
Non-uniqueness of signed measure-valued solutions

to the continuity equation in presence of a unique

flow

Paolo Bonicatto ∗ Nikolay A. Gusev †

February 16, 2019

Abstract

We consider the continuity equation ∂tµt + div(bµt) = 0, where {µt}t∈R
is a measurable family of (possibily signed) Borel measures on Rd and b : R×
Rd → Rd is a bounded Borel vector field (and the equation is understood in
the sense of distributions). If the measure-valued solution µt is non-negative,
then the following superposition principle holds: µt can be decomposed into
a superposition of measures concentrated along the integral curves of b. For
smooth b this result follows from the method of characteristics, and in the
general case it was established by L. Ambrosio. A partial extension of this
result for signed measure-valued solutions µt was obtained in [AB08], where
the following problem was proposed: does the superposition principle hold
for signed measure-valued solutions in presence of unique flow of homeo-
morphisms solving the associated ordinary differential equation? We answer
to this question in the negative, presenting two counterexamples in which
uniqueness of the flow of the vector field holds but one can construct non-
trivial signed measure-valued solutions to the continuity equation with zero
initial data.
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1 Introduction

In this paper we consider the initial value problem for the continuity equation{
∂tµt + div(bµt) = 0,

µ0 = µ
(PDE)

for finite Borel measures {µt}t∈[0,T ] on Rd, where b : [0, T ] × Rd → Rd is a given

bounded Borel vector field, T > 0 and d ∈ N and µ ∈M (Rd) is a given measure
on Rd. This class of measure-valued solutions arises naturally in the limit for
weakly* converging subsequences of smooth solutions, and it appears in various
applications including hyperbolic conservation laws, optimal transport and other
areas, see e.g. [BJ98, AGS08, BPRS15].

We want to study the relationship between uniqueness of solutions to (PDE)
and uniqueness to the ordinary differential equation drifted by b, i.e.

d

dt
γ(t) = b(t, γ(t)), t ∈ (0, T ), (ODE)

where γ ∈ C([0, T ];Rd). As usual, a solution to (PDE) is intended in the sense
of distributions, while a solution to (ODE) is defined to be a continuous curve
γ ∈ C([0, T ];Rd) such that

γ(τ) = γ(s) +

ˆ τ

s

b(r, γ(r)) dr for every (s, τ) ⊂ (0, T ).

Note that this definition is sensitive to modifications of b in a Lebesgue-
negligible set, therefore we underline that b is a function defined everywhere and
not an equivalence class.

Given a solution γ ∈ C([0, T ];Rd) of (ODE) one readily checks that µt := δγ(t)

solves (PDE), where δp denotes the Dirac measure concentrated at p. Therefore
uniqueness for (PDE) implies uniqueness for (ODE). Hence it is natural to ask
whether the converse implication holds.

In the class of non-negative measure-valued solutions the answer to this ques-
tion is positive, and it was obtained in [AGS08] as a consequence of the so-called
superposition principle. In order to formulate this principle, we will say that a
family of Borel measures {µt}t∈[0,T ] is represented by a finite (possibly signed)

Borel measure η on C([0, T ];Rd) if

1. η is concentrated on Γb;

2. (et)]η = µt for a.e. t,

where et : C([0, T ];Rd) → Rd is the so-called evaluation map defined by et(γ) :=
γ(t), (et)]η denotes the image of η under et, and Γb denotes the set of solutions
of (ODE) (note the Γb is a Borel subset of C([0, T ];Rd) by [Ber08, Proposition
2]). For example, if γ ∈ C([0, T ];Rd) solves (ODE) then η := δγ (as a measure on
C([0, T ];Rd)) represents the solution µt := δγ(t) of (PDE).
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A straightforward computation shows that if {µt}t∈[0,T ] is represented by some
(possibly signed) measure η then µt solves (PDE). In this case we will say that
µt is a superposition solution of (PDE). Clearly uniqueness for (ODE) implies
uniqueness for (PDE) in the class of superposition solutions. Indeed, by uniqueness
for (ODE) the continuous mapping e0 : Γb → Rd is injective, hence e−1

0 is Borel
and thus (e0)]η = µ0 is equivalent to η = (e−1

0 )]µ0.
Therefore, when uniqueness holds for the Cauchy problem for (ODE), unique-

ness for the Cauchy problem for (PDE) holds in the class of measure-valued so-
lutions if and only if any measure-valued solution of such Cauchy problem is a
superposition solution.

The superposition principle established in [AGS08] states that any non-negative
solution µt of (PDE) can be represented by some non-negative measure η on
C([0, T ];Rd). However, without extra assumptions this result cannot be extended
to signed solutions, because (PDE) can have a nontrivial signed solution even when
Γb = ∅ (see e.g. [Gus18] for the details).

Under Lipschitz bounds on the vector field b uniqueness for (PDE) within the
class of signed measures is well known, see e.g. [AGS08, Prop. 8.1.7]. Out of
the classical setting, the first (positive) result is contained in [BC94], where the
authors considered log-Lipschitz vector fields. Later on, in the paper [AB08], the
authors proved that the signed superposition principle holds provided that the
vector field satisfies a quantitative two-sided diagonal Osgood condition. More
precisely, in [AB08] the authors considered vector fields enjoying

(O) it holds

|〈b(t, x)−b(t, y), x−y〉| ≤ C(t)‖x−y‖ρ(‖x−y‖) ∀x, y ∈ Rd, ∀t ∈ (0, T ),

where C ∈ L1(0, T ) and ρ : [0, 1)→ [0,+∞) is an Osgood modulus of conti-
nuity, i.e. a continuous, non-decreasing function with ρ(0) = 0 and

ˆ 1

0

1

ρ(s)
ds = +∞.

(B) |b(t, x)| ≤ D(t) for some D ∈ L1(0, T ) for every t, x ∈ (0, T )× Rd).

Their results is the following:

Theorem 1.1 (Thm. 1 in [AB08]). If the vector field b satisfies (O) and (B),
then there is uniqueness for (PDE) in the class of bounded signed measures, i.e.
if µt is a solution of (PDE) such that |µt|(Rd) ∈ L∞(0, T ) then

µt = X(t, ·)#µ0, ∀t ∈ (0, T ),

where X(t, ·) is the flow of b, i.e. the unique map solving{
∂tX(t, x) = b(t,X(t, x)) t ∈ [0, T ], x ∈ Rd

X(0, x) = x x ∈ Rd

3



Notice that the Osgood assumption (O) is an assumption on b, and it is much
stronger than an implicit assumption of uniqueness for (ODE). For a simple
example one can consider e.g. (for d = 1) b(t, x) = 1(−∞,0](x) + 2 · 1(0,+∞)(x).
Moreover, according to a theorem of Orlicz [Orl32] (see also [Ber08, Thm. 1]), in
the space of all continuous vector fields b (equiped with the topology of the uniform
convergence on compact sets) those fields for which the differential equation (ODE)
has at least one non-uniqueness point is of first category: this shows that in the
generic situation Lipschitz/Osgood conditions are not necessary for uniqueness.

Let us mention some other generic uniqueness results for (PDE). The one-
dimensional case was studied in [BJ98], where uniqueness of signed measure-valued
solutions was obtained under the assumption that b satisfies a one-sided Lipschitz
condition, i.e. there exists α ∈ L1(0, T ) such that ∂xb(t, x) ≤ α(t) (in the sense
of distributions). Still in d = 1, uniqueness in the class of absolutely continuous
(with respect to Lebesgue measure) solutions was obtained in [Gus19] for nearly
incompressible vector fields. In the multi-dimensional case uniqueness of absolutely
continuous solutions was obtained in [BB17] for nearly incompressible vector fields
with bounded variation. For generic solutions, besides [AB08], one can refer to
[CJMO17], where uniqueness within the signed framework is shown for vector
fields having an Osgood modulus of continuity.

The generic uniqueness results mentioned above require some regularity of b
(e.g. some form of weak differentiability), but as discussed above one can ask
if uniqueness for (ODE) is sufficient for uniqueness for (PDE). In particular, a
natural question (raised in [AB08]) is whether uniqueness for (PDE) (in the class
of signed measures) holds in the presence of a (unique) flow of homeomorphisms
solving (ODE), without an explicit bound like (O) on the vector field. We show
that the answer to this question in general is negative by constructing two coun-
terexamples of bounded vector fields b : [0, T ] × Rd → Rd (for d = 1 and d = 2)
such that for any x ∈ Rd only γ(t) ≡ x (∀t ∈ [0, T ]) solves (ODE) but (PDE) with
zero initial condition has a non-trivial measure-valued solution {µt}t∈[0,T ]. More
precisely, this is the main result of the present paper:

Main Theorem. The following claims hold true.

(i) Let d = 1. Then there exist a vector field b : [0, T ]×R→ R and a measurable
measure-valued map [0, T ] 3 t 7→ µt ∈M (R) such that

• b is bounded and Borel (in particular it is defined everywhere);

• for any x ∈ R only γ(t) ≡ x ∀t ∈ [0, T ] solves (ODE), hence there
exists a unique flow of homeomorphisms of b;

• [t 7→ µt] ∈ L1([0, T ]; M (R))\L∞([0, T ]; M (R)) is a non-trivial solution
of (PDE) with zero initial condition.

(ii) Let d = 2. Then there exist a vector field b : [0, T ]×R2 → R2 and a measur-
able measure-valued map [0, T ] 3 t 7→ µt ∈M (R2) such that

• b is bounded and Borel (in particular it is defined everywhere);
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• for any x ∈ R2 only γ(t) ≡ x ∀t ∈ [0, T ] solves (ODE), hence there
exists a unique flow of homeomorphisms of b;

• [t 7→ µt] ∈ L∞([0, T ]; M (R2)) is a non-trivial solution of (PDE) with
zero initial condition.

Remark 1.2. We stress the fact that in example related to Point (i) of the Main
Theorem the map [t 7→ µt] 6∈ L∞([0, T ]; M (R)), i.e. the measure µt is not bounded
in time on every subinterval I ⊂ [0, T ]. See also Lemma 3.7 below for a rigorous
proof of this fact.

In the examples (i) and (ii) of the present paper the vector field b is only
bounded, but not continuous. However all vector fields that satisfy (O) and (B) are
continuous (see Proposition 5.1). It would therefore be interesting to understand
whether for continuous vector fields uniqueness for (ODE) implies uniqueness for
(PDE).

Note that our examples (i) and (ii) are based on a one-dimensional vector
field that does not have integral curves and hence cannot be continuous (in view
of Peano’s theorem). And in fact for d = 1 it is possible to prove that if b
is stationary and continuous then uniqueness for (ODE) implies uniqueness for
(PDE) (see Proposition 5.2). It is interesting to note that such b can be very
irregular and hence one cannot apply to it any of the generic uniqueness results
discussed earlier.

Let us also mention that (still for d = 1) if b is continuous and for any t
the function x 7→ b(t, x) is non-strictly decreasing then uniqueness holds both for
(PDE) (this follows from [BJ98]) and for (ODE) (this can be shown directly: if γ1

and γ2 are integral curves of b such that γ1(0) = γ2(0) and γ1(t) < γ2(t) for all
sufficiently small t > 0 then ∂t(γ1(t)− γ2(t)) = b(t, γ1(t))− b(t, γ2(t)) ≥ 0).

2 Preliminaries

In the following, we will denote by B(Rd) the Borel σ-algebra on Rd. We recall
some basic definitions.

Definition 2.1. A family {µt}t∈[0,T ] of Borel measures on Rd is called a Borel

family if for any A ∈ B(Rd) the map t 7→ µt(A) is Borel-measurable.

The following propositions are well-known (see, e.g. [AFP00, Prop. 2.26 and
(2.16)]):

Proposition 2.2. If {µt}t∈[0,T ] is a family of Borel measures on Rd such that

t 7→ µt(A) is Borel for any open set A ⊂ Rd then {µt}t∈[0,T ] is a Borel family.

Proposition 2.3. If {µt}t∈[0,T ] is a Borel family then {|µt|}t∈[0,T ] also is a Borel
family.

Proposition 2.4. If {µt}t∈[0,T ] is a Borel family then for any bounded Borel

function g : [0, T ]× Rd → R the map t 7→
´
Rd g(t, x) dµt(x) is Borel.

5



In what follows we will write that [t 7→ µt] ∈ L1((0, T ); M (Rd)) if {µt}t∈[0,T ]

is a a Borel family and ˆ T

0

|µt|(Rd) dt < +∞.

If, in addition,
ess supt∈[0,T ] |µt|(Rd) < +∞,

then we will write [t 7→ µt] ∈ L∞((0, T ); M (Rd)).
In view of Proposition 2.4 the distributional formulation of the continuity equa-

tion is well-defined:

Definition 2.5. A family [t 7→ µt] ∈ L1((0, T ); M (Rd)) is called a measure-valued
solution of (PDE) if for any ϕ ∈ C1

c ([0, T )× Rd)
ˆ T

0

ˆ
Rd

(∂tϕ+ b(t, x) · ∇xϕ(t, x)) dµt(x) dt+

ˆ
Rd

ϕ(0, x) dµ̄(x) = 0. (2.1)

Even though the distributional formulation of the Cauchy problem for (PDE)
is well-defined for [t 7→ µt] ∈ L1((0, T ); M (Rd)), it is much more natural in the
class [t 7→ µt] ∈ L∞((0, T ); M (R)), because in this class the initial condition can
be understood in the sense of traces, considering a weak* continuous representative
of [t 7→ µt]. More precisely, we have the following Proposition (for a proof see e.g.
[Bon17, Chapter 1, Prop. 1.6]).

Proposition 2.6 (Continuous representative). Let {µt}t∈[0,T ] be a Borel family of

measures and assume [t 7→ µt] ∈ L∞((0, T ); M (Rd)). Then there exists a narrowly
continuous curve [0, T ] 3 t 7→ µ̃t ∈M (Rd) such that µt = µ̃t for a.e. t ∈ [0, T ].

3 Non-uniqueness in the class L1((0, T );M (R))
In this section we prove the following result:

Theorem 3.1. There exist T > 0, a bounded Borel b : [0, T ] × R → R and [t 7→
µt] ∈ L1((0, T ); M (R)) satisfying the following conditions:

(i) b has only constant characteristics, i.e. γ ∈ Γb if and only if there exists
x ∈ R such that γ(t) = x for all t ∈ [0, T ];

(ii) {µt}t∈[0,T ] is not identically zero and solves (PDE) with zero initial condi-
tion.

3.1 Auxiliary result

We begin by the following auxiliary result: although it is well-known, we give a
proof because some details will be used later.

Lemma 3.2. There exist a Borel sets P,N ⊂ R such that
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1. P ∩N = ∅;

2. P ∪N = R;

3. for any nonempty bounded open interval I ⊂ R it holds that |I ∩ P | > 0 and
|I ∩N | > 0,

where |A| denotes the Lebesgue measure of A ⊂ R.

Proof. Let {qk}k∈N be the set of all rational numbers. Let f0(x) := 1 (x ∈ R),
E0 := ∅ and ε0 := 1.

Consider k ∈ N, k ≥ 1 and suppose that the set Ek−1, the number εk−1 > 0
and the function fk−1 are already constructed. We assume that Ek−1 is finite,
Ek−1 ∩Q = ∅, hence R \Ek−1 is a union of finitely many open intervals. We also
assume that fk−1 is either +1 or −1 on each of these intervals.

Since dist(qk, Ek−1) > 0 there exists εk > 0 such that

εk < 2−kεk−1, (3.1)

(qk − εk, qk + εk) ⊂ R \ Ek−1, (3.2)

and moreover

qk ±
1

2
εk /∈ Q. (3.3)

We then define

Ik :=

(
qk −

1

2
εk, qk +

1

2
εk

)
⊂ R \ Ek−1 (3.4)

and

fk(x) :=


fk−1(x), x /∈ Ik,
−fk−1(x), x ∈ Ik,
0, x ∈ ∂Ik

(3.5)

and Ek := Ek−1 ∪ ∂Ik. It is easy to see that Ek, εk and fk satisfy the same
assumptions as Ek−1, εk−1 and fk−1. Therefore we can construct inductively the
sequence {Ek, εk, fk}k∈N.

Consider the set Rk := ∪∞n=k+1In on which the function fn (n > k) may differ
from fk. By (3.1)

|Rk| ≤
∞∑

n=k+1

εn =

∞∑
n=k

εn+1 <

∞∑
n=k

2−(n+1)εn < εk

∞∑
n=k

2−(n+1) ≤ 1

2
εk. (3.6)

For any x ∈ R \ Rk it holds that fn(x) = fk(x) for all n > k. Since εk → 0 as
k →∞, we conclude that fk converges a.e. to some function f : R→ R as k →∞.
Moreover, on the complement of Lebesgue negligible set

⋂
k∈NRk ∪

⋃
k ∂Ik the

function f by construction takes only the values ±1. We therefore set

P := f−1({+1}), N := R \ P. (3.7)
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Consider an arbitrary nonempty bounded open I ⊂ R. There always exists
a nonempty open interval J such that J ⊂ I. Since J contains infinitely many
rationals and εk → 0 as k →∞, there exists k0 ∈ N such that (qk−εk, qk+εk) ⊂ I
for some k > k0.

Without loss of generality let us assume that fk−1 = +1 on (qk − εk, qk + εk)
(the argument is the same when this value is −1). Hence by construction

fk(x) =

{
fk−1(x) = +1, x ∈ (qk − εk, qk + εk) \ Ik,
−fk−1(x) = −1, x ∈ Ik.

Ultimately, by (3.6) the function f may differ from fk only on the set Rk and
|Rk| < 1

2εk. Therefore

|I ∩ P | ≥ |(qk − εk, qk + εk) \ Ik| − |Rk| ≥ εk −
εk
2

=
εk
2

and
|I ∩N | ≥ |Ik| − |Rk| ≥ εk −

εk
2

=
εk
2
.

3.2 The construction of the counterexample

Given the sets P,N ⊂ R constructed in Lemma 3.2 we now set

f(τ) := 2 +

ˆ τ

0

(1P (r)− 1N (r)) dr and F (τ) := (f(τ), τ) (3.8)

where τ ∈ [0, 1]. Since the derivative of f is equal to 1P −1N a.e., for convenience
we denote f ′ := 1P − 1N . Notice that since N = R \ P the function f ′ is
defined everywhere and takes values in {±1} and it is a Borel representative of
the derivative of the function f defined in (3.8).

We now set T := 4 and define

b(t, x) := 1F [0,1](t, x) · 1

f ′(x)
and µ̃t :=

∑
x∈f−1(t)

sign(f ′(x))δx. (3.9)

By definition b is Borel and bounded. Moreover by the area formula {µ̃t}t∈[0,T ] is
a measurable family of Borel measures (see also Figure 1).

Lemma 3.3. For b and µ̃t defined above

∂tµ̃t + div(bµ̃t) = −δF (1) + δF (0) in D ′((0, T )× R).
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f(0)

f(1)

0 1

x

t

Figure 1: Graph of the function t = f(x) (approximation step). At each t ∈ [0, T ]
the measure µ̃t is a superposition of Dirac masses with weight given by
sign f ′(x), where x ∈ f−1(t) (notice the red/green parts).

Proof. Using the area formula (since f([0, 1]) ⊂ (0, T )) we get

ˆ T

0

ˆ
R

(∂tϕ+ b ∂xϕ) dµ̃t(x) dt

=

ˆ T

0

 ∑
x∈f−1(t)

(
(∂tϕ)(t, x) +

1

f ′(x)
(∂xϕ)(t, x)

)
f ′(x)

|f ′(x)|

 dt

=

ˆ 1

0

(
(∂tϕ)(f(x), x) +

1

f ′(x)
(∂xϕ)(f(x), x)

)
f ′(x) dx

=

ˆ 1

0

(f ′(x)(∂tϕ)(f(x), x) + (∂xϕ)(f(x), x)) dx

=

ˆ 1

0

∂x (ϕ(f(x), x)) dx = ϕ(f(1), 1)− ϕ(f(0), 0).

To get rid of the defect −δF (1) + δF (0) we simply add to µ̃t solutions con-
centrated on constant in time trajectories (since b is 0 outside F ([0, 1])). More
precisely, one readily checks that

µt := µ̃t + 1[f(1),+∞)(t) δ1 − 1[f(0),+∞)(t) δ0

solves (PDE).
To conclude the proof of Theorem 3.1, it remains to study the integral curves

of b. This issue is addressed in the following Lemma:

9



Lemma 3.4. For any (t, x) there exists a unique characteristic of b passing
through x.

Proof. Clearly points γ(t) = x, t > 0, are characteristics of b. Since the image of
[0, 1] under F is closed, b vanishes identically in a neighbourhood of any (t, x) /∈
F ([0, 1]). Therefore for (t, x) /∈ F ([0, 1]) the claim is trivial.

Hence it is sufficient to prove that any characteristic γ = γ(t) of b intersects
F ([0, 1]) at most in one point. We argue by contradiction: suppose there exist
x < y such that

γ(f(x)) = x and γ(f(y)) = y. (3.10)

Since γ′ = b(t, γ) and ‖b‖∞ ≤ 1 it holds that

|x− y| = |γ(f(x))− γ(f(y))| ≤ |f(x)− f(y)| (3.11)

On the other hand, by properties of the sets P and N

|f(y)− f(x)| =
∣∣∣∣ˆ y

x

(1P (z)− 1N (z)) dz

∣∣∣∣
=

∣∣∣∣∣∣[x, y] ∩ P
∣∣− ∣∣[x, y] ∩N

∣∣∣∣∣∣ < |x− y|. (3.12)

The inequalities (3.11) and (3.12) are not compatible, hence the proof is complete.

Therefore we have constructed a vector field b for which the characteristics
are unique, but there exists a nontrivial signed solution of the CE. Using a minor
modification of the present construction one can construct a similar example of
(µt, b) having compact support in spacetime.

Remark 3.5. The constructed solution {µt} is not a superposition solution (see
Introduction).

As we in Section 2, the distributional formulation of the Cauchy problem for
(PDE) is well-defined for [t 7→ µt] ∈ L1((0, T ); M (R)) but it is best suited in the
class [t 7→ µt] ∈ L∞((0, T ); M (R)), because of Proposition 2.6. Unfortunately for
the present construction this bound on the solution [t 7→ µt] does not hold, as the
following Proposition shows.

Proposition 3.6. The function [t 7→ µt] is not bounded on any open subinterval
U ⊂ (0, T ), i.e. [t 7→ µt] /∈ L∞(U ; M (R)).

Before presenting the proof of Proposition 3.6 we need the following auxiliary

Lemma 3.7. Let g ∈ Lip((0, 1)) be such that g′ 6= 0 a.e. and let O ⊂ g((0, 1)) be
a non-empty open interval such that

ess supt∈O #(g−1(t)) <∞. (3.13)

Then there exists a nonempty open interval I ⊂ (0, 1) such that g is strictly mono-
tone on I.
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t+ ε

t

t− ε

x1 x2 x3

I1 I2 I3

J1 J2 J3

Figure 2: Situation described in the proof of Lemma 3.7. The intervals Ii are
depicted in blue.

Proof (of Lemma 3.7). It is sufficient to prove the Lemma under the assumption

ess supt∈R #(g−1(t)) <∞.

Indeed, being g Lipschitz continuous, the preimage g−1(O) ⊂ (0, 1) is an open set
and it can be written as countable union of disjoint, open intervals. Let (α, β) be
one connected component of g−1(O) and consider the restriction g̃ of g to (α, β).
Then it holds

ess supt∈R #(g̃−1(t)) <∞,

because if t ∈ O this is (3.13), while if t ∈ R\O we have g̃−1(t) = ∅. It is now clear
that it is enough to prove the Lemma for g̃, because if we prove that g̃ is strictly
monotone (on a subinterval of (α, β)) so is the function g. Let C denote the set
of points x ∈ (0, 1) where g is not differentiable or g′(x) = 0. By the assumptions
(and Rademacher’s theorem) C has measure zero. Then by the area formula

0 =

ˆ
C

|g′(x)| dx =

ˆ
g(C)

#(g−1(t)) dt,

hence g(C) has zero Lebesgue measure (since #(g−1(t)) ≥ 1 for all t ∈ g(C)).
Let

M := ess supt∈R #(g−1(t)).

Since for any t ∈ R we have #(g−1(t)) ∈ N ∪ {0} , there exists a set R ⊂ R with
strictly positive measure such that #(g−1(t)) = M for all t ∈ R. In particular,
we can take t ∈ R \ g(C). Then g−1(t) = {x1, x2, . . . , xM} and g′(xi) 6= 0. Hence
there exist disjoint open intervals Ii containing xi such that g(·)− t has different
signs on ∂Ii, where i = 1, 2, . . . ,M .

Using continuity of g we can always find an ε > 0 such that [t − ε, t + ε] ⊂⋂M
i=1 g(Ii). Hence, by the intermediate value property we can find nonempty

open intervals Ji ⊂ Ii (with xi ∈ Ji) such that g(∂Ji) = {t − ε, t + ε} for each
i ∈ 1, 2 . . . ,M .
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By the intermediate value property for each τ ∈ [t− ε, t+ ε] we have

#(g−1(τ) ∩ Ji) ≥ 1, i ∈ 1, . . . ,M. (3.14)

On the other hand for all τ ∈ [t− ε, t+ ε] we have

M∑
i=1

#(g−1(τ) ∩ Ji) ≤M. (3.15)

Indeed, by the definition of M the estimate (3.15) holds for a.e. τ , and if it fails
for some τ , then at least for some i it holds that #(g−1(τ)∩ Ji) ≥ 2. Since g′ 6= 0
a.e., by the intermediate value property this implies existence of ξ > 0 such that
#(g−1(s)∩Ji) ≥ 2 for all s ∈ [τ, τ + ξ) (or all s ∈ (τ − ξ, τ ]), and in view of (3.14)
this clearly contradicts the definition of M .

From the estimates (3.14) and (3.15) we conclude that for all τ ∈ [t− ε, t+ ε]
it holds that

#(g−1(τ) ∩ Ji) = 1, i ∈ 1, . . . ,M.

Therefore for each i ∈ 1, . . . ,M the function g is injective on Ji, hence it is strictly
monotone on Ji (by continuity).

Now we are in a position to prove Proposition 3.6.

Proof (of Proposition 3.6. We need to show that the map [t 7→ µt] constructed in
the proof of Theorem 3.1 is not bounded on any subinterval U ⊂ (0, T ). We argue
by contradiction. Since by (3.9) for a.e. t

|µ̃t| = #(f−1(t)),

the inclusion [t 7→ µt] ∈ L∞(U ; M (R)) is equivalent to the inequality ess supt∈U #(f−1(t)) <
∞. From Lemma 3.7 it follows that the function f constructed above is monotone
on some nonempty open interval I ⊂ (0, 1). But then f ′ ≥ 0 a.e. on I, and this
contradicts the construction of f (more specifically, the sets P and N).

Remark 3.8. We remark that if f were monotone on some interval I then unique-
ness would fail for the Cauchy problem for (ODE) with b constructed in the proof
of Theorem 3.1. Indeed, without loss of generality suppose that f is strictly in-
creasing on I. Then for any x ∈ I there exist at least two (actually, infinitely
many) integral curves γ ∈ Γb such that γ(0) = x. Indeed, clearly γ(t) := x
(∀t ∈ [0, T ]) belongs to Γb. On the other hand, for any y ∈ I such that y > x one
can define γ by

γ(t) :=


x, t < f(x);

f−1(t), f(x) ≤ t < f(y);

y, t ≥ f(y).

Then one readily checks that γ ∈ Γb, since for a.e. t ∈ (f(x), f(y)) it holds that

γ′(t) =
1

f ′(f−1(t))
=

1

f ′(γ(t))
= b(t, γ(t)).

12



4 Non-uniqueness in the class L∞((0, T );M (R2))

The aim of this final section is to show the following result:

Theorem 4.1. There exist T > 0, a bounded Borel b : [0, T ] × R2 → R2 and
[t 7→ µt] ∈ L∞((0, T ); M (R2)) satisfying the following conditions:

(i) b has only constant characteristics, i.e. γ ∈ Γb if and only if there exists
x ∈ R2 such that γ(t) = x for all t ∈ [0, T ];

(ii) {µt}t∈[0,T ] is not identically zero and it solves (PDE) with zero initial con-
dition.

Proof. The proof will consist in essentially two steps. We will first work in 2D,
constructing an example very similar to the one discussed for the proof of Theorem
3.1. We will then suitably embed this into the three-dimensional euclidean space
R3 in such a way that the path of measures resulting from this construction will
be uniformly bounded.

Consider the three dimensional Euclidean space with the coordinates (x, y, t).
Let (ξ, η, ζ) denote the coordinates in the Cartesian system with the origin O′ =
( 1

2 ,
1
2 , 0) and the axes O′ξ, O′η and O′ζ having directions e′1 := 1√

2
(−1, 1, 0),

e′2 := 1√
6
(−1,−1, 2) and e′3 := 1√

3
(1, 1, 1) respectively (see Fig. 3a).

The 2D construction. Let us consider the plane O′ξη and work in the coordi-
nates (ξ, η). Let f and fk (k ∈ N) be the functions constructed in the proof of
Lemma 3.2. We set P := f−1(1), N := R \P , P k := (fk)−1(1) and Nk := R \P k.
Let

W (ξ, η) := α · (1,1P (ξ)− 1N (ξ)), W k(ξ, η) := α · (1,1Pk(ξ)− 1Nk(ξ)),

where α > 0 is a geometrical constant to be specified later. Clearly divξ,η(W ) = 0
and the η-component of W (and W k) takes only the values ±α.

Let now D ⊂ R2
ξ,η be an open, bounded set with piecewise smooth boundary

∂D and assume that ∂D does not contain vertical segments. We claim that

div(1DW ) = W · νH 1x∂D in D ′(R2), (4.1)

where ν is the outer unit normal to ∂D and H 1x∂D is the restriction of H 1 to
∂D.

Indeed, W k are piecewise constant inside D, so decomposing D into finitely
many pieces, applying the classical Gauss–Green Theorem for each piece and sum-
ming the results we get that for any test function φ ∈ C∞c (R2)

ˆ
D

W k · ∇φdx =

ˆ
∂D

φW k · νdH 1.

13
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Figure 3: Construction of the vector field B and the function u.
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Since ∂D does not contain vertical segments, by construction of the sets P k and
Nk (see Lemma 3.2) we have W k →W H 1-a.e. on ∂D as k →∞. Passing to
the limit by means of Dominated convergence Theorem we get (4.1).

Passage to 3D. We extend W to the whole space using the coordinates (ξ, η, ζ)
as follows:

V (ξ, η, ζ) := α · (1,1P (ξ)− 1N (ξ), 0).

Let us switch to the coordinates (x, y, t). Then V becomes a function of (x, y, t),
which we still denote as V (x, y, t). Since at each point (x, y, t) we have V (x, y, t) =
αe′1 ± αe′2 (where the sign depends on (x, y, t)), clearly (0, 0, 1) · V = ±α 2√

6
=

±α
√

2/3, hence fixing α =
√

3/2 we achieve that the t-component of V is ±1.
Let Σ := {(x, y, t) | x, y, t > 0, x + y + t = 1}. By (4.1) it holds that

div(1ΣVH 2) = g1 + g2 + g3, where gi = V · niH 1xEi and

E1 = {(0, y, t) | y, t > 0, y + t = 1}, n1 = (−2, 1, 1)/
√

6,

E2 = {(x, 0, t) | x, t > 0, x+ t = 1}, n2 = (1,−2, 1)/
√

6,

E3 = {(x, y, 0) | x, y > 0, x+ y = 1}, n3 = (1, 1,−2)/
√

6.

We define U : R3 → R3 as follows:

U(x, y, t) =
∑

s1,s2,s3∈{±1}

1Σ(s1x, s2y, s3t)Us1,s2,s3(s1x, s2y, s3t),

where

Us1,s2,s3(x, y, t) = (s2s3V1(x, y, t), s1s3V2(x, y, t), s1s2V3(x, y, t)).

Observe that
div(UH 2) = g (4.2)

in the sense of distributions, being

g(x, y, t) =

3∑
i=1

∑
s1,s2,s3∈{±1}

s1s2s3 gi(s1x, s2y, s3t).

Notice that also g1(x, y, t) = g1(−x, y, t), g2(x, y, t) = g2(x,−y, t) and g3(x, y, t) =
g3(x, y,−t). Because of this symmetry the right hand side of (4.2) is zero. For
instance, for i = 1 we have∑

s1,s2,s3∈{±1}

s1s2s3 g1(s1x, s2y, s3t)

=
∑

s2,s3∈{±1}

s2s3 g1(x, s2y, s3t) +
∑

s2,s3∈{±1}

(−1)s2s3 g1(−x, s2y, s3t) = 0.

Consider the octahedron ∆ := {(x, y, t) : U(x, y, t) 6= 0} and let

u(x, y, t) :=

{
U3(x, y, t), (x, y, t) ∈ ∆;

0, (x, y, t) /∈ ∆,
B(x, y, t) :=


U(x, y, t)

u(x, y, t)
, (x, y, t) ∈ ∆;

(0, 0, 1), (x, y, t) /∈ ∆.
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ThenB3 = 1 (everywhere) and by (4.2) we have div(1∆uBH 2) = div(UH 2) =
0 (in the sense of distributions). Hence for any test function ϕ ∈ C∞c (R3)

ˆ
∆

uB · ∇x,y,tϕdH 2 = 0. (4.3)

Denoting with St := {x, y ∈ R | (x, y, t) ∈ ∆} and disintegrating the measure
H 2x∆ as

H 2x∆ =

ˆ
νt dt, where νt = αH 1xSt,

(see e.g. [AFP00, Thm. 2.28]) we can rewrite (4.3) as

ˆ
R

ˆ
R2

(uB · ∇x,y,tϕ)dνt dt = 0.

Then the family of measures
µt := u · νt

satisfy (PDE) with

b(x, y, t) := (B1(x, y, t),B2(x, y, t)).

The characteristics of b. We claim that γ ∈ C(R;R2) is a characteristic of b
if and only if γ(t) = γ(0) for all t. This claim follows immediately if γ(t) /∈ ∆ for
all t since outside of ∆ the vector field b is zero. Therefore it is sufficient to show
that γ can intersect each face of ∆ at most once.

Suppose that γ intersects the face Σ (defined above) in two points. Since b is
zero outside of ∆ this is possible only if there exists some nonempty segment [a, b]
such that (γ1(t), γ2(t), t) ∈ ∆ for all t ∈ [a, b]. Then in the coordinates (ξ, η, ζ) the
ODE for γ can be written as

ξ̇ = v(ξ) := α(1P (ξ)− 1N (ξ)), η̇ = α, ζ̇ = 0.

But the first equation does not have solutions. (Indeed, suppose that ξ = ξ(t)
is a non-constant solution of ξ̇ = v(ξ) such that ξ(τ) > ξ(0) for some τ > 0.
Then there would exist a Lebesgue point z for v such that ξ(0) < z < ξ(τ) and
v(z) < 0. By continuity of ξ there exists tm := min{t : ξ(t) = z}. But then
ξ′(tm) = v(ξ(tm)) = v(z) < 0, which contradicts the minimality of tm. We refer
e.g. to [Gus18] for the details). Hence we have obtained a contradiction.

The uniform bounds. Ultimately, by definition of νt

|νt|(R2) = α · 4
√

2 ·


1− t, t ∈ [0, 1];

1 + t, t ∈ [−1, 0];

0, t /∈ [−1, 1],

hence |µt| ≤ α · 4
√

2, i.e. the family of measures {µt} is uniformly bounded.
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5 Continuous vector fields

In this section we prove some partial results for continuous vector fields that were
mentioned in the Introduction.

Proposition 5.1. If a vector field b : (0, T ) × Rd → Rd satisfies (O), then b is
continuous in the space variable, i.e. for a.e. t ∈ (0, T ) the map bt(·) = b(t, ·) is
continuous.

Proof. Let us first show that if b : (0, T ) × Rd → Rd satisfies (O), then bt is
locally bounded in space for a.e. t ∈ (0, T ). Let x ∈ Rd be fixed and suppose by
contradiction that there exists a sequence (xn)n∈N ⊂ Rd such that xn → x and
|bt(xn)| → +∞. In this case, up to subsequences,

bt(xn)

|bt(xn)|
→ z

as n → +∞ for some z ∈ Rd with |z| = 1. By Osgood condition (O) for every
y ∈ Rd ∣∣∣∣〈bt(xn)− bt(y)

|bt(xn)|
, xn − y

〉∣∣∣∣ ≤ C(t)

|bt(xn)|
|xn − y|ρ(|xn − y|)

and passing to the limit (since |bt(xn)| → +∞) we obtain

|〈z, x− y〉| ≤ 0

for every y, from which z = 0, a contradiction.
Now we can prove that bt is (sequentially) continuous. Arguing again by

contradiction, suppose that for some t ∈ (0, T ), x ∈ Rd and {xn}n∈N it holds
that xn → x and bt(xn) 6→ b(x) as n→∞. Being bt locally bounded, by passing
if necessary to a subsequence, we may assume that bt(xn) → bt(x) + z′ for some
z′ ∈ Rd as n→∞. By (O) for any y ∈ Rd

|〈bt(xn)− bt(y), xn − y〉| ≤ C(t)|xn − y|ρ(|xn − y|).

Passing to the limit in both sides of this inequality we get

|〈z′ + bt(x)− bt(y), x− y〉| ≤ C(t)|x− y|ρ(|x− y|).

Hence by triangle inequality using (O) again we obtain

|〈z′, x−y〉| = |〈z′+bt(x)−bt(y), x−y〉−〈bt(x)−bt(y), x−y〉| ≤ 2C(t)|x−y|ρ(|x−y|).

Taking y = x+ s · z with s > 0 we get

|z′| ≤ 2C(t)ρ(s|z′|).

Passing to the limit as s→ 0 we get |z′| = 0, and this concludes the proof.
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Proposition 5.2. Suppose that b ∈ C(R) and for any (t, x) ∈ R2 there exists
a unique γ ∈ Γb such that γ(t) = x. Then for any µ̄ ∈ M (R) the Cauchy
problem for (PDE) with the initial condition µt|t=0 = µ̄ has a unique solution
[t 7→ µt] ∈ L1(0, T ; M (R)).

Proof. Suppose that [t 7→ µt] ∈ L1(0, T ; M (R)) is a (signed) measure-valued solu-
tion to the continuity equation with µ̄ = 0. Then there exists a Lebesgue negligible
set N ⊂ (0, T ) such that for all τ ∈ (0, T ) \N for any Φ ∈ C1

c ([0, τ ]× R) it holds
that ˆ

R
Φ(τ, x) dµτ (x)−

ˆ
R

Φ(0, x)dµ̄(x)

=

ˆ τ

0

ˆ
R

[∂tΦ(t, x) + b · ∂xΦ(t, x)] dµt(x) dt.

(5.1)

(Indeed, first one can consider finite linear combinations of functions Φ having the
form Φ(t, x) = ψ(t)φ(x), where φ belong to some countable dense subset of C1

c (R)
and ψ ∈ C1

c ([0, T ]) are arbitrary. For such test functions (5.1) follows from (2.1),
and in the general case one can apply an approximation argument.)

There are countably many open intervals where b > 0 or b < 0 (and b = 0 on
the complement of the union of all those intervals). Consider one of the intervals,
i.e. suppose that b(α) = b(β) = 0, α < β and b > 0 on (α, β). Fix x0 ∈ (α, β) and
for all x ∈ (α, β) let

F (x) :=

ˆ x

x0

dy

b(y)
. (5.2)

(Note that 1
b ∈ L

1[x0, x] since min[x0,x] b > 0 by continuity.) Clearly F ∈ C1(α, β).
If β = +∞ then F (β − 0) ≡ F (+∞) = +∞. Otherwise there exists ξ ∈ R such

that
´ +∞
ξ

dy
b(y) < T . This would mean that the solution γ of (ODE) with the

initial condition ξ escapes to infinity in finite time, which contradicts the existence
assumption that γ ∈ Γb. Analogously, if α = −∞ then F (α+0) ≡ F (−∞) = −∞.
Finally, if α, β ∈ R then by uniqueness of the integral curves F (α+ 0) = −∞ and
F (β − 0) = +∞.

Furthermore, F is strictly increasing and continuous, hence F−1 : R → (α, β)
is continuous and strictly increasing as well. Since F ∈ C1(α, β) we also have
F−1 ∈ C1(R). Hence

X(t, x) := F−1(F (x) + t)

belongs to C1(R× (α, β)) by the chain rule. Moreover, X(·, x) solves (ODE). Let
now ω ∈ C1

c (α, β) be an arbitrary test function and fix τ ∈ (0, T ). Then define

ϕ(t, x) := ω(X(τ − t, x)) (5.3)

which belongs to C1
c ([0, τ ]×(α, β)). (Indeed, if [u, v] ⊂ (α, β) contains the support

of ω, then the support of ϕ is contained in [0, τ ] × [X(−τ, u), v].) Moreover, ϕ
satisfies the transport equation ∂tϕ+b∂xϕ = 0 (pointwise) with the final condition
ϕ(τ, x) = ω(x).Using the test function Φ = ϕ in (5.1) we getˆ

R
ω(x) dµτ (x) = 0
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and by arbitrariness of ω this implies that µτ = 0 for a.e. τ ∈ (0, T ) (more precisely,
for all τ ∈ (0, T ) \ N). In particular, this implies that the solution (µt)x(α,β)= 0
for a.e. t and hence µt vanishes on every connected component of the set {b > 0}.
Similarly, one can show that µt vanishes for a.e. t on every connected component
of the set {b < 0}. We have thus proved that µt is concentrated on {b = 0} and
then it solves (PDE) with b ≡ 0. Hence µt = 0 globally for a.e. t ∈ (0, T ) and this
concludes the proof.

Remark 5.3. Currently it is not known to us whether Proposition 5.2 can be ex-
tended to more than one space dimensions, or for non-autonomous one-dimensional
case. Our proof of Proposition 5.2 relies on C1 regularity of the flow X(t, x) of b
on the set [0, T ]× {x ∈ R : b(x) 6= 0}. This allows us to construct C1 solutions ϕ
of the transport equation and use them as the test functions in the distributional
formulation of the continuity equation.

But in the case when d > 1 (and also in the case when d = 1 and b is non-
autonomous) the flow of b in general is not differentiable on the set where b 6= 0.

Indeed, let f : R → R be a Lipschitz function. Then the flow of b : R2 3 x 7→
(0, f(x1)) ∈ R2 is given by X(t, x) = (x1, x2 + t · f(x1)). It is evident that for
all t > 0 the function X(t, ·) is differentiable at x ∈ R2 if and only if f(·) is
differentiable at x1.

Similarly, in the one-dimensional non-autonomous setting one can show that if
f is a strictly increasing biLipschitz function such that f(0) = 0 then there exists
T > 0 (dependent on the Lipschitz constants for f and f−1) such that the function
X(t, x) := x+ t · f(x) for every t ∈ [0, T ] is biLipschitz (as the function of x ∈ R).
Then denoting with Y (t, ·) the inverse of X(t, ·) one can show that X is the flow
of continuous function b(t, x) := f(t, Y (t, x)).
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