HOMOGENISATION OF HIGH-CONTRAST BRITTLE MATERIALS
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ABSTRACT. This paper is an overview on some recent results concerning the variational analysis
of static fracture in the so-called high-contrast brittle composite materials. The paper is divided
into two main parts. The first part is devoted to establish a compactness result for a general
class of free-discontinuity functionals with degenerate (or high-contrast) integrands. The second
part is focussed on some specific examples which show that the degeneracy of the integrands
may lead to non-standard limit effects, which are specific to this high-contrast setting.
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1. INTRODUCTION

In this note we analyse the large-scale behaviour of high-contrast composite materials which can undergo
fracture. In a variational setting, the microscopic behaviour of high-contrast composites is typically de-
scribed by means of scale-dependent energy functionals with “degenerate” integrands. For brittle materials
the scale-dependent energies are of the general form

J:g(u)z/ﬂfg(a:,Vu)dx—l—/ ge(z,vy) dH™ 1, (1.1)

where € > 0 describes both the composite-microstructure and the degeneracy of the mechanical proper-
ties of the material (cf. (L.3)). In the variable u: @ C R™ — R belongs to SBV(2), the space of
special functions of bounded variation in §2. In this simplified scalar setting, u represents an anti-plane
displacement and 2 is the cross-section of an infinite cylindrical body. Being u an SBV-function, dis-
continuities are allowed and the discontinuity set of u, denoted by S, models the cracks in the material.
The deformation gradient Du can be decomposed into the sum of a bulk part Vudz and a surface part
(u™ — u ), H" LS., where Vu denotes the approximate gradient of u, v and u™ the traces of u on
both sides of Sy, and v, denotes the (generalised) normal to S,. The volume term in F. represents the
elastic energy stored in the unfractured part of the material, whereas the surface term in F. accounts
for the presence of cracks. According to the Griffith criterion, in brittle materials, already for the small-
est crack-amplitude, there is no interaction between the two lips of the crack, so that the corresponding
fracture energy does not depend on [u] = ut —u™.

For finite-contrast brittle materials, the limit behaviour of energies of type is by-now well-
understood and the corresponding theory provides a rigorous micro-to-macro upscaling for brittle fracture.
In fact, if f. and g. satisfy (mild regularity assumptions and) standard growth and coercivity conditions
of type

el < f(2,6) < (1 +[¢7) and es < go(a,v) < s, (1.2)
for every € > 0, z,£ € R", v € S" !, for some p > 1, and 0 < ¢1 < 2 < 400, 0 < 3 < ¢4 < 400, then
in [I8] Giacomini and Ponsiglione showed, among other, that the limit behaviour of F. is captured by a
scale-independent free-discontinuity functional of the same type as F;; i.e.,

Fotw = [ folwVuydo+ [ golom) an ™,

with fo and go also satisfying (1.2). Under these assumptions, Giacomini and Ponsiglione also showed
that volume and surface energy decouple in the limit, so that the energy density fo is not affected by
the presence of the surface term in F., whereas the surface energy density go is not affected by the
volume term in F.. In a recent work, Cagnetti, Dal Maso, Scardia, and Zeppieri [12] generalised the
asymptotic analysis carried out in [I8] and devised (nearly optimal) sufficient conditions which ensure a
macroscopic bulk-surface energy decoupling for a wide class of finite-contrast vectorial free-discontinuity
functionals which may also depend on [u]. The class of periodic free-discontinuity functionals originally
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analysed by Braides, Defranceschi and Vitali [9] satisfy the sufficient conditions provided in [12]. Moreover,
random free-discontinuity functionals with stationary finite-contrast integrands can be also seen as a special
instance of those treated in [I2], as shown by Cagnetti, Dal Maso, Scardia, and Zeppieri in [I3]. Therefore, a
volume-surface interaction can be ruled out for a large class of finite-contrast free-discontinuity functionals.
In this setting, in particular, microscopic brittle energies always converge to macroscopic brittle energies.
However, the general theory established in [9] [12] [I3] [I8] is not well-suited for studying the large-scale
behaviour of those brittle composites whose different constituents have very different mechanical properties
from one another. Indeed, in this case the integrands f. and g. in may exhibit a so-called high-contrast
behaviour and satisfy ([1.2]) only in a subset Q. of €.

In the last decade there has been an ever increasing interest in the study of high-contrast free-
discontinuity functionals and in the derivation of their effective properties. In particular, the case where
(at least) one of the conditions in is violated in “many small” periodically distributed regions inside 2
has been considered (see, e.g., |3 4, [5] [6] [1T], 14, [16] 17, [19] 20} 21]). Depending on the type of degeneracy
of f. and g, nonstandard limit effects have been also observed. These nonstandard effects are typical
of the high-contrast setting and arise from a nontrivial volume-surface limit interaction, which cannot be
excluded in this degenerate setting. In fact, in the two companion papers |4, [16], Barchiesi, Dal Maso, and
Zeppieri show that when only g. is degenerate, already for very simple free-discontinuity functionals of
Mumford-Shah type, a bulk-surface interaction cannot be ruled out. Namely, a volume-surface coupling
can be observed when homogenising a material made of “many” purely brittle inclusions periodically dis-
tributed in a connected unbreakable structure, whose fracture-resistance is assumed to be infinite. This
coupling produces a homogeneous material whose overall behaviour is of ductile (or cohesive) type; in
other words, the homogenised surface energy explicitly depends on [u]. A similar phenomenon is also
observed by Barchiesi, Lazzaroni, and Zeppieri [6] who show that a ductile behaviour can be seen as the
macroscopic effect of a nontrivial volume-surface interaction in the homogenisation of two purely brittle
materials with a high-contrast bulk energy. Moreover, in the recent work [I9] Pellet, Scardia, and Zep-
pieri prove, instead, that nonstandard constitutive laws may arise when homogenising two purely brittle
materials with a high-contrast surface energy. The functionals analysed in [6] and [I9] are both of type

f?f*"e(u):/Qae(f)lwfdm/su b (L) anr (1.3)

where the elastic modulus a. and the fracture resistance (or fracture thoughness) b. are Q-periodic func-
tions and in the unit periodicity cell Q := (—1/2,1/2)" are defined as

ae(y) = a. ify€q, be(y) = B ifyeq,
=\Y 1 ifyeQ\Q, W 1 ifyeQ\Q,

with ae, 8- € 10,1], 7 € (0,1), and Q. := (—r/2,r/2)". Since a., B are not bounded away from zero, the
functions a. and b can be degenerate. In their turn, the integrands f-(y, &) = a(y)|€]* and g. (y, v) = b:(y)
in will not satisfy, in general, the coercivity conditions in .

The limit case a. = B = 0 corresponds to the case of periodically perforated brittle materials studied
by Cagnetti and Scardia [I4] and by Focardi, Gelli, and Ponsiglione [I7] (see also Barchiesi and Focardi
[5] for more general free-discontinuity functionals). In spite of the strong degeneracy of the coefficients a.
and b., which in this case are equal to zero in a “large” portion of €2, in this case it can be proven that
the functionals F2'° exhibit a limit behaviour which is qualitatively similar to that of free-discontinuity
functionals with coercive integrands. Namely, in this case bulk and surface terms do not interact in the
limit.

The aim of this note is to show that, contrary to the coercive case, where general homogenisation
results can be proven to describe the limit behaviour of a large class of free-discontinuity functionals, in
the non-coercive setting, already for special functionals of type , a unified homogenisation theory
cannot be established. In fact, the limit behaviour of F&<'?< is highly sensitive both to the choice of the
parameters a. and (. and to their vanishing rate compared to the period of the microstructure ¢.

This note is divided into two main parts and organised as follows. In first part we will deal with
sequences of general free-discontinuity functionals of type whose coefficients f. and g. are “weakly
coercive” or “degenerate”; i.e., they satisfy the lower bounds in only in a set 2. which is obtained
removing from {2 many small periodically distributed connected regions. We will use the localisation
method of T'-convergence |8 [I5] to prove that these kind of functionals are (pre)compact. That is, up to
subsequences, they always I'-converge to a free-discontinuity functional of type

/Qf(x,Vu)d;z:-s-/ g(@, [u],vu) dH" .
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Moreover, the limit integrands f and g are non-degenerate and satisfy coercivity conditions of type (|1.2))
for some positive constants ¢1,¢és which are strictly smaller than ci, cs, respectively. In this part of the
analysis a pivotal role is played by an extension result for SBV-functions defined in periodically perforated
domains, proved by Cagnetti and Scardia [14] (see also the later variant in [5]).

In the second part of this note we will specialise the general theory to some prototypical and yet
relevant model cases. Namely, we will briefly review the case of perforated (or porous) brittle materials
studied by Cagnetti and Scardia [14] and by Focardi, Gelli, and Ponsiglione [I7] (see also [5]), the case of
high-contrast brittle materials with soft inclusions treated by Barchiesi, Lazzaroni, and Zeppieri in [6], and
eventually the case of high-contrast brittle materials with weak inclusions analysed by Pellet, Scardia, and
Zeppieri in [19]. In particular we will show that the choice of the integrands f. and g. in strongly
affects the form of the I'-limit which can give rise to macroscopic models accounting for damage as well
as to models accounting for cohesive fracture.

2. PART I: A COMPACTNESS RESULT FOR HIGH-CONTRAST FREE-DISCONTINUITY FUNCTIONALS

In this part we will use the localisation method of I'-convergence [8], [I5] to prove a convergence result for
a general class of free-discontinuity functionals of brittle type, with degenerate coefficients.

In the choice of the convergence to compute the I'-limit, a crucial role will be played by an extension
result for SBV-functions defined in periodically perforated domains due to Cagnetti and Scardia [14]
Theorem 1.3] and by a later variant due to Barchiesi and Focardi [5, Theorem 1].

2.1. Notation and setting of the problem. We list below a few notation which will be used throughout
the paper.

e O C R" denotes an open and bounded set with Lipschitz boundary. The set A(Q2) denotes the
collection of all open subsets of €2;

e () denotes the open unit cube of R™ centred at the the origin, whereas for x € R™ and r > 0 we
set Qr(z) :=1Q + z;

o for v € S"! we denote with Q¥ the open unit cube of R™ centred at the the origin, with one face
orthogonal to v and for x € R™ and r > 0 we set Q7 (z) :=rQ" + z;

e for x € R™ and v € S ! we denote by IT”(z) the hyperplane through = and perpendicular to v;
i.e., I"(z) :=={y e R™: (y — z) - v = 0}. If x = 0 we simply write IT";

e For u € L*(Q) and m > 0 the function u™ denotes the truncated function of u at level m; i.e.,
u™ = (uAm)V (—m);

e For £ € R" we denote by ug the linear function with gradient equal to &; i.e., ue(z) := & - z, for
every ¢ € R";

e For z € R", t € R, and v € S"! we denote with u%' the piecewise constant function taking
values 0,t and jumping across the hyperplane 11" (x); i.e.,

{t if(y—x)-v>0,

uy'(y) =
0 if(y—=x)-v<o.

The functional setting we are going to consider in this note is that of SBV, the space of special functions
of bounded variation. We recall here only the definition of the spaces which are relevant for our analysis
and we refer the reader to [2] for a comprehensive treatment on the subject. We set

SBV(Q):={ue€ BV(Q): Du=Vul"+ (u" —u )vudH" 'S, }.

Here S, denotes the approximate discontinuity set of u, v, is the generalised normal to S, u™ and v~ are
the traces of u on both sides of S,. In this paper we work with the following vector subspace of SBV (Q2)

SBVP(Q) :={u € SBV(Q): Vuec LP(Q) and H" ' (S,) < 400},
where p > 1. We consider also the larger space of generalised special functions of bounded variation in €2,
GSBV(Q) :={u e L' (Q): u™ € SBV(Q) for all m € N},
as well as
GSBV?(Q) :={u € GSBV(Q): Vu € L’(Q) and H" '(5,) < +oo}.
We consider also

SBVP(Q) :={u e SBV(Q): Vu=0 L a.e., H" ' (S,) < +00};
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FIGURE 1. Schematic of a high-contrast composite material.

it is known (see |2, Theorem 4.23]) that every u in SBVP°(2) N L°°(2) is piecewise constant in the sense
of [2 Definition 4.21], namely there exists a Caccioppoli partition (E;) of € such that u is constant £"-a.e.
in each set F;. Moreover, we set

P(Q) :={u e SBVP(Q): u(z) € {0,1} L"- a.e. in Q}.
For u,w € L*(U), in what follows, by “u = w near dU” we mean that there exists a neighbourhood V of
OU in R" such that u = w L"-a.e. in VNU.

Let fr: R™ x R™ — [0, 4+00) be Carathéodory functions such that
(H1) there exist p > 1 and 0 < ¢1 < ¢2 < 400 such that for every (z,£) € R™ x R™ and for every k € N

cil€]” < fi(x, ) < o1+ [€]7); (2.1)
(H2) fr(x,0) =0 for every z € R™ and for every k € N.

Let moreover gi: R™ x "' — (0, +00) be Borel functions such that
(H3) there exist 0 < ¢3 < ¢4 < 400 such that for every (z,v) € R™ x S"~! and every k € N

cs < gr(z,v) < ey (2.2)
(H4) gi(z,v) = gr(z, —v), for every (z,v) € R x S"™! and every k € N.

Let © C R™ be open bounded and with Lipschitz boundary and let K C @ be compact and such that
Q \ K has a Lipschitz boundary. We define

E:=R"\ U (K +1);
iezn
the set F is open, connected, Q-periodic, and has a Lipschitz boundary. Let e, be a sequence of positive
numbers such that €, \ 0 as k — +0o and denote by Qj the e,Q-periodic set defined as Qf, := QNerFE
(see Figure [1)).
Let moreover ay, B € [0,1] and consider the sequence of functionals F: L'(Q) — [0, +-0c] defined as

fe(z, Vu)dz + o fe(z, Vu) dz + / gk (2, V) dH™ ™ + By / gk (z, ) dH" !
s s

Qe Q2 wNQy uwN(Q\Q)
Fr(u) = ifu e SBVP(Q),
“+o0 otherwise in L'(Q).

(2.3)
We observe that thanks to assumption (H2) the functionals Fj, decrease by truncation, wherease they do
not satisfy the standard coercivity conditions required, e.g., in [9} [12] [I8] since the coefficients o, Bx are
not bounded away from zero.



2.2. Equi-coercivity and choice of the convergence. Due to the possible degeneracy of the co-
efficients aj and (i, the functionals Fj are not, in general, equi-coercive with respect to the strong
L' (Q)-convergence. Similarly as in [5, [IT}, 17, 9], in what follows we give a notion of convergence on
L*(Q) which is weaker that the L*(Q)-convergence and ensures the equi-coercivity of the functionals Fy.
This will be done by appealing to [5, Theorem 1]. For the readers’ convenience we recall here a slightly
simplified version of this result which is useful for our purposes.

Theorem 2.1 (cf. Theorem 1 in [5]). Let (ur) C SBVP(Q4) be such that

sup (/ |ug|? der/ |Vug|? de 4+ H" ' (S, ﬁQk)) < +o0. (2.4)
k Qe Q.
Then, there exist (ar) C SBVP(Q), with tr = ukx a.e. in Q, and a function u € GSBV?(Q) N LP(Q)
such that (up to subsequences) iy — u in L*(£2).

If moreover supy, |luk||Le(q,) < +00 then u € SBVP(Q) N L>™(Q) and @y, — v in LP(Q).

Let (ux) C L'(Q2) be a sequence satisfying

sup |luk||Lr(a,) < +oo and  sup Fi(ux) < 400.
k k

Then, clearly (ux) C SBVP(y); moreover in view of (H1) and (H3) the sequence (ux) satisfies the
uniform bound . Therefore invoking Theorem immediately yields the existence of a function
u € GSBVP(Q) N LP(N2) and a sequence (ar) C SBVP(Q) with @ = uk a.e. in g, such that (up to
subsequences not relabelled) @y — u in L'(9).

This observation motivates the choice of the following notion of convergence on L'(Q).

Definition 2.2 (Convergence). Let (uy) be a sequence in L' (). We say that (uz) converges to a function
u € LY(Q), and we write uy ~» u, if there exists a sequence (@) C L'(Q) such that @y = uy a.e. in Q,
and iy, converges to u in L*(Q).

Remark 2.3 (Uniqueness of the limit). We observe that since C'(K) := £L"(Q \ K) > 0, then the limit in
the sense of Definition is well-defined. Indeed, assume that uy ~ u1 and ux ~ uz2. Then by definition
there exist (@1,x), (G2,k) C L'(Q) such that @, = @2, = ug in Q and @1, — w1 and @2, — uz in Ll(Q).
Therefore
0= lim |ty — G2,k dz = lim / |1,k — G2,k | X0, dT = C(K)/ |lur — usl| dz,
koo Jo k—too Jq Q

where the last inequality follows by the Riemann-Lebesgue Theorem applied to the e, @Q-periodic function
Xxq,- Then, since C(K) > 0 we necessarily have u; = u2 a.e. in Q.

‘We notice moreover that the convergence ur ~ u readily implies

kETOO lur — ullL1(q,) = 0.

Remark 2.4 (Convergence of truncated functions). Let (ux) C L'(Q) be such that ux ~ u for some
u € L'(Q). Let m € N and denote by (u') the sequence of truncated functions of uy at level m, then

up' ~ u"™ where u™ denotes the truncated function of u at level m. Indeed, set vy := (ux)™, then vy, = up’

a.e. in Q, moreover since @y — w in L' () then (@)™ — «™ in L'(Q2), and actually in any LP ().

In what follows we study the I'-convergence of the functionals Fj, with respect to the convergence as in
Definition To this end we give the following sequential notion of I’-convergence.

Definition 2.5 (Sequential T-convergence). Let Fy, F: L'(2) — [0, +oc]; we say that the functionals
Fe I-converge to F with respect to the convergence as in Definition if for every u € L'(Q) the two
following conditions are satisfied:

(i) (Ansatz-free lower bound) For every (ux) C L'(Q) with uy ~» u we have

F(u) < liminf Fi(ug);
k—+oco

(i1) (Existence of a recovery sequence) There exists (@x) C L*(Q) with @ ~+ u such that

F(u) > limsup Fi (k).
k—4o00

Remark 2.6. It is standard to show that F is lower semicontinuous with respect to the convergence as in
Definition and hence with respect to the strong L*(£2)-convergence.



For every u € L'(Q) we consider the functionals

I- lklgigf]:k(u) = inf %ﬁiﬁ}fﬂ(“’“) U ~> u} (2.5)
and
I-lim sup Fi(u) := inf { lim sup Fi (uk) : ux ~ u} (2.6)
k—~+o00 k—+o0

It is easy to show that the infima in (2.5) and (2.6) are actually attained.
In what follows we also use the compact notation

F'(u) :=T- l]€1§i{g Fi(u) and F"(u) := T-limsup F(u). (2.7)

k—+oo
It is immediate to see that Definition [2.5|is equivalent to ' = F” = F in L*(Q).

Remark 2.7 (The case ay, Br = 0). In the case of porous brittle materials [5] [14] [17], which corresponds
to the parameter choice ag, B = 0, the I'-convergence of the functionals Fj can be equivalently studied
with respect to the strong L'()-convergence. Indeed, in this case a sequence (ux) with equibounded
energy can be replaced by the L'(Q)-converging sequence (iix) given by Theorem [2.1] without changing
the energy.

The following proposition shows that the domain of the I'-limit of Fy (if it exists) is GSBVP(Q).
Proposition 2.8 (Domain of the I'-limit). Let F' and F" be as in [2.7); then
dom F' = dom F"’ = GSBV?(Q).

Proof. We first show that GSBV?(Q)) C dom F”. By the growth conditions (2.1)) and (2.2) we have
Fr(u) < G(u) where

co / (1 + |Vul")dz + csH" 1 (S. N Q) in GSBV?(Q)
Q
+o0 otherwise in L'()

G(u) = (2.8)

The functional G is lower semicontinuous with respect to the strong L*(Q)-convergence, hence we have

inf { lim sup Fr(ux): up — win LI(Q)} < G(u).
k——+oo

Since the convergence in Definition [2.2]is weaker than the L'(2)-convergence we then have F” < G, and

thus the desired inclusion.

We now prove that dom ' € GSBVP(Q). To this end, let v € dom F’ then there exists (ur) C L' (Q)
with u, ~ u such that lim infy Fj(ur) = F(u) < +o00. Then, up to subsequences (not relabelled) we have
supy, F(ur) < 400, thus in particular (ur) C SBVP(Q).

Let m € N and let uj' be the truncated function of ur at level m; then (uy') C SBVP(2) N L™ ().
Since the functionals Fj decrease by truncation, for every fixed m € N it also holds sup, Fr(u’) < +oo.
Therefore, for m € N fixed we can appeal to Theorem to deduce the existence of a sequence (vg) C
L*(Q) such that vx, = uf* a.e. in Q and of a function v € SBVP(Q) such that up to subsequence (not
relabelled) vy — v in L*(Q). Since uy ~» u we have

k—+oo [ Q

0= lim |ve —up'|dx = lim / lve — (@)™ X0y d:c:C(K)/ v —u™|dz,
N k—+oco Q
therefore v = u™ a.e. in Q. Eventually, the arbitrariness of m € N yields u € GSBV?(Q). O

2.3. I'-convergence and integral representation. In this section we show that, up to subsequences,
the functionals Fj, I'-converge to a free-discontinuity functional of the form

]-'(u):/gfoo(x,Vu)der/ oo (@, u™ —u™, vg) dH" L

Su
for some foo and goo. Moreover, we show that, despite the degeneracy of the coefficients ax, Sk, the limit
integrands fo and go satisfy standard coercivity conditions similar to (2.1)) and (2.2)), respectively.

If not otherwise specified, in what follows the I'-convergence of the functionals Fj, is always understood
in the sense of Definition

To prove the existence of a I'-convergent subsequence of Fj we make use of the so-called localisation
method [8] [I5] which we adapt to the sequential notion of I-convergence as in Definition



We start by localising the functionals F; that is we consider F, : L' (Q) x A(f) — [0, +o0] defined

as
fr(z, Vu) de + ag fr(z, Vu) dz + / gr(z,va) dH" ™' + B / g (@, v) dH™ !
Ug U\Uy SunUp Sun(U\U)
Fir(u,U) = ifu e SBVP(U),
+o0 otherwise in L'(Q),

(2.9)
where U := U NepE.
We also define the localised versions of and (2.6)); i.e., for every U € A(Q2) we consider the
functionals defined as

F'(-,U) := T-liminf Fy (-, U), F'(-,U) := I-limsup Fi (-, U). (2.10)

k—+o0 k—+o00

Remark 2.9 (Properties of F',F"). It is easy to show that F’ and F" are lower semicontinuous with
respect to the convergence in Deﬁnition local, and that they decrease by truncation. Moreover, as set
functions they are both increasing, whereas F’ is also superadditive.

Remark 2.10 (On assumption (H2)). If we drop assumption (H2) the functionals Fj will not decrease by
truncation, but rather satisfy

Fr(u™, U) < Fr(u,U) + co L™ (U N {Ju| > m}) + arx c2L™(U \ Ug N {|u] > m}). (2.11)
If ay is infinitesimal, the inequality in (2.11) implies
F'u™U) < Fw,0) + =l i), (2.12)

(and analogously for F”). In fact, by definition of I-liminf there exists a sequence (uy) C L*(£2) such that
ug ~ w and F'(u,U) = liminfg_ oo Fr (uk, U). Then if ui® is the truncated function of uy at level m, by

we get
Fie(ur', U) < Fi(uk, U) + 2L Uk 0 {Jur| = m}) + o c2L(U\ Uk N {[uk| > m})
< Fi(uk, U) + 2 L™ (Ui, N {Jax| > m}) + ok c2L™(Q)
< Fi(ur, U) + c2L™(U N {|ar] > m}) + ar c2L"(Q)
where 4, is as in Definition and thus @ — w in L' (). Therefore, taking the liminf as k — 400 gives
lim inf F(u,U) < F'(u,0) + e2£"(U 0 {ful > m}),

hence follows by the definition of I'-liminf, taking into account that u}' ~» u™, and by the Chebyshev
inequality. Therefore, ensures that 7' “almost” decreases by truncation up to an error which
becomes small for m large. Inequality is then enough to to carry out the I'-convergence analysis
below (cf. [12]). Hence, if o is infinitesimal assumption (H2) can be dropped.

However, if the sequence aj is uniformly bounded from below, we have no control on the term
ag c2L™(U \ Ui N {|ug] > m}), therefore from we cannot infer (2.12). Since with we want to
study the I' convergence of F for any choices of o € [0, 1], assumption (H2) is actually necessary.

In general the set functions F'(u,-) and F”(u,-) are not inner regular. Then we consider their inner
regular envelopes defined as:

FL(u,U) :=sup{F'(u,V): VCCU, Ve AN}

and
F(u,U) :=sup{F"(u,V): V.CCU, V € AN)}.

Remark 2.11 (Properties of 7', F”). The functionals 7’ and F” are lower semicontinuous with respect
to the convergence in Definition [2.2] [I5, Remark 15.10], local [15, Remark 15.25], and it is immediate to
check that they decrease by truncation. Furthermore, as set functions, they are both increasing and F’
is superadditive [I5, Remark 15.10].

The following compactness result is the analogue of [I5] Theorem 16.9], when the sequential notion of
I’-convergence in Definition [2.5]is considered. We omit its proof since it is standard.



Proposition 2.12 (Compactness by I'-convergence). Let Fi be the localised functionals as in .
Then there exists a subsequence (Fi;) C (Fx) such that the corresponding functionals F' and F" defined
m satisfy F. = F".

We now set

FimF = F". (2.13)
In what follows we show that actually F coincides with the T-limit of the subsequence (F;). To this end
we start noticing that by monotonicity we always have F” = F. < F' < F”. Therefore, if we show that
F" = F; i.e., that F” is inner regular, we immediately get ' = F” = F and therefore that F, (-, U)
I-converges to F(-,U) for every U € A(Q), as desired.

A crucial preliminary result needed to prove the inner-regularity of F” is the so-called fundamental
estimate, which has to hold uniformly in k. Since the I'-limit is computed with respect to the convergence
in Definition the fundamental estimate we need is non-standard. Namely, we have to prove that the
error in the fundamental estimate tends to zero when uy ~» u. This is achieved by first showing that the
error goes like ||ur — ul|Lr(q,) and then by resorting to a truncation argument.

We notice that an analogous estimate for degenerate functionals defined in Sobolev spaces can be
found in [I0, Proposition 3.3]. Whereas in the SBV-setting, for functionals of Mumford-Shah type with
degenerate surface energy it can be found in the recent [I9, Lemma 4.4].

Following [10] we start showing how to construct suitable cut-off functions which are constant in
U;ezn €x(K +14). To this end let § > 0 be small enough so that the set K5 := {x € R™: dist(z, K) < 0}
satisfies K5 CC Q. Let ¢ € C5°(Q) be a cut-off function between K and K5 (that is0<¢ <1, =1on
K, and spt ¢ C Kjs) such that [Vy| < 2.

For k € N and i € Z", we define the operator R¥ : WL (R™) — WL (R") as

loc loc

Rﬂ@@%:(17w(§~w))MM+¢(5;4)f;Kﬁg@dy

By definition we have that
Ri(¢)(z) = ¢(x) if ¢ erKs + eni,
while R is constant in e, K + e, namely we have
RE(¢)(x) :][ d(y)dy if z € ex K + epi.
e Kstegt

Finally, we consider the operator R¥ : WL >°(R™) — W2 (R") defined as

oc loc

R¥(#)(x)  ifx €enKs+exi, i €27,
R” =
(@)(=) {d)(x) otherwise.

Let U C R™ be open and bounded and let ¢ € W"*°(U) then VR¥(¢) is uniformly bounded in k. More
precisely, we have

2
IVR* @)l < (304 1) 90l ran (214)
where d denotes the diameter of K. In fact,
2
VR (@)l 2o (vrirm)y < -5 Sup ||~ #(y) dy + IVl Lo (virm)
Ek i eKs+ei Lo (g4, Ks+egi;R™)

and

< erd||V| Lo (irn)-
Lo (e Ks+egi;R™)

H¢—f' o) dy

epKstegt

In the next proposition we make use of the operator R¥ to construct cut-off functions whose gradient
vanishes in R™ \ e, F; these cut-off functions are then used to prove the desired fundamental estimate.

Proposition 2.13 (Fundamental estimate). For every n > 0, and for every U', U", V € A(Q), with
U' cc U", there exist two constants M(n) > 0 and k, € N satisfying the following property: for every
k > ky, for every uw € L*(Q) with v € SBVP(U"), and for every v € L*(Q) with v € SBVP?(V), there
exists a function p € C§°(Q) with ¢ = 1 in a neighbourhood of U’, spt o C U" and 0 < ¢ < 1 such that
Fi(pu+ (1= @), U UV) < (1+n) (Fe(u, U") + Fi(v, V) + M(0)|lu — v|Le(sne,p) (2.15)

where S = (U"\U')NV.



Proof. Let U',U",V € A() be as in the statement. Let n > 0 be fixed and choose N € N in a way such
that

1 n 7 ’ p—1 C2 C4
Nmax{@ﬁ (U \UYNV),3 max{a,g}}<n. (2.16)

Let moreover U € A(2) be such that U’ CC U CC U” and consider the open sets

U ccU cC...CcCUsy ccU”

where
N / dist(U’, 8U) B
U, = {x dist(z,U") < Tl}, for every l =1,...,3N.
We notice that by definition of U; we have that
1
dist(U;, 0Ui41) = 3N for everyl =1,...,3N — 1. (2.17)

For every j =0,...,N — 1 let ¢; be a cut-off function between Us;+1 and Usj42 with |[Ve;| < 4N.
Let k,, € N be such that

1
exd < 3N for every k > ki), (2.18)

where d := diam(K5) < V2.

If i € Z™ is such that (ex K +e,i) NU; # O for every k > ky, then thanks to — we can deduce
that (e, K + exi) N (R™\ Upy1) = @. Therefore the functions o; := R*(¢;) are cut-off functions between
the sets Us; and Us(j11), for every j =0,..., N — 1 (where we have set Up := U").

Now let uw € SBV?(U") and v € SBV?(V); for every j =0,...,N — 1 fixed we have

Fr(piu+ (1 —9;)0,U UV) = Fi(u, (U UV)NUss) + Fi(v,V \ Us(j11))
+Fi(pju+ (1= 9)v, VN (Usgeny \ Usj)) < Fie(u,U”) + Fi(v, V)
+Fr(piu+ (1= 95)0,V N (Usg1) \ Usy)).-
We set
wj = pju+ (1—¢;)v, Sj:=V N (Usgr) \Usj)
and estimate the term Fj(wj, S;). We clearly have
Fr(w;, S5) = Fr(w;, S; \ exE) + Fr(wj;, S; NerE). (2.19)

By construction Vg; = 0 in R™ \ ¢, E, therefore appealing to (2.1)) and (2.2) we deduce

Fr(wj, Sj \ exE) = ak/ Te(z,0;Vu+ (1 = ¢;)Vv)dz + B / gr (2, v, ) dH"
(s

Si\ex E j\skE)ﬁSwj

< c2ap; (E"(Sj \ exE) +/ |Vu|? dz +/ [Vol? dm)
s

Si\ex B i\er E

TeaB (H”*l((sj \exE) N Su) +H (S, \ erE) N s,,))

< coa L™(S5 \ ex B) + & (ak/ fr(z, Vu) dz + ag / fr(z, Vv) dx)
s s

C1 \enE \enE

+074 (Bk / gk (x, ) dH™ ™ + By / gr(z, V) d’}-l"fl)
c3 (Sj\ex E)NSy (Sj\ex E)NSy

n C2 C4
< coarL™(S;\ e E) + max {— = (fk(u, Si\ exE) + Fr(v, S; \5kE)) (2.20)

01’03
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Moreover, again invoking (2.1)) and (2.2)), in €4 E we have

fk(wj,Sj ﬂakE) = / fk(a:,VwJ)da:—i—/ gk(x, ij)dHn_l
S

SjNex E jﬁskEﬂSwj

<c <E"(Sj NewE) + / [Vpi(u—v)+¢;Vu+ (1 —p;)Vol? d:r)
s

jNex E

Yo (H"fl((sj NerE) N Su) +H ™ ((S; NerE) N sv))

< cL"(SjNerE) + 023p71||Vg0j ||I£OO(U;JRH) / |lu —v|? dz

S;NeRE
+3P7" max {z—j, %} (J-"k(u, S; NexE) + Fr(v, S; N ekE)) (2.21)
Since |V¢;| < 4N, combining the definition of ¢; with gives
1905l i) < (§d+ 1)4N. (2.22)
In view of , by gathering — we then obtain for every j =0,...,N —1
Filus. ) < ea”(5) +3 " ma {2 S (Fiw.5) + Fl0,8)) + M) [ ol
iNek

where
2 P
M(n) := 377! (Sd + 1) (4N)P.

Therefore there exists j° € {0,..., N — 1} such that

N-1
1 C2 n
Fr(wse,85) < ; Fi(w;, 55) < L ((U\U)NV)

RL C2 C4 1" p
+ max{—,— (fk(u,U ) —Q—]-'k(v,V)) + M(n) lu —v|” da.
N c1 c3 (UM\UNNVNeL E

Finally the thesis follows from ([2.16]) by choosing ¢, as a cut-off function and setting S := (U”\U')NV. O

Thanks to the fundamental estimate Proposition [2.13] we are now able to prove the following abstract
[-convergence result for the sequence of localised functionals F, (-, 0).

Theorem 2.14 (Abstract I'-convergence and properties of the I'-limit). Let F be as in (2.13)), then:

1. (locality and lower semicontinuity) for every U € A(Q), the functional F(-,U) is local and lower
semicontinuous with respect to the L' (Q2)-convergence;

2. (measure property) for every u € GSBVP?(Q), the set function F(u,-) is the restriction to A(Q)

of a Radon measure on €;

(T-convergence) for every U € A(R) it holds F(-,U) = F'(-,U) = F"'(-,U) on GSBV?(Q);

4. (translational invariance in u) for every uw € L*(Q) and U € A(Q) there holds F(u + s,U) =
F(u,U) for every s € R.

@

Proof. Since the L'(Q)-convergence implies the convergence in the sense of Definition property 1
immediately follows from Remark In view of Remark property 2 follows by the De Giorgi and
Letta criterion (see, e.g., [I5, Theorem 14.23]) once we show that for every u € GSBV?(Q) the set function
F(u,-) is subadditive. In its turn, the subadditivity of F(u, -) follows from Proposition Since in our
setting this proof is not entirely standard, we discuss it in detail for the readers’ convenience.

We start observing that on GSBVP?(Q) the functional F satisfies the following limsup-type inequality:
For every u € GSBVP(Q) and for every U,U’ € A(Q) with U’ CC U, there exists a sequence (u;) C
GSBV?(U') N L*(Q) with u; ~» u such that

limsup F, (u;,U") < F(u,U)

Jj—+oo

(see, e.g., [15] Proposition 16.4 and Remark 16.5] also recalling that the infimum in the definition of F”
is actually attained).
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Now let U,V € A(Q) and let u € GSBVP?(Q) N L>(Q). Fix any U' cCc U, V' cc V, U, V' € A(Q).
Choose an open set U” such that U’ CC U” CC U and two sequences (u;) C GSBVP?(U") N L*(Q) and
(v;) € GSBVP(V')n LY(Q), with u; ~» v and v; ~» u such that

lim sup Fx, (u;, U”) < F(u,U), limsup Fi, (v;, V') < F(u, V). (2.23)

j—+oo j—+oo
Since the functionals Fj decrease by truncation, we can additionally assume that ||u;| oo (), |vj]l Lo @) <
[lw]| oo ()5 clearly,

Jim flu; —ullze, ) = m flv; —ullzey,) = 0- (2.29)

Let n > 0 be fixed and arbitrary. The fundamental estimate Proposition [2.13] provides us with constants
M (n) > 0 and j, € N and with a sequence (¢;) of cut-off functions between U’ and U” such that
Fie; (pu; + (1 = @j)v;, U U V')
< (1 + 7]) (]‘—k] (u]‘, U”) + ]:kj (Uj7 V’)) + M(n)““j — Uy HIL;,IJ(Q)CJ_>

for every j > j,. Hence appealing to ([2.23)), to the convergence p;u; + (1 — ¢;)v; ~ u, and to the obvious
inequality F < F’, by taking the limit as j — +oco0, we get

Flu, ' 0V') < (14 ) (Fu,U) + Fu, V).
Now letting n — 0, and then U’ AU, V' 2V in view of the inner-regularity of F we get
Flu,UUV) < F(u,U) + F(u,V), (2.25)

hence the subadditivity of F(u,-) for u € GSBVP(2) N L*>=(Q).
Now let u € GSBV?(Q) and, for every m € N, set u™ := (uAm) V (—m). Then, since F decreases by
truncation (2.25) immediately gives

F™,UUV) < F(u,U) + F(u, V).
Then, taking the limit as m — 400, in view of the convergence u™ — u in L*(Q2) and the lower semicon-
tinuity of F we obtain
Fu,UUV) < liminf F(u™,UUV) < F(u,U) + F(u, V),

m—+oo

and thus the subadditivity of F(u,-) for every u € GSBVP(Q).

The proof of property 3 is achieved by showing that F”' is inner-regular. Indeed, this is equivalent to
F' = F” which by definition of F implies F” < F < F'. Since clearly F' < F”, we actually deduce that
F is the I'-limit of ]-'kj.

The inner regularity of F” follows from the fundamental estimate Proposition To see this, for
every U € A() let G(-,U) be the localised version of the functional G defined in (2.8); i.e.,

e / (1+ [Vul’) do + caH" " (S. N U)  ifu € GSBVP(U),
g(u, U) = U
+00 otherwise in L'(Q).
Now fix W € A(Q2) and v € GSBV?(Q); since G(u, -) is the restriction to A(Q2) of a Radon measure, for

every n > 0 there exists a compact set W C W such that and MS(u, W\ W) <.
Now choose U, U’ € A(Q) satisfying W C U’ cC U cC W and set V := W \ W. Recalling that

F"(u,-) is increasing, appealing to Proposition easily gives
F'u,W) < F'(w,U'UV) < F'(u,U) + F'(u,V) = F'(u,U) + F" (u, W \ W).
Recalling that 7" < G, by taking the sup on U CC W we get
F'u, W) < F2(u, W) + Glu, W\ W) < F (u, W) +1.

Hence, by the arbitrariness of > 0 we get F''(u, W) < F'(u,W) for every W € A(Q)) and every
u € GSBVP(Q). Since the opposite inequality is always satisfied, we readily deduce the inner regularity
of F"(u,-), as desired.

Eventually, the proof of property 4 is standard and follows as in, e.g., [9, Lemma 3.7]. 0

(2.26)

In the following theorem we show that the I'-limit F can be represented in an integral form as a
free-discontinuity functional. Moreover, thanks to [5, Theorem 4] the functional F turns out to be non-
degenerate, unlike the functionals Fy.



12

Theorem 2.15 (Integral representation of the I'-limit). Let F be as in Theorem|2.14. Then, there exist
a Carathéodory function foo: R™ x R™ — [0, +00) and a Borel function goo: R™ x S"™! — (0, +00) such
that

f(u,U):/Ufoo(x,Vu)da:—i—/s Goo (0, [u], 1) dH™ " (2.27)

WU
for every u € GSBV?(Q) and every U € A(Q).
Furthermore, the function fo: R™ X R™ — [0, +00) satisfies the following properties:

i) (convexity in &) for a.e. x € R", foo(x,") is convex;
i1) (p growth and coercivity) there exists ¢1 > 0 such that for a.e. * € R™ and for every & € R™ it holds

alél’ < foolx, &) < ca(1+[€17), (2.28)

where ¢z is as in (2.1)).
The function geo: R™ x R x S"7! — [0, +00) satisfies the following properties:

ii3) (monotonicity in ¢ and symmetry) for a.e. x € R™ and for every v € ", goo(x, -, V) is nonde-
creasing on (0, 4+00) and satisfies the symmetry condition goo(x, —t, —V) = goo(z,t,v) for every t € R;
iv) (subadditivity in t) for a.e. x € R™ and for every v € S*™*

goo(xatl +t27V) S goo(x7t171/) +goo(1‘7t27y)a

for every t1,t2 € R;
v) (convexity in v) for a.e. © € R™ and for every t € R, the 1-homogeneous extension of goo(x,t,-) to
R"™ is convex. Equivalently, for a.e. x € R™ and for every t € R the function goo satisfies

gOO(Iat7 V) S Algoo(x7t7 l/l) + )‘QQOO(Iat7 V2)7

for every v,v1,va € S"TY, A1, A2 > 0 such that \iv1 + Aava = v;
vi) (bounds) there exists &3 > 0 such that for a.e. x € R™, for everyt € R, and every v € S*~* it holds

63 S Joo (Z’, t7 V) S C4, (229)
where c4 1s as in (2.2)).

Proof. Let & : L'(R) x A(Q) — [0, +00] be the functionals defined as

c VulP dz + csH" (S, NUL) ifu e SBVP(U
En(u, U) = 1/Uk| | s ) © (2.30)

+o0 otherwise in L*(£2),

with ¢1 and c3 as in (2.1) and (2.2)), respectively. Appealing to [5] Theorem 4] and also noticing that the
LP-convergence in the statement can be equivalently replaced by the convergence in Definition [2.2] we
deduce that & (-,U) -converges to E(-,U) for every U € A(Q), where

E(u,U) :/Uf(Vu)der/S G(v)dH™ !

WNU
with f and § as in [5l, Theorem 4] formulas (40) and (41), respectively. Moreover f and § satisfy
alE|P < (&) for every € € R™ and & < §(v) for every v € S"71,

for some ¢1, ¢ > 0. Then, since & < Fi, we may deduce that for every u € SBV? () and every U € A(Q)
we have

E(u,U) < F(u,U). (2.31)
We recall that for every u € SBVP(Q) and every U € A(Q2) we also have
F(u,U) < G(u,U), (2.32)

where G is as in ([2.26).
Now let o > 0 and for every u € SBV?(Q2) and U € A(f) set

F(u,U) = F(u,U) +a/s e
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For every fixed o > 0 the functional F° satisfies properties 1, 2, and 4 in Theorem Moreover, in
view of (2.31)-(2.32) it holds

o [ vrdes [ @ralhant < F D)
U Su.NU

<o 04wt [ (rolupan

Therefore, we can invoke the integral representation result [7, Theorem 1] to deduce that for every u €
SBVP(Q) and every U € A(f2) we have

]—"U(u,U)z/Ufgo(x,Vu)dm—l—/S goo (, [u]7uu)al7’-[n717

WU

where f$, and g2, are given by the following derivation formulas

fo(m, &) = limilip pin inf {77 (u,Q,(z)): u € SBV?(Q,(x)),u = u¢ near 9Q,(z)} (2.33)
and
9% (x,t,v) := limsup # inf {77 (u, Q) (x)): u € SBV?(Q}(x)),u = ul” near 0Q;(z)}. (2.34)
p—0t

By (2.33) and (2.34)) the sequences (f%)o>0 and (g% )s>0 are decreasing as o decreases, therefore by
setting foo := lim, g+ f& and goo := lim,_, o+ g%, by the pointwise convergence of (F7)s>0 to F and the
Monotone Convergence Theorem, we get

}—(u,U):/Ufoo(x,Vu) dx+/s Goo (, [u], 1) dH™ 7,

WU
for every u € SBV?(Q2) and U € A(Q). Eventually, a standard truncation and continuity argument allows
to extend this integral representation to the whole space GSBV? () and thus to get exactly .

The measurability properties of fo and goo follow from the derivation formulas and ,
arguing as in the appendix of [12]. The convexity of fo in &, the subadditivity of g in ¢, and the convexity
in v of its 1-homogeneous extension are immediate consequences of the LI(Q)-lower semicontinuity of F.

To show that foo and goo satisfy, respectively, the lower bounds as in i7) and vi) we argue as follows.
Set

. al/ |vu|de+/ (G4 o|[u]|)dH"™" ifue SBVP(U)
7 (u,U) := U nU

u

400 otherwise in L'(Q),
and for every z € R™ and £ € R" define

@7 (z,€) := lim sup pi" inf {®7 (u,Q,(z)): u € SBVP(Q,(x)), u = u¢ near dQ,(z)},

p—0

while for every z € R, t € R, and v € S" ! set

Y7 (z,t,v) ;= limsup
p—0+
Since ®7 < F7 on SBVP(Q) we clearly have both ¢ < fZ and 7 < g,. We now show that ¢7(z,&) =
¢1/|€|P for every z € R™ and every £ € R™ and ¢ (x,t,v) = ¢3 + ot. To do so we notice that by the
homogeneity in x of ®7, we have both ¢7(z,£) = ¢7(0,€) for every z € R" and every £ € R" and
Y7 (z,t,v) = ¥7(0,t,v). We can now apply the integral representation result [7, Theorem 1] to ®° so that
choosing u = u¢ and U = @ we obtain

G el = 07 (ue, Q) = /Q 67 (4,€) dy = §°(0,€) = ¢° (z, &),

inf {®7 (u, Q) (2)): u € SBVP(Q}(2)),u = ul" near 0Q}(z)}.

n—1

while choosing u = u5” and U = Q¥ we obtain
& + ot =07 (ug", Q") = / W (y,t,v) M =97 (0,t,v) = ¥ (2, t,v),
nrnQv
and hence the desired equalities. Therefore we deduce
alglf = ¢ (z,8) < f&(x,€) for every z,£ € R”
which immediately gives the lower bound of f.; moreover there holds

Gy < &3+ ot =97 (x,t,v) < g% (2,t,v) forevery z € R",t e R, v e S" "
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hence, taking the inf on ¢ > 0 yields the the lower bound on go.

The upper bound in i) immediately follows from (2.33) and the obvious inquality F7 (ue, Qo(z)) <
p"ea(1+1€]7), while the upper bound in vi) follows from (2.34)) and

(uzc 7Qp( )) (uac an( ))Spn71(64+0't)7

which holds true for every o > 0 and hence also in the limit as o — 0T
Finally, the monotonicity in ¢t and the symmetry of g easily follow from (2.34). O

Theorem 2.16 (I'-convergence). Let Fi be the functionals defined in (2.3). Then, there ezists a subse-
quence kj — +oo such that (Fi,;) I'-converges to the functional F given by (2.27), for some Carathéodory
function feo: R™xR™ — [0, +00) and some Borel function goo: R™ x S*™! — (0, +-00) satisfying properties

(i) — (vi) as in Theorem [2.15
Proof. The proof is an immediate consequence of Theorem and Theorem [2.15 O

Corollary 2.17 (I'-convergence of porous brittle materials). Let ar = B = 0 and let Fy, be the correspond-
ing functionals given by . Then, there exists a subsequence kj — 400 such that (Fy;) T'-converges
with respect to the L'(Q)-convergence to the functional F given by , for some Carathéodory function
foo: R XR™ — [0, +00) and some Borel function goo: R" xS"™1 — (0, +00) satisfying properties (i) — (vi)
as in Theorem [2_13.

Proof. Since the L'(Q)-convergence implies the convergence in Definition the proof of the liminf
inequality is immediate from Theorem Now let u € GSBV?(Q), then by Theorem there exists
(u;) C L'(Q) such that u; ~ u and lim; F; (u;) = F(u). In view of Definition this means that there
exists a sequence (ii;) C L'(Q) such that @; = u; a.e. in Q; and @; — w in L (Q). Then, since the
choice ay; = Bi; = 0 implies the equality Fj, (i) = Fi, (u;), the sequence (i;) is the desired recovery
sequence. O

2.4. Convergence of minimisation problems. On account of the I'-convergence result Theorem [2.14]
in this section we establish a convergence result for minimisation problems associated to a suitable per-
turbation of the functionals Fj. To this end, let h € L>(Q2) and for every k set

My, = inf { Fp(u) + [|u — h”i”(ﬂk) tu € Ll(Q)}.
By a standard truncation argument it is immediate to show that
M = inf {]:k; + HU hH}IOJ’(Qk) U € SBVP(Q), ||U/HL°°(Q) S ||hHL°°(Q)} (235)
Proposition 2.18. Let F = T-lim; Fi, and let (u;) C SBVP(Q) be such that
Jdim (Fiy (ug) + [Jug — h||§p(gkj) —M;) =0. (2.36)
Then, up to subsequences (not relabelled), u; converges in the sense of Deﬁnition to a function u €
SBVP(Q) N L>(2) which solves

M := min {F(u) + C(K)llu — ||}, q) : u € SBVP(Q), |JullL=(o) < AL},
where C(K) := L™(Q \ K). Moreover it holds M; — M, as j — +oo.
Proof. Let (u;) C SBVP(Q) be as in (2.36). Then, in view of (2.35)), (H1), and (H3) we have

sup (HujHLoo(Q) —|—/ |V [P dz +H" " (Su; N Qu; )) < +o0.
i

Q,

Therefore Theorem yields the existence of a function @ € SBV?(Q) N L*°(Q) and of a sequence
(@;) C SBVP(Q) with @; = u; a.e. in Q, such that (up to subsequences) 4; — @ in LP(£2), moreover
H’U’HL"O(Q) S ”hHL‘X’(Q) We have

” p — 3 & p — 3 L p
C(K)|lu— hHLP(Q) = jkTm [l (@; h)Xij HLP(Q) = jgrfoo [lw hHLp(ij):
thus by Theorem [2.14] we get
F(@) + O = bl ) < liminf (Fi, (us) + lug = bllS g, ) )-
Therefore, by definition of u; we obtain

F(@) + CE)w—hl7sq0 < hmjgnfM (2.37)



15

Now let w € SBVP(Q) N L*>(Q) be an arbitrary function such that ||w||pe) < [|h||Lec(q). Again
appealing to Theorem we can find (w;) C L*(Q) such that w; ~ w and lim; F;(w;) = F(w). Now let
W; be as in Definition [2.2} let m := ||h||p~ () and denote with (@) the sequence of truncated functions
of (;) at level m. We clearly have @] = wj" a.e. in 4, and W] — w in L”(2). Hence

i e = W, = i 16 = B)xay, [ ) = OO w = bl

Moreover, since lim sup; F;(w;") < F(w), we immediately deduce

limsup M; < F(w) + C(K)||w — hHL[,(Q (2.38)

j——+oo

Finally, by gathering (2.37) and (2.38]) we obtain
F(u)+ C(K)|a— h||Lp(Q) < hmme < lim sup M;
Jj——+oo
< F(w) + C(K)[lw = hllp )
hence by the arbitrariness of w we deduce that @ is a minimiser for 7 + C(K)| - —h||1£p(m. Finally,
taking w = @ also implies M; — M. Since moreover this limit does not depend on the subsequence, the
convergence holds true for the whole (Mj). O

3. PART II: EXAMPLES

In this section we restrict the analysis to the case of ex-periodic integrands fi and gi. That is, we consider
the functionals F¢**%% : L1(€2) — [0, +-00] defined as

/Q:‘(%,Vu)derak/ﬂ f(é,Vu)dx

\ Q2

s +/ g(ﬁ,uu) dH" +ﬁk/ g(ivl/u) dH" !
Forbe(y) = SunQ €K Sun(2\2y) Ek

k
if u € SBVP(Q)

400 otherwise,
(3.1)

where f and g are Q-periodic in the first variable and satisfy (H1)-(H2) and (H3)-(H4), respectively.

With the help of some specific examples, which correspond to some specific choices of f, g, and Qy, we
show that the I'-limit of .7-',?""5"' is highly sensitive both to the choice of the coefficients ay, i and to the
asymptotic behaviour of ay, B compared to the period of the microstructure €,. The examples we are
going to discuss are taken from Barchiesi and Focardi [0] (see also Cagnetti and Scardia [I4] and Focardi,
Gelli, and Ponsiglione [I7]), from Barchiesi, Lazzaroni, and Zeppieri [6], and from Pellet, Scardia, and
Zeppieri [19]. For the corresponding proofs we refer the reader to the aforementioned papers.

3.1. Periodic brittle porous materials. In this subsection we consider the limit case ay = B = 0;
i.e., we consider the functionals

/f(ai,w) dm+/ g(;,lju) dH™ ifu e SBVP(Q),

k k

FOO(u) = {7 Sul (3.2)
+o00 otherwise in L' ().

Loosely speaking, in this case the soft or weak inclusions in the material are replaced by perforations

5l (14, [17).

Theorem 3.1 (Homogenisation of periodic porous brittle materials). Let .7-—,8’0 be the functionals as in
(B2). Then (F.*°) T-converges both with respect to the convergence in Deﬁnition and with respect to
the L*(Q)-convergence to the functional F° which is finite on GSBV?(Q) and given by

Py = [ £(Vu)da+ / () dH L, (3.3)

u

where f° and g° are, respectively, given by the following homogenisation formulas

fo(f):inf{/ f(y,Vu)de: ue W"P(QNE), u=ue near 8@}, (3.4)
QNE
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for every & € R™, whereas

T—4o00

¢°(v) = lim % inf { / gy, vu) dH" i u e P(TQ NE), u=uy" near QTQ}, (3.5)
SuNTQVNE

for every v € S" L.

Proof. Theorem [2.16] and Corollary yield the existence of a subsequence k; — +o00 such that the
corresponding functionals ]-',S;O I'-converge to F as in , both with respect to the convergence in
Deﬁnition and to the L'(Q)-convergence. Then, the homogenisation formulas (3.4) and together
with the identity 7 = F° follow from [5, Theorem 4]. Finally, since and (3.5) are subsequence-
independent, invoking the Urysohn property [I5] Proposition 8.3] readily implies the I'-convergence of the
whole sequence (F;"°) to F°. O

The following result is an immediate consequence of Theorem and of an adaptation of the Cagnetti
and Scardia extension result [14] Theorem 1.3] to the case of a general exponent p > 1.

Corollary 3.2. Let ag,Brx — 0 and let fgk‘ﬁ’“ be the corresponding functionals as in (2.3)). Then, the
sequence (]—";:’“’B’“) T-converges to the functional F° given by (3.3)).

Proof. By Theorem m (up to subsequences not relabelled) the functionals F,' P I'-converge to F.
Since F1'0 < F2*P* by Theorem [3.1) we immediately get F° < F.

We now prove the converse inequality. To this end let u € SBV?(Q)NL> () and let (ux) C SBV? (%)
be a recovery sequence for Fp*°. That is ux ~» u and limy F2*°(uy) = F(u). Since the functionals F°
decrease by truncation it is not restrictive to assume that ||ux| oo () < ||uf/Loe(q). Starting from (ux) we

now want to construct a sequence (vy,) which both satisfies vy — u in L' () and limy, Fsk’ﬂk (vg) = FO(u).
To this end, we start noticing that the bounds (2.1) and (2.2)) readily imply

sup (/ Vel de + H (S, 1)) < oo, (3.6)
Qp

For every fixed k let vy, := T"uy, € SBVP(Q) be the extended function of uy to © whose existence is given
by [14, Theorem 1.3]; i.e., v is such that vi = ug a.e. in Q, |[uzl|Loo (@) < ||uflLe(q), and

/ Vorl? dz + H" 1 (S, N Q) < c(/
Q

Q

IVugl? dz + H"(Su, N Qk)) (3.7)

for some C' > 0 independent of k. By definition of vy, also invoking the Ambrosio compactness Theorem,
it is immediate to check that vy — w in L*(£).

By (3.7) we get that
ak/ Vol dz + BeH™ 1 (S, N (Q\ Q) < ak/ Vorl? do + ax ™ (S0, 1 Q)
Q\Qy Q

< C max{an, B} (/ Vel do 1" (S, N %)). (3.8)

Qp

where (3.8) is infinitesimal thanks to (3.6]), since max{ax, Sx} — 0 as k — +o0o0. Thus eventually

. o, B . ,
i F ) = i 7 ) = 7w,

hence (vy) is the desired sequence. Therefore, by the I'-convergence of F,' Pk to F we can deduce that
for every u € SBVP(Q) N L>(Q) it holds F(u) < F°(u).

Now let u € GSBV?(2) and denote with u™ its truncated function at level m > 0. We clearly have
Fu™) < FO(u™) < F°(u), hence the desired inequality follows by the L'(Q) convergence u™ to u and
by the lower semicontinuity of F. O

The following remarks are in order.

Remark 3.3. In view of Remark [2.10] both in Theorem and in Corollary assumption (H2) on f
can be dropped.

Remark 3.4 (On f°). The homogenised volume energy density f° given by is the same as that
obtained by Acerbi, Chiadé-Piat, Dal Maso, and Percivale [I] in the case of elastic perforated materials.
Moreover, it is easy to check that if f is p-homogeneous then the corresponding f° given by is also
p-homogeneous.
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Remark 3.5 (Energy decoupling). In spite of the strong degeneracy of the integrands in (resp. in
(3-1)), which in this case are identically equal to zero (resp. both infinitesimal) in the ep-periodic set
Q\ Q, Theorem (resp. Corollary shows that the functionals F;*° (resp. }';:’“’ﬂ’“) exhibit a limit
behaviour which is qualitatively similar to that of free-discontinuity functionals with coercive integrands
[9, 13 [18]. Namely, in the homogenised limit there is no interaction between bulk and surface term. As
a consequence the homogenised surface energy density g° does not depend on t, and therefore the I'-limit
is of brittle type.

3.2. Periodic brittle high-contrast materials. In this section we show that if only one of the coeffi-
cients ay and Sy is infinitesimal (while the other stays uniformly bounded from below), then the asymptotic
behaviour of the functionals .F,?k’ﬁ’“ can be very different from that of F."° (or of fgkéo’ﬁkﬁo). In partic-
ular, we show that in this case a volume-surface energy coupling cannot be excluded in general. To do so
we exhibit coefficients ay, Bk, integrands f, g and a geometry for the periodic set E which give rise to the
desired limit coupling. This is done by resorting to the analysis of Barchiesi, Lazzaroni, and Zeppieri [6]
and Pellet, Scardia, and Zeppieri [19], which is briefly reviewed in Subsection and Subsection
respectively.

The functionals analysed in [6] and [19] are both of Mumford-Shah type and can be written in the form

MSP (u) = /

Q

T 2 z n—1 2
ak(a)|Vu| dz + /Su bk(;) MY, we SBVA(Q) (3.9)
where ag, bi: R™ — [0, 1] are Q-periodic functions and in the periodicity cell Q are defined as
ap ifye @,. B ifye Q,.
ak(y) = : = b(y) = . — (3.10)
1 ifye@\Q, 1 ifyeQ\Q,

with r € (0,1). From (3.9)-(3.10) we infer that in this case f = f(§) = €%, g =1, and Q. = QN erE
with B = R\ Uyezn (Q, + 1),

Remark 3.6 (Mumford-Shah functional in perforated domains). The choice ay = B = 0 corresponds to
the Mumford-Shah functionals in perforated domain. The functional MSZ’O is a special instance of (3.2])
and its homogenised limit is treated in [I4] [I7] for general sets E. In this case the homogenised integrands

(3.4) and (3.5)) reduce, respectively, to
fo(f) —inf{/ |Vu\2dx: u € W1‘2(Q\@T), U = u¢ near 8Q}, (3.11)
QA\Q,

for every £ € R", and to

@)= lim inf {H" ' (SuNTQ"NE): ue P(TQ" NE), u=ug" near 0TQ},  (3.12)

T—4o00 n—1
for every v € S"!. From (3.11)) and (3.12) it is easy to check that f0(¢) = A% - ¢, for some A° € R™*™
which satisfies &1 < A° < I, in the sense of quadratic forms (cf. (2.29)). Hence, f° is a positive quadratic
form. Moreover, it holds g°(e;) = 1 —r"7', for every i = 1,...,n.

3.2.1. Soft inclusions. We consider the case ar, — 0 and [; = 1 which models the situation where the
periodic set Q \ Q4 is occupied by a brittle material with a very small elastic modulus. For this reason,
we refer to the set Q \ Qi as the set of soft inclusions. With this choice the functionals in (3.9) become

M (u) = /Q \Vul? dz + o / \Vul’dz +H""(Su), ue SBV(Q). (3.13)
k

Q\Qy,

XL s

In [6] Barchiesi, Lazzaroni, and Zeppieri showed that the asymptotic behaviour of MS;, ! heavily depends
on the mutual vanishing rate of ay and e; that is, it depends on the parameter

0= lim 2 €0, +00]. (3.14)

k—+o00 Ef
For the proof of Theorem below we refer the reader to [0, Theorems 1, 4, and Remark 6].

Theorem 3.7 (Homogenisation of periodic brittle materials with soft inclusions). Let ./\/lSZ”"1 be the
functionals defined in (3.13)) and let £ € [0,400] be as in (3.14]). Then, up to subsequences not relabelled,
(MS?’“’I) I'-converges to the functional F* which is finite on GSBV?(Q) and given by

f‘f(u):/nfo(vu)dwr/ o' ([u], va) dH™ Y, (3.15)

Su
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‘ ERT linear interpolation

F1GURE 2. Construction of the recovery sequence in an eg-cell, across the interface
To = 0.

where f° is as in (3.11) and for everyt € R, v € S"7!

L _ 90(7/) if £=0
wa—{l if £=4oco0.

Moreover for every £ € (0,400) it holds
min{go(e;) + cot?, 1} < g (t,e) < min{go(e:) + éet, 1} (3.16)

for everyt > 0,i=1,...,n, and for some c¢,é > 0, with limy_04+ ¢ = limg_ o4 ¢, = 0.

Remark 3.8. The following remarks are in order.

(7) As far as the homogenised volume energy is concerned, the soft inclusions are (energetically) equiv-
alent to the perforations in the material.

(#4) For £ = 0, which corresponds to o < €, the functionals /\/ISz’“‘1 are equivalent to the functionals
MSY?, in the sense of I-convergence.

(#7) For ¢ € (0,400) the bounds in imply that, along the coordinate directions, g* depends on t.
Moreover it becomes constant (and equal to 1) above a certain threshold to > 0; i.e., g is of cohesive type.
Being the microscopic energies /\/182’“’1 of brittle type, the cohesive behaviour of ¢° can only be explained
as the result of a non trivial bulk-surface coupling by homogenisation. This interaction is particularly
apparent from the upper-bound construction in [6] which we briefly illustrate here in the case n = 2.

For i = 1,2 we have g(t,e;) = ]-'Z(u(e)i’t, @), moreover it is immediate to check that ¢*(t,e1) = g*(t, e2).
Clearly g[(t,ez) < 1 for every t > 0. Then, to get the upper bound in it suffices to show that

g'(t,e2) < g°(e2) + ét for some & > 0. Let R C Q C R? be the open rectangle defined as
Ri= (<55 x (-3.5)
with 7 € (0,7) to be determined. Set

RM:QHU(QR+W%®)

=
and let (ux) C SBV?(Q) be the sequence of functions defined as
t ifx €@\ R and z2 > 0,
ug(z) == %—i—%wn if x € Ry,
0 ifz e\ Ry and z2 < 0,

(see Figure . We clearly have up — ugz’t in L'(Q); moreover
2
/ |Vug|* do < (i + 1)t— and  H'(S.,) < <€k(i + 1) (1—r+27),
Ry €k T Ek

therefore )

g%a@):fﬁu?ﬁQ)gummmﬁuﬁh%wayg1fr+27+e%

k—+oco
Hence, by optimising on 7 we get
g'(t,ea) <1 —r+2V20¢ (3.17)
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thus the desired estimate follows with & = 2v/2¢, by recalling that ¢°(es) =1 — 7.

Loosely speaking, the construction as above shows that, the cost of an elastic deformation of the soft
inclusions is of the same order of the energy spent to create a microscopic crack. Since the former depends
linearly on ¢ (while the latter is constant in t) for small values of ¢, to approximate a macroscopic crack
it can be convenient to combine microscopic deformations of the soft inclusions (with high gradients) and
microscopic jumps.

(v) Even if not immediately apparent from the homogenisation formulas, a volume-surface interaction
takes place for £ = 0, as well. Indeed, in this case g¢ = ¢° whereas in ./\/tS‘,:’“1 the surface energy density
is identically equal to one. In this case in fact, the cost of an elastic deformation of the soft inclusions
is negligible (cf. for £ = 0) so that to approximate a macroscopic crack it is never convenient to
introduce microscopic cracks inside the soft material. On the contrary, in the regime ¢ = +oo, which
corresponds to ay > €, there is a complete volume-surface decoupling, as in the coercive case.

3.2.2. Weak inclusions. We consider the case ar = 1 and ar — 0 which models the situation where the
periodic set Q2 \ Q is occupied by a brittle material with a very small fracture resistance. For this reason,
we refer to the set Q \ Q as the set of weak inclusions. With this choice the functionals in (3.9) become

ML (u) = / [Vul® dz+H" " (Su N Q) + BH" " (Su N (Q\ Q)), ue SBV(Q). (3.18)
Q

In [I9] Pellet, Scardia, and Zeppieri showed that the asymptotic behaviour of MS ,lc’ﬂ ¥ heavily depends on
the mutual vanishing rate of ;. and ek, that is on the parameter

¢ = lim 2 € [0, +o0]. (3.19)
k €k
For the proof of Theorem below we refer the reader to [19].

Theorem 3.9 (Homogenisation of periodic brittle materials with weak inclusions). Let MSi’ﬂ" be the
functionals defined in (3.18)) and let £’ € [0, +00] be as in (3.19). Then, up to subsequences not relabelled,
(MS,lc’ﬁk) I-converges to the functional F* which is finite on GSBV?*(Q) and given by

7 (u) = ., It (Vu) dz +/ () dH™ (3.20)

u

where g° is as in (3.12) and for every € € R™

Voo J I if ¢ =0
f(g){gQ if £ =+oo.

Moreover for every £ € (0,+00) it holds

7€) < 17 (9) < min{le?, () + €'} (3.21)
for every & € R™ and for some C' > 0.

Remark 3.10. The following remarks are in order.

(i) As far as the homogenised surface energy is concerned, the weak inclusions are (energetically)
equivalent to the perforations in the material.

(1) For ¢ = 0, which corresponds to B < ek, the functionals MS ,lc”B k are equivalent to the functionals
MS%O, in the sense of I'-convergence. Indeed, “removing the weak inclusions from the material” has an
infinitesimal cost of order By /ek given by the perimeter of the weak inclusions (proportional to ,Bkezfl)
multiplied by €, (the number of ex-cells contained in €2). In this case a volume-surface energy coupling
takes place since the elastic energy can be lowered by introducing cracks in the materials.

(i73) For ¢ € (0,+o0) the bounds in (3.21)) hold true (see [19, Lemma 6.1]). The bound from below
is immediate and it is a consequence of the trivial bound MS%O < MSi’ﬂ k. The bound from above
shows that for large deformations; i.e., for large ||, to approximate a macroscopic elastic deformation is
energetically favourable to mix elastic deformations and jumps in the weak inclusions. Moreover,
implies that for |£| large it holds fél (€) < |¢]>. The latter shows that a stiffness degradation occurs in the
homogenised limit, and that the macroscopic energy F " describes a damaged material (the same being
true for ¢ = 0).

(iv) The bounds in (3.21]) combined with an easy scaling argument show that in the regime ¢ € (0, +-00)
the homogenised volume energy density fz/ is not 2-homogeneous. Indeed, assume by contradiction that
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this is not the case and let A # 0. Taking into account that f° is 2-homogeneous (see Remark [3.4), we
can replace in (3.21)) £ with A¢ and divide by A? to get

r© <1 © <minflef. 0+ 5 |

Therefore by letting |A\| — +o00 we get fg' = f° which leads to a contradiction in view of [I9, Proposition
6.10].

(v) In the regime £ = 400, which corresponds to S >> e, there is a complete volume-surface decou-
pling, as in the coercive case. Loosely speaking, in this case the fracture resistance of the weak inclusions
is not small enough to make cracks energetically more convenient than (or at least comparable to) elastic
deformations.
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