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Abstract

In this paper we prove a partial C1,α regularity result in dimension N = 2 for
the optimal p-compliance problem, extending for p 6= 2 some of the results obtained
by A. Chambolle, J. Lamboley, A. Lemenant, E. Stepanov (2017). Because of the
lack of good monotonicity estimates for the p-energy when p 6= 2, we employ an
alternative technique based on a compactness argument leading to a p-energy decay
at any flat point. We finally obtain that every optimal set has no loop, is Ahlfors
regular, and is C1,α at H1-a.e. point for every p ∈ (1, +∞).
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1 Introduction

For an open set U ⊂ R2 and p ∈ (1,+∞) denote by W 1,p
0 (U) the closure of C∞0 (U) in the

Sobolev space W 1,p(U), where C∞0 (U) is the space of functions in C∞(U) with compact
support in U . Let Ω be an open and bounded subset of R2, and let p ∈ (1,+∞). For
each u ∈ W 1,p

0 (Ω), we define

Ep(u) = 1
p

∫
Ω
|∇u|p dx−

∫
Ω
fu dx.

Thanks to the Sobolev inequalities (see [18, Theorem 7.10]) the functional Ep is finite
on W 1,p

0 (Ω) when f ∈ Lq0(Ω) with q0 = q0(p) such that

q0 = 2p
3p− 2 if 1 < p < 2, q0 > 1 if p = 2, q0 = 1 if p > 2. (1.1)

It is classical that for each closed proper subset Σ of Ω the functional Ep admits a
unique minimizer uΣ over W 1,p

0 (Ω\Σ), which is the solution of the Dirichlet problem−∆pu = f in Ω\Σ
u = 0 on Σ ∪ ∂Ω

(1.2)

in the weak sense, which means that∫
Ω
|∇uΣ|p−2∇uΣ∇ϕ dx =

∫
Ω
fϕ dx (1.3)

for all ϕ ∈ W 1,p
0 (Ω \Σ).

Following [11], we can interpret Ω as a membrane which is attached along Σ∪∂ Ω to
some fixed base (where Σ can be interpreted as a “glue line”) and subjected to a given
force f . Then uΣ is the displacement of the membrane. The rigidity of the membrane is
measured through the p-compliance functional, which is defined as

Cp(Σ) = −Ep(uΣ) = 1
p′

∫
Ω
|∇uΣ|p dx = 1

p′

∫
Ω
fuΣ dx.

We study the following shape optimization problem.

Problem 1.1. Given λ > 0, find a set Σ ⊂ Ω minimizing the functional Fλ,p defined by

Fλ,p(Σ′) = Cp(Σ′) + λH1(Σ′)

among all sets Σ′ ∈ K(Ω), where K(Ω) is the class of all closed connected proper subsets
of Ω.

The physical interpretation of this problem may be the following: we are trying to
find the best location Σ for the glue to put on the membrane Ω in order to maximize
the rigidity of the latter, subject to the force f , while the penalization by λH1 takes into
account the quantity (or cost) of the glue.
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Without loss of generality, we assume that the force field f is nonzero, because other-
wise for any Σ ∈ K(Ω) we would have Cp(Σ) = 0 and then every solution of Problem 1.1
would be either a point x ∈ Ω or the empty set.

In this paper, we prove some regularity properties about minimizers of Problem 1.1.
In particular, we prove that a minimizer has no loop (Theorem 5.1), is Ahlfors regular
(Theorem 3.3) and, furthermore, we establish some C1,α regularity properties.

Most of our results will hold under some integrability condition on the second mem-
ber f . Namely we define

q1 =


2p

2p−1 if 2 ≤ p < +∞
2p

3p−3 if 1 < p < 2,
(1.4)

and we notice that q1 ≥ q0. As will be shown later (see Lemma 3.1), asking f ∈ Lq1(Ω)
for 2 ≤ p < +∞ is natural, since it seems to be the right exponent which implies an
estimate of the type

∫
Br(x0) |∇u|p dx ≤ Cr for the solution u of the Dirichlet problem

−∆pu = f in Br(x0), u ∈ W 1,p
0 (Br(x0)),

which is the kind of estimate that we are looking for to establish regularity properties on
a minimizer Σ of Problem 1.1.

The main regularity result of this paper is the following.

Theorem 1.2. Let Ω ⊂ R2 be an open bounded set, p ∈ (1,+∞), f ∈ Lq(Ω) with q > q1,
where q1 is defined in (1.4). Let Σ ⊂ Ω be a minimizer of Problem 1.1. Then there is a
constant α ∈ (0, 1) such that for H1-a.e. point x ∈ Σ∩Ω one can find a radius r0 > 0,
depending on x, such that Σ∩Br0(x) is a C1,α regular curve.

Notice that Theorem 1.2 is interesting only in the case when diam(Σ) > 0, which
happens to be true at least for some small enough values of λ (see Proposition 2.17).
Furthermore, we have proved that every minimizer Σ of Problem 1.1 cannot contain
quadruple points in Ω (see Proposition 7.3), i.e., there is no point x ∈ Σ ∩ Ω such that
for some sufficiently small radius r > 0 the set Σ ∩ Br(x) is a union of four distinct C1

arcs, each of which meets at point x exactly one of the other three at an angle of 180◦

degrees, and each of the other two at an angle of 90◦ degrees.
Problem 1.1 was studied earlier in the particular case p = 2 in [11] for which a full

regularity result was proved. It is worth mentioning that our result generalizes some of
the results of [11] for p 6= 2, but contains also better results in the special case p = 2 as
well. Indeed, our integrability condition q > q1 on the second member f for the particular
case p = 2 yields q > 4

3 for the ε-regularity result to hold, which is slightly better than
the one in [11] for which q > 2 was required. According to our Ahlfors-regularity result
(see Theorem 3.3), it holds under the mild integrability assumption q = 2p

2p−1 and is
proved up to the boundary (for a Lipschitz domain Ω), which for the particular case
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p = 2 generalizes the earlier result in [11]. We shall explain later more in detail the main
technical differences between the case p 6= 2 with respect to the case p = 2.

Now let us emphasize that our partial C1,α regularity result is internal; therefore in
Theorem 1.2 we do not require any regularity for ∂Ω. On the other hand, as mentioned
earlier, to prove our Ahlfors-regularity result, we required Ω to be a Lipschitz domain.
We do not know whether the restriction on Lipschitz domains is needed to prove the
Ahlfors regularity of minimizers of Problem 1.1 which have at least two points. How-
ever, according to the proof of Theorem 3.3, for each open set Ω′ ⊂⊂ Ω, there exist
C0 = C0(p, q0, ‖f‖(2p)′ , λ) > 0 and r0 = r0(Ω′,Ω) > 0 such that if Σ is a minimizer of
Problem 1.1, then H1(Σ ∩Br(x)) ≤ C0r whenever x ∈ Σ ∩ Ω′ and 0 < r ≤ r0.

In the limit p → +∞, Problem 1.1 in some sense converges to the so-called average
distance problem (see [9, Theorem 3]) which was also widely studied in the literature and
for which it is known that minimizers may not be C1 regular (see [25]). Our result can
therefore be considered as making a link between p = 2 and p = +∞, although it actually
works for any p ∈ (1,+∞).

A constrained variant of the same problem was also studied in [9, 22, 23] for p 6= 2
in dimension 2 and greater, but focusing on different type of questions. In particular, no
regularity results were available before with p 6= 2.

As a matter of fact, even if the present paper is restricted to dimension 2 only, the
same problem can be defined in higher dimension, provided that p ∈ (N − 1,+∞), still
with a penalization with the one dimensional Hausdorff measure. This instance of the
problem in higher dimensions seems to be very original, leading to a free-boundary type
problem with a high co-dimensional free boundary set Σ. Due to the low dimension of
the “free-boundary” in dimension N > 2, most of the usual competitors are no more valid
and some new ideas and new tools have to be used.

The present paper can therefore be seen as a preliminary step toward the regularity
in any dimensions, focusing on the particular case of dimension 2. This approach is
pertinent because in dimension 2 only, the “free boundary” Σ is of codimension 1, thus
many standard arguments and competitors are available. Let us highlight three places
where we have taken the advantage of working in dimension 2, which does not extend
in a trivial manner in higher dimensions. Firstly, in our proof of Ahlfors-regularity, we
use (in the “internal case”) the set (Σ\Br(x)) ∪ ∂Br(x) as a competitor for Σ. But
in dimension N > 2 we cannot effectively use such a competitor, because ∂Br(x) has
infinite H1-measure. Secondly, in the proof of Lemma 4.4, we use a reflection technique
to estimate a p-harmonic function in B1\((−1, 1)× {0}) that vanishes on (−1, 1)× {0},
which is no more valid for a p-harmonic function in B1\((−1, 1)× {0}N−1) that vanishes
on (−1, 1)×{0}N−1 if N > 2. Thirdly, in the density estimate in Proposition 6.8, when Σ
is εr-close, in a ball Br(x0) and in the Hausdorff distance, to a diameter [a, b] of Br(x0),
we use as a competitor the set Σ′ = (Σ \Br(x0)) ∪ [a, b] ∪W , where

W = ∂Br(x0) ∩ {y : dist(y, [a, b]) ≤ εr}.
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But in dimension N > 2 we cannot effectively use the above competitor because it has
infinite H1-measure.

However, we believe that some techniques developed in this paper could be useful
to prove a similar result in higher dimensions as well. This will be the purpose of a
forthcoming work.

Nevertheless, even in dimension 2, we have to face several technical new difficulties
with p 6= 2 compared to the work for p = 2 in [11] that we shall try to explain now.

One of the most difficulty is the lack of good monotonicity estimates for the p-energy.
Indeed, the monotonicity of energy is one of the main tool in the case p = 2 in [11] which
does not work anymore for p 6= 2. A big part of the work in [11] relies on blow-up tech-
niques from the Mumford-Shah functional which cannot be used anymore in our context,
without a good monotonicity formula. This is why, even if we expect the minimizer, as
for p = 2, to be a finite union of C1,α curves, we prove only C1,α regularity at H1-a.e.
point.
Comments about the proof. In the proof of C1,α regularity, as many other free
boundary or free discontinuity problems, one of the main point is to prove a decay estimate
on the local energy around a flat point. In other words we need to prove that the
“normalized” energy

r 7→ 1
r

∫
Br(x0)

|∇uΣ|p dx

converges to zero sufficiently fast at a point x0 ∈ Σ, like a power of the radius, and this
is where our proof differs from the case p = 2.

In the case p = 2, the decay on the “normalized” energy is obtained using a so-called
monotonicity formula that was inspired by the one of A. Bonnet on the Mumford-Shah
functional [5]. This monotonicity formula is also the key tool in the classification of
blow-up limits.

For p 6= 2, an analogous monotonicity formula can still be established for the p-
energy, but the resulting power of r in that monotonicity formula is not large enough for
our purposes and thus cannot be used to prove C1,α estimates. Consequently, we also
miss a great tool which prevents us to establish the classification of blow-up limits. As
the p-monotonicity is not strong enough to get C1,α regularity we therefore use another
strategy, arguing by contradiction and compactness: we know that

∫
Br
|∇u|p dx behaves

like Cr2 for r ∈ (0, 1/2] if u is a p-harmonic function in B1\P vanishing on P ∩B1, where
P is an affine line passing through the origin, thus by compactness

∫
Br
|∇u|p dx still has

a similar behavior when u is a p-harmonic function in B1\Σ vanishing on Σ ∩ B1, when
Σ locally stays ε-close to a line.

Actually, as the compliance is a min-max type problem, the true quantity to control
is not exactly

∫
Br(x0) |∇uΣ|p dx, but rather this other variant, as already defined and

denoted by ωΣ(x0, r) in [11],
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ωΣ(x0, r) = sup
Σ′∈K(Ω);Σ′∆ Σ⊂Br(x0)

1
r

∫
Br(x0)

|∇uΣ′|p dx.

It can be shown that the quantity ωΣ(x0, r) controls, in many circumstances, the
square of the flatness, leading to some C1,α estimates when ωΣ(x0, r) decays fast enough.

In [11] the decay of the above quantity was still obtained by use of the monotonicity
formula, applied to the function uΣ′ , where Σ′ is a maximizer in the definition of ωΣ(x0, r).

As a consequence of our compactness argument, which provides a decay only for a
closed connected set Σ′ staying τ -close to a line, we need to introduce and work with the
following slightly more complicated quantity

wτΣ(x0, r) = sup
Σ′∈K(Ω),Σ′∆ Σ⊂Br(x0),

H1(Σ′)≤100H1(Σ), βΣ′ (x0,r)≤τ

1
r

∫
Br(x0)

|∇uΣ′ |p dx,

where βΣ′(x0, r) is the flatness defined by

βΣ′(x0, r) = inf
P3x0

1
r
dH(Σ′ ∩Br(x0), P ∩Br(x0)),

(the infimum being taken over the set of all affine lines P passing through x0), where dH
is the Hausdorff distance that for any nonempty sets A, B ⊂ R2 is defined by

dH(A,B) = max
{

sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)
}
.

We also agree that for a nonempty set A ⊂ R2, dH(A, ∅) = dH(∅, A) = +∞ and
that dH(∅, ∅) = 0. Notice that the assumption H1(Σ′) ≤ 100H1(Σ) in the definition
of wτΣ(x0, r) is rather optional, however, it guarantees that if Σ′ is a maximizer in the
definition of wτΣ(x0, r), then Σ′ is arcwise connected.

We indeed obtain a decay of ωτΣ(x0, r) provided that βΣ(x0, r) stays under control,
which finally leads to the desired C1,α result, and the same kind of estimate is also used
to prove the absence of loops.

2 Preliminaries

2.1 Definitions

Definition 2.1. Let U be a bounded open set in R2 and let p ∈ (1,+∞). We say that
u ∈ W 1,p(U) is a weak solution of the p-Laplace equation in U , if∫

U
|∇u|p−2∇u∇ϕ dx = 0

for each ϕ ∈ W 1,p
0 (U).

We recall the following basic result for weak solutions (see [21, Theorem 2.7]).
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Theorem 2.2. Let U be a bounded open set in R2 and let u ∈ W 1,p(U). The following
two assertions are equivalent.

(i) u is minimizing:∫
U
|∇u|p dx ≤

∫
U
|∇v|p dx, when v − u ∈ W 1,p

0 (U);

(ii) the first variation vanishes:∫
U
|∇u|p−2∇u∇ζ dx = 0, when ζ ∈ W 1,p

0 (U).

Now we introduce the notion of the Bessel capacity (see e.g. [1], [26]) which is crucial
in the investigation of the pointwise behavior of Sobolev functions and in describing the
appropriate class of negligible sets with respect to the appropriate Lebesgue measure.

Definition 2.3. For p ∈ (1,+∞), the Bessel (1, p)-capacity of a set E ⊂ R2 is defined
as

Capp(E) = inf{‖f‖pp : g ∗ f ≥ 1 on E, f ≥ 0},

where the Bessel kernel g is defined as that function whose Fourier transform is

ĝ(ξ) = (2π)−1(1 + |ξ|2)−1/2.

We say that a property holds p-quasi everywhere (abbreviated as p-q.e.) if it holds
except on a set A where Capp(A) = 0.

It is worth mentioning that by [1, Corollary 2.6.8] for each p ∈ (1,+∞) the notion of
the Bessel capacity Capp is equivalent to the following

C̃app(E) = inf
u∈W 1,p(R2)

{∫
R2
|∇u|p dx+

∫
R2
|u|p dx : u ≥ 1 on some neighborhood of E

}

in the sense that there is a constant C = C(p) > 0 such that for any set E ⊂ R2 one has

1
C

C̃app(E) ≤ Capp(E) ≤ CC̃app(E).

The next theorems and propositions are stated here for convenience.

Theorem 2.4. If p ∈ (1, 2], then Capp(E) = 0 if H2−p(E) < +∞. Conversely, if
Capp(E) = 0, then H2−p+ε(E) = 0 for every ε > 0.

Proof. For the proof of the fact that Capp(E) = 0 if H2−p(E) < +∞ we refer the reader
to [1, Theorem 5.1.9]. The fact that Capp(E) = 0 implies H2−p+ε(E) = 0 for every ε > 0
is the direct consequence of [1, Theorem 5.1.13].

Remark 2.5. Let p ∈ (2,+∞). Then there is a constant C = C(p) > 0 such that if
E 6= ∅, then Capp(E) ≥ C. In fact, one can take C = Capp({(0, 0)}) which is positive by
[1, Proposition 2.6.1 (a)] and use the fact that the Bessel (1, p)-capacity is an invariant
under translations and is nondecreasing with respect to set inclusion.
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Recall that for all E ⊂ R2 the number

dimH(E) = sup{s ∈ R+ : Hs(E) = +∞} = inf{t ∈ R+ : Ht(E) = 0}

is called the Hausdorff dimension of E.

Corollary 2.6. Let p ∈ (1,+∞) and let M ⊂ R2 be a set with dimH(M) = 1. Then
Capp(M) > 0.

Proof of Corollary 2.6. If p > 2 by Remark 2.5 and since dimH(M) = 1, Capp(M) > 0.
Assume by contradiction that Capp(M) = 0 for some p ∈ (1, 2]. Taking ε = (p − 1)/2
so that 2 − p + ε < 1, by Theorem 2.4 we get H2−p+ε(M) = 0, but this leads to a
contradiction with the fact that dimH(M) = 1.

Definition 2.7. Let the function u be defined p-q.e. on R2 or on some open subset.
Then u is said to be p-quasi continuous if for every ε > 0 there is an open set A with
Capp(A) < ε such that the restriction of u to the complement of A is continuous in the
induced topology.

Theorem 2.8. Let Y ⊂ R2 be an open set and p ∈ (1,+∞). Then for each u ∈ W 1,p(Y )
there exists a p-quasi continuous function ũ ∈ W 1,p(Y ), which is uniquely defined up to
a set of Capp-capacity zero and u = ũ a.e. in Y .

Proof. Let x0 ∈ Y and let {ϕi : i ∈ N, i ≥ 1} be a sequence of C∞0 (Y ) functions such
that ϕi = 1 in Yi = {x ∈ Y : dist(x, ∂Y ) > 1

i
} ∩ Bi(x0). Observe that uϕi belongs to

W 1,p(R2) and uϕi = u in Yi. Then by [1, Proposition 6.1.2] there exist p-quasi continuous
functions vi ∈ W 1,p(R2) such that vi = uϕi a.e. in R2. Notice that if j > i, then vi and
vj coincide a.e. in Yi, but this implies (see [1, Theorem 6.1.4]) that they coincide p-q.e.
in Yi. Now fix an arbitrary ε > 0 and let Vi ⊂ R2 be such that vi restricted to R2\Vi is
continuous and Capp(Vi) < 2−iε. Set ũ(x) = vi(x) for every x ∈ Y , where i ∈ N, i ≥ 1 is
the smallest number with x ∈ Bi(x0) and dist(x, ∂Y ) > 1

i
. We deduce that ũ = u a.e. in

Y , ũ restricted to Y \⋃i Vi is continuous and using [1, Proposition 2.3.6], we get

Capp
(⋃

i

Vi

)
≤
∑
i

Capp(Vi) ≤ ε.

Thus ũ is a p-quasi continuous representative for u, which by [1, Theorem 6.1.4] is uniquely
defined up to a set of Capp-capacity zero. This concludes the proof.

Remark 2.9. Notice that u ∈ W 1,p(R2) belongs to W 1,p
0 (Y ) if and only if its p-quasi con-

tinuous representative ũ vanishes p-q.e. on R2\Y (see [4, Theorem 4] and [19, Lemma 4]).
Thus, if Y ′ is an open subset of Y and u ∈ W 1,p

0 (Y ) such that ũ = 0 p-q.e. on Y \Y ′,
then the restriction of u to Y ′ belongs to W 1,p

0 (Y ′) and conversely, if we extend a function
u ∈ W 1,p

0 (Y ′) by zero in Y \Y ′, then u ∈ W 1,p
0 (Y ). Note that if Σ ⊂ Y and Capp(Σ) = 0,

then W 1,p
0 (Y ) = W 1,p

0 (Y \Σ). Indeed, u ∈ W 1,p
0 (Y ) if and only if u ∈ W 1,p(R2) and ũ = 0
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p-q.e. on R2\Y that is equivalent to say u ∈ W 1,p(R2) and ũ = 0 p-q.e. on (R2\Y ) ∪ Σ
or u ∈ W 1,p

0 (Y \Σ). In the sequel we shall always identify u ∈ W 1,p(Y ) with its p-quasi
continuous representative ũ.

Proposition 2.10. Let D ⊂ R2 be a bounded extension domain and let u ∈ W 1,p(D).
Consider E = D ∩ {x : u(x) = 0}. If Capp(E) > 0, then there exists C = C(p,D) > 0
such that ∫

D
|u|p dx ≤ C(Capp(E))−1

∫
D
|∇u|p dx.

Proof. For the proof we refer to [26, Corollary 4.5.3, p. 195].

Finally, since in this paper the notion of the Hausdorff distance is used, we recall the
following well-known fact. If X is a compact set in R2 and (Kn)n is a sequence of compact
subsets of X, then Kn converge to K in the Hausdorff distance if and only if the following
two properties hold (this is also known as convergence in the sense of Kuratowski):

any x ∈ K is the limit of a sequence (xn)n with xn ∈ Kn; (P.1)
if xn ∈ Kn, any limit point of (xn)n belongs to K. (P.2)

2.2 Lower bound for capacities

Lemma 2.11. Let Σ be a set in R2 such that Σ ∩ ∂Br 6= ∅ for every r ∈ [1/2, 1]. If
p ∈ (1, 2], then there is a constant C = C(p) > 0 such that

Capp([0, 1/2]× {0}) ≤ CCapp(Σ).

Proof. Let us associate every point x in Σ ∩ (B1\B1/2) with the point Φ(x) = (|x|, 0) in
[1/2, 1]× {0}. Since Σ∩∂Br 6= ∅ for every r ∈ [1/2, 1], we have that

[1/2, 1]× {0} = Φ(Σ ∩ (B1\B1/2))

and hence
Capp([1/2, 1]× {0}) = Capp(Φ(Σ ∩ (B1\B1/2))). (2.1)

Since Φ is a 1-Lipschitz map, by the behavior of Capp-capacity with respect to a Lipschitz
map (see e.g. [1, Theorem 5.2.1]), there is a constant C = C(p) > 0 such that

Capp(Φ(Σ ∩ (B1\B1/2))) ≤ CCapp(Σ ∩ (B1\B1/2)). (2.2)

Thus, using (2.1), (2.2) and the facts that Capp-capacity is an invariant under translations
and is nondecreasing with respect to set inclusion, we recover the desired inequality.

Corollary 2.12. Let Σ ⊂ R2, ξ ∈ R2 and r > 0 be such that Σ ∩ ∂Bs(ξ) 6= ∅ for every
s ∈ [r, 2r]. Let p ∈ (1,+∞) and u ∈ W 1,p(B2r(ξ)) satisfy u = 0 p-q.e. on Σ ∩ B2r(ξ).
Then there is a constant C > 0, which depends only on p, such that∫

B2r(ξ)
|u|p dx ≤ Crp

∫
B2r(ξ)

|∇u|p dx.
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Proof of Corollary 2.12. Let us define v(y) = u(ξ + 2ry), y ∈ B1. Then v ∈ W 1,p(B1),
v = 0 p-q.e. on ( 1

2r (Σ− ξ)) ∩B1 and ( 1
2r (Σ− ξ)) ∩ ∂Bs 6= ∅ for every s ∈ [1/2, 1]. Next,

if p ∈ (1, 2], by Lemma 2.11 and by Proposition 2.10, for some C = C(p) > 0 we get∫
B1
|v|p dy ≤ C(Capp([0, 1/2]× {0}))−1

∫
B1
|∇v|p dy.

If p ∈ (2,+∞), by Remark 2.5, Capp(( 1
2r (Σ − ξ)) ∩ B1) ≥ Capp({(0, 0)}). Next, using

Proposition 2.10, we get∫
B1
|v|p dy ≤ C(Capp({(0, 0)}))−1

∫
B1
|∇v|p dy.

Then, changing the variables, we recover the desired inequality.

2.3 Uniform boundedness of potentials

In this short subsection we establish a boundedness result, uniformly with respect to Σ
for the potential uΣ. Let us emphasize that the estimate (2.5) will never be used in the
sequel, but we find it interesting enough to keep it in the present paper. On the other
hand, the estimate (2.3) will be used several times. Let Ω be a bounded open set in R2

and let p ∈ (1,+∞). If f ∈ Lq0(Ω), where q0 is the exponent defined in (1.1) and Σ is a
closed proper subset of Ω, then it is well known that there is a unique function uΣ that
minimizes Ep over W 1,p

0 (Ω \Σ). Let us extend uΣ by zero outside Ω \Σ to an element
that belongs to W 1,p(R2). We shall use the same notation for this extension as for uΣ.

Proposition 2.13. Let f ∈ Lq0(Ω) with q0 defined in (1.1). Then there is a constant
C > 0, possibly depending only on p and q0, such that∫

Ω
|∇uΣ|p dx ≤ C|Ω |α‖f‖βLq0 (Ω), (2.3)

where

(α, β) =


(0, p′) if 1 < p < 2
( 2
q′0
, 2) if p = 2

( p−2
2(p−1) , p

′) if 2 < p < +∞.

(2.4)

Moreover, if f ∈ Lq(Ω) with q > 2
p

if p ∈ (1, 2] and q = 1 if 2 < p < +∞, then there is a
constant C = C(p, q, ‖f‖Lq(Ω), |Ω |) > 0 such that

‖uΣ‖L∞(R2) ≤ C. (2.5)

Proof. The estimate (2.5) follows from Lemma A.2 applied for U = Ω\Σ and from the
fact that the constant C in (A.5) is increasing with respect to |U |. Now let f ∈ Lq0(Ω).
Using uΣ as the test function in (1.3), we get∫

Ω
|∇uΣ|p dx =

∫
Ω
fuΣ dx

≤ ‖f‖Lq0 (Ω)‖uΣ‖Lq′0 (Ω)
. (2.6)
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Next, recalling that by the Sobolev inequalities (see [18, Theorem 7.10]) there exists
C = C(p) > 0 such that

‖uΣ‖Lq′0 (Ω)
≤

C‖∇uΣ‖Lp(Ω) if 1 < p < 2
C|Ω|

1
2−

1
p‖∇uΣ‖Lp(Ω) if 2 < p < +∞

(2.7)

and using (2.6), we recover (2.3) when p 6= 2. If p = 2 and q0 ∈ (1, 2], setting ε = 4
q′0+2

(note that 1
q′0

= 1
2−ε −

1
2 and 2− ε ≥ 1), we get

‖uΣ‖Lq′0 (Ω)
≤ C‖∇uΣ‖L2−ε(Ω) (by the Sobolev inequality)

≤ C|Ω |
1
q′0 ‖∇uΣ‖L2(Ω) (by Hölder’s inequality), (2.8)

where C = C(q0) > 0. Using (2.8) together with (2.6), we obtain (2.3) in the case when
p = 2 and q0 ∈ (1, 2]. Finally, assume that p = 2 and q0 > 2. We observe that 1 ≤ q′0 < 2.
Then, using Hölder’s inequality and (2.8), we get

‖uΣ‖Lq′0 (Ω)
≤ |Ω|

1
q′0
− 1

2‖uΣ‖L2(Ω) ≤ C|Ω|
1
q′0
− 1

2 |Ω| 12‖∇uΣ‖L2(Ω) = C|Ω|
1
q′0 ‖∇uΣ‖L2(Ω).

The last estimate, together with (2.6), yields (2.3) in the case when p = 2 and q0 > 2.
This completes the proof of Proposition 2.13.

2.4 Existence

Theorem 2.14. Let Ω be an open and bounded set in R2 and p ∈ (1,+∞), and let
f ∈ Lq0(Ω), with q0 defined in (1.1). Let (Σn)n be a sequence of closed connected proper
subsets of Ω, converging to a closed connected proper subset Σ of Ω with respect to the
Hausdorff distance. Then

uΣn −→n→+∞
uΣ strongly in W 1,p(Ω).

Proof. For a proof, see [27] for the case p = 2 and [7] for the general case.

Remark 2.15. As in [7] we recall that a sequence (Ωn)n of open subsets of a fixed ball B
γp-converges to Ω if for any f ∈ W−1,p′(B), where W−1,p′(B) is the dual space of W 1,p

0 (B),
the solutions of the Dirichlet problem

−∆pun = f in Ωn, un ∈ W 1,p
0 (Ωn)

converge strongly in W 1,p
0 (B), as n→ +∞, to the solution of the corresponding problem

in Ω. It can be shown that the γp-convergence is equivalent to the convergence in the
sense of Mosco of the associated Sobolev spaces (see [7]).

Proposition 2.16. Problem 1.1 admits a minimizer.
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Proof. Let (Σn)n be a minimizing sequence for Problem 1.1. We can assume that Σn 6= ∅
and Cp(Σn) + λH1(Σn) ≤ Cp(∅) for all n ∈ N or at least for a subsequence still denoted
by n, because otherwise the empty set would be a minimizer. Then, using Blaschke’s
theorem (see [2, Theorem 6.1]), we can find a compact connected proper subset Σ of Ω
such that up to a subsequence, still denoted by the same index, Σn converges to Σ with
respect to the Hausdorff distance as n → +∞. Then, by Theorem 2.14, uΣn converges
to uΣ strongly in W 1,p

0 (Ω) and thanks to the lower semicontinuity of H1 with respect to
the topology generated by the Hausdorff distance, we deduce that Σ is a minimizer of
Problem 1.1.

Before starting the study of the regularity and qualitative properties satisfied by a
minimizer, we verify that, at least for some range of values of λ, a minimizer Σ is actually
not trivial. This is the purpose of the following proposition.

Proposition 2.17. Let Ω ⊂ R2 be open and bounded. Let p ∈ (1,+∞) and f ∈ Lq0(Ω),
f 6= 0, with q0 defined in (1.1). Then there exists λ0 = λ0(p, f,Ω) > 0 such that if
λ ∈ (0, λ0], then every solution Σ of Problem 1.1 has positive H1-measure.

Proof. Case 1: p ∈ (1, 2]. By Theorem 2.4, for all point x ∈ Ω one has Capp({x}) = 0
and this implies that W 1,p

0 (Ω) = W 1,p
0 (Ω\{x}) (see Remark 2.9). We claim that there

is a closed connected set Σ0 ⊂ Ω such that 0 < H1(Σ0) < +∞ and Cp(Σ0) < Cp(∅).
Otherwise, for any closed connected set Σ, since the functional Cp(·) is nonincreasing
with respect to set inclusion, we would have that Cp(Σ) = Cp(∅), that thanks to the
uniqueness of u∅ and to the fact that uΣ ∈ W 1,p

0 (Ω), implies that uΣ = u∅. Thus,
u∅ = uΣ = 0 p-q.e. on Σ and varying Σ in Ω we deduce that u∅ = 0 as an element of
W 1,p

0 (Ω). Then, by using the weak formulation of the p-Poisson equation which defines
u∅, we get

0 =
∫

Ω
|∇u∅|p−2∇u∅∇ϕ dy =

∫
Ω
fϕ dy for all ϕ ∈ C∞0 (Ω),

but this implies that f = 0 and leads to a contradiction. Thus, taking λ0 = Cp(∅)−Cp(Σ0)
2H1(Σ0) ,

for any λ ∈ (0, λ0] we get Cp(Σ0) + λH1(Σ0) < Cp(∅) and therefore each minimizer of
Problem 1.1 defined for such λ should have positive H1-measure.

Case 2: 2 < p < +∞. In this case the empty set will not be a minimizer of Prob-
lem 1.1. In fact, assume by contradiction that there exists λ > 0 such that the empty
set is a minimizer of Problem 1.1. Then for an arbitrary point x0 ∈ Ω, we have that
Cp({x0}) = Cp(∅), since ∅ is a minimizer and Cp(·) is nonincreasing. But by the unique-
ness of u∅ and since u{x0} ∈ W 1,p

0 (Ω), the fact that Cp({x0}) = Cp(∅) implies that
u{x0} = u∅. Recalling that by the embedding theorem of Morrey, W 1,p

0 (Ω) ⊂ C0,α(Ω),
where α = 1 − 2/p, we get u{x0}(x0) = u∅(x0) = 0. Varying x0 in Ω we deduce that
u∅ = 0, that, as in Case 1, contradicts the fact that f 6= 0 in Lq0(Ω). Thus any minimizer
Σ contains at least one point.
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Next, let us consider the minimization problem

(̃P ) min
x∈Ω

Cp({x}).

It is easy to check that a minimizer for (̃P ) exists. Indeed, taking a minimizing
sequence (xn)n, since Ω is compact, there exists x ∈ Ω such that xn → x and then, by
Theorem 2.14, Cp(x) = minx∈Ω Cp({x}). We claim that x ∈ Ω and, actually, it belongs to
a connected open component U of Ω such that ∂U ⊂ ∂ Ω and f |U 6= 0 in Lq0(U). Indeed,
if x would lie on ∂ Ω, then Cp({x}) = Cp(∅) and since x is a minimizer for (̃P ) and Cp(·)
is nonincreasing, Cp(∅) = Cp({x0}) for all x0 ∈ Ω that as before would contradict the
fact that f 6= 0 in Lq0(Ω). Now, assume that f |U = 0 in Lq0(U). Since U is an open
connected component of Ω, ∂U ⊂ ∂ Ω, we have that u∅ ∈ W 1,p

0 (U) and using the weak
formulation of the p-Poisson equation which defines u∅, we get∫

U
|∇u∅|p dy =

∫
U
fu∅ dy = 0

and hence u∅ = 0 on U . Thus, u∅ ∈ W 1,p
0 (Ω \{x}) and since Cp({x}) ≤ Cp(∅), we deduce

that Cp({x}) = Cp(∅), but this, as before, contradicts the fact that f 6= 0 in Lq0(Ω).
Finally, we claim that there exists a closed connected set Σ0 ⊂ U such that x ∈ Σ0,
0 < H1(Σ0) < +∞ and Cp(Σ0) < Cp({x}). Because otherwise, we would have for all
such Σ that Cp(Σ) = Cp({x}) that would lead to the fact that u{x} = 0 p-q.e. on Σ and
since U is arcwise connected, because open and connected, varying Σ in U , one would
obtain u{x} = 0 in U , but this would contradict the fact that f |U 6= 0 in Lq0(U). Thus,
taking λ0 = Cp({x})−Cp(Σ0)

2H1(Σ0) , for any λ ∈ (0, λ0] we get Cp(Σ0) + λH1(Σ0) < Cp({x}).
This shows that each minimizer of Problem 1.1 defined for such λ should have positive
H1-measure.

2.5 Dual formulation

Proposition 2.18. Let Ω ⊂ R2 be open and bounded. Let p ∈ (1,+∞) and f ∈ Lq0(Ω)
with q0 defined in (1.1). Then Problem 1.1 is equivalent to the minimization problem

(P∗) min
(σ,Σ)∈B

1
p′

∫
Ω
|σ|p′ dx+ λH1(Σ) (2.9)

where

B := {(σ,Σ) : Σ ∈ K(Ω) and σ ∈ Lp′(Ω;R2),−div(σ) = f in D′(Ω\Σ)}

in the sense that the minimum value of the latter is equal to that of Problem 1.1, and
once (σ,Σ) ∈ B is a minimizer for (P∗), then Σ solves Problem 1.1. Moreover, for a
given closed proper subset Σ of Ω, the choice σ = |∇uΣ|p−2∇uΣ solves

min
σ∈Lp′ (Ω;R2)

{
1
p′

∫
Ω
|σ|p′ dx : −div(σ) = f in D′(Ω \Σ)

}
.

Proof. The proof is the direct consequence of Lemma A.3 and the uniqueness of uΣ and
the minimizer σ.
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3 Ahlfors regularity

We recall that a set Σ ⊂ R2 is said to be Ahlfors regular of dimension 1, if there exist
some constants c > 0, r0 > 0 and C > 0 such that for every r ∈ (0, r0) and for every
x ∈ Σ the following holds

cr ≤ H1(Σ∩Br(x)) ≤ Cr. (3.1)

The notion of Ahlfors regularity is a quantitative and scale-invariant version of having
Hausdorff dimension one. It is known that Ahlfors regularity of a closed connected set Σ
implies uniform rectifiability of Σ, which provides several useful analytical properties of
Σ, see for example [14].

Note that for a closed connected nonempty set Σ the lower bound in (3.1) is trivial:
indeed, for all x ∈ Σ and for all r ∈ (0, diam(Σ)/2) we have: Σ∩∂Br(x) 6= ∅, and then

H1(Σ∩Br(x)) ≥ r. (3.2)

In order to prove the Ahlfors regularity for such Σ it suffices to show that there is r0 > 0,
independent of x, such that the upper bound in (3.1) holds for all x ∈ Σ and for all
r ∈ (0, r0).

Before starting to prove the Ahlfors regularity of Σ, let us focus on the following basic
question: to which class Lq(U) should the function f belong so that the solution u of the
Dirichlet problem

−∆pu = f in U ⊂ r[−a, a]× [−b, b], u ∈ W 1,p
0 (U)

satisfies
∫
U |∇u|p dx ≤ Cr, where C = C(a, b, p, q0, q, ‖f‖q) with q0 defined (1.1)? Using

Proposition 2.13, we can state that it is enough to take q = 2p
2p−1 = (2p)′, as explained in

the following lemma, which will also appear in the proof of Theorem 3.3.

Lemma 3.1. Let a, b, r > 0 and U ⊂ r[−a, a]× [−b, b] be an open set. Let p ∈ (1,+∞)
and f ∈ L(2p)′(U), and let u be the weak solution of the Dirichlet problem:

−∆pu = f in U, u ∈ W 1,p
0 (U)

which means that∫
U
|∇u|p−2∇u∇ϕ dx =

∫
U
fϕ dx for all ϕ ∈ W 1,p

0 (U). (3.3)

Then there exists a constant C = C(a, b, p, q0, ‖f‖(2p)′) > 0, where q0 is defined in (1.1),
such that ∫

U
|∇u|p dx ≤ Cr. (3.4)

Proof. Assume that f ∈ Lq(U) with q ≥ q0, where q0 is defined in (1.1). Then u is well
defined. By (2.3) with uΣ replaced by u and Ω by U , there exists C = C(p, q0) > 0 such
that ∫

U
|∇u|p dx ≤ C|U |α‖f‖βLq0 (U),
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where (α, β) is defined in (2.4). Using Hölder’s inequality and the fact that U is a subset
of r[−a, a]× [−b, b], we get∫

U
|∇u|p dx ≤ C(4abr2)α+β

(
1
q0
− 1
q

)
‖f‖βLq(U).

Thus, in order for the estimate (3.4) to hold, one should take the exponent q such that
2(α+β( 1

q0
− 1

q
)) = 1. Having carefully performed the calculations, one gets q = 2p

2p−1 .

To prove that Σ is Ahlfors regular “near” ∂ Ω, we shall assume some Lipschitz regu-
larity on Ω. Here is a precise definition.

Definition 3.2. A bounded domain Ω ⊂ R2 and its boundary ∂ Ω are locally Lipschitz
if there exists a radius r∂ Ω and a constant δ > 0 such that for every point x ∈ ∂Ω and
every radius s ∈ (0, r∂ Ω) up to a rotation of coordinates, it holds

Ω ∩Bs(x) = {(y1, y2) ∈ R2 : y2 > ϕ(y1)} ∩Bs(x)

for some Lipschitz function ϕ : R→ R satisfying ‖∇ϕ‖L∞(R) ≤ δ.

One deduces that for every radius s ∈ (0, r∂ Ω) in the above definition the set ∂ Ω∩Bs(x)
up to a rotation of coordinates is contained in the double cone

Kδ = {y ∈ R2 : y = 0 or angle(y, e1) ∈ [0, arctan(δ)] ∪ [π − arctan(δ), π]}.

Theorem 3.3. Let Ω ⊂ R2 be a bounded domain with locally Lipschitz boundary (see
Definition 3.2), p ∈ (1,+∞), and f ∈ L

2p
2p−1 (Ω). Let Σ be a solution of Problem 1.1 with

diam(Σ) > 0. Then Σ is Ahlfors regular.

Remark 3.4. By Proposition 2.17 we know that the assumption diam(Σ) > 0 is fulfilled
at least when λ ∈ (0, λ0], where λ0 = λ0(p, f,Ω).

Remark 3.5. Every closed and connected set Σ ⊂ R2 satisfying H1(Σ) < +∞ is arcwise
connected (see, for instance, [13, Corollary 30.2, p. 186]).

Proof of Theorem 3.3. Let r∂ Ω and δ be positive constants as in Definition 3.2. We set

r0 = min{r∂ Ω/3
√

1 + δ2, diam(Σ)/2}

and let x ∈ Σ and r ∈ (0, r0). Consider the next two cases.
Case 1: Br(x) ⊂ Ω. As mentioned in Remark 3.5, Σ is arcwise connected. Then the set

Σr = (Σ \Br(x)) ∪ ∂Br(x) (3.5)

is a closed arcwise connected proper subset of Ω, that is a competitor for Σ. Let us now
recall that (σ,Σ) = (|∇uΣ|p−2∇uΣ,Σ) is a minimizer for problem (P∗) in the formula-
tion (2.9). Consider the pair (σr,Σr), where

σr =

|∇uΣ|p−2∇uΣ in Ω\(Σr ∪Br(x)),
|∇u|p−2∇u in Br(x), u ∈ W 1,p

0 (Br(x)) solves−∆pu = f.
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Notice that for any function ϕ ∈ C∞0 (Ω\Σr) the support of ϕ is contained in the union
of two disjoint open sets Ω\(Σr ∪ Br(x)) and Br(x), and then, we can represent ϕ as
ϕ = ϕ1 +ϕ2 with ϕ1 ∈ C∞0 (Ω\(Σr∪Br(x))) and ϕ2 ∈ C∞0 (Br(x)) which are test functions
for the weak formulations of the p-Poisson equations that define uΣ and u respectively.
Thus, we deduce that

〈−div(σr), ϕ〉 = 〈|∇uΣ|p−2∇uΣ,∇ϕ1〉+ 〈|∇u|p−2∇u,∇ϕ2〉 = 〈f, ϕ1〉+ 〈f, ϕ2〉 = 〈f, ϕ〉.

Therefore (σr,Σr) is a competitor for (σ,Σ). By the optimality of (σ,Σ),

1
p′

∫
Ω
|∇uΣ|p dy + λH1(Σ) ≤ 1

p′

∫
Ω
|σr|p

′
dy + λH1(Σr)

≤ 1
p′

∫
Ω\Br(x)

|∇uΣ|p dy + 1
p′

∫
Br(x)

|∇u|p dy

+ λH1(Σ\Br(x)) + λH1(∂Br(x)).

Then

λH1(Σ ∩Br(x)) ≤ 2λπr + 1
p′

∫
Br(x)

|∇u|p dy.

So, recalling that by Lemma 3.1 one has∫
Br(x)

|∇u|p dy ≤ C̃r,

where C̃ = C̃(p, q0, ‖f‖(2p)′) > 0 with q0 defined in (1.1), we deduce that

H1(Σ∩Br(x)) ≤ Cr, (3.6)

where C = C(p, q0, ‖f‖(2p)′ , λ) > 0.
Case 2: Br(x) ∩ ∂ Ω 6= ∅. In this case we use the fact that locally ∂ Ω is a graph of
a δ-Lipschitz function. Let x∂ Ω be an arbitrary projection of x to ∂ Ω. Recalling that
r < r∂ Ω/3

√
1 + δ2, up to a rotation of coordinates one has

Ω∩B3
√

1+δ2r(x∂ Ω) = {(y1, y2) ∈ R2 : y2 > ϕ(y1)} ∩B3
√

1+δ2r(x∂ Ω) (3.7)

for some Lipschitz function ϕ : R → R satisfying ‖∇ϕ‖L∞(R) ≤ δ. In addition, the set
∂ Ω∩B3

√
1+δ2r(x∂ Ω) is contained in the double cone

Kδ = {y ∈ R2 : y = 0 or angle(y, e1) ∈ [0, arctan(δ)] ∪ [π − arctan(δ), π]}.

Notice that the ball B2r(x∂ Ω) in the (y1, y2) coordinates is represented as B2r(0). Let us
define ξ− = ϕ(−2r) and ξ+ = ϕ(2r). Now we need to distinguish between two further
cases.
Case 2a: δ ∈ (0, 1]. Define the points h− and h+ by h− = 2r(e2− e1) and h+ = 2r(e1 + e2).
Case 2b: δ > 1. Define h− and h+ by h− = 2r(δ e2− e1) and h+ = 2r(e1 +δ e2).
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At this point observe that the open rectangle R with vertices −h+, h−, h+ and −h−

contains the ball B2r(0). Furthermore, by (3.7) and since ∂ Ω∩B3
√

1+δ2r(x∂ Ω) ⊂ Kδ, the
union of the segments

γr = [ξ−, h−] ∪ [h−, h+] ∪ [ξ+, h+]

is a curve lying in Ω such that γr ∪ (∂ Ω∩R) is a closed simple curve (i.e., homeomorphic
image of S1 into R2) lying in Ω and ∂(R∩ Ω) = γr ∪ (∂ Ω∩R). Thus, it is clear that

Σr = (Σ \R) ∪ γr

is closed arcwise connected proper subset of Ω, namely, it is a competitor for Σ. Let us
now recall that (σ,Σ) = (|∇uΣ|p−2∇uΣ,Σ) is a minimizer for the problem (P∗) in the
formulation (2.9). Then, consider the pair (σr,Σr), where

σr =

|∇uΣ|p−2∇uΣ in Ω\(Σr ∪R),
|∇u|p−2∇u in R∩ Ω, u ∈ W 1,p

0 (R∩ Ω) solves−∆pu = f.

Observe that if ϕ ∈ C∞0 (Ω \Σr), then because γr ∪ (∂Ω∩R) is a closed simple curve, the
support of ϕ is contained in the union of two open disjoint sets Ω\(Σr ∪ R) and R ∩ Ω,
and then we can write ϕ = ϕ1 + ϕ2, where ϕ1 ∈ C∞0 (Ω\(Σr ∪R)) and ϕ2 ∈ C∞0 (R∩ Ω).
Thus, we have that

〈−div(σr), ϕ〉 = 〈|∇uΣ|p−2∇uΣ,∇ϕ1〉+ 〈|∇u|p−2∇u,∇ϕ2〉 = 〈f, ϕ1〉+ 〈f, ϕ2〉 = 〈f, ϕ〉,

where we have used that ϕ1 and ϕ2 are test functions for the weak formulations of the
p-Poisson equations that define uΣ and u respectively. Therefore (σr,Σr) is a competitor
for the minimizer (σ,Σ). Moreover, since ∂ Ω∩Br(x) 6= ∅, one has |x−x∂ Ω| < r and then
Br(x) ⊂ B2r(x∂ Ω) ⊂ R. Thus, by the optimality of (σ,Σ),

1
p′

∫
Ω
|∇uΣ|p dz + λH1(Σ) ≤ 1

p′

∫
Ω
|σr|p

′
dz + λH1(Σr)

≤ 1
p′

∫
Ω\R
|∇uΣ|p dz + 1

p′

∫
Ω∩R
|∇u|p dz

+ λH1(Σ\Br(x)) + λH1(γr),

where we have used that Br(x) ⊂ R. Notice that H1(γr) ≤ 4r + 8 max{1, δ}r. Then we
deduce that

λH1(Σ∩Br(x)) ≤ 4λr + 8λmax{1, δ}r + 1
p′

∫
Ω∩R
|∇u|p dz

and recalling that by Lemma 3.1,
∫

Ω∩R |∇u|p dz ≤ C̃r for some positive constant C̃
depending only on δ, p, q0, ‖f‖(2p)′ , we finally get the estimate

H1(Σ∩Br(x)) ≤ Cr

where C = C(δ, p, q0, ‖f‖(2p)′ , λ) > 0. This together with (3.2) and (3.6) implies the
Ahlfors regularity of Σ.
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4 Decay for the potential uΣ

In this section, we establish the desired decay for the potential uΣ at those points around
which Σ is flat.

Lemma 4.1. Let Ω be a bounded open set in R2 and p ∈ (1,+∞), and let f ∈ Lq0(Ω)
with q0 defined in (1.1). Let Σ and Σ′ be closed proper subsets of Ω and x0 ∈ R2. We
consider 0 < r0 < r1 and assume that Σ′∆ Σ ⊂ Br0(x0). Then for any ϕ ∈ Lip(R2) such
that ϕ = 1 over Bc

r1(x0), ϕ = 0 over Br0(x0), and ‖ϕ‖∞ ≤ 1 on R2, one has

Ep(uΣ)− Ep(uΣ′) ≤
2p−1

p

∫
Br1 (x0)

|∇uΣ′ |p dx+ 2p−1

p

∫
Br1 (x0)

|uΣ′ |p|∇ϕ|p dx

+
∫
Br1 (x0)

fuΣ′(1− ϕ) dx.

Proof. Since uΣ′ϕ ∈ W 1,p
0 (Ω\Σ) and uΣ is a minimizer of Ep over W 1,p

0 (Ω\Σ), then
Ep(uΣ) ≤ Ep(uΣ′ϕ), and hence,

Ep(uΣ)− Ep(uΣ′) ≤ Ep(uΣ′ϕ)− Ep(uΣ′) = 1
p

∫
Ω
|∇uΣ′ϕ+ uΣ′∇ϕ|p dx

−
∫

Ω
fuΣ′ϕ dx− 1

p

∫
Ω
|∇uΣ′|p dx+

∫
Ω
fuΣ′ dx

= 1
p

∫
Br1 (x0)

|∇uΣ′ϕ+ uΣ′∇ϕ|p dx+ 1
p

∫
Bcr1 (x0)

|∇uΣ′ |p dx

+
∫
Br1 (x0)

fuΣ′(1− ϕ) dx− 1
p

∫
Ω
|∇uΣ′|p dx

≤ 2p−1

p

∫
Br1 (x0)

|∇uΣ′|p|ϕ|p dx+ 2p−1

p

∫
Br1 (x0)

|uΣ′|p|∇ϕ|p dx

− 1
p

∫
Br1 (x0)

|∇uΣ′|p dx+
∫
Br1 (x0)

fuΣ′(1− ϕ) dx

≤ 2p−1

p

∫
Br1 (x0)

|∇uΣ′|p dx+ 2p−1

p

∫
Br1 (x0)

|uΣ′|p|∇ϕ|p dx

+
∫
Br1 (x0)

fuΣ′(1− ϕ) dx,

which concludes the proof.

Lemma 4.2. Let Ω be a bounded open set in R2 and p ∈ (1,+∞), and let f ∈ Lq(Ω) with
q ≥ q0, where q0 is defined in (1.1). Let Σ be a closed arcwise connected proper subset of
Ω and x0 ∈ R2, and let 0 < 2r0 ≤ r1 ≤ 1 satisfy

Σ∩Br0(x0) 6= ∅, Σ \Br1(x0) 6= ∅. (4.1)

Then for any r ∈ [r0, r1/2], for any ϕ ∈ Lip(R2) such that ‖ϕ‖∞ ≤ 1 and ϕ = 1 over
Bc

2r(x0), ϕ = 0 over Br(x0) and ‖∇ϕ‖∞ ≤ 1/r, the following assertions hold.

(i) There exists C > 0 depending only on p, such that:∫
B2r(x0)

|uΣ|p|∇ϕ|p dx ≤ C
∫
B2r(x0)

|∇uΣ|p dx. (4.2)
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(ii) There exists C > 0 depending only on p, q0, q and ‖f‖q such that∫
B2r(x0)

fuΣ(1− ϕ) dx ≤ C
∫
B2r(x0)

|∇uΣ|p dx+ Cr2+p′− 2p′
q . (4.3)

Proof. In this proof we write u instead of uΣ to lighten the notation. Due to (4.1),
Σ∩∂Bs(x0) 6= ∅ for all s ∈ [r, 2r] and then, since u = 0 p-q.e. on Σ and u ∈ W 1,p(B2r(x0)),
by Corollary 2.12, there is a constant C = C(p) > 0 such that∫

B2r(x0)
|u|p dx ≤ Crp

∫
B2r(x0)

|∇u|p dx. (4.4)

Therefore, ∫
B2r(x0)

|u|p|∇ϕ|p dx ≤ 1
rp

∫
B2r(x0)

|u|p dx

≤ C
∫
B2r(x0)

|∇u|p dx,

which proves (4.2).
Then let us prove (4.3). First, notice that due to (4.4) and the fact that 2r ≤ 1, there

is a constant C0 = C0(p) > 0 such that

‖u‖W 1,p(B2r(x0)) ≤ C0‖∇u‖Lp(B2r(x0)). (4.5)

Using the Sobolev embeddings (see [18, Theorem 7.26]) together with (4.5), we deduce
that there is a constant C̃ = C̃(p, q0) > 0 such that

‖u‖
L
q′0 (B2r(x0))

≤ C̃rβ‖∇u‖Lp(B2r(x0)), (4.6)

where

β = 1− 2
p

if 2 < p < +∞, β = 2
q′0

if p = 2, β = 0 if 1 < p < 2, (4.7)

and it is worth noting that in the case 2 < p < +∞ we have used that u(ξ) = 0 for some
ξ ∈ Σ ∩B2r(x0) yielding the following: for all x ∈ B2r(x0) we have

|u(x)| = |u(x)− u(ξ)| ≤ C1r
1− 2

p‖u‖W 1,p(B2r(x0))

for some C1 = C1(p) > 0. Thus, using the fact that ‖1−ϕ‖∞ ≤ 1 and Hölder’s inequality,
we get∫
B2r(x0)

fu(1− ϕ) dx ≤ ‖f‖Lq0 (B2r(x0))‖u‖Lq′0 (B2r(x0))
≤ |B2r(x0)|

1
q0
− 1
q ‖f‖Lq(Ω)‖u‖Lq′0 (B2r(x0))

≤ Cr
2( 1
q0
− 1
q

)+β‖∇u‖Lp(B2r(x0)) (by using (4.6))

= Cr3− 2
p
− 2
q ‖∇u‖Lp(B2r(x0)) (by using (1.1) and (4.7))

≤ Cr2+p′− 2p′
q + C‖∇u‖pLp(B2r(x0)) (by Young’s inequality),

where C = C(p, q0, q, ‖f‖Lq(Ω)) > 0. This achieves the proof of Lemma 4.2.
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The following corollary follows directly from Lemma 4.1 and Lemma 4.2, so we omit
the proof.

Corollary 4.3. Let Ω be a bounded open set in R2 and p ∈ (1,+∞), and let f ∈ Lq(Ω)
with q ≥ q0, where q0 is defined in (1.1). Let Σ and Σ′ be closed arcwise connected proper
subsets of Ω, and let x0 ∈ R2. Suppose that 0 < 2r0 ≤ r1 ≤ 1, Σ′∆ Σ ⊂ Br0(x0) and

Σ′ ∩Br0(x0) 6= ∅, Σ′\Br1(x0) 6= ∅.

Then for any r ∈ [r0, r1/2] we have:

Ep(uΣ)− Ep(uΣ′) ≤ C
∫
B2r(x0)

|∇uΣ′|p dx+ Cr2+p′− 2p′
q (4.8)

for some constant C > 0 depending only on p, q0, q and ‖f‖q.

We now start to prove some decay estimates on the p-energy. We begin with the
simple case of a weak solution of the p-Laplace equation vanishing on a line, for which
we can argue by reflection.

Lemma 4.4. Let p ∈ (1,+∞). Then there is a constant C = C(p) > 0 such that for
all u ∈ W 1,p(B1), u = 0 p-q.e. on [−1, 1] × {0} being a weak solution of the p-Laplace
equation in B1\([−1, 1]× {0}),

ess sup
B1/2

|∇u|p ≤ C
∫
B1
|∇u|p dx.

Proof. Consider the restrictions of u on B+ = B1∩{x2 ≥ 0} and on B− = B1∩{x2 ≤ 0}
and extend them on B1 using the Schwarz reflection. We show that each of the obtained
functions is a weak solution of the corresponding p-Laplace equation in B1. Thus we
define

ũ(x1, x2) =

u(x1, x2) if (x1, x2) ∈ B+

−u(x1,−x2) if (x1, x2) ∈ B−

u(x1, x2) =

−u(x1,−x2) if (x1, x2) ∈ B+

u(x1, x2) if (x1, x2) ∈ B−.

It is clear that ũ, u ∈ W 1,p(B1) and ũ = u = 0 p-q.e. on [−1, 1] × {0}. We claim that
ũ and u are weak solutions in B1. Indeed, denoting B1 ∩ {x2 > 0} by int(B+) and
B1 ∩ {x2 < 0} by int(B−), for an arbitrary test function ϕ ∈ C∞0 (B1) we have∫

B1
|∇ũ|p−2∇ũ∇ϕ dx =

∫
int(B+)

|∇u|p−2∇u∇ϕ dx

+
∫
int(B−)

|∇u(x1,−x2)|p−2〈(−∂1u(x1,−x2), ∂2u(x1,−x2)),∇ϕ(x1, x2)〉 dx1 dx2

=
∫
int(B+)

|∇u|p−2∇u∇ϕ dx

−
∫
int(B+)

|∇u(x1, x2)|p−2〈∇u(x1, x2), (∂1ϕ(x1,−x2),−∂2ϕ(x1,−x2))〉 dx1 dx2

=
∫
int(B+)

|∇u|p−2∇u∇ψ dx, (4.9)
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where ψ(x1, x2) = ϕ(x1, x2)− ϕ(x1,−x2), (x1, x2) ∈ int(B+). Since ũ|int(B+) ≡ u|int(B+)

is a weak solution in int(B+) and since ψ ∈ W 1,p
0 (int(B+)), using (4.9), we get that∫

B1
|∇ũ|p−2∇ũ∇ϕ dx = 0.

As ϕ ∈ C∞0 (B1) was arbitrarily chosen, we deduce that ũ is a weak solution in B1. The
proof of the fact that u is a weak solution in B1 is similar. Thus by [15, Proposition 3.3]
there is C = C(p) > 0 such that

ess sup
B1/2

|∇ũ|p ≤ C
∫
B1
|∇ũ|p dx

ess sup
B1/2

|∇u|p ≤ C
∫
B1
|∇u|p dx.

Therefore,

ess sup
B1/2

|∇u|p ≤ ess sup
B1/2

|∇ũ|p + ess sup
B1/2

|∇u|p

≤ C
(∫

B1
|∇ũ|p dx+

∫
B1
|∇u|p dx

)
≤ 2C

∫
B1
|∇u|p dx.

This completes the proof of Lemma 4.4.

Corollary 4.5. Let u be a weak solution of the p-Laplace equation in B1\([−1, 1]×{0})
and let u = 0 p-q.e. on [−1, 1]× {0}. Then u is Lipschitz continuous on B1/2.

Corollary 4.6. There is a constant C0 = C0(p) > 2 such that if u is a weak solution of
the p-Laplace equation in B1\([−1, 1]× {0}) and u = 0 p-q.e. on [−1, 1]× {0}, then∫

Br
|∇u|p dx ≤ C0r

2
∫
B1
|∇u|p dx for all r ∈ [0, 1/2].

Proof of Corollary 4.6. By Lemma 4.4 we know that for some C = C(p) > 1,

ess sup
B1/2

|∇u|p ≤ C
∫
B1
|∇u|p dx.

We deduce that for r ≤ 1/2,

∫
Br
|∇u|p dx ≤

ess sup
B1/2

|∇u|p
 πr2 ≤ πCr2

∫
B1
|∇u|p dx.

Next we use a compactness argument to derive a similar estimate for a weak solution
of the p-Laplace equation vanishing on a set Σ which is close enough to a line, in the
Hausdorff distance.
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Lemma 4.7. Let p ∈ (1,+∞) and let C0 be a constant as in Corollary 4.6. Then for
every % ∈ (0, 1/2] there is %0 ∈ (0, %) such that the following holds. Let Σ ⊂ R2 be a closed
set such that (Σ∩Br(x0)) ∪ ∂Br(x0) is connected and there is an affine line P , passing
through x0, such that dH(Σ∩Br(x0), P ∩ Br(x0)) ≤ %0r. Then for any weak solution
u of the p-Laplace equation in Br(x0)\Σ, vanishing p-q.e. on Σ∩Br(x0), the following
estimate holds ∫

B%r(x0)
|∇u|p dx ≤ (C0%)2

∫
Br(x0)

|∇u|p dx.

Proof. Since the p-Laplacian is invariant under scalings, rotations and translations, it is
not restrictive to assume that Br(x0) = B1 and P ∩Br(x0) = [−1, 1]×{0}. For the sake
of contradiction, suppose that for some % ∈ (0, 1/2] there exist sequences (εn)n, (Σn)n
and (un)n such that εn ↓ 0 as n → +∞; Σn is closed, (Σn ∩B1) ∪ ∂B1 is connected,
dH(Σn ∩B1, [−1, 1]× {0}) ≤ εn and hence

dH(Σn ∩B1, [−1, 1]× {0})→ 0 as n→ +∞; (4.10)

un is a weak solution in B1\Σn, un = 0 p-q.e. on Σn ∩B1 and∫
B%
|∇un|p dx > (C0%)2

∫
B1
|∇un|p dx. (4.11)

Thus for any n we can define

vn(x) = un(x)(∫
B1
|∇un|p dx

) 1
p

. (4.12)

Clearly vn = 0 p-q.e. on Σn ∩B1 and∫
B1
|∇vn|p dx = 1. (4.13)

By (4.10) and by the fact that (Σn ∩ B1) ∪ ∂B1 is connected, there is a constant C̃ > 0
(independent of n) such that for any n large enough we have

Capp(Σn ∩B1) ≥ C̃.

Then, using the above estimate together with Proposition 2.10 and with (4.13), we con-
clude that the sequence (vn)n is bounded in W 1,p(B1). Hence, up to a subsequence still
denoted by the same index, we have

vn ⇀ v in W 1,p(B1) (4.14)
vn → v in Lp(B1), (4.15)

for some v ∈ W 1,p(B1).
Let us now show that v = 0 p-q.e. on [−1, 1] × {0}. For any t ∈ (0, 1) we fix

ψ ∈ C1
0(B1), ψ = 1 on Bt and 0 ≤ ψ ≤ 1. Since (Σn ∩B1)∪∂B1 is connected for all n ∈ N
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and dH(Σn ∩B1, [−1, 1]× {0})→ 0, as n→ +∞, it follows (see [7]) that the sequence of
Sobolev spaces W 1,p

0 (B1\Σn) converges in the sense of Mosco to W 1,p
0 (B1\([−1, 1]× {0})).

Note that by (4.14), vnψ ⇀ vψ in W 1,p(R2) and using the definition of limit in the sense
of Mosco, we deduce that vψ ∈ W 1,p

0 (B1\([−1, 1]× {0})). This implies that v = 0 p-q.e.
on [−t, t] × {0}. As t ∈ (0, 1) was arbitrarily chosen, we deduce that v = 0 p-q.e. on
[−1, 1]× {0}.

We claim that v is a weak solution of the p-Laplace equation in B1 \ ([−1, 1]× {0}).
Notice that, in contrary to the linear case, it is not so clear how to pass to the limit in
the weak formulation using only the weak convergence of ∇vn to ∇v in Lp(B1). But one
can argue exactly as in the proof of [7, Proposition 3.7] to get that |∇vn|p−2∇vn weakly
converges to |∇v|p−2∇v in Lp

′(B1), and this is enough to pass to the limit in the weak
formulation. We refer to [7] for further details.

We now want to prove the strong convergence of ∇vn to ∇v in Lp(B1/2). Since
for all n we have that

∫
B1
|∇vn|p dx = 1, we may assume that the sequence |∇vn|p dx

of probability measures over B1 weakly* converges (in the duality with C0(B1)) to some
finite Borel measure µ overB1. Then we select some t0 ∈ (1/2, 3/4) such that µ(∂Bt0) = 0.
Such t0 exists, since otherwise µ(∂Bt) > 0 for all t ∈ (1/2, 3/4) and therefore we can find
a positive integer number j and an uncountable set of indices A ⊂ (1/2, 3/4) such that
for all t ∈ A we have that µ(∂Bt) > 1/j that leads to a contradiction with the fact that
µ(B1) < +∞.

From the weak convergence of ∇vn in Lp we only need to prove that ‖∇vn‖Lp(Bt0 ;R2)

tends to ‖∇v‖Lp(Bt0 ;R2). We already have, still by weak convergence,∫
Bt0

|∇v|p dx ≤ lim inf
n→+∞

∫
Bt0

|∇vn|p dx,

thus it remains to prove the reverse inequality, with a limsup. For this purpose we shall
use the minimality of vn.

Let χ be smooth cut-off function equal to 1 on Bt0 and zero outside of B3/4, and
consider the function χv ∈ W 1,p

0 (B1\([−1, 1]×{0})). By the definition of convergence in
the sense of Mosco, it follows that there is a sequence (ṽn) ⊂ W 1,p

0 (B1\Σn) converging to
χv strongly in W 1,p(B1).

Now, fix an arbitrary δ ∈ (0, t0 − 1/2), and let ηδ ∈ C∞c (Bt0) be smooth cut-off
function satisfying

ηδ = 1 on Bt0−δ, |∇ηδ| ≤
C

δ
.

Then we define

wn = ηδṽn + (1− ηδ)vn.

In particular, wn = 0 p-q.e. on Σn and wn = vn outside Bt0 . By the minimality of vn
(see Theorem 2.2) we infer∫

Bt0

|∇vn|p dx ≤
∫
Bt0

|∇wn|p dx. (4.16)
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Recalling that for any ε > 0 there is a constant cε > 0 such that for all nonnegative
real numbers a, b,

(a+ b)p ≤ cεa
p + (1 + ε)bp,

computing ∇wn and using (4.16) we obtain the following chain of estimates∫
Bt0

|∇vn|p dx ≤
∫
Bt0

|ηδ∇ṽn + (1− ηδ)∇vn +∇ηδ(ṽn − vn)|p dx

≤ c(ε)
∫
Bt0

|∇ηδ|p|ṽn − vn|p dx

+ (1 + ε)
∫
Bt0

|ηδ∇ṽn + (1− ηδ)∇vn|p dx

≤ c(ε, δ)
∫
Bt0

|ṽn − vn|p dx+ (1 + ε)
∫
Bt0

(1− ηδ)|∇vn|p dx

+ (1 + ε)
∫
Bt0

ηδ|∇ṽn|p dx.

Notice that since |∇vn|p dx weakly* converges to µ (in the duality with C0(B1)) and
since µ(∂Bt0) = 0, we obtain that

∫
Bt0
|∇vn|p dx tends to µ(Bt0) as n→ +∞ (it is easy

to see by taking sequences (gm)m, (hm)m ⊂ C0(B1) such that gm ↓ 1Bt0 , hm ↑ 1Bt0 and
by using the definition of the weak* convergence of measures). Passing to the limsup,
from the strong convergence in Lp(Bt0) of both vn and ṽn to v we get∫

Bt0

|ṽn − vn|p dx→ 0,

thus
lim sup
n→+∞

∫
Bt0

|∇vn|p dx ≤ (1 + ε)µ(Bt0 \Bt0−δ) + (1 + ε)
∫
Bt0

|∇v|p dx.

Letting now δ tend to 0+ and using the fact that µ(∂Bt0) = 0 we get

lim sup
n→+∞

∫
Bt0

|∇vn|p dx ≤ (1 + ε)
∫
Bt0

|∇v|p dx,

and we finally conclude by letting ε tend to 0+ to get

lim sup
n→+∞

∫
Bt0

|∇vn|p dx ≤
∫
Bt0

|∇v|p dx,

which proves the strong convergence of ∇vn to ∇v in Lp(Bt0).
Using (4.11) and (4.12) and passing to the limit we therefore arrive at∫

B%
|∇v|p dx ≥ (C0%)2. (4.17)

On the other hand, by Corollary 4.6 applied with u = v and by (4.13) and (4.14) we get∫
B%
|∇v|p dx ≤ C0%

2,

which leads to a contradiction with (4.17), since % > 0 and C0 > 2, concluding the
proof.
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Now we would like to treat the second member f . For that purpose we shall use
the following lemma (see [12, Lemma 2.2]), which will allow us to control the difference
between the potential uΣ and its Dirichlet replacement on a ball with a crack.

Lemma 4.8 ([12]). Let U be an open set in R2, N ≥ 2, and let u1, u2 ∈ W 1,p(U). If
2 ≤ p < +∞, then:∫

U
|∇u1 −∇u2|p dx ≤ c0

∫
U
〈|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇u1 −∇u2〉 dx, (4.18)

where c0 depends only on p.
If 1 < p < 2, then:
(∫

U
|∇u1 −∇u2|p dx

) 2
p ≤ K(u1, u2)

∫
U
〈|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇u1 −∇u2〉 dx,

(4.19)

where K(u1, u2) stands for:

K(u1, u2) = 2
(∫

U
|∇u1|p dx+

∫
U
|∇u2|p dx

) 2−p
p .

Now we can control the difference between a weak solution of the p-Poisson equation
and its Dirichlet replacement on a ball with a crack.

Lemma 4.9. Let p ∈ (1,+∞) and f ∈ Lq(Br1(x0)) with q > q0, where q0 is defined
in (1.1), and let Σ be a closed arcwise connected set in R2 and 0 < 2r0 ≤ r1 ≤ 1 satisfy

Σ∩Br0(x0) 6= ∅, Σ \Br1(x0) 6= ∅ and Br1(x0)\Σ 6= ∅.

Let u ∈ W 1,p(Br1(x0)), u = 0 p-q.e. on Σ∩Br1(x0) be the solution of the p-Poisson
equation −∆pv = f in Br1(x0)\Σ in the weak sense, which means that∫

Br1 (x0)
|∇u|p−2∇u∇ϕ dx =

∫
Br1 (x0)

fϕ dx for all ϕ ∈ W 1,p
0 (Br1(x0)\Σ). (4.20)

Let w ∈ W 1,p(Br1(x0)), w = 0 p-q.e. on Σ∩Br1(x0) be the solution of the following
p-Laplace equation −∆pv = 0 in Br1(x0)\Σ

v = u on ∂Br1(x0) ∪ (Σ∩Br1(x0)),

in the weak sense, which means that w − u ∈ W 1,p
0 (Br1(x0)\Σ) and∫

Br1 (x0)
|∇w|p−2∇w∇ϕ dx = 0 for all ϕ ∈ W 1,p

0 (Br1(x0)\Σ). (4.21)

If 2 ≤ p < +∞, then: ∫
Br1 (x0)

|∇u−∇w|p dx ≤ Cr
2+p′− 2p′

q

1 , (4.22)

25



where C = C(p, q0, q, ‖f‖q) > 0.
If 1 < p < 2, then:∫

Br1 (x0)
|∇u−∇w|p dx ≤ C(K(u, u))p(rp−1

1 )2+p′− 2p′
q , (4.23)

where C = C(p, q0, q, ‖f‖q) > 0 and K(·, ·) as in Lemma 4.8 with U = Br1(x0).

Proof. Every ball in this proof is centered at x0. For convenience, let us define z = u−w.
Since z = 0 p-q.e. on Σ ∩ Br1 , by Corollary 2.12 and the fact that r1 ≤ 1, there is a
constant C = C(p) > 0 such that

‖z‖W 1,p(Br1 ) ≤ C‖∇z‖Lp(Br1 ). (4.24)

Then, using the Sobolev embeddings (see [18, Theorem 7.26]) together with (4.24), we
deduce that there is a constant C̃ = C̃(p, q0) > 0 such that

‖z‖
L
q′0 (Br1 )

≤ C̃rα1 ‖∇z‖Lp(Br1 ), (4.25)

where

α = 1− 2
p

if 2 < p < +∞, α = 2
q′0

if p = 2, α = 0 if 1 < p < 2, (4.26)

in particular, in the case 2 < p < +∞ we have used that z(ξ) = 0 for some ξ ∈ Σ∩Br1

yielding the following: for all x ∈ Br1 one has |z(x)| = |z(x)−z(ξ)| ≤ C0(2r1)1− 2
p‖z‖W 1,p(Br1 )

for some C0 = C0(p) > 0. Let us consider the next two cases.
Case 1: 2 ≤ p < +∞. Using (4.18) and the fact that z is a test function for (4.20) and
(4.21), we get ∫

Br1

|∇z|p dx ≤ c0

∫
Br1

〈|∇u|p−2∇u− |∇w|p−2∇w,∇z〉 dx

= c0

∫
Br1

fz dx

where c0 = c0(p) > 0. Applying Hölder’s inequality to the right-hand side of the latter
formula and using (4.25), we obtain∫

Br1

|∇z|p dx ≤ c0‖f‖Lq0 (Br1 )‖z‖Lq′0 (Br1 )
≤ c0|Br1|

1
q0
− 1
q ‖f‖Lq(Br1 )‖z‖Lq′0 (Br1 )

≤ Cr
2( 1
q0
− 1
q

)+α
1

(∫
Br1

|∇z|p dx
) 1
p

for some C = (p, q0, q, ‖f‖q) > 0. Therefore,∫
Br1

|∇z|p dx ≤ Cp′r
2p′( 1

q0
− 1
q

)+p′α
1
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and carefully calculating (2p′( 1
q0
− 1

q
) + p′α) where α is defined in (4.26), one gets (4.22).

Case 2: Let 1 < p < 2. Using (4.19), and the fact that z is a test function for (4.20) and
(4.21), we get

(∫
Br1

|∇z|p dx
) 2
p ≤ K(u,w)

∫
Br1

〈|∇u|p−2∇u− |∇w|p−2∇w,∇z〉 dx

= K(u,w)
∫
Br1

fz dx.

Next, by using Hölder’s inequality and then (4.25), we obtain
(∫

Br1

|∇z|p dx
) 2
p ≤ K(u,w)‖f‖Lq0 (Br1 )‖z‖Lq′0 (Br1 )

≤ K(u,w)|Br1|
1
q0
− 1
q ‖f‖Lq(Br1 )‖z‖Lq′0 (Br1 )

≤ CK(u,w)r
2
q0
− 2
q

1

(∫
Br1

|∇z|p dx
) 1
p

≤ CK(u, u)r
2
q0
− 2
q

1

( ∫
Br1

|∇z|p dx
) 1
p ,

for some C = C(p, q0, q, ‖f‖q) > 0, where the last estimate comes from the fact that
w minimizes the energy

∫
Br1
|∇v|p dx among all v satisfying v − u ∈ W 1,p

0 (Br1\Σ) (see
Theorem 2.2) and u is a competitor for w. Therefore,∫

Br1

|∇z|p dx ≤ Cp(K(u, u))pr
2p
q0
− 2p
q

1

= Cp(K(u, u))pr
3p−2− 2p

q

1 = Cp(K(u, u))p(rp−1
1 )2+p′− 2p′

q

that yields (4.23).

Gathering together Lemma 4.7 and Lemma 4.9 we arrive at the following decay esti-
mate for uΣ. Notice that in the following statement the definition of α(q) also depends
on p, but we decided to not mention it explicitly to lighten the notation.

Lemma 4.10. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q0, where q0 is defined in (1.1).
Then we can find a ∈ (0, 1/2), ε0 ∈ (0, a) and C = C(p, q0, q, ‖f‖q, |Ω|) > 0 such that
the following holds. Let Σ ⊂ Ω be a closed arcwise connected set. Let 0 < 2r0 ≤ r1 ≤ 1
satisfy Br1(x0) ⊂ Ω,

Σ∩Br0(x0) 6= ∅ and Σ \Br1(x0) 6= ∅,

and assume that there is an affine line P , passing through x0, such that

dH(Σ∩Br1(x0), P ∩Br1(x0)) ≤ ε0r1. (4.27)

Then

1
ar1

∫
Bar1 (x0)

|∇uΣ|p dx ≤
1
2

(
1
r1

∫
Br1 (x0)

|∇uΣ|p dx
)

+ Cr
α(q)
1 (4.28)
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where

α(q) =


1 + p′ − 2p′

q
if 2 ≤ p < +∞

3(p− 1)− 2p
q

if 1 < p < 2.
(4.29)

Proof. Let w ∈ W 1,p(Br1(x0)), w = 0 p-q.e. on Σ∩Br1(x0) be the Dirichlet replacement
of uΣ, i.e., the solution of the following p-Laplace equation−∆pu = 0 in Br1(x0)\Σ

u = uΣ on ∂Br1(x0) ∪ (Σ∩Br1(x0)),

in the weak sense, which means that w − uΣ ∈ W 1,p
0 (Br1(x0)\Σ) and∫

Br1 (x0)
|∇w|p−2∇w∇ϕ dx = 0 for all ϕ ∈ W 1,p

0 (Br1(x0)\Σ). (4.30)

Let K(·, ·) be as in Lemma 4.8 with U = Br1(x0). Using (2.3) and Hölder’s inequality, it
is easy to see that

K(uΣ, uΣ) ≤ C1 (4.31)

for some C1 = C1(p, q0, q, ‖f‖q, |Ω|) > 0. Then applying Lemma 4.9 and using (4.31), we
know that: ∫

Br1 (x0)
|∇uΣ −∇w|p dx ≤ Cr

1+α(q)
1 , (4.32)

where C = C(p, q0, q, ‖f‖q, |Ω|) > 0 and α(q) is defined in (4.29). Now let C0 = C0(p) be
the constant of Corollary 4.6, and let a = 2−pC−2

0 . For every p ∈ (1,+∞) the constant
a is fixed. We can apply Lemma 4.7 with r = r1 and % = a to the function w. We then
obtain some %0 ∈ (0, a) which defines our ε0 := %0 such that under the condition (4.27)
it holds

1
a

∫
Bar1 (x0)

|∇w|p dx ≤ C2
0a
∫
Br1 (x0)

|∇w|p dx ≤ 2−p
∫
Br1 (x0)

|∇w|p dx.

Hereinafter in this proof, C denotes a positive constant that can depend only on p, q0, q,
‖f‖q, |Ω| and can be different from line to line. Now we use the elementary inequality
(c+ d)p ≤ 2p−1(cp + dp) to write

1
a

∫
Bar1 (x0)

|∇uΣ|p dx ≤
2p−1

a

∫
Bar1 (x0)

|∇w|p dx+ 2p−1

a

∫
Bar1 (x0)

|∇uΣ −∇w|p dx

≤ 1
2

∫
Br1 (x0)

|∇w|p dx+ 2p−1

a

∫
Br1 (x0)

|∇uΣ −∇w|p dx

≤ 1
2

∫
Br1 (x0)

|∇w|p dx+ Cr
1+α(q)
1

≤ 1
2

∫
Br1 (x0)

|∇uΣ|p dx+ Cr
1+α(q)
1 ,

where we have used that w minimizes the p-energy in Br1(x0) with its own trace and uΣ

is a competitor. The proof of the lemma follows by dividing the resulting inequality by
r1.
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Finally, by iterating the last lemma in a sequence of balls {Balr1(x0)}, we obtain the
following main decay behavior of the p-energy under flatness control.

Lemma 4.11. Let p ∈ (1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4).
Then there exists ε0 ∈ (0, 1/2), C = C(p, q0, q, ‖f‖q, |Ω|), r, b > 0 such that the following
holds. Let Σ ⊂ Ω be a closed arcwise connected set. Assume that 0 < 2r0 ≤ r1 ≤ r,
Br1(x0) ⊂ Ω and that for all r ∈ [r0, r1] there is an affine line P = P (r), passing through
x0, such that dH(Σ∩Br(x0), P ∩Br(x0)) ≤ ε0r. Assume also that Σ \Br1(x0) 6= ∅. Then
for every r ∈ [r0, r1],∫

Br(x0)
|∇uΣ|p dx ≤ C

( r
r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b. (4.33)

Proof. Let a ∈ (0, 1/2), ε0 ∈ (0, a) and C = C(p, q0, q, ‖f‖q, |Ω|) > 0 be the constants
given by Lemma 4.10. Under the assumptions of Lemma 4.11, we can apply Lemma 4.10
in all the balls Balr1(x0), l ∈ {0, ..., k} with k for which ak+1r1 < r0 ≤ akr1. Notice that
the definition of q1 and the assumption q > q1 have been made in order to guarantee that
α(q) > 0, where α(q) is defined in (4.29). Let us now define

b = min
(
α(q)

2 ,
ln(3/4)
ln(a)

)
, r̄ =

(1
4

) 1
b

.

We can easily check that for all t ∈ (0, r̄],

1
2t

b + tα(q) ≤ (at)b, (4.34)

because since 0 < 2b ≤ α(q) and r̄ < 1,

1
2t

b + tα(q) ≤ 1
2t

b + r̄btb ≤ 3
4t

b ≤ (at)b.

Let us now define Ψ(r) = 1
r

∫
Br(x0) |∇uΣ|p dx and prove by induction that for all

l ∈ {0, ..., k},

Ψ(alr1) ≤ 1
2lΨ(r1) + C(alr1)b. (4.35)

Clearly (4.35) holds for l = 0, assume that (4.35) holds for some l ∈ {0, ..., k − 1}. Then
applying Lemma 4.10, we get

Ψ(al+1r1) ≤ 1
2Ψ(alr1) + C(alr1)α(q).

By the induction hypothesis it comes

Ψ(al+1r1) ≤ 1
2

( 1
2lΨ(r1) + C(alr1)b

)
+ C(alr1)α(q),

and thanks to (4.34), we finally conclude that

Ψ(al+1r1) ≤ 1
2l+1 Ψ(r1) + C(al+1r1)b,
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and (4.35) is proved. Now let r ∈ [r0, r1] and l ∈ {0, ..., k} be such that al+1r1 < r ≤ alr1.
Then

Ψ(r) ≤ 1
a

Ψ(alr1) ≤ 1
a

1
2lΨ(r1) + C

a
(alr1)b

≤ 2
a

(al+1)bΨ(r1) + C ′(al+1r1)b

≤ C ′′
(
r

r1

)b
Ψ(r1) + C ′′rb

where C ′′ = C ′′(a, p, q0, q, ‖f‖q, |Ω|) > 0. Notice that although C ′′ depends on a, however,
for every p ∈ (1,+∞) we can fix a, and thus, we can assume that C ′′ can depend only
on p, q0, q, ‖f‖q and |Ω|. This achieves the proof.

5 Absence of loops

Theorem 5.1. Let Ω be a bounded open set in R2 and p ∈ (1,+∞), and let f ∈ Lq(Ω)
with q > q1, defined in (1.4). Then every solution Σ of the penalized Problem 1.1 contains
no closed curves (i.e., homeomorphic images of a circumference S1), hence R2\Σ is
connected.

The next lemma which was also used several times earlier in the literature, will be
used in the proof of Theorem 5.1.

Lemma 5.2. Let Σ be a closed connected set in R2, containing a simple closed curve Γ
and such that H1(Σ) < +∞. Then H1-a.e. point x ∈ Γ is such that

• “noncut” : there is a sequence of (relatively) open sets Dn ⊂ Σ satisfying

(i) x ∈ Dn for all sufficiently large n;

(ii) Σ \Dn are connected for all n;

(iii) diamDn ↘ 0 as n→ +∞;

(iv) Dn are connected for all n.

• “flatness” : there exists the “ tangent” line P to Σ at x in the sense that x ∈ P and

dH(Σ∩Br(x), P ∩Br(x))
r

→ 0
r→0+

.

Proof. By [24, Lemma 5.6], H1-a.e. point x ∈ Γ is a noncut point for Σ (i.e., a point such
that Σ \{x} is connected). Then, by [10, Lemma 6.1], it follows that for every noncut
point there are connected neighborhoods that can be cut leaving the set connected, so
(i)-(iv) are satisfied for a suitable sequence Dn. For the proof of the second assertion we
refer to [6, Proposition 2.2].
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Proof of Theorem 5.1. Assume by contradiction that for some λ > 0 a minimizer Σ of
Fλ,p over closed connected proper subsets of Ω contains a simple closed curve Γ ⊂ Σ.
Notice that there is no a relatively open subset in Σ contained in both Γ and ∂Ω, because
otherwise by Lemma 5.2 there would be a relatively open subset D ⊂ Σ such that
D ⊂ ∂Ω and Σ\D would remain connected but observing that in this case uΣ\D = uΣ

and H1(D) > 0, we would obtain a contradiction with the optimality of Σ. Thus by
Lemma 5.2, there is a point x0 ∈ Γ ∩ Ω which is a noncut point for Σ and such that
Σ is differentiable at x0. Therefore there exist the sets Dn ⊂ Σ and an affine line P
as in Lemma 5.2. Let ε0, C, r, b be the constants of Lemma 4.11 and let Bt0(x0) ⊂ Ω
with t0 < min{r, diam(Σ)/2}. We denote rn := diamDn so that Dn ⊂ Σ∩Brn(x0). The
flatness of Σ at x0 implies that for any given ε > 0 there is t = t(ε) ∈ (0, t0] such that

dH(Σ∩Br(x0), P ∩Br(x0)) ≤ εr for all r ∈ (0, t]. (5.1)

For every n let us define Σn := Σ \Dn, which by Lemma 5.2 remains closed and connected.
We fix ε = ε0

2 . Our aim is to apply Lemma 4.11 to Σn but we have to control the Hausdorff
distance between Σn and a line in Br(x0). We already know that Σ is εr-close to P in
Br(x0) for all r ≤ t. Thus, if rn ≤ ε0r

2 we can compute

dH(Σn ∩Br(x0), P ∩Br(x0))
≤ dH(Σn ∩Br(x0),Σ∩Br(x0)) + dH(Σ ∩Br(x0), P ∩Br(x0))

≤ rn + ε0r

2 ≤
ε0r

2 + ε0r

2 = ε0r.

We can therefore apply Lemma 4.11 to Σn, for the interval [2rn
ε0
, t], provided that 2rn

ε0
≤ t

2 ,
which says that

∫
Br(x0)

|∇uΣn|p dx ≤ C
(r
t

)1+b ∫
Bt(x0)

|∇uΣn|p dx+ Cr1+b for every r ∈
[

2rn
ε0
, t

]
.

Hereinafter in this proof, C denotes a positive constant that does not depend on rn and
can be different from line to line. Next, for r = 2rn

ε0
, using also (2.3) it comes∫

B 2rn
ε0

(x0)
|∇uΣn|p dx ≤ Cr1+b

n ,

for all n such that 2rn
ε0
≤ t

2 . Remember that the exponent b given by Lemma 4.11 is
positive provided q > q1, where

q1 =


2p

2p−1 if 2 ≤ p < +∞
2p

3p−3 if 1 < p < 2

which is one of our assumptions.
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Now by the fact that Σ is a minimizer and Σn is a competitor for Σ we get the
following

0 ≤ Fλ,p(Σn)−Fλ,p(Σ) ≤ Ep(uΣ)− Ep(uΣn)− λrn

≤ C
∫
B2rn (x0)

|∇uΣn|p dx+ Cr
2+p′− 2p′

q
n − λrn (by Corollary 4.3)

≤ C
∫
B 2rn

ε0
(x0)
|∇uΣn|p dx+ Cr

2+p′− 2p′
q

n − λrn

≤ Cr1+b
n + Cr

2+p′− 2p′
q

n − λrn.

Notice that

2 + p′ − 2p′
q
> 1⇔ q >

2p
2p− 1 ,

which is always true under the assumption q > q1. Therefore, letting n tend to +∞, we
arrive to a contradiction.

This proves that every minimizer Σ of Poblem 1.1 contains no closed curves. In order
to prove the last assertion in Theorem 5.1, we use theorem II.5 of [20, § 61], stating
that if D ⊂ R2 is a bounded connected set with locally connected boundary, then there
is a simple closed curve S ⊂ ∂D. If R2\Σ were disconnected, then there would exist a
bounded connected component D of R2\Σ such that ∂D ⊂ Σ, and hence Σ would contain
a simple closed curve, contrary to what we proved before.

6 Proof of a C1,α regularity

In this section, we shall prove that every solution Σ of Problem 1.1 is locally C1,α regular
at H1 a.e. point x ∈ Σ ∩ Ω.

Throughout this section, Ω will denote an open bounded subset in R2. Recall that
K(Ω) is the class of all closed connected proper subsets of Ω.

The factor λ in the statement of Problem 1.1 affects the shape of an optimal set
minimizing the functional Fλ,p over K(Ω), and according to Proposition 2.17, we know
that there exists λ0 = λ0(p, f,Ω) > 0 such that if λ ∈ (0, λ0], then each minimizer Σ of the
functional Fλ,p over K(Ω) has positive one-dimensional Hausdorff measure. Throughout
this section, we shall assume that λ = λ0 = 1 for simplicity. Of course, this is not
restrictive regarding to the regularity theory.

6.1 Control of the defect of minimality when Σ is flat

For any closed set Σ ⊂ R2, any point x ∈ R2 and any radius r > 0 we denote by βΣ(x, r)
the flatness of Σ in Br(x) defined through

βΣ(x, r) = inf
P3x

1
r
dH(Σ∩Br(x), P ∩Br(x)),
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where the infimum is taken over the set of all affine lines P passing through x. Notice that
if βΣ(x, r) < +∞, then it is easy to prove that the infimum above is actually the minimum.
Furthermore, it is easy to see that in this case βΣ(x, r) ∈ [0,

√
2] and βΣ(x, r) =

√
2 if

and only if Σ ∩Br(x) is a point on the circle ∂Br(x).

Proposition 6.1. Let Σ ⊂ R2 be a closed set, x ∈ R2, r > 0 and κ ∈ (0, 1). If
βΣ(x, κr) < +∞, then

βΣ(x, κr) ≤ 2
κ
βΣ(x, r). (6.1)

Proof. Since βΣ(x, κr) < +∞, βΣ(x, κr) and βΣ(x, r) belong to [0,
√

2]. Notice that
if βΣ(x, r) ≥ κ

√
2

2 , then (6.1) becomes trivial. Now let P be an affine line realizing the
infimum in the definition of βΣ(x, r). Then, because Σ∩Bκr(x) ⊂ Σ∩Br(x), the following
inequality holds

max
y∈Σ∩Br(x)

dist(y, P ∩Br(x)) ≥ max
y∈Σ∩Bκr(x)

dist(y, P ∩Bκr(x)). (6.2)

Let x0 ∈ P ∩Bκr(x) be a point such that

r0 := dist(x0,Σ ∩Bκr(x)) = max
y∈P∩Bκr(x)

dist(y,Σ ∩Bκr(x)).

We now distinguish two cases.
Case 1: r0 = 0. By (6.2) and by the definition of the Hausdorff distance, it follows that
dH(Σ ∩Br(x), P ∩Br(x)) ≥ dH(Σ ∩Bκr(x), P ∩Bκr(x)). Thus

1
κ
βΣ(x, r) = 1

κr
dH(Σ ∩Br(x), P ∩Br(x))

≥ 1
κr
dH(Σ ∩Bκr(x), P ∩Bκr(x)) ≥ βΣ(x, κr)

and therefore in this case (6.1) holds.
Case 2: r0 > 0. Since βΣ(x, κr) < +∞, namely Σ ∩ Bκr(x) 6= ∅, by the definitions of x0

and r0, we get that r0 ≤ |x0− x|+ κr, because Bκr(x) ⊂ B|x0−x|+κr(x0). Then, there is a
point x1 ∈ ∂Br0(x0)∩P ∩Bκr(x), because otherwise r0 would be greater than |x0−x|+κr.
Setting x̃ = x0 + 1

2(x1 − x0) ∈ P ∩ Bκr(x), we observe the following: |x̃ − x0| = r0
2 and

B r0
2

(x̃) ⊂ Bκr(x) ∩ Br0(x0). This, again by the definitions of x0 and r0, implies that
B r0

2
(x̃) ∩ Σ = ∅ and therefore

max
y∈P∩Br(x)

dist(y,Σ ∩Br(x)) ≥ r0

2 . (6.3)

By (6.2), (6.3) and by the definition of the Hausdorff distance, we deduce the following
inequality

2dH(Σ ∩Br(x), P ∩Br(x)) ≥ dH(Σ ∩Bκr(x), P ∩Bκr(x)),

leading to (6.1).

We now introduce the following definition of the local energy.
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Definition 6.2. Let Σ ∈ K(Ω) and let τ ∈ [0,
√

2]. For any x0 ∈ R2 and any r > 0 we
define

wτΣ(x0, r) = sup
Σ′∈K(Ω),Σ′∆ Σ⊂Br(x0)

H1(Σ′)≤100H1(Σ), βΣ′ (x0,r)≤τ

1
r

∫
Br(x0)

|∇uΣ′ |p dx. (6.4)

Remark 6.3. Let Σ ⊂ Ω be closed and arcwise connected and let Σ′ be an admissible
set for the problem (6.4). Assume that Σ\Br(x0) contains a sequence of points (yn)n
converging to some point y ∈ ∂Br(x0). Then y ∈ Σ′, since Σ\Br(x0) = Σ′\Br(x0) and
Σ′ is closed.

Remark 6.4. Assume that Σ ⊂ Ω is closed and arcwise connected, τ ∈ (0,
√

2] and
βΣ(x0, r1) ≤ ε with ε ∈ (0, τ2 ]. Then, for all r ∈ [2εr1

τ
, r1], there is a solution for prob-

lem (6.4). Indeed, using (6.1), we deduce that βΣ(x0, r) ≤ τ for all r ∈ [2εr1
τ
, r1] and hence

Σ is an admissible set in (6.4). Thus, due to Proposition 2.13, wτΣ(x0, r) ∈ [0,+∞). We
can then conclude by use of the direct method in the Calculus of Variations, standard
compactness results and the fact that H1 is lower semicontinuous with respect to the
topology generated by the Hausdorff distance.

In order to establish a decay for wτΣ, we need the following geometrical result.

Proposition 6.5. Let Σ ⊂ Ω be closed and arcwise connected, x ∈ Ω and τ ∈ (0, 1
2 ],

and let βΣ(x, r1) ≤ ε for some ε ∈ (0, τ2 ]. In addition, assume that Σ\Br1(x) 6= ∅. If
r ∈ [2εr1

τ
, r1], then for any closed arcwise connected set Σ′ ⊂ Ω such that Σ′∆ Σ ⊂ Br(x)

and βΣ′(x, r) ≤ τ it holds

(i)
βΣ′(x, r1) ≤ 5τr

r1
+ ε. (6.5)

(ii)
βΣ′(x, s) ≤ 6τ for all s ∈ [r, r1]. (6.6)

Proof. Every ball in this proof is centered at x. Using (6.1), we deduce that

βΣ(x, t) ≤ τ for all t ∈ [2εr1/τ, r1]. (6.7)

Let P1, P and P ′ realize the infimum, respectively, in the definitions of βΣ(x, r1), βΣ(x, r)
and βΣ′(x, r). By (6.7),

dH(Σ∩Br, P ∩Br) ≤ τr. (6.8)

On the other hand,

dH(Σ′ ∩Br1 , P1 ∩Br1) ≤ dH(Σ′ ∩Br1 ,Σ∩Br1) + dH(Σ∩Br1 , P1 ∩Br1)
≤ dH(Σ′ ∩Br,Σ∩Br) + εr1, (6.9)
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where the latter inequality comes because Σ′∆ Σ ⊂ Br and βΣ(x, r1) ≤ ε. In addition,

dH(Σ′ ∩Br,Σ∩Br) ≤ dH(Σ′ ∩Br, P
′ ∩Br) + dH(P ∩Br, P

′ ∩Br)
+ dH(Σ∩Br, P ∩Br)

≤ 2τr + dH(P ∩Br, P
′ ∩Br), (6.10)

where we have used (6.8) and the assumption βΣ′(x, r) ≤ τ . Notice that, since Σ∩Br 6= ∅,
Σ\Br1 6= ∅ and Σ is arcwise connected, there is a sequence (xn)n with xn ∈ Σ\Br

converging to some point y ∈ ∂Br. By Remark 6.3, y ∈ Σ′ ∩ ∂Br and, defining

W := ∂Br ∩ {z : dist(z, P ) ≤ βΣ(x, r)r} and W ′ := ∂Br ∩ {z : dist(z, P ′) ≤ βΣ′(x, r)r},

it holds y ∈ W ∩W ′. This implies the following estimate

dH(P ∩Br, P
′ ∩Br) ≤ (arcsin(βΣ(x, r)) + arcsin(βΣ′(x, r)))r

≤ 2 arcsin(τ)r ≤ 3τr, (6.11)

where we have used (6.7), the assumption βΣ′(x, r) ≤ τ and the fact that arcsin(t) ≤ 3t
2

if t ∈ [0, 1
2 ]. By (6.10) and (6.11),

dH(Σ′ ∩Br,Σ∩Br) ≤ 5τr. (6.12)

This together with (6.9) gives the following

dH(Σ′ ∩Br1 , P1 ∩Br1) ≤ 5τr + εr1.

Thus, we have proved (i). Now let s ∈ [r, r1] and let Ps be the line realizing the infimum
in the definition of βΣ(x, s). As in the proof of (i) we get

dH(Σ′ ∩Bs, Ps ∩Bs) ≤ dH(Σ′ ∩Bs,Σ∩Bs) + dH(Σ∩Bs, Ps ∩Bs)
≤ dH(Σ′ ∩Br,Σ∩Br) + dH(Σ∩Bs, Ps ∩Bs).

Then, by (6.7) and (6.12), we deduce that

dH(Σ′ ∩Bs, Ps ∩Bs) ≤ 5τr + τs

≤ 6τs,

thus concluding the proof.

In the next proposition we establish a decay for wτΣ(x, ·), provided that βΣ(x, ·) is
small enough.

Proposition 6.6. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined
in (1.4). Let ε0 ∈ (0, 1/2), b, r, C > 0 be the constants of Lemma 4.11. Let Σ ⊂ Ω be
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closed and connected, H1(Σ) < +∞ and let Br1(x0) ⊂ Ω with r1 ∈ (0,min{r, diam(Σ)/2}).
Suppose that τ ∈ (0, ε06 ] and

βΣ(x0, r1) ≤ ε

for some ε ∈ (0, τ20 ]. Then, for all r ∈ [2εr1
τ
, r110 ],

wτΣ(x0, r) ≤ C
(
r

r1

)b
wτΣ(x0, r1) + Crb. (6.13)

Proof. Every ball in this proof is centered at x0. By Remark 3.5, Σ is arcwise connected.
From Remark 6.4 it follows that there is Σr ⊂ Ω realizing the supremum in the defini-
tion of wτΣ(x0, r) which, by Remark 3.5, is arcwise connected. In addition, according to
Proposition 6.5,

βΣr(x0, r1) ≤ τ and βΣr(x0, s) ≤ ε0 for all s ∈ [r, r1].

This allows us to apply Lemma 4.11 to uΣr , which yields

wτΣ(x0, r) = 1
r

∫
Br
|∇uΣr |p dx

≤ C
( r
r1

)b 1
r1

∫
Br1

|∇uΣr |p dx+ Crb

≤ C
( r
r1

)b
wτΣ(x0, r1) + Crb.

Notice that to obtain the last inequality we have used the definition of wτΣ(x0, r1) and the
fact that βΣr(x0, r1) ≤ τ .

Now we control a defect of minimality via wτΣ.

Proposition 6.7. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined
in (1.4), and let ε0 ∈ (0, 1/2), b, r > 0 be the constants of Lemma 4.11. Let Σ ⊂ Ω be
closed and connected, H1(Σ) < +∞ and Br1(x0) ⊂ Ω with r1 ∈ (0,min{r, diam(Σ)/2}).
Suppose that τ ∈ (0, ε06 ] and

βΣ(x0, r1) ≤ ε

for some ε ∈ (0, τ20 ]. Then there is a constant C > 0, possibly depending only on
p, q0, q, ‖f‖q, |Ω|, such that if r ∈ [2εr1

τ
, r110 ], then for any closed connected set Σ′ ⊂ Ω

satisfying Σ′∆Σ ⊂ Br(x0), H1(Σ′) ≤ 100H1(Σ) and βΣ′(x0, r) ≤ τ ,

Ep(uΣ)− Ep(uΣ′) ≤ Cr
(
r

r1

)b
wτΣ(x0, r1) + Cr1+b. (6.14)

Proof. Every ball in this proof is centered at x0. By Remark 3.5, Σ and Σ′ are arcwise
connected and by Corollary 4.3,

Ep(uΣ)− Ep(uΣ′) ≤ C
∫
B2r
|∇uΣ′|p dx+ Cr2+p′− 2p′

q , (6.15)
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where C = C(p, q0, q, ‖f‖q) > 0. On the other hand, by Proposition 6.5,

βΣ′(x0, r1) ≤ τ and βΣ′(x0, s) ≤ ε0 for all s ∈ [r, r1].

This allows to apply Lemma 4.11 to uΣ′ and obtain that∫
B2r
|∇uΣ′ |p dx ≤ C

(2r
r1

)1+b ∫
Br1

|∇uΣ′ |p dx+ C(2r)1+b, (6.16)

where C = C(p, q0, q, ‖f‖q, |Ω|) > 0. Hereinafter in this proof, C denotes a positive
constant that can depend only on p, q0, q, ‖f‖q, |Ω| and can be different from line to line.
Using (6.15), (6.16) and the fact that r2+p′− 2p′

q < r1+b (because r < 1, b < 1 + p′− 2p′/q),
we deduce the following chain of estimates

Ep(uΣ)− Ep(uΣ′) ≤ C
(
r

r1

)1+b ∫
Br1

|∇uΣ′|p dx+ Cr1+b

≤ Cr
(
r

r1

)b 1
r1

∫
Br1

|∇uΣ′ |p dx+ Cr1+b

≤ Cr
(
r

r1

)b
wτΣ(x0, r1) + Cr1+b,

where to obtain the last estimate we have used the definition of wτΣ(x0, r1) and the fact
that βΣ′(x0, r1) ≤ τ .

6.2 Density control

Proposition 6.8. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined
in (1.4), and let ε0 ∈ (0, 1/2), b, r > 0 be the constants of Lemma 4.11 and C > 0 be
the constant of Proposition 6.7. Let Σ ⊂ Ω be a solution of Problem 1.1, τ ∈ (0, ε06 ],
x0 ∈ Σ and 0 < r1 < min{r, diam(Σ)/2} be such that Br1(x0) ⊂ Ω. Then the following
assertions hold.

(i) If
βΣ(x0, r1) ≤ ε (6.17)

for some ε ∈ (0, τ2

400 ], then for all r ∈ [ τr14 ,
r1
10 ],

H1(Σ∩Br(x0)) ≤ 2r + 5βΣ(x0, r)r + Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b. (6.18)

(ii) Assume, in addition, that the estimate

wτΣ(x0, r1) + rb1 ≤
τ

300C (6.19)

is valid. Then

H1({s ∈ [τr1/4, τr1/2] : # Σ∩∂Bs(x0) = 2}) > τr1/5. (6.20)
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(iii) Let (6.17) and (6.19) hold and r ∈ [τr1/4, τr1/2] be such that # Σ∩∂Br(x0) = 2.
Then

(iii-1) the two points of Σ∩∂Br(x0) belong to two different connected components
of ∂Br(x0) ∩ {y : dist(y, P0) ≤ βΣ(x0, r)r}, where P0 is a line realizing the
infimum in the definition of βΣ(x0, r).

(iii-2) Σ∩Br(x0) is arcwise connected.

(iii-3) If {z1, z2} = Σ∩∂Br(x0), then

H1(Σ∩Br(x0)) ≤ |z2 − z1|+ Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b. (6.21)

Remark 6.9. Following [11], if the situation of item (iii-1) occurs, we say that the two
points lie “on both sides”.

Proof. Step 1. We first prove (i). By (6.1) and (6.17), for all r ∈ [ τr14 ,
r1
10 ],

βΣ(x0, r) ≤
8
τ
βΣ(x0, r1) ≤ τ

50 . (6.22)

Fix an arbitrary r ∈ [ τr14 ,
r1
10 ]. Let P0 realize the infimum in the definition of βΣ(x0, r)

and let ξ1 and ξ2 be the two points of ∂Br(x0) ∩ P0. Define W and Σ′ by

W := ∂Br(x0) ∩ {y : dist(y, P0) ≤ βΣ(x0, r)r}, Σ′ := (Σ \Br(x0)) ∪W ∪ [ξ1, ξ2].

Then, Σ′ ∈ K(Ω), Σ∆Σ′ ⊂ Br(x0) and from (6.22) it follows that βΣ′(x0, r) ≤ τ
50 . Fur-

thermore, since Σ is arcwise connected, compact and r < diam(Σ)/20, it follows that
H1(Σ) > 20r and then H1(Σ′) < 100H1(Σ). Since Σ′ is a competitor,

H1(Σ) ≤ H1(Σ′) + Ep(uΣ)− Ep(uΣ′)

and then, using Proposition 6.7, we get

H1(Σ∩Br(x0)) ≤ 2r +H1(W ) + Ep(uΣ)− Ep(uΣ′)

≤ 2r +H1(W ) + Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b. (6.23)

On the other hand, since arcsin′(t) ≤ 10√
99 for all t ∈ [0, 1

10 ] and by (6.22), βΣ(x0, r) < 1
10 ,

H1(W ) ≤ 4r arcsin(βΣ(x0, r)) ≤ 5rβΣ(x0, r). (6.24)

Combining (6.23) and (6.24), we deduce (i).
Step 2. We prove now (ii). Let us consider the next three sets

E1 := {s ∈ (0, τr1/2] : # Σ∩∂Bs(x0) = 1}, E2 := {s ∈ (0, τr1/2] : # Σ∩∂Bs(x0) = 2},
E3 := {s ∈ (0, τr1/2] : # Σ∩∂Bs(x0) ≥ 3}.
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We claim that either E1 = ∅ or E1 ⊂ (0, τr1/299). For the sake of contradiction, assume
that there is s ∈ [τr1/299, τr1/2] such that # Σ∩∂Bs(x0) = 1. Then the set

Σ′ = Σ\Bs(x0),

would be arcwise connected, Σ′∆ Σ ⊂ Bs(x0), H1(Σ′) < H1(Σ) and

βΣ′(x0, r1) ≤ τ/2 + ε < τ. (6.25)

Since Σ′ is a competitor, H1(Σ) ≤ H1(Σ′) +Ep(uΣ)−Ep(uΣ′). It also holds the estimate
s ≤ H1(Σ ∩Bs(x0)), because s < diam(Σ)/2, x0 ∈ Σ and Σ is arcwise connected. Thus

s ≤ H1(Σ ∩Bs(x0)) ≤ Ep(uΣ)− Ep(uΣ′). (6.26)

Notice that, by assumption, the estimate (6.14) holds with C, but looking closer at
the proof of Proposition 6.7, we observe that (4.8) in Corollary 4.3 also holds with C.

Then, using (6.26), Corollary 4.3 and the fact that r
2+p′− 2p′

q

1 < r1+b
1 (because r1 < 1 and

b < 1 + p′ − 2p′
q

), we obtain the following chain of estimates

s ≤ H1(Σ ∩Bs(x0)) ≤ Ep(uΣ)− Ep(uΣ′) ≤ C
∫
B2s(x0)

|∇uΣ′ |p dx+ Cs2+p′− 2p′
q

≤ C
∫
Br1 (x0)

|∇uΣ′ |p dx+ Cr1+b
1

≤ Cr1w
τ
Σ(x0, r1) + Cr1+b

1 (by (6.25) and the definition of wτΣ(x0, r1))
≤ τr1/300 (by (6.19)),

that leads to a contradiction with the fact that s ≥ τr1/299. Thus, either E1 = ∅, or

E1 ⊂ (0, τr1/299). (6.27)

Next, using Eilenberg inequality (see [17, 2.10.25]), we obtain

H1(Σ ∩Bτr1/2(x0)) ≥
∫ τr1/2

0
# Σ∩∂Bs(x0) ds. (6.28)

On the other hand, using (6.18) with r = τr1/2, (6.19), the fact that

βΣ(x0, τr1/2) ≤ 4ε/τ ≤ τ/100

and the fact that τ ≤ ε0/6, we get

H1(Σ ∩Bτr1/2(x0)) < τr1 + τr1/150. (6.29)

Then, using (6.27)-(6.29), we obtain

τr1 + τr1/150 > H1(E1) + 2H1(E2) + 3H1(E3)
= H1(E1) + 2(τr1/2−H1(E1)−H1(E3)) + 3H1(E3)
= −H1(E1) + τr1 +H1(E3)
≥ −τr1/299 + τr1 +H1(E3),
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this yields
H1(E3) < τr1/99. (6.30)

Using (6.27) and (6.30), we deduce that

H1(E2 ∩ [τr1/4, τr1/2]) > τr1/5,

thereby proving (ii).
Step 3. We prove (iii). Let r ∈ E2 ∩ [τr1/4, τr1/2]. Assume that (iii-1) does not hold
for r. Then we can take as a competitor the set

Σ′ = Σ \Br(x0) ∪ V,

where V is the connected component of ∂Br(x0)∩{y : dist(y, P0) ≤ βΣ(x0, r)r} such that
Σ∩∂Br(x0) ⊂ V . So, H1(Σ∩Br(x0)) ≤ H1(V ) + Ep(uΣ) − Ep(uΣ′). Arguing as in the
proof of the fact that E1 ⊂ (0, τr1/299) in Step 2, we deduce that

Ep(uΣ)− Ep(uΣ′) ≤ τr1/300.

On the other hand, as in Step 1 we have that

H1(V ) ≤ (5/2)rβΣ(x0, r) ≤ τ 2r1/40.

But then
H1(Σ ∩Br(x0)) < τr1/150

that leads to a contradiction because H1(Σ∩Br(x0)) ≥ r ≥ τr1/4, therefore (iii-1) holds.
Next, assume that Σ∩Br(x0) is not arcwise connected. Then, from [11, Lemma 5.13], it
follows that Σ \Br(x0) is arcwise connected. Thus, taking the set Σ′ = Σ \Br(x0) as a
competitor, we get

H1(Σ ∩Br(x0)) ≤ τr1/300,

that leads to a contradiction with the fact that H1(Σ∩Br(x0)) ≥ τr1/4. So (iii-2) holds.
Since Σ∩∂Br(x0) = {z1, z2}, where z1, z2 lie “on both sides” and [z1, z2] is sufficiently
close, in Br(x0) and in the Hausdorff distance, to a diameter of Br(x0), we observe that
the set Σ \Br(x0) ∪ [z1, z2] is a competitor for Σ and (6.21) holds. This proves (iii) and
concludes the proof.

6.3 Control of the flatness

We recall the following standard height estimate (see [11, Lemma 5.14]), which we shall
use so as to establish a control on βΣ via wτΣ.

Lemma 6.10. Let Γ be an arc in Br(x0) satisfying βΓ(x0, r) ≤ 1/10, and which connects
two points ξ1, ξ2 ∈ ∂Br(x0) lying on “both sides” (as defined in Remark 6.9). Then

max
y∈Γ

dist(y, [ξ1, ξ2]) ≤ (2r(H1(Γ)− |ξ2 − ξ1|))
1
2 . (6.31)
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In the next proposition we show that if βΣ and wτΣ are small enough on some fixed
scale, then they stay small on smaller scales.

Proposition 6.11. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined
in (1.4). Let Σ ⊂ Ω be a solution of Problem 1.1. Then there exist constants 0 < ε1 < ε2

and a, b, r0 > 0, and a constant C = C(p, q0, q, ‖f‖q, |Ω|) > 0 such that whenever x ∈ Σ
and 0 < r < r0 satisfy Br(x) ⊂ Ω,

wτΣ(x, r) ≤ ε1 and βΣ(x, r) ≤ ε2 (6.32)

then

(i)
βΣ(x, ar) ≤ C(wτΣ(x, r)) 1

2 + Cr
b
2 . (6.33)

(ii)
wτΣ(x, ar) ≤ 1

2w
τ
Σ(x, r) + C(ar)b. (6.34)

(iii) For any n ∈ N,
wτΣ(x, anr) ≤ ε1 and βΣ(x, anr) ≤ ε2. (6.35)

Proof. Let ε0 ∈ (0, 1/2), b, r > 0 and C = C(p, q0, q, ‖f‖q, |Ω|) > 0 be the constants of
Lemma 4.11. Fix τ ∈ (0, ε06 ] and a constant C1 such that the estimate (6.21) holds with
C1. Without loss of generality, assume that C < C1. We now define

a := min
{
τ

4 ,
( 1

2C

) 1
b

}
, ε2 := aτ

100 , ε1 :=
(
aε2

50C1

)2

, C ′ := 24C1

a
.

Fix r0 ∈ (0,min{r, diam(Σ)/2}) such that

C ′r
b
2
0 ≤

ε1

2 (6.36)

and hence
C ′rb0 ≤

ε1

2 (6.37)

because r0 < 1. Let us prove (i). Applying Proposition 6.8 with r1 = r and ε = ε2 ≤ τ2

400 ,
we deduce that there is s ∈ [τr/4, τr/2] such that Σ∩∂Bs(x) = {z1, z2}, z1 and z2 lie on
“both sides” (see Remark 6.9). Fix such s. Then, by Proposition 6.8 (iii-3), we get

H1(Σ∩Bs(x)) ≤ |z1 − z2|+ C1s
(
s

r

)b
wτΣ(x, r) + C1s

1+b

:= |z1 − z2|+ L.

Let Γ ⊂ Σ∩Bs(x) be an arc connecting z1 with z2. Then, using Lemma 6.10, we obtain

max
y∈Γ

dist(y, [z1, z2]) ≤ (2s(H1(Γ)− |z1 − z2|))
1
2 ≤ (τrL) 1

2 .
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Since Σ∩Bs(x) is arcwise connected, Σ ∩ ∂Bs(x) = {z1, z2} and H1(Γ) ≥ |z1 − z2|, then

sup
y∈Σ∩Bs(x)\(Bs(x)∩Γ)

dist(y,Γ) ≤ H1(Σ∩Bs(x)\Γ) ≤ H1(Σ∩Bs(x))− |z1 − z2| = L.

Thus
max

y∈Σ∩Bs(x)
dist(y, [z1, z2]) ≤ (τrL) 1

2 + L. (6.38)

Notice that since Σ∩Bs(x) is arcwise connected and Σ escape Bs(x) either through z1

or z2, then (6.38) yields the following estimate

dH(Σ∩Bs(x), [z1, z2]) ≤ (τrL) 1
2 + L. (6.39)

Let P̃ be the line passing through x and collinear to [z1, z2]. Using the fact that
dist(x, [z1, z2]) ≤ (τrL) 1

2 + L, we get

dH([z1, z2], P̃ ∩Bs(x)) ≤ arcsin(((τrL) 1
2 + L)/s)s < 2((τrL) 1

2 + L), (6.40)

where the latter estimate holds because ((τrL) 1
2 +L)/s < 1

10 . Using (6.39) together with
(6.40), we obtain that

dH(Σ∩Bs(x), P̃ ∩Bs(x)) ≤ 3((τrL) 1
2 + L)

and hence βΣ(x, s) ≤ 3
s
((τrL) 1

2 + L). If ar = κs, then 2
κ
≤ τ

a
because s ≤ τr

2 and, thanks
to (6.1),

βΣ(x, ar) ≤ τ

a
βΣ(x, s) ≤ 12

ar
((τrL) 1

2 + L). (6.41)

On the other hand,

(τrL) 1
2 ≤ (C1r

2wτΣ(x, r) + C1r
2+b) 1

2 ≤ C1r(wτΣ(x, r)) 1
2 + C1r

1+ b
2 (6.42)

and, moreover,

L = C1s
(
s

r

)b
wτΣ(x, r) + C1s

1+b ≤ C1r(wτΣ(x, r)) 1
2 + C1r

1+ b
2 , (6.43)

where we have used that wτΣ(x, r) < 1, 0 < s < r < 1 and that b > 0. By (6.41)-(6.43),

βΣ(x, ar) ≤ C ′(wτΣ(x, r)) 1
2 + C ′r

b
2 ,

with C ′ = 24C1
a

, that shows (i). Furthermore, using (6.32) and (6.36), we get

βΣ(x, ar) ≤ C ′(ε1) 1
2 + C ′r

b
2
0 < ε2.

Then, applying Proposition 6.6 with r1 = r, ε = ε2 and also noting that 2ε
τ
< a, namely

ar ∈ (2εr
τ
, r10), we deduce that

wτΣ(x, ar) ≤ CabwτΣ(x, r) + C(ar)b ≤ 1
2w

τ
Σ(x, r) + C ′(ar)b ≤ ε1

2 + ε1

2 = ε1,
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where we have used that a ≤
(

1
2C

) 1
b

, the fact that C < C ′ and (6.37). Notice that we
have proved (ii) and the fact that βΣ(x, ar) ≤ ε2 and wτΣ(x, ar) ≤ ε1. Next, using (6.32)
with ar instead of r, we get: βΣ(x, a2r) ≤ ε2 and wτΣ(x, a2r) ≤ ε1. Thus, iterating, we
observe that for all n ∈ N the following holds

wτΣ(x, anr) ≤ ε1 and βΣ(x, anr) ≤ ε2,

that shows (iii). This concludes the proof.

Now we are ready to prove that if βΣ(x, r) + wτΣ(x, r) falls below a critical threshold
δ0 > 0 for x ∈ Σ∩Ω and sufficiently small r > 0, then βΣ(x, r) ≤ Crα for some α ∈ (0, 1),
that leads to a C1,α regularity.

Proposition 6.12. Let p ∈ (1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined
in (1.4), and let a ∈ (0, 1/10) be the constant of Proposition 6.11. Let Σ be a solution of
Problem 1.1. Then there exists α > 0 and r0, δ0 > 0 such that if x ∈ Σ and 0 < r0 < r0

satisfy Br0(x) ⊂ Ω,
βΣ(x, r0) + wτΣ(x, r0) ≤ δ0, (6.44)

then
βΣ(x, r) ≤ Crα for all r ∈ (0, ar0), (6.45)

where C is a positive constant, possibly depending only on p, q0, q, ‖f‖q, |Ω| and r0.

Proof. Let ε1, b, r0, C > 0 be as in Proposition 6.11. Next, we define

δ0 := aε1

4 , γ := min
{
b

2 ,
ln(3/4)
ln(a)

}
, r0 :=

r0,

(
1
4

) 1
γ

.
It is easy to check that for all t ∈ (0, r0],

1
2t

γ + tb ≤ (at)γ, (6.46)

because since 0 < 2γ ≤ b and r0 < 1,
1
2t

γ + tb ≤ 1
2t

γ + rγ0t
γ ≤ 3

4t
γ ≤ (at)γ.

Now let r0 be a radius given in the statement, r0 < r0. Let us show by induction that
for all n ∈ N,

wτΣ(x, anr0) ≤ 1
2nw

τ
Σ(x, r0) + C(an+1r0)γ. (6.47)

Obviously, (6.47) holds for n = 0. Suppose (6.47) holds for some n ∈ N. Notice that by
(6.35), βΣ(x, anr0) + wτΣ(x, anr0) ≤ δ0. Then, applying (6.34) with r = anr0, we get

wτΣ(x, an+1r0) ≤ 1
2w

τ
Σ(x, anr0) + C(an+1r0)b

≤ 1
2n+1w

τ
Σ(x, r0) + C

2 (an+1r0)γ + C(an+1r0)b (by induction)

≤ 1
2n+1w

τ
Σ(x, r0) + C(an+2r0)γ (by (6.46)),
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that shows (6.47). Now let r ∈ (0, r0) and let l ∈ N be such that al+1r0 < r ≤ alr0. Then
we deduce that

wτΣ(x, r) ≤ 1
a
wτΣ(x, alr0) ≤ 1

a

1
2lw

τ
Σ(x, r0) + C

a
(al+1r0)γ

≤ 2
a

1
2l+1w

τ
Σ(x, r0) + C

a
rγ

≤ 1
2l+1

ε1

2 + C

a
rγ (since wτΣ(x, r0) ≤ aε1

4 )

≤ aγ(l+1) ε1

2 + C

a
rγ ≤ ε1

2
( r
r0

)γ
+ C

a
rγ.

Thus, for all r ∈ (0, r0),
wτΣ(x, r) ≤ ε1

2
( r
r0

)γ
+ C

a
rγ. (6.48)

By (6.33) and (6.48), for all r ∈ (0, r0),

βΣ(x, ar) ≤ C(wτΣ(x, r)) 1
2 + Cr

b
2 ≤ C

(ε1

2
( r
r0

)γ
+ C

a
rγ
) 1

2 + Cr
b
2 ≤ C̃rα,

where α = γ
2 and C̃ is a positive constant, possibly depending only on p, q0, q, ‖f‖q,

a, |Ω| and r0. Therefore, βΣ(x, r) ≤ C ′rα for all r ∈ (0, ar0) with C ′ = C̃/aα. Notice
that although C ′ depends on a, however, for any given p ∈ (1,+∞) we can fix a, and
thus, we can assume that C ′ depends only on p, q0, q, ‖f‖q, |Ω| and r0. This concludes the
proof.

Corollary 6.13. Let Σ be a solution of Problem 1.1 and a, α, r0, δ0 > 0 be as in the
statement of Proposition 6.12. Let x0 ∈ Σ and 0 < r0 < r0 be such that Br0(x0) ⊂ Ω and

βΣ(x0, r0) + wτΣ(x0, r0) ≤ ε0

with ε0 := aδ0
120 . Then for any y ∈ Σ∩Bar0

10
(x0) and for any r ∈ (0, ar020 ) we have that

βΣ(y, r) ≤ Crα, where C = C(p, q0, q, ‖f‖q, |Ω|, r0) > 0. In particular, there exists
t0 ∈ (0, 1), only depending on C, a, r0 and α, such that Σ∩Bt0(x0) is a C1,α regular
curve.

Proof of Corollary 6.13. Recall that a ∈ (0, 1/10). Let y ∈ Σ∩Bar0
10

(x0) and let P0 realize
the infimum in the definition of βΣ(x0, r0). Since dH(Σ∩B r0

20
(y), P0 ∩ B r0

20
(y)) ≤ 3ε0r0,

βΣ(y, r020) ≤ 200ε0 < δ0
2 . Moreover, if Σ′ realizes the supremum in the definition of

wτΣ(y, r020), then

wτΣ(y, r020) = 20
r0

∫
B r0

20
(y)
|∇uΣ′|p dx ≤

20
r0

∫
Br0 (x0)

|∇uΣ′|p dx ≤ 20wτΣ(x0, r0) < δ0

6

and hence
βΣ(y, r020) + wτΣ(y, r020) < δ0.

Then by Proposition 6.12, there exists a constant C = C(p, q0, q, ‖f‖q, |Ω|, r0) > 0 such
that βΣ(y, r) ≤ Crα for all r ∈ (0, ar020 ). Since y ∈ Σ∩Bar0

10
(x0) was arbitrarily chosen in

Σ∩Bar0
10

(x0), there exists t0 ∈ (0, ar010 ) such that Σ∩Bt0(x0) is a C1,α regular curve (see
e.g. [3, Lemma 6.4]).

44



Now we prove that locally Σ∩Ω is a C1,α regular curve outside a set with zero H1-
measure.

Proof of Theorem 1.2. Let ε0 ∈ (0, 1/2), b, r, C > 0 be the constants of Lemma 4.11 and
let τ ∈ (0, ε06 ). Since closed connected sets with finite length are rectifiable, then (see
e.g. [6, Proposition 2.2]) for H1-a.e. point x in Σ∩Ω there is the affine line Tx, passing
through x, such that

dH(Σ∩Br(x), Tx ∩Br(x))
r

→
r→0+

0. (6.49)

Let x ∈ Σ∩Ω be such a point. Then by (6.49),

βΣ(x, r) → 0
r→0+

. (6.50)

We claim that wτΣ(x, r) tends to zero, as r → 0+. Indeed, by (6.50), for any ε ∈ (0, ε0)
there is tε ∈ (0, r) such that

βΣ(x, r) ≤ ε for all r ∈ (0, tε]. (6.51)

We assume that Btε(x) ⊂ Ω and tε < diam(Σ)/2. Then by Proposition 6.6, for all
r ∈ (0, tε/10],

wτΣ(x, r) ≤ C
(
r

tε

)b
wτΣ(x, tε) + Crb. (6.52)

On the other hand, by Remark 6.4 and by Proposition 2.13, wτΣ(x, tε) ∈ [0,+∞). Then,
letting r tend to 0+ in (6.52), we get

wτΣ(x, r) → 0
r→0+

. (6.53)

By (6.50) and (6.53),
βΣ(x, r) + wτΣ(x, r) →

r→0+
0.

This together with Corollary 6.13 concludes the proof.

7 Remark about singular points

We shall say that a set K ⊂ R2 is a cross passing through a point x ∈ R2 if K consists of
two mutually perpendicular affine lines passing through x. For convenience, we denote
the cross ({0} × R) ∪ (R× {0}) passing through the origin by K0.

In this section, we prove that every solution Σ of Problem 1.1 cannot contain quadruple
points inside Ω, namely, there is no point x ∈ Σ∩Ω such that for some fairly small radius
r > 0 the set Σ ∩Br(x) is a union of four distinct C1 arcs, each of which meets at point
x exactly one of the other three at an angle of 180◦ degrees, and each of the other two at
an angle of 90◦ degrees.

We start by proving the following lemma.
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Lemma 7.1. Let p ∈ (1,+∞). Then there is a constant C = C(p) > 0 such that for all
u ∈ W 1,p(B1), u = 0 p-q.e. on K0 ∩ B1 being a weak solution of the p-Laplace equation
in B1\K0,

ess sup
B1/2

|∇u|p ≤ C
∫
B1
|∇u|p dx.

Proof. To simplify the notation, we denote the sets B1 ∩ {x2 ≥ 0}, B1 ∩ {x2 ≤ 0},
B1 ∩ {x1 ≥ 0}, B1 ∩ {x1 ≤ 0}, B1 ∩ {x1 ≤ 0} ∩ {x2 ≥ 0}, B1 ∩ {x1 ≥ 0} ∩ {x2 ≥ 0},
B1 ∩ {x1 ≥ 0} ∩ {x2 ≤ 0}, B1 ∩ {x1 ≤ 0} ∩ {x2 ≤ 0}, respectively by BN , BS, BE, BW ,

BNW , BNE, BSE, BSW . Next, reproducing the arguments of the proof of Lemma 4.4, we
observe that the Sobolev functions ũ, u ∈ W 1,p(B1) defined by

ũ(x1, x2) =

u(x1, x2) if (x1, x2) ∈ BN

−u(x1,−x2) if (x1, x2) ∈ BS,
u(x1, x2) =

−u(x1,−x2) if (x1, x2) ∈ BN

u(x1, x2) if (x1, x2) ∈ BS

are weak solutions of the p-Laplace equations in B1\({0} × [−1, 1]) vanishing p-q.e. on
{0} × [−1, 1], and, in addition, the Sobolev functions ṽ, w̃, v, w ∈ W 1,p(B1) defined by

ṽ(x1, x2) =

ũ(x1, x2) if (x1, x2) ∈ BW

−ũ(−x1, x2) if (x1, x2) ∈ BE,
w̃(x1, x2) =

−ũ(−x1, x2) if (x1, x2) ∈ BW

ũ(x1, x2) if (x1, x2) ∈ BE,

v(x1, x2) =

u(x1, x2) if (x1, x2) ∈ BW

−u(−x1, x2) if (x1, x2) ∈ BE,
w(x1, x2) =

−u(−x1, x2) if (x1, x2) ∈ BW

u(x1, x2) if (x1, x2) ∈ BE

are weak solutions of the p-Laplace equations in B1. Thus, by [15, Proposition 3.3], there
is C = C(p) > 0 such that for each ζ ∈ {ṽ, w̃, v, w},

ess sup
B1/2

|∇ζ|p ≤ C
∫
B1
|∇ζ|p dx,

which implies that for each U ∈ {int(BNW ), int(BNE), int(BSE), int(BSW )},

ess sup
U∩B1/2

|∇u|p ≤ 4C
∫
U
|∇u|p dx.

Thus, we can conclude that

ess sup
B1/2

|∇u|p ≤ 4C
∫
B1
|∇u|p dx,

which completes the proof.

The following lemma says that if Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r0 ≤ r1,
r1 is sufficiently small, Br1(x0) ⊂ Ω and for each r ∈ [r0, r1] there exists a cross K passing
through x0 such that Σ is close enough, in Br(x0) and in the Hausdorff distance, to
K ∩Br(x0), then the energy [r0, r1] 3 r 7→ 1

r

∫
Br(x0) |∇uΣ|p dx decays no slower than Crb

for some b ∈ (0, 1) and C > 0.
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Lemma 7.2. Let p ∈ (1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then
there exists ε0 ∈ (0, 1/100), C = C(p, q0, q, ‖f‖q, |Ω|), r, b > 0 such that the following
holds. Let Σ ⊂ Ω be a closed arcwise connected set. Assume that 0 < 2r0 ≤ r1 ≤ r,
Br1(x0) ⊂ Ω and that for all r ∈ [r0, r1] there is a cross K = K(r), passing through x0,
such that dH(Σ∩Br(x0), K ∩Br(x0)) ≤ ε0r. Assume also that Σ \Br1(x0) 6= ∅. Then for
every r ∈ [r0, r1],∫

Br(x0)
|∇uΣ|p dx ≤ C

( r
r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b.

Proof. The proof follows by reproducing the proofs of Lemma 4.7, Lemma 4.10 and
Lemma 4.11 with a minor modification, namely, replacing the affine line by a cross in the
proofs of these lemmas, such a reproduction is possible thanks to Lemma 7.1.

Proposition 7.3. Let Ω ⊂ R2 be a bounded open set, p ∈ (1,+∞) and f ∈ Lq1(Ω) with
q > q1 defined in (1.4). Then every solution Σ of Problem 1.1 cannot contain quadruple
points in Ω.

Proof. Assume by contradiction that for some λ > 0 a minimizer Σ of Problem 1.1
contains a quadruple point x0 ∈ Σ∩Ω. Let ε0, b, r, C be the constants of Lemma 7.2 and
let Bt0(x0) ⊂ Ω with t0 < min{r, diam(Σ)/2}. Without loss of generality, we can assume
that the set Σ ∩Bt0(x0) consists of exactly four distinct C1 arcs, each of which meets at
point x0 exactly one of the other three at an angle of 180◦ degrees, and each of the other
two at an angle of 90◦ degrees. Then there exists a cross K passing through x0 such that
for each ε > 0 there exists δ = δ(ε) ∈ (0, t0] such that for all r ∈ (0, δ],

dH(Σ ∩Br(x0), K ∩Br(x0)) ≤ εr. (7.1)

We fix ε = ε0
2 and a sequence of decreasing radii (rn)n∈N with r0 < δ = δ

(
ε0
2

)
. Following

[8], for each n ∈ N, we define the set Dn = K ∩ ∂Brn(x0) which consists of exactly
four points. Denote by S4(Dn) ⊂ Brn(x0) a closed set of minimum H1-measure in the
ball Brn(x0) which connects the all four points of Dn (as in [8], we shall call it Steiner
connection of these points); see Figure 7.1.

Figure 7.1: Steiner connection of the vertices of a square.
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Next, for each n ∈ N, we can define a competitor Σn by

Σn = (Σ\Brn(x0))∪(∂Brn(x0)∩{y : dist(y,K) ≤ dH(Σ∩Brn(x0), K∩Brn(x0))})∪S4(Dn);

see Figure 7.2.

Figure 7.2: The set Σn ∩Bδ(x0).

Due to the condition (7.1), each of the four arcs in

∂Brn(x0) ∩ {y : dist(y,K) ≤ dH(Σ ∩Brn(x0), K ∩Brn(x0))}

has H1-measure less than or equal to 2 arcsin
(
ε0
2

)
rn. On the other hand,

H1(Σ ∩Brn(x0)) ≥ 4rn and H1(S4(Dn)) =
√

2(
√

3 + 1)rn,

where we have used that H1(S4(Dn)) = H1(S4(K0∩∂B1))rn =
√

2(
√

3+1)rn. Observing
that ε0 ∈ (0, 1/100), 2 arcsin

(
ε0
2

)
≤ 2ε0 (since arcsin(t) ≤ 2t for all t ∈ [0, 1/10]) and√

2(
√

3 + 1) ≈ 3.86, we can conclude that there is a constant C̃ > 0 independent of n
such that for each n ∈ N,

H1(Σ ∩Brn(x0))−H1(Σn ∩Brn(x0)) ≥ C̃rn. (7.2)

Now we want to apply Lemma 7.2 to Σn. If rn ≤ ε0r
2 and r ∈ (0, δ], then

dH(Σn ∩Br(x0), K ∩Br(x0))
≤ dH(Σn ∩Br(x0),Σ∩Br(x0)) + dH(Σ ∩Br(x0), K ∩Br(x0))

≤ rn + ε0r

2 ≤
ε0r

2 + ε0r

2 = ε0r,
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where we have used (7.1). So we can apply Lemma 7.2 to Σn, for the interval [2rn
ε0
, δ],

provided that 2rn
ε0
≤ δ

2 , and we obtain that∫
Br(x0)

|∇uΣn|p dx ≤ C
(r
δ

)1+b ∫
Bδ(x0)

|∇uΣn|p dx+ Cr1+b for every r ∈
[

2rn
ε0
, δ

]
.

Hereinafter in this proof, C denotes a positive constant that does not depend on rn and
can be different from line to line. Thus, applying the above estimate for r = 2rn

ε0
and

using (2.3), we have ∫
B 2rn

ε0
(x0)
|∇uΣn|p dx ≤ Cr1+b

n (7.3)

for all n ∈ N such that 2rn
ε0
≤ δ

2 . Recall that the exponent b given by Lemma 7.2 is positive
provided q > q1. Now, using the fact that Σ is a minimizer and Σn is a competitor for
Σ, the estimate (7.2), Corollary 4.3 and the estimate (7.3), we deduce the following

0 ≤ Fλ,p(Σn)−Fλ,p(Σ) ≤ Ep(uΣ)− Ep(uΣn)− λC̃rn

≤ C
∫
B2rn (x0)

|∇uΣn|p dx+ Cr
2+p′− 2p′

q
n − λC̃rn

≤ C
∫
B 2rn

ε0
(x0)
|∇uΣn|p dx+ Cr

2+p′− 2p′
q

n − λC̃rn

≤ Cr1+b
n + Cr

2+p′− 2p′
q

n − λC̃rn

for all n ∈ N such that 2rn
ε0
≤ δ

2 . Notice that 2 + p′ − 2p′
q
> 1 if and only if q > 2p

2p−1 ,
which is fulfilled under the assumption q > q1. Finally, letting n tend to +∞, we arrive
to a contradiction. This completes the proof of Proposition 7.3.
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A Auxiliary results

In the next lemma we prove the integration by parts formula for a weak solution of the
p-Poisson equation.

Lemma A.1. Let U be a bounded open set in RN , N ≥ 2 and p ∈ (1,+∞), and let
f ∈ Lq(U) with q = Np

Np−N+p if 1 < p < N , q > 1 if p = N and q = 1 if p > N . Let u be
the solution of the Dirichlet problem−∆pu = f in U

u = 0 on ∂U,
(A.1)
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which means u ∈ W 1,p
0 (U) and∫

U
|∇u|p−2∇u∇ϕ dx =

∫
U
fϕ dx for all ϕ ∈ W 1,p

0 (U). (A.2)

Then for every x0 ∈ R2 and a.e. r > 0 we have∫
Br(x0)

|∇u|p dx =
∫
∂Br(x0)

u|∇u|p−2∇u · ν dHN−1 +
∫
Br(x0)

fu dx,

where ν stands for the outward pointing unit normal vector to ∂Br(x0).

Proof. Every ball in this proof is centered at x0. We extend u be zero outside U to an
element that belongs to W 1,p(RN). Let us fix an arbitrary ε ∈ (0, r) and define

gε(t) =


1 if t ∈ [0, r − ε]
−1
ε
(t− r) if t ∈ [r − ε, r]

0 if t ∈ [r,+∞).

Since gε ∈ Lip(R+), it is clear that the function ϕ(x) := gε(|x − x0|)u is an element of
W 1,p

0 (U). Thus using the function ϕ as a test function in the weak version of the p-Poisson
equation which defines u, we get∫

U
|∇u|pgε(|x− x0|) dx+

∫
U
u|∇u|p−2∇u · g′ε(|x− x0|)

x− x0

|x− x0|
dx

=
∫
U
fugε(|x− x0|) dx.

Letting ε tend 0+, we have∫
U
|∇u|pgε(|x− x0|) dx→

∫
Br
|∇u|p dx∫

U
fugε(|x− x0|) dx→

∫
Br
fu dx.

(A.3)

On the other hand, using the integration in the polar coordinates system (see [16, 3.4.4]),
which is the special case of the coarea formula, we get∫

U
u|∇u|p−2∇u · g′ε(|x− x0|)

x− x0

|x− x0|
dx = −1

ε

∫
Br\Br−ε

u|∇u|p−2∇u · x− x0

|x− x0|
dx

= −1
ε

∫ r

r−ε
dρ
∫
∂Bρ

u|∇u|p−2∇u · x− x0

ρ
dHN−1(x)

→ −
∫
∂Br

u|∇u|p−2∇u · ν dHN−1, (A.4)

as ε→ 0+, for a.e. r > 0, because since u ∈ W 1,p(RN), the function

r ∈ (0,+∞) 7→ Ψ(r) :=
∫ r

0
dρ
∫
∂Bρ

u|∇u|p−2∇u · ν dHN−1

is absolutely continuous on every compact subinterval of (0,+∞) and hence for a.e. r > 0
there is Ψ′(r) =

∫
∂Br

u|∇u|p−2∇u · ν dHN−1 and Ψ′ ∈ L1(0, r). By (A.3) and (A.4) we
deduce the desired formula.
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The following lemma on the global boundedness of weak solutions of the p-Poisson
equation, that we prove here for the reader’s convenience, is the refined version of the
classical result [18, Theorem 8.15].

Lemma A.2. Let U be a bounded open set in RN , N ≥ 2 and p ∈ (1,+∞), and let
f ∈ Lq(U) with q > N

p
if p ∈ (1, N ] and q = 1 if p > N . Let u be the weak solution of

the equation (A.1). Then there exists a constant C = C(N, p, q, ‖f‖q, |U |) > 0 such that

‖u‖L∞(RN ) ≤ C. (A.5)

Proof. We assume that ‖f‖q 6= 0, because otherwise u = 0 and (A.5) holds. Recall that
we can extend u by zero outside U to an element that belongs to W 1,p(RN) and we shall
use the same notation for this extension as for the function u. If p > N , then by [18,
Theorem 7.10] and since u = 0 on RN\U , there exists C = C(N, p, |U |) > 0 such that

‖u‖L∞(RN ) ≤ C‖∇u‖Lp(RN ). (A.6)

Using u as the test function in the equation (A.2), we get∫
RN
|∇u|p dx =

∫
RN
fu dx

≤ C
∫
U
|f | dx

(∫
RN
|∇u|p dx

)1/p
(by (A.6))

and then ∫
RN
|∇u|p dx ≤ Cp′‖f‖p

′

1

that together with (A.6) implies (A.5).
Now let p ∈ (1, N ] and let k = ‖f‖q. For β ≥ 1 and b > k, define the function

H ∈ C1([k,+∞)) by setting H(s) = sβ − kβ if s ∈ [k, b] and for s ≥ b define H to be
linear. Next, we set w = u+ + k and take

v = G(w) =
∫ w

k
|H ′(s)|p ds

in the equality (A.2). By the chain rule, [18, Theorem 7.8], v is a legitimate test function
in (A.2) and on substitution we obtain∫

U
|∇w|pG′(w) dx =

∫
U
fG(w) dx.

Observing that |∇w|pG′(w) = |∇H(w)|p and G(t) ≤ tG′(t), and by using Hölder’s in-
equality, we get∫

U
|∇H(w)|p dx ≤

∫
U

kp−1

kp−1 |f |wG
′(w) dx ≤

∫
U

1
kp−1 |f |w

pG′(w) dx

=
∫
U

1
kp−1 |f ||wH

′(w)|p dx

≤
(∫

U

1
k(p−1)q |f |

q dx
) 1
q
(∫

U
|wH ′(w)|

pq
q−1 dx

) q−1
q
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and then
‖∇H(w)‖p ≤ C0‖wH ′(w)‖pq/(q−1) (A.7)

with C0 = C0(p, ‖f‖q) > 0. Since H(w) ∈ W 1,p
0 (U), we may apply the Sobolev inequality

[18, Theorem 7.10] to get

‖H(w)‖N̂p/(N̂−p) ≤ Ĉ‖∇H(w)‖p (A.8)

where N̂ = N , Ĉ = Ĉ(N, p) > 0 if N > p and N < N̂ < qp, Ĉ = Ĉ(N, p, |U |) > 0 if
N = p. By (A.7) and (A.8),

‖H(w)‖N̂p/(N̂−p) ≤ C‖wH ′(w)‖pq/(q−1)

where C = C(N, p, |U |) > 0. Recalling the definition of H and letting b tend to +∞ in
the latter estimate, we deduce that for all β ≥ 1 the inclusion w ∈ L

βpq
q−1 (U) implies the

stronger inclusion, w ∈ L
βN̂p

N̂−p (U) (since N̂ < qp). Thus, setting q∗ = pq/(q − 1), and
χ = N̂(q − 1)/q(N̂ − p) > 1, we obtain

‖w‖βχq∗ ≤ (Cβ)
1
β ‖w‖βq∗ . (A.9)

Let us take β = χm, m ∈ N, m ≥ 1, so that by (A.9),

‖w‖χm+1q∗ ≤
m∏
i=0

(Cχi)χ−i‖w‖q∗

≤ Cσχτ‖w‖q∗, σ = χ/(χ− 1), τ = χ/(χ− 1)2.

Letting m tend to +∞, we obtain

‖w‖∞ ≤ Cσχτ‖w‖q∗. (A.10)

Hereinafter in this proof, C denotes a positive constant that can depend only on N, p, q,
|U | and can change from line to line. Notice that since q∗ < N̂p/(N̂ − p) and since
u ∈ W 1,p

0 (U), using again the Sobolev inequality [18, Theorem 7.10], we get

‖u+‖q∗ ≤ C‖∇u+‖p. (A.11)

Thus, observing that ‖w‖q∗ = ‖u+ + k‖q∗ ≤ ‖u+‖q∗ + k|U |1/q∗ and using (A.10) and
(A.11),

‖u+‖∞ ≤ C‖∇u+‖p + Ck. (A.12)

Now, using u+ as the test function in equation (A.2), we get

‖∇u+‖p =
(∫

U
fu+ dx

)1/p
≤ Ck1/p‖u+‖1/p

∞ .

This together with (A.12) yields

‖u+‖∞ ≤ Ck1/p‖u+‖1/p
∞ + Ck
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and then by Young’s inequality,

‖u+‖∞ ≤
1
p
‖u+‖∞ + Ck

1
p−1 + Ck. (A.13)

Therefore
‖u+‖∞ ≤ A

where A = A(N, p, q, ‖f‖q, |U |) > 0. Observing that the same estimate can be obtained
by replacing u+ with u−, we recover (A.5).

The next result is classical, however, we could not find a precise reference in the exact
following form and thus we provide the complete proof for the reader’s convenience.

Lemma A.3. Let U be a bounded open set in RN , N ≥ 2 and p ∈ (1,+∞), and let
f ∈ Lq(U) with q = Np

Np−N+p if 1 < p < N , q > 1 if p = N and q = 1 if p > N . Let u be
the weak solution of the equation (A.1). Then σ = |∇u|p−2∇u solves the problem

min
σ∈Lp′ (U ;RN )

{
1
p′

∫
U
|σ|p′ dx : −div(σ) = f in D′(U)

}
.

Moreover, the following equality holds

max
w∈W 1,p

0 (U)

{∫
U
fw dx−1

p

∫
U
|∇w|p dx

}
= min

σ∈Lp′ (U ;RN )

{
1
p′

∫
U
|σ|p′ dx : −div(σ) = f in D′(U)

}
.

(A.14)

Proof. Thanks to the Sobolev inequalities (see [18, Theorem 7.10]), the functional

W 1,p
0 (U) 3 w 7→

∫
U
fw dx− 1

p

∫
U
|∇w|p dx

is well defined and it is classical that it admits a unique maximizer which is the weak
solution of the equation (A.1), that is u. For a given Sobolev function v ∈ W 1,p(U) let
us now show that

1
p

∫
U
|∇v|p dx = max

σ∈Lp′ (U ;RN )

∫
U
∇v · σ dx− 1

p′

∫
U
|σ|p′ dx := max

σ∈Lp′ (U ;RN )
Ψ(v, σ) (A.15)

and the maximum is reached at σ̃ = |∇v|p−2∇v. By the fact that σ̃ is a competitor,

sup
σ∈Lp′ (U ;RN )

Ψ(v, σ) ≥ Ψ(v, σ̃) = 1
p

∫
U
|∇v|p dx. (A.16)

Since for any σ ∈ Lp′(U ;RN), using Hölder’s inequality, one has

Ψ(v, σ) ≤
(∫

U
|∇v|p dx

) 1
p
(∫

U
|σ|p′ dx

) 1
p′

− 1
p′

∫
U
|σ|p′ dx (A.17)

and since the maximum of the function g(t) = ‖∇v‖Lp(U)t
1
p′ − 1

p′
t, t ∈ [0; +∞) is reached

at the point tmax = ‖∇v‖pLp(U),

sup
σ∈Lp′ (U ;RN )

Ψ(v, σ) ≤ ‖∇v‖Lp(U) · ‖∇v‖
p
p′

Lp(U) −
1
p′
‖∇v‖pLp(U) = 1

p

∫
U
|∇v|p dx. (A.18)

53



By (A.16) and (A.18), we deduce (A.15). Thus we have that

max
w∈W 1,p

0 (U)

{∫
U
fw dx− 1

p

∫
U
|∇w|p dx

}
= max

w∈W 1,p
0 (U)

min
σ∈Lp′ (U ;RN )

{∫
U
fw dx−Ψ(w, σ)

}
.

Now we want to exchange the max and min in the above formula. Clearly,

max
w∈W 1,p

0 (U)
min

σ∈Lp′ (U ;RN )

{∫
U
fw dx−Ψ(w, σ)

}
≤ inf

σ∈Lp′ (U ;RN )
sup

w∈W 1,p
0 (U)

{∫
U
fw dx−Ψ(w, σ)

}

= inf
σ∈D

1
p′

∫
U
|σ|p′ dx,

where D stands for the space of σ ∈ Lp′(U ;RN) satisfying∫
U
σ · ∇φ dx =

∫
U
fφ dx for all φ ∈ C∞0 (U),

otherwise the supremum in w would be +∞. This implies that

max
w∈W 1,p

0 (U)

{∫
U
fw dx− 1

p

∫
U
|∇w|p dx

}
≤ inf

σ∈D

1
p′

∫
U
|σ|p′ dx.

We observe that the optimality condition (A.2) on u yields |∇u|p−2∇u ∈ D and then

1
p′

∫
U
|∇u|p dx = max

w∈W 1,p
0 (U)

{∫
U
fw dx− 1

p

∫
U
|∇w|p dx

}
≤ inf

σ∈D

1
p′

∫
U
|σ|p′ dx

≤ 1
p′

∫
U
|∇u|p dx.

Therefore (A.14) holds and σ = |∇u|p−2∇u is the minimizer.
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