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Abstract. In the framework of the asymptotic analysis of thin structures, we
prove that, up to an extraction, it is possible to decompose a sequence of ‘scaled
gradients’

`

∇αuε

˛

˛

1

ε
∇βuε

´

(where ∇β is the gradient in the k-dimensional ‘thin

variable’ xβ) bounded in Lp(Ω; R
m×n) (1 < p < +∞) as a sum of a sequence

`

∇αvε

˛

˛

1

ε
∇βvε

´

whose p-th power is equi-integrable on Ω and a ‘rest’ that
converges to zero in measure. In particular, for k = 1 we recover a well-known
result for thin films by Bocea and Fonseca [4].
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1. Introduction

A very handy tool in the study of the asymptotic behavior of variational prob-
lems defined on Sobolev spaces is Fonseca, Müller and Pedregal’s equi-integrability
Lemma [8] (see Theorem 2.1 below; see also earlier work by Acerbi and Fusco [2]
and by Kristensen [11]), which allows to substitute a sequence (wj) with (∇wj)
bounded in Lp by a sequence (zj) with (|∇zj |

p) equi-integrable, such that the two
sequences are equal except on a set of vanishing measure. In this way the as-
ymptotic behavior of integral energies of p-growth involving ∇wj can be computed
using ∇zj and thus avoiding to consider concentration effects. This method is very
helpful for example in the computation of lower bounds for Γ-limits (see, e.g., [5]).

In the framework of dimensional reduction, we encounter sequences of functions
(wε) defined on cylindrical sets with some ‘thin dimension’ ε; e.g., in the physical
three-dimensional case either thin films defined on some set of the type ω×(0, ε) (see,
e.g., [10, 6]), or thin wires defined on εω × (0, 1) (see, e.g., [1, 9]), where ω is some
two-dimensional bounded open set. In order to carry on some asymptotic analysis
such functions are usually rescaled to an ε-independent reference configuration Ω
(see Fig. 1), so that a new sequence (uε) is constructed, satisfying some ‘degenerate’
bounds of the form

∫

Ω

(

|∇αuε|
p +

1

εp
|∇βuε|

p
)

dx ≤ C < +∞ (1.1)

whenever the sequence of the gradients (∇wε) satisfied some corresponding Lp

bound on the unscaled domain. Here, ∇α represents the gradient with respect
to the unscaled coordinates (denoted by xα) and ∇β represents the gradient with
respect to the ‘thin’ coordinate directions (denoted by xβ). In the case described
above of thin films xβ = x3; for thin wires, xβ = (x1, x2).

A theorem by Bocea and Fonseca [4] states that an analog of Fonseca, Müller
and Pedregal’s result still holds in this framework, and an ‘equivalent sequence’ vε
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ε

11

Ω = ω × (0, 1) ε ω × (0, 1) ω × (0, ε)

Figure 1. Scaled domain, a wire and a thin film.

can be constructed such that the sequence (|∇αvε|
p + 1

εp |∇βvε|
p) is equi-integrable

on Ω. In their result they deal specifically with the case of thin films; i.e., when
the space of the xβ is one-dimensional in the notation above. An earlier mention
of the equi-integrability result in this form can be found without proof in a paper
by Shu [12], where it is suggested that the same argument of [8] could be followed.
This path is not pursued by Bocea and Fonseca’s as it would necessitate re-proving
a number of fine results for maximal functions in a periodic context; their proof
instead relies on a direct argument.

This note provides an alternative proof to that of Bocea and Fonseca, that we
think worth pointing out since its method could be applied to other types of prob-
lems involving thin structures and extends to a general nD-to-(n−k)D dimensional-
reduction framework. Its argument is essentially the following: we consider the
unscaled functions wε defined on some Ωε (e.g., ω × (0, ε)) on which we have an
Lp bound of the gradient and extend them to 2ε-periodic functions in the xβ di-
rections. These extended functions still satisfy an Lp bound, now on each fixed Ω
(e.g., a cube), so that we may apply Fonseca, Müller and Pedregal’s result to find
zε with the equi-integrability property. This property is quantified by de la Vallée
Poussin’s Criterion, which ensures the existence of a positive Borel function ϕ with
superlinear growth such that

∫

Ω
ϕ(|∇zε|

p) dx ≤ C < +∞. By this remark and a
simple but careful counting argument we can choose a set differing from the original
Ωε by a 2ε-periodic translation in the xβ directions (and hence it is not restrictive
to suppose that this set is precisely Ωε) such that

1

εk

∫

Ωε

ϕ(|∇zε|
p) dx ≤ C < +∞, (1.2)

(k denotes the dimension of the space of the xβ) and still zε equals wε except for
a set with relative measure tending to zero in Ωε. By scaling such zε we conclude
the proof since (1.2) exactly states the desired equi-integrability property.

Since our method does not rely on space dimensions, we state and proof our
result in a general n-dimensional setting. In particular it also comprises the physical
case of thin wires not covered in [4]. Thin wires are generally dealt with by more
direct arguments exploiting their one-dimensional limit nature, but our general
equi-integrability result may nevertheless be useful in the case of thin wires with an
unprescribed heterogeneous nature, in order to obtain general compactness results
as for thin films (see [6]).
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2. Preliminaries

In this section we recall two results which will be the key tools in the proof of
Theorem 3.1. The first one is Fonseca-Müller-Pedregal’s decomposition Theorem
for ‘unscaled gradients’ while the second is a classical equi-integrability criterion.

In what follows m, n will be two positive integers, Ω a bounded open subset of
R

n and p a real number such that 1 < p < +∞.

Theorem 2.1 ([8] Lemma 1.2). Let (wj) be a bounded sequence in W 1,p(Ω; Rm).
Then there exists a subsequence of (wj) (not relabelled) and a sequence (zj) in
W 1,p(Ω; Rm) such that

Ln({zj 6= wj} ∪ {∇zj 6= ∇wj}) → 0,

as j → +∞, and (|∇zj |
p) is equi-integrable on Ω. If Ω is Lipschitz, then each zj

can be chosen to be a Lipschitz function.

Proposition 2.2 (de la Vallée Poussin’s Criterion). Let (wj) be in L1(Ω; Rm);
then (wj) is equi-integrable on Ω if and only if there exists a positive Borel function
ϕ : [0, +∞) → [0, +∞] such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

j

∫

Ω

ϕ(|wj |) dx < +∞.

A proof of de la Vallée Poussin’s Criterion can be found in Dellacherie-Meyer [7].

3. Statement and proof of the main result

Let k be a positive integer such that k < n. Given x ∈ R
n, we set x = (xα, xβ) where

xα = (x1, . . . , xn−k) and xβ = (xn−k+1, . . . , xn) is the ‘thin variable’; then ∇α =
(

∂x1
, . . . , ∂xn−k

)

is the gradient with respect to xα and ∇β =
(

∂xn−k+1
, . . . , ∂xn

)

the gradient with respect to xβ .

Theorem 3.1. Let ωα ⊂ R
n−k, ωβ ⊂ R

k be open bounded sets and assume that
ωβ is connected and with Lipschitz boundary. Let (εj) be a sequence of positive real
numbers converging to zero and let (uj) be a bounded sequence in W 1,p(ωα×ωβ; Rm)
satisfying

sup
j

∫

ωα×ωβ

(

|∇αuj |
p +

1

εp
j

|∇βuj|
p
)

dx < +∞. (3.1)

Then there exists a subsequence of (uj) (not relabelled) and a sequence (vj) in
W 1,p(ωα × ωβ ; Rm) such that

Ln({vj 6= uj} ∪ {∇vj 6= ∇uj}) → 0, (3.2)

as j → +∞, and
(

|∇αvj |
p + 1

εp
j

|∇βvj |
p
)

is equi-integrable on ωα × ωβ. If ωα is

Lipschitz then each vj can be chosen to be a Lipschitz function.

Proof. Let (uj) be a bounded sequence in W 1,p(ωα×ωβ; Rm) satisfying (3.1). Since
ωβ is connected and with Lipschitz boundary, by applying a standard extension
technique (see for instance Adams [3], Theorems 4.26 and 4.28, and Section 4.29
for details) we may assume to deal with a W 1,p(ωα×Qk; Rm)-sequence, for Qk ⊂ R

k

open cube containing ωβ, still preserving the same boundedness properties of (uj).
Moreover, up to possible scalings and translations, we can always suppose that
Qk = (0, 1)k.
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Set ûj(x) := uj(xα,
xβ

εj
); then (ûj) ⊂ W 1,p(ωα × (0, εj)

k; Rm) and by hypothesis

sup
j

1

εk
j

∫

ωα×(0,εj)k

|ûj|
p dx = sup

j

∫

ωα×(0,1)k

|uj|
p dx < +∞, (3.3)

while

sup
j

1

εk
j

∫

ωα×(0,εj)k

(|∇αûj|
p + |∇β ûj |

p) dx

= sup
j

∫

ωα×(0,1)k

(

|∇αuj|
p +

1

εp
j

|∇βuj |
p
)

dx < +∞, (3.4)

and from (3.4) in particular

sup
j

1

εk
j

∫

ωα×(0,εj)k

|∇ûj|
p dx < +∞. (3.5)

We extend ûj to ωα × (−εj , εj)
k by reflection in the k variables xn−k+1, . . . , xn by

defining
ũj(x) := ûj(xα, |xn−k+1|, . . . , |xn|) in ωα × (−εj , εj)

k.

Note that (ũj) ⊂ W 1,p(ωα×(−εj, εj)
k; Rm) and ũj(xα, ·) has the same trace on the

opposite faces of (−εj , εj)
k for a.e. xα ∈ ωα. Thus ũj can be extended by (−εj , εj)

k-

periodicity in xβ , to the whole ωα ×R
k obtaining the W 1,p

loc (ωα ×R
k; Rm)-sequence

defined as follows

ūj(x) := ũj(xα, xβ − 2εj i) in ωα × (2εj i + (−εj , εj)
k), for i = (i1, . . . , ik) ∈ Z

k.

We want to prove that (ūj) is bounded in W 1,p(ωα×(0, 1)k; Rm). By the periodicity
and symmetry properties of ūj , denoting by [t] the integer part of t ∈ R, we have

∫

ωα×(0,1)k

|ūj |
p dx ≤

[1/2εj ]+1
∑

i1,...,ik=0

∫

ωα×(2εj i+(−εj ,εj)k)

|ūj|
p dx

=
∑

i1,...,ik

∫

ωα×(−εj ,εj)k

|ũj|
p dx = 2k

∑

i1,...,ik

∫

ωα×(0,εj)k

|ûj |
p dx

= 2k

([

1

2εj

]

+ 2

)k ∫

ωα×(0,εj)k

|ûj |
p dx

≤
2k

εk
j

∫

ωα×(0,εj)k

|ûj|
p dx (3.6)

for j sufficiently large.
Gathering (3.6) and (3.3) we deduce

sup
j

∫

ωα×(0,1)k

|ūj |
p dx < +∞;

an analogous argument combined with (3.5) yields

sup
j

∫

ωα×(0,1)k

|∇ūj |
p dx < +∞.

By these estimates (ūj) fulfills the hypothesis of Theorem 2.1, which ensures (up to
an extraction) the existence of a sequence (zj) ⊂ W 1,p(ωα × (0, 1)k; Rm) satisfying

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k)) → 0, as j → 0
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and such that (|∇zj |
p) (or equivalently (|∇αzj |

p + |∇βzj|
p)) is equi-integrable on

ωα × (0, 1)k. As a consequence, in view of Proposition 2.2, there exists a positive
Borel function ϕ : [0, +∞) → [0, +∞] such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

j

∫

ωα×(0,1)k

ϕ(|∇αzj|
p + |∇βzj |

p) dx < +∞.

Hence, (0, [1/εj]εj)
k ⊂ (0, 1)k and the nonnegative character of ϕ yield

∫

ωα×(0,[1/εj ]εj)k

ϕ(|∇αzj|
p+|∇βzj|

p) dx ≤

∫

ωα×(0,1)k

ϕ(|∇αzj |
p+|∇βzj |

p) dx (3.7)

while the monotonicity of the Lebesgue measure implies

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, [1/εj]εj)
k))

≤ Ln(({zj 6= ūj } ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k)). (3.8)

To shorten notation, set

Mj :=

∫

ωα×(0,1)k

ϕ (|∇αzj |
p + |∇βzj|

p) dx,

mj := Ln(({zj 6= ūj } ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k))

(3.9)

and recall that

(i) sup
j

Mj < +∞, (ii) mj → 0. (3.10)

From (3.9) and (0, [1/εj]εj)
k =

⋃[1/εj ]−1
i1,...,ik=0(εj i+(0, εj)

k), (3.7)-(3.8) can be rewrit-
ten respectively as

[1/εj ]−1
∑

i1,...,ik=0

∫

ωα×(εji+(0,εj)k)

ϕ (|∇αzj|
p + |∇βzj |

p) dx ≤ Mj, (3.11)

and

[1/εj ]−1
∑

i1,...,ik=0

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (εj i + (0, εj)
k))) ≤ mj . (3.12)

For fixed j, we now consider only those cubes εj i + (0, εj)
k with i = 2h for h

in Ij := {h ∈ Z
k : 0 ≤ h1, . . . , hk ≤ 1

2 ( [1/εj] − 1)}. Note that for h ∈ Ij ,
ūj|ωα×2εjh+(0,εj)k coincide with the 2εjh-translation of ûj in the xβ variable.

By (3.11) and (3.12) we have that in particular

∑

h∈Ij

∫

ωα×(2εjh+(0,εj)k)

ϕ (|∇αzj |
p + |∇βzj |

p) dx ≤ Mj (3.13)

∑

h∈Ij

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (2εj h + (0, εj)
k))) ≤ mj. (3.14)

Then from (3.13), for at least half of the indices h ∈ Ij (i.e., for [1/2 #(Ij)] indices)
we must have

∫

ωα×(2εjh+(0,εj)k)

ϕ (|∇αzj|
p + |∇βzj |

p) dx ≤ (#(Ij) − [1/2 #(Ij)] + 1)−1Mj .

(3.15)
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In fact, let otherwise I
′

j := {h ∈ Ij : (3.15) does not hold} be such that

#(I
′

j ) ≥ #(Ij) − [1/2 #(Ij)] + 1 (3.16)

then

∑

h∈Ij

∫

ωα×(2εjh+(0,εj)k)

ϕ (|∇αzj |
p + |∇βzj|

p) dx

≥
∑

h∈I
′

j

∫

ωα×(2εjh+(0,εj)k)

ϕ (|∇αzj|
p + |∇βzj |

p) dx

> #(I
′

j )(#(Ij) − [1/2 #(Ij)] + 1)−1Mj

and combining it with (3.16), by (3.13) we find a contradiction.
Since #(Ij) = ( [12 ( [1/εj] − 1)] + 1)k it can be easily checked that, for j large

enough

#(Ij) − [1/2 #(Ij)] + 1 >
1

22k+1εk
j

;

therefore from (3.15) we get that for at least [1/2 #(Ij)] indices h ∈ Ij

∫

ωα×(2εjh+(0,εj)k)

ϕ (|∇αzj|
p + |∇βzj |

p) < 22k+1εk
j Mj , (3.17)

for any sufficiently large j. Moreover, in view of (3.14) we can again use an averaging
procedure to find among those [1/2 #(Ij)] indices h satisfying (3.17), an index such
that

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (2εj h + (0, εj)
k)))

≤ [1/2 #(Ij)]
−1mj ≤ 23k+1εk

j mj , (3.18)

for j large enough.
Finally, we have selected an index in Ij for which both (3.17) and (3.18) (defini-

tively) hold true. Let us call this index h⋆. Then by the (−εj, εj)
k-periodicity of

ūj in the xβ variable, up to at most k translations in the xn−k+1, . . . , xn-directions,
we can always suppose that h⋆ = (0, . . . , 0).

Abusing notation we denote by zj the restriction of zj to ωα × (0, εj)
k; we show

that our (vj) can be obtained from (zj) just by unscaling. In fact, having set

vj(x) := zj(xα, εjxβ),

then (vj) ⊂ W 1,p(ωα × (0, 1)k; Rm) and by (3.17) with h = h⋆ = (0, . . . , 0) we have
that

∫

ωα×(0,1)k

ϕ
(

|∇αvj |
p +

1

εp
j

|∇βvj |
p
)

dx

=
1

εk
j

∫

ωα×(0,εj)k

ϕ(|∇αzj |
p + |∇βzj |

p) dx < 22k+1 Mj.

Thus, by virtue of (3.10)(i), again applying de la Vallée Poussin’s Criterion we get
that

(

|∇αvj |
p + 1

εp
j

|∇βvj |
p
)

is equi-integrable on ωα × (0, 1)k. Moreover by (3.18)
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we deduce

Ln({vj 6= uj} ∪ {∇vj 6= ∇uj})

=
1

εk
j

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, εj)
k)) ≤ 23k+1mj

and by (3.10)(ii) we find (3.2). Clearly these two conditions can be restricted to
ωα × ωβ if such was the domain of the starting sequence.

Finally, note that if ωα is Lipschitz, by appealing to Theorem 2.1 we can choose
any zj to be a Lipschitz function, then for every x, y ∈ ωα × (0, 1)k

|vj(x) − vj(y)| = |zj(xα, εjxβ) − zj(yα, εjyβ)| ≤ Lipzj
|x − y|,

thus vj is still a Lipschitz function and Lipvj
≤ Lipzj

. �
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Roma ‘La Sapienza’, Piazzale Aldo Moro, 2 00185, Rome, Italy

E-mail address, Caterina Ida Zeppieri: zeppieri@mat.uniroma1.it


