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Abstract. We consider the structure of divergence-free vector measures on the plane. We show that

such measures can be decomposed into measures induced by closed simple curves. We also discuss simi-
lar decompositions for some measures with nonzero divergence. As an application we generalize certain

rigidity properties of divergence-free vector fields to vector-valued measures.
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1. Introduction

In this paper we study the structure of vector-valued Borel measures µ solving the equation

divµ = ρ (1.1)

in the sense of distribution on Rd, where d ≥ 1 and ρ is a given (R-valued) Borel measure on Rd. Many
equations of the mathematical physics can be written in the form of (1.1), for instance the continuity
equation. A simple (but important) example of a measure satisfying (1.1) is a measure µγ induced by a
Lipschitz curve γ : [0, 1]→ Rd, which is defined (via Riesz-Markov-Kakutani Theorem) by

〈µγ ,Φ〉 ≡
ˆ
Rd

Φ · dµγ :=

ˆ 1

0

Φ(γ(t)) · γ′(t) dt ∀Φ ∈ C0(Rd;Rd). (1.2)

Here C0(Rd;Rd) is the closure of the set of compactly supported continuous functions Cc(Rd;Rd) with
respect to the uniform norm. It is easy to see that µγ solves (1.1) with ρ := δγ(0) − δγ(1), where δx with

x ∈ Rd denotes the Dirac measure concentrated at x.
Clearly every finite linear combination of measures of the form µγ still solves (1.1). More generally, let

Γ := Lip([0, 1];Rd) denote the space of all Lipschitz functions f : [0, 1]→ Rd, endowed with the sup-norm.
Let M (X;Rd) denote the set of Rd-valued Borel measures on a topological space X (for d = 1 we will
simply write M (X) := M (X;R) and M+(X) for the set of non-negative Borel measures). Let |µ| denote
the total variation of µ ∈M (Rd;Rd) and recall that ‖µ‖ := |µ|(Rd) is a norm on M (Rd;Rd). Suppose
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that η ∈ M+(Γ) is such that
´

Γ
‖µγ‖ dη(γ) < ∞. Then using Fubini’s Theorem one can show that the

measure

µ :=

ˆ
Γ

µγ dη(γ),

which is defined by

〈µ,Φ〉 :=

ˆ
Γ

〈µγ ,Φ〉 dη(γ) ∀Φ ∈ C0(Rd;Rd),

solves (1.1) with ρ :=
´

Γ
(δγ(0) − δγ(1)) dη(γ) (which is defined similarly). Therefore a natural question

is whether the converse implication holds true, i.e. if any solution µ ∈ M (Rd;Rd) of (1.1) (with some
ρ ∈M (Rd)) can be written as

´
Γ
µγ dη(γ) for some η ∈M+(Γ).

Decompositions of this kind were used in [ST17] in order to derive the so-called superposition principle
for the measure-valued solutions of the continuity equation (which was proved in [AC08, Thm. 12] for
Euclidean spaces). In turn, such a superposition principle was used in [BBG16] in order to obtain certain
uniqueness results for solutions of the continuity equation. The main result of the present paper can be
stated as follows:

Main Theorem. Let d = 2. Suppose that ρ ∈ M (Rd) and µ ∈ M (Rd;Rd) solve (1.1). Then there
exists η ∈M+(Γ) such that

µ =

ˆ
Γ

µγ dη(γ) (1.3a)

|µ| =
ˆ

Γ

|µγ | dη(γ) (1.3b)

|divµ| =
ˆ

Γ

|divµγ | dη(γ) (1.3c)

and for η-a.e. γ ∈ Γ there exists γ̃ ∈ Γ which is injective on [0, 1) such that µγ = µγ̃ .

For d > 2 in general such a decomposition is not possible due to examples provided in the celebrated
paper [Smi93] (in particular one can consider µ associated with an irrational winding of a torus). However
in [Smi93] it was proved that for any d > 2 the measure µ can be decomposed into the so-called elementary
solenoids in such a way that (1.3a)–(1.3c) hold. Recently this decomposition result was generalized for
metric spaces in [PS12, PS13]. Note that for d > 2 the set of elementary solenoids is strictly larger than
the set of measures induced by Lipschitz curves. However, by Theorem 1, all elementary solenoids are
induced by Lipschitz curves in the case d = 2.

Following [PS12] σ ∈M (Rd;Rd) will be called a cycle of µ if divσ = 0 and ‖µ‖ = ‖µ − σ‖ + ‖σ‖.
Moreover µ will be called acyclic is σ = 0 is the only cycle of µ. It is known [Smi93, PS12] that any
measure µ ∈ M (Rd;Rd) can be decomposed into cyclic and acyclic parts (see e.g. Proposition 3.8 in
[PS12]):

Theorem 1.1. For any µ ∈M (Rd;Rd) there exists a cycle σ of µ such that µ− σ is acyclic.

A curve γ ∈ Γ will be called simple if there γ is injective on [0, 1). The acyclic part of µ solving (1.1)
can be decomposed into measures induced by simple Lipschitz curves (see e.g. Theorem 5.1 in [PS12]):

Theorem 1.2. If µ solves (1.2) and µ is acyclic then there exists η ∈ M+(Γ) such that (1.3a)–(1.3c)
hold and for η-a.e. γ ∈ Γ there exists simple γ̃ ∈ Γ such that µγ = µγ̃ .

In view of Theorems 1.1 and 1.2 it is sufficient to prove Theorem 1 for ρ = 0. We provide two different
proofs of this result. Both proofs are based on a weak version of Poincaré Lemma: every divergence-free
measure µ in R2 can be represented as µ = ∇⊥f , where ∇⊥ = (−∂2, ∂1) and f : R2 → R is a locally
integrable “potential” function with finite total variation.

The first proof (inspired by a remark in [Smi93]) exploits functional analytic tools and relies on
Choquet’s Theorem (see e.g. [Phe01]), in view of which it suffices to characterize the extreme points
of the unit ball in the space of divergence-free measures. Using the weak version of Poincaré Lemma
mentioned above we construct a certain space of functions with finite total variation, denoted by FV(R2),
which is isometrically isomorphic (via the mapping ∇⊥) to the space of divergence-free measures. Then
it remains to characterize the extreme points of the unit ball in FV(R2). In order to do this we apply
the Coarea Formula and a fine analysis of sets of finite perimeter using the techniques from [ACMM01].
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Eventually we show that the extreme points of the unit ball in FV(R2) are (normalized) characteristic
functions of simple sets (see Definition 2.9 and Definition 2.13). Using the results from [ACMM01] and
[BG16], we show that the divergence-free measures associated to extreme points are induced by closed
simple Lipschitz curves.

In the second proof of Theorem 1 we construct the appropriate measure η directly. First we decompose
the “potential” f of µ into a countable family of monotone functions fk ∈ FV(R2) using a modification
of the result from [BT11] (which we prove in the Appendix). Then we construct the desired measure ηk
for each component fk directly using the Coarea Formula and ultimately construct η as the sum of ηk.
An advantage of this approach is that it provides a more detailed description of the measure η in view of
monotonicity of fk.

1.1. Applications to rigidity properties of vector-measures. As an application of our decompo-
sition of vector-measures into measures induced by curves, we establish a certain rigidity property for
vector-valued measures (extending one of the results from [LS17]). Let Mloc(Rd) denote the space of
locally finite Borel measures on Rd. Rigidity properties were introduced in the paper [LS17] to study fine
properties of the trace (in the Anzellotti’s sense [Anz83]) of bounded, divergence-free vector fields on a
class of rectifiable sets. Here we consider the following generalization of Definition 1.1 from [LS17]: recall
that, given µ ∈ Mloc(Rd;Rd), by polar decomposition (see e.g. [AFP00], Corollary 1.29) there exists a
unique τ ∈ L1

loc(|µ|;Rd) with |τ(x)| = 1 for |µ|-a.e. x ∈ Rd such that µ = τ |µ|.

Definition 1.3. Let F ⊂Mloc(Rd;Rd). We say that the linear rigidity property holds for F if for any
c > 0 and for any ν ∈ F such that

(i) ν
({
x = (x1, . . . , xd) ∈ Rd : xd ≤ 0

})
= 0;

(ii) div ν = 0 in the distributional sense;
(iii) τd(x) ≥ c|τ(x)| for |ν|-a.e. x ∈ Rd;

one has that ν = 0.

For F consising of locally finite vector measures which are absolutely continuous with respect to
Lebesgue measure (and have uniformly bounded density) the linear rigidity property was established
in [LS17], Theorem 1.2. Using the decomposition of vector measure into measures induced by curves we
can prove the following result, which holds true in every dimension:

Theorem 1.4. For any d ∈ N, the linear rigidity property holds for F = Mloc(Rd;Rd).

2. Preliminaries and notation

In this section, we collect some useful and preliminary results and we set some notations that will be
used throughout the paper.

2.1. General notation. The d-dimensional Euclidean space will be denoted by Rd, with d ≥ 1. Usually,
Ω ⊂ Rd stands for a generic open set. The indicator (also characteristic) function of a set A is denoted
by 1A and the complement by Ac. The Lebesgue measure on Rd will be L d while the k-dimensional
Hausdorff measure, for k ≤ d, will be H k. If (X, ‖ · ‖) is a normed space we will denote by BX1 the closed
unit ball with center 0 and radius 1, i.e.

BX1 := {x ∈ X : ‖x‖ ≤ 1}.
If U ⊂ X, the notation Ū will denote the closure of U .

If µ is a measure, the restriction of µ to some measurable subset A is µxA. The space of p-integrable
functions (resp. locally p-integrable functions) on Ω will be denoted in the usual way by Lp(Ω) (resp.
Lploc(Ω)), for 1 ≤ p ≤ +∞, and the symbol ‖ · ‖p will stand for the usual norm in the former space.

If X is a topological space, M (X;Rd) will denote the set of Rd-valued Borel measures on X. For
d = 1 let M (X) := M (X;R) and let M+(X) denote the set of [0,+∞]-valued Borel measures. For
any µ ∈M (X;Rd) let |µ| ∈M+(X) denote the associated total variation measure. Recall that

‖µ‖M := |µ|(X)

is a norm on M (X;Rd) with respect to which this space is complete (see e.g. [Bog06]).
If X is a locally compact and separable metric space then M (X;Rd) can be identified (by Riesz-

Markov-Kakutani Theorem) with the dual of C0(Rd;Rd), where C0(Rd;Rd) is the closure of the set of
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compactly supported continuous functions Cc(Rd;Rd) with respect to the uniform norm. By default
in this case we will endow M (X;Rd) with the weak* topology. Note that the total variation norm on
M (X;Rd) coincides with the norm induced by duality with C0(X;Rd) (see e.g. [AFP00, Thm. 1.54]).

Recall also the definition of push-forward of a measure µ on some space X through a Borel map
f : X → Y : we denote by f#µ the measure on Y defined by (f#µ)(A) := µ(f−1(A)) for any Borel set
A ⊂ Y . It is well known that the measure f#µ satisfies the following equality for every bounded Borel
function φ : Y → R ˆ

X

φ(f(x)) dµ(x) =

ˆ
Y

φ(y) d(f#µ)(y). (2.1)

The divergence of a vector-valued measure µ ∈ M (Rd;Rd) is understood in the sense of distributions,
i.e.

〈divµ, φ〉 := −
ˆ
Rd
∇φ(x) dµ(x) ∀φ ∈ C∞c (Rd).

2.2. BV functions, perimeters, tangents. Let Ω ⊂ Rd be an open set.

Definition 2.1 (BV functions, [AFP00, Definition 3.1]). We say that a function u ∈ L1(Ω) has bounded
variation in Ω if the distributional derivative of u is representable by a finite Radon measure in Ω, i.e.ˆ

Ω

u
∂φ

∂xi
dx = −

ˆ
Ω

φd(Diu) for every φ ∈ C∞c (Ω) and for every i = 1, . . . , d

for some Rd-valued vector measure (D1u, . . . ,Ddu) in Ω. The space of functions of bounded variation in
Ω is denoted by BV(Ω).

The space BV(Ω) is a normed space under the norm

‖u‖BV := ‖u‖1 + ‖Du‖M .

Definition 2.2 (Variation, [AFP00, Definition 3.4]). Let u ∈ L1
loc(Ω). The variation V (u,Ω) of u in Ω

is defined by

V (u,Ω) := sup

{ˆ
Ω

u(x) divφ(x) dx : φ ∈ C∞c (Ω;Rd), ‖φ‖∞ ≤ 1

}
.

The variation enjoys several properties (see e.g. [AFP00, Remark 3.5]): the map u 7→ V (u,Ω) is l.s.c.
in the L1

loc(Ω)-topology. On the other hand, for fixed u ∈ L1
loc(Ω), it is possible to define V (u,A) for any

open set A ⊂ Ω and then, via the Cartheodory construction, extend V (u, ·) to a Borel measure that will
still be denoted by V (u, ·). Such measure has finite total variation in Ω if and only if u ∈ BV(Ω) and in
this case V (u,Ω) = |Du|(Ω) (see [AFP00, Proposition 3.6]). For simplicity, we will simply write V (u) to
denote the variation in the full space V (u,Rd).

We recall that, as for Sobolev spaces, BV functions enjoy some higher integrability properties: these
are usually expressed via embedding theorems. For our purposes, the following general result will be
needed.

Theorem 2.3 (BV embeddings, [AFP00, Theorem 3.47]). Let d ≥ 1. For any function u ∈ L1
loc(Rd)

satisfying V (u) <∞ there exists a unique constant m ∈ R such that

‖u−m‖L1∗ (Rd) ≤ γV (u)

for some universal constant γ = γ(d), where

1∗ :=

{
d
d−1 , d > 1

∞, d = 1.
(2.2)

If u ∈ L1(Rd) then m = 0, u ∈ BV(Rd) and hence ‖u‖L1∗ (Rd) ≤ γV (u). In particular, the embedding

BV(Rd) ↪→ L1∗(Rd) is continuous.

Definition 2.4 (Sets of finite perimeter, [AFP00, Definition 3.35]). A Lebesgue measurable set E ⊂ Rd
is said to be of finite perimeter in Ω ⊂ Rd if the variation of 1E in Ω is finite and the perimeter of E in
Ω is

P (E,Ω) := V (1E ,Ω).
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We recall also the Coarea Formula for functions of bounded variation (see [AFP00, Theorem 3.40]):
for any function u ∈ L1(Ω) it holds

V (u,Ω) :=

ˆ
R
P ({x ∈ Ω : u(x) > t}) dt

where the equality is understood in the sense that RHS is finite if and only if the LHS is finite and in
this case their values coincide and u ∈ BV(Ω).

We also recall the isoperimetric inequality, see [AFP00, Theorem 3.46]: for any set E ⊂ Rd, d > 1,
of finite perimeter either E or Rd \ E has finite Lebesgue measure and there exists a universal constant
c = c(d) such that

min{L d(E),L d(Rd \ E)} ≤ c(d)P (E)
d/d−1 (2.3)

We now recall the definition of approximate tangent space to a rectifiable set. Let k ∈ N with k ≥ 1.
If µ is a Radon measure on Rd and E ⊂ Rd is a Borel we define, for x ∈ Rd and r > 0,

µx,r(E) := (Φx,r)#µ(E), where Φx,r(y) :=
y − x
r

.

If M is a locally H k-rectifiable set then we define the approximate tangent space to M at x, denoted by
Tan(M,x), to be the set of limit points of the measures r−kµx,r as r ↓ 0 in the weak-∗ topology. It is
possible to prove (see, e.g. [Mag12, Theorem 10.2]) that for H k-a.e. x ∈M there exists a unique k-plane
πx such that Tan(M,x) = {H kxπx}. We further emphasize that the approximate tangent space to a
smooth set is related to the ordinary tangent space, in the sense of differential geometry. More precisely,
we have the following

Proposition 2.5 ([AFP00, Proposition 2.88]). Let φ : Rk → Rd be a one-to-one Lipschitz function and
let D ⊂ Rk be a L k-measurable set. Then E = Φ(D) satisfies

Tan(E, x) = {H kxdφφ−1(x)(Rk)}.

where dφ is the usual differential of φ.

2.3. Fine properties of sets of finite perimeter. Given a Lebesgue measurable set E ⊆ Rd we define
the upper/lower densities at x by

D(E, x) := lim sup
r→0

L d(E ∩Br(x))

L d(Br(x))
, D(E, x) := lim inf

r→0

L d(E ∩Br(x))

L d(Br(x))
,

and D(E, x) denotes the common value of D(E, x) and D(E, x) whenever they are equal. In particular,
we will denote by Et, for t ∈ [0, 1], the set of points of density t

Et :=
{
x ∈ Rd | D(E, x) = t

}
.

The essential exterior of E is E0 and the essential interior of E is E1. Ultimately, the essential
boundary of E is

∂eE := Rd \ (E0 ∪ E1).

Following [AFP00, Definition 3.54] we define the reduced boundary of a set E ⊂ Rd to be the set of
points x ∈ supp |D1E | such that the limit

νE(x) := lim
r↓0

D1E(Br(x))

|D1E |(Br(x))

exists in Rd and satisfies |νE(x)| = 1. We will denote by FE the reduced boundary and the function
νE : FE → Sd−1 is called generalized inner normal to E.

The celebrated De Giorgi’s Theorem can thus be stated as follows:

Theorem 2.6 (De Giorgi, [AFP00, Theorem 3.59]). Let E be a Lebesgue measurable subset of Rd of
finite perimeter in Rd. Then FE is countably (d − 1)-rectifiable and |D1E | = H d−1xFE. In addition,
the approximate tangent space to E at x coincide with the orthogonal hyperplane to νE(x) for H d−1-a.e.
x ∈ FE, i.e.

Tan(FE, x) = ν⊥E (x).

The link between the reduced boundary, the essential boundary and the set of points of density 1/2 is
a remarkable theorem, due to Federer (see [AFP00, Theorem 3.61]):



6 PAOLO BONICATTO AND NIKOLAY A. GUSEV

Theorem 2.7 (Federer). If E ⊂ Rd has finite perimeter then

FE ⊂ E1/2 ⊂ ∂eE
and H d−1(∂eE \ E1/2) = 0.

In particular, if E ⊂ Rd has finite perimeter then H d−1(E1/2) = H d−1(FE) < ∞. However it is
known (see e.g. [Kol83, Theorem 6, (2)]) that the condition H d−1(E1/2) <∞ is not sufficient for E ⊂ Rd
to have finite perimeter.

Remark 2.8. Taking into account De Giorgi’s Theorem 2.6 we can write Coarea Formula for a function
u ∈ BV(Rd) in the following way (see e.g. [AFP00, Formula (3.63)]:

|Du|(B) =

ˆ
R

H d−1 (∂e{u ≥ t} ∩B) dt for every Borel set B ⊆ Rd. (2.4)

2.4. Indecomposable and simple sets. From [ACMM01] we recall the following definitions.

Definition 2.9 (Decomposable and indecomposable sets). A measurable set E ⊆ Rd is called decompos-
able if there exist two measurable sets A,B ⊆ Rd with strictly positive measure such that E = A ∪ B,
A ∩B = ∅ and P (E) = P (A) + P (B). A set E which is not decomposable is called indecomposable.

Any set with finite perimeter can be decomposed into at most countably many indecomposable sets
[ACMM01, Theorem 1]:

Theorem 2.10 (Decomposition theorem). Let E be a set with finite perimeter in Rd. Then there exists
a unique (up to permutations) at most countable family of pairwise disjoint indecomposable sets {Ei}i∈I
such that L d(Ei) > 0, E =

⋃
i∈I Ei and P (E) =

∑
i P (Ei). Moreover, for any indecomposable F ⊆ E

with L d(F ) > 0 there exists a unique j ∈ I such that L d(F \ Ej) = 0.

Definition 2.11. The sets Ei defined above are called the M -connected components of E. The set
{Ei}i∈I is denoted by CCM (E), without loss of generality I ⊆ {0, 1, 2, . . .} and 0 ∈ I.

By Theorem 2.10 the M -connected components of E are maximal in the following sense: any in-
decomposable F ⊆ E with L d(F ) > 0 is contained in exactly one of the M -connected components
of E, up to Lebesgue negligible subsets. We refer the reader to [ACMM01] for a comparison between
indecomposability and the topological notion of connectedness.

The statement of Decomposition theorem can be slightly strengthened with the following simple result
from [ACMM01, Proposition 3] (see also Equation (10) in [ACMM01, Remark 1]):

Proposition 2.12. Let E ⊆ Rd be a set with finite perimeter. Let CCM (E) = {Ei}i∈I , where I is at
most countable. Then P (

⋃
i∈I1∪I2 Ei) = P (

⋃
i∈I1 Ei) + P (

⋃
i∈I2 Ei)for any disjoint sets I1, I2 ⊆ I.

Definition 2.13 (Holes, saturation, simple sets). Let E be an indecomposable set. Any M -connected
component of Rd \ E with finite measure is called a hole of E. The saturation sat(E) of E is defined as
union of E and all its holes. The set E is called saturated if sat(E) = E. Any indecomposable saturated
subset of Rd is called simple.

Observe that, for d > 1, the only simple set E with L d(E) =∞ is E = Rd.

2.5. Further facts on indecomposable and simple sets. We finally collect in this paragraph some
useful, different characterization of indecomposable and of simple sets. We begin by considering inde-
composable sets and we present a lemma which will be useful later.

Lemma 2.14. Let F ⊆ E ⊂ Rd be two sets of finite perimeter. Then

∂eF ⊆ ∂eE mod H d−1 ⇐⇒ H d−1(∂eF ∩ E1) = 0. (2.5)

Furthermore, if E is indecomposable and one (hence both) of (2.5) holds true, then L d(F ) = 0 or
L d(E \ F ) = 0.

Proof. Let us show first the equivalence. First notice that from F ⊂ E, together with the monotonicity
of the Lebesgue measure, we deduce E0 ⊂ F 0. Hence, the following equalities hold modulo H d−1:

∂eF = (∂eF ∩ E1) ∪ (∂eF ∩ E0) ∪ (∂eF ∩ ∂eE) = (∂eF ∩ E1) ∪ (∂eF ∩ ∂eE). (2.6)
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From (2.6) we easily get the equivalence: on the one hand, if ∂eF ⊆ ∂eE then we must have

(∂eF ∩ E1) ∪ (∂eF ∩ ∂eE) = ∂eF ⊂ ∂eE mod H d−1

and therefore the only possibility is that H d−1(∂eF ∩E1) = 0. Viceversa, if H d−1(∂eF ∩E1) = 0, from
(2.6) we get

∂eF = (∂eF ∩ E1) ∪ (∂eF ∩ ∂eE) = (∂eF ∩ ∂eE) ⊂ ∂eE mod H d−1

which is what we wanted. Let us now turn to prove that there are no non-trivial subsets F ⊂ E satisfying
the conditions (2.5) if E is indecomposable. Let F ⊆ E be a set of finite perimeter with ∂eF ⊆ ∂eE
mod H d−1. Then it is easy to check that

∂e(E \ F ) ⊂ ∂eE \ ∂eF mod H d−1. (2.7)

Let us show (2.7): on the one hand, it is clear that ∂e(E \ F ) ⊂ ∂eE. On the other hand, we show that

H d−1(∂e(E \ F ) ∩ ∂eF ) = 0.

Indeed, H d−1-a.e. x ∈ ∂e(E \F ) satisfies D(E \F, x) = 1
2 by De Giorgi-Federer’s Theorem 2.7. Similarly

H d−1-a.e. x ∈ ∂eF satisfies D(F, x) = 1
2 : thus, for H d−1-a.e. x ∈ (∂e(E \ F ) ∩ ∂eF ) we have

D(E, x) = D(F, x) +D(E \ F, x) =
1

2
+

1

2
= 1

which contradicts the fact that ∂e(E \ F ) ∩ ∂eF ⊆ ∂eE. Having shown (2.7) we get, taking Hausdorff
measure of both sides,

H d−1(∂e(E \ F )) ≤H d−1(∂eE \ ∂eF ) = H d−1(∂eE)−H d−1(∂eF )

or equivalently

P (E \ F ) + P (F ) ≤ P (E).

The other inequality is trivial by subadditivity of the perimeter, hence P (E \ F ) + P (F ) = P (E) which
implies the desired conclusion, being E indecomposable. �

Proposition 2.15 (Dolzmann-Müller). A set E ⊂ Rd of finite perimeter is indecomposable if and only
if for any u ∈ BVloc(Rd) with V (u) <∞ the following implication holds true:

|Du|(E1) = 0 =⇒ ∃c ∈ R : u(x) = c for a.e. x ∈ E.

Proof. Let E be indecomposable and let u ∈ BVloc(Rd) be a function with |Du|(E1) = 0. Set v := u1E ∈
BVloc(Rd) and observe that, by Coarea Formula (2.4), we have

|Dv|(E1) =

ˆ
R

H d−1
(
∂e({u ≥ t} ∩ E) ∩ E1

)
dt ≤

ˆ
R

H d−1
(
∂e{u ≥ t} ∪ ∂eE) ∩ E1

)
dt,

where we have used the elementary inclusion ∂e({u ≥ t} ∩ E) ⊂ ∂e{u ≥ t} ∪ ∂eE. Taking into account
that ∂eE ∩ E1 = ∅ we can continue the above chain of inequalities as follows:

|Dv|(E1) ≤
ˆ
R

H d−1
(
∂e{u ≥ t} ∪ ∂eE) ∩ E1

)
dt =

ˆ
R

H d−1
(
∂e{u ≥ t} ∩ E1

)
dt = |Du|(E1) = 0

by Coarea Formula applied on u. Thus we have H d−1
(
∂e({u ≥ t} ∩ E) ∩ E1

)
= 0 for a.e. t ∈ R. Now

we apply Lemma 2.14 to F := {u ≥ t} ∩ E ⊂ E: since E is indecomposable, we deduce

L d ({u ≥ t} ∩ E) = 0 or L d ({u < t} ∩ E) = 0

for a.e. t ∈ R, which is easily seen to be equivalent to u being constant in E. �

Concerning simple sets, we want to prove that simplicity for a set E with |E| < ∞ is equivalent to
indecomposability both of E and of Ec. We need the following preliminary

Lemma 2.16. Let E ⊂ Rd, d > 1, be a set of finite perimeter and assume L d(E) = +∞. Let
CCM (E) = {Ei}i∈I be the family of its indecomposable components. Then there exists a unique j ∈ I
such that L d(Ej) = +∞.
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Proof. The statement is a consequence of the convergence of the series
∑
i∈I P (Ei) and of the isoperimetric

inequality. Indeed, by contradiction, let us assume that for every i ∈ I it holds L d(Ei) < ∞. In
particular, for every i ∈ I it has to be L d(Rd \Ei) = +∞ and hence, by the isoperimetric inequality we
would get

L d(E) = L d

(⋃
i∈I

Ei

)
≤
∑
i∈I

L d(Ei) ≤ Cd
∑
i∈I

P (Ei) ≤ CdP (E) <∞

which is absurd. Hence there must exist at least one element j ∈ I such that L d(Ej) = +∞. Let us
now prove the uniqueness of j: assume that there exists j1, j2 ∈ I such that L d(Ej1) = L d(Ej2) = +∞.
Since

P (Ej1) + P (Ej2) ≤
∑
i∈I

P (Ei) = P (E) < +∞

we have that P (Ej1) < ∞ and P (Ej2) < ∞. Furthermore, by definition of indecomposable components
the sets Ej1 and Ej2 are (essentially) disjoint, i.e. Ej1 ∩Ej2 = ∅ mod L d. In particular, we deduce that

Ej2 ⊂ Ecj1 ⇒ +∞ = L d(Ej2) ≤ L d(Ecj1)

so

L d(Ej1) = L d(Ecj1) = +∞
which is a contradiction with the fact that P (Ej1) < ∞ (and the isoperimetric inequality). Thus j ∈ I
has to be unique and the proposition is proved. �

We are now ready to present the following characterization of simple sets:

Proposition 2.17. Let E ⊂ Rd, d > 1, be a set with finite positive measure, L d(E) ∈ (0,+∞). The set
E is simple if and only if E and Ec are indecomposable.

Proof. Assume that E is simple. Then it is clearly indecomposable; thus it is sufficient to show that
Ec is indecomposable. Since L d(E) ∈ (0,+∞), we have |Ec| = +∞. Letting CCM (Ec) := {Ui}i∈I be
the indecomposable components of Ec, by Lemma 2.16 there exists one and only one j ∈ I such that
L d(Uj) = +∞. So if ]I > 1 the other components {Ui}i 6=j of Ec must have finite measure, i.e. they are
holes of E. This contradicts the simplicity of the set E: hence ]I = 1 and Ec is thus indecomposable.

To prove the converse, let us now assume that L d(E) ∈ (0,+∞) and both E and Ec are indecompos-
able and we want to prove that E has no holes. By definition a hole of E is a indecomposable component
of Ec of finite measure. Being indecomposable, Ec has a unique indecomposable component, which co-
incides with itself. But L d(Ec) = ∞ since E has finite measure, and this implies that E has no holes,
hence it is simple. �

Remark 2.18. The necessary condition in Proposition 2.17 holds even if L d(E) = +∞ if d > 1: indeed,
as already observed, if E is simple and L d(E) = +∞ then E = Rd, hence the claim is trivial, being the
empty set indecomposable.

2.6. Jordan curves in R2. In this section we collect some results about Jordan curves in the plane R2.

Definition 2.19. A set C ⊆ R2 is called a Jordan curve if C = γ([a, b]) for some a, b ∈ R (with a < b)
and some continuous map γ : [a, b]→ R2, one-to-one on [a, b) and such that γ(a) = γ(b).

Remark 2.20. If H 1(C) <∞ then γ can be chosen in such a way that it is Lipschitz (see [ACMM01,
Lemma 3]), and in this case Γ is called a rectifiable Jordan curve.

Without any loss of generality, when dealing with Jordan curves, we will always suppose [a, b] = [0, 1].
The following result, borrowed from [ACMM01], will play a crucial role in the paper.

Theorem 2.21 ([ACMM01, Theorem 7]). Let E ⊆ R2 be a simple set with L 2(E) ∈ (0,+∞). Then E
is essentially bounded and ∂eE is equivalent, up to an H 1-negligible set, to a rectifiable Jordan curve.
Conversely, int(C) is a simple set for any rectifiable Jordan curve C.

Here int(C) denotes the bounded connected component of R2 \ C, given by the celebrated Jordan
theorem (see e.g. [Hat02, Proposition 2B.1]).
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2.7. Extreme points and Choquet theory. In this section we recall the main facts about extreme
points of compact, convex sets in normed spaces. Standard references are [Rud06, Phe01].

Let X be a topological vector space and let K ⊂ X. A point x ∈ K is an extreme point of K if

y, z ∈ K : t ∈ [0, 1] x = (1− t)y + tz =⇒ x = y = z.

The set of extreme points of K will be denoted by extK.

Remark 2.22 (The set of extreme points is a Borel set). Recall that extK is a Borel subset of K if the
topology of X is induced by some metric ρ. Indeed, the set K \ extK can be written as

⋃
n Cn, where

Cn :=

{
y + z

2

∣∣∣∣ y, z ∈ K, ρ(y, z) ≥ 1

n

}
for every n ∈ N with n ≥ 1.

Given that each set Cn is a closed subset of X we conclude that extK is Borel.

In the case K is a convex, compact set the (closed convex hull of the) set of extreme points of K
coincides with the set K itself, as the following theorem states:

Theorem 2.23 (Krein-Milman). If K ⊂ X is non-empty, compact, convex set then K = co(ext(K)).

We recall that, in a vector space X, the convex hull co(A) of a set A ⊂ X is the intersection of all
convex sets containing A.

Definition 2.24 (Vector valued integration). Let µ be a measure on a non-empty set Q. Let f : Q→ X
be an X-valued function such that (Λf)(q) := Λ(f(q)) is µ-integrable for every Λ: X → R linear and
continuous. If there exists y ∈ X such that

Λy =

ˆ
Q

Λf dµ

for every Λ: X → R linear and continuous then we say that y is the integral of f with respect to µ and
we write ˆ

Q

fdµ := y.

Theorem 2.25 (Representation of the convex hull). Let Q ⊂ X be a compact set and let H := co(Q).
Assume that H = co(Q) is compact as well. Then

y ∈ H ⇐⇒ ∃µ ∈P(Q) : y =

ˆ
Q

x dµ(x).

One of the fundamental results in functional analysis and convex analysis is the following theorem,
which can be obtained combining Theorem 2.23 with Theorem 2.25:

Theorem 2.26 (Choquet [Phe01]). Let X be a metrizable topological vector space and let ∅ 6= K ⊂ X be
convex and compact. Then for any point x ∈ K there exists a Borel probability measure µ on X (possibly
depending on x), which is concentrated on extK and satisfies

x =

ˆ
extK

y dµ(y)

where the integral is understood in the sense of Definition 2.24, i.e. explicitly

Λ(x) =

ˆ
extK

Λ(y) dµ(y), for every Λ: X → R linear and continuous.

Remark 2.27 (Extreme points and isomorphisms). Let (Y, ‖ · ‖Y ) be a normed space and suppose that
φ : X → Y is a linear isomorphism between X and Y . Then for any set A ⊂ X it holds

extφ(A) = φ(extA).

Indeed, consider z ∈ extφ(A). Being φ one-to-one and onto, there exists a unique a ∈ A such that
z = φ(a). We want to prove that a ∈ extA: let

f, g ∈ A : λf + (1− λ)g = a.

Since φ is linear
λφ(f) + (1− λ)φ(g) = φ(a) = z
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but z was an extreme point hence φ(f) = φ(g) = z which implies f = g = a, i.e. a is also extreme. An
analogous proof shows that if b ∈ extA than φ(b) is also extreme of φ(A).

3. Extreme points of the unit ball of BV functions in Rd

Let us consider the Banach space X :=
(
BV(Rd), ‖ · ‖BV

)
and let us characterize extreme points of

BX1 , the closed unit ball.

Proposition 3.1 (Extreme points of unit ball in BV(Rd)). A function f ∈ X is an extreme point of
BX1 if and only there exists an indecomposable set E ⊂ Rd of positive, finite perimeter and positive, finite
measure and a constant σ ∈ {±1} such that

f(x) = σ
1E(x)

‖1E‖BV
, L d-a.e. x ∈ Rd.

We will need the following auxiliary

Lemma 3.2. Let f ∈ BVloc(Rd) and let, for any λ ∈ R,

f+
λ := max{f − λ, 0} and f−λ := f − f+

λ = min{λ, f}.

Then for every open set Ω b Rd it holds

|Df |(Ω) = |D(f+
λ )|(Ω) + |D(f−λ )|(Ω). (3.1)

Proof. To begin we consider the case λ = 0 and we notice that, in this case, the decomposition of f into
f+
λ + f−λ coincides with the standard decomposition into positive/negative part:

f+
0 = f+ and f−0 := −f−.

If f ∈W 1,1
loc (Rd) then, fixed Ω b Rd, it is enough to apply the Chain Rule Theorem [EG91, Section 4.2.2,

Theorem 4(iii)]. For the general case, consider a sequence (fn)n ⊂W 1,1(Ω)∩C∞(Ω) with fn → f strongly
in L1(Ω) and |Dfn|(Ω) → |Df |(Ω) (such a sequence can be obtained using Anzellotti-Gianquinta’s
Theorem, see e.g. [EG91, Section 5.2.2]). Then for every n ∈ N it holds

|Dfn|(Ω) = |D(f+
n )|(Ω) + |D(f−n )|(Ω)

hence

|Df |(Ω) = lim
n
|Dfn|(Ω) = lim inf

n
|Dfn|(Ω)

= lim inf
n

(|D(f+
n )|(Ω) + |D(f−n )|(Ω))

≥ lim inf
n
|D(f+

n )|(Ω) + lim inf
n
|D(f−n )|(Ω)

≥ |D(f+)|(Ω) + |D(f−)|(Ω)

where the last inequality is a consequence of the l.s.c. of the total variation, since f+
n → f+ and f−n → f−

in L1(Ω). The statement is thus proved for λ = 0; to obtain the general case, we can apply the above
claim to the function g := f − λ ∈ BVloc(Rd), noticing that

g+ = f+
λ , g− = λ− f−λ

and

Dg = Df, Dg+ = Df+
λ , Dg− = −Df−λ .

whence (3.1). �

We now show the following Lemma, which ensures that extreme points lie in the set of normalized
indicators of sets of finite perimeter. Recall that for any set of finite perimeter E ⊂ Rd, either E or Ec

has finite Lebesgue measure by the isoperimetric inequality (2.3).

Lemma 3.3. Let f ∈ X be an extreme point of the closed unit ball BX1 . Then there exists a set E ⊆ Rd
with positive, finite perimeter and positive, finite measure L d(E) < ∞ and a constant σ ∈ {±1} such
that f = σ 1

‖1E‖BV
1E.
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Proof. Step 1. Any extreme function has constant sign. Let f ∈ X be extreme of BX1 . Then, by standard
facts, we have necessarily ‖f‖BV = 1. Let us decompose f into positive and negative part as f = f+−f−.
By the very definition of Lebesgue integral for signed functions we have that

‖f‖1 = ‖f+‖1 + ‖f−‖1
while, by Lemma 3.2 with λ = 0, we have that

‖Df‖M = ‖Df+‖M + ‖Df−‖M .

Adding up the two equalities, we find out that

‖f‖BV = ‖f+‖BV + ‖f−‖BV

and this can be used to decompose f into a convex linear combination of two signed functions with unit
BV norm:

f = ‖f+‖BV ·
f+

‖f+‖BV
+ ‖f−‖BV ·

−f−

‖f−‖BV
. (3.2)

Hence any extremal point is necessarily a function with constant sign and, without any loss of generality,
we consider f ≥ 0.

Step 2. Any extreme function attains at most one non-zero value. We now would like to prove that
f(x) ∈ {0, α} for some α > 0 for L d- a.e. x ∈ Rd.

Suppose by contradiction that it is not true: hence, there exist two points x1, x2 such that f(x1) 6= 0,
f(x2) 6= 0 and also f(x1) 6= f(x2). Without any loss of generality, suppose f(x1) < f(x2). We can also
assume that x1, x2 are Lebesgue points of f (this property being satisfied almost everywhere by standard
facts). Consider an arbitrary λ ∈ (f(x1), f(x2)) and define the non-negative functions

f+
λ := max{f − λ, 0} and f−λ := f − f+

λ = min{λ, f}.

By Lemma 3.2 we deduce

‖Df‖M = ‖D(f+
λ )‖M + ‖D(f−λ )‖M ,

while from the pointwise equality f+
λ + f−λ = f , together with non-negativity, we get

‖f‖1 = ‖f+
λ ‖1 + ‖f−λ ‖1,

and thus

‖f‖BV = ‖f+
λ ‖BV + ‖f−λ ‖BV.

In particular, we can decompose

f = ‖f+
λ ‖BV ·

f+
λ

‖f+
λ ‖BV︸ ︷︷ ︸
∈BX1

+‖f−λ ‖BV ·
f−λ

‖f−λ ‖BV︸ ︷︷ ︸
∈BX1

. (3.3)

Notice that the choice of λ ∈ (f(x1), f(x2)) together with the fact that f(x1) 6= 0 6= f(x2) grant that the
decomposition (3.3) is non-trivial and well-posed, in the sense that:

(1) the functions f±λ are linearly independent: if af+
λ + bf−λ = 0 for a, b ∈ R, then evaluating at x1

we deduce

bf(x1) = 0⇒ b = 0

and evaluation at x2 yields

a(f(x2)− λ) = 0⇒ a = 0;

(2) we have ‖f±λ ‖BV > 0: indeed, if it were e.g. ‖f−λ ‖BV = 0, then f = f+
λ a.e. which means

f(x) ≥ λ for L d-a.e.x ∈ Rd. (3.4)

On the other hand, x1 is a Lebesgue point of f with Lebesgue value f(x1) < λ, so by definition

λ > f(x1) = lim
r→0

 
Br(x1)

f(y) dy
(3.4)

≥ lim
r→0

 
Br(x1)

λ dy = λ,

which is a contradiction.
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Thus (3.3) is a non-trivial, convex decomposition of f which contradicts extremality: the contradiction
stems from the assumption that there exists two points x1, x2 such that f(x1) 6= 0, f(x2) 6= 0 and
f(x1) 6= f(x2). So we must have f(x) ∈ {0, α} for a.e. x for some α > 0.

Step 3. Any extreme function is an indicator function. From Step 2 we immediately deduce

f(x) = α1E , where E := {x ∈ Rd : f(x) = α}.
The set E has finite perimeter because f ∈ BV(Rd) and, being ‖f‖BV = 1, we deduce that necessarily
α = ‖1E‖−1

BV. This concludes the proof. �

We can now prove the main result of this section.

Proof of Proposition 3.1. We split the proof into two steps.
Sufficiency. Let E ⊂ Rd be a set of positive, finite perimeter and assume it is indecomposable. Let

c = 1
P (E) and let us prove that f := c1E is an extreme point of BX1 . Assume that for some functions

g, h ∈ BX1 and λ ∈ [0, 1] we can write
f = λg + (1− λ)h

and let us prove that necessarily g = c1E and h = c1E . Since ‖f‖BV = 1 we have that

1 ≤ λ‖g‖BV + (1− λ)‖h‖BV

and we claim that actually equality holds. If it were

1 < λ‖g‖BV + (1− λ)‖h‖BV

then we would get, being f, g ∈ BX1
1 < λ‖g‖BV + (1− λ)‖h‖BV ≤ λ+ (1− λ) = 1,

a contradiction. In a complete similar way, one can prove that ‖g‖BV = 1 = ‖h‖BV. All in all, we can
represent

1E = φ+ ψ (3.5)

with
‖1E‖BV = ‖φ‖BV + ‖ψ‖BV (3.6)

being φ = c−1λg and ψ = c−1(1− λ)h. Notice that φ, ψ ≥ 0 otherwise we would haveˆ
Rd

(φ(x) + ψ(x)) dx <

ˆ
Rd
|φ(x)|+ |ψ(x)| dx

which would yield

‖φ+ ψ‖BV = ‖φ+ ψ‖1 + ‖D(φ+ ψ)‖M < ‖φ‖1 + ‖ψ‖1 + ‖Dφ‖M + ‖Dψ‖M = ‖φ‖BV + ‖ψ‖BV,

contradicting (3.6). Thus φ, ψ ≥ 0 and 1E = φ+ ψ, therefore

φ = ψ = 0 a.e. on Ec. (3.7)

Notice furthermore that it holds

|D1E | = |Dφ|+ |Dψ| as measures in Rd. (3.8)

Indeed, by (3.5) and the triangle inequality we get |D1E | ≤ |Dφ + Dψ| ≤ |Dφ| + |Dψ|; the converse
inequality then follows exploiting (3.6). In particular, computing (3.8) on the Borel set E1 it follows

|Dφ|(E1) + |Dψ|(E1) = |D1E |(E1) = 0

where the last equality follows from De Giorgi’s Theorem. Hence

|Dφ|(E1) = 0 = |Dψ|(E1).

By Proposition 2.15 and by the indecomposability of E, there exist constants c1, c2 ∈ R such that

φ(x) = c1, ψ(x) = c2 a.e. in E. (3.9)

In particular, combining (3.9) together with (3.7) we obtain

φ(x) = c11E(x), ψ(x) = c21E(x) a.e. in Rd

and this in turn implies that
g = α1E(x),
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for some α ∈ R. Being ‖g‖FV = 1 we obtain that the constant has to be

α =
1

P (E)
.

One can argue similarly with h and the conclusion is now achieved: we have proved that the only convex
combination of elements in BX1 representing f is the trivial one, i.e. f is an extreme point of BX1 .

Necessity. By Lemma 3.3, we can already infer that there exists a set E ⊆ Rd with finite perimeter
and σ ∈ {±1} such that f = σ 1

‖1E‖BV
1E a.e. w.r.t. the Lebesgue measure. Now we prove that E

is indecomposable. Suppose by contradiction that E is a decomposable set, i.e. E = A ∪ B with
A ∩ B = ∅ and P (E) = P (A) + P (B). Since by additivity of the Lebesgue measure it holds L d(E) =
L d(A) + L d(B), we have

‖1E‖BV = ‖1A‖BV + ‖1B‖BV.

Hence
1

‖1E‖BV
1E =

‖1A‖BV

‖1E‖BV

1A

‖1A‖BV︸ ︷︷ ︸
∈BX1

+
‖1B‖BV

‖1E‖BV

1B

‖1B‖BV︸ ︷︷ ︸
∈BX1

is a representation of f as a non-trivial convex combination of elements of BX1 , contradicting extremality.
Therefore if 1E

P (E) is an extreme point then E has to be indecomposable. �

4. Extreme points of the unit ball of FV functions in Rd

Definition 4.1. We define the space FV(Rd) as the function space

FV(Rd) := {f ∈ L1∗(Rd) : V (f) < +∞}.

We recall V (f) = V (f,Rd) is the variation of a locally integrable function, see Definition 2.2, while 1∗
is defined in (2.2).

Remark 4.2. It is easy to see that BV(Rd) ⊂ FV(Rd) ⊂ BVloc(Rd) and both inclusion are strict. Indeed,
any constant function is certainly locally integrable with zero total variation, but it is not in Lp(Rd) for
any p. On the other hand, the function f : Rd → R defined by

f(x) = g(|x|), where g(s) := min

{
1,

1

sd

}
is in FV(Rd) but not in BV(Rd). Let us verify this claim:ˆ

Rd
f(x)dx = Cd

ˆ +∞

0

g(s)sd−1 ds = +∞

while, taking into account that 1∗ := d/d−1 we haveˆ
Rd
|f(x)|1

∗
dx = Cd

ˆ +∞

0

g(s)
d/d−1sd−1 ds = C̃d

(
1 +

ˆ +∞

1

s
1−2d/d−1 ds

)
< +∞.

Notice that the variation of f is finite

V (f) = Cd

ˆ +∞

1

1

sd+1
sd−1 ds = Cd

ˆ +∞

1

1

s2
< +∞.

We now prove that the map ‖ · ‖FV : FV(Rd) 3 f 7→ ‖f‖FV = V (f) gives to FV(Rd) the structure of
a normed space.

Proposition 4.3. The space Y :=
(
FV(Rd), ‖ · ‖FV

)
is a normed space.

Proof. Positivity and 1-homogeneity are clear from the definition of ‖ · ‖FV and the triangle inequality as
well. We have to prove only definiteness: for, let f ∈ FV(Rd) with

‖f‖FV = V (f) = 0. (4.1)

Applying Theorem 2.3 we deduce that there exist m ∈ R and a constant γ > 0 such that

‖f −m‖1∗ ≤ γV (f)
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whence ‖f −m‖1∗ = 0 and f = m almost everywhere. Being f ∈ L1∗(Rd) the only possibility is that
m = 0 hence the proposition is proved. �

We now aim at characterizing extreme points of BY1 , the closed unit ball in Y . Observe that, if f is
the characteristic function of a measurable set A, variation and perimeter coincide, i.e.

V (1A) = P (A,Rd) = P (A).

Proposition 4.4 (Extreme points of unit ball in FV(Rd)). A function f ∈ Y is an extreme point of BY1
if and only there exists a simple set E ⊂ Rd of positive, finite perimeter and a constant σ ∈ {±1} such
that

f(x) = σ
1E(x)

P (E)
, L d-a.e. x ∈ Rd.

Proof. Sufficiency. Let E ⊂ Rd be a simple set. Let c = 1
P (E) and let us prove that f := c1E is an

extreme point of BY1 . Assume that for some functions g, h ∈ BY1 and λ ∈ [0, 1] we can write

f = λg + (1− λ)h

and let us prove that necessarily g = c1E and h = c1E . Since ‖f‖FV = 1 we have that

1 ≤ λ‖g‖FV + (1− λ)‖h‖FV

and we claim that actually equality holds. If it were

1 < λ‖g‖FV + (1− λ)‖h‖FV

then we would get, being f, g ∈ BY1
1 < λ‖g‖FV + (1− λ)‖h‖FV ≤ λ+ (1− λ) = 1,

a contradiction. In a complete similar way, one can prove that ‖g‖FV = 1 = ‖h‖FV. All in all, we can
represent

1E = φ+ ψ (4.2)

with

‖1E‖FV = ‖φ‖FV + ‖ψ‖FV (4.3)

being φ = c−1λg and ψ = c−1(1− λ)h. Notice actually that it holds

|D1E | = |Dφ|+ |Dψ| as measures in Rd. (4.4)

Indeed, by (4.2) and the triangle inequality we get |D1E | ≤ |Dφ + Dψ| ≤ |Dφ| + |Dψ|; the converse
inequality then follows exploiting (4.3). In particular, computing (4.4) on the Borel set E1 it follows

|Dφ|(E1) + |Dψ|(E1) = |D1E |(E1) = 0

where the last equality follows from De Giorgi’s Theorem. Hence

|Dφ|(E1) = 0 = |Dψ|(E1).

By Proposition 2.15 and by the indecomposability of E, there exist constants c1, c2 ∈ R such that

φ(x) = c1, ψ(x) = c2 a.e. in E. (4.5)

In particular, c1 + c2 = 1. In an analogous way, we also get |Dφ|(E0) = 0 = |Dψ|(E0): being E0 =
(Rd \ E)1, by indecomposability of Ec (recall Proposition 2.17), we conclude again by Proposition 2.15
that there exist constants c3, c4 ∈ R such that

φ(x) = c3, ψ(x) = c4 a.e. in Ec.

By the Isoperimetric Inequality (2.3), either E or Ec has finite measure and, up to rename everything,
consider the case in which E has finite measure. Then Ec must have infinite Lebesgue measure and the
functions φ, ψ are constant functions which are in L1∗(Rd): thus it must be c3 = c4 = 0, i.e.

φ(x) = 0 = ψ(x) a.e. in Ec.

Combined with (4.5), this gives that

φ(x) = c11E(x), ψ(x) = (1− c1)1E(x) a.e. in Rd.
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In particular, we deduce that
g = α1E(x)

and being ‖g‖FV = 1 we obtain that the constant has to be

α =
1

P (E)
.

One can argue similarly with h and the conclusion is now achieved: we have proved that the only convex
combination of elements in BY1 representing f is the trivial one, i.e. f is an extreme point of BY1 .

Necessity. The argument used in the proof of 3.3 can be repeated verbatim here, yielding an analogous
conclusion: an extreme point f of BY1 has necessarily the form

f(x) = σ
1E(x)

P (E)
, L d-a.e. x ∈ Rd

for some set of positive finite perimeter E ⊂ Rd. It remains thus to show that E has to be simple. Let
us show first that E is indecomposable. Assume that it can be written as E = A ∪ B with A ∩ B = ∅
and P (E) = P (A) + P (B). Hence 1

P (E)1E = P (A)
P (E)

1
P (A)1A + P (B)

P (E)
1

P (B)1B is a convex linear combination

of indicators of sets (normalized by perimeter). Therefore if 1
P (E)1E is an extreme point of the unit ball

in Y then E has to be indecomposable.
In view of Proposition 2.17, it remains to show that Ec has to be indecomposable, too. For let us

suppose that C,D are such that Ec = C ∪D with C ∩D = ∅ and P (Ec) = P (C) + P (D). Arguing as
above, we get that

E = Cc ∩Dc = C ′ \D ⇒ 1E = 1C′ − 1D,
with C ′ = Cc. Consequently, since P (E) = P (Ec) = P (C) + P (D) it holds

1

P (E)
1E =

P (C)

P (E)

1

P (C)
1C′ +

P (D)

P (E)

−1

P (D)
1D

is a convex linear combination of indicators of sets (normalized by perimeter). Therefore if 1
P (E)1E is

an extremal point of then E,Ec have to be indecomposable, hence E is simple and this concludes the
proof. �

5. Hamiltonian potential of divergence-free vector measures in R2

5.1. Divergence-free measures and FV. We now define the space of vector-valued divergence-free
measures.

Definition 5.1. We will denote by J (Rd) the following set of vector valued measures:

J (Rd) := {µ ∈M (Rd;Rd) : divµ = 0}
where the divergence operator is understood in the sense of distributions.

The space J is a real vector space under the usual operations of additions of measures and multipli-
cation by real numbers and it can be equipped with a norm given by the total variation:

‖µ‖J := |µ|(R2).

Remark 5.2. As already observed in the Introduction, an important (somehow paradigmatic) example
of a measure belonging to J is the one associated to a Lipschitz closed curve: if γ : [0, 1] → R2 is a
Lipschitz map, injective on [0, 1) and with γ(0) = γ(1) we can define the measure µγ ∈M(R2;R2) to be

〈Φ,µγ〉 :=

ˆ
R2

Φ(z) dH 1xγ([0,1])(z) ∀Φ ∈ C0(R2)2

which, by Area formula, can also be written as

〈Φ,µγ〉 =

ˆ 1

0

Φ(γ(t)) · γ′(t) dt.

Notice that this definition is well-posed, in the sense that it does not depend on the parametrization γ
of the curve. It is easy to see that divµγ = 0 in the sense of distributions, as a consequence of the fact
that γ(0) = γ(1), so µγ ∈ J (R2).
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The following proposition establishes a functional analytic connection between J (R2) and FV(R2).

Proposition 5.3. The map

∇⊥ : FV(R2)→ J (R2)

f 7→ µ := ∇⊥f = (−∂yf, ∂xf)

is an isometric isomorphism.

Proof. Well-posedness and linearity. The map ∇⊥ is well-posed, because div∇⊥f = 0 for any f ∈
FV(R2): indeed, for any test function φ ∈ C∞c (R2)

〈div∇⊥f, φ〉 =

ˆ
R2

∇φ(z) · d(∇⊥f)(z)

=

ˆ
R2

(∂xφ(z), ∂yφ(z)) · d((−∂yf, ∂xf))(z)

=

ˆ
R2

∂y∂xφ(z)f(z) dz −
ˆ
R2

∂x∂yφ(z)f(z) dz = 0.

Linearity of ∇⊥ is trivial.
Injectivity. The kernel of ∇⊥ is given by the functions f for which

∇⊥f = 0

which means f is constant in R2, in particular f = 0 in FV(R2): injectivity follows.
Surjectivity. Let us turn to prove surjectivity: pick µ ∈ J (R2) and let {ρε}ε>0 be a standard family

of mollifiers in R2. Set

Φε(x) := µ ∗ ρε(x) =

ˆ
R2

ρε(x− y)dµ(y).

and observe that by standard facts Φε ∈ C∞c (R2;R2) with div Φε = 0. By Poincaré Lemma, for every
ε > 0, there exists fε ∈ C∞c (R2) such that ∇⊥fε = Φε. Notice that for any ε > 0

V (fε) = ‖Φε‖1 ≤ ‖µ‖J
hence (fε)ε>0 ⊂ FV(R2). By Theorem 2.3 there exists {mε}ε>0 ⊂ R and a universal constant γ > 0 such
that

‖fε −mε‖L1∗ (R2) ≤ γV (fε) ≤ γ‖µ‖J .
In particular, if we now fix any open Ω b R2, we have using Hölder inequality

‖fε −mε‖L1(Ω) ≤ L d(Ω)1/d‖fε −mε‖L1∗ (Ω) ≤ γL d(Ω)1/d‖µ‖J .

On the other hand

V (fε −mε,Ω) ≤ V (fε −mε) = V (fε) ≤ ‖µ‖J
and hence we are in position to apply the Compactness Theorem [AFP00, Theorem 3.23]: there exists a
function f ∈ L1

loc(R2) such that, up to a subsequence, (fε −mε) → f strongly in L1
loc(R2) as ε → 0. In

particular, f is also in FV(R2) by the l.s.c. of the total variation

V (f) ≤ lim inf
ε↓0

V (fε) ≤ c‖µ‖J .

It remains now to check that ∇⊥f = µ: indeed, for any smooth, compactly supported test function
Ψ ∈ C∞c (R2,R2) it holds ˆ

R2

f(x) div Ψ(x) dx = lim
ε→0

ˆ
R2

fε(x) div Ψ(x) dx

= lim
ε→0

ˆ
R2

Ψ(x) · Φ⊥ε (x) dx

=

ˆ
R2

Ψ(x) dµ⊥(x)

where in the last passage we have used that Φε ⇀ µ as ε→ 0 (see e.g. [AFP00, Thm. 2.2]).
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∇⊥ is an isometry. It remains thus to show that ∇⊥ is an isometry: taken f ∈ FV(R2) by definition

‖f‖FV = V (f,R2) = sup

{ˆ
R2

f(x) div Φ(x) dx : Φ ∈ C∞c (R2), ‖Φ‖∞ ≤ 1

}
= sup

{
〈Φ,∇f〉 : Φ ∈ C∞c (R2), ‖Φ‖∞ ≤ 1

}
= sup

{
〈Φ,∇⊥f〉 : Φ ∈ C∞c (R2), ‖Φ‖∞ ≤ 1

}
= sup

{ˆ
R2

div Φ(x) d(∇⊥f)(x) : Φ ∈ C∞c (R2), ‖Φ‖∞ ≤ 1

}
= ‖∇⊥f‖J .

�

6. Simple sets and closed curves

Aim of this section is to give a detailed description of the extreme points of the unit ball of J . Since
∇⊥ is an isometry we have

BJ1 = ∇⊥(BY1 )

and hence, by Remark 2.27, we have

ext(BJ1 ) = ext(∇⊥(BY1 )) = ∇⊥(ext(BY1 )) =

{
σ
∇⊥1E
P (E)

: E ⊂ R2 simple set, P (E) > 0 and σ ∈ {±1}
}
.

(6.1)
Let us introduce the following notation:

Γ :=
{
γ : [0, 1]→ R2 : Lipschitz on [0, 1], injective on [0, 1) and γ(0) = γ(1)

}
.

For any γ ∈ Γ, we define its length to be `(γ) :=
´ 1

0
|γ′(t)| dt ∈ (0,+∞). Notice, in particular, that any

γ ∈ Γ induces a rectifiable Jordan curve C := γ([0, 1]), and viceversa every rectifiable Jordan curve can
be parametrized by some γ ∈ Γ. Being a subset of (Lip[0, 1])2 the space Γ can be thought as a normed
space, being the norm the (restriction of the) uniform one ‖ · ‖∞.

We now want to prove the following proposition.

Proposition 6.1. The following equality holds true:

ext(BJ1 ) =

{
1

`(γ)
µγ : γ ∈ Γ

}
.

Proof. Let µ ∈ ext(BJ1 ). From (6.1) we have that µ = σ 1
P (E)∇

⊥
1E for some simple set E ⊂ R2 with

P (E) > 0 and σ ∈ ±1. From Theorem 2.21, the essential boundary ∂eE, is equivalent, up to an H 1-
negligible set, to a rectifiable Jordan curve. Using Theorem 2.7, we can conclude that also FE can be
parametrized by some Jordan curve, which can be taken to be Lipschitz (see [ACMM01, Lemma 3]). All
in all, we have that there exists γ ∈ Γ such that γ([0, 1]) = FE, up to a H 1-null set.

On the one hand, by De Giorgi’s Theorem 2.6, for H 1-a.e. x ∈ FE we have

Tan(FE, x) = span(ν⊥E (x)) (6.2)

where νE(x) is the generalized inner normal to E and span(ν⊥E (x)) denotes the orthogonal line to νE(x).
On the other hand, since FE = γ([0, 1]) we have using Proposition 2.5

Tan(γ([0, 1]), x) = span(γ′(γ−1(x))). (6.3)

Since the approximate tangent space is a one dimensional vector space and since νE(x) is unit vector for
H 1-almost every x ∈ FE, equalities (6.2) and (6.3) force that for H 1-a.e. x ∈ FE

ν⊥E (x) = σ(x)
γ′(γ−1(x))

|γ′(γ−1(x)), |
for σ(x) ∈ {±1}. (6.4)

This means that the vector ν⊥E (x) is tangent to the curve γ at the point γ(γ−1(x)) for H 1-a.e. x ∈
γ([0, 1]). Since div(ν⊥EH 1xγ([0,1])) = 0 we can apply [BG16, Theorem 4.9], obtaining that

∃σ̄ ∈ {±1} : ν⊥E (γ(t)) = σ̄ · γ
′(t)

|γ′(t)|
for L 1-a.e. t ∈ [0, 1].
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Reversing the parametrization of γ, if necessary, one can achieve that σ̄ = 1. Then for any test function
Φ ∈ C∞c (R2;R2), using Area Formula, we obtain

〈µ,Φ〉 =

〈
1

P (E)
∇⊥1E ,Φ

〉
=

〈
1

P (E)
ν⊥EH 1xFE ,Φ

〉
=

1

P (E)

ˆ
R2

Φ(x) · ν⊥E (x) dH 1xFE(x)

=
1

P (E)

ˆ
R2

Φ(x) · γ
′(γ−1(x))

|γ′(γ−1(x))|
dH 1xγ([0,1])(x)

=
1

P (E)

ˆ 1

0

Φ(γ(t)) · γ
′(t)

|γ′(t)|
|γ′(t)| dt

=
1

`(γ)

ˆ 1

0

Φ(γ(t)) · γ′(t) dt

=

〈
1

`(γ)
µγ ,Φ

〉

(6.5)

where we have also used the fact that P (E) = V (1E) = ‖νEH 1xFE‖M = H 1(γ([0, 1])) = `(γ) (which
also follows from Area Formula).

Thus we have shown that any extreme point µ of BJ1 has necessarily the form 1
`(γ)µγ . The converse

implication, namely that normalized measures µγ are extreme, follows immediately from the second part
of Theorem 2.21: any γ ∈ Γ induces a rectifiable Jordan curve C := γ([0, 1]), hence int(Γ) =: E is a
simple set by Theorem 2.21. Extremality the follows from (6.1), noticing that

1

`(γ)
µγ =

1

P (E)
∇⊥1E

as above, and the proof is thus complete. �

7. Measures as superposition of curves I: a proof using Choquet’s Theory

In this section we prove Theorem 1 with ρ = 0:

Theorem 7.1. Let µ ∈ J (R2). Then there exists a σ-finite, non-negative measure η ∈M+(Γ) such that
(1.3a) and (1.3b) hold.

Consider the maps p : Γ→ J (Rd) and F : p(Γ)→ J (Rd) defined by

p(γ) := µγ , F (ν) :=

{
ν
‖ν‖ , ν 6= 0,

0, ν = 0
(7.1)

For any m ∈ N let

Γm := {γ ∈ Γ : γ(0) = γ(1), |γ(0)|+ ‖γ′‖∞ ≤ m} .

In view of Arzelà-Ascoli Theorem Γm is a compact subset of Γ (with respect to the topology of the
uniform convergence).

The lemma below works in any dimension d (not only d = 2).

Lemma 7.2. The maps p and F defined in (7.1) have the following properties:

(1) For any m ∈ N the map p : Γm → J (Rd) defined in (7.1) is continuous (with respect to uniform
topology on Γm and weak-star topology on J (Rd)).

(2) The map F : J (Rd)→ J (Rd) is Borel.
(3) The sets p(Γ) and F (p(Γ)) are Borel.
(4) The F : p(Γ)→ F (p(Γ)) has Borel inverse F−1.



19

Proof. It is sufficient to verify sequential continuity of p. Let (γk)k∈N ⊂ Γm be a sequence with γn → γ

for a certain γ ∈ Γm. Let us show that µγn
∗
⇀ µγ first in the sense of distributions: let Φ ∈ C∞c (Rd;Rd).

Then

|〈µγn ,Φ〉 − 〈µγ ,Φ〉| =
∣∣∣∣ˆ 1

0

Φ(γn(t)) · γ′n(t)dt−
ˆ 1

0

Φ(γ(t)) · γ′(t)dt
∣∣∣∣

=

∣∣∣∣ˆ 1

0

(
Φ(γn(t))− Φ(γ(t))

)
· γ′n(t)dt−

ˆ 1

0

Φ(γ(t)) · (γ′(t)− γ′n(t)) dt

∣∣∣∣
≤ m

ˆ 1

0

|Φ(γn(t))− Φ(γ(t))| dt+

∣∣∣∣ˆ 1

0

d

dt
Φ(γ(t)) · (γ(t)− γn(t)) dt

∣∣∣∣
≤ m

ˆ 1

0

|Φ(γn(t))− Φ(γ(t))| dt+ ‖∇Φ‖∞
ˆ 1

0

|γ(t)− γn(t)| dt→ 0

as n → +∞. Moreover supn∈N ‖µγn‖ ≤ m. Hence the functionals µγn ∈ C0(Rd;Rd)∗ are uniformly
bounded and converge to µ pointwise on the set C∞c (Rd;Rd) which is dense in C0(Rd;Rd). Therefore

µγn
∗
⇀ µ as n→∞.

Since for any m ∈ N the set p(Γm) is compact (being an image of a compact under a contunuous map),
the set p(Γ) =

⋃
m∈N p(Γ) is Borel.

For any Φ ∈ C0(Rd;Rd) the map ν 7→ 〈ν,Φ〉
‖ν‖ is Borel. Indeed, the numerator is a continuous function

of ν and the denominator is lower semicontinuous (hence Borel). Therefore F is a Borel map from
M (Rd;Rd) to M (Rd;Rd) (with respect to weak-star topologies). Since for every m ∈ N the set p(Γm) is
contained in a closed ball of M (Rd;Rd) (note that this ball is Polish with respect to weak* topology) and
F is injective on p(Γm), it follows that F (p(Γm)) is Borel (see e.g. [Bog06], Theorem 6.8.6). Therefore
F (p(Γ)) =

⋃∞
m=1 F (p(Γm)) is Borel. Similarly, the image of any Borel subset of p(Γ) under F is Borel,

and by injectivity of F on p(Γ) this means that F : p(Γ)→ F (p(Γ)) has Borel inverse. �

Lemma 7.3. Suppose that µ ∈ J (Rd) and there exists a finite measure ξ ∈ M+(J (Rd)) concentrated
on F (p(Γ)) such that

µ =

ˆ
J (Rd)

ν dξ(ν), |µ| =
ˆ
J (Rd)

|ν| dξ(ν) (7.2)

Then there exists σ-finite η ∈M+(Γ) such that (1.3a) and (1.3b) hold for µ and η.

Proof. By Lemma 7.2 the map F : p(Γ)→ F (p(Γ)) has Borel inverse F−1 hence we can change variables
using the map F−1:

ˆ
F (p(Γ))

y dξ(y) =

ˆ
F (p(Γ))

F (F−1(y)) dξ(y) =

ˆ
p(Γ)

F (ν) d(F−1
# ξ)(ν) =

ˆ
p(Γ)

ν dξ̂(ν).

where ξ̂ denotes the measure on M (Rd;Rd) defined by

ξ̂(A) :=

ˆ
A\{0}

1

‖ν‖
d(F−1

# ξ)(ν),

A ⊂M (Rd;Rd) being an arbitrary Borel subset (clearly ξ̂ is concentrated on p(Γ)).

Since p(Γ) =
⋃
m∈N p(Γm) we can write ξ̂ as a sum of its restrictions ξ̂m on the sets p(Γm+1) \ p(Γm),

where m ∈ N.
By Lemma 7.2 the map p : Γm → M (Rd;Rd) is continous and the set Γm is compact, hence there

exists a Borel set Bm ⊂ Γm such that the restriction of p to Bm is injective and p(Bm) = p(Γm) (see e.g.
[Bog06, Theorem 6.9.7]). Therefore the inverse map qm : p(Γm)→ Γm is Borel. Now we change variables
using qm:ˆ

p(Γ)

ν dξ̂m(ν) =

ˆ
p(Γm)

p(qm(ν)) dξ̂m(ν) =

ˆ
Γm

p(γ) d((qm)#ξ̂m)(γ) =

ˆ
Γ

µγ d(ηm)(γ)

where ηm := (qm)#ξ̂m. Denoting η :=
∑∞
m=1 ηm we ultimately obtain

µ =

ˆ
Γ

µγ dη(γ).
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Equality holds for total variations as well: indeed, by triangle inequality

|µ| ≤
ˆ

Γ

|µγ | dη(γ) as measures on Rd.

If the inequality above were strict, then by evaluating it on the whole Rd we would get a contradiction:

‖µ‖ = |µ|(Rd) <
ˆ

Γ

|µγ | (Rd) dη(γ) =

ˆ
J (Rd)

|ν|(Rd) dξ(ν) = ‖µ‖.

Since ‖µ‖ =
´
‖µγ‖ dη(γ) and for any k ∈ N the set {γ ∈ Γ : ‖µγ‖ > k−1} is Borel, it is clear that η

is σ-finite. �

We are now ready to prove the Main Theorem.

Proof of Theorem 7.1. By Proposition 6.1 we have

ext(BJ1 ) =

{
1

`(γ)
µγ : γ ∈ Γ

}
⊂ F (p(Γ)).

By Remark 2.22 the set ext(BJ1 ) is Borel.
Let 0 6= µ ∈ J (R2) and consider the normalized measure

µ

‖µ‖
∈ BJ1 .

By Choquet’s Theorem 2.26 there exists a Borel probability measure π ∈P(extBJ1 ) such that

µ

‖µ‖
=

ˆ
extBJ1

y dπ(y)

the integral being understood in the sense of Definition 2.24. By triangle inequality we deduce from the
equality above that

|µ| ≤ ‖µ‖
ˆ
extBJ1

|y| dπ(y).

Note that the latter inequality is in fact an equality, since otherwise by evaluating it on R2 we would get
a contradiction:

‖µ‖ < ‖µ‖
ˆ
extBJ1

‖y‖ dπ(y) = ‖µ‖.

In order pass to integration over Γ instead of ext(BJ1 ) ⊂ M (R2;R2), it remains to change variables by
applying Lemma 7.3 with ξ := ‖µ‖π. This concludes the proof. �

Note that the elements of Γ are not necessarily simple. However since the measure π is concentrated
on a set of measures induced by simple curves, it is easy to see from the proof of Theorem 7.1 that for
η-a.e. γ ∈ Γ there exists a simple γ̃ ∈ Γ such that µγ = µγ̃ .

8. Measures as superposition of curves II: a proof using decomposition of FV functions

In this section, we present an alternative proof of Theorem 7.1. This proof does not rely on Choquet’s
Theory, but it is based on the following decomposition result for FV functions.

Theorem 8.1. Let f ∈ FV(Rd). There exists an at most countable family {fi}i∈I ⊂ FV(Rd) of monotone
functions such that the series ∑

i∈I
fi

converges as an element of FV(Rd) and

f =
∑
i∈I

fi with ‖f‖FV =
∑
i∈I
‖fi‖FV. (8.1)

For the definition of monotone function and for a proof of Theorem 8.1 as well we refer the reader to
the Appendix A.
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Proof of Theorem 7.1 using Theorem 8.1. Let µ ∈ J (R2) and let H ∈ FV(R2) be the function such that
µ = ∇⊥H, whose existence and uniqueness are granted by Proposition 5.3.

Case 1. Suppose first that H is monotone. Let Et := {H > t}. Since the function H lies in FV(R2)
we have H ∈ L1∗(R2): using the layer cake representation, this integrability property implies that for
a.e. t ∈ R it holds L 2(Et) < ∞. Combined with Coarea Formula, this observation yields the existence
of a set N ⊂ R such that L 1(N) = 0 and Et has finite measure and finite perimeter for every t ∈ R \N .
Consider now the function f : R→ J (R2) defined by

f(t) :=

{
∇⊥1Et
P (Et)

if L 2(Et) > 0 and t /∈ N with P (Et) > 0

0 otherwise

and the measure ρ ∈M+(R)

ρ(dt) := P (Et)L
1(dt).

By Coarea Formula, we have

∇⊥H =

ˆ
R
f(t) dρ(t) (8.2)

and Fubini’s Theorem further ensures that f is a measurable measure-valued map (see [AFP00, Def.
2.25]). In particular, from (8.2) we deduce for any Ψ ∈ Cc(R2)2

〈∇⊥H,Ψ〉 =

ˆ
R
〈f(t),Ψ〉 dρ(t) =

ˆ
f(R)

〈y,Ψ〉dη(y) (8.3)

where we have set

ξ := f#ρ.

From (8.3) and from the arbitrariness of test function Ψ, we deduce the sought formula

∇⊥H =

ˆ
J (R2)

y dη(y).

Observe that, for every t ∈ R \N such that L 2(Et) > 0 the computations in (6.5) yield the equality

f(t) =
µγt
P (Et)

where γt is the parametrization of ∂?Et given by Theorem 2.21. Thus, by the very definition of f , the
measure ξ is concentrated on F (p(Γ)) (see page 18). Moreover,

‖ξ‖ = ‖f#ρ‖ = ‖ρ‖ =

ˆ
R
P (Et)L

1(dt) = ‖∇⊥H‖. (8.4)

Case 2. If H is not monotone, apply Theorem 8.1 to the function H and let {Hi}i∈I be at most
countable family of monotone functions satisfying (8.1) (without loss of generality we may assume that
I = N). Let ξi be a measure representing ∇⊥Hi (obtained as in Case 1, since Hi is monotone). Then it
is easy to see that

ξ :=

∞∑
i=1

ξi

defines a measure on J (R2), as the series converges strongly: indeed, by (8.4) and (8.1) we get

∞∑
i=1

‖ξi‖ =

∞∑
i=1

‖∇⊥Hi‖ = ‖∇⊥H‖ <∞.

Since the series above converge, we can pass to the limit as n→∞ in the equalities

n∑
i=1

∇⊥Hi =

ˆ
J (R)

y d(
∑n
i=1 ξi)(y),

n∑
i=1

|∇⊥Hi| =
ˆ
J (R)

|y| d(
∑n
i=1 ξi)(y).

We thus see that µ and ξ defined above satisfy (7.2). It remains to change variables using Lemma 7.3. �
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9. Linear rigidity for vector-valued measures

In this section we give a proof of Theorem 1.4, which is inspired by (and generalizes) one of the results
from [LS17] (see Theorem 1.2 therein).

Lemma 9.1. Let µ ∈ M (Rd;Rd) and consider its polar decomposition µ = τ |µ|. Suppose that there
exists η ∈M+(Γ) such that (1.3a) and (1.3b) hold. Then for η-a.e. γ ∈ Γ

γ′(t) = τ(γ(t))|γ′(t)|
for a.e. t ∈ [0, 1].

Proof. Since |µ| is a finite measure and Cc(Rd) is dense in L1(|µ|), we can use τ as a test function in the
distributional formulation of (1.3a), obtainingˆ

Rd
τ · dµ =

ˆ
Γ

τ · µγ dη(γ) =

ˆ
Γ

ˆ 1

0

τ(γ(t)) · γ′(t) dt dη(γ).

On the other hand, ˆ
Rd
τ · dµ = |µ|(Rd) =

ˆ
Γ

|µγ | dη(γ) =

ˆ
Γ

ˆ 1

0

|γ′(t)| dt dη(γ).

Therefore ˆ
Γ

ˆ 1

0

(
τ(γ(t)) · γ′(t)− |γ′(t)|

)
dt dη(γ) = 0. (9.1)

The integrand is non-positive, since

τ(γ(t)) · γ′(t) ≤ |τ(γ(t))| · |γ′(t)| = |γ′(t)|.
hence by (9.1) for η-a.e. γ

τ(γ(t)) · γ′(t) = |γ′(t)|
for a.e. t ∈ [0, 1]. �

Recall the following definition: σ ∈M (Rd;Rd) is called a subcurrent of µ ∈M (Rd;Rd) if

‖µ‖ = ‖µ− σ‖+ ‖σ‖.

Proposition 9.2. Let µ ∈M (Rd;Rd). Then σ ∈M (Rd;Rd) is a subcurrent of µ if and only if

σ = gµ

where g ∈ L1(|µ|) satisfies 0 ≤ g(x) ≤ 1 for |µ|-a.e. x ∈ Rd.

Proof. Sufficiency. If g ∈ L1(|µ|) satisfies 0 ≤ g(x) ≤ 1 and σ = gµ then

|µ− σ|+ |σ| = (1− g)|µ|+ g|µ| = |µ|,
and it remains to evaluate the equality above on Rd.

Necessity. By Radon–Nikodym theorem there exist mutually singular σa,σs ∈M (Rd;Rd) such that
σa � |µ|, σs ⊥ |µ| and σ = σa + σs. Then by definition of subcurrent

‖µ‖ = ‖µ− σ‖+ ‖σ‖
= ‖µ− σa‖+ ‖σa‖+ 2‖σs‖
≥ ‖µ‖+ 2‖σs‖

by triangle inequality, hence ‖σs‖ = 0. Therefore σ = θ|µ| and µ = τ |µ| for some θ, τ ∈ L1(|µ|;Rd) (by
polar decomposition). Writing again the definition of subcurrent we obtainˆ

(|τ | − |τ − θ| − |θ|) d|µ| = 0,

which implies (in view of triangle inequality) that

|τ(x)| − |τ(x)− θ(x)| − |θ(x)| = 0 (9.2)

for |µ|-a.e. x ∈ Rd. In particular, for |µ|-a.e. x ∈ Rd if τ(x) = 0 then θ(x) = 0. Since vectors a = θ(x)
and b = τ(x)−θ(x) with a 6= 0 satisfy |a+b|− |a|− |b| = 0 if and only if b = |b| a|a| , we conclude that there
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exists g = g(x) ∈ R such that θ(x) = g(x)τ(x). Substituting this into (9.2) we conclude that 0 ≤ g(x) ≤ 1
for |µ|-a.e. x ∈ Rd. �

Corollary 9.3. Suppose that ν ∈Mloc(Rd;Rd) has polar decomposition ν = τ |ν|. If τ1(x) > 0 for |ν|-
a.e. x ∈ Rd then ν is acyclic.

Proof. For any µ ∈ M (Rd;Rd) satisfying (1.1) with some ρ ∈ M (Rd) the distributional formulation of
(1.1) holds for any test function ϕ ∈ C∞(Rd) such that ‖ϕ∞‖+ ‖∇ϕ‖∞ <∞. In order to prove this it is
sufficient to consider ω ∈ C∞c (Rd) such that ω(x) = 1 if |x| ≤ 1 and ω(x) = 0 if |x| ≥ 2 and pass to the
limit in

−
ˆ
Rd
∇(ϕ(x)ω(R−1x)) · dµ(x) =

ˆ
Rd
ϕ(x)ω(R−1x) dρ(x)

as R→∞ using dominated convergence theorem.
In particular, if σ is a cycle of ν then by Proposition 9.2 there exists g ∈ L1(|ν|) such that 0 ≤ g(x) ≤ 1

for |ν|-a.e. x ∈ Rd and σ = gν. Writing the distributional formulation of div(σ) = 0 with the test
function ϕ(x) = atan(x1) we get

−
ˆ
Rd

g(x)τ1(x)

1 + x2
1

d|ν|(x) = 0

hence g(x) = 0 for |ν|-a.e. x ∈ Rd. Therefore σ = 0 is the only cycle of ν. �

Proof of Theorem 1.4. Suppose that ν ∈Mloc(Rd;Rd) satisfies (i)–(iii) from Definition 1.3.
Let ω ∈ C∞c (Rd) be a nonnegative function such that ω(x) = 1 if |x| ≤ 1 and ω(x) = 0 if |x| ≥ 2.

Let h > 0 and r > 0 and let R > 0 be such that r2 + h2 < R2 and r + c−1h < R, where c > 0 is the
constant from Definition 1.3.

Let µ = f · ν where f(x) = ω(x/R). Clearly divµ belongs to M (Rd) and is concentrated on

A := {x ∈ Rd : xd ≥ 0, R ≤ |x| ≤ 2R}.
Moreover, µ is acyclic by Corollary 9.3.

For any x ∈ Rd let xo := (x1, . . . , xd−1). Let

T := {y ∈ Rd : 0 < yd < h, |yo| < r + c−1(h− yd)}. (9.3)

Let η ∈M+(Γ) be given by Theorem 1.2 applied to µ (in particular (1.3a)–(1.3c) hold). Let

ΓT := {γ ∈ Γ : |µγ |(T ) > 0}.
Note that µ = τf |ν| = τ |µ| is the polar decomposition of µ. Hence by Lemma 9.1 for η-a.e. γ ∈ ΓT

for a.e. z ∈ [0, 1] we have
γ′(z) = τ(γ(z))|γ′(z)|

Writing this equation for γd and γo separately and using condition (iii) from Definition 1.3 we get

|γ′o(z)| = |τo(γ(z))| · |γ′(z)| ≤ |τ(γ(z))| · |γ′(z)| ≤ 1

c
τd(γ(z)) · |γ′(z)| = 1

c
γ′d(z). (9.4)

For η-a.e. γ ∈ ΓT there exists t ∈ (0, 1) such that γ(t) ∈ T . Then by inequality (9.4) we obtain

|γo(0)| ≤ |γo(t)|+
∣∣∣∣ˆ t

0

γ′o(z) dz

∣∣∣∣ ≤ |γo(t)|+ 1

c
(γd(t)− γd(0)),

hence γ(0) ∈ T . Clearly γ′d ≥ 0 a.e., so γd(0) ≤ γd(t) ≤ h, since γ(t) ∈ T .
Note that for η-a.e. γ ∈ ΓT we have γ(1) 6= γ(0). Indeed, otherwise the measure

σ :=

ˆ
{γ∈Γ:γ(0)=γ(1)}

µγ dη(γ)

would be a nonzero cycle of µ, which is not possible since µ is acyclic. Therefore for η-a.e. γ ∈ ΓT

|divµγ |(T ) = δγ(0)(T ) + δγ(1)(T ) ≥ 1

since γ(0) ∈ T . But |divµ| is concentrated on A and A ∩ T = ∅, hence

η(ΓT ) =

ˆ
ΓT

1 dη(γ) ≤
ˆ

ΓT

|divµγ |(T ) dη(γ) = |divµ|(T ) = 0

and therefore |µ|(T ) =
´

ΓT
|µγ |(T ) dη(γ) = 0. By arbitrariness of h and r we conclude that µ = 0. �
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Figure 1. The region depicted in yellow is the set T defined in (9.3) (in the case d = 2).
In the proof of Thm. 1.4, we show that η(ΓT ) = 0, i.e. the set of curves γ
such that µγ(T ) > 0 is η-negligible. From this we deduce that µ(T ) = 0.

Appendix A. Decomposition Theorem for FV functions

We begin with the following definition.

Definition A.1. A function f ∈ FV(Rd) is said to be monotone if the sets {f > t} and {f ≤ t} are
indecomposable for a.e. t ∈ R.

Notice that, by Remark 2.18, a function f such that the superlevel sets {f > t} are simple for a.e.
t ∈ R is necessarily monotone.

The goal of this appendix is to give a self-contained proof of the following theorem (see also [BT11]).

Theorem A.2. For any f ∈ FV(Rd) there exists an at most countable family {fi}i∈I ⊂ FV(Rd) of
monotone functions such that

f =
∑
i∈I

fi and |Df | =
∑
i∈I
|Dfi|. (A.1)

In particular,

‖f‖FV =
∑
i∈I
‖fi‖FV.

Remark A.3. Observe that from the embeddings of FV (see Thm. 2.3) the first series in (A.1) converges
also in L1∗(Rd) but, in general, we cannot improve this to convergence in L1(Rd). Secondly, we remark
that the decomposition provided in Theorem A.2 is not unique: we refer the reader to the counterexample
presented in the paper [BT11].

The proof of Theorem A.2 will be presented at the end of the appendix and it requires some preliminary
lemmas.

Lemma A.4. Let ϕ,ψ ∈ FV(Rd) and assume 0 ≤ ψ ≤ ϕ.

(1) If for a.e. t ∈ R it holds

P ({ϕ > t}) = P ({ϕ > t} \ {ψ > t}) + P ({ψ > t}) (A.2)

then
‖ϕ‖FV = ‖ϕ− ψ‖FV + ‖ψ‖FV.

(2) If for a.e. t ∈ R it holds

P ({ψ > t}) = P ({ϕ > t} \ {ψ > t}) + P ({ϕ > t}) (A.3)

then
‖ψ‖FV = ‖ϕ‖FV + ‖ϕ− ψ‖FV.
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Proof. We present the proof of the two claims.

(1) Concerning the first point, it suffices to show

‖Dϕ‖M ≥ ‖D(ϕ− ψ)‖M + ‖Dψ‖M ,

because the other inequality is trivial by triangle inequality. Using the layer cake representation
and Fubini’s Theorem we get

‖D(ϕ− ψ)‖M = sup
‖ω‖∞≤1

ˆ
Rd

(ϕ(x)− ψ(x)) · divω(x) dx

= sup
‖ω‖∞≤1

ˆ
Rd

ˆ ∞
0

(
1{ϕ>t}(x)− 1{ψ>t}(x)

)
· divω(x) dt dx

= sup
‖ω‖∞≤1

ˆ
Rd

ˆ ∞
0

1{ϕ>t}\{ψ>t}(x) · divω(x) dt dx

= sup
‖ω‖∞≤1

ˆ ∞
0

ˆ
Rd
1{ϕ>t}\{ψ>t}(x) · divω(x) dx dt

≤ sup
‖ω‖∞≤1

ˆ ∞
0

〈D1{ϕ>t}\{ψ>t}, ω〉 dt

≤
ˆ ∞

0

P ({ϕ > t} \ {ψ > t}) dt

(A.2)
=

ˆ ∞
0

P ({ϕ > t})− P ({ψ > t}) dt.

Applying again Coarea formula we obtain the conclusion.
(2) The proof of the second claim is similar to the proof of the first one. Notice that |Dw| = |D(−w)|

as measures for any w ∈ FV(Rd) hence

‖Dψ‖M ≤ ‖Dϕ‖M + ‖D(ϕ− ψ)‖M ,

which is equivalent to

‖D(ϕ− ψ)‖M ≥ ‖Dψ‖M − ‖Dϕ‖M .

It thus remains to show

‖D(ϕ− ψ)‖M ≤ ‖Dψ‖M − ‖Dϕ‖M .

By layer cake representation and Fubini, as in Point (1), we have

‖D(ϕ− ψ)‖M = sup
‖ω‖∞≤1

ˆ
Rd

(ϕ(x)− ψ(x)) · divω(x) dx

= sup
‖ω‖∞≤1

ˆ
Rd

ˆ ∞
0

(
1{ϕ>t}(x)− 1{ψ>t}(x)

)
· divω(x) dt dx

= sup
‖ω‖∞≤1

ˆ
Rd

ˆ ∞
0

1{ϕ>t}\{ψ>t}(x) · divω(x) dt dx

= sup
‖ω‖∞≤1

ˆ ∞
0

ˆ
Rd
1{ϕ>t}\{ψ>t}(x) · divω(x) dx dt

≤ sup
‖ω‖∞≤1

ˆ ∞
0

〈D1{ϕ>t}\{ψ>t}, ω〉 dt

≤
ˆ ∞

0

P ({ϕ > t} \ {ψ > t}) dt

(A.3)
=

ˆ ∞
0

P ({ψ > t})− P ({ϕ > t}) dt.

Again the application of Coarea Formula yields the desired conclusion.

�
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Lemma A.5 (From superlevel sets to function). Let I ⊂ [0,+∞) be an interval and let (At)t∈I be a
family of sets such that t, s ∈ I with s < t implies At ⊂ As. Then there exists a measurable function
w : Rd → [0,+∞) such that {w > t} = At (up to Lebesgue negligible subsets) for a.e. t ∈ I.

Proof. Due to monotonicity of the family (At)t∈I , the function h(t) := |At| is non-increasing on I.
Therefore there exists a Lebesgue negligible set N ⊂ I such that h is continuous at every t ∈ I \N . Let
Q ⊆ I \N be a countable set, which is dense in I. For any x ∈ Rd we define

w(x) := sup
t∈Q

(
t · 1At(x)

)
.

Clearly w is Lebesgue measurable. By definition of w for any s ∈ I \N

{w > s} =
⋃

t∈Q∩(s,+∞)∩I

At

Since for any s < t it holds |At \As| = 0 and Q is countable, it follows that∣∣∣∣∣∣
( ⋃
t∈Q∩(s,+∞)∩I

At

)
\As

∣∣∣∣∣∣ = 0.

On the other hand, let ε :=
∣∣∣As \⋃t∈Q∩(s,+∞)∩I At

∣∣∣. For any t ∈ Q ∩ (s,+∞) ∩ I we have At ⊂ As,

hence
⋃
t∈Q∩(s,+∞)∩I At ⊂ As. In particular, we can estimate

|As| =

∣∣∣∣∣∣As \
⋃

t∈Q∩(s,+∞)∩I

At

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

t∈Q∩(s,+∞)∩I

At

∣∣∣∣∣∣ ≥ ε+ |At| .

Since Q is dense in (s,+∞) ∩ I and h is continuous at s the only possible case is ε = 0. We have thus
proved that |{g > s} 4As| = 0 for a.e. s ∈ I and this concludes the proof. �

The following lemma is a building block of the proof of Theorem A.2. It allows to “extract” from a
non-negative FV function (whose superlevel sets in general are not indecomposable) a non-trivial function
with indecomposable superlevel sets:

Lemma A.6 (Extraction lemma I). Let f ∈ FV(Rd) and assume f is not identically zero and non-
negative. Then there exists g ∈ FV(Rd) with 0 ≤ g ≤ f and g 6≡ 0 such that:

(i) for a.e. t ≥ 0 the set {g > t} is indecomposable;
(ii) it holds ‖f‖FV = ‖f − g‖FV + ‖g‖FV.

Proof. For any t ≥ 0 let Et := {f > t}. Since f ∈ FV(Rd), there exists a Lebesgue negligible set
N ⊆ (0,+∞) such that for any t ∈ (0,+∞) \N the set Et has finite perimeter. Let Ekt denote the k-th
M -connected component of Et, t ∈ (0,+∞) \N .

Fix some a > 0 such that |Ea| > 0. Let R be some M -connected component of Ea. For any t ∈ (0, a)\N
we have Et ⊇ Ea ⊇ R, and R is indecomposable, hence by Theorem 2.10 there exists a unique j = j(t)

such that
∣∣∣R \ Ej(t)t

∣∣∣ = 0.

Let Rt := E
j(t)
t , t ∈ (0, a) \N . Note that for any s, t ∈ (0, a) \N with s < t it holds that

|Rt \Rs| = 0. (A.4)

Indeed, Es ⊇ Et ⊇ Rt and Rt is indecomposable, hence again by Theorem 2.10 there exists a unique k
such that

∣∣Rt \ Eks ∣∣ = 0. But |R \Rt| = 0, hence

Eks \R = (Eks ∩Rt ∩Rc) ∪ (Eks ∩Rct ∩Rc)

⊆ (Rt \R) ∪ (Eks \Rt)

is Lebesgue negligible. Therefore k = j(s) by uniqueness of j(s). Applying now Lemma A.5, we can
construct a function g : Rd → [0, a] such that {g > s} = Rs (up to Lebesgue negligible subsets) for a.e.
s ∈ (0, a).
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Figure 2. Situation described in the proof of Lemma A.6. The black curve represents
the graph of a generic function f ∈ FV(Rd). The red segments make up the
level set Ea. The red, thick segment is the component R and the blue and
green ones are respectively Rt and Rs. The area depicted in yellow is the
subgraph of the function g, whose superlevel sets are indecomposable.

Observe that ‖f‖FV = ‖f̄‖FV + ‖f̂‖FV, where f̄(x) = min(a, f(x)) and f̂ := f − f̄ . For a.e. t ∈ (0, a)
we have

{f̄ > t} = {f > t} = E
j(t)
t ∪

⋃
k 6=j(t)

Ekt

hence by construction of g and Proposition 2.12

P ({f̄ > t}) = P ({g > t}) + P ({f > t} \ {g > t}).
Hence by Lemma A.4 we have

‖f̄‖FV = ‖g‖FV + ‖f̄ − g‖FV. (A.5)

Then by the triangle inequality

‖f‖FV = ‖f̄‖FV + ‖f̂‖FV = ‖g‖FV + ‖f̄ − g‖FV + ‖f̂‖FV ≥ ‖g‖FV + ‖f̄ − g + f̂‖FV

and ‖f‖FV = ‖g + f̄ − g + f̂‖FV ≤ ‖g‖FV + ‖f̄ − g + f̂‖FV, hence the property (ii) follows. �

Lemma A.7 (Extraction lemma II). Let f ∈ FV(Rd) and assume f is not identically zero and non-
negative. Then there exists h ∈ FV(Rd) with h 6≡ 0 such that:

(i) for a.e. t ≥ 0 the set {h > t} is simple;
(ii) it holds ‖f‖FV = ‖f − h‖FV + ‖h‖FV.

Proof. First of all, we apply Lemma A.6 and we obtain a function g ∈ FV(Rd) such that Gt := {g > t}
is indecomposable for a.e. t ≥ 0 and

‖f‖FV = ‖f − g‖FV + ‖g‖FV. (A.6)

Let us now work on the function g. By construction of g, for a.e. t ≥ 0 the set Gt is indecomposable. Fix
some a > 0 such that |Ga| > 0 and Ga is not simple (otherwise there is nothing to prove): let us denote

by {F it }i∈It the non-empty family of holes of Gt (i.e. CCM (Rd \Gt) = {F it }i∈It).
Observe that, if H is an hole of Ga, for any t ∈ (a,+∞)\N , we have Gt ⊆ Ga, and hence Gct ⊇ Gca ⊇ H:

this means that H is an hole of Gt for any t ∈ (a,+∞) \ N : by the uniqueness claim in Theorem 2.10

there exists a unique j = j(t) such that
∣∣∣H \ F j(t)t

∣∣∣ = 0.

For any t ∈ (0, a) define St := sat(Gt). Observe that the sequence (St)t∈(0,a) is monotone [ACMM01,

Prop. 6(iii)] and thus, applying Lemma A.5, we obtain a function h : Rd → R such that {h > r} = Sr
(up to Lebesgue negligible subsets) for a.e. r ∈ (0, a). By construction the function h is non-negative and
{h > r} is simple for a.e. r ∈ (0, a), because the saturation of an indecomposable set is simple. It thus
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remains to show property (ii) of the statement. For, notice preliminarly, that h− g ≥ 0 by construction
of h; by [ACMM01, Prop. 9], it holds for any t ∈ (a,+∞) \N

P (Gt) = P (sat(Gt)) + P

(⋃
i∈It

F it

)
which can be also written as

P ({g > t}) = P ({h > t}) + P ({h > t} \ {g > t}) .

We are now in position to apply Lemma A.4, Point (ii), choosing ϕ := h and ψ := g (which is possible
since h ≥ g): we obtain

‖g‖FV = ‖h‖FV + ‖g − h‖FV. (A.7)

It is now easy to check that property (ii) follows combining (A.6) with (A.7) - and the triangle inequality:

‖f‖FV ≤ ‖f − h‖FV + ‖h‖FV

≤ ‖f − g‖FV + ‖g − h‖FV + ‖h‖FV

(A.6)
= ‖f‖FV − ‖g‖FV + ‖g − h‖FV + ‖h‖FV

(A.7)
= ‖f‖FV − ‖g‖FV + ‖g‖FV − ‖h‖FV + ‖h‖FV = ‖f‖FV

and this completes the proof. �

Lemma A.8 (Extraction lemma III). Let f ∈ FV(Rd) and assume f is not identically zero. Then there
exists m ∈ FV(Rd) with m 6≡ 0 such that:

(i) m is monotone and signm = constant a.e.;
(ii) it holds ‖f‖FV = ‖f −m‖FV + ‖m‖FV.

Proof. Let us decompose f = f+ − f−. Suppose ‖f+‖FV > 0. Since f+ ≥ 0 we can apply Lemma A.6
to f+, thus obtaining a function u ≥ 0 such that {u > t} is indecomposable for a.e. t > 0 and it holds

‖f+‖FV = ‖f+ − u‖FV + ‖u‖FV. (A.8)

Applying now Lemma A.7 to u ≥ 0 we obtain a function m ∈ FV(Rd) such that for a.e. t ≥ 0 the set
{m > t} is simple and it holds

‖u‖FV = ‖u−m‖FV + ‖m‖FV. (A.9)

By triangle inequality

‖f‖FV ≤ ‖f −m‖FV + ‖m‖FV

≤ ‖f+ −m‖FV + ‖f−‖FV + ‖m‖FV

≤ ‖f+ − u‖FV + ‖u−m‖FV + ‖f−‖FV + ‖m‖FV

(A.9)
= ‖f+ − u‖FV + ‖u‖FV + ‖f−‖FV

(A.8)
= ‖f+‖FV + ‖f−‖FV = ‖f‖FV

hence Property (ii) holds true. Since the function m is monotone, this concludes the proof in the case
‖f+‖FV > 0. It remains to consider the case in which f+ ≡ 0. If f− ≡ 0 there is nothing to prove; if

‖f−‖FV > 0 then we repeat the same argument above for the function f̃ := −f ∈ FV(Rd). We end up
with a monotone function m̃ of constant sign such that

‖f̃‖FV = ‖f̃ − m̃‖FV + ‖m̃‖FV

which is clearly equivalent to Property (ii) (renaming −m̃ as m).
�

Now we prove Theorem A.2 using Lemma A.8 and transfinite induction:
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Proof of Theorem A.2. Let X := {g ∈ FV(Rd) : g is monotone and ‖g‖FV > 0}. For any h ∈ FV(Rd) let
Y (h) := {g ∈ X : ‖h‖FV = ‖h− g‖FV + ‖g‖FV}. Note that by Lemma A.8 Y (h) = ∅ if and only if h ≡ 0.
Ultimately let s : P(FV(Rd))→ FV(Rd) denote a choice function (given by Axiom of Choice).

For any ordinal α < ω1 (where ω1 is the first uncountable ordinal) and any transfinite sequence
{gξ}ξ<α ⊂ X ∪ {∞} let us define

E({gξ}ξ<α) :=


∞, if ∞ ∈ {gξ}ξ<α or if

∑
ξ<α ‖gξ‖FV =∞;

s(Y (f −
∑
ξ<α gξ)), if

∑
ξ<α ‖gξ‖FV <∞ and Y (f −

∑
ξ<α gξ) 6= ∅;

0, if
∑
ξ<α ‖gξ‖FV <∞ and Y (f −

∑
ξ<α gξ) = ∅.

By transfinite recursion (see e.g. [Jec06, p. 21]) there exists a transfinite sequence {gα}α<ω1 such that
gα = E({gξ}ξ<α) for any α < ω1.

Note that for any α < ω1 the following properties hold:

∞ /∈ {gξ}ξ<α, (A.10a)∑
ξ<α

‖gξ‖FV ≤ ‖f‖FV, (A.10b)

‖f‖FV = ‖f −
∑
ξ<α

gξ‖FV +
∑
ξ<α

‖gξ‖FV. (A.10c)

Observe that (A.10b) follows from (A.10c), but without (A.10b) the term
∑
ξ<α gξ in (A.10a) is not well-

defined. Indeed, these properties trivially hold for α = 0. Let β < ω1 and suppose that these properties
hold for any α < β. In order to show that (A.10a)–(A.10c) hold with α = β we consider two cases.

First, if β is not a limit ordinal, then β = γ + 1 for some ordinal γ, so by definition of {gξ}ξ<ω1 we
have gγ+1 = s(Y (f −

∑
ξ<γ gξ)). Hence

‖f‖FV = ‖f −
∑
ξ<γ

gξ‖FV +
∑
ξ<γ

‖gξ‖FV = ‖f −
∑
ξ<γ

gξ − gγ‖FV + ‖gγ‖FV +
∑
ξ<γ

‖gξ‖FV

and it follows that (A.10a)–(A.10c) hold with α = γ + 1.
Second, if β is a limit ordinal then β =

⋃
α<β α. Consequently {gξ}ξ<β =

⋃
α<β{gξ}ξ<α, hence (A.10a)

holds with α = β. Furthermore, since β is at most countable we can enumerate it as β = {αn}n∈N. Let
An := α1 ∪ . . . ∪ αn (note that for any n ∈ N there exists m ∈ {1, . . . , n} such that An = αm). Since
β =

⋃
α<β α =

⋃
n∈NAn we have∑

ξ<β

‖gξ‖FV =
∑
ξ<β

(sup
n∈N

1An(ξ))‖gξ‖FV = sup
n∈N

∑
ξ∈An

‖gξ‖FV ≤ sup
α<β
‖gξ‖FV ≤ ‖f‖FV,

hence (A.10b) holds with α = β. Consequently
∑
ξ<β gξ = limn→∞

∑
ξ∈An gξ and

∑
ξ<β ‖gξ‖FV =

limn→∞
∑
ξ∈An ‖gξ‖FV. Writing (A.10c) with α = An and passing to the limit as n → ∞ we conclude

that (A.10c) holds with α = β.
We have thus shown that (A.10a)–(A.10c) hold with α = β. Hence by transfinite induction (A.10a)–

(A.10c) hold for any α < ω1.
By (A.10b) for any ε > 0 the set

{α < ω1 : ‖gα‖FV > ε}
is finite and thus the set

A := {α < ω1 : ‖gα‖FV > 0}
is at most countable. Setting γ := supA we have gγ+1 = 0. As already noted above, by Lemma A.8 this
means that f =

∑
ξ<γ gξ, and ‖f‖FV =

∑
ξ<γ ‖gξ‖FV by (A.10c).

By triangle inequality |Df | ≤
∑
ξ<γ |Dgξ|. If this inequality were strict, we would have ‖f‖FV =

|Df |(Rd) <
∑
ξ<γ |Dgξ|(Rd) =

∑
ξ<γ ‖gξ‖FV = ‖f‖FV, which is a contradiction. �
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