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Abstract

We investigate the behavior, as ε → 0+, of ε log wε(t, x) where wε

are solutions of a suitable family of subelliptic heat equations. Using
the Large Deviation Principle, we show that the limiting behavior is
described by the metric inf-convolution w.r.t. the associated Carnot-
Carathéodory distance.
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1 Introduction.

It is well-known that the limiting behavior, as ε → 0+, of the solutions of

{
wε

t − ε∆wε = 0, x ∈ Rn, t > 0,

wε(0, x) = e−
g(x)
2ε , x ∈ Rn.

(1)

is described by the Hamilton-Jacobi-Cauchy problem




ut +
1

2
|Du|2 = 0, x ∈ Rn, t > 0,

u(0, x) = g(x), x ∈ Rn,
(2)

see, for example, [20] and [4] or [2]. More precisely, if g : Rn → R is a
bounded and continuous function, the logarithmic transform of wε, i.e. uε =
−2ε log wε, converges, locally uniformly, as ε → 0+, to the unique viscosity
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solution u of (2). One way of proving this is to use both the representation
of wε as the integral convolution and the Hopf-Lax representation of the
viscosity solution of (2) as the (euclidean) inf-convolution

gt(x) = inf
y∈Rn

[
g(y) +

|x− y|2
2t

]
,

and to apply the Large Deviation Principle (see [18]) in order to establish
the validity of the limiting relation

lim
ε→0+

−2ε log wε = u.

The aim of this paper is to generalize the procedure described above in order
to analyze the limiting behavior of some subelliptic diffusion equations in
term of the Carnot-Carathéodory inf-convolutions. Let wε the solutions of





wε
t − ε

n∑
i,j=1

ai,j(x)
∂2wε

∂xi∂xj

= 0, x ∈ Rn, t > 0,

wε(0, x) = e−
g(x)
2ε , x ∈ Rn,

(3)

where the matrix A(x) = (ai,j(x))i,j, for i, j = 1, ..., n, is of the form

A(x) = σt(x)σ(x),

with σ(x) m× n-matrix (m ≤ n), satisfying the Hörmander condition.
Under this condition, a finite Carnot-Carathéodory (C-C) distance can be
associated by control theory to the matrix σ (see [3]).
The inf-convolution of the initial datum g, with metric d as kernel, namely

gt(x) = inf
y∈Rn

[
g(y) +

d(x, y)2

2t

]
, (4)

produces the viscosity solution of




ut +
1

2
|σ(x)Du|2 = 0, x ∈ Rn, t > 0,

u(0, x) = g(x), x ∈ Rn.
(5)

Our main result is the following.

Theorem 1.1. Let g ∈ C(Rn) bounded, d C-C distance associated to an
Hörmander’s matrix σ(x) and gt the inf-convolution defined by (4). If wε

are the solutions of (3), then

lim
ε→0+

−2ε log wε(t, x) = gt(x), (6)

locally uniformly on [0, +∞)× Rn.
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Observe that in the special case A(x) = I, then d(x, y) reduces to the
standard euclidean distance, thus recovering the well-known classical result,
see Capuzzo Dolcetta [4] for a recent presentation.

2 Preliminary results about Carnot-

Carathéodory inf-convolutions and the

Large Deviation Principle.

Let d a distance on Rn and g : Rn → R, then a metric inf-convolution can
be defined, for any t > 0, as (4). We look, in particular, at the C-C distances
satisfying the Hörmander condition. We recall some notions about these, one
can find more information in [3].
Fix x ∈ Rn and let σ(x) a m × n-matrix with C∞-coefficients and m ≤ n.
Setting X1(x), ..., Xm(x) the vector fields corresponding to the lines of σ(x)
(i.e. σ(x)t = [X1(x), ..., Xm(t)]), we consider the control system

γ̇(t) =
m∑

i=1

αi(t)Xi(γ(t)), (7)

with α1, ..., αm measurable real control functions.
We say that an absolutely continuous curve γ : [0, T ] → Rn is admissible or
also σ-horizontal if there exists α : [0, T ] → Rm measurable function such
that

γ̇(t) = σt(γ(t))α(t), a.e. t ∈ [0, T ].

For any admissible curve γ and any admissible coordinate-vector α(t), we
define the length as

l(γ) =

∫ T

0

‖α(t)‖ dt, (8)

where ‖ ‖ is the standard euclidean norm in Rm.

Remark 2.1. To get the uniqueness of the admissible coordinate-vector α(t),
one can assume that the family of vector fields X1, ..., Xm satisfies the follow-
ing weak-linear-independent condition: for all point x, there exist 1 ≤ k ≤ m
and 1 ≤ j1 < ... < jk ≤ m such that

rank{Xj1(x), ..., Xjk
(x)} = k, and Xj(x) = 0, ∀ j /∈ {j1, ..., jk}.

If this condition doesn’t hold, the length of an admissible curve can be defined
as the infimum of the integrals (8) over all the admissible coordinates α(t).
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Nevertheless a such condition is very general. In fact it holds for any generic
distribution (so in particolar for the Carnot groups) and for any Grušin-type
space.

Definition 2.1. The C-C distance associated to σ(x) is

d(x, y) = inf{l(γ) | γ σ-horizontal curve joining x to y}. (9)

In general, the function (9) is a distance on whole Rn but it is not always
a finite distance. In order to overcome this problem, it is introduced the
Hörmander condition. We recall that a bracket between two vector fields X
and Y acts, by derivation, on all the smooth real functions f , as

[X, Y ]f = X(Y f)− Y (Xf).

Let L0 = {X1, ..., Xm}, L1 = {[Xi, Xj]| i, j = 1, ..., m} and

Lk =
{
[Yi, Yj] |Yi ∈ Lh, Yj ∈ Ll, h, l = 0, ..., k − 1

}\
k−1⋃
i=0

Li,

then the Lie algebra associated to the distribution spanned by X1, ..., Xm is
the set L =

⋃
k∈N Lk. We say that a matrix σ(x) satisfies the Hörmander

condition, if and only if, the associated Lie algebra spans whole of the tangent
space, that in our case is Rn, in any point.
If a matrix σ(x) satisfies the Hörmander condition, the Chow’s Theorem
implies that the associated C-C distance (9) is finite for any pair of points
and it induces on Rn the euclidean topology (see [3]).
Moreover, we say that a matrix satisfies the Hörmander condition with step
k ≥ 1, if and only if,

k⋃
i=1

Li(x) = Rn,

in any point x ∈ Rn. The Riemannian case is when k = 1.
Now we give some examples of Hörmander’s matrixes.

Example 2.1. The matrix

σ(x) =

(
1 0
0 x

)

satisfies the Hörmander condition with step 2 and it induces a sub-
Riemannian geometry on R2, known as Grušin plane.
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Example 2.2. Let

σ(x) =

(
1 0 −2y
0 1 2x

)
,

that is an Hörmander’s matrix (with step 2) and it is associted to the 1-
dimensional Heisenberg group.

Example 2.3. The following matrix satisfies the Hörmander condition with
step 3 and the distribution associated to its lines is known as Martinet dis-
tribution:

σ(x) =

(
1 0 −y2

0 1 0

)
.

For any C-C distance, with constant step k ≥ 1, holds a locally euclidean
estimate ([16]). In fact, for any K ∈ Rn compact, there exists a constant
C = C(K) > 0 such that

1

C
|x− y| ≤ d(x, y) ≤ C|x− y| 1k , ∀ x, y ∈ K. (10)

The metric inf-convolution (4) is a particular case of the Hopf-Lax function

u(t, x) = inf
y∈Rn

[
g(y) + tΦ∗

(
d(x, y)

t

)]
,

introduced by Manfredi-Stroffolini for the case of the Heisenberg group in
[15] and generalized in [4, 5], see also [9]. We recall some properties proved
in [9], rewritten directly for the inf-convolutions.

Theorem 2.1. Let g ∈ LSC(Rn) (lower semicontinuous) and bounded and
d C-C distance, satisfying the Hörmander condition with step k ≥ 1, then
the metric inf-convolution gt, defined in (4), is such that

(i) gt ≤ g, for any t > 0,

(ii) the infimum in (4) is attended in the closed Carnot-Carathéodory ball,

centered in x and with radius R(t) = 2t
1
2 ‖g‖ 1

2∞,

(iii) gt is locally d-Lipschitz in x for t > 0 and so, by estimate (10), is locally
Hölder continuous with exponent 1/k. Moreover, gt is locally Lipschitz
continuous in t > 0, for any x ∈ Rn,

(iv) gt monotonously converges (in the lower weak Barles-Perthame’s sense,
[2]) to g, as t → 0+,
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(v) if g(x) ≤ −C(1 + d(0, x)), for some constant C > 0, then

gt(x) ≤ −C ′(1 + t + d(0, x)),

for any x ∈ Rn and t > 0, with C ′ = max{C, 1
2
C2}.

So the Carnot-Carathéodory inf-convolutions (4) are a monotonous
Lipschitz approximation of the original function as in the euclidean case
(see [1]). Moreover in [9] (Theorem 4.1) we have proved that u(t, x) = gt(x)
solves (in the viscosity sense) the Cauchy problem (5). At last, when g is
continuous, the solution of (5) is also unique (see [6]).

We recall that, if σ(x) is an Hörmander’s matrix, then the differential
operator L :=

∑
i,j ai,j(x)∂xi

∂xj
is hypoelliptic.

By theory of subelliptic heat equations (see [10, 12]), we know that there
exists an heat kernel associated to L, which we indicate by p(t, x, y), smooth,
for t > 0, in whole Rn × Rn and, moreover, there exists M ∈ [1, +∞) such
that, for any 0 < t ≤ 1 and x, y ∈ Rn, it holds

1

Mµ(Bd(x,
√

t))
e−M

d(x,y)2

t ≤ p(t, x, y) ≤ M

µ(Bd(x,
√

t))
e−

d(x,y)2

Mt . (11)

see [11]. At last, let pε(t, x, y) the heat kernel associated to εL, the solution
of (3) is given by

wε(t, x) =

∫

Rn

e−
g(x)
2ε (y)pε(t, x, y)dy. (12)

So, in order to prove Theorem 1.1, we need to investigate the limiting be-
havior of

uε(t, x) = −2ε log

(∫

Rn

e−
g(y)
2ε pε(t, x, y)dy

)
. (13)

As in [4], we want to apply a Laplace-Varadhan’s type theorem, that is an
application of the Large Deviation Principle.
Now we recall both of these results, for some information about the Large
Deviation theory, one can see [18] or also [7, 8].

Definition 2.2 (Large Deviation Principle). Let Pε a family of proba-
bility measures, defined on the borel sets of a complete and separable metric
space X. A family Pε satisfies the Large Deviation Principle (LDP) if there
exists a function (called rate function) I : X → [0, +∞] such that

(i) I ∈ LSC(X),
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(ii) for any k < +∞, the sublevel set {y ∈ X | I(y) ≤ k} is compact,

(iii) for any A ⊂ X open set,

lim inf
ε→0+

ε log Pε(A) ≥ − inf
y∈A

I(y),

(iv) for any C ⊂ X closed set,

lim sup
ε→0+

ε log Pε(C) ≤ − inf
y∈C

I(y).

Theorem 2.2. Let X a complete and separable metric space and Pε a family
of probability measures satisfying the LDP with rate function I, then, for any
F ∈ C(X) bounded,

lim
ε→0+

ε log

( ∫

X

exp

[
F (y)

ε

]
dPε(y)

)
= sup

y∈X
[F (y)− I(y)]. (14)

Let X = Rn and fixed x ∈ Rn and t > 0. We can define, for any B ⊂ Rn

borel set, the following probability measures

P t,x
ε (B) =

∫

B

pε(t, x, y)dy. (15)

If we show that previous family of probability measures (15) satisfies the
LDP with rate function

I t,x(y) =
d(x, y)2

4t
, (16)

by Theorem 2.2 with F = −g/2, it is immediate to get (6). The difficulty
is to verify properties (iii) and (iv). If pε is the heat kernel associated to
some uniformly elliptic operators there is a non-trivial proof of this fact in
[20] (note that, in a such case, d is a Riemannian distance). Nevertheless,
in the euclidean case, it is enough easy to get properties (iii) and (iv) (as
unique limit) in the borel and bounded sets. In fact, setting q = 1/ε, by the
convergence of the Lq-norm to the L∞-norm, as q → +∞, one can deduce
directly that

lim
ε→0+

ε log
(

(4πεt)−
n
2

∫

B
e−

|x−y|2
4εt dy

)
= log

(
lim

q→+∞

∥∥∥e−
|x−·|

4t

∥∥∥
q,B

)
= − inf

y∈B

|x− y|2
4t

.

This remark has given us the idea for an analytic proof which covers also
the Carnot-Carathéodory case.
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3 Proof of the main result.

To apply LDP in order to get Theorem 1.1, we need to generalize to the
hypoelliptic case the asymptotic estimates, proved in [20] for uniform elliptic
operators. Next lemma is a key-point.

Lemma 3.1. Let p(t, x, y) the heat kernel associated to A, then

pε(t, x, y) = p(εt, x, y).

Proof. The result follows immediately from the uniqueness for the Cauchy
problem:





∂

∂t
pε(t, x, y)− ε

∑
i,j

ai,j(x)
∂2

∂xi∂xj

pε(t, x, y) = 0, x, y ∈ Rn, t > 0,

pε(0, x, y) = δx(y), x, y ∈ Rn.

(17)

In fact, since the coefficients of the equation don’t depend on the time-
variable, it is trivial that p(εt, x, y) satisfies the Cauchy problem (17).
So, by the uniqueness (see [12]), we can conclude.

The second key-result is the following locally uniform limit, proved in
[19] for uniformly elliptic operators and generalized to the hypoelliptic case
in [14, 13].

Theorem 3.1. Let p(t, x, y) as in Lemma 3.1 and d(x, y) the C-C distance
defined in (9), then

lim
τ→0+

4τ log p(τ, x, y) = −d(x, y)2. (18)

Moreover previous convergence is uniform in the bounded sets.

The idea is to use previous results in order to investigate the limiting
behavior of (P t,x

ε )ε in the bounded sets and then deduce the behavior in the
open and closed (unbounded) sets.

Proposition 3.1. Let pε(t, x, y) the heat kernel associated to the hypoelliptic
operator Lε = ε

∑
i,j ai,j(x) ∂2

∂xj∂xi
, with A(x) = (ai,j(x))n

i,j=1 = σt(x)σ(x)

and σ(x) Hörmander’s matrix. If P t,x
ε and I t,x are the family of probability

measures and the rate function defined in (15) and (16), respectively, fix
t > 0, x ∈ Rn, then, for any B ⊂ Rn bounded set,

lim
ε→0+

[P t,x
ε (B)]ε = e− infy∈B It,x(y). (19)
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Proof. We use the exponential form of the uniform limit (18), that is

lim
τ→0+

p(τ, x, y)τ = e−
d(x,y)2

4 .

Let q = 1
τ

and fq(y) = p
(

1
q
, x, y

) 1
q
, we can write

(∫

B

[p(τ, x, y)τ ]
1
τ dy

)τ

=

(∫

B

[
p

(
1

q
, x, y

) 1
q

]q

dy

) 1
q

= ‖fq‖q,B ,

where by ‖ ‖q,B we indicate the usual Lq-norm in B, with q ≥ 1.
By Lemma 3.1 and setting τ = εt, we get

lim
ε→0+

[P ε
t,x(B)]ε = lim

τ→0+

(∫

B

p(τ, x, y)dy

) τ
t

= lim
q→+∞

‖fq‖
1
t
q,B . (20)

Set f(y) = e−
d(x,y)2

4 , by the triangle inequality for the Lq-norm, we get

∣∣ ‖fq‖q,B − ‖f‖q,B

∣∣ ≤ ‖fq − f‖q,B ≤ ‖fq − f‖∞,B [µ(B)]
1
q .

As q →∞, the last member goes to zero and ‖f(y)‖q,B → ‖f(y)‖∞,B,
since B is bounded. So we get

lim
q→+∞

‖fq‖
1
t
q,B = sup

y∈B
|f(y)| 1t = e− infy∈B

d(x,y)2

4t .

Hence, by (20), the convergence result (19) holds.

To get, by approximation, the corresponding estimate for the lower-limit
in the open (unbounded) sets, is very easy.

Proposition 3.2. Under assumptions of Proposition 3.1, then, for any open
set A ⊂ Rn,

lim inf
ε→0+

[P t,x
ε (A)]ε ≥ e− infy∈A It,x(y). (21)

Proof. Let AR := A∩BR(0). Since AR is bounded, we can apply the limiting
behavior proved in Proposition 3.1 and so

lim inf
ε→0+

[P t,x
ε (A)]ε ≥ lim inf

ε→0+
[P t,x

ε (AR)]ε = e− infy∈AR
d(x,y)2

4t .

Taking the supremum for R > 0, we can immediately conclude that

lim inf
ε→0+

[P t,x
ε (A)]ε ≥ sup

R>0
e− infy∈AR

d(x,y)2

4t ≥ e− infy∈A
d(x,y)2

4t .
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To get the estimate for the upper-limit in the closed (unbounded) sets,
is more complicate and, first, we need to investigate the limiting behavior
outside large balls.

Lemma 3.2. Let δ ∈ (0, 1), then there exists Rδ > 0 such that

lim sup
τ→0+

(∫

Rn\Bd
Rδ

(x)

p(τ, x, y)dy

)τ

< δ.

Proof. Set B−
R = Rn\Bd

R(x), by the Hörmander assumption, it is well-known
(see [17]) that there exists c > 0 such that

B(x, cτ
k
2 ) ⊂ Bd(x,

√
τ),

where k ≥ 1 is the step of the distribution associated to X1, ..., Xm, then
µ(Bd(x,

√
τ))−1 ≤ (ωncnτ

nk
2 )−1, with ωn measure of the unit euclidean ball.

By estimate (11) and setting λ = Mω−1
n c−n > 0, we get

lim sup
τ→0+

(∫

B−R

p(τ, x, y)dy

)τ

≤ lim sup
τ→0+

λττ−
nk
2

τ

(∫

B−R

e−
d(x,y)2

Mτ dy

)τ

.

It is trivial that limτ→0+(λτ−
nk
2 )τ = 1, so it remains to estimate

LR = lim sup
τ→0+

(∫

B−R

e−
d(x,y)2

Mτ dy

)τ

.

Using the continuity of the logarithm function, we study log LR and apply
a version of the De l’Hôpital Theorem for the upper-limit. In fact, by the
Cauchy Theorem, it is easy to show that

lim sup
τ→0+

f(τ)

g(τ)
≤ lim sup

τ→0+

f ′(τ)

g′(τ)
,

whenever f and g are continuous differentiable. Then

log LR = lim sup
τ→0+

log
(∫

B−R
e−

d(x,y)2

Mτ dy
)

1
τ

≤ lim sup
τ→0+

−τ 2

∫
B−R

e−
d(x,y)2

Mτ
d2(x,y)
Mτ2 dy

∫
B−R

e−
d(x,y)2

Mτ dy

Since y ∈ Rn\Bd

R(x), then d(x, y) ≥ R. Therefore we get

log LR ≤ lim sup
τ→0+

−R2

M

∫
B−R

e−
d(x,y)2

Mτ dy
∫

B−R
e−

d(x,y)2

Mτ dy
= −R2

M
.
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We can conclude that, for any R > 0,

lim sup
τ→0+

(∫

B−R

p(τ, x, y)dy

)τ

≤ e−
R2

M .

Hence, for any 0 < δ < 1, we can choose Rδ >
√

− log δ
M

so that e−
R2

δ
M < δ and

this concludes the proof.

Proposition 3.3. Under assumptions of Proposition 3.1, then, for any
closed set C ⊂ Rn,

lim sup
ε→0+

[P t,x
ε (C)]ε ≤ e− infy∈C It,x(y). (22)

Proof. As for the bounded sets, let τ = εt, instead of (22), we can show

lim sup
τ→0+

(∫

C

p(τ, x, y)dy

)τ

≤ e− infy∈C
d(x,y)2

4 . (23)

Since τ ∈ (0, 1), for any δ ∈ (0, 1), we can decompose C = Cδ ∪ C−
δ , where

Cδ = C ∩B
d

Rδ
(x) and C−

δ = C\Bd

Rδ
(x). In the bounded set Cδ we can apply

Proposition 3.1 while in C−
δ we can use Lemma 3.2, so

lim sup
τ→0+

(∫

C

p(τ, x, y)dy

)τ

≤ lim
τ→0+

(∫

Cδ

p(τ, x, y)dy

)τ

+

lim sup
τ→0+

(∫

C−δ

p(τ, x, y)dy

)τ

≤ e− infy∈Cδ
d(x,y)2

4 + δ ≤ e− infy∈C
d(x,y)2

4 + δ.

Passing to the limit as δ → 0+, we get estimate (23).

Finally we can give the proof of the main result.

Proof of Theorem 1.1. We remark that, since d is a C-C distance, properties
(i) and (ii) of the Large Deviation Principle hold. In fact, we have already
remarked that the Hörmander condition implies that d induces on Rn the
euclidean topology. It means that d is continuous and the sublevels are
compact sets.
Moreover, since the logarithm is a continuous and non decreasing function,
Propositions 3.2 and 3.3 give properties (iii) and (iv) of the Large Deviation
Principle. Applying the Large Deviation Theorem 2.2 with F (y) = e−

g
2
(y) we

find the convergence result (6).
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Remark 3.1. Note that this gives also an alternative proof for the result
showed in [20].

Moreover, we want to remark that





uε
t − ε

n∑
i,j=1

ai,j(x)
∂2uε

∂xi∂xj

+
1

2
|σ(x)Duε|2 = 0, x ∈ Rn, t > 0,

uε(0, x) = g(x), x ∈ Rn,

(24)

gives a second-order approximation of the Cauchy problem (5).

By the Hopf-Cole transform wε = e−
uε

2ε , we can linearize problem
(24). In fact, setting A(x) = σt(x)σ(x), we find

wε
t−ε

n∑
i,j=1

ai,j(x)
∂2wε

∂xi∂xj

= −wε

2ε

(
uε

t−ε
n∑

i,j=1

ai,j(x)
∂2uε

∂xi∂xj

−1

2
A(x)Duε·Duε

)
.

Remarking that

|σ(x)Duε|2 = σ(x)Duε · σ(x)Duε = σt(x)σ(x)Duε ·Duε = A(x)Duε ·Duε,

we get that, if uε solves the Cauchy problem (24), then its Hopf-Cole
transform wε solves exactly the Cauchy problem (3).
So it is natural that Theorem 1.1 holds, because it means the convergence
of the solutions of the approximating problem (24), i.e. uε = −2ε log wε, to
the unique viscosity solution of the original Cauchy problem.
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