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1 Introduction

These notes aim to review results and open problems concerning the so-called Bernstein’s
problem for entire area minimizing graphs of (topological) codimension 1, in the setting
of sub-Riemannian Heisenberg groups. The results and examples we will introduce are
well-known and then we will only state them and quote the references where they can be
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found. The example introduced in Section 4.1 is instead new to our knowledge, and then
we will carry out its complete construction.

Let us briefly recall the well-known results concerning the Euclidean Bernstein problem
for entire minimal graphs of codimension 1; we refer to these classical references for their
proof: [Ber17; Ber27; Fle62; Alm66; DeG65; Sim68; BDG69]. Let us also recall the
following classical monographs dealing with the Bernstein problem in the Euclidean case:
[Giu84; MM84; Mag12].

Theorem 1.1 (Euclidean Bernstein Theorem). Let U ⊂ Rn be a (non-empty) set of least
perimeter in the whole Rn. Then, if n ≤ 8, ∂U is a hyperplane.

We recall that a set U , of locally finite perimeter in Rn, is said to be a set of least perimeter
in an open set A ⊂ Rn whenever the following holds: for every bounded open subset A′
of A and for every V ⊂ Rn satisfying U 4 V b A′ (i.e., U 4 V is compactly contained in
A′), it holds that the perimeter of V in A′ is greater or equal to the perimeter of U in A′.

Definition 1.2 (Classical minimal surface equation). Let ψ : Ω→ R be a C2 function on
the open set Ω ⊂ Rn−1. We say that ψ solves the (classical) minimal surface equation
in Ω if

div

 ∇ψ√
1 + |∇ψ|2

 = 0 in Ω. (MSE)

Theorem 1.3 (Euclidean Bernstein Theorem for graphs). Let n ≥ 2. The following
statements hold:

(i) If n ≤ 8, then any solution ψ : Rn−1 → R to the (classical) minimal surface equation
(MSE) is affine.

(ii) If n ≥ 9, then there exist analytic solutions ψ : Rn−1 → R to the (classical) minimal
surface equation (MSE) which are not affine.

Acknowledgments. We warmly thank G. Di Fazio, M. S. Fanciullo and P. Zamboni, or-
ganizers of the workshop “New Trend in PDEs”, held in Catania on May 29-30 2018, for
inviting us to write these notes. We also thank Sebastiano Nicolussi Golo for his helpful
suggestions and corrections.

2 Preliminaries: the Heisenberg group, intrinsic regular hy-
persurfaces and their area, graphs

2.1 The Heisenberg group Hn

In this article, we will mean the Heisenberg group Hn as the set Cn × R ≡ R2n+1, and
represent its points as p = [z, t] = [x + iy, t] = (x,y, t), z ∈ Cn, x,y ∈ Rn, t ∈ R.
The group operation on Hn will be defined as follows: whenever p = [z, t] ∈ Hn and
q = [ζ, τ ] ∈ Hn,

p · q :=
[
z + ζ, t+ τ + 2 Im

(〈
z, ζ̄

〉)]
. (2.1)

As a consequence, it is easy to verify that the group identity is the origin 0 and the inverse
of a point is given by [z, t]−1 = [−z,−t]. Moreover, the following family of non-isotropic
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dilations is defined: if p = [z, t] ∈ Hn and λ > 0,

δλ(p) := [λz, λ2t]. (2.2)

Notice the δλ : Hn → Hn, λ > 0, is a family of automorphisms. The Heisenberg group
Hn admits the structure of a Lie group of topological dimension 2n + 1. Its Lie algebra
hn of left invariant vector fields is (linearly) generated by

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
, for j = 1, . . . , n; T = ∂

∂t
; (2.3)

and the only non-trivial commutator relation is

[Xj , Yj ] = −4T, (2.4)

valid for any j = 1, . . . , n. The following notation will be also used: Xj := Yj−n for
j = n+ 1, . . . , 2n; so that the set of left invariant vector fields which generates hn can be
listed as X1, . . . , X2n. The vector fields X1, . . . , X2n called horizontal vector fields. The
group Hn endowed with this algebraic structure is usually called a Carnot group [Gro96].

Moreover, an intrinsic differentiable structure can be introduced within the tangent space
of Hn.

Definition 2.1 (Horizontal bundle). We call horizontal bundle of Hn the subbun-
dle HHn of the tangent bundle THn which is spanned by the left-invariant vector fields
X1, . . . , X2n. We say that vectors of

HHn
x = span{X1(x), . . . , X2n(x)} (2.5)

are horizontal vectors.

It is also well-known that the (2n+1)-dimensional Lebesgue measure L2n+1 on Hn ≡ R2n+1

is the so-called Haar measure of the group, and the integer

Q := 2n+ 2

is the homogeneous dimension of Hn. Indeed it holds that, if E ⊂ R2n+1,

L2n+1 (p · E) = L2n+1 (E) for each p ∈ R2n+1, (2.6)

and
L2n+1 (δλ(E)) = λQ L2n+1 (E) for each λ > 0, (2.7)

where p · E := {p · q : q ∈ E} and δλ(E) := {δλ(q) : q ∈ E}.

The group Hn is typically endowed with a left-invariant homogeneous metric d, that is a
metric d : R2n+1 × R2n+1 → [0,∞), which is continuous with respect to the Euclidean
topology and satisfies:

d(p · q1, p · q2) = d(q1, q2) ∀ p, q1, q2 ∈ R2n+1 , (2.8)

and
d (δλ(q1), δλ(q2)) = λ d(q1, q2) ∀ q1, q2 ∈ R2n+1, λ > 0. (2.9)
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It is also well-known that any left-invariant homogeneous metric is equivalent to the (left-
invariant) Carnot-Carathéodory (also called sub-Riemannian) metric dc on R2n+1, associ-
ated to the horinzontal subbundle HHn (see, for instance, [Gro96; Mon02]). The group
Hn endowed with a left-invariant metric inherits the structure of a Carnot-Carathéodory
(or sub-Riemannian) metric space. Moreover, by (2.6)-(2.9), the metric measure space
(Hn, dc,L2n+1) turns out to be an Ahlfors metric measure space of dimension Q. Thus,
by a well-known result about Ahlfors metric measure spaces (see, for instance, [Ser16,
Theorem 2.26]), the metric (or Hausdorff) dimension of Hn is Q and then it is greater
than its topological dimension Q− 1: that is the typical gap between the metric and topo-
logical dimension in a sub-Riemannian metric structure, which does not take place in a
Riemannian metric structure, where they agree.

2.2 Intrinsic regular hypersurfaces

Ambrosio and Kirchheim in 2001 proved that the classical notion of rectifiability, due
to Federer, by means of classical (Euclidean) C1-regular hypersurfaces does not work in
the sub-Riemannian Heisenberg group H1 [Ser16, Theorem 4.99]. Thus an alternative
notion of intrinsic rectifiability was proposed in sub-Riemannian Heisenberg groups Hn,
by replacing the class of C1-regular hypersurfaces with one of more intrinsic C1-regular
hypersurfaces which better fits the new geometry [FSS01]. In order to give this definition,
we first need to introduce a notion of continuously differentiable function which is regular
along the horizontal vector fields.

Definition 2.2 (Horizontally C1 functions). Let f be a real measurable function defined
on an open set U ⊂ Hn. We call horizontal gradient of f the distribution ∇Hf :=
(X1f, . . . ,X2nf). Moreover, f is said to be of class C1

H(U) if f is continuous and its
horizontal gradient ∇Hf is represented by a continuous function.

Thanks to the definition just given, one can naturally extend to Hn the notion of “regular
surface” by considering level sets of C1

H maps:

Definition 2.3 (H-regular surface). We shall say that S ⊂ Hn is an H-regular surface
if for every p ∈ S there exist a neighborhood U ⊂ Hn and a function f ∈ C1

H(U) such that
∇Hf 6= 0 in U and S ∩ U = {q ∈ U : f(q) = 0}.

Once this definition is given, one can naturally define a notion of “normal to a surface”
which suits the sub-Riemannian structure of Hn:

Definition 2.4 (Horizontal normal). Let S be anH-regular surface, and p ∈ S a point. Let
f ∈ C1

H(U) be a function as in the definition ofH-regular surface, defined in a neighborhood
U of p. We define the horizontal normal to S at p as

νS(p) := − ∇Hf(p)
|∇Hf(p)| . (2.10)

Remark. We will see below by means of an implicit function theorem (see Theorem 2.17
(iii)) that the horizontal normal is well-defined (up to orientation), in the sense that it is
independent of the defining function f .

Remark (Relation between Euclidean and H-surfaces). It is clear that not all H-regular
surfaces are C1-smooth surfaces in the Euclidean sense, since the definition of C1

H gives
no information about the differentiability along the vector field T ; what’s more, H-regular
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surfaces can behave very badly from a Euclidean point of view: Kirchheim and Serra
Cassano gave in [KS04] an example of aH-regular surface inH1 having Euclidean Hausdorff
dimension 5

2 .

The converse inclusion is false as well: in general, it’s not true that a Euclidean surface
S can be (locally) defined as the level set of a map f with non-zero intrinsic gradient.
For instance, the horizontal plane S := {t = 0}, near the origin, already gives an example
of this situation. More generally, when considering a Euclidean hypersurface, the only
problems arise at points where HHn

x ⊂ TxS, where TxS denotes the tangent plane of S at
x. These points are, in many aspects, irregular points in the setting of sub-Riemannian
geometry of Hn. We give a name to these points.

Definition 2.5 (Characteristic set). Let S be a (classical) C1-hypersurface in Hn. We
set

Char(S) := {x ∈ S | HHn
x ⊂ TxS}, (2.11)

and we call Char(S) the characteristic set of S.

It is trivial to see that if Char(S) = ∅, then S is also a H-surface. Moreover it is also
well-known that the “size” of Char(S) is small with respect to the (Q − 1)-dimensional
Hausdorff measure induced by distance dc, which we will denote HQ−1

c . Indeed, Balogh
proved in 2003 that, if S is a C1-regular hypersurface then HQ−1

c (Char(S)) = 0 (see, for
instance, [Ser16, Theorem 4.23]).

2.3 The intrinsic area: horizontal perimeter

In this Section, we are going to introduce a notion of intrinsic area for hypersurfaces in
the setting of the sub-Riemannian Heisenberg group. We will use the notion of horizontal
perimeter introduced in [CDG94] and inspired by the classical (Euclidean) notion of De
Giorgi’s perimeter . Whenever Ω is an open subset of Hn ≡ R2n+1 and ϕ = (ϕ1, . . . , ϕ2n) ∈
C1
c(Ω;R2n), we set

divH ϕ := −
2n∑
j=1

X∗j ϕj , (2.12)

where X∗j is the adjoint operator of Xj in L2(R2n+1). Given a measurable subset E ⊂ Rn
we define the H-perimeter of E in Ω as

|∂E|H(Ω) := sup
{∫

E
divH ϕ

∣∣∣∣ ϕ ∈ C1
c(Ω,R2n), |ϕ|R2n ≤ 1

}
; (2.13)

alternatively, we can define |∂E|H(Ω) as the (horizontal) total variation in Ω of χE , where
χE denotes the characteristic function of set E.

We say that a measurable set E ⊂ Hn is of locally finite (respectively, finite) H-perimeter
in Ω, if |∂E|H(Ω′) < ∞ for each open set Ω′ b Ω (respectively, |∂E|H(Ω) < ∞).

It is well known that, if E is a set of locally finite H-perimeter in Ω, by the Riesz repre-
sentation Theorem we can identify |∂E|H as a Radon measure on Ω for which there exists
a unique Borel measurable function νE : Ω→ R2n such that

|νE |R2n = 1 for |∂E|H-a.e. in Ω (2.14)∫
E

divH ϕdL
2n+1 = −

∫
Ω
〈ϕ, νE〉R2n d|∂E|H for all ϕ ∈ C1

c(Ω,R2n). (2.15)
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In the following we will call νE the horizontal inward normal to E (see [CDG94; FSS96]).
Moreover, if the set E has a regular boundary, we can give an explicit representation of
the H-perimeter with respect to the 2n-dimensional (Euclidean) Hausdorff measure (see
[CDG94; FSS96]).

Theorem 2.6. Let E ⊂ Hn and suppose that its boundary ∂E is (Euclidean) C1 regular
and let NE denotes its outward unit normal. Then E is a set of locally finite H-perimeter
and, for each open set Ω ⊂ Hn, it holds that

|∂E|H(Ω) =
∫

Ω∩∂E

√√√√ 2n∑
j=1
〈Xj , NE〉2R2n+1 dH2n (2.16)

where H2n denotes the (Euclidean) 2n-dimensional Hausdorff measure in R2n+1. Moreover
the horizontal inward unit normal νE can be represented as

νE(p) = −(〈X1, NE〉R2n+1 , . . . , 〈X2n, NE〉R2n+1)√∑2n
j=1〈Xj , NE〉2R2n+1

(p) for |∂E|H-a.e. p ∈ Hn .

Moreover, by representation formula (2.16), we can introduce a notion of H-area for (Eu-
clidean) regular hypersurfaces in Hn.

Definition 2.7. Let S ⊂ Hn be a (Euclidean) C1-regular hypersurface and let NE denote
its unit normal. Then we call H-area of S in an open set Ω ⊂ Hn the nonnegative value
(possibly infinite)

AH(S)(Ω) =
∫

Ω∩S

√√√√ 2n∑
j=1
〈Xj , NE〉2R2n+1 dH2n . (2.17)

We are in order to introduce a notion of minimality for sets of locally finite H-perimeter
and regular hypersurfaces.

Definition 2.8 (H-minimality). (i) We will say that a set E of locally finite H-
perimeter is a minimizer (or perimeter minimizing) for the H-perimeter in Ω if

|∂E|H(Ω′) ≤ | ∂F |H(Ω′) (2.18)

for any open set Ω′ b Ω and any measurable F ⊂ Hn such that E∆F b Ω′.

(ii) We will say that a C1-regular hypersurface S ⊂ Hn is area minimizing for the H-area
in Ω if

AH(S)(Ω′) ≤ AH(S∗)(Ω′) (2.19)

for any open set Ω′ b Ω and any C1-regular hypersurface S∗ ⊂ Hm such that
S∆S∗ b Ω′.

By adapting the classical calibration method, one can obtain the following sufficient condi-
tion for perimiter minimality in Hn. Notice that an analogous result holds more in general
for Carnot groups, and an even more general one holds in Carnot-Carathéodory spaces
(see [BSV07, Section 2]).

Theorem 2.9. Let E, Ω be respectively a measurable and open set of Hn. Let us assume

(i) E has locally finite H-perimeter in Ω;
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(ii) if νE : Ω→ R2n denotes the horizontal inward normal to E in Ω, then divH(νE) = 0
in Ω in distributional sense;

(iii) there exists an open set Ω̃ ⊂ Ω such that |∂E|H(Ω \ Ω̃) = 0 and νE ∈ C0(Ω̃;R2n).

Then E is a minimizer of the H-perimeter in Ω.

2.4 t-graphs

A t-graph in Hn is a graph with respect to the (non horizontal) vector field T . We identify

Π :=
{

(x,y, t) ∈ R2n+1 : t = 0
}
≡ R2n

and we use the coordinates

(x1, . . . , xn, y1, . . . , yn) = (x,y) (2.20)

on it.

Definition 2.10 (t-graph and t-subgraph). If φ : U → R is an R-valued function defined
on an open subset U ⊂ R2n, then we define its t-graph to be the following subset of
Hn = R2n+1:

St(φ) := {(x1, . . . , xn, y1, . . . , yn, t) ∈ U × R | t = φ(x1, . . . , xn, y1, . . . , yn)}
= {(x,y, φ(x,y)) ∈ Hn | (x,y) ∈ U}.

(2.21)

Analogously, we define its t-subgraph to be:

Et(φ) := {(x1, . . . , xn, y1, . . . , yn, t) ∈ U × R | t < φ(x1, . . . , xn, y1, . . . , yn)}
= {(x,y, t) ∈ Hn | (x,y) ∈ U , t < φ(x,y)}.

(2.22)

Remark. Notice that, if e2n+1 := (0, . . . , 0, 1) ∈ R2n+1, then a t-graph St(φ) can be also
represented as

St(φ) = {A · φ(A) e2n+1 : A ∈ U}

Observe also that Π is not a subgroup of Hn.

It is clear that if φ is a (Euclidean) C1 function then St(φ) is a (classical) C1-surface.
With an abuse of notation, we will write

Char(φ) :=
{

(x,y) ∈ U
∣∣∣ (x,y, φ(x,y)) ∈ Char(St(φ))

}
, (2.23)

where Char(St(φ)) is the characteristic set defined in Definition 2.5. One can easily verify
that

Char(φ) = {(x,y) ∈ U | ∇xφ(x,y)− 2y = ∇yφ(x,y) + 2x = 0}; (2.24)

more compactly, if we define
X∗(x,y) := (−2y, 2x) (2.25)

then
Char(φ) = {(x,y) ∈ U | ∇φ+ X∗ = 0}. (2.26)
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Definition 2.11 (Area for a t-graph). Let U ⊂ R2n. We define the area functional At
in U as

At(φ) := |∂Et(φ)|H(U × R) (2.27)

for any φ ∈W 1,1(U).

By some standard computations (see [CDG94]), one can prove the following:

Proposition 2.12. For any φ ∈W 1,1(U), it holds

At(φ) =
∫
U
|∇φ+ X∗| dL 2n. (2.28)

Remark. The Definition 2.11 makes sense for a larger class of functions: one could define
the space BV t(U) to as the space of maps φ ∈ L1(U) such that |∂Et(φ)|H(U × R) < ∞.
By [SV14, Theorem 1.2], this space actually coincides with the space BV (U) of functions
with bounded variation in the standard Euclidean sense.

For local minimizers of At, the following holds (see [CHY07, Section 2]):

Proposition 2.13 (First variation formula). Let φ ∈ C2(U) be a local minimizer for At,
and let (x,y) ∈ U \ Char(φ). Then at (x,y) we have

div ∇φ+ X∗

|∇φ+ X∗| = 0. (t-MSE)

In the sequel, we will write for simplicity

N(x,y) := ∇φ(x,y) + X∗(x,y)
|∇φ(x,y) + X∗(x,y)| . (2.29)

Definition 2.14. Let U be an open bounded domain in R2n, and φ ∈ W 1,1(U). We say
that φ is a solution to the weak minimal surface equation for t-graphs if∫

U
〈N,∇ψ〉R2ndL 2n = 0 (WMSE)

holds for every test function ψ ∈ C∞0 (U).

Then, by [CHY07, Theorem 3.3], we also have:

Proposition 2.15. A map φ ∈W 1,1(U) is a minimizer for the area functional if and only
if it is a solution to the weak minimal surface equation for t-graphs (WMSE).

Remark. Observe that functional At : W 1,1(U) → R is convex. Thus it is not surprising
that a stationary type point φ ∈W 1,1(U) of functional At, that is, a function φ ∈W 1,1(U)
satisfying (WMSE), turns out to be a minimizer for At.

Notice that, from Theorem 2.9, Propostion 2.15 can be strengthened. Indeed one can
prove the following result (see [Ser16, Example 5.29]):

Theorem 2.16. If φ ∈W 1,1(U) satisfies (WMSE), then its subgraph Et(φ) is a minimizer
for the H-perimeter in Ω = U × R, according to Definition 2.8.
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2.5 Intrinsic graphs

An intrinsic graph of Hn is a graph along a horizontal vector field. Without loss of
generality, we will always consider X1-graphs, i.e. intrinsic graphs along the X1-direction.
The notion of intrinsic graph arose in the setting of the intrinsic rectifiability in the sub-
Riemannian Hn [FSS01]. Indeed, by means of an implicit function theorem, an intrinsic
regular hypersurface can be locally represented as an intrinsic graph. Let us recall the
implicit function theorem [FSS01]. Let us first introduce some preliminary notation. If
n ≥ 2, we identify the maximal subgroup

W := {(x,y, t) ∈ Hn : x1 = 0}

with R2n by writing (x2, . . . , xn, y1, . . . , yn, t) instead of (0, x2, . . . , xn, y1, . . . , yn, t); sim-
ilarly W := {(0, y, t) ∈ H1 : y, t ∈ R} ≡ R2

y,t if n = 1. We identify the 1-dimensional
horizontal subgroup

V := {(s, 0, . . . , 0)) ∈ Hn : s ∈ R}
with R by writing s instead of (s, 0, . . . , 0).

Remark. Observe that the subgroups W and V are also homogeneous, i.e.,

δλ(W) ⊂W and δλ(V) ⊂ V for each λ > 0 .

Moreover they are complementary, i.e.,

Hn = W · V.

If δ > 0 and h > 0 let us denote

Iδ := [−δ, δ]2n ⊂ R2n ≡W and Jh := [−h, h] ⊂ R ≡ V.

Let ω denote a fixed open bounded subset of W; the intrinsic cylinder ω · R is defined by

ω · R := {A · s ∈ Hn : A ∈ ω, s ∈ R} ,

where, for A ∈W and s ∈ R we write A·s to denote the Heisenberg product A·(s, 0, . . . , 0).
In this way I · J = {A · s : A ∈ I, s ∈ J} for any I ⊂ W, J ⊂ R. Similarly, we will write
s ·A to denote (s, 0, . . . , 0) ·A.

Theorem 2.17. (Implicit function theorem) Let Ω be an open set in Hn, 0 ∈ Ω, and let
f ∈ C1

H(Ω) be such that f(0) = 0 and X1f(0) > 0. Define

E = {p ∈ Ω : f(p) < 0}, S = {p ∈ Ω : f(p) = 0} .

Denote now by γ(s,A) the integral curve of the vector field X1 at the time s issued from
A ∈W ≡ R2n, i.e.

γ(s,A) = exp(sX1)(A) = A · s.
Then there exist δ, h > 0 such that the map (s,A) → γ(s,A) is a diffeomorphism of a
neighborhood of Jh× Iδ onto an open subset of Hn ≡ R2n+1, and, if we denote by U ⊂⊂ Ω
the image of Int(Jh × Iδ) through this map, we have

E has finite H-perimeter in U ; (i)
∂E ∩ U = S ∩ U ; (ii)

νE(p) = − ∇Hf(p)
|∇Hf(p)|R2n

for all p ∈ S ∩ U , (iii)
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where νE is the generalized inward unit normal defined by (2.14) and (2.15) , that can be
identified with a section of HHn with |νE(p)|R2n = 1 for |∂E|H-a.e. x ∈ U . In particular,
νE can be identified with a continuous function and |νE | ≡ 1. Moreover, there exists a
unique function

φ : Iδ ⊂W→ Jh ⊂ V
such that the following parametrization holds: if A ∈ Iδ, put Φ(A) := γ(φ(A), A), then

S ∩ Ū = {p ∈ Ū : p = Φ(A), A ∈ Iδ}; (iv)
φ is continuous; (v)

the H-perimeter has an integral representation (area formula):

|∂E|H(U) =
∫
Iδ

|∇Hf(Φ(A))|R2n

X1f(Φ(A)) dL2n(A).
(vi)

Inspired by the previous implicit function theorem, let us now recall the definitions of
intrinsic graph and subgraph (in the horizontal direction X1) which were introduced in
[FSS01]:

Definition 2.18 (Intrinsic graphs). Let ω ⊂W ≡ R2n, and let φ : ω ⊂W ≡ R2n → V ≡ R
be a function. We define the (intrinsic) X1-graph SX1 of φ as the set:

SX1(φ) := {A · φ(A) | A ∈ ω}
= {(φ(A), x2, . . . , xn, y1, y2, . . . , y2n, t+ 2y1φ(A)) | A ∈ ω},

(2.30)

and the (intrinsic) X1-subgraph EX1 of φ as the set:

EX1(φ) := {A · s : A ∈ ω, s < φ(A)} (2.31)

Remark (Intrinsic graphs as H-surfaces). By writing the X1-graph of φ : Ω→ R as

SX1(φ) = {(x,y, t) ∈ ω · R | g(x,y, t) = 0} (2.32)

with g(x,y, t) = x1 − φ(x2, . . . , yn, t− 2x1y1), it is clear that if φ is C1 then the intrinsic
X1-graph of φ is a H-regular surface (in addition to being a classical surface). Equivalently,
when seen as a C1 surface, SX1(φ) does not have characteristic points. These are not the
only H-regular surfaces, however: we’ll soon clarify this observation.

We now introduce an intrinsic notion of gradient of a function defined on R2n, which was
first defined in [ASV06].

Definition 2.19 (Intrinsic gradient). Let φ : R2n → R be a continuous function. The
intrinsic gradient of φ is defined as

∇φφ :=


(
X2φ, . . . ,Xnφ,W

φφ, Y2φ, . . . , Ynφ
)

if n ≥ 2
W φφ if n = 1

, (2.33)

where

Xjφ := ∂φ

∂xj
+ 2xj+n

∂φ

∂t
, j = 2, . . . , n (2.34)

Yjφ := ∂φ

∂xj+n
− 2xj

∂φ

∂τ
, j = 2, . . . , n (2.35)

W φφ := ∂φ

∂y1
− 2∂

(
φ2)
∂t

, (2.36)
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and the derivatives are to be meant in the distributional sense.

Notice that the notion of intrinsic gradient ∇φ is substantially different from the horizontal
gradient ∇H introduced in Definition 2.2: the latter is defined for functions on subsets of
Hn, while the former acts on functions on the subgroup W ≡ R2n.

The intrinsic gradient just defined provides a useful tool for characterizing H-regular sur-
faces, as in the Eucldean case. Indeed, the following theorem can be obtained combining
[ASV06] and [BC10]:

Theorem 2.20. Let ω ⊂ R2n be open, and let φ : ω → R be a continuous function. Let
S = SX1(φ) be the intrinsic graph of φ. Then the following are equivalent:

(a) S is an H-regular surface, and ν1
S(p) < 0 for all p ∈ S, where νS =

(
ν1
S , . . . , ν

2n
S

)
is

the horizontal normal to S.

(b) There exists ∇φφ ∈ C0(ω;R2n).

We can now give the following definition (which, again, differs substantially from the
definition of C1

H given in Definition 2.2):

Definition 2.21 (Intrinsic C1). Let ω ⊂ R2n be an open set, and let φ : ω → R. We
say that φ is intrisically C1, and we write φ ∈ C1

W(ω), whenever one of the (equivalent)
conditions (a), (b) of Theorem 2.20 is satisfied.

When φ is intrinsically C1, we have convenient formulas for the normal to the intrinsic
graph and for its H-perimeter, which are basically adapted version of the Euclidean ones.
We refer again to [ASV06] for a proof.

Theorem 2.22 (Area of an intrisic graph). Let ω ⊂ R2n be open, and let φ ∈ C1
W(ω) be

an intrinsically regular function. Let S = SX1(φ) and E = EX1(φ) be the intrinsic graph
and the subgraph of φ, respectibely and let Φ : ω → S, defined as Φ(A) := A · φ(A) for all
A ∈ ω. Then E is a set of locally finite H-perimeter in ω · R and we have

νE(p) =

− 1√
1 + |∇φφ|2

,
∇φφ√

1 + |∇φφ|2

(Φ−1(p)
)
for all p ∈ S (2.37)

|∂E|H(ω · R) = c(n)
∫
ω

√
1 + |∇φφ|2 dL 2n (2.38)

where c(n) is a dimensional constant.

Thanks to Theorem 2.22, the following definition makes sense:

Definition 2.23 (Intrinsic area functional). If ω ⊂ R2n is an open set and φ : ω → R is
a C1

W, we define the area functional for intrinsic graphs as

AX1(φ) :=
∫
ω

√
1 + |∇φφ|2 dL 2n. (2.39)

Definition 2.24 (H-minimal functions). Let ω ⊂ R2n, and let φ : ω → R be a C2

function. We say that φ (or the X1-graph of φ) is H-minimal if it satisfies the ntrinsic
minimal surface equation (IMSE):

∇φ ·

 ∇φφ√
1 + |∇φφ|2

 = 0 in ω . (IMSE)

11



It is easy to prove that a C2 function is H-minimal if and only if its graph is stationary,
in the sense that the first variation of the perimeter vanishes.

Remark. Observe that the intrinsic area functional AX1 : Lip(ω)→ R is no longer convex
([Dan+09; SV14]).

Let us conclude this section by stressing a relevant class of intrinsic graphs, i.e. the
so-called vertical hyperplanes of Hn.

Definition 2.25. A set S ⊂ Hn is said to be a vertical hyperplane, if

S =
{

(x,y, t) ∈ R2n+1 : 〈a,x〉Rn + 〈b,y〉Rn = c
}

(2.40)

for some a, b ∈ Rn, c ∈ R with |a|2 + |b|2 = 1.

It is well-known that a vertical hyperplane S plays the role of an intrinsic hyperplane in
Hn. Indeed, if c = 0 in (2.40), then S is a maximal subgroup of Hn, and one can easily
prove that each maximal subgroup of Hn agrees with the set S in (2.40) with c = 0 and
for suitable a, b ∈ Rn. Moreover each S in (2.40) can be represented as some left-coset of
a maximal subgroup of Hn.

Remark. Notice that if, for instance, a = (a1, . . . , an) and b = (b1, . . . , bn) with a1 6= 0,
then the vertical plane S can be represented as (Euclidean) regular entireX1-graph. Indeed
S = SX1(φ) with φ : W ≡ R2n → V ≡ R, where

φ(A) := 1
a1

(
c− b1y1 −

n∑
i=2

(aixi + biyi)
)

if A = (x2, . . . , xn, y1, . . . , yn, t) and n ≥ 2

and
φ(A) := 1

a1
(c− b1y) if A = (y, t) and n = 1 .

Moreover
∇φφ(A) = constant for each A ∈W. (2.41)

2.6 The Bernstein problem for graphs in the sub-Riemannian Hn

We are in order to state an approach to the Bernstein problem for t- and intrinsic graphs
in Hn, by means of the H-perimeter. This approach is due to Miranda in 1964 in the
Eucldean case [Mir64].

Definition 2.26. (i) A function φ : U ⊂ Π ≡ R2n → R, is said to be t-graph area
minimizing in Ω := U × R if its associated subgraph Et(φ) is a minimizer for the
H-perimeter in Ω.

(ii) A function φ : ω ⊂ W ≡ R2n → V ≡ R is said to be X1-graph area minimizing in
Ω := ω · R if its associated subgraph EX1(φ) is a minimizer for the H-perimeter in
Ω.

Remark. Notice that, by Theorem 2.9, one can prove that each vertical hyperplane is area
minimizing for H-area in Ω = Hn (see [BSV07]). In particular, each vertical hyperplane,
that can be represented as an entire X1-graph, is an area minimizing X1-graph in Ω = Hn.

12



The Bernstein problem for graphs in Hn: The main goal is the characterization of
functions φ : R2n → R which are (entire) area minimizing t- or X1-graph in Ω = R2n+1.
In particular we are looking for positive/negative answers to the following Bernstein-type
rigidity problem for intrinsic graphs: finding out classes of functions X , defined on the
whole R2n, such that, if φ ∈ X and its X1-graph S is area minimizing in Ω ≡ Hn, then S
is an intrinsic hyperplane of Hn, that is a vertical hyperplane.

3 Results in H1

Area minimizing surfaces have mainly been studied in the first Heisenberg group H1. Let
us recall here the most significant results as well as some open problems.

For the sake of simplicity, we will denote a point p ∈ H1 as p = [z, t] = [x+iy, t] = (x, y, t).

3.1 Classification of area minimizing Cm surfaces

In this section, we state a few results concerning general minimal surfaces in the first
Heisenberg group H1 with enough regularity. As we will remark later, the surfaces treated
here are classical regular hypersurfaces; we recall that whenever it is required that the
characteristic set of S is empty, this is the same as requiring that S is also a H-regular
surface. When we restrict ourselves to consider surfaces with C2-regularity, a complete
characterization of stable surfaces is available in [HRR10]. For the sake of simplicity, we
restrict the result to the case of C2-regular, area minimizing surfaces (see Definition 2.7
(ii)), which, in particular, are stable.

Theorem 3.1. Let S be a C2 complete, oriented, connected surface in H1. Then S is
area minimizing if and only if it is a Euclidean plane or it is congruent to the hyperbolic
paraboloid t = 2xy.

If we keep stability but we also ask for the characteristic set to be empty we get [GR15]:

Theorem 3.2. Let S be a C1 complete, oriented, connected area minimizng surface in
H1 with empty singular set. Then S is a vertical plane.

3.2 t-graphs in H1

A first study of the Bernstein problem for t-graphs was carried out in [GP02]. The clas-
sification of all the complete C2 solutions to the minimal surface equation (WMSE) for
t-graphs in H1 was studied in [Che+05] . This classification was refined in [HRR10] by
means of Theorem 3.1. In particular, from this result, we can infer that there is no Bern-
stein rigidity for t-graphs: (Euclidean) planes are not the only area minimizing t-graphs
in H1.

It is interesting to note, however, that by lowering the allowed regularity, and thus enlarg-
ing the class of functions we consider, the family of functions with area-minimizing t-graph
grows considerably. Indeed, several examples of this phenomenon have been constructed
in [Rit09]: for any non-decreasing continuous function β : R→ R, consider the function

fβ(x, y, t) := t+ xy + y|y|β
(
− t
y

)
; (3.1)

let then φβ(x, y) be the unique solution to fβ(x, y, φβ(x, y)) = 0. Then the regularity of
φβ is in general no better then locally Euclidean Lipschitz, while it was shown through a
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calibration argument that the t-graph of φβ is area minimizing. For example (see again
[Rit09]), with β(x) = x one gets φβ(x, y) = − xy

1+|y| , which is Euclidean C1,1; with β(x) =
xχ{x≥0} one gets

φβ(x, y) =

−xy if x < 0
− xy

1+|y| if x ≥ 0
, (3.2)

which is only locally Lipschitz.

3.3 Intrinsic graphs in H1

As a first observation, we notice here that in H1 the intrinsic minimal surface equation
(IMSE) becomes quite simpler: a first computation shows that it is equivalent to

(W φ)2φ

(1 + |W φφ|2)
3
2

= 0 in R2, (3.3)

which in turn holds if and only if

(W φ)2φ = 0 in R2 . (IMSE-1)

We recall here that the operator W φ acts on C1 functions as W φ = ∂
∂y − 4φ ∂

∂t ; here we
are using the coordinates (y, t) on R2 (see Section 2.5).

In this Section, we first show that the correspondence between (IMSE-1) and perimeter
minimizers no longer holds, differently from what happens with the Euclidean case and the
t-graph case (Section 3.3.1). Then (Section 3.3.2) we show that the Bernstein-type rigidity
result fails in general for area minimizing intrinsic graphs in the class X = C0,α(R2) ∩
W 1,p

loc (R2). Finally, we show in Section 3.3.3 that the Berstein-type rigidity result holds
instead for entire area minimizing intrinsic graphs in the class X = Liploc(R2).

3.3.1 Smooth solutions to the intrinsic minimal surface equation not area
minimizing

We give here an example of an entire function φ : R2
y,t → R such that φ is a solution to

the equation Equation (IMSE-1), but:

• EX1(φ) is not perimeter minimizing in Ω = H1;

• SX1(φ) is not a vertical plane in H1.

This shows that area stationary points of the intrinsic area functional, that is functions
satisfying (IMSE-1), need not be area minimizing. This is not surprising since, as we
pointed out before, the intrinsic area functional AX1 : Lip(ω)→ R is not convex.

To see this one only needs to define, for an arbitrary α > 0,

φα(y, t) := − αyt

1 + 2αy2 if (y, t) ∈ R2 . (3.4)

A very elementary computation shows that φα satisfies (IMSE-1). However, it was proved
in [DGN08] that the intrinsic graph S = SX1(φ) is unstable. More precisely, there exists
ϕ ∈ C∞c (R2) such that

d2

dε2A
X1(φα + εϕ)

∣∣∣∣∣
ε=0

< 0. (3.5)

This in particular shows that S is not area minimizing in Ω = H1.
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3.3.2 Area minimizing intrinsic graphs which are intrinsic cones

Even when the intrinsic graph of a function is area minimizing (not only stationary), we
cannot in general infer that it is a vertical plane. As shown in [MSV08], one can build a
function whose regularity is not better than C0, 1

2 (R2)∩W 1,p
loc (R2) with 1 ≤ p < 2 and the

associated X1-graph SX1(φ) is area minimizing in Ω = H1. For example, the map

φ(y, t) := − sgn t
√
|t| if (y, t) ∈ R2 , (3.6)

satisfies the aforesaid condition. In order to prove it is area minimizing, one can represent
the X1-graph of φ as the t-graph of a suitable function and use a calibration argument by
means of Theorem 2.9.

Let us stress that S = SX1(φ) is an intrinsic cone, that is, it is invariant by the intrinsic
dilations of H1 (see (2.2)). Indeed, it is easy to see

δλ(S) = S for each λ > 0 .

3.3.3 A positive result for Lipschitz functions

Let us recall the main positive answers to the Bernstein-type rigidity problem in different
classes of functions.

A first positive answer to the Bernstein-type rigidity problem for intrinsic graphs was
proved in [BSV07]. Indeed, here, it was proved that any entire stable C2 X1-graph must
be a vertical plane . This result was extended, in [HRR10] and [Dan+10], to more general
C2 embedded surfaces in H1 without characteristic points. It was then improved to C1-
regularity, as a consequence of Theorem 3.2 in [GR15]).

Finally, to our knowledge, the current most general positive answer to the Bernstein-type
rigidity problem is given in [NS19]:

Theorem 3.3. Let φ ∈ Liploc(R2). Assume that SX1(φ) is stable, that is, for each
ϕ ∈ C∞c (R2) it holds that

d

dε
AX1(φ+ εϕ)

∣∣∣∣
ε=0

= 0 and d2

dε2A
X1(φ+ εϕ)

∣∣∣∣∣
ε=0
≥ 0 . (3.7)

Then SX1(φ) is a vertical plane. In particular, if φ ∈ Liploc(R2) is area minimizing in
Ω = H1, then SX1(φ) is a vertical plane.

3.3.4 Open problems

It is unknown whether the Bernstein-type rigidity result holds true for intrinsic graphs
when X = C1

W(R2) or X = W 1,p
loc (R2), with exponent p finite but high enough. In

[NS19], two examples were given of stable intrinsic graphs, that is, satisfying condition
(3.7) ,with associated functions in C1

W(R2) ∩W 1,2
loc (R2) and Liploc(R2 \ {0}) ∩W 1,p

loc (R2)
with 1 ≤ p < 3, respectively; however, we are currently not aware whether they are area
minimizing in Ω = H1.
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4 Results in Hn with n ≥ 2
There are only very few results about the Bernstein problem for graphs in the Heisenberg
group Hn with n ≥ 2, to our knowledge. They are mainly negative results and we collect
them below.

4.1 t-graphs in Hn

In this section, we show again there is no Bernstein-type rigidity result for t-graphs also for
n ≥ 2, even in the class of space of functions X = C2(R2n). We do this by simply recov-
ering the counterexamples of H1 and extending them “cylindrically” to higher Heisenberg
groups.

Consider a set V = Ṽ × V̂ of R2h, with 1 ≤ h < n, with Ṽ and V̂ open sets of Rh.
Assume v ∈ C2(V) is a function defined on V: we aim to define (and analyze) a cylindrical
extension of v on a subset of R2n.

If x = (x1, . . . , xn) ∈ Rn, let us represent x as

x = (x̃, x̂) with x̃ := (x1, . . . , xh), x̂ := (xh+1, . . . , xn) .

According to definition (2.25), we write X∗h with the subscript to stress that we are con-
sidering the vector field (−2y, 2x) in R2h. By this notation, we can then consider the
function u : U := Ṽ × Rn−h × V̂ × Rn−h ⊂ R2n → R defined by

u(x,y) := v(x̃, ỹ) . (4.1)

Notice that in this case, we have:

∇v = (∇x̃ v,∇ỹ v) and ∇u = (∇x̃ v, 0,∇ỹ v, 0)

where
∇x̃ v := (∂x1v, . . . , ∂xhv) and ∇ỹ v := (∂y1v, . . . , ∂yhv).

This implies that
∇u+ X∗ = (∇x̃ v − 2ỹ,−2ŷ,∇ỹ v + 2x̃, 2x̂)

In particular, the characteristic set of u is given by the points

Char(u) = {(x̃, 0, ỹ, 0) ∈ U : (x̃, ỹ) ∈ Char(v)} . (4.2)

Lemma 4.1. In this context,

div ∇u+ X∗

|∇u+ X∗|(x,y) = 4∆v(x̃, ỹ)
|∇u+ X∗|3(x,y)(|x̂|2 + |ŷ|2) + div ∇v + X∗h

|∇v + X∗h|
(x̃, ỹ) (4.3)

whenever (x̃, ỹ) ∈ V \ Char(v); moreover

div ∇u+ X∗

|∇u+ X∗|(x,y) = 4∆v(x̃, ỹ)
|∇u+ X∗|3(x,y)(|x̂|2 + |ŷ|2) (4.4)

whenever (x̃, ỹ) ∈ Char(v) and (x̂, ŷ) 6= (0, 0).
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Proof. Let (x,y) ∈ U \Char(u). Through straightforward computations we obtain, at the
point (x,y):

|∇u+ X∗|2 = |∇v + X∗h|2 + 4
n∑

i=h+1
(x2
i + y2

i ) (4.5)

div(∇u+ X∗) =
n∑
i=1

(
∂2

∂x2
i

u− ∂

∂xi
2yi + ∂2

∂y2
i

u+ ∂

∂yi
2xi

)
=

= div(∇v + X∗h) = ∆v,
(4.6)

where v and X∗h are meant to be computed at (x̃, ỹ). Moreover, one can notice that:

∂

∂xi
|∇u+ X∗|2 = ∂

∂xi

|∇v + X∗h|2 +
n∑

j=h+1
4(x2

j + y2
j )

 =

=
{

∂
∂xi
|∇v + X∗h|2 if 1 ≤ i ≤ h

8xi if h+ 1 ≤ i ≤ n
;

(4.7)

∂

∂yi
|∇u+ X∗|2 =

{
∂
∂yi
|∇v + X∗h|2 if 1 ≤ i ≤ h

8yi if h+ 1 ≤ i ≤ n
. (4.8)

This in turn implies that〈
∇u+ X∗,∇|∇u+ X∗|2

〉
=
〈
∇v + X∗h,∇|∇v + X∗h|2

〉
+

+ 16
n∑

i=h+1
(−yixi + xiyi)

=
〈
∇v + X∗h,∇|∇v + X∗h|2

〉
.

(4.9)

Notice now that, if F : Rm → Rm is a C1 vector field, and p ∈ Rm is a point where F is
not zero, then in p the following equality holds:

div F

|F |
= 1
|F |3

(
|F |2 divF − 1

2
〈
F,∇|F |2

〉)
. (4.10)

Hence, by applying (4.10) to the vector field ∇u+ X∗, we get:

div ∇u+ X∗

|∇u+ X∗| = 1
|∇u+ X∗|3

(
|∇u+ X∗|2 div(∇u+ X∗n) +

−1
2
〈
∇u+ X∗,∇|∇u+ X∗|2

〉)
=

= 1
|∇u+ X∗|3

(
|∇v + X∗h|2 div(∇v + X∗h)+

− 1
2
〈
∇v + X∗h,∇|∇v + X∗h|2

〉
+

+ 4 div(∇v + X∗h)
n∑

i=h+1
(x2
i + y2

i )
)

(4.11)

Now this allows to reach both the conclusions: if (x̃, ỹ) ∈ Char(v) then the first two terms
are zero; if instead (x̃, ỹ) /∈ Char(v), then we can apply (4.10) on ∇v + X∗h to obtain
(4.3).
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Let’s see now what this means in our context, when v ∈ C2(V) is a (classical) solution of
the (t-MSE) in V \ Char(v):

div ∇v + X∗h
|∇v + X∗h|

= 0 in V \ Char(v). (MSEh)

Corollary 4.2. Assume v solves (MSEh) and u is defined as in (4.1). Then u satisfies
(t-MSE) (in R2n) if and only if ∆v = 0.

Corollary 4.3. For any subset of indices J ⊂ {1, . . . , n}, the map

ũJ(x1, . . . , xn, y1, . . . , yn) := 2
∑
j∈J

xjyj (4.12)

satisfies the minimal surface equation in any open set U that has empty intersection with

Char(ũJ) =
{

(x, y) ∈ R2n
∣∣∣∣∣ xi = 0 ∀i = 1, . . . n
yi = 0 ∀i /∈ J

}
. (4.13)

Now, by [CHY07, Corollary F], the following holds:

Proposition 4.4. Let U ⊂ R2n be bounded, with n ≥ 2. Assume φ ∈ C0(Ū) ∩C2(U) and
φ ∈W 1,1(U). If φ satisfies the minimal surface equation (t-MSE) out of the set Char(φ),
then it is a solution to the weak minimal surface equation for t-graphs (WMSE).

Thanks to Corollary 4.3, we now have a family of smooth maps on U := R2n which satisfy
the minimal surface equation for t-graphs out of the singular set without being affine.
Thus, by combining Theorem 2.16 and Proposition 4.4 (the latter being only valid when
n ≥ 2) we get that the t-subgraph Et(φ) of any such function φ is a minimizer for the
H-perimeter in Ω = Hn = R2n+1. In particular, such a φ is area minimizing in Ω = Hn.

4.2 Intrinsic graphs: a negative answer in n ≥ 5
In this section, we show that the Bernstein-type rigidity result fails for intrinsic graphs
also for n ≥ 2, even if we restrict the space of functions to C2(R2n). This was proved
in [BSV07] (see, also, [Dan+09]). Let us briefly recall the strategy for constructing the
example. Recall that a C2 function φ on R2n with area-stationary intrinsic graph satisfies
(IMSE) introduced in Definition 2.24, which we can write as

n∑
j=1

Xj
Xjφ√

1 + |∇φφ|2
+ Yj

Yjφ√
1 + |∇φφ|2

+W φ W φφ√
1 + |∇φφ|2

= 0. (4.14)

Notice that, if one looks for solutions φ which do not depend on the t variable, i.e. such
that φ(x2, . . . , xn, y1, . . . , yn, t) = ψ(x2, . . . , xn, y1, . . . , yn) for some ψ : R2n−1 → R, then
(4.14) reduces to the classic minimal surface equation we introduced in Definition 1.2:

div

 ∇ψ√
1 + |∇ψ|2

 = 0 in R2n−1. (MSE)

By the classical Bernstein Theorem (Theorem 1.3), we know that if 2n−1 ≥ 9 we can find
non-affine analytic solutions to this equation. In particular, if n ≥ 5, this strategy provides
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a function φ(x2, . . . , xn, y1, . . . , yn, t) = ψ(x2, . . . , xn, y1, . . . , yn) which solves (4.14) and
whose intrinsic graphs is not an intrinsic plane.

We also notice that X1-graphs of such functions φ(x2, . . . , xn, y1, . . . , yn, t) are actually
minimizers of the H-perimeter; in fact it is easy to check that the smooth section ν :
Hn → HHn defined by

ν(x, y, t) =

− 1√
1 + |∇φφ|2

,
∇φφ√

1 + |∇φφ|2

(x2, . . . , xn, y1, . . . , yn, 0)

=

− 1√
1 + |∇ψ|2

,
∇ψ√

1 + |∇ψ|2

(x2, . . . , xn, y1, . . . , yn)

(4.15)

is a calibration for the X1-graph of φ (see Theorem 2.9), i.e.

• divX ν = 0 in Hn;

• |ν(p)| = 1 for all p ∈ Hn;

• ν coincides with the horizontal inward normal to the X1-graph of φ (see Theo-
rem 2.22).

Observe that in this argument (which is basically the same used to prove the minimality
of any entire graph solution of (MSE) in the classical case) it was essential the non-
dependence of φ on the vertical variable t: as we have seen in Section 3.3.1, in general it
is not true that an entire solution of (IMSE) parametrizes a minimizer.

4.3 Comments for the remaining cases

To our knowledge, what happens for intrinsic graphs in dimensions n = 2, 3, 4 re-
mains unknown. One important observation can be made: by the same argument
used in Section 4.2, it is clear that any (smooth) counterexample to the Bernstein-
type rigidity result must depend on the variable t: otherwise, the projected function
ψ(x2, . . . , xn, y1, . . . , yn) = φ(x2, . . . , xn, y1, . . . , yn, t) solves the classical minimal surface
equation, thus it is (Euclidean) affine and the its X1-graph is a vertical hyperplane. Even-
tually it is easy to see that the strategy exploited in Section 4.1 for t-graphs, of extending
cylindrically to higher Heisenberg, does not work for intrinsic graphs.
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