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Abstract

We consider the continuity equation ∂t µt +div(bbbµt) = 0, where {µt}t∈R
is a measurable family of (possibily signed) Borel measures on Rd and
bbb : R×Rd → Rd is a bounded Borel vector field (and the equation is
understood in the sense of distributions). We discuss some uniqueness
and non-uniqueness results for this equation: in particular, we report
on some counterexamples in which uniqueness of the flow of the vector
field holds but one can construct non-trivial signed measure-valued
solutions to the continuity equation with zero initial data. This is
based on a joint work with N.A. Gusev [BG19].

©2014 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

In this short note, we report on some uniqueness and non-uniqueness results for measure-valued
solutions to the continuity equation in the Euclidean space. More precisely, fixed T > 0 and d ∈ N, let
bbb : [0,T ]×Rd→Rd be a given bounded Borel vector field: we consider the initial value problem for the
continuity equation {

∂t µt +div(bbbµt) = 0,
µ0 = µ

(PDE)

for finite, possibly signed, Borel measures {µt}t∈[0,T ] on Rd , where the initial datum µ ∈M (Rd) is a

given measure on Rd . This class of measure-valued solutions arises naturally in the limit for weakly*
converging subsequences of smooth solutions, and it appears in various applications including hyperbolic
conservation laws, optimal transport and other areas, see e.g. [BJ98,AGS08,BPRS15].

In particular, we want to study the relationship between uniqueness of solutions to (PDE) and
uniqueness to the ordinary differential equation drifted by bbb, i.e.

d
dt

γ(t) = bbb(t,γ(t)), t ∈ (0,T ), (ODE)
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where γ ∈C([0,T ];Rd). As usual, a solution to (PDE) is intended in the sense of distributions, while a
solution to (ODE) is defined to be a continuous curve γ ∈C([0,T ];Rd) such that

γ(τ) = γ(s)+

ˆ
τ

s
bbb(r,γ(r))dr for every (s,τ)⊂ (0,T ).

Note that this definition is sensitive to modifications of bbb in a Lebesgue-negligible set, therefore we
underline that bbb is a function defined everywhere and not an equivalence class.

Given a solution γ ∈C([0,T ];Rd) of (ODE) one readily checks that µt := δγ(t) solves (PDE), where
δp denotes the Dirac measure concentrated at p. Therefore uniqueness for (PDE) implies uniqueness
for (ODE). Hence it is natural to ask whether the converse implication holds.

1.1 The non-negative case: Ambrosio’s Superposition Principle

In the class of non-negative measure-valued solutions it turns out it is actually possible to transfer
uniqueness for (ODE) to uniqueness for (PDE). This result was obtained, without regularity assump-
tions on the velocity field, in [AGS08] as a consequence of the so-called superposition principle. In order
to formulate this principle, we will say that a family of Borel measures {µt}t∈[0,T ] is represented by a

finite (possibly signed) Borel measure η on C([0,T ];Rd) if

1. η is concentrated on Γbbb;

2. (et)]η = µt for a.e. t,

where et : C([0,T ];Rd)→ Rd is the so-called evaluation map defined by et(γ) := γ(t), (et)]η denotes the
image of η under et , and Γbbb denotes the set of solutions of (ODE) (note the Γbbb is a Borel subset of
C([0,T ];Rd) by [Ber08, Proposition 2]).

For example, if γ ∈C([0,T ];Rd) solves (ODE) then η := δγ (as a measure on C([0,T ];Rd)) represents
the solution µt := δγ(t) of (PDE).

A straightforward computation shows that if {µt}t∈[0,T ] is represented by some (possibly signed)
measure η then µt solves (PDE). In this case we will say that µt is a superposition solution of (PDE).
Clearly uniqueness for (ODE) implies uniqueness for (PDE) in the class of superposition solutions.
Indeed, by uniqueness for (ODE) the continuous mapping e0 : Γbbb→ Rd is injective, hence e−1

0 is Borel
and thus (e0)]η = µ0 is equivalent to η = (e−1

0 )]µ0.
Therefore, when uniqueness holds for the Cauchy problem for (ODE), uniqueness for the Cauchy

problem for (PDE) holds in the class of measure-valued solutions if and only if any measure-valued
solution of such Cauchy problem is a superposition solution. The superposition principle established
in [AGS08] can now be stated by saying that any non-negative solution µt of (PDE) can be represented
by some non-negative measure η on C([0,T ];Rd).

1.2 The signed setting

However the superposition principle cannot be extended to signed solutions, because (PDE) can
have a nontrivial signed solution even when Γbbb = /0 (see e.g. [Gus18] for the details).

If one assumes Lipschitz bounds on the vector field bbb uniqueness for (PDE) within the class of
signed measures can be proved by means of a duality argument, see Section 3.

Out of the Lipschitz setting, some further results are available in the literature: in [BC94] the
authors considered log-Lipschitz vector fields. Later on, in the paper [AB08], the authors proved that
the signed superposition principle holds provided that the vector field satisfies a quantitative two-sided
diagonal Osgood condition. More precisely, in [AB08] the authors considered vector fields satisfying
the following assumptions:
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• it holds
|〈bbb(t,x)−bbb(t,y),x− y〉| ≤C(t)‖x− y‖ρ(‖x− y‖) ∀x,y ∈ Rd , ∀t ∈ (0,T ), (1)

where C ∈ L1(0,T ) and ρ : [0,1)→ [0,+∞) is an Osgood modulus of continuity, i.e. a continuous,
non-decreasing function with ρ(0) = 0 andˆ 1

0

1
ρ(s)

ds = +∞.

• it holds
|bbb(t,x)| ≤ D(t) (2)

for some D ∈ L1(0,T ) for every t,x ∈ (0,T )×Rd .

Then their main result can be stated as follows:

Theorem 1 (Thm. 1 in [AB08]). If the vector field bbb satisfies (1) and (2), then there is uniqueness for
(PDE) in the class of bounded signed measures, i.e. if µt is a solution of (PDE) such that |µt |(Rd) ∈
L∞(0,T ) then

µt = XXX(t, ·)#µ0, ∀t ∈ (0,T ),

where XXX(t, ·) is the flow of bbb, i.e. the unique map solving{
∂tXXX(t,x) = bbb(t,XXX(t,x)) t ∈ [0,T ],x ∈ Rd

XXX(0,x) = x x ∈ Rd .

Notice that the Osgood assumption (1) is an assumption on bbb which is much stronger than an
implicit assumption of uniqueness for (ODE). Moreover, according to a theorem of Orlicz [Orl32] (see
also [Ber08, Thm. 1]), in the space of all continuous vector fields bbb (equipped with the topology of the
uniform convergence on compact sets) the ones for which the differential equation (ODE) has at least
one non-uniqueness point is of first category: this shows that in the generic situation Lipschitz/Osgood
conditions are not necessary for uniqueness.

In particular, a natural question (raised in [AB08]) is whether uniqueness for (PDE) (in the class of
signed measures) holds in the presence of a (unique) flow of homeomorphisms solving (ODE), without
an explicit bound like (1) on the vector field. If one keeps the continuity of the vector field, then in the
autonomous 1d case the answer is affirmative, see Section 4 for a sketch of proof inspired to the one
presented in [BG19].

Finally, if one drops also the continuity assumption the answer is then negative: in Section 5 we show
how to construct a bounded vector field bbb : [0,T ]×R→R such that for any x∈R only γ(t)≡ x (∀t ∈ [0,T ])
solves (ODE) but (PDE) with zero initial condition has a non-trivial measure-valued solution {µt}t∈[0,T ].

Theorem 2. There exist a vector field bbb : [0,T ]×R→R and a measurable measure-valued map [0,T ] 3
t 7→ µt ∈M (R) such that

• is bounded and Borel (in particular it is defined everywhere);

• for any x ∈ R only γ(t) ≡ x ∀t ∈ [0,T ] solves (ODE), hence there exists a unique flow of homeo-
morphisms of bbb;

• [t 7→ µt ] ∈ L1([0,T ];M (R)) is a non-trivial solution of (PDE) with zero initial condition.

We stress the fact that in the proof of Theorem 2, the map t 7→ µt is in L1([0,T ];M (R)), i.e.´
[0,T ] |µt |dt < ∞, but it does not belong to L∞([0,T ];M (R)): in other words, the measure µt is not

bounded in time on every subinterval I ⊂ [0,T ]. However, as shown rigorously in [BG19], one can
properly “embed” the vector field proposed in the proof of Theorem 2 in R2 and construct an example
of non-trivial solution [t 7→ µt ] ∈ L∞([0,T ];M (R2)) to (PDE) starting from m̄u = 0. We refer the reader
for this case to the paper [BG19].
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2 Notation

In the following, we will denote by B(Rd) the Borel σ -algebra on Rd . Recall that a family {µt}t∈[0,T ]

of Borel measures on Rd is called a Borel family if for any A ∈B(Rd) the map t 7→ µt(A) is Borel-
measurable. It is easily checked that, if {µt}t∈[0,T ] is a Borel family, then {|µt |}t∈[0,T ] is a Borel family,

too. Furthermore for any bounded Borel function g : [0,T ]×Rd → R the map t 7→
´
Rd g(t,x)dµt(x) is

Borel.
In what follows we will write that [t 7→ µt ] ∈ L1((0,T );M (Rd)) if {µt}t∈[0,T ] is a a Borel family and

ˆ T

0
|µt |(Rd)dt < +∞.

If it holds
ess-supt∈[0,T ]|µt |(Rd) < +∞,

then we will write [t 7→ µt ] ∈ L∞((0,T );M (Rd)).
The continuity equation for measure-valued maps is understood in the sense of distributions, ac-

cording to the following definition:

Definition 1. A family [t 7→ µt ]∈ L1((0,T );M (Rd)) is called a measure-valued solution of (PDE) if for
any ϕ ∈C1

c ([0,T )×Rd)
ˆ T

0

ˆ
Rd

(∂tϕ +(
¯
t,x) ·∇xϕ(t,x))dµt(x)dt +

ˆ
Rd

ϕ(0,x)dµ̄(x) = 0. (3)

Even though the distributional formulation of the Cauchy problem for (PDE) is well-defined for
[t 7→ µt ]∈ L1((0,T );M (Rd)), it is much more natural in the class [t 7→ µt ]∈ L∞((0,T );M (R)), because in
this class the initial condition can be understood in the sense of traces, considering a weak* continuous
representative of [t 7→ µt ]. More precisely, we have the following Proposition (for a proof see e.g. [Bon17,
Chapter 1, Prop. 1.6]).

Proposition 3 (Continuous representative). Let {µt}t∈[0,T ] be a Borel family of measures and assume

[t 7→ µt ] ∈ L∞((0,T );M (Rd)). Then there exists a narrowly continuous curve [0,T ] 3 t 7→ µ̃t ∈M (Rd)
such that µt = µ̃t for a.e. t ∈ [0,T ].

Finally, if vvv : (0,T )×Rd → Rd is a bounded, continuous vector field, which is Lipschitz continuous
in space, uniformly in time, we denote by

XXX : [0,T ]× [0,T ]×Rd → Rd

the unique map which solves the following problem:{
∂

∂ t XXX(t,s,x) = vvv(t,XXX(t,s,x)) t,s ∈ (0,T ),x ∈ Rd

XXX(s,s,x) = x.
(4)

The existence and uniqueness of the map XXX follows from the classical Cauchy-Lipschitz theory.

Remark 1. In the case vvv is autonomous, i.e. does not depend on time, the map ZZZ(t,x) := XXX(t,0,x)
satisfies the following semi-group identity:

ZZZ(t + h,x) = ZZZ(t,ZZZ(h,x))

for every t,h ∈ R and every x ∈ Rd . In particular, differentiating the expression above w.r.t. h and
evaluating in h = 0 both members we deduce the following equality

vvv(ZZZ(t,x)) = ∂xZZZ(t,x) · vvv(x)

for every t ∈ R and x ∈ Rd .
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3 Lipschitz vector fields

We propose in this section a proof of uniqueness of signed measure-valued solutions to the continuity
equation drifted by a Lipschitz, autonomous vector field. The argument works in every dimension d ≥ 1
and is well-known, see e.g. [AGS08, Prop. 8.1.7]: it is based on a duality argument (see e.g. [DPL89,
Thm. II.6]). We present the proof in the autonomous case, but with minor modifications one can prove
also the version for time-dependent vector fields.

Proposition 4. Let bbb : Rd → Rd be a bounded, Lipschitz continuous vector field. Let {µt}t∈[0,T ] be a
bounded family of signed measures solving the continuity equation

∂t µt + div(bbbµt) = 0

with initial condition µ0 ≤ 0. Then we have µt ≤ 0 for every t ∈ [0,T ]. In particular, if µ0 = 0 then
µt ≡ 0 for every t ∈ [0,T ].

Proof. Set bbbε := bbb∗ρε , where {ρε}ε>0 is a family of mollifiers in Rd . In particular, so that bbbε → bbb
uniformly on compact sets. Let ψ ∈C∞

c (I×Rd) be an arbitrary smooth, compactly supported function
with 0 ≤ ψ(t,x) ≤ 1 for every t,x and let wε be the solution to the backward Cauchy problem for the
transport equation drifted by bbbε : {

∂twε + bbbε ·∇wε = ψ,

wε(T,x) = 0.

Applying the method of characteristics and Duhamel’s principle we have the representation formula

wε(t,x) =−
ˆ T

t
ψ(s,XXXε(s, t,x))ds

where XXXε denotes the flow of the vector field bbbε . Notice that the gradient of wε is uniformly bounded
w.r.t. ε: indeed,

‖∇wε‖∞ ≤
ˆ T

0
‖∇ψ‖∞eLs ds = C(ψ,T,L) < ∞

where L is the Lipschitz constant of bbb. Notice furthermore that, being 0≤ ψ(t,x)≤ 1 it holds

−T ≤ wε ≤ 0.

We now use wε as a test function in the continuity equation getting

ˆ
Rd

ˆ T

0
(∂twε(t,x)+ bbb(x) ·∇wε(t,x))dµt(dx)dt =

ˆ
Rd

wε(T,x)dµT (x)−
ˆ
Rd

wε(0,x)dµ0(x).

Being µ0 ≤ 0 and wε ≤ 0, we have

ˆ
Rd

wε(0,x)dµ0(x)≥ 0.

Furthermore, wε(T,x)≡ 0. Thus we have

0≥
ˆ
Rd

ˆ T

0
(∂twε(s,x)+ bbb(x) ·∇wε(s,x))dµs(x)ds

=

ˆ
Rd

ˆ T

0
ψ(s,x)dµs(x)ds +

¨
(0,T )×Rd

〈bbb(x)−bbbε(x),∇wε(s,x)〉dµs(x)ds.
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The second term goes to 0 because bbbε → bbb uniformly on compact sets and (∇wε)ε is equi-uniformly
bounded (in particular, it is bounded in L1(µs)). Thus it remains

0≥
ˆ
Rd

ˆ T

0
ψ(s,x)dµs(x)ds,

and this concludes the proof, being ψ arbitrary. Possibly changing sign with µt 7→ −µt we also conclude
that, if µ0 = 0, then µt ≡ 0 for every t.

4 Continuous vector fields

In proof of Proposition 4, a crucial role is played by Lipschitz condition on bbb: indeed, without
explicit Lipschitz bounds on bbb we cannot find uniform bounds on ‖∇wε‖∞. Thus, a different strategy
of proof has to be found, if one wants to leave the Lipschitz setting.

As a first step, one could relax the Lipschitz assumption to a general continuity condition on bbb.
An important step in this direction was taken in the paper [AB08]: as already mentioned in the
Introduction, in [AB08] the authors considered vector fields satisfying the diagonal Osgood condition
(1) and the boundedness assumption (2). For such fields, uniqueness of solutions to (ODE) is well-
known and Ambrosio-Bernard showed that uniqueness of signed measure-valued solutions to (PDE)
holds true (see Theorem 1).

It was noticed in [BG19, Prop. 5.1] that vector fields enjoying (1) and (2) are indeed (equivalent
a.e. to a vector field which is) continuous. Thus, one is finally led to ask if uniqueness for (PDE) (in
the class of signed measures) holds for merely continuous vector fields (without explicit assumptions
on the modulus of continuity like (1)), in the presence of a unique flow of diffeomorphisms for (ODE).
More rigorously, one would like to consider the following class of vector fields bbb : [0,T ]×Rd → Rd :

(A1) bbb(t, ·) is continuous for every t ∈ [0,T ];

(A2) bbb is uniformly bounded;

(A3) for every (t,x) ∈ [0,T ]×Rd there exists a unique γ = γ(t,x) ∈ Γbbb solving the ODE and γ(t) = x. We
will denote by XXX = XXX(t,x) = XXX t(x) this map.

Clearly, this uniqueness assumption (A3) is strictly weaker than any Lipschitz type condition. For
instance, one can take bbb(x) = 1 + f (x), where f is the standard Cantor function on (0,1) (extended to
R with the values at 0 and 1). It is also strictly weaker than Osgood condition: for instance, one can
easily check that the one-dimensional vector field bbb(x) = 3

√
x satisfies (A1)-(A2 locally)-(A3) but not an

Osgood condition.
In the case d = 1 it is possible to show that, for autonomous vector fields, the assumptions (A1),

(A2), (A3) are sufficient to get uniqueness of signed measure-valued solutions to PDE.

Proposition 5 ( [BG19, Prop. 5.2]). Suppose that bbb : R→R satisfies (A1), (A2), (A3). Then for any
µ̄ ∈M (R) the Cauchy problem for (PDE) with the initial condition µt |t=0 = µ̄ has a unique solution
[t 7→ µt ] ∈ L1(0,T ;M (R)).

For a rigorous proof of Proposition 5 we refer the reader to [BG19]: we propose here a small variant
of the original argument, assuming for simplicity that everything is compactly supported.

Proof. The problem is linear, thus it is enough to verify the uniqueness with initial datum
µ̄ = 0. For let [t 7→ µt ] ∈ L1(0,T ;M (R)) be a signed measure-valued solution to PDE. By an easy
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approximation argument, it can be proved that there exists a Lebesgue negligible set N ⊂ (0,T ) such
that for all τ ∈ (0,T )\N for any Φ ∈C1

c ([0,τ]×R) it holds that

ˆ
R

Φ(τ,x)dµτ(x)−
ˆ
R

Φ(0,x)dµ̄(x)︸ ︷︷ ︸
=0

=

ˆ
τ

0

ˆ
R

[∂tΦ(t,x)+ bbb ·∂xΦ(t,x)] dµt(x)dt. (5)

The basic idea, somehow reminiscent of the duality method exploited in the proof of Proposition 4, is
to use in (5) test functions of the form

ϕ(t,x) := ω(XXX(T − t,x)) (6)

where ω ∈C∞
c (R) is an arbitrary smooth function and XXX is the flow of bbb. Were ϕ sufficiently regular,

it would be immediate to check (by chain-rule) that ϕ satisfies the transport equation ∂tϕ + bbb∂xϕ = 0
(pointwise) with the final condition ϕ(τ,x) = ω(x). Plugging ϕ into (5) we would then get

ˆ
R

ω(x)dµτ(x) = 0

and, by arbitrariness of ω, the desired conclusion µτ = 0.
Thus the only missing point in this approach is the regularity of ϕ, which translates into the regu-

larity of the flow map XXX . A first, direct consequence we can derive from (A3) is the strict monotonicity
of the map x 7→ XXX(t,x), for a.e. t ∈ I: indeed, if it were not monotone, we would have by continuity an
intersection between two different trajectories of the vector field, violating (A3). In particular, being
monotone, the map x 7→ XXX(t,x) is also of bounded variation and hence we can define σt := DXXX t , i.e. the
measure on R given by the (spatial) derivative of XXX t .

Letting now bbbε be a smooth approximation of bbb, e.g. mollification, we have for every ε > 0

bbbε(XXXε(t,x)) = ∂xXXXε(t,x) ·bbbε(x),

in view of Remark 1. Observe that bbbε → bbb uniformly on compact sets; furthermore, for fixed t, the
flows {XXXε(t, ·)}ε>0 are pre-compact in C0 by Ascoli-Arzelà (they are equi-Lipschitz). In particular, it
holds

XXXε(t,x)→ XXX(t,x)

pointwise for every x (for every fixed t). This together with the uniform convergence of bbbε implies

bbbε(XXXε(t,x))→ bbb(XXX(t,x))

pointwise everywhere (and hence also in L1 by dominated convergence) which means

∂xXXXε(t,x) ·bbbε(x)→ (bbb◦XXX)(t,x).

On the other hand, we have
∂xXXXε(t, ·) ⇀ σt

weakly in the sense of measures and, again by uniform convergence of bbbε to bbb we have

∂xXXXε(t,x) ·bbbε(x) ⇀ bbbσt

as measures. In particular, we arrive at the following identity, in the sense of measures on R,

bbbσt = (bbb◦XXX t)L
1
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being L 1 the Lebesgue measure. In particular, let us consider the open set {bbb 6= 0} and let (α,β ) one
of its connected components. Then

σtx(α,β )�L 1 (7)

with density
dσtx(α,β )

dL 1 =
(bbb◦XXX t)

bbb
∈C0((α,β ))

so that
XXX(t, ·) ∈C1((α,β ))

and can now be used as test function: indeed, choosing ω ∈ C∞
c (α,β ) and defining ϕ as in (6) we

have ϕ ∈C1
c ([0,τ]× (α,β )). Using it as a test function as described above, we obtain that the solution

(µt)x(α,β )= 0 for a.e. t: hence µt vanishes on every connected component of the set {bbb 6= 0}. We have
thus proved that µt is concentrated on {bbb = 0} and then it solves (PDE) with bbb ≡ 0. Hence µt = 0
globally for a.e. t ∈ (0,T ) and this concludes the proof.

5 The general case: counterexamples

Having established a uniqueness result for continuous vector fields, one can still wonder whether
the continuity assumption is needed. In this section we summarize the proof of the following result:

Theorem 6 ( [BG19, Thm. 3.1]). There exist T > 0, a bounded Borel bbb : [0,T ]×R→R and [t 7→ µt ] ∈
L1((0,T );M (R)) satisfying the following conditions:

(i) bbb satisfies (A2) and (A3). Furthermore, the characteristics of bbb are constant, i.e. γ ∈ Γbbb if and
only if there exists x ∈ R such that γ(t) = x for all t ∈ [0,T ];

(ii) {µt}t∈[0,T ] is not identically zero and solves (PDE) with zero initial condition.

The construction of the vector field is based on the following result, which is well known in measure
theory. We denote by |A| the Lebesgue measure of A⊂ R.

Lemma 7. There exists a non-empty Borel set P (R with the following property: for any non-empty
bounded open interval I ⊂ R it holds that |I∩P|> 0 and |I∩ (R\P)|> 0.

Given the set P constructed in Lemma 7 we now set N := R\P and

f (τ) := 2 +

ˆ
τ

0
(111P(r)−111N(r))dr and F(τ) := ( f (τ),τ) (8)

where τ ∈ [0,1]. Since the derivative of f is equal to 111P− 111N a.e., for convenience we denote f ′ :=
111P−111N . Observe that the function f ′ is defined everywhere and takes values in {±1} and it is a Borel
representative of the derivative of the function f defined in (8).

We now set T := 4 and define

bbb(t,x) := 111F [0,1](t,x) · 1
f ′(x)

and µ̃t := ∑
x∈ f−1(t)

sign( f ′(x))δx. (9)

By definition bbb is Borel and bounded. Moreover by the area formula {µ̃t}t∈[0,T ] is a measurable family
of Borel measures. A simple computation allows to show the following Lemma:

Lemma 8. For bbb and µ̃t defined above

∂t µ̃t + div(bbbµ̃t) =−δF(1) + δF(0) in D ′((0,T )×R).
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To get rid of the defect −δF(1) + δF(0) we simply add to µ̃t solutions concentrated on constant in
time trajectories (since bbb is 0 outside F([0,1])). More precisely, one readily checks that

µt := µ̃t + 111[ f (1),+∞)(t)δ1−111[ f (0),+∞)(t)δ0

solves (PDE).
To conclude the proof of Theorem 6, it remains to study the integral curves of bbb. This issue is

addressed in the following Lemma:

Lemma 9. For any (t,x) there exists a unique characteristic of bbb passing through x.

Therefore we have constructed a vector field bbb for which the characteristics are unique, but there
exists a nontrivial signed solution of the CE. Using a minor modification of the present construction
one can construct a similar example of (µt ,bbb) having compact support in spacetime.

Remark 2. We remark that the crucial fact used in the proof of Lemma 9 is the fact that if f is nowhere
monotone. Were f monotone on some interval I then uniqueness would fail for the Cauchy problem
for (ODE) with bbb constructed in the proof of Theorem 6: indeed, without loss of generality suppose
that f is strictly increasing on I. Then for any x ∈ I there exist at least two (actually, infinitely many)
integral curves γ ∈ Γbbb such that γ(0) = x. Indeed, clearly γ(t) := x (∀t ∈ [0,T ]) belongs to Γbbb. On the
other hand, for any y ∈ I such that y > x one can define γ by

γ(t) :=


x, t < f (x);
f−1(t), f (x)≤ t < f (y);
y, t ≥ f (y).

Then one readily checks that γ ∈ Γbbb, since for a.e. t ∈ ( f (x), f (y)) it holds that

γ
′(t) =

1
f ′( f−1(t))

=
1

f ′(γ(t))
= bbb(t,γ(t)).
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