characterization of the perimeter of a measurable set in Rn,
see also [8] for an extension of the construction to SBV functions (the space of special BV functions whose
gradient measure has no Cantor part). Here, we present a representation formula of the Lp- gradient norm of
a Sobolev function considering an anisotropic variant of the BMO–type seminorm, by using families made by
translations of a given bounded connected open set with Lipschitz boundary. More precisely, given a function
f ∈ Lp(Ω), for any ε > 0 we consider the following quantity

(1.6) HD
ε ( f , p,Ω) := εn−p sup

Hε

∑
D′∈Hε

?
D′

∣∣∣∣∣ f (x) −
?

D′
f
∣∣∣∣∣p dx ,

whereHε is any pairwise disjoint family of translations D′ of εD contained in Ω.
Note that since D is bounded and Ω is an open set, for ε sufficiently small the family Hε is nonempty and

Hε ⊂ Kε. Hence,
HD
ε ( f , p,Ω) ≤ KD

ε ( f , p,Ω)
We are able to prove the following result.
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Theorem 1.2. Let p ≥ 1 and f ∈ W1,p(Ω). If D ⊂ Rn is a bounded connected open set with locally Lipschitz
boundary, then there exists a Lipschitz continuous p-homogeneous function ψD

p : Rn → [0,+∞], strictly positive
on Rn \ {0}, such that if Ω is an open subset of Rn then

(1.7) lim
ε→0

HD
ε ( f , p,Ω) =

∫
Ω

ψD
p (∇ f (x)) dx.

In the special case p = 1, formula (1.7) is proved in [8].
We observe that when D = B1 is the unitary ball, HB1

ε coincides with KB1
ε since B1 is rotational invariant and

lim
ε→0

KB1
ε ( f , p,Ω) = lim

ε→0
HB1
ε ( f , p,Ω) = γp

∫
Ω

|∇ f |p dx.

In this case, the constant γp is less or equal than γ(n, p) since the ball is not a “covering”object.
We conclude by observing that for a general BV function f no such representation formula for the total

variation of the gradient measure D f may hold (see [9]). However, in Corollary 4.2 we charactherize BV
functions in terms of the anisotropic variant of the BMO- type seminorm.

2. Preliminaries and Notation

In this section we list some notations and preliminary results useful in the paper.
Given a measurable set A ⊂ Rn we denote by |A| its Lebesgue measure. We denoted by Ln the Lebesgue

measure and by Hn−1 the Hausdorff (n − 1)-dimensional measure. By ]K, we indicate the cardinality of a set
K.For a given set A ⊂ Rn, with 0 < |A| < ∞, and for a given measurable function g : A → R, we shall denote
by

gA :=
?

A
g(x) dx :=

1
|A|

∫
A

g(x) dx

the average of g on A.
For η > 0 and A ⊂ Rn, we denote by Iδ(A) the η–neighborhood of A which is defined as follows

Iη(A) :=
{
x ∈ Rn : dist (x, A) < η

}
.

For any z ∈ Rn, ν ∈ Sn−1 and ρ > 0, we denote by Bρ(z) the open ball of radius ρ centered in z and by Qν(z, ρ)
a generic open cube, centered in z, having sidelenght ρ, and with two faces orthogonal to ν. If the center is
at the origin and ρ = 1 we shall simply write Qν instead of Qν(0, 1). Throughout the paper C will denote a
positive constant whose value may change from line to line .

We recall here the following inequalities that will be used in the paper.
Given δ ∈ (0, 1), from the convexity of the function t → |t|p we get for every a, b ∈ R

(2.1) |a + b|p =

∣∣∣∣∣ 1
(1 + δ)

(1 + δ)a +
δ

1 + δ

1 + δ

δ
b
∣∣∣∣∣p ≤ (1 + δ)p|a|p +

(1 + δ)p

δp |b|p

Given ξ, η ∈ Rn it holds

(2.2)
∣∣∣|ξ|p − |η|p∣∣∣ ≤ p (|ξ| + |η|)p−1 |ξ − η|

and, given ξ, η ∈ Rn \ {0} it holds

(2.3)
∣∣∣∣∣ ξ|ξ| − η

|η|

∣∣∣∣∣ ≤ 2
|ξ − η|

|ξ|
.

If D ⊂ Ω is a bounded open set with Lipschitz boundary, for any h ∈ W1,q(Ω) with q < n, the following
Sobolev–Poincaré inequality holds (see for example, Problem 7.12 in [11]),

(2.4) ‖h − hD‖Lq∗ (D) ≤ C‖Dh‖Lq(D) ,

where the constant C depends on q and D.
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The quantities KD
ε (h, p,Ω) and HD

ε (h, p,Ω), defined respectively in (1.2) and (1.6), are strictly related to the
Lp norm of the gradient of h. Indeed, one can choose q < n such that 1 ≤ q ≤ p < q∗. By Hölder’s inequality,
we get:

(2.5) ‖h‖Lp(D) ≤ ‖h‖Lq∗ (D)|D|
1
p−

1
q∗

and

(2.6) ‖∇h‖Lq(D) ≤ ‖∇h‖Lp(D)|D|
1
q−

1
p .

Thus, from (2.4), using (2.5) and (2.6), we get that there exists a constant C > 0 depending only on D and p
such that if D′ = εD + x0 ⊂ Ω, then

εn−p
∫

D′

∣∣∣∣∣h(x) −
∫

D′
h
∣∣∣∣∣p dx ≤ C

∫
D′
|∇h|p

with C = C(p,D).
Hence,

εn−p
∑

D′∈Hε

?
D′

∣∣∣∣∣h(x) −
?

D′
h
∣∣∣∣∣p dx ≤ C ‖∇h‖pLp(Ω)

and thus,

(2.7) HD
ε (h, p,Ω) ≤ C ‖∇h‖pLp(Ω) .

Similarly,

(2.8) KD
ε (h, p,Ω) ≤ C ‖∇h‖pLp(Ω) .

3. The functionals H±

Given a function f ∈ Lp(Ω), 1 ≤ p < ∞, we define the following quantities

HD
+ ( f , p,Ω) = lim sup

ε→0
HD
ε ( f , p,Ω) ,

HD
− ( f , p,Ω) = lim inf

ε→0
HD
ε ( f , p,Ω) .

Clearly, we have HD
− ( f , p,Ω) ≤ HD

+ ( f , p,Ω).

(3.1) HλD
ε ( f , p,Ω) = λp−nHD

ελ( f , p,Ω) HλD
± ( f , p,Ω) = λp−nHD

± ( f , p,Ω) .

Throughout the whole paper we shall assume without loss of generality that diam (D) = 1. Indeed, setting
D̃ := D/diam(D), (3.1) gives that

HD
ε ( f , p,Ω) = (diam(D))p−n HD̃

ε diam D( f , p,Ω) , HD
± ( f , p,Ω) = (diam(D))p−n HD̃

± ( f , p,Ω) .

In the following, since the set D is fixed, we drop the superscript D and we only write Hε and H±.

3.1. Properties of the functionals Hε and H±. We list some properties of Hε( f , p,Ω) and H±( f , p,Ω), omit-
ting the elementary proofs. To this end we denote byAΩ the family of all open subsets of Ω.

• Translation invariance: for any τ ∈ Rn, we have

Hε( f (· − τ), p,Ω + τ) = Hε( f , p,Ω) and H±( f (· − τ), p,Ω + τ) = H±( f , p,Ω) ;

• Monotonicity: Hε( f , p, ·) and H±( f , p, ·) are increasing with respect to set inclusion;
• Superadditivity of Hε: if A1, A2 ∈ AΩ and A1 ∩ A2 = ∅, we have

Hε( f , p, A1 ∪ A2) ≥ Hε( f , p, A1) + Hε( f , p, A2) ;

• Homogeneity: for any t > 0, we have

Htε( f (·/t), p, tΩ) = tn−pHε( f , p,Ω) ;
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• Superadditivity of H−: if A1, A2 ∈ AΩ and A1 ∩ A2 = ∅, we have

H−( f , p, A1 ∪ A2) ≥ H−( f , p, A1) + H−( f , p, A2) .

Using the same argument as in Proposition 3.1 in [8] we obtain the subadditivity of H+( f , p, ·).
Given A1, A2 ∈ AΩ and a function f ∈ Lp(Ω), from the definition of H+ it is plain to see that for any δ > 0

(3.2) H+( f , p, A1 ∪ A2) ≤ H+( f , p,W1) + H+( f , p,W2) .

where Wi = Iδ(Ai) ∩ (A1 ∪ A2), for i = 1, 2.

Proposition 3.1. Let Ω be an open set. Then for all A ∈ AΩ

(3.3) H+( f , p, A) = sup{H+( f , p, A′) : A′ ⊂⊂ A, A′ ∈ AΩ} .

Moreover H+( f , p, ·) is σ-subadditive onAΩ.

In the particular case that f is the linear function fν(x) := x · ν with x ∈ Ω and ν ∈ Sn−1, some of the
elementary properties of the functionals Hε and H± read as

• Translation invariance: for any τ ∈ Rn, we have

(3.4) Hε( fν, p,Ω + τ) = Hε( fν, p,Ω) and H±( fν, p,Ω + τ) = H±( fν, p,Ω) ;

• Homogeneity: for any t > 0

(3.5) Htε( fν(·), p, tΩ) = tnHε( fν, p,Ω) and H±( fν, p, tΩ) = tnH±( fν, p,Ω) .

3.2. Definition of ψD
p . We begin by proving a proposition, where we show that the functionals H− and H+

coincide if they act on a linear function fν(x) = x · ν, ν ∈ Sn−1, and on any unitary cube centered in the origin.

Proposition 3.2. Let 1 ≤ p < +∞, ν ∈ Sn−1 and fν(x) = x · ν. For any unitary cube Q̃ centered in the origin,
we have

H+( fν, p, Q̃) = H−( fν, p, Q̃) = sup
0<s≤1

Hs( fν, p, Q̃) < +∞

Moreover H+( fν, p, Q̃) is bounded from above.

Proof. By (3.5), we have

H−( fν, p, Q̃) = lim inf
ε→0

Hε( fν, p, Q̃) = lim inf
ε→0

εnH1( fν, p, (1/ε)Q̃) .

Fixed ε < s ≤ 1, the cube (1/ε)Q̃ contains the union of at least b(s/ε)cn open disjoint cubes of side 1/s and
H1( fν, p, (1/s)Q̃) = H1( fν, p, z + (1/s)Q̃) for any z ∈ Rn. By the monotonicity in the second argument, the
superadditivity of H1 and the homogeneity, it holds

H−( fν, p, Q̃) ≥ lim inf
ε→0

εnb(s/ε)cnH1( fν, p, (1/s)Q̃) = tnH1( fν, p, (1/s)Q̃) = Hs( fν, p, Q̃) .

Hence,
H−( fν, p, Q̃) ≥ sup

0<s≤1
Hs( fν, p, Q̃) .

Moreover,

H−( fν, p, Q̃) ≤ H+( fν, p, Q̃) = lim sup
ε→0

Hε( fν, p, Q̃) = lim
ε→0

sup
0<s<ε

Hs( fν, p, Q̃) ≤ sup
0<s≤1

Hs( fν, p, Q̃) .

So we have H( fν, p, Q̃) := H+( fν, p, Q̃) = H−( fν, p, Q̃) = sup
0<s≤1

Hs( fν, p, Q̃). The upper bound on H+ is an

immediate consequence of (2.7). �
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We set now

(3.6) ψp : Sn−1 3 ν → ψp(ν) := H( fν, p,Q) ∈ (0,+∞) ,

where Q =
(
− 1

2 ,
1
2

)n
is the canonical unit cube with edges parallel to the coordinate axes. Our next result shows

that the values of the function ψp do not depend on the choice of the unitary cube centered in the origin, at the
right hand side of (3.6).

Proposition 3.3. Let 1 ≤ p < +∞, ν ∈ Sn−1 and fν(x) = x · ν. For any unitary cube Q̃ centered in the origin,
we have

ψp(ν) = H( fν, p, Q̃) .

Proof. We can cover the cube Q with m open cubes xi + rQ̃ up to a set Ar of Lebesgue measure going to 0 as
r → 0. By the subadditivity of H+( fν, p, ·), the translation invariance and the homogeneity,

H+( fν, p,Q) ≤
m∑

i=1

H+( fν, p, xi + rQ̃) + H+( fν, p, Ar) ≤ H+( fν, p, Q̃)mrn + C|Ar | .

Since mrn ≤ 1, H+( fν, p,Q) ≤ H+( fν, p, Q̃). Interchanging the role of Q and Q̃, we get H+( fν, p,Q) =

H+( fν, p, Q̃). By Proposition 3.2, we have H( fν, p,Q) = H( fν, p, Q̃). �

We claim now that ψp is Lipschitz continuous.

Proposition 3.4. The function ψp is Lipschitz continuous and bounded away from zero.

Proof. Fix ν, τ ∈ Sn−1 and δ > 0. There exists ε0 such that for 0 < ε < ε0

ψp(ν) − ψp(τ) ≤ Hε( fν, p,Q) − Hε( fτ, p,Q) + δ .

There exists a familyHε of translated copies D′ of εD in Q such that

ψp(ν) − ψp(τ) ≤ εn−p
∑

D′∈Hε

[?
D′

∣∣∣∣∣ fν − ?
D′

fν
∣∣∣∣∣p dx −

?
D′

∣∣∣∣∣ fτ − ?
D′

fτ
∣∣∣∣∣p dx

]
+ 2δ ≤ C|ν − τ| + 2δ ,

where the last estimate follows by the triangular and Poincaré inequalities. The Lipschitz continuity of ψp then
follows by letting δ→ 0 and then interchanging the role of ν and τ.

To conclude the proof observe that 1
2 D ⊂ Q since diam(D) = 1. Therefore, from Proposition 3.2 we have

min
ν∈Sn−1

ψp(ν) = ψp(ν0) ≥ H 1
2
( fν0 , p,Q) ≥ C

?
1
2 D

∣∣∣∣∣∣ fν0 −

?
1
2 D

fν0

∣∣∣∣∣∣p dx > 0 .

Indeed, if the latter integral would be zero, then

x −
∫

1
2 D

y dy ∈ {x ∈ Rn : x · ν0 = 0}

for Ln–a.e. x ∈ 1
2 D and this is not the case. �

In the following we remove also the subscript p from ψp, denoting it simply by ψ.
Let us consider now the p-homogeneous extension ψ̃ of ψ to Rn, which is defined by setting ψ̃(0) = 0 and

ψ̃(τ) = |τ|pψ

(
τ

|τ|

)
, for all τ ∈ Rn \ {0} .
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4. W1,p functions: the anisotropic case

We start by a simple covering lemma whose elementary proof is omitted.

Lemma 4.1. Let Ω be a bounded open set, f ∈ C1(Ω) and t > 0. For every σ > 0 there exist r > 0 and
a finite family of pairwise disjoint open cubes Q(xi; r) with edges parallel to coordinate axes contained in
Ut := {x ∈ Ω : |∇ f (x)| > t}, i = 1, . . . ,m, such that∣∣∣∣Ut \

m⋃
i=1

Q(xi; r)
∣∣∣∣ < σ,(4.1)

|∇ f (x) − ∇ f (y)| < σ for all x, y ∈ Q(xi; r) ,(4.2)

For a generalized version of this Lemma, see [6].
We can now prove the main result of this section.

Proof of Theorem 1.2. We have to prove that if p ≥ 1 and f ∈ W1,p(Ω), then

(4.3) H+( f , p,Ω) = H−( f , p,Ω) =

∫
Ω

ψ(∇ f ) dx .

We divide the proof in two steps.
Step 1. For f ∈ W1,p(Ω), we have

(4.4) H−( f , p,Ω) ≥
∫

Ω

ψ(∇ f ) dx .

To prove this inequality assume first that Ω is a bounded open set and that f ∈ C1(Ω). Fix t > 0 and σ > 0 and
take the cubes Q(xi; r), i = 1, . . . m, as in Lemma 4.1. Fix i and ε > 0 and consider a family Hε of pairwise
disjoint sets D j of the form z j + εD ⊂ Q(xi; r), for j = 1, . . . , k. For every x ∈ z j + εD we may write

f (x) = f (z j) + ∇ f (z j) · (x − z j) + R j(x) ,

where R j(x) = (∇ f (x) − ∇ f (z j)) · (x − z j) for some x ∈ Q(xi; r). Thus, using the estimate (4.2), we have that
|R j(x)| ≤ σε. Thus, using again (4.2),

εn−p
k∑

j=1

?
D j

∣∣∣∣∣∣ f (x) −
?

D j

f

∣∣∣∣∣∣p dx ≥ εn−p
k∑

j=1

?
D j

∣∣∣∣∣∣∇ f (z j) · (x − z j) −
?

D j

∇ f (z j) · (y − z j) dy

∣∣∣∣∣∣p dx − 2kσpεn

≥ εn−p
k∑

j=1

?
D j

∣∣∣∣∣∣∇ f (xi) · (x − z j) −
?

D j

∇ f (xi) · (y − z j) dy

∣∣∣∣∣∣p dx −Ckσpεn

≥ εn−p|∇ f (xi)|p
k∑

j=1

?
D j

∣∣∣∣∣∣ ∇ f (xi)
|∇ f (xi)|

· x −
?

D j

∇ f (xi)
|∇ f (xi)|

· y dy

∣∣∣∣∣∣p dx −Cσprn ,

where in the last inequality we used the fact that kεn = | ∪k
j=1 D j|/|D| ≤ rn/|D|. Thus, from the inequality above,

taking the supremum with respect to all familiesHε and the lim inf with respect to ε, we have

(4.5) H−( f , p,Q(xi; r)) ≥ rn|∇ f (xi)|pψ
(
∇ f (xi)
|∇ f (xi)|

)
−Cσprn

Now, we observe that

rn|∇ f (xi)|pψ
(
∇ f (xi)
|∇ f (xi)|

)
≥

∫
Q(xi,r)

|∇ f (x)|pψ
(
∇ f (x)
|∇ f (x)|

)
dx −

∫
Q(xi,r)

∣∣∣∣∣∣|∇ f (x)|pψ
(
∇ f (x)
|∇ f (x)|

)
− |∇ f (xi)|pψ

(
∇ f (xi)
|∇ f (xi)|

)∣∣∣∣∣∣ dx
(4.6)
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On the other hand we have

∫
Q(xi,r)

∣∣∣∣∣∣|∇ f (x)|pψ
(
∇ f (x)
|∇ f (x)|

)
− |∇ f (xi)|pψ

(
∇ f (xi)
|∇ f (xi)|

)∣∣∣∣∣∣ dx

≤

∫
Q(xi,r)

ψ

(
∇ f (x)
|∇ f (x)|

) ∣∣∣|∇ f (x)|p − |∇ f (xi)|p
∣∣∣ dx +

∫
Q(xi,r)

|∇ f (xi)|p
∣∣∣∣∣∣ψ

(
∇ f (x)
|∇ f (x)|

)
− ψ

(
∇ f (xi)
|∇ f (xi)|

)∣∣∣∣∣∣ dx

≤ ‖ψ‖L∞(Sn−1)

∫
Q(xi,r)

∣∣∣|∇ f (x)|p − |∇ f (xi)|p
∣∣∣ dx + Lip(ψ)

∫
Q(xi,r)

|∇ f (xi)|p
∣∣∣∣∣ ∇ f (x)
|∇ f (x)|

−
∇ f (xi)
|∇ f (xi)|

∣∣∣∣∣ dx.

(4.7)

Then, using (2.2) and (2.3), we get∫
Q(xi,r)

∣∣∣∣∣∣|∇ f (x)|pψ
(
∇ f (x)
|∇ f (x)|

)
− |∇ f (xi)|pψ

(
∇ f (xi)
|∇ f (xi)|

)∣∣∣∣∣∣ dx

≤ 2p−1 p‖ψ‖L∞(Sn−1)‖∇ f ‖p−1
L∞(Ω)σrn + ‖∇ f ‖p−1

L∞(Ω)Lip(ψ)
∫

Q(xi,r)
|∇ f (xi)|

∣∣∣∣∣ ∇ f (x)
|∇ f (x)|

−
∇ f (xi)
|∇ f (xi)|

∣∣∣∣∣ dx

≤ 2p−1 p‖ψ‖L∞(Sn−1)‖∇ f ‖p−1
L∞(Ω)σrn + 2‖∇ f ‖p−1

L∞(Ω)Lip(ψ)σrn ≤ Cσrn

(4.8)

for some constant C depending on p, the Lipschitz constant of ψ, the L∞–norms of ∇ f and ψ. Finally, taking
into account (4.6), by the p–homogeneity of ψ, we obtain

(4.9) H−( f , p,Q(xi, r)) ≥
∫

Q(xi,r)
ψ(∇ f (x)) dx −Cσrn ,

Thus, summing up with respect to i, by the superadditivity of H−( f , p, ·), we get

H−( f , p,Ω) ≥
m∑

i=1

H−( f , p,Q(xi, r)) ≥
m∑

i=1

∫
Q(xi,r)

ψ(∇ f (x)) dx −Cσ|Ω| ≥
∫

Ut

ψ(∇ f (x)) dx −Cσ ,

where the last inequality follows from (4.1) and the constant C depends on |Ω|, |D|, p and on ‖∇ f ‖L∞(Ω). Then
(4.4) follows at once letting first σ→ 0 and then t → 0 in the previous inequality.

Without loss of generality, we take now a smooth open set Ω ( an exhaustion of Ω by compact and smooth
domains is possible thanks to Lemma 1 in [12]) and f ∈ W1,p(Ω). Given σ > 0, take fσ ∈ C1(Ω) such that
‖ f − fσ‖W1,p(Ω) < σ. Given an open bounded set A ⊂⊂ Ω, for any familyHε of pairwise disjoint sets D′ ⊂ A of
the type z + εD we have

εn−p
∑

D′∈Hε

?
D′

∣∣∣∣∣ f (x) −
?

D′
f
∣∣∣∣∣p dx ≥ εn−p 1

(1 + δ)p

∑
D′∈Hε

?
D′

∣∣∣∣∣ fσ(x) −
?

D′
fσ

∣∣∣∣∣p dx+

− εn−p 1
δp

∑
D′∈Hε

?
D′

∣∣∣∣∣( f − fσ)(x) −
?

D′
( f − fσ)

∣∣∣∣∣p dx

≥
εn−p

(1 + δ)p

∑
D′∈Hε

?
D′

∣∣∣∣∣ fσ(x) −
?

D′
fσ

∣∣∣∣∣p dx+

−
C(D)εn

δp

∑
D′∈Hε

?
D′
|∇ f (x) − ∇ fσ(x)|p dx

≥
εn−p

(1 + δ)p

∑
D′∈Hε

?
D′

∣∣∣∣∣ fσ(x) −
?

D′
fσ

∣∣∣∣∣p dx −
C(D)
|D|δp

∫
A
|∇ f (x) − ∇ fσ(x)|p dx ,
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where C(D) is the Poincaré constant of D. Thus, passing to the supremum with respect to the family Hε and
letting ε tend to 0 we have, from (4.4) applied to fσ we have

H−( f , p,Ω) ≥
1

(1 + δ)p H−( fσ, p, A) −
C
δp ‖ f − fσ‖W1,p(A) ≥

1
(1 + δ)p

∫
A
ψ(∇ fσ(x)) dx −

Cσ
δp ,

where the constant C depends only on D. Recalling Proposition 3.4, (4.4) then follows letting first σ → 0,
δ→ 0 and then A ↑ Ω.

Step 2. If f ∈ W1,p(Ω), then

(4.10) H+( f , p,Ω) ≤
∫

Ω

ψ(∇ f ) dx .

Using (3.3) and the same argument of the previous step, we may always assume that Ω is a bounded open set
with locally Lipschitz boundary. Moreover, by an approximation argument similar to the one used in the final
part of the previous step, we may assume without loss of generality that f ∈ C1(Ω).

Recall that |∂Ut| = 0 for all but countably many t > 0. Then fix t so that |∂Ut| = 0 and σ > 0 and consider
the same cubes Q(xi; r), i = 1, . . . m, as before. Using the subadditivity of H+( f , p, ·) we have

H+( f , p,Ω) ≤
m∑

i=1

H+( f , p,Q(xi, r)) + H+( f , p,Ω \ U t) + H+( f , p,Wt) ,

where Wt ⊂ Ω is an open set such that U t \ ∪
m
i=1Q(xi, r) ⊂ Wt and |Wt| < σ. Note that this choice of Wt is

possible thanks to (4.1) and to the fact that |∂Ut| = 0. Then, arguing as in the proof of (4.5) we get that for
every i = 1, . . . ,m

H+( f , p,Q(xi; r)) ≤
∫

Q(xi;r)
ψ(∇ f (x)) dx + Cσrn ,

for some positive constant C depending only on |D|, p and ‖∇ f ‖L∞(Ω). Thus, from the two previous inequalities,
recalling (2.7), we have

H+( f , p,Ω) ≤
∫

Ω

ψ(∇ f (x)) dx + Cσ|Ω| + C
∫
{|∇ f |≤t}

|∇ f (x)|p dx + Cσp‖∇ f ‖L∞(Ω) .

Then (4.10) follows letting first σ→ 0 and then t → 0. �

As a consequence of Theorem 1.2 we obtain the following Corollary.

Corollary 4.2. Let p > 1 and f ∈ Lp(Ω). If H−( f , p,Ω) is finite then f ∈ W1,p(Ω). Conversely, if f ∈ W1,p((Ω)
then H+( f ,Ω) is finite.

Proof. We prove only that if H−( f , p,Ω) < ∞ then f is in W1,p(Ω), since the other implication follows at once
from (2.7). Fix an open set A ⊂⊂ Ω and 0 < σ < dist(A, ∂Ω). For all x ∈ A set fσ(x) = (%σ ∗ f )(x), where % is a
standard mollifier with compact support in the unit ball B and %σ(x) = σ−n%(x/σ). Then, given any familyHε

of pairwise disjoint sets D′ of the form z + εD′ ⊂ A, using the definition of fσ, Jensen inequality and Fubini’s
theorem, we get, recalling that

∫
B % dx = 1,

εn−p
∑

D′∈Hε

?
D′

∣∣∣∣∣ fσ(x) −
?

D′
fσ

∣∣∣∣∣p dx = εn−p
∑

D′∈Hε

?
D′

∣∣∣∣∣∫
B
%(y) f (x − σy) dy −

?
D′

∫
B
%(y) f (z − σy) dydz

∣∣∣∣∣p dx

≤ εn−p
∫

B
%(y)

( ∑
D′∈Hε

?
D′

∣∣∣∣∣ f (x − σy) −
?

D′
f (z − σy) dz

∣∣∣∣∣p dx
)

dy

= εn−p
∫

B
%(y)

( ∑
D′∈Hε

?
D′−σy

∣∣∣∣∣∣ f (x) −
?

D′−σy
f

∣∣∣∣∣∣p dx
)

dy ≤ Hε( f , p,Ω) .
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Therefore, taking the supremum over all families Hε, recalling that ψ is bounded away from zero and letting
ε→ 0, we get for all σ > 0 sufficiently small∫

A
|∇ fσ|p dx ≤ C

∫
A
ψ(∇ fσ) dx = CH−( fσ, p, A) ≤ CH−( f , p,Ω) .

Hence the conclusion follows by letting first σ→ 0 and then A ↑ Ω. �

We conclude by observing that Corollary 4.2 does not hold in general if f ∈ W1,1. In fact, [8, Corollary
4.2], the Authors characterize the functions in BV(Ω) as the function f ∈ L1(Ω) such that H+( f , 1,Ω) is finite
(see also [7]). As a consequence, it is possible to show the following characterization of functions of bounded
variation.

Corollary 4.3. The following are equivalent
i) f ∈ BV(Ω);

ii)

sup
Hε

∑
D′∈Hε

εn−1
?

D′
| f − fD′ | < +∞;

iii)
sup
Gε

∑
D′∈Gε

‖ f − fD′‖L
n

n−1 (D′)
< ∞

where fD′ :=
∫

D′
f and the supremum is taken over all families Gε of disjoint images D′ of εD by isometries of

Rn contained in Ω.

Proof. The equivalence i)⇔ ii) is proved by Corollary 4.2 in [8].

We prove now that i)⇒ iii). By Poincaré–Wirtinger inequality, we have that for any f ∈ BV(D),

(4.11) ‖ f − fD‖L
n

n−1 (D)
≤ C|D f |(D)

where C is a constant depending only on D.
Then, by (4.11), we obtain

‖ f − fD′‖L
n

n−1 (D′)
≤ C|D f |(D′)

where C is a constant depending only on D. Then, summing over all sets D′ in Gε, we obtain iii).

It remains to prove that iii)⇒ ii). By Hölder’s inequality

(4.12) εn−1
∫

D′
| f − fD′ | dx ≤ C‖ f − fD′‖L

n
n−1 (D′)

,

where C is a constant depending only on D. The conclusion follows again by summing over all sets D′ in
Gε. �

5. W1,p functions: the isotropic case

Proof of Theorem 1.1. Let p ≥ 1 and f ∈ W1,p. We observe that, since ψD
p is a p-homogeneous function, with a

slight abuse of notation we shall still denote by ψD
p : Sn−1 → [0,+∞) the restriction of ψD

p to the unitary sphere.
Hence (1.7) is equivalent to

(5.1) lim
ε→0

HD
ε ( f , p,Ω) =

∫
Ω

|∇ f |pψD
p

(
∇ f (x)
|∇ f (x)|

)
dx.

Following along the line the proof of Proposition 3.2, we can redefine

ψ̃D
p := K( fν, p, Q̃) = sup

0<s≤1
Ks( fν, p, Q̃).
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Moreover, retrace the proof of Theorem 1.2, we have

lim
ε→0

KD
ε ( f , p,Ω) =

∫
Ω

|∇ f |pψ̃D
p

(
∇ f (x)
|∇ f (x)|

)
dx.

We observe now that, since in the familyKε considered in the functional KD
ε rotations are allowed, the function

ψ̃p(ν) is constant. Indeed, for any ν, τ ∈ Sn−1, we denote by O the rotation that takes ν into τ and we have?
x0+εR(D)

∣∣∣∣∣∣x · ν −
?

x0+εR(D)
t · ν

∣∣∣∣∣∣p dx =

?
εO−1(R(D))

∣∣∣∣∣∣y · τ −
?
εO−1(R(D))

z · τ

∣∣∣∣∣∣p dy .

Therefore multiplying by εn−p, summing up above all possible R(D) and passing to the supremum on Kε and ε
we have proved that ψ̃D

p (ν) ≤ ψ̃D
p (τ). Interchanging the role of ν and τ we obtain that ψ̃D

p is constant.
It remains to prove that ψ̃D

p ≤
1
|D|2 maxν∈Sn−1

∫
D |x · ν|

p dx. Without loss of generality we can assume that the

barycenter of D is zero: it is sufficient to observe that KD
ε ( fν, p,Q) = Kx0+D

ε ( fν, p,Q). By a change of variable
and observing that εn|D|]Kε ≤ 1, it easy to obtain that

(5.2)
∑

D′∈Kε

εn−p
?
εD

∣∣∣∣∣x · ν − ?
εD

t · ν
∣∣∣∣∣p dx =

∑
D′∈Kε

εn

|D|

∫
D
|x · ν|p dx ≤

1
|D|2

∫
D
|x · ν|p dx,

Taking the supremum on Kε and ε, we obtain

ψ̃D ≤
1
|D|2

max
ν∈Sn−1

∫
D
|x · ν|p dx.

The other implication in (1.3) follows repeating the same arguments as in Corollary 4.2. �
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