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Introduction

This thesis is devoted to the study of several mathematical problems in fracture mechanics
for brittle materials. The main ingredient to develop a reasonable model of these phenomena
is Griffith’s criterion, originally formulated in [31] for the quasi-static setting, namely when
the external data vary slowly compared to the elastic wave speed of the material. In this
case, Griffith states there is an exact balance between the decrease of elastic energy during
the evolution, and the energy used to increase the crack, which is assumed to be proportional
to its area.

In sharp-interface models, i.e., when the crack is identified with the discontinuity surface
of the displacement in the reference configuration, this principle was turned into a precise
definition by Francfort and Marigo in [26]. In the context of small-strain antiplane shear, the
following energy functional of Mumford-Shah’s type is considered:

1

2

∫
Ω\Γ
|∇u(x)|2 dx+Hd−1(Γ). (1)

Here, Ω ⊂ Rd (with d = 2 being the physically relevant case) is an open bounded set with
Lipschitz boundary, which represents the reference configuration of the elastic material, the
closed set Γ ⊂ Ω describes the crack, and u ∈ H1(Ω \ Γ) is the antiplane displacement. The
first term represents the stored elastic energy of a homogeneous and isotropic material, while
the second one, called surface energy, models the energy used to produce the crack. Here and
henceforth all physical constants are normalized to 1.

In this setting, given a time-dependent Dirichlet datum t 7→ w(t) acting on ∂Ω, a quasi-
static evolution is a pair t 7→ (u(t),Γt) which at every time t minimizes (1) among all pairs
(u∗,Γ∗), where Γ∗ is a closed set with Γ∗ ⊇ Γt, and u∗ ∈ H1(Ω \ Γ∗) with u∗ = w(t) on
∂Ω \ Γ∗. The minimum problem is complemented with the irreversibility condition Γs ⊆ Γt
for every s ≤ t (meaning the crack can only increase in time), and with an energy-dissipation
balance for every time.

The first rigorous existence result for quasi-static evolutions was due to Dal Maso and
Toader in [22] in dimension d = 2, and with a restriction on the number of connected com-
ponents of the crack set. Later, Francfort and Larsen in [27] removed these assumptions, by
setting the problem in the space SBV of special functions with bounded variation, introduced
by De Giorgi and Ambrosio in [25]. More in general, in the context of linear elasticity, the dis-
placement u : Ω\Γ→ Rd is vector-valued, and the term |∇u|2 in the elastic energy is replaced
by CEu ·Eu, where Eu is the symmetric part of the gradient, namely Eu := 1

2(∇u+∇uT ),
and C is the elastic tensor. Existence results for quasi-static evolutions in linear elasticity can
be found only in dimension d = 2, see [11] (which works under the same geometric restric-
tions of [22]) and [29] (for the general case). For related results in dimension d > 2 we refer
to [12, 13]. A detailed analysis of variational models of quasi-static fracture can be found
in [5] and in the references therein.

In this thesis, we study several mathematical problems in fracture dynamics. In this
setting, the stationarity condition for the displacement has to be replaced by the fact that
u solves the elastodynamics system out of the crack, while the crack evolves according to a

ix



x Introduction

dynamic version of Griffith’s criterion, see [41, 28]. Therefore, any reasonable mathematical
model should follow the following principles:

(a) elastodynamics: away from the crack set, the displacement u evolves according to the
elastodynamics system;

(b) irreversibility: the time-dependent crack t 7→ Γt is increasing in time with respect to
inclusion (Γs ⊆ Γt for every s ≤ t);

(c) dynamic energy-dissipation balance: the work done by external forces is balanced by
the mechanical energy (sum of kinetic and elastic energy) and the energy dissipated to
create a crack;

(d) maximal dissipation: if the crack can propagate while balancing energy, then it should
propagate.

The last condition, introduced in [35], is needed because a time-independent crack always
satisfies the first three principles. So far, it was not possible to prove the existence of a
solution for a model satisfying (a)–(d) without stronger a priori regularity conditions on the
cracks and their evolutions, which have not mechanical justifications. Some models for a
peeling test in dimension 1, based on similar principles, have been recently analyzed in detail
in [19, 47], obtaining existence and uniqueness results without a priori regularity assumptions.

The contents of the thesis are organized into four chapters.

Chapter 1: Elastodynamics system in domains with growing cracks

According to the principles stated before, a first step to study the dynamic crack propagation
in an elastic material is to solve the elastodynamics system for a prescribed time-dependent
crack {Γt}t∈[0,T ] satisfying the irreversibility condition. From the mathematical point of view,
this means solving a hyperbolic-type system of the form

ü(t, x)− div(C(t, x)Eu(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (2)

supplemented by boundary and initial conditions; the main difficulty in such a problem is
that the domain Ω \ Γt depends on time. In the literature, we can find several different
approaches to hyperbolic systems in time-dependent domains. The first one is developed
in [16] for the antiplane case, i.e., for the wave equation

ü(t, x)−∆u(t, x) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (3)

with homogeneous Neumann conditions on the boundary of Ω\Γt. The existence of a solution
with assigned initial data is proved by using a time-discrete approximation and passing to
the limit as the time step tends to zero. This construction leads to an existence result under
very weak conditions on the cracks {Γt}t∈[0,T ]. A generalization of this construction to the
vector-valued case can be found in the recent work [52]. Unfortunately, the uniqueness of
these solutions is still an open problem in this setting.

In [43, 20] the authors use a different technique to study (3), which is based on a suitable
change of variables of class C2 that maps the domain {(t, x) ∈ [0, T ] × Ω : x ∈ Ω \ Γt}
into the cylinder [0, T ] × (Ω \ Γ0). In this way, the wave equation (3) is transformed into a
new hyperbolic equation in a fixed domain, with coefficients depending also on the change of
variables. This method allows proving the existence and uniqueness of a solution, as well as
a continuous dependence result. Nevertheless, such a change of variable can be constructed
only under very strong regularity assumptions on the cracks (see [20]).
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Finally, a third possible approach to the study of (3) can be found in a very recent
paper [15]. In this case, existence is proved by means on a suitable approximation of the
wave equation via minima of convex functionals (see [48, 49]).

In Chapter 1 (which contains the results of [8]) we study the existence, uniqueness, and
continuous dependence on the data for the solutions of the elastodynamics system (2). On
the cracks {Γt}t∈[0,T ] we assume the irreversibility condition and that they are contained in a
given C2 manifold Γ of dimension d− 1. The system (2) is supplemented by mixed Dirichlet-
Neumann boundary conditions on ∂Ω and by homogeneous Neumann boundary conditions
on the cracks Γt (traction free case).

These results are obtained by adapting the change of variable method introduced in [20]
to the vector-valued case. Since the operator C is usually defined only on the subspace of
symmetric matrices, it is convenient to introduce a new operator A defined on all Rd×d as

A(t, x)ξ := C(t, x)ξsym for every ξ ∈ Rd×d,

where ξsym denotes the symmetric part of ξ. In this way, system (2) can be rephrased as

ü(t, x)− div(A(t, x)∇u(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (4)

and the change of variable approach leads to the transformed system

v̈(t, y)− div(B(t, y)∇v(t, y))

+ p(t, y)∇v(t, y) +∇v̇(t, y)b(t, y) = g(t, y) t ∈ [0, T ], y ∈ Ω \ Γ0,
(5)

where the new coefficients B, p, b, and g are constructed starting from A and f . The boundary
conditions are also transformed by the change of variables and lead to mixed Dirichlet-
Neumann boundary conditions on ∂Ω, and homogeneous Neumann boundary conditions on
the fixed crack Γ0.

The main changes with respect to the paper [20] are in the treatment of the terms involv-
ing B. Indeed, in linear elasticity, the natural ellipticity condition on A is the following:

A(t, x)ξ · ξ ≥ λ0|ξsym|2 for every ξ ∈ Rd×d, (6)

with λ0 positive constant. Unfortunately, this condition is not inherited by the transformed
operator B. To overcome this difficulty, we assume that B satisfies a weaker ellipticity assump-
tion of integral type (see (1.2.1)), which always holds when A satisfies (6) and the velocity
of the time-dependent diffeomorphisms used in the change of variables is sufficiently small
(see (1.2.4)). Another difference with respect to [20] is that we consider also the case of non-
homogeneous Neumann boundary conditions on the Neumann part of ∂Ω. This completes
the study of [20], including the case of traction forces acting on the boundary.

We first prove the existence and uniqueness of solutions to (5), with assigned initial and
boundary conditions. Moreover, we prove an energy equality (see (1.3.2)), which is slightly
different from the one in [20], and takes into account the non-homogeneous boundary terms.
This energy balance allows us to prove suitable continuity properties with respect to time for
the solutions v, which are important in the proof of the main existence result for (4).

Finally, in the last part, we prove the continuous dependence of the solutions on the
cracks {Γt}t∈[0,T ] and on the manifold Γ. More precisely, given a sequence Γn, of manifolds
and a sequence {Γnt }t∈[0,T ] of time-dependent cracks contained in Γn, we use the energy
equality (1.3.2) to prove that, under appropriate convergence conditions, the solutions un

and vn to problems (4) and (5) corresponding to {Γnt }t∈[0,T ] converge to the solutions u and
v of the limit problems corresponding to {Γt}t∈[0,T ].

These results have been used in [18] to prove an existence theorem for a model in fracture
dynamics based on (a)–(d) with suitable conditions on the regularity of the cracks.
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Chapter 2: Dynamic energy-dissipation balance of a growing crack

Once we are able to solve the elastodynamics system on Ω \ Γt under suitable assumptions
on {Γt}t∈[0,T ], the next step towards the solution to the dynamic fracture problem, according
to (a)–(d), is to select those cracks {Γt}t∈[0,T ] such that the corresponding solutions u satisfy
the dynamic energy-dissipation balance.

In Chapter 2 (which contains the results of [9], obtained in collaboration with I. Lu-
cardesi and E. Tasso) we compute the mechanical energy (kinetic + elastic) of the solution
corresponding to a sufficiently regular crack evolution {Γt}t∈[0,T ] in the antiplane case. We
consider as reference configuration a bounded open set Ω of R2 with Lipschitz boundary and
we assume that all the cracks Γt are contained in a fixed C3,1 curve Γ ⊂ Ω with endpoints
on ∂Ω. In this case, Γt is determined at time t by the crack-tip position on Γ, described
by the arc-length parameter s(t). Here we assume t 7→ s(t) non-decreasing (irreversibility
assumption) and of class C3,1([0, T ]). Far from the crack set, the displacement u satisfies a
wave equation of the form

ü(t, x)− div(A(x)∇u(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (7)

where A is a suitable matrix field satisfying the usual ellipticity condition. The equation is
supplemented by homogeneous mixed Dirichlet-Neumann boundary conditions on ∂Ω, homo-
geneous Neumann boundary conditions on Γt, and initial conditions.

The mechanical energy associated with u at time t is given by

E(t) :=
1

2

∫
Ω\Γt
|u̇(t, x)|2dx+

1

2

∫
Ω\Γt

A(x)∇u(t, x) · ∇u(t, x) dx. (8)

The difficulty of computing (8) is twofold: on one hand, the displacement has a singular
behavior near the crack-tip; moreover, the domain of u(t) contains a crack and varies in
time. To handle the first issue, a representation result for u is in order: under suitable
conditions on the initial data (see Theorems 2.2.4 and 2.2.10) we prove that for every time t
the displacement is of class H1 in a neighborhood of the tip of Γt and of class H2 far from
it, namely u(t) is of the form

u(t, x) = uR(t, x) + k(t)ζ(t, x)S(Φ(t, x)) x ∈ Ω \ Γt, (9)

where uR(t) ∈ H2(Ω \Γt), k(t) ∈ R, ζ(t) is a cut-off function supported in a neighborhood of
the moving tip of Γt, S ∈ H1(R2 \ {(σ, 0) : σ ≤ 0}), and Φ(t) is a diffeomorphism of Ω which
maps the tip of Γt into the origin. Once fixed ζ, S, and Φ, the function uR and the constant
k are uniquely determined. Actually, the coefficient k only depends on A, Γ, and s. In
addition, we provide another decomposition for u which is more explicit and better explains
the behavior of the singular part (see Theorem 2.2.10).

The second issue is technical and we overcome it exploiting Geometric Measure Theory
techniques. The computation leads to the following formula:

E(t) +
π

4

∫ t

0
k2(τ)a(τ)ṡ(τ) dτ = E(0) +

∫ t

0

∫
Ω\Γτ

f(τ, x)u̇(τ, x) dx dτ (10)

for every t, where a is a positive function which depends on A, Γ, and s, and is equal
to 1 when A is the identity matrix; see Theorem 2.3.7 for the proof of (10) when A = Id,
and Remark 2.3.9 for the general case. We compare it with the dynamic energy-dissipation
balance, which in this case reads

E(t) +H1(Γt \ Γ0) = E(0) +

∫ t

0

∫
Ω\Γτ

f(τ, x)u̇(τ, x) dx dτ (11)
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for every t. We deduce that (11) is satisfied if and only if at every time t in which the crack is
moving, namely when ṡ(t) > 0, the function k(t), often called dynamic stress intensity factor,
is equal to 2/

√
πa(t).

We mention that a similar result for a horizontal crack Γt := Ω ∩ {(σ, 0) ∈ R2 : σ ≤ ct}
moving with constant velocity c (with a suitable boundary datum) can be found in the
paper [17, Section 4]. The representation result stated in (9) extends the one of [43] valid for
straight cracks and A the identity matrix. Here we adapt their proof to the case of a curved
crack and a constant (in time) matrix A, possibly depending on x; moreover, we remove a
restrictive assumption on the acceleration s̈.

The main steps in the proof of (10) are the following: by performing four changes of
variables, we reduce problem to a second order PDE of the form

v̈(t, x)− div(Ã(t, x)∇v(t, x)) + l.o.t. = f̃(t, x) t ∈ [0, T ], x ∈ Ω̃ \ Γ̃0, (12)

with Ω̃ Lipschitz planar domain and Γ̃0 a C3,1 curve which is straight near its tip. The
matrix field Ã has time-dependent coefficients, but at the tip of Γ̃0 it is constantly equal
to the identity. Finally, the decomposition result for the solution v to (12), obtained via
semi-group theory, leads to (9) for u, the solution to the original problem.

Chapter 3: A dynamic model for viscoelastic materials with growing cracks

When we want to study the dynamic evolution of deformed materials with viscoelastic prop-
erties, Kelvin-Voigt’s model is the most common one. If no crack is present, this leads in the
antiplane case to the damped wave equation

ü(t, x)−∆u(t, x)−∆u̇(t, x) = f(t, x) (t, x) ∈ [0, T ]× Ω.

As it is well known, the solutions to this equation satisfy the dynamic energy-dissipation
balance

E(t) +

∫ t

0

∫
Ω
|∇u̇(τ, x)|2dx dτ = E(0) + work of external forces

for every t, where in this case E(t) := 1
2

∫
Ω |u̇(t, x)|2dx+

∫
Ω |∇u(t, x)|2dx. If we consider also

the presence of a crack in the viscoelastic material, the damped wave equation becomes

ü(t, x)−∆u(t, x)−∆u̇(t, x) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (13)

and in this case, the dynamic energy-dissipation balance reads

E(t) +Hd−1(Γt \ Γ0) +

∫ t

0

∫
Ω\Γτ

|∇u̇(τ, x)|2dx dτ = E(0) + work of external forces. (14)

For a prescribed crack evolution, this model was already considered by [16] in the antiplane
case, and more in general by [52] for the vector-valued case. As proved in the quoted papers,
the solutions to (13) satisfy

E(t) +

∫ t

0

∫
Ω\Γτ

|∇u̇(τ, x)|2dx dτ = E(0) + work of external forces

for every time t. This equality implies that (14) cannot be satisfied unless Γt = Γ0 for every t,
which means that the crack is not allowed to increase in time. This phenomenon was already
well known in mechanics as the viscoelastic paradox, see for instance [51, Chapter 7].

To overcome this problem, in Chapter 3 (which contains the results of [10], obtained
in collaboration with F. Sapio) we modify Kelvin-Voigt’s model by considering a possibly
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degenerate viscosity term depending on t and x. More precisely, we study the following
equation

ü(t, x)−∆u(t, x)− div(Θ2(t, x)∇u̇(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt. (15)

On the function Θ: (0, T )×Ω→ R we only require some regularity assumptions; a particularly
interesting case is when Θ assumes the value zero on some points of Ω, which means that the
material has no longer viscoelastic properties in such a zone.

The main result of Chapter 3 is Theorem 3.2.1 (see also Remark 3.3.4), in which we show
the existence of a solution to (15) and, more in general, to the analogous problem for the
d-dimensional linear elasticity. To this aim, we first perform a time discretization in the same
spirit of [16], and then we pass to the limit as the time step goes to zero by relying on energy
estimates. As a byproduct, we derive an energy-dissipation inequality (see (3.3.4)), which is
used to prove the validity of the initial conditions. By using the change of variables method
implemented in [43, 20], we also prove a uniqueness result, but only in dimension d = 2 and
when Θ(t) vanishes on a neighborhood of the tip of Γt.

We complete the chapter by providing an example in d = 2 of a solution to (15) for which
the crack can grow while balancing the energy. As we remarked before, this cannot happen
for the Kelvin-Voigt’s model. More precisely, when the crack Γt moves with constant speed
along the x1-axis and Θ(t) is zero in a neighborhood of the crack-tip, we construct a function
u which solves (15) and satisfies

E(t) +H1(Γt \Γ0) +

∫ t

0

∫
Ω\Γτ

|Θ(τ, x)∇u̇(τ, x)|2dx dτ = E(0) + work of external forces (16)

for every time t. Notice that (16) is the natural formulation of the dynamic energy-dissipation
balance in this setting.

Chapter 4: A phase-field model of dynamic fracture

An alternative approach to the study of crack evolution is based on the so-called phase-field
model, which relies on the Ambrosio-Tortorelli’s approximation of the energy functional (1).
According to Ambrosio and Tortorelli [4], the (d − 1)-dimensional set Γ is replaced by a
phase-field variable vε : Ω → [0, 1] which is close to 0 in an ε-neighborhood of Γ, and close
to 1 away from it. Accordingly, the Griffith’s functional (1) is replaced by the ε-dependent
elliptic functionals

Eε(u, v) + Hε(v)

for u, v ∈ H1(Ω), where

Eε(u, v) :=
1

2

∫
Ω

[(v(x))2 + ηε] |∇u(x)|2 dx,

Hε(v) :=
1

4ε

∫
Ω
|1− v(x)|2 dx+ ε

∫
Ω
|∇v(x)|2 dx,

with 0 < ηε � ε. A minimum point (uε, vε) of Eε + Hε provides a good approximation of
a minimizer (u,Γ) of (1) as ε → 0+, in the sense that uε is close to u, vε is close to 0 near
Γ, and Eε(uε, vε) + Hε(vε) approximates the energy (1). For the corresponding quasi-static
evolution t 7→ (uε(t), vε(t)), the minimality condition for (1) is replaced by

Eε(uε(t), vε(t)) + Hε(vε(t)) ≤ Eε(u
∗, v∗) + Hε(v

∗) (17)

among every pair (u∗, v∗) with v∗ ≤ vε(t) and u∗ = w(t) on ∂Ω. Notice that the inequality
v∗ ≤ vε(t) reflects the inclusion Γ∗ ⊇ Γt. As before, the minimum problem (17) is com-
plemented with the irreversibility condition 0 ≤ vε(t) ≤ vε(s) ≤ 1 for every s ≤ t, and
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with the energy-dissipation balance for every time; we refer to [30] for the convergence of
this evolution, as ε → 0+, toward the sharp-interface one described at the beginning of the
introduction.

In particular, a quasi-static phase-field evolution t 7→ (uε(t), vε(t)) satisfies:

(Q1) for every t ∈ [0, T ] the function uε(t) solves div([(vε(t))
2 + ηε]∇uε(t)) = 0 in Ω with

suitable boundary conditions;

(Q2) the map t 7→ vε(t) is non-increasing (vε(t) ≤ vε(s) for 0 ≤ s ≤ t ≤ T ) and for every
t ∈ [0, T ] the function vε(t) satisfies

Eε(uε(t), vε(t)) + Hε(vε(t)) ≤ Eε(uε(t), v
∗) + Hε(v

∗)

for every v∗ ≤ vε(t);

(Q3) for every t ∈ [0, T ] the pair (uε(t), vε(t)) satisfies the energy-dissipation balance

Eε(uε(t), vε(t)) + Hε(vε(t)) = Eε(uε(0), vε(0)) + Hε(vε(0)) + work of external data.

As explained before for the sharp interface model, in the dynamic case the first condition
is replaced by the wave equation, while in the energy balance we need to take into account
the kinetic energy term. Developing these principles, in [6, 35, 36] the authors propose the
following phase-field model of dynamic crack propagation in linear elasticity:

(D1) uε solves üε − div([v2
ε + ηε]CEuε) = 0 in (0, T )× Ω with suitable boundary and initial

conditions;

(D2) the map t 7→ vε(t) is non-increasing and for every t ∈ [0, T ] the function vε(t) solves

Eε(uε(t), vε(t)) + Hε(vε(t)) ≤ Eε(uε(t), v
∗) + Hε(v

∗) for every v∗ ≤ vε(t);

(D3) for every t ∈ [0, T ] the pair (uε(t), vε(t)) satisfies the dynamic energy-dissipation balance

1

2

∫
Ω
|u̇ε(t)|2dx+ Eε(uε(t), vε(t)) + Hε(vε(t))

=
1

2

∫
Ω
|u̇ε(0)|2dx+ Eε(uε(0), vε(0)) + Hε(vε(0)) + work of external data,

where Eε(u, v) := 1
2

∫
Ω[((v(x))2 + ηε]C(x)Eu(x) ·Eu(x) dx for u ∈ H1(Ω;Rd) and v ∈ H1(Ω).

A solution to this model is approximated by means of a time discretization with an alternate
scheme: to pass from the previous time to the next one, one first solves the wave equation for
u, keeping v fixed, and then a minimum problem for v, keeping u fixed. This method is used
in [36] to prove the existence of a pair (u, v) satisfying (D1)–(D3). For technical reasons, a
viscoelastic dissipative term is added to (D1), which means that in [36] the following system
is considered

üε − div([v2
ε + ηε]C(Euε + Eu̇ε)) = 0 in (0, T )× Ω.

The disadvantage of this term appears when we consider the behavior of the solution as
ε → 0+, a problem which is out of the scope of this thesis. If we were able to prove the
convergence of the solution toward a dynamic sharp-interface evolution, then the dynamic
energy-dissipation balance for the damped wave equation in cracked domains of [16, 52] would
imply that the limit crack does not depend on time, as explained above in the section about
viscoelastic materials.

To avert this problem, in Chapter 4 (which contains the results of [7]) we propose a
different model that avoids viscoelastic terms depending on the displacement and consider
instead a dissipative term related to the speed of the crack-tips. More precisely, given a
natural number k ∈ N ∪ {0}, we consider a dynamic phase-field evolution t 7→ (uε(t), vε(t))
satisfying:
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(D̃1) uε solves üε − div([(vε ∨ 0)2 + ηε]CEuε) = 0 in (0, T )× Ω with suitable boundary and
initial conditions;

(D̃2) the map t 7→ vε(t) is non-increasing and for a.e. t ∈ (0, T ) the function vε(t) solves the
variational inequality

Eε(uε(t), v
∗)− Eε(uε(t), vε(t)) + Hε(v

∗)−Hε(vε(t)) + (v̇ε(t), v
∗ − vε(t))Hk(Ω) ≥ 0

for every v∗ ≤ vε(t);

(D̃3) for every t ∈ [0, T ] the pair (uε(t), vε(t)) satisfies the dynamic energy-dissipation balance

1

2

∫
Ω
|u̇ε(t)|2dx+ Eε(uε(t), vε(t)) + Hε(vε(t)) +

∫ t

0
‖v̇ε(τ)‖2Hk(Ω)dτ

=
1

2

∫
Ω
|u̇ε(0)|2dx+ Eε(uε(0), vε(0)) + Hε(vε(0)) + work of external data,

(18)

where in this case Eε(u, v) := 1
2

∫
Ω[(v(x) ∨ 0)2 + ηε]C(x)Eu(x) · Eu(x) dx. Notice that for

technical reasons the dissipative term
∫ t

0‖v̇ε(τ)‖2
Hk(Ω)

dτ contains the norm in the Sobolev

space Hk(Ω), rather then the norm in L2(Ω), which is more frequently used in the literature.
This choice guarantees more regularity in time for the phase-field function, more precisely
that vε ∈ H1(0, T ;Hk(Ω)).

In the quasi-static setting, a condition similar to (D̃2) can be found in [42, 2], where it
defines a unilateral gradient flow evolution for the phase-field function vε. In sharp-interface
models, a crack-dependent term analogous to

∫ t
0‖v̇ε(τ)‖2

Hk(Ω)
dτ arises in the study of the

so-called vanishing viscosity evolutions, which are linked to the analysis of local minimizers
of Griffith’s functional (1), see for example [46, 39]. We point out that a similar dissipative
term also appears in [37] for a 1-dimensional debonding model.

By adapting the time discretization scheme of [6, 36], we show the existence of a dynamic
phase-field evolution (uε, vε) which satisfies (D̃1)–(D̃3), provided that k > d/2, where d is
the dimension of the ambient space. This condition is crucial to obtain the validity of the
dynamic energy-dissipation balance since in our case the viscoelastic dissipative term used
in [36] is not present.

We conclude Chapter 4 by analyzing the dynamic phase-field model (D1)–(D3) with no
viscous terms. We show the existence of an evolution t 7→ (uε(t), vε(t)) which satisfies (D1)
and (D2), but only an energy-dissipation inequality (see (4.4.7)) instead of (D3).
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Notation

Basic notation. The space of m × d matrices with real entries is denoted by Rm×d; in
case m = d, the subspace of symmetric matrices is denoted by Rd×dsym, and the subspace of

orthogonal d × d matrices with determinant equal to 1 by SO(d). We denote by AT and
A−1, respectively, the transpose and the inverse of A ∈ Rd×d, by A−T the transpose of the
inverse, and by Asym the symmetric part, namely Asym := 1

2(A + AT ); we use Id to denote
the identity matrix in Rd×d. The Euclidian scalar product in Rd is denoted by · and the
corresponding Euclidian norm by | · |; the same notation is used also for Rm×d. We denote
by a⊗ b ∈ Rd×d the tensor product between two vectors a, b ∈ Rd, and by a� b ∈ Rd×dsym the
symmetrized tensor product, namely the symmetric part of a⊗ b.

The d-dimensional Lebesgue measure in Rd is denoted by Ld, and the (d−1)-dimensional
Hausdorff measure by Hd−1. Given a bounded open set Ω with Lipschitz boundary, we denote
by ν the outer unit normal vector to ∂Ω, which is defined Hd−1-a.e. on the boundary. We use
Br(x) to denote the ball of radius r and center x in Rd, namely Br(x) := {y ∈ Rd : |y−x| < r},
and id to denote the identity function in Rd, possibly restricted to a subset. Given two
numbers c1, c2 ∈ R, we set c1 ∨ c2 := max{c1, c2} and c1 ∧ c2 := min{c1, c2}.

The partial derivatives with respect to the variable xi are denoted by ∂i or ∂xi . Given
a function u : Rd → Rm, we denote its Jacobian matrix by ∇u, whose components are
(∇u)ij := ∂jui for i = 1, . . . ,m and j = 1, . . . , d. When u : Rd → Rd, we use Eu to de-
note its symmetryzed gradient, namely Eu := 1

2(∇u +∇uT ). Given u : Rd → R, we use ∆u

to denote its Laplacian, which is defined as ∆u :=
∑d

i=1 ∂
2
i u. We set ∇2u := ∇(∇u) and

∆2u := ∆(∆u), and we define inductively ∇ku and ∆ku for every k ∈ N, with the convention
∇0u = ∆0u := u. For a tensor field T : Rd → Rm×d, by div T we mean its divergence with
respect to rows, namely (div T )i :=

∑d
j=1 ∂jTij for i = 1, . . . ,m.

Function spaces. Given two metric spaces X and Y , we use C0(X;Y ) and Lip(X;Y ) to
denote, respectively, the space of continuous and Lipschitz functions from X to Y . Given
an open set Ω ⊆ Rd, we denote by Ck(Ω;Rm) the space of Rm-valued functions with k con-
tinuous derivatives; we use Ckc (Ω;Rm) and Ck,1(Ω;Rm) to denote, respectively, the subspace
of functions with compact support in Ω, and of functions whose k-derivatives are Lipschitz.
For every 1 ≤ p ≤ ∞ we denote by Lp(Ω;Rm) the Lebesgue space of p-th power integrable
functions, and by W k,p(Ω;Rm) the Sobolev space of functions with k derivatives; for p = 2
we set Hk(Ω;Rm) := W k,2(Ω;Rm), and for m = 1 we omit Rm in the previous spaces. The
boundary values of a Sobolev function are always intended in the sense of traces. The scalar
product in L2(Ω;Rm) is denoted by (·, ·)L2(Ω) and the norm in Lp(Ω;Rm) by ‖ · ‖Lp(Ω); a
similar notation is valid for the Sobolev spaces. For simplicity, we use ‖ · ‖L∞(Ω) to denote
also the supremum norm of continuous and bounded functions.

The norm of a generic Banach space X is denoted by ‖ · ‖X ; when X is a Hilbert space,
we use (·, ·)X to denote its scalar product. We denote by X ′ the dual of X, and by 〈·, ·〉X′
the duality product between X ′ and X. Given two Banach spaces X1 and X2, the space of
linear and continuous maps from X1 to X2 is denoted by L (X1;X2); given A ∈ L (X1;X2)
and u ∈ X1, we write Au ∈ X2 to denote the image of u under A.

Given an open interval (a, b) ⊆ R and 1 ≤ p ≤ ∞, we denote by Lp(a, b;X) the space
of Lp functions from (a, b) to X; we use W k,p(a, b;X) and Hk(a, b;X) (for p = 2) to denote
the Sobolev space of functions from (a, b) to X with k derivatives. Given u ∈ W 1,p(a, b;X),
we denote by u̇ ∈ Lp(a, b;X) its derivative in the sense distributions. The set of functions
from [a, b] to X with k continuous derivatives is denoted by Ck([a, b];X); we use Ckc (a, b;X)
to denote the subspace of functions with compact support in (a, b). The space of absolutely
continuous functions from [a, b] to X is denoted by AC([a, b];X); we use C0

w([a, b];X) to
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denote the set of weakly continuous functions from [a, b] to X, namely

C0
w([a, b];X) := {u : [a, b]→ X : t 7→ 〈x′, u(t)〉X′ is continuous in [a, b] for every x′ ∈ X ′}.

When dealing with an element u ∈ H1(a, b;X) we always assume u to be the continuous
representative of its class. In particular, it makes sense to consider the pointwise value u(t)
for every t ∈ [a, b].



Chapter 1

Elastodynamics system in domains
with growing cracks

In this chapter, we prove the existence, uniqueness, and continuous dependence results for
the elastodynamics system (4) via the change of variable approach of [43, 20].

The chapter is organized as follows. In Section 1.1 we list the main assumptions on the
set Ω, on the geometry of the cracks Γt, and on the diffeomorphisms used for the changes of
variables. Moreover, in Definitions 1.1.6 and 1.1.9 we specify the notion of weak solution to
problems (4) and (5). Section 1.2 deals with the study of the two problems (see Theorems 1.2.2
and 1.2.3). We first show their equivalence (see Theorem 1.1.16), and then we prove an
existence and uniqueness result for (5) in a weaker sense (see Theorems 1.2.9). In Section 1.3
we complete the proof of Theorems 1.2.2 and 1.2.3 by showing the energy equality (1.3.2),
which ensures that the solution given by Theorem 1.2.9 is indeed a weak solution. Finally,
Section 1.4 is devoted to the continuous dependence result, which is proved in Theorem 1.4.1.

The results contained in this chapter have been published in [8].

1.1 Preliminary results

Let T be a positive number, Ω ⊂ Rd be a bounded open set with Lipschitz boundary, ∂DΩ
be a (possibly empty) Borel subset of ∂Ω, and ∂NΩ be its complement. Throughout this
chapter we assume the following hypotheses on the geometry of the crack sets {Γt}t∈[0,T ] and
on the diffeomorphisms of Ω into itself mapping Γ0 into Γt:

(H1) Γ ⊂ Rd is a complete (d − 1)-dimensional C2 manifold with boundary ∂Γ such that
∂Γ ∩ Ω = ∅ and Hd−1(Γ ∩ ∂Ω) = 0;

(H2) for every x ∈ Γ∩Ω there exists an open neighborhood U of x in Rd such that (U ∩Ω)\Γ
is the union of two disjoint open sets U+ and U− with Lipschitz boundary;

(H3) {Γt}t∈[0,T ] is a family of (possibly irregular) closed subsets of Γ ∩ Ω satisfying Γs ⊆ Γt
for every 0 ≤ s ≤ t ≤ T ;

(H4) Φ, Ψ: [0, T ] × Ω → Ω are two continuous maps and the partial derivatives ∂tΦ, ∂tΨ,
∂iΦ, ∂iΨ, ∂2

ijΦ, ∂2
ijΨ, ∂i∂tΦ = ∂t∂iΦ, ∂i∂tΨ = ∂t∂iΨ exist and are continuous for

i, j = 1, . . . , d;

(H5) Φ(t,Ω) = Ω, Φ(t,Γ∩Ω) = Γ∩Ω, Φ(t,Γ0) = Γt, and Φ(t, y) = y for every t ∈ [0, T ] and
y in a neighborhood of ∂Ω;

(H6) Ψ(t,Φ(t, y)) = y, Φ(t,Ψ(t, x)) = x, and Φ(0, y) = y for every t ∈ [0, T ] and x, y ∈ Ω;

1
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(H7) ∂tΦ, ∂tΨ, ∂iΦ, ∂iΨ, ∂2
ijΦ, ∂2

ijΨ, ∂i∂tΦ, ∂i∂tΨ belong to the space Lip([0, T ];C0(Ω;Rd))
for i, j = 1, . . . , d;

(H8) there exists a constant L > 0 such that

|∂i∂tΦ(t, x)− ∂i∂tΦ(t, y)| ≤ L|x− y|, |∂i∂tΨ(t, x)− ∂i∂tΨ(t, y)| ≤ L|x− y|

for every t ∈ [0, T ], x, y ∈ Ω, and i = 1, . . . , d.

By using (H4) and (H6) we derive that det∇Φ(t, y) 6= 0 and det∇Ψ(t, x) 6= 0 for every
t ∈ [0, T ] and x, y ∈ Ω. In particular, both determinants are positive, since ∇Φ(0, y) = Id for
every y ∈ Ω.

Assumptions (H1) and (H2) imply the existence of the trace of ψ ∈ H1(Ω\Γ) on ∂Ω, and
on Γ ∩ Ω from both sides. Indeed, we can find a finite number of open sets with Lipschitz
boundary Uj ⊆ Ω \Γ, j = 1, . . .m, such that ((Γ∩Ω)∪∂Ω) \ (Γ∩∂Ω) ⊆ ∪mj=1∂Uj . Moreover,

since Hd−1(Γ ∩ ∂Ω) = 0, there exists a constant Ctr > 0, depending only on Ω and Γ, such
that

‖ψ‖L2(∂Ω) ≤ Ctr‖ψ‖H1(Ω\Γ) for every ψ ∈ H1(Ω \ Γ). (1.1.1)

In a similar way we obtain the embedding H1(Ω \ Γ) ↪→ Lp(Ω) for every p ∈ [1, 2∗], where
2∗ := 2n

n−2 is the usual critical Sobolev exponent. In particular, there exists a constant Cp > 0,
depending on Ω, Γ, and p, such that

‖ψ‖Lp(Ω) ≤ Cp‖ψ‖H1(Ω\Γ) for every ψ ∈ H1(Ω \ Γ). (1.1.2)

Given a point y ∈ Γ ∩ Ω, its trajectory in time is described by the time-dependent map
t 7→ Φ(t, y) ∈ Γ. We infer that its velocity is tangential to the manifold Γ at the point Φ(t, y),
that is Φ̇(t, y) · ν(Φ(t, y)) = 0, where ν(x) is the unit normal vector to Γ at x. By combining
this equality with the relation

ν(Φ(t, y)) =
∇Φ(t, y)−T ν(y)

|∇Φ(t, y)−T ν(y)|
for y ∈ Γ ∩ Ω,

we deduce

(∇Φ(t, y)−1Φ̇(t, y)) · ν(y) = Ψ̇(t,Φ(t, y)) · ν(y) = 0 for y ∈ Γ ∩ Ω, (1.1.3)

or equivalently
Φ̇(t,Ψ(t, x)) · ν(x) = 0 for x ∈ Γ ∩ Ω. (1.1.4)

In the following lemmas, we investigate some regularity properties of functions defined in
Ω \Γ, when composed with suitable diffeomorphisms of the domain into itself. Let us specify
the class of diffeomorphisms under study.

Definition 1.1.1. We say that Λ: [0, T ] × Ω → Rd is admissible if it belongs to the space
C1([0, T ] × Ω;Rd) and for every t ∈ [0, T ] the function Λ(t) is a C2 diffeomorphism of Ω in
itself such that Λ(t,Ω) = Ω and Λ(t,Γ ∩ Ω) = Γ ∩ Ω.

Notice that, according to (H4)–(H6), both Φ and Ψ are admissible.

Lemma 1.1.2. Let f and fn, n ∈ N, be elements of L2(Ω), and let Λ and Λn, n ∈ N, be
admissible diffeomorphisms. Assume there exist δ1, δ2 > 0 such that δ1 < det∇Λn(t, x) < δ2

for every t ∈ [0, T ], x ∈ Ω, and n ∈ N. Assume also that for every t ∈ [0, T ]

Λn(t)→ Λ(t) in L2(Ω;Rd), fn → f in L2(Ω) as n→∞.

Then, for every t ∈ [0, T ] we have

fn(Λn(t))→ f(Λ(t)) in L2(Ω) as n→∞.
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Proof. The proof of this result can be found in [20, Lemma A.7].

Lemma 1.1.3. Let Λ be admissible. There exists a constant C > 0 such that for every
ψ ∈ H1(Ω \ Γ) we have

‖ψ(Λ(t))− ψ(Λ(s))‖L2(Ω\Γ) ≤ C‖∇ψ‖L2(Ω\Γ)|t− s| for every 0 ≤ s ≤ t ≤ T .

Proof. It is sufficient to repeat the proof of [20, Lemmas A.5], by approximating ψ ∈ H1(Ω\Γ)
with a sequence of functions ψε ∈ C∞(Ω \ Γ) ∩H1(Ω \ Γ) given by Meyers-Serrin’s theorem
(see, e.g, [1, Theorem 3.16]), and integrating over Ω \ Γ.

Lemma 1.1.4. Let Λ be admissible and let t ∈ [0, T ] be fixed. Then for every ψ ∈ H1(Ω \Γ)

1

h
[ψ(Λ(t+ h))− ψ(Λ(t))]→ ∇ψ(Λ(t)) · Λ̇(t) in L2(Ω \ Γ) as h→ 0.

Proof. We argue again as in the proof of [20, Lemmas A.6], by approximating ψ with a
sequence of functions ψε ∈ C∞(Ω \ Γ)∩H1(Ω \ Γ) given by Meyers-Serrin’s theorem, and by
integrating over Ω \ Γ. We only have to check that as h→ 0

Th(ψε) :=
1

h

∫ h

0
∇ψε(Λ(t+ τ)) · Λ̇(t+ τ) dτ → L(ψε) := ∇ψε(Λ(t)) · Λ̇(t) in L2(Ω \ Γ).

Since Λ: [0, T ]×Ω→ Rd is uniformly continuous, for every δ > 0 there exists ρ̄ > 0 such that

|Λ(t+ τ, y)− Λ(t, y)| < δ for every |τ | < ρ̄ and y ∈ Ω. (1.1.5)

Similarly, fixed t ∈ [0, T ], the map Λ−1(t) : Ω→ Rd is uniformly continuous, and so for every
η > 0 there exists δ > 0 such that

|Λ−1(t, y)− Λ−1(t, z)| < η for every y, z ∈ Ω, with |y − z| < δ. (1.1.6)

By combining (1.1.5) and (1.1.6), we get that for every η > 0 there exists ρ̄ > 0 such that

Λ(t+ τ,A) ⊂ Λ(t, Iη(A)) for every set A ⊂ Ω and |τ | < ρ̄,

where Iη(A) := {x ∈ Ω : dist(x,A) < η} (we recall that dist(x,A) := infy∈A |x− y|).
For every n ∈ N we define Kn := {x ∈ Ω \ Γ : dist(x, ∂(Ω \ Γ)) ≥ 1/n}. The sets Kn are

compact, with Kn ⊂ Kn+1, and ∪∞n=1Kn = Ω \ Γ. Fixed n ∈ N, there exists η > 0 such that
Iη(Kn) ⊂⊂ Ω \ Γ, which implies that Λ(t, Iη(Kn)) ⊂⊂ Ω \ Γ. Therefore there exists ρ̄ > 0
such that for every |h| < ρ̄ and y ∈ Kn

|Th(ψε)(y)| ≤ 1

h

∫ h

0
|∇ψε(Λ(t+ τ, y)) · Λ̇(t+ τ, y)| dτ ≤ C,

for a constant C > 0 independent of h. Hence, by the dominated convergence theorem we
conclude that ‖Th(ψε) − L(ψε)‖L2(Kn) → 0 as h → 0, since Th(ψε)(y) → L(ψε)(y) for every
y ∈ Ω \ Γ. Similarly, there exists η > 0 such that Iη((Ω \ Γ) \Kn+1) ⊂ (Ω \ Γ) \Kn, and so
we can find ρ̄ > 0 such that for every |h| < ρ̄

‖Th(ψε)‖2L2((Ω\Γ)\Kn+1) ≤
1

h

∫
(Ω\Γ)\Kn+1

∫ h

0
|∇ψε(Λ(t+ τ, y)) · Λ̇(t+ τ, y)|2dτ dy

≤ C
∫

(Ω\Γ)\Kn
|∇ψε(Λ(t, y))|2dy.
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Therefore, for every |h| < ρ̄

‖Th(ψε)− L(ψε)‖L2(Ω\Γ)

≤ ‖Th(ψε)− L(ψε)‖L2(Kn+1) + ‖Th(ψε)‖L2((Ω\Γ)\Kn+1) + ‖L(ψε)‖L2((Ω\Γ)\Kn+1)

≤ ‖Th(ψε)− L(ψε)‖L2(Kn+1) + 2C‖∇ψε(Λ(t))‖L2((Ω\Γ)\Kn),

and consequently lim suph→0 ‖Th(ψε)−L(ψε)‖L2(Ω\Γ) ≤ 2C‖∇ψε(Λ(t))‖L2((Ω\Γ)\Kn) for every

n ∈ N. To conclude it is enough to observe that Ld((Ω \ Γ) \ Kn) → 0 as n → ∞, and
∇ψε(Λ(t)) ∈ L2(Ω \ Γ;Rd).

For every t ∈ [0, T ] we introduce the space

H1
D(Ω \ Γt;Rd) := {ψ ∈ H1(Ω \ Γt;Rd) : ψ = 0 on ∂DΩ}, (1.1.7)

where the equality ψ = 0 on ∂DΩ refers to the trace of ψ on ∂Ω. We have that H1
D(Ω\Γt;Rd)

is a Hilbert space endowed with the norm of H1(Ω \ Γt;Rd), and its dual is denoted by
H−1
D (Ω \ Γt;Rd). The canonical isomorphism between H1

D(Ω \ Γt;Rd) and [H1
D(Ω \ Γt)]

d

induces an isomorphism of H−1
D (Ω \ Γt;Rd) into [H−1

D (Ω \ Γt)]
d.

The transpose of the natural embedding H1
D(Ω \Γt;Rd) ↪→ L2(Ω;Rd) induces the embed-

ding of L2(Ω;Rd) into H−1
D (Ω \ Γt;Rd), which is defined by

〈g, ψ〉H−1
D (Ω\Γt) := (g, ψ)L2(Ω) for g ∈ L2(Ω;Rd) and ψ ∈ H1

D(Ω \ Γt;Rd).

Given 0 ≤ s ≤ t ≤ T , let Pst : H
−1
D (Ω \ Γt;Rd) → H−1

D (Ω \ Γs;Rd) be the transpose of the
natural embedding H1

D(Ω \ Γs;Rd) ↪→ H1
D(Ω \ Γt;Rd), i.e.,

〈Pst(g), ψ〉H−1
D (Ω\Γs) := 〈g, ψ〉H−1

D (Ω\Γt) for g ∈ H−1
D (Ω \ Γt;Rd) and ψ ∈ H1

D(Ω \ Γs;Rd).

The operator Pst is continuous, with norm less than or equal to 1, but in general is not
injective, since H1

D(Ω \ Γs;Rd) is not dense in H1
D(Ω \ Γt;Rd). Notice that Pst(g) = g for

every g ∈ L2(Ω;Rd).
Let C : [0, T ]× Ω→ L (Rd×dsym;Rd×dsym) be a time varying tensor field satisfying

C ∈ Lip([0, T ];C0(Ω; L (Rd×dsym;Rd×dsym))),

C(t) ∈ Lip(Ω; L (Rd×dsym;Rd×dsym)), ‖∇C(t)‖L∞(Ω) ≤ C for every t ∈ [0, T ],

(C(t, x)ξ1) · ξ2 = ξ1 · (C(t, x)ξ2) for every ξ1, ξ2 ∈ Rd×dsym, t ∈ [0, T ], x ∈ Ω,

where C > 0 is a constant independent of t. Starting from the operator C(t, x) it is convienent
to define a new operator A(t, x) ∈ L (Rd×d,Rd×d) as:

A(t, x)ξ := C(t, x)ξsym for every ξ ∈ Rd×d, t ∈ [0, T ], x ∈ Ω.

Clearly, A satisfies

A ∈ Lip([0, T ];C0(Ω; L (Rd×d;Rd×d))), (1.1.8)

A(t) ∈ Lip(Ω; L (Rd×d;Rd×d)), ‖∇A(t)‖L∞(Ω) ≤ C for every t ∈ [0, T ], (1.1.9)

(A(t, x)ξ1) · ξ2 = ξ1 · (A(t, x)ξ2) for every ξ1, ξ2 ∈ Rd×d, t ∈ [0, T ], x ∈ Ω. (1.1.10)

Given

w ∈ H2(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω \ Γ0;Rd)), (1.1.11)

f ∈ L2(0, T ;L2(Ω;Rd)), F ∈ H1(0, T ;L2(∂NΩ;Rd)), (1.1.12)
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u0 − w(0) ∈ H1
D(Ω \ Γ0;Rd), u1 ∈ L2(Ω;Rd), (1.1.13)

we study the linear hyperbolic system

ü(t)− div(A(t)∇u(t)) = f(t) in Ω \ Γt, t ∈ [0, T ], (1.1.14)

with boundary conditions formally written as

u(t) = w(t) on ∂DΩ, t ∈ [0, T ], (1.1.15)

(A(t)∇u(t))ν = F (t) on ∂NΩ, t ∈ [0, T ], (1.1.16)

(A(t)∇u(t))ν = 0 on Γt, t ∈ [0, T ], (1.1.17)

and initial conditions

u(0) = u0, u̇(0) = u1 in Ω \ Γ0. (1.1.18)

Remark 1.1.5. To give a precise meaning to (1.1.14)–(1.1.18), it is convenient to introduce
the following notation. Given ψ ∈ H1(Ω \ Γt;Rd), its gradient in the sense of distributions
is denoted by ∇ψ and it is an element of L2(Ω \ Γt;Rd×d). We extend it to a function in
L2(Ω;Rd×d) by setting ∇ψ = 0 on Γt. Notice that this is not the gradient in the sense of
distributions on Ω of the function ψ, considered as defined almost everywhere on Ω; indeed
the equality ∫

Ω
∇ψ(x) · ω(x) dx = −

∫
Ω
ψ(x) · divω(x) dx

holds for every ω ∈ C∞c (Ω \Γt;Rd×d), but in general not for ω ∈ C∞c (Ω;Rd×d). Similarly, we
extend divψ ∈ L2(Ω \ Γt) to a function in L2(Ω) by setting divψ = 0 on Γt.

We recall the notion of solution to (1.1.14)–(1.1.17) given in [20, Definition 2.4]. We
consider functions u satisfying the following regularity assumptions:

u ∈ C1([0, T ];L2(Ω;Rd)), (1.1.19)

u(t)− w(t) ∈ H1
D(Ω \ Γt;Rd) for every t ∈ [0, T ], (1.1.20)

∇u ∈ C0([0, T ];L2(Ω;Rd×d)), (1.1.21)

u̇ ∈ AC([s, T ];H−1
D (Ω \ Γs;Rd)) for every s ∈ [0, T ), (1.1.22)

1

h
[u̇(t+ h)− u̇(t)] ⇀ ü in H−1

D (Ω \ Γt;Rd) for a.e. t ∈ (0, T ) as h→ 0, (1.1.23)

the function t 7→ ‖ü(t)‖H−1
D (Ω\Γt) is integrable in (0, T ). (1.1.24)

The relationship between ü and the distributional time derivative of u̇ is explained in [20,
Lemma 2.2], which shows that, under assumptions (1.1.19)–(1.1.24), the map t 7→ Pst(ü(t)) is
the distributional derivative of the function t 7→ u̇(t) from (s, T ) to H−1

D (Ω\Γs;Rd). Moreover

u̇(t)− u̇(s) =

∫ t

s
Psτ (ü(τ)) dτ for every 0 ≤ s ≤ t ≤ T .

Definition 1.1.6. Let A, w, f , and F be as in (1.1.8)–(1.1.12). We say that u is a weak
solution to the hyperbolic system (1.1.14) with boundary conditions (1.1.15)–(1.1.17) if u
satisfies (1.1.19)–(1.1.24), and for a.e. t ∈ (0, T ) we have

〈ü(t), ψ〉H−1
D (Ω\Γt) + (A(t)∇u(t),∇ψ)L2(Ω) = (f(t), ψ)L2(Ω) + (F (t), ψ)L2(∂NΩ) (1.1.25)

for every ψ ∈ H1
D(Ω \ Γt;Rd), where ü(t) is defined in (1.1.23).
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Remark 1.1.7. Let us check that (1.1.25) makes sense for a.e. t ∈ (0, T ). Thanks to (1.1.23)
we have that ü(t) ∈ H−1

D (Ω \ Γt;Rd) for a.e. t ∈ (0, T ), therefore it is in duality with
ψ ∈ H1

D(Ω \ Γt;Rd). Moreover, assumptions (1.1.8) and (1.1.21) implies that A(t)∇u(t)
belongs to L2(Ω;Rd×d) for every t ∈ [0, T ]. Finally, thanks to (1.1.1) the last term of (1.1.25)
is well defined for every t ∈ [0, T ].

Remark 1.1.8. Notice that the Neumann boundary conditions (1.1.16) and (1.1.17) are in
general only formal. They can be obtained from (1.1.25), by using integration by parts in
space, only when u(t) and Γt are sufficiently regular.

Following [43], to prove the existence and uniqueness of a weak solution, we perform a
change of variable. We denote by

v(t, y) := u(t,Φ(t, y)) t ∈ [0, T ], y ∈ Ω \ Γ0, (1.1.26)

where Φ is the diffeomorphism introduced in (H4)–(H8), so that

u(t, x) = v(t,Ψ(t, x)) t ∈ [0, T ], x ∈ Ω \ Γt. (1.1.27)

Notice that v(t) ∈ H1(Ω \Γ0;Rd) if and only if u(t) ∈ H1(Ω \Γt;Rd) and that this change of
variables maps the domain {(t, x) : t ∈ [0, T ], x ∈ Ω \ Γt} into the cylinder [0, T ] × (Ω \ Γ0).
The transformed system reads

v̈(t)− div(B(t)∇v(t)) + p(t)∇v(t)− 2∇v̇(t)b(t) = g(t) in Ω \ Γ0, t ∈ [0, T ], (1.1.28)

where B(t, y) ∈ L (Rd×d;Rd×d), p(t, y) ∈ L (Rd×d;Rd), b(t, y) ∈ Rd, and g(t, y) ∈ Rd are
defined for t ∈ [0, T ] and y ∈ Ω as

B(t, y)ξ := (A(t,Φ(t, y))[ξ∇Ψ(t,Φ(t, y))])∇Ψ(t,Φ(t, y))T − ξb(t, y)⊗ b(t, y), (1.1.29)

p(t, y)ξ := −[(B(t, y)ξ)∇(det∇Φ(t, y)) + ∂t(ξb(t, y) det∇Φ(t, y))] det∇Ψ(t,Φ(t, y)), (1.1.30)

b(t, y) := −Ψ̇(t,Φ(t, y)), (1.1.31)

g(t, y) := f(t,Φ(t, y)) (1.1.32)

for every ξ ∈ Rd×d. The system is supplemented by boundary conditions formally written as

v(t) = w(t) on ∂DΩ, t ∈ [0, T ], (1.1.33)

(B(t)∇v(t))ν = F (t) on ∂NΩ, t ∈ [0, T ], (1.1.34)

(B(t)∇v(t))ν = 0 on Γ0, t ∈ [0, T ], (1.1.35)

and initial conditions
v(0) = v0, v̇(0) = v1 in Ω \ Γ0, (1.1.36)

with initial data
v0 := u0, v1 := u1 +∇u0Φ̇(0). (1.1.37)

To give a precise meaning to the notion of solution to system (1.1.28) with boundary condi-
tions (1.1.33)–(1.1.35), we consider functions v which satisfy the following regularity assump-
tions:

v ∈ C1([0, T ];L2(Ω;Rd)), (1.1.38)

v(t)− w(t) ∈ H1
D(Ω \ Γ0;Rd) for every t ∈ [0, T ], (1.1.39)

∇v ∈ C0([0, T ];L2(Ω;Rd×d)), (1.1.40)

v̇ ∈ AC([0, T ];H−1
D (Ω \ Γ0;Rd)). (1.1.41)
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Definition 1.1.9. Let A, w, f , and F be as in (1.1.8)–(1.1.12). Let B, p, b, and g be
defined according to (1.1.29)–(1.1.32). We say that v is a weak solution to the transformed
system (1.1.28) with boundary conditions (1.1.33)–(1.1.35), if v satisfies (1.1.38)–(1.1.41) and
for a.e. t ∈ (0, T ) we have

〈v̈(t), φ〉H−1
D (Ω\Γ0) + (B(t)∇v(t),∇φ)L2(Ω) + (p(t)∇v(t), φ)L2(Ω)

+ 2(v̇(t), div [φ⊗ b(t)])L2(Ω) = (g(t), φ)L2(Ω) + (F (t), φ)L2(∂NΩ)

(1.1.42)

for every φ ∈ H1
D(Ω \ Γ0;Rd).

Remark 1.1.10. Notice that (H5) and (1.1.3) imply b(t) = 0 on the boundary of Ω \ Γ0.
Hence, in the weak formulation of (1.1.28), it makes sense to pass from −2(∇v̇(t)b(t), φ)L2(Ω)

to 2(v̇(t),div[φ⊗ b(t)])L2(Ω), which can be defined even for v̇(t) ∈ L2(Ω;Rd).

Remark 1.1.11. Let v be a function which satisfies (1.1.38)–(1.1.41). Let us check that
the scalar products in (1.1.42) are well defined for a.e. t ∈ (0, T ). By (1.1.41) we have
v̈(t) ∈ H−1

D (Ω \ Γ0;Rd) for a.e. t ∈ (0, T ), therefore it is duality with φ ∈ H1
D(Ω \ Γ0;Rd).

In view of (1.1.38) and (1.1.40), for every t ∈ [0, T ] the functions v̇(t) and ∇v(t) belong to
L2(Ω;Rd) and L2(Ω;Rd×d), respectively. Hence, to ensure that the scalar products in the
left-hand side of (1.1.42) are well defined, we need to show that the coefficients B, p, b, and
div b are essentially bounded in space for almost every time.

Thanks to (H4), (H7), (H8), (1.1.8), and (1.1.9), we derive that the maps t 7→ A(t,Φ(t)),
t 7→ ∇Ψ(t,Φ(t)), t 7→ Ψ̇(t,Φ(t)), and t 7→ div(Ψ̇(t,Φ(t))) are Lipschitz continuous from [0, T ]
to L∞(Ω; L (Rd×d;Rd×d)), L∞(Ω;Rd×d), L∞(Ω;Rd), and L∞(Ω), respectively. Therefore, we
get

B ∈ Lip([0, T ];L∞(Ω; L (Rd×d;Rd×d))), (1.1.43)

b ∈ Lip([0, T ];L∞(Ω;Rd)), div b ∈ Lip([0, T ];L∞(Ω)). (1.1.44)

We split the coefficient p defined in (1.1.30) into the sum p = p1 + p2, where the operators
p1(t, y),p2(t, y) ∈ L (Rd×d;Rd) are defined for t ∈ [0, T ] and y ∈ Ω as

p1(t, y)ξ := −[(B(t, y)ξ)∇(det∇Φ(t, y)) + ξb(t, y)∂t(det∇Φ(t, y))] det∇Ψ(t,Φ(t, y)),

p2(t, y)ξ := −ξḃ(t, y)

for every ξ ∈ Rd×d. In view of the discussion above, p1 ∈ Lip([0, T ];L∞(Ω; L (Rd×d;Rd))),
while p2 is an element of L∞(0, T ;L2(Ω; L (Rd×d;Rd))), being ḃ the distributional derivative
of a function in Lip([0, T ];L∞(Ω;Rd)). Moreover, there exists a constant C > 0 such that
‖p2(t)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ). Finally, the function g defined in (1.1.32) belongs to

L2(0, T ;L2(Ω;Rd)), since f ∈ L2(0, T ;L2(Ω;Rd)). Then the right-hand side of (1.1.42) is
well defined for a.e. t ∈ (0, T ).

Remark 1.1.12. Thanks to (H1) and (H2), together with a partition of unity, we can
integrate by part in Ω \ Γ and derive the following formula:∫

Ω
∇ψ(x) · h(x)φ(x) dx = −

∫
Ω
ψ(x) div[h(x)φ(x)] dx (1.1.45)

for every ψ, φ ∈ H1(Ω \ Γ), and for every h ∈ W 1,∞(Ω;Rd), with h · ν = 0 on (Γ ∩ Ω) ∪ ∂Ω.
Similarly, for every ψ ∈W 1,1(Ω \ Γ) we have∫

Ω
∇ψ(x) · h(x) dx = −

∫
Ω
ψ(x) div h(x) dx. (1.1.46)

In particular, formulas (1.1.45) and (1.1.46) are satisfied if h is either Ψ̇(t,Φ(t)) or Φ̇(t,Ψ(t)),
thanks to (1.1.3), (1.1.4), (H4), and (H5).
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Let us clarify the relation between problem (1.1.14) with boundary conditions (1.1.15)–
(1.1.17), and problem (1.1.28) with boundary conditions (1.1.33)–(1.1.35). We start with the
following lemma.

Lemma 1.1.13. Suppose that u and v are related by (1.1.26) and (1.1.27). Then u satis-
fies (1.1.19)–(1.1.24) if and only if v satisfies (1.1.38)–(1.1.41).

Proof. The proof is straightforward by applying Lemmas 2.8 and 2.11 of [20] to the com-
ponents of u and v, which is possible thanks to our Lemmas 1.1.3 and 1.1.4, and for-
mula (1.1.45).

By using the identification H−1
D (Ω \ Γt;Rd) = [H−1

D (Ω \ Γt)]
d and Lemmas 2.9 and 2.12

of [20] we derive the following two results.

Lemma 1.1.14. Assume that u satisfies (1.1.19)–(1.1.24). Then for a.e. t ∈ (0, T ) we have

〈v̈(t), φ〉H−1
D (Ω\Γ0)

= 〈ü(t), φ(Ψ(t)) det∇Ψ(t)〉H−1
D (Ω\Γt) + (∇u(t), ∂t[φ(Ψ(t))⊗ Φ̇(t,Ψ(t)) det∇Ψ(t)])L2(Ω)

+ (u̇(t), ∂t[φ(Ψ(t)) det∇Ψ(t)]− div[φ(Ψ(t))⊗ Φ̇(t,Ψ(t)) det∇Ψ(t)])L2(Ω) (1.1.47)

for every φ ∈ H1
D(Ω \ Γ0;Rd).

Lemma 1.1.15. Assume that v satisfies (1.1.38)–(1.1.41). Then for a.e. t ∈ (0, T ) we have

〈ü(t), ψ〉H−1
D (Ω\Γt)

= 〈v̈(t), ψ(Φ(t)) det∇Φ(t)〉H−1
D (Ω\Γ0) + (∇v(t), ∂t[ψ(Φ(t))⊗ Ψ̇(t,Φ(t)) det∇Φ(t)])L2(Ω)

+ (v̇(t), ∂t[ψ(Φ(t)) det∇Φ(t)]− div[ψ(Φ(t))⊗ Ψ̇(t,Φ(t)) det∇Φ(t)])L2(Ω)

for every ψ ∈ H1
D(Ω \ Γt;Rd).

We can now specify the relation between the two problems.

Theorem 1.1.16. Under the assumptions of Definition 1.1.6, a function u is a weak solu-
tion to problem (1.1.14) with boundary conditions (1.1.15)–(1.1.17), if and only if the cor-
responding function v introduced in (1.1.26) is a weak solution to (1.1.28) with boundary
conditions (1.1.33)–(1.1.35).

Proof. Let us assume that u is a weak solution to problem (1.1.14) with boundary condi-
tions (1.1.15)–(1.1.17). Thanks to Lemmas 1.1.13 and 1.1.14, the function v satisfies (1.1.38)–
(1.1.41) and (1.1.47). Take an arbitrary test function φ ∈ H1

D(Ω\Γ0;Rd). For every t ∈ [0, T ]
the function φ(Ψ(t)) det∇Ψ(t) is in H1

D(Ω \ Γt;Rd). Thus, by (1.1.25) we have

〈ü(t), φ(Ψ(t)) det∇Ψ(t)〉H−1
D (Ω\Γt)

= −(A(t)∇u(t),∇[φ(Ψ(t)) det∇Ψ(t)])L2(Ω) + (f(t), φ(Ψ(t)) det∇Ψ(t))L2(Ω)

+ (F (t), φ(Ψ(t)) det∇Ψ(t))L2(∂NΩ).

By inserting this expression in (1.1.47) and using assumption (H4), we get

〈v̈(t), φ〉H−1
D (Ω\Γ0)

= −(A(t)∇u(t),∇[φ(Ψ(t)) det∇Ψ(t)])L2(Ω) + (f(t), φ(Ψ(t)) det∇Ψ(t))L2(Ω)

+ (F (t), φ)L2(∂NΩ) + (∇u(t), ∂t[φ(Ψ(t))⊗ Φ̇(t,Ψ(t)) det∇Ψ(t)])L2(Ω)

+ (u̇(t), ∂t[φ(Ψ(t)) det∇Ψ(t)]− div[φ(Ψ(t))⊗ Φ̇(t,Ψ(t)) det∇Ψ(t)])L2(Ω).

(1.1.48)
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Thanks to (1.1.27), by performing the same computations done in [20] we get

∇u(t) = ∇v(t,Ψ(t))∇Ψ(t), u̇(t) = v̇(t,Ψ(t)) +∇v(t,Ψ(t))Ψ̇(t). (1.1.49)

We insert this expression in (1.1.48) and we obtain that v satisfies (1.1.42). Notice that
the boundary terms w and F remain the same through the change of variables since the
diffeomorphisms Φ and Ψ are the identity in a neighborhood of ∂Ω.

Similarly, by applying Lemmas 1.1.13 and 1.1.15, it is easy to check that if v is a weak
solution to problem (1.1.28) with boundary conditions (1.1.33)–(1.1.35), then u is a weak
solution to problem (1.1.14) with boundary conditions (1.1.15)–(1.1.17).

Remark 1.1.17. Given a weak solution u to (1.1.14)–(1.1.17), we can improve the integra-
bility condition (1.1.24). Indeed, by (1.1.25), the Lipschitz regularity of A, the continuity
property (1.1.21) of ∇u, and (1.1.1), we infer

‖ü(t)‖H−1
D (Ω\Γt) ≤ C(1 + ‖f(t)‖L2(Ω) + ‖F (t)‖L2(∂NΩ)) for a.e. t ∈ (0, T ),

where C > 0 is a constant independent of t. Therefore, the function t 7→ ‖ü(t)‖H−1
D (Ω\Γt)

belongs to L2(0, T ), since f ∈ L2(0, T ;L2(Ω;Rd)) and F ∈ C0([0, T ];L2(∂NΩ;Rd)). In ad-
dition, if f ∈ Lp(0, T ;L2(Ω;Rd)), with p ∈ (2,∞], then the function t 7→ ‖ü(t)‖H−1

D (Ω\Γt)
belongs to Lp(0, T ). The same property is true also for a weak solution v of (1.1.28) with
boundary conditions (1.1.33)–(1.1.35), by exploiting the regularity properties of v̇ and ∇v,
and the regularity of the coefficients (1.1.29)–(1.1.32) discussed in Remark 1.1.11.

1.2 Existence and uniqueness

To prove our existence and uniqueness results, for both problems (1.1.14) and (1.1.28), we
require an additional hypothesis on the operator B. We assume that there exist two constants
c0 > 0 and c1 ∈ R such that for every t ∈ [0, T ]

(B(t)∇φ,∇φ)L2(Ω) ≥ c0‖φ‖2H1(Ω\Γ0) − c1‖φ‖2L2(Ω) for every φ ∈ H1
D(Ω \ Γ0;Rd). (1.2.1)

Notice that assumption (1.2.1) is satisfied whenever the velocity of the diffeomorphism Φ̇ is
sufficiently small and A satisfies the following standard ellipticity condition in linear elasticity:

(A(t, x)ξ) · ξ ≥ λ0|ξsym|2 for every ξ ∈ Rd×d, t ∈ [0, T ], x ∈ Ω, (1.2.2)

for a suitable constant λ0 > 0, independent of t and x. Indeed, thanks to assumptions (H1)
and (H2) we can find a finite number of open sets Uj ⊆ Ω \ Γ, j = 1, . . .m, with Lipschitz
boundary, such that Ω \Γ = ∪mj=1Uj . By using second Korn’s inequality in each Uj (see, e.g.,
[44, Theorem 2.4]) and taking the sum over j, we can find a constant CK , depending only on
Ω and Γ, such that

‖∇ψ‖2L2(Ω) ≤ CK
(
‖ψ‖2L2(Ω) + ‖Eψ‖2L2(Ω)

)
for every ψ ∈ H1(Ω \ Γ;Rd), (1.2.3)

where Eψ is the symmetrized gradient of ψ, namely Eψ := 1
2(∇ψ +∇ψT ). Define

M := max
(t,y)∈[0,T ]×Ω

det∇Φ(t, y), m := min
(t,y)∈[0,T ]×Ω

det∇Φ(t, y).

For every t ∈ [0, T ] and φ ∈ H1
D(Ω \ Γ0;Rd) we use the definition of B and the change of

variables formula, together with (1.1.10), (1.2.2), and (1.2.3), to derive

M

∫
Ω
B(t, y)∇φ(y) · ∇φ(y) dy
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≥
∫

Ω
B(t, y)∇φ(y) · ∇φ(y) det∇Φ(t, y) dy

=

∫
Ω
A(t, x)∇(φ(Ψ(t, x))) · ∇(φ(Ψ(t, x))) dx−

∫
Ω
|∇(φ(Ψ(t, x)))Φ̇(t,Ψ(t, x))|2dx

≥ λ0

∫
Ω
|E(φ(Ψ(t, x)))|2dx−

∫
Ω
|∇(φ(Ψ(t, x)))Φ̇(t,Ψ(t, x))|2dx

≥ λ0

CK

∫
Ω
|∇(φ(Ψ(t, x)))|2dx− λ0

∫
Ω
|φ(Ψ(t, x))|2dx−

∫
Ω
|∇(φ(Ψ(t, x)))Φ̇(t,Ψ(t, x))|2dx,

since φ(Ψ(t)) ∈ H1(Ω \ Γt;Rd) ⊂ H1(Ω \ Γ;Rd) for every t ∈ [0, T ]. Hence, if we assume

|Φ̇(t, y)|2 < λ0

CK
for every t ∈ [0, T ] and y ∈ Ω, (1.2.4)

then by (H4) we obtain the existence of a constant δ > 0 such that∫
Ω
B(t, y)∇φ(y) · ∇φ(y) dy ≥ mδ

M

∫
Ω
|∇φ(y)∇Ψ(t,Φ(t, y))|2dy − mλ0

M

∫
Ω
|φ(y)|2dy,

which implies (1.2.1).

Remark 1.2.1. Assumption (1.2.4) imposes a condition on the velocity of the growing crack
which depends on the geometry of the crack itself.

We have seen that problem (1.1.14) with boundary conditions (1.1.15)–(1.1.17), and prob-
lem (1.1.28) with boundary conditions (1.1.33)–(1.1.35) are equivalent. We want to prove the
following existence theorem.

Theorem 1.2.2. Let be given A, w, f , F , u0, u1 as in (1.1.8)–(1.1.13). Let B, p, b, g,
v0, v1 be defined according to (1.1.29)–(1.1.32) and (1.1.37), with B satisfying (1.2.1). Then
problem (1.1.28) with boundary conditions (1.1.33)–(1.1.35) and initial conditions (1.1.36)
admits a unique solution v, according to Definition 1.1.9.

The proof of Theorem 1.2.2 will be postponed at the end of Section 1.3 and it will obtained
as a consequence of Theorems 1.2.9 and 1.2.10 below and Proposition 1.3.1. Thanks to
Theorem 1.1.16, as corollary we readily obtain the following result.

Theorem 1.2.3. Let be given A, w, f , F , u0, u1 as in (1.1.8)–(1.1.13). Assume that the
operator B defined in (1.1.29) satisfies (1.2.1). Then problem (1.1.14) with boundary condi-
tions (1.1.15)–(1.1.17) and initial conditions (1.1.18) admits a unique solution u, according
to Definition 1.1.6.

Proof. By using Theorems 1.1.16 and 1.2.2 there exists a solution u to (1.1.14)–(1.1.17).
Moreover, the initial conditions (1.1.18) follows from the regularity conditions (1.1.19)–
(1.1.24) of u and from the initial conditions of v. Finally, the solution is unique since
every solution u to (1.1.14) with boundary and initial conditions (1.1.15)–(1.1.18), gives
a solution v to (1.1.28) with boundary and initial conditions (1.1.33)–(1.1.36), thanks to
Theorem 1.1.16.

Remark 1.2.4. The existence and uniqueness results of this thesis improve the ones con-
tained in [8]. Indeed, to prove Theorems 1.2.2 and 1.2.3 we only assume that w satis-
fies (1.1.11), while in [8] is required

w ∈ H2(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω \ Γ0;Rd)) ∩ L2(0, T ;H2(Ω \ Γ0;Rd)).

Moreover, we remove the assumption

(A(t)∇w(t))ν = 0 on ∂NΩ ∪ Γt, t ∈ [0, T ],

which, on the contrary, is needed in [8].
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To prove Theorem 1.2.2, we introduce a notion of solution to (1.1.28) which is weaker than
the one considered in Definition 1.1.9. Later, in Section 1.3, we will prove an energy equality
which ensure that this type of solution is more regular, namely it satisfies the regularity
conditions (1.1.38)–(1.1.41).

Definition 1.2.5. Let A, w, f , and F be as in (1.1.8)–(1.1.13). Let B, p, b, and g be
defined according to (1.1.29)–(1.1.32). We say that v is a generalized solution to (1.1.28)
with boundary conditions (1.1.33)–(1.1.35) if

v ∈ L∞(0, T ;H1(Ω \ Γ0;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D (Ω \ Γ0;Rd)),

v − w ∈ L∞(0, T ;H1
D(Ω \ Γ0;Rd)),

and for a.e. t ∈ (0, T ) we have

〈v̈(t), φ〉H−1
D (Ω\Γ0) + (B(t)∇v(t),∇φ)L2(Ω) + (p(t)∇v(t), φ)L2(Ω)

+ 2(v̇(t), div[φ⊗ b(t)])L2(Ω) = (g(t), φ)L2(Ω) + (F (t), φ)L2(∂NΩ)

(1.2.5)

for every φ ∈ H1
D(Ω \ Γ0;Rd).

Remark 1.2.6. Since C∞c (0, T ) ⊗ H1
D(Ω \ Γ0;Rd) is dense in L2(0, T ;H1

D(Ω \ Γ0;Rd)), we
can recast equality (1.2.5) in the framework of the duality between L2(0, T ;H−1

D (Ω \Γ0;Rd))
and L2(0, T ;H1

D(Ω \ Γ0;Rd)). Indeed, it is easy to see that (1.2.5) is equivalent to∫ T

0

[
〈v̈(t), ϕ(t)〉H−1

D (Ω\Γ0) + (B(t)∇v(t),∇ϕ(t))L2(Ω) + (p(t)∇v(t), ϕ(t))L2(Ω)

]
dt

+ 2

∫ T

0
(v̇(t), div[ϕ(t)⊗ b(t)])L2(Ω) dt =

∫ T

0

[
(g(t), ϕ(t))L2(Ω) + (F (t), ϕ(t))L2(∂NΩ)

]
dt

for every ϕ ∈ L2(0, T ;H1
D(Ω \ Γ0;Rd)).

Remark 1.2.7. Let us clarify the meaning of the initial conditions (1.1.36) for a generalized
solution. We recall that if X,Y are two reflexive Banach spaces, with embedding X ↪→ Y
continuous, then

C0
w([0, T ];Y ) ∩ L∞(0, T ;X) = C0

w([0, T ];X),

see for instance [24, Chapitre XVIII, §5, Lemme 6], where C0
w([0, T ];X) and C0

w([0, T ];Y )
denote the spaces of weakly continuous functions from [0, T ] to X and Y , respectively. In
particular, we can apply this result to a generalized solution v. By taking X = H1(Ω\Γ0;Rd)
and Y = L2(Ω;Rd) and using

v ∈ C0([0, T ];L2(Ω;Rd)) ∩ L∞(0, T ;H1(Ω \ Γ0;Rd)),

we have v ∈ C0
w([0, T ];H1(Ω \ Γ0;Rd)). Therefore v(0) is an element of H1(Ω \ Γ0;Rd).

Similarly, by taking X = L2(Ω;Rd) and Y = H−1
D (Ω\Γ0;Rd) we get v̇ ∈ C0

w([0, T ];L2(Ω;Rd)),
since

v̇ ∈ C0([0, T ];H−1
D (Ω \ Γ0;Rd)) ∩ L∞(0, T ;L2(Ω;Rd)).

Therefore v̇(0) is an element of L2(Ω;Rd). In particular, the initial conditions (1.1.36) are
well defined if v0 ∈ H1(Ω\Γ0;Rd) and v1 ∈ L2(Ω;Rd). With a similar argument we also have
v − w ∈ C0

w([0, T ];H1
D(Ω \ Γ0;Rd)), which yields v(t) = w(t) on ∂DΩ in the sense of traces

for every t ∈ [0, T ].

We recall an existence result for evolutionary problems of second order in time, whose
proof can be found for example in [24]. Let V , H be two separable Hilbert spaces, with
embedding V ↪→ H continuous and dense, and for every t ∈ [0, T ] let B(t; ·), A1(t; ·),
A2(t; ·) : V × V → R be three families of continuous bilinear forms satisfying the follow-
ing properties:
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(i) the bilinear form B(t; ·) is symmetric for every t ∈ [0, T ];

(ii) there exist c0 > 0, c1 ∈ R such that B(t;ψ,ψ) ≥ c0‖ψ‖2V − c1‖ψ‖2H for every t ∈ [0, T ]
and ψ ∈ V ;

(iii) for every ψ, φ ∈ V the function t 7→ B(t;ψ, φ) is continuously differentiable in [0, T ];

(iv) there exists c2 > 0 such that |Ḃ(t;ψ, φ)| ≤ c2‖ψ‖V ‖φ‖V for every t ∈ [0, T ] and ψ, φ ∈ V ;

(v) for every ψ, φ ∈ V the function t 7→ A1(t;ψ, φ) is continuous in [0, T ];

(vi) there exists c3 > 0 such that |A1(t;ψ, φ)| ≤ c3‖ψ‖V ‖φ‖H for every t ∈ [0, T ] and
ψ, φ ∈ V ;

(vii) for every ψ, φ ∈ V the function t 7→ A2(t;ψ, φ) is continuous in [0, T ];

(viii) there exists c4 > 0 such that |A2(t;ψ, φ)| ≤ c4‖ψ‖V ‖φ‖H for every t ∈ [0, T ] and
ψ, φ ∈ V ;

where t 7→ Ḃ(t;ψ, φ) denotes the derivative of t 7→ B(t;ψ, φ) for ψ, φ ∈ V .

Theorem 1.2.8. Let ε > 0, v0 ∈ V , v1 ∈ H, g ∈ L2(0, T ;V ′), and B(t; ·), A1(t; ·), A2(t; ·),
t ∈ [0, T ], be three families of continuous bilinear forms over V × V satisfying assumptions
(i)–(viii) above. Then there exists a function v ∈ H1(0, T ;V )∩W 1,∞(0, T ;H)∩H2(0, T ;V ′)
solution for a.e. t ∈ (0, T ) to

〈v̈(t), φ〉V ′ + B(t; v(t), φ) +A1(t; v(t), φ) +A2(t; v̇(t), φ) + ε(v̇(t), φ)V = 〈g(t), φ〉V ′ (1.2.6)

for every φ ∈ V , with initial conditions v(0) = v0 and v̇(0) = v1.

Proof. See [24, Chapitre XVIII, §5, Théorème 1 and Remarque 4].

We are now in a position to state the first existence result.

Theorem 1.2.9. Let A, w, f , F , u0, and u1 be as in (1.1.8)–(1.1.13). Let B, p, b, g, v0,
and v1 be defined according to (1.1.29)–(1.1.32) and (1.1.37). Assume that B satisfies (1.2.1).
Then there exists a generalized solution to (1.1.28) with boundary conditions (1.1.33)–(1.1.35)
satisfying the initial conditions (1.1.36).

Proof. As in [20, Theorem 3.6], the proof is based on a perturbation argument, following the
standard procedure of [24]: we first fix ε ∈ (0, 1) and we study equation (1.2.5) with the
additional term

ε(v̇(t), φ)H1(Ω\Γ0) for φ ∈ H1
D(Ω \ Γ0;Rd),

and then we let the viscosity parameter ε tend to zero.
Step 1: the perturbed problem. Let ε ∈ (0, 1) be fixed. We want to show the existence of

a function

vε ∈ H1(0, T ;H1(Ω \ Γ0;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D (Ω \ Γ0;Rd)),

with vε − w ∈ H1(0, T ;H1
D(Ω \ Γ0;Rd)), solution for a.e t ∈ (0, T ) to the equation

〈v̈ε(t), φ〉H−1
D (Ω\Γ0) + (B(t)∇vε(t),∇φ)L2(Ω) + (p(t)∇vε(t), φ)L2(Ω)

− 2(∇v̇ε(t)b(t), φ)L2(Ω) + ε(v̇ε(t), φ)H1(Ω\Γ0) = (g(t), φ)L2(Ω) + (F (t), φ)L2(∂NΩ)

(1.2.7)

for every φ ∈ H1
D(Ω \ Γ0;Rd), and which satisfies the initial conditions vε(0) = v0 and

v̇ε(0) = v1. To this aim, we regularize our coefficient with respect to time by means of a
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sequence of mollifiers. Let {ρn}n ⊂ C∞c (R) be a sequence of functions such that ρn ≥ 0,
supp(ρn) ⊂ [−1/n, 1/n], and

∫
R ρn dx = 1 for every n ∈ N, and let us extend our coefficients

B and p to all R, as done in [20, Theorem 3.6]. To deal with the boundary terms w and F
we introduce the function ĝ ∈ L2(0, T ;H−1

D (Ω \ Γ0;Rd)) defined for a.e. t ∈ (0, T ) as

〈ĝ(t), φ〉H−1
D (Ω\Γ0)

:=− (ẅ(t), φ)L2(Ω) − ((ρn∗B)(t)∇w(t),∇φ)L2(Ω)

− ((ρn∗p)(t)∇w(t), φ)L2(Ω) + 2(∇ẇ(t)b(t), φ)L2(Ω)

− ε(ẇ(t), φ)H1(Ω\Γ0) + (g(t), φ)L2(Ω) + (F (t), φ)L2(∂NΩ)

for φ ∈ H1
D(Ω \ Γ0;Rd); the regularity of ĝ is a consequence of (1.1.1), (1.1.11), (1.1.12),

and Remark 1.1.11. We apply Theorem 1.2.8 with Hilbert spaces V = H1
D(Ω \ Γ0;Rd), H =

L2(Ω;Rd), bilinear forms B(t)(ψ, φ) := ((ρn∗B)(t)∇ψ,∇φ), A1(t)(ψ, φ) := (ρn∗p)(t)∇ψ, φ),
and A2(t)(ψ, φ) := −2(∇ψb(t), φ) for ψ, φ ∈ V and t ∈ [0, T ], forcing term ĝ, and initial
conditions v̂0 := v0 − w(0) and v̂1 := v1 − ẇ(0). For every n ∈ N this leads to a solution
v̂nε to (1.2.6) which satisfies the initial conditions v̂0 and v̂1. In particular, the function
vnε := v̂nε +w solves equation (1.2.7) with B(t) and p(t) replaced by (ρn∗B)(t) and (ρn∗p)(t),
respectively, and initial conditions v0 and v1.

We fix t0 ∈ (0, T ]. By taking v̇nε (t)− ẇ(t) as test function in (1.2.7) and integrating over
(0, t0), we get∫ t0

0

[
〈v̈nε , v̇nε − ẇ〉H−1

D (Ω\Γ0) + ((ρn∗B)∇vnε ,∇v̇nε −∇ẇ)L2(Ω)

]
dt

+

∫ t0

0

[
((ρn∗p)∇vnε , v̇nε − ẇ)L2(Ω) − 2(∇v̇nε b, v̇nε − ẇ)L2(Ω) + ε(v̇nε , v̇

n
ε − ẇ)H1(Ω\Γ0)

]
dt

=

∫ t0

0

[
(g, v̇nε − ẇ)L2(Ω) + (F, v̇nε − ẇ)L2(∂NΩ)

]
dt. (1.2.8)

For the first term we use the integration by parts formula∫ t0

0
〈v̈nε − ẅ, v̇nε − ẇ〉H−1

D (Ω\Γ0) dt =
1

2
‖v̇nε (t0)− ẇ(t0)‖2L2(Ω) −

1

2
‖v1 − ẇ(0)‖2L2(Ω)

to deduce∫ t0

0
〈v̈nε , v̇nε − ẇ〉H−1

D (Ω\Γ0) dt =
1

2
‖v̇nε (t0)‖2L2(Ω) −

1

2
‖v1‖2L2(Ω) − (v̇nε (t0), ẇ(t0))L2(Ω)

+ (v1, ẇ(0))L2(Ω) +

∫ t0

0
(v̇nε , ẅ)L2(Ω) dt.

(1.2.9)

Similarly, for the second term we have∫ t0

0
((ρn∗B)∇vnε ,∇v̇nε −∇ẇ)L2(Ω) dt

=
1

2
((ρn∗B)(t0)∇vnε (t0),∇vnε (t0))L2(Ω) −

1

2
((ρn∗B)(0)∇v0,∇v0)L2(Ω)

−
∫ t0

0

[
1

2
(∂t(ρn∗B)∇vnε ,∇vnε )L2(Ω) + ((ρn∗B)∇vnε ,∇ẇ)L2(Ω)

]
dt.

(1.2.10)

Since vnε (t) − w(t) ∈ H1
D(Ω \ Γ0;Rd) for every t ∈ [0, T ], by (1.2.1) we derive the following

estimate

((ρn∗B)(t0)[∇vnε (t0)−∇w(t0)],∇vnε (t0)−∇w(t0))L2(Ω) ≥ c0‖vnε (t0)− w(t0)‖2H1(Ω\Γ0)

− c1‖vnε (t0)− w(t0)‖2L2(Ω).
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In particular, thanks to (1.1.11), (1.1.43), and Young’s inequality, there exists a constant
C > 0, independent of n, ε, and t0, such that

c0

2
‖vnε (t0)‖2H1(Ω\Γ0) ≤ ((ρn∗B)(t0)∇vnε (t0),∇vnε (t0))L2(Ω) + C(1 + ‖vnε (t0)‖2L2(Ω)). (1.2.11)

In addition, since vnε (t0) = v0 +
∫ t0

0 v̇nε (t) dt, we get

‖vnε (t0)‖2L2(Ω) ≤ 2‖v0‖2L2(Ω) + 2T

∫ t0

0
‖v̇nε ‖2L2(Ω) dt. (1.2.12)

By the regularity properties of B, p, g, and w we obtain another constant C > 0, independent
of n, ε, and t0, such that∣∣∣∣∫ t0

0
(v̇nε , ẅ)L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0
‖v̇nε ‖2L2(Ω) dt, (1.2.13)∣∣∣∣∫ t0

0

1

2
(∂t(ρn∗B)∇vnε ,∇vnε )L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0
‖vnε ‖2H1(Ω\Γ0) dt, (1.2.14)∣∣∣∣∫ t0

0
((ρn∗B)∇vnε ,∇ẇ)L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0
‖vnε ‖2H1(Ω\Γ0) dt, (1.2.15)∣∣∣∣∫ t0

0
((ρn∗p)∇vnε , v̇nε − ẇ)L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0

[
‖vnε ‖2H1(Ω\Γ0) + ‖v̇nε ‖2L2(Ω)

]
dt, (1.2.16)∣∣∣∣∫ t0

0
(g, v̇nε − ẇ)L2(Ω) dt

∣∣∣∣ ≤ C (1 +

∫ t0

0
‖v̇nε ‖2L2(Ω) dt

)
. (1.2.17)

Furthermore, we can use Young’s inequality and (1.1.11) to find a further constant C > 0,
independent of n, ε, and t0, such that∣∣(v̇nε (t0), ẇ(t0))L2(Ω) − (v1, ẇ(0))L2(Ω)

∣∣ ≤ 1

4
‖v̇nε (t0)‖2L2(Ω) + C. (1.2.18)

By formula (1.1.45) we derive

2

∫ t0

0
(∇v̇nε b, ẇ)L2(Ω) dt = −2

∫ t0

0
(v̇nε ,div[ẇ ⊗ b])L2(Ω) dt,

which implies the existence of C > 0, independent of n, ε, and t0, such that∣∣∣∣2 ∫ t0

0
(∇v̇nε b, ẇ)L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0
‖v̇nε ‖L2(Ω) dt. (1.2.19)

Thanks to (1.1.46), for every φ ∈ H1
D(Ω \ Γ0;Rd) we have

2(∇φb(t), φ)L2(Ω) =

∫
Ω
b(t, y) · ∇|φ(y)|2dy = −

∫
Ω

div b(t, y)|φ(y)|2dy. (1.2.20)

Therefore, by (1.1.44) there exits a constant C > 0, independent of n, ε, and t0, such that∣∣∣∣2∫ t0

0
(∇v̇nε b, v̇nε )L2(Ω) dt

∣∣∣∣ ≤ C ∫ t0

0
‖v̇nε ‖2L2(Ω) dt. (1.2.21)

Since F ∈ H1(0, T ;L2(∂NΩ;Rd)), we can integrate the last term in (1.2.8) by parts with
respect to time, and we obtain∫ t0

0
(F, v̇nε − ẇ)L2(∂NΩ) dt = (F (t0), vnε (t0)− w(t0))L2(∂NΩ) − (F (0), v0 − w(0))L2(∂NΩ)

−
∫ t0

0
(Ḟ , vnε − w)L2(∂NΩ) dt.
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We use the previous identity, together with (1.1.1) and Young’s inequality, to deduce the
existence of a constant C > 0, independent of n, ε, and t0, such that∣∣∣∣∫ t0

0
(F, v̇nε − ẇ)L2(∂NΩ) dt

∣∣∣∣ ≤ c0

8
‖vnε (t0)‖2H1(Ω\Γ0) + C

(
1 +

∫ t0

0
‖vnε ‖2H1(Ω\Γ0) dt

)
. (1.2.22)

Finally, again by Young’s inequality

ε

∫ t0

0
(v̇nε , v̇

n
ε − ẇ)H1(Ω\Γ0) dt ≥ ε

2

∫ t0

0
‖v̇nε ‖2H1(Ω\Γ0) dt− 1

2

∫ t0

0
‖ẇ‖2H1(Ω\Γ0) dt. (1.2.23)

By combining (1.2.8)–(1.2.19) with (1.2.21)–(1.2.23), we infer

1

4
‖v̇nε (t0)‖2L2(Ω) +

c0

8
‖vnε (t0)‖2H1(Ω\Γ0) +

ε

2

∫ t0

0
‖v̇nε ‖2H1(Ω\Γ0) dt

≤ C1 + C2

∫ t0

0

[
‖v̇nε ‖2L2(Ω) + ‖vnε ‖2H1(Ω\Γ0)

]
dt,

for two constants C1 and C2 independent of n, ε, and t0.
Thanks to Gronwall’s lemma we conclude that there exists C > 0, independent of n, ε,

and t0, such that

‖v̇nε (t0)‖2L2(Ω) + ‖vnε (t0)‖2H1(Ω\Γ0) ≤ C for every t0 ∈ [0, T ]. (1.2.24)

Hence, we have

{vnε }n is bounded in L∞(0, T ;H1(Ω \ Γ0;Rd)),
{v̇nε }n is bounded in L∞(0, T ;L2(Ω;Rd)),
{
√
εv̇nε }n is bounded in L2(0, T ;H1(Ω \ Γ0;Rd)),

uniformly with respect to n and ε. From these estimates, by using also the equation solved
by vnε and (1.2.20), we derive

{v̈nε }n is bounded in L2(0, T ;H−1
D (Ω \ Γ0;Rd)),

uniformly with respect to n and ε. Therefore, up to a not relabeled subsequence, vnε con-
verges weakly to a function vε in H1(0, T ;H1(Ω \ Γ0;Rd)) and v̈nε converges weakly to v̈ε in
L2(0, T ;H−1

D (Ω \ Γ0;Rd)) as n → ∞. Finally, we have vε − w ∈ H1(0, T ;H1
D(Ω \ Γ0;Rd)),

since vnε − w ∈ H1(0, T ;H1
D(Ω \ Γ0;Rd)) for every n ∈ N.

Let us show that vε satisfies (1.2.7). Since B is symmetric, for every φ ∈ H1
D(Ω \ Γ0;Rd)

we have

((ρn∗B)(t)∇vnε (t),∇φ)L2(Ω) = (∇vnε (t), (ρn∗B)(t)∇φ)L2(Ω),

((ρn∗p)(t)∇vnε (t), φ)L2(Ω) = (∇vnε (t), (ρn∗p?)(t)φ)L2(Ω),

where p?(t, y) ∈ L (Rd;Rd×d) is the transpose operator of p(t, y) ∈ L (Rd×d;Rd), defined for
t ∈ [0, T ] and y ∈ Ω by

(p?(t, y)a) · ξ = (p(t, y)ξ) · a for every a ∈ Rd and ξ ∈ Rd×d. (1.2.25)

By the regularity properties of B and p, as n→∞ we have

(ρn∗B)(t)∇φ→ B(t)∇φ in L2(Ω;Rd×d) for every t ∈ [0, T ],

(ρn∗p?)(t)φ→ p?(t)φ in L2(Ω;Rd×d) for a.e. t ∈ (0, T ).
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Thanks to the strong convergences above and the weak convergences of vnε , v̇nε and v̈nε , we can
pass to the limit as n → ∞ in the PDE solved by vnε and we obtain that the weak limit vε
satisfies equation (1.2.7) (see Remark 1.2.6). Furthermore, the bound (1.2.24) and the weak
convergences of vnε , v̇nε and v̈nε , imply for every t ∈ [0, T ]

vnε (t) ⇀ vε(t) in H1(Ω \ Γ0;Rd), v̇nε (t) ⇀ v̇ε(t) in L2(Ω;Rd) as n→∞.

Hence vε satisfies the initial conditions vε(0) = v0 and v̇ε(0) = v1.
Step 2. Vanishing viscosity. As already done in Step 1 for vnε , we take v̇ε − ẇ as test

function in (1.2.7), and we integrate in (0, t0) to derive the energy equality

1

2
‖v̇ε(t0)‖2L2(Ω) +

1

2
(B(t0)∇vε(t0),∇vε(t0))L2(Ω) + ε

∫ t0

0
(v̇ε, v̇ε − ẇ)H1(Ω\Γ0) dt

=
1

2
‖v1‖2L2(Ω) +

1

2
(B(0)∇vε(0),∇vε(0))L2(Ω)

+

∫ t0

0

[
1

2
(Ḃ∇vε,∇vε)L2(Ω) + (B∇vε,∇ẇ)L2(Ω) − (p∇vε, v̇ε − ẇ)L2(Ω)

]
dt

+

∫ t0

0

[
−(v̇ε div b, v̇ε) + 2(v̇ε, div[ẇ ⊗ b])L2(Ω) + (g, v̇nε − ẇ)L2(Ω)

]
dt

+

∫ t0

0

[
−(Ḟ , vε − w)L2(∂NΩ) − (v̇ε, ẅ)L2(Ω)

]
dt+ (F (t0), vε(t0)− w(t0))L2(∂NΩ)

+ (v̇ε(t0), ẇ(t0))L2(Ω) − (F (0), v0 − w(0))L2(∂NΩ) − (v1, ẇ(0))L2(Ω).

(1.2.26)

By arguing as before and using the ellipticity condition (1.2.1) of B, we get the following
estimate:

1

4
‖v̇ε(t0)‖2L2(Ω) +

c0

8
‖vε(t0)‖2H1(Ω\Γ0) +

ε

2

∫ t0

0
‖v̇ε‖2H1(Ω\Γ0) dt

≤ C1 + C2

∫ t0

0

[
‖v̇ε‖2L2(Ω) + ‖vε‖2H1(Ω\Γ0)

]
dt,

(1.2.27)

where C1 and C2 are two constants independent of ε and t0. Therefore, Gronwall’s lemma
yields

‖v̇ε(t0)‖2L2(Ω) + ‖vε(t0)‖2H1(Ω\Γ0) ≤ C for every t0 ∈ [0, T ] (1.2.28)

for a constant C independent of ε and t0. This implies that the sequence {vε}ε is uni-
formly bounded in L∞(0, T ;H1(Ω \ Γ0;Rd)) and the sequence {v̇ε}ε is uniformly bounded in
L∞(0, T ;L2(Ω;Rd)). Moreover, by combining (1.2.27) and (1.2.28), we infer

ε

∫ T

0
‖v̇ε‖2H1(Ω\Γ0) dt ≤ C, (1.2.29)

for a constant C independent of ε. By formula (1.1.45) for a.e. t ∈ (0, T ) we have

(∇v̇ε(t)b(t), φ)L2(Ω) = −(v̇ε(t), div[φ⊗ b(t)])L2(Ω) for every φ ∈ H1
D(Ω \ Γ0;Rd).

Thanks to (1.2.7) and the previous estimates we conclude that the sequence {v̈ε}ε is uni-
formly bounded in L2(0, T ;H−1

D (Ω \Γ0;Rd)). Therefore, there exists a subsequence of ε (not
relabeled) and a function

v ∈ L∞(0, T ;H1(Ω \ Γ0;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D (Ω \ Γ0;Rd))

such that the following convergences hold as ε→ 0+:

vε ⇀ v in L2(0, T ;H1(Ω \ Γ0;Rd)), (1.2.30)
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v̇ε ⇀ v̇ in L2(0, T ;L2(Ω;Rd)), (1.2.31)

v̈ε ⇀ v̈ in L2(0, T ;H−1
D (Ω \ Γ0;Rd)). (1.2.32)

Moreover, we have v −w ∈ L∞(0, T ;H1
D(Ω \ Γ0;Rd)). Notice that, a priori, the weak limit v

is not unique, but might depend on the particular subsequence chosen.
Let us show that vε solves (1.2.5). We fix a test function ϕ ∈ L2(0, T ;H1

D(Ω \ Γ0;Rd))
for (1.2.5) (see Remark 1.2.6), and for every ε ∈ (0, 1) we have∫ T

0

[
〈v̈ε, ϕ〉H−1

D (Ω\Γ0) + (B∇vε,∇ϕ)L2(Ω) + (p∇vε, ϕ)L2(Ω) + 2(v̇ε,div[ϕ⊗ b])L2(Ω)

]
dt

+ ε

∫ T

0
(v̇ε, ϕ)H1(Ω\Γ0) dt =

∫ T

0
[(g, ϕ)L2(Ω) + (F,ϕ)L2(∂NΩ)] dt. (1.2.33)

Thanks to (1.2.29), as ε→ 0+ we get∣∣∣∣ε ∫ T

0
(v̇ε, ϕ)H1(Ω\Γ0) dt

∣∣∣∣ ≤ √ε∫ T

0

√
ε‖v̇ε‖H1(Ω\Γ0)‖ϕ‖H1(Ω\Γ0) dt

≤
√
ε‖ϕ‖L2(0,T ;H1(Ω\Γ0))

(∫ T

0
ε‖v̇ε‖2H1(Ω\Γ0) dt

)1/2

≤
√
εC → 0.

The last property, together with (1.2.30)–(1.2.32) and (1.2.33), gives that v solves (1.2.5).
Finally, by arguing as in Step 1, for every t ∈ [0, T ] we obtain

vε(t) ⇀ v(t) in H1(Ω \ Γ0;Rd), v̇ε(t) ⇀ v̇(t) in L2(Ω;Rd) as ε→ 0+. (1.2.34)

This gives the validity of the initial conditions for v.

The proof of uniqueness is similar to the one in [20] and relies on a standard technique
due to Ladyzenskaya [34], which consists in taking as test function in (1.2.5) the primitive of
a solution.

Theorem 1.2.10. Under the assumptions of Theorem 1.2.9, there exists at most one gen-
eralized solution to (1.1.28) with boundary conditions (1.1.33)–(1.1.35) satisfying the initial
conditions (1.1.36).

Proof. By linearity, it is enough to show that the unique generalized solution v to prob-
lem (1.1.28) with

g = F = w = v0 = v1 = 0

is u = 0. The proof is divided into two steps: first, we show the uniqueness in a small interval
[0, t0]; then, by a continuity argument, we deduce the uniqueness in the all [0, T ].

Step 1. Let s ∈ (0, T ] be fixed and let ϕs ∈ L2(0, T ;H1
D(Ω \ Γ0;Rd)) be defined as

ϕs(t) :=

{
−
∫ s
t v(τ) dτ if t ∈ [0, s],

0 if t ∈ [s, T ].

Notice that ϕs(s) = ϕs(T ) = 0. Moreover ϕ̇s ∈ L2(0, T ;H1
D(Ω \ Γ0;Rd)), indeed

ϕ̇s(t) =

{
v(t) if t ∈ [0, s),

0 if t ∈ (s, T ].

By taking ϕs as test function in (1.2.5), we get∫ s

0

[
〈v̈(t), ϕs(t)〉H−1

D (Ω\Γ0) + (B(t)∇v(t),∇ϕs(t))L2(Ω)

]
dt

+

∫ s

0

[
(p(t)∇v(t), ϕs(t))L2(Ω) + 2(v̇(t),div[ϕs(t)⊗ b(t)])L2(Ω)

]
dt = 0.

(1.2.35)
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We integrate the first term by parts with respect to time, and we obtain∫ s

0
〈v̈(t), ϕs(t)〉H−1

D (Ω\Γ0) dt = −
∫ s

0
(v̇(t), v(t))L2(Ω) dt = −1

2
‖v(s)‖2L2(Ω), (1.2.36)

since v0 = v1 = ϕs(s) = 0.
Let us rewrite the second term involving B. By Definition 1.2.5 of generalized solution it

is easy to see that ϕs ∈ Lip([0, T ];H1
D(Ω \ Γ0;Rd)). Therefore, thanks to (1.1.43), we have

that B∇ϕs ∈ Lip([0, T ];L2(Ω;Rd×d)). We perform an integration by parts with respect to
time and we use the fact that ϕs(s) = 0 in H1

D(Ω \ Γ0;Rd) to derive∫ s

0
(B(t)∇v(t),∇ϕs(t))L2(Ω) dt

= −
∫ s

0
(∇ϕ̇s(t),B(t)∇ϕs(t))L2(Ω) dt

= −1

2
(B(0)∇ϕs(0),∇ϕs(0))L2(Ω) −

1

2

∫ s

0
(Ḃ(t)∇ϕs(t),∇ϕs(t))L2(Ω) dt,

(1.2.37)

By combining (1.2.35)–(1.2.37) we get

1

2
‖v(s)‖2L2(Ω) +

1

2
(B(0)∇ϕs(0),∇ϕs(0))L2(Ω)

=

∫ s

0

[
−1

2
(Ḃ∇ϕs,∇ϕs)L2(Ω) + (p∇v, ϕs)L2(Ω) + 2(v̇,div[ϕs ⊗ b])L2(Ω)

]
dt.

(1.2.38)

Let us bound from above the scalar products in the right-hand side of (1.2.38). By the
Lipschitz regularity of B there is C > 0 such that ‖Ḃ(t)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ), and so∣∣∣∣ ∫ s

0
(Ḃ(t)∇ϕs(t),∇ϕs(t))L2(Ω) dt

∣∣∣∣ ≤ C ∫ s

0
‖ϕs(t)‖2H1(Ω\Γ0) dt. (1.2.39)

For every t ∈ [0, T ] we split div[ϕs(t) ⊗ b(t)] into the sum ϕs(t) div b(t) + ∇ϕs(t)b(t).
As already pointed in (1.1.44) we have div b ∈ Lip([0, T ];L∞(Ω)), therefore we can repeat
the same argument as before. By integrating by parts with respect to time and using the
equalities v0 = ϕs(s) = 0, we obtain∫ s

0
(v̇(t), ϕs(t) div b(t))L2(Ω) dt = −

∫ s

0
(v(t), v(t) div b(t) + ϕs(t) div ḃ(t))L2(Ω) dt

≤ C
∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ϕs(t)‖2H1(Ω\Γ0)

]
dt,

(1.2.40)

for some C > 0 independent of s. For the other term, we first perform an integration by
parts with respect to time exploiting the assumptions v0 = ϕs(s) = 0, and then we use
formula (1.1.46) and the regularity properties (1.1.44) of b to deduce∫ s

0
(v̇(t),∇ϕs(t)b(t))L2(Ω) dt =

∫ s

0

[
1

2
(v(t) div b(t), v(t))L2(Ω) − (v(t),∇ϕs(t)ḃ(t))L2(Ω)

]
dt

≤ C
∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ϕs(t)‖2H1(Ω\Γ0)

]
dt, (1.2.41)

for a constant C > 0 independent of s.
We now split p as p̂1 + p̂2, where p̂1(t, y), p̂2(t, y) ∈ L (Rd×d;Rd) are defined for t ∈ [0, T ]

and y ∈ Ω as

p̂1(t, y)ξ := p1(t, y)ξ − p1(0, y)ξ = p1(t, y)ξ + ξb(0, y) div Φ̇(0, y),

p̂2(t, y)ξ := p2(t, y)ξ + p1(0, y)ξ = −ξ[ḃ(t, y) + b(0, y) div Φ̇(0, y)].
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We have p̂1 ∈ Lip([0, T ];L∞(Ω; L (Rd;Rd×d))), therefore ˙̂p1 ∈ L∞(0, T ;L2(Ω; L (Rd;Rd×d)))
and there exists C > 0 such that ‖ ˙̂p1(t)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ). By integrating by
parts with respect to time and by exploiting the equalities ϕs(s) = p̂1(0) = 0, we get∫ s

0
(p̂1(t)∇v(t), ϕs(t))L2(Ω) dt =

∫ s

0
(∇ϕ̇s(t), p̂?1(t)ϕs(t))L2(Ω) dt

= −
∫ s

0
(∇ϕs(t), ˙̂p?1(t)ϕs(t) + p̂?1(t)ϕ̇s(t))L2(Ω) dt

= −
∫ s

0
( ˙̂p1(t)∇ϕs(t), ϕs(t) + v(t))L2(Ω) dt

≤ C
∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ϕs(t)‖2H1(Ω\Γ0)

]
dt,

(1.2.42)

for a constant C > 0 independent of s, where p̂?1 is the transpose operator of p̂1, defined in
a similar way to (1.2.25). On the other hand, by (1.1.44) we have div ḃ ∈ L∞(0, T ;L2(Ω))
and there exits C > 0 such that ‖div ḃ(t)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ). Furthermore,

b(0) div Φ̇(0) ∈ Lip(Ω;Rd) thanks to (H8). Hence, by performing an integration by parts
with respect to the space variable we obtain∫ s

0
(p̂2(t)∇v(t), ϕs(t))L2(Ω) dt = −

∫ s

0
(∇v(t), ϕs(t)⊗ (ḃ(t) + b(0) div Φ̇(0)))L2(Ω) dt

=

∫ s

0
(v(t),div[ϕs(t)⊗ (ḃ(t) + b(0) div Φ̇(0))])L2(Ω) dt

≤ C
∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ϕs(t)‖2H1(Ω\Γ0)

]
dt,

(1.2.43)

for a constant C > 0 independent of s. To derive (1.2.43) we have used formula (1.1.45) with
h := ḃ(t)+b(0) div Φ̇(0). This is possible since the function ḃ(t)+b(0) div Φ̇(0) ∈W 1,∞(Ω;Rd)
for a.e. t ∈ (0, T ) and satisfies (ḃ(t)+b(0) div Φ̇(0)) ·ν = 0 on (Γ∩Ω)∪∂Ω. Indeed b(t) ·ν = 0
on (Γ ∩ Ω) ∪ ∂Ω for every t ∈ [0, T ] by (1.1.3) and (H5), and 1

h [b(t + h) − b(t)] → ḃ(t) in
C0(Ω;Rd) for a.e. t ∈ (0, T ) by (H7).

Thanks to (1.2.38), the coercivity property (1.2.1) of B, the upper bounds (1.2.39)–
(1.2.43), and

‖ϕs(0)‖2L2(Ω) ≤ T
∫ s

0
‖v(t)‖2L2(Ω) dt,

we conclude

‖v(s)‖2L2(Ω) + c0‖ϕs(0)‖2H1(Ω\Γ0) ≤ C
∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ϕs(t)‖2H1(Ω\Γ0)

]
dt (1.2.44)

for a constant C independent of the parameter s chosen. Let us consider

ζ(t) :=

∫ t

0
v(τ) dτ t ∈ [0, T ].

Then we can write ϕs(t) = ζ(t)− ζ(s) for every t ∈ [0, s]; in particular

‖ϕs(0)‖H1(Ω\Γ0) = ‖ζ(s)‖H1(Ω\Γ0), (1.2.45)∫ s

0
‖ϕs(t)‖2H1(Ω\Γ0) dt ≤ 2s‖ζ(s)‖2H1(Ω\Γ0) + 2

∫ s

0
‖ζ(t)‖2H1(Ω\Γ0) dt. (1.2.46)

By combining (1.2.44)–(1.2.46), we obtain

‖v(s)‖2L2(Ω) + (c0 − 2Cs)‖ζ(s)‖2H1(Ω\Γ0) ≤ 2C

∫ s

0

[
‖v(t)‖2L2(Ω) + ‖ζ(t)‖2H1(Ω\Γ0)

]
dt.
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If s is small enough, e.g., s ≤ t0 := c0
4C

, we can apply Gronwall’s lemma and obtain

v(s) = 0 for every s ∈ [0, t0].

Step 2. Notice that the functions v : [0, T ] → L2(Ω;Rd) and v̇ : [0, T ] → H−1
D (Ω \ Γ0;Rd)

are continuous, therefore we can define

t∗ := sup{t ∈ [0, T ] : v(s) = 0 for every s ∈ [0, t]}.

Thanks to Step 1 and the continuity of v and v̇, we get that t∗ ≥ t0 > 0 and v(t∗) = v̇(t∗) = 0.
Let us assume by contradiction that t∗ < T . By repeating the strategy adopted in Step 1,
with starting point t∗ and initial set Ω \ Γt∗ , we can find a point t1 > t∗ such that v(s) = 0
for every s ∈ [t∗, t1], which leads to a contradiction. Therefore t∗ = T and so v(s) = 0 for
every s ∈ [0, T ].

Remark 1.2.11. Let v be the generalized solution to system (1.1.28) with boundary condi-
tions (1.1.33)–(1.1.35) and initial conditions (1.1.36), and let vε be its viscous approximation
obtained by solving (1.2.7). By using (1.2.28), (1.2.34), and the weak lower semicontinuity
of the norm, there is a constant C > 0, independent of t, such that

‖v̇(t)‖2L2(Ω) + ‖v(t)‖2H1(Ω\Γ0) ≤ C for every t ∈ [0, T ]. (1.2.47)

If we consider u defined by (1.1.27), by using formulas (1.1.49) it is immediate to check that
for another constant C > 0, independent of t, we have

‖u̇(t)‖2L2(Ω) + ‖u(t)‖2H1(Ω\Γt) ≤ C for every t ∈ [0, T ].

1.3 Energy balance

In this section, following [20, Proposition 3.11], we prove an energy equality for the generalized
solution v to (1.1.28). In order to state this result, we introduce the following definition for
the energy: given a function z ∈ C0

w([0, T ];H1(Ω \ Γ0;Rd)), with distributional derivative
ż ∈ C0

w([0, T ];L2(Ω;Rd)), we set

EB(z; t) :=
1

2
‖ż(t)‖2L2(Ω) +

1

2
(B(t)∇z(t),∇z(t))L2(Ω) for t ∈ [0, T ], (1.3.1)

where B is the operator defined in (1.1.29).

Proposition 1.3.1. Under the assumptions of Theorem 1.2.9, let v be the unique generalized
solution to (1.1.28) with boundary conditions (1.1.33)–(1.1.35), satisfying the initial condi-
tions (1.1.36). Then the energy t 7→ EB(v; t) is a continuous function from [0, T ] to R and
satisfies

EB(v; t) = EB(v; 0) +R(v; t) for every t ∈ [0, T ], (1.3.2)

where the remainder R is defined as

R(v; t) :=

∫ t

0

[
1

2
(Ḃ∇v,∇v)L2(Ω) + (B∇v,∇ẇ)L2(Ω) − (p∇v, v̇ − ẇ)L2(Ω)

]
dt

+

∫ t

0

[
−(v̇ div b, v̇)L2(Ω) + 2(v̇,div[ẇ ⊗ b])L2(Ω) + (g, v̇ − ẇ)L2(Ω)

]
dt

+

∫ t

0

[
−(Ḟ , v − w)L2(∂NΩ) − (v̇, ẅ)L2(Ω)

]
dt+ (F (t), v(t)− w(t))L2(∂NΩ)

+ (v̇(t), ẇ(t))L2(Ω) − (F (0), v(0)− w(0))L2(∂NΩ) − (v̇(0), ẇ(0))L2(Ω).
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Remark 1.3.2. If the solution v were smooth enough, then (1.3.2) would be straightforward
by taking v̇ − ẇ as test function in (1.2.5). In our case, we follow the proof of [20, Proposi-
tion 3.11] by approximating v̇ − ẇ with H1

D(Ω \ Γ0;Rd)-valued functions, in the same spirit
of [40, Chapter 3, Lemma 8.3].

Proof of Proposition 1.3.1. The function t 7→ (F (t), v(t))L2(∂NΩ) is continuous from [0, T ]

to R, since F ∈ C0([0, T ];L2(∂NΩ;Rd)) and v ∈ C0
w([0, T ];L2(∂NΩ;Rd)), thanks to (1.1.1).

Similarly, also the function t 7→ (v̇(t), ẇ(t))L2Ω) is continuous from [0, T ] to R. Then, to prove
that t 7→ EB(v; t) is continuous, it is enough to show that equality (1.3.2) holds.

For t = 0 equality (1.3.2) is trivial. Let t0 ∈ (0, T ] be fixed and let θ0 denote the
characteristic function of the time interval (0, t0). For every δ > 0, we call θδ : R → R
the function equals to 1 in [δ, t0 − δ], 0 outside [0, t0], and which is linear in [0, δ] and
[t0 − δ, t0]; notice that θδ → δ0 in L1(R) as δ → 0+. We also consider a sequence of mollifiers
{ρm}m ⊂ C∞c (R).

We want to approximate the function θ0(v − w) : [0, T ] → H1
D(Ω \ Γ0;Rd) by a suitable

sequence of functions in C∞c (R;H1
D(Ω \ Γ0;Rd)). To this aim, we first extend the function

θ0(v − w) to all R be setting θ0(v − w) = 0 outside [0, T ]. In a similar way we extend every
function multiplied by either θ0 or θδ.

For brevity, we set z := v − w. In view of the above definitions, for every m and δ fixed
we have

ρm∗(θδz) ∈ C∞c (R;H1
D(Ω \ Γ0;Rd)),

since θδz ∈ L∞(R;H1
D(Ω \ Γ0;Rd)) has compact support, and the regularity follows from

dk

dtk
(ρm∗(θδz)) =

(
dkρm
dtk

)
∗(θδz).

Moreover, we have ρm∗(θδ ż) ∈ C∞c (R;L2(Ω;Rd)) and

ρm∗(θδ ż) = ρ̇m∗(θδz)− ρm∗(θ̇δz), (1.3.3)

which implies ρm ∗ (θδ ż) ∈ C∞c (R;H1
D(Ω \ Γ0;Rd)). In a similar way, we can deduce that

ρm∗(θδ z̈) ∈ C∞c (R;L2(Ω;Rd)), since ρm∗(θδ z̈) ∈ C∞c (R;H−1
D (Ω \ Γ0;Rd)) and

ρm∗(θδ z̈) = ρ̇m∗(θδ ż)− ρm∗(θ̇δ ż). (1.3.4)

Since ρm∗(θδ ż) ∈ C∞c (R;L2(Ω;Rd)), we derive∫
R

d

dt
‖ρm∗(θδ ż)‖2L2(Ω) dt = 0.

By differentiating the integrand and exploiting the properties of the convolution, we get

0 =

∫
R

[
(ρm∗(θ̇δ ż), ρm∗(θδ ż))L2(Ω) + (ρm∗(θδ z̈), ρm∗(θδ ż))L2(Ω)

]
dt, (1.3.5)

being ρm∗(θδ z̈) well defined in L2(R;L2(Ω;Rd)). Let us study separately the behavior of each
term in (1.3.5) as δ → 0+, keeping m fixed. For the first one we have

lim
δ→0+

∫
R

(ρm∗(θ̇δ ż), ρm∗(θδ ż))L2(Ω) dt

= lim
δ→0+

∫
R
θ̇δ(ż, ρm∗ρm∗(θ0ż))L2(Ω) dt

= −(ż(t0), (ρm∗ρm∗(θ0ż))(t0))L2(Ω) + (ż(0), (ρm∗ρm∗(θ0ż))(0))L2(Ω).

(1.3.6)
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To obtain (1.3.6), we have split θδ as (θδ − θ0) + θ0 and used the following facts:

ρm∗(θδ ż)→ ρm∗(θ0ż) in L2(R;L2(Ω;Rd)) as δ → 0+,

{ρm∗(θ̇δ ż)}δ is uniformly bounded in L2(R;L2(Ω;Rd)),
s 7→ (ż(s), (ρm∗ρm∗(θ0ż))(s))L2(Ω) is continuous on R.

The last property is a consequence of the fact that ρm ∗ρm ∗(θ0ż) ∈ C0(R;L2(Ω;Rd)) and
ż ∈ C0

w(R;L2(Ω;Rd)) (see Remark 1.2.7). The second term of (1.3.5) satisfies

lim
δ→0+

∫
R

(ρm∗(θδ z̈), ρm∗(θδ ż))L2(Ω) dt =

∫
R

(ρm∗(θ0z̈), ρm∗(θ0ż))L2(Ω) dt. (1.3.7)

Indeed, the sequence {ρm∗(θδ z̈)}δ is uniformly bounded in L2(R;L2(Ω;Rd)) by (1.3.4) and
ρm∗(θδ z̈) converges strongly to ρm∗(θ0z̈) in L2(R;H−1

D (Ω\Γ0;Rd)) as δ → 0+. These two facts
imply that ρm∗(θ0z̈) is an element of L2(R;L2(Ω;Rd)) and ρm∗(θδ z̈) converges to ρm∗(θ0z̈)
weakly in L2(R;L2(Ω;Rd)) as δ → 0+. By combining (1.3.5)–(1.3.7), we get∫

R
(ρm∗(θ0z̈), ρm∗(θ0ż))L2(Ω) dt

= (ż(t0), (ρm∗ρm∗(θ0ż))(t0))L2(Ω) − (ż(0), (ρm∗ρm∗(θ0ż))(0))L2(Ω).

In a similar way, we can prove∫
R

(ρm∗(θ0ẅ), ρm∗(θ0ẇ))L2(Ω) dt

= (ẇ(t0), (ρm∗ρm∗(θ0ẇ))(t0))L2(Ω) − (ẇ(0), (ρm∗ρm∗(θ0ẇ))(0))L2(Ω).

From the last two identities we deduce∫
R

(ρm∗(θ0v̈), ρm∗(θ0ż))L2(Ω) dt

= (v̇(t0), (ρm∗ρm∗(θ0v̇))(t0))L2(Ω) − (v̇(0), (ρm∗ρm∗(θ0v̇))(0))L2(Ω)

− ((ρm∗ρm∗(θ0v̇))(t0), ẇ(t0))L2(Ω) − (v̇(t0), (ρm∗ρm∗(θ0ẇ))(t0))L2(Ω)

+ ((ρm∗ρm∗(θ0v̇))(0), ẇ(0))L2(Ω) + (v̇(0), (ρm∗ρm∗(θ0ẇ))(0))L2(Ω)

+

∫
R

(ρm∗(θ0v̇), ρm∗(θ0ẅ))L2(Ω) dt.

(1.3.8)

We apply the same argument to the function (Bρm∗(θδ∇v), ρm∗(θδ∇v))L2(Ω) ∈W 1,∞(R),
which has compact support. Starting from the identity∫

R

d

dt
(Bρm∗(θδ∇v), ρm∗(θδ∇v))L2(Ω) dt = 0,

we infer

0 =

∫
R

[
(Ḃρm∗(θδ∇v), ρm∗(θδ∇v))L2(Ω) + 2(ρm∗(θδB∇v), ρm∗(θδ∇v̇))L2(Ω)

]
dt

+

∫
R

2(ρm∗(θδB∇v), ρm∗(θ̇δ∇v))L2(Ω) dt

+

∫
R

2(Bρm∗(θδ∇v)− ρm∗(θδB∇v), ρ̇m∗(θδ∇v))L2(Ω) dt,

(1.3.9)

where ρm∗(θδ∇v̇) is well defined in L2(R;L2(Ω;Rd×d)) as

ρm∗(θδ∇v̇) := ∇(ρm∗(θδ v̇)) = ρ̇m∗(θδ∇v)− ρm∗(θ̇δ∇v). (1.3.10)
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Since ρm∗(θδ v̇) is uniformly bounded in L2(R;H1
D(Ω \ Γ0;Rd)) by (1.3.3), and it converges

strongly to ρm∗(θ0v̇) in L2(R;L2(Ω;Rd)) as δ → 0+, we get

ρm∗(θδ∇v̇) ⇀ ρm∗(θ0∇v̇) := ∇(ρm∗(θ0v̇)) in L2(R;L2(Ω;Rd×d)) as δ → 0+. (1.3.11)

Moreover, the operator B ∈ Lip(R;L∞(Ω; L (Rd×d,Rd×d))), which yields that Ḃ is an element
of L∞(R;L2(Ω; L (Rd×d,Rd×d))) and there exists C > 0 such that ‖Ḃ(s)‖L∞(Ω) ≤ C for
a.e. s ∈ R. By passing to the limit as δ → 0+ in (1.3.9), thanks to (1.3.11) and the properties:

Bρm∗(θδ∇v)→ Bρm∗(θ0∇v) in L2(R;L2(Ω;Rd×d)) as δ → 0+,

Ḃρm∗(θδ∇v)→ Ḃρm∗(θ0∇v) in L2(R;L2(Ω;Rd×d)) as δ → 0+,

ρm∗(θδB∇v)→ ρm∗(θ0B∇v) in L2(R;L2(Ω;Rd×d)) as δ → 0+,

ρm∗(θδ∇v)→ ρm∗(θ0∇v) in L2(R;L2(Ω;Rd×d)) as δ → 0+,

ρ̇m∗(θδ∇v)→ ρ̇m∗(θ0∇v) in L2(R;L2(Ω;Rd×d)) as δ → 0+,

{ρm∗(θ̇δ∇v)}δ is uniformly bounded in L2(R;L2(Ω;Rd×d)),
s 7→ ((ρm∗ρm∗(θ0B∇v))(s),∇v(s))L2(Ω) is continuous on R,

we obtain the following identity∫
R

(ρm∗(θ0B∇v), ρm∗(θ0∇ż))L2(Ω) dt

= ((ρm∗ρm∗(θ0B∇v))(t0),∇v(t0))L2(Ω) − ((ρm∗ρm∗(θ0B∇v))(0),∇v(0))L2(Ω)

−
∫
R

[
1

2
(Ḃρm∗(θ0∇v), ρm∗(θ0∇v))L2(Ω) + (ρm∗(θ0B∇v), ρm∗(θ0∇ẇ))L2(Ω)

]
dt

+

∫
R

(ρm∗(θ0B∇v)− Bρm∗(θ0∇v), ρ̇m∗(θ0∇v))L2(Ω) dt.

(1.3.12)

Let us consider the function (ρm∗(θδF ), ρm∗(θδz))L2(∂NΩ) ∈ C∞c (R). We have∫
R

d

dt
(ρm∗(θδF ), ρm∗(θδz))L2(∂NΩ) dt = 0,

which implies

0 =

∫
R

[
(ρm∗(θ̇δF ), ρm∗(θδz))L2(∂NΩ) + (ρm∗(θδḞ ), ρm∗(θδz))L2(∂NΩ)

]
dt

+

∫
R

[
(ρm∗(θδF ), ρm∗(θ̇δz))L2(∂NΩ) + (ρm∗(θδF ), ρm∗(θδ ż))L2(∂NΩ)

]
dt,

being ρm∗(θδ ż) well defined in L2(R;L2(∂NΩ;Rd)) (see (1.1.1) and (1.3.3)). By the following
facts:

ρm∗(θδF )→ ρm∗(θ0F ) in L2(R;L2(∂NΩ;Rd)) as δ → 0+,

ρm∗(θδḞ )→ ρm∗(θ0Ḟ ) in L2(R;L2(∂NΩ;Rd)) as δ → 0+,

ρm∗(θδz)→ ρm∗(θ0z) in L2(R;L2(∂NΩ;Rd)) as δ → 0+,

ρm∗(θδ ż) ⇀ ρm∗(θ0ż) in L2(R;L2(∂NΩ;Rd)) as δ → 0+,

{ρm∗(θ̇δF )}δ is uniformly bounded in L2(R;L2(∂NΩ;Rd)),
{ρm∗(θ̇δz)}δ is uniformly bounded in L2(R;L2(∂NΩ;Rd)),
s 7→ (F (s), (ρm∗ρm∗(θ0z))(s))L2(∂NΩ) is continuous on R,
s 7→ ((ρm∗ρm∗(θ0F ))(s), z(s))L2(∂NΩ) is continuous on R,
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as δ → 0+ we get∫
R

(ρm∗(θ0F ), ρm∗(θ0ż))L2(∂NΩ) dt

= ((ρm∗ρm∗(θ0F ))(t0), z(t0))L2(∂NΩ) + (F (t0), (ρm∗ρm∗(θ0z))(t0))L2(∂NΩ)

− ((ρm∗ρm∗(θ0F ))(0), z(0))L2(∂NΩ) − (F (0), (ρm∗ρm∗(θ0z))(0))L2(∂NΩ)

−
∫
R

(ρm∗(θ0Ḟ ), ρm∗(θ0z))L2(∂NΩ) dt.

(1.3.13)

We know that the function v solves∫
R

[
〈θ0v̈, ϕ〉H−1

D (Ω\Γ0) + (θ0B∇v,∇ϕ)L2(Ω) + (θ0p∇v, ϕ)L2(Ω) + 2(θ0v̇,div[ϕ⊗ b])L2(Ω)

]
dt

=

∫
R

[
(θ0g, ϕ)L2(Ω) + (θ0F,ϕ)L2(∂NΩ)

]
dt

for every ϕ ∈ L2(R;H1
D(Ω \ Γ0;Rd)) (see Remark 1.2.6). In particular, by considering the

function ϕ := ρm∗(ρm∗(θ0ż)), which belongs to L2(R;H1
D(Ω \Γ0;Rd)) thanks to (1.3.3), and

exploiting the properties of the convolution, we obtain∫
R

[
(ρm∗(θ0v̈), ρm∗(θ0ż))L2(Ω) + (ρm∗(θ0B∇v), ρm∗(θ0∇ż))L2(Ω)

]
dt

+

∫
R

[
(ρm∗(θ0p∇v), ρm∗(θ0ż))L2(Ω) + 2(ρm∗(θ0v̇ ⊗ b), ρm∗(θ0∇ż))L2(Ω)

]
dt

+

∫
R

2(ρm∗(θ0v̇ div b), ρm∗(θ0ż))L2(Ω) dt

=

∫
R

[
(ρm∗(θ0g), ρm∗(θ0ż))L2(Ω) + (ρm∗(θ0F ), ρm∗(θ0ż))L2(∂NΩ)

]
dt.

(1.3.14)

We combine (1.3.8) and (1.3.12)–(1.3.14) to derive the following identity

(v̇(t0), (ρm∗ρm∗(θ0v̇))(t0))L2(Ω) + ((ρm∗ρm∗(θ0B∇v))(t0),∇v(t0))L2(Ω)

− (v̇(0), (ρm∗ρm∗(θ0v̇))(0))L2(Ω) − ((ρm∗ρm∗(θ0B∇v))(0),∇v(0))L2(Ω) = Rm(t0),
(1.3.15)

where

Rm(t0) :=

∫
R

[
1

2
(Ḃρm∗(θ0∇v), ρm∗(θ0∇v))L2(Ω) + (ρm∗(θ0B∇v), ρm∗(θ0∇ẇ))L2(Ω)

]
dt

+

∫
R

(ρm∗(θ0g)− ρm∗(θ0p∇v)− 2ρm∗(θ0v̇ div b), ρm∗(θ0(v̇ − ẇ)))L2(Ω) dt

+

∫
R

(Bρm∗(θ0∇v)− ρm∗(θ0B∇v), ρ̇m∗(θ0∇v))L2(Ω) dt

−
∫
R

2(ρm∗(θ0v̇ ⊗ b), ρm∗(θ0(∇v̇ −∇ẇ)))L2(Ω) dt

−
∫
R

[
(ρm∗(θ0Ḟ ), ρm∗(θ0(v − w)))L2(∂NΩ) + (ρm∗(θ0v̇), ρm∗(θ0ẅ))L2(Ω)

]
dt

+ ((ρm∗ρm∗(θ0F ))(t0), v(t0)− w(t0))L2(∂NΩ) + ((ρm∗ρm∗(θ0v̇))(t0), ẇ(t0))L2(Ω)

+ (F (t0), (ρm∗ρm∗(θ0(v − w)))(t0))L2(∂NΩ) + (v̇(t0), (ρm∗ρm∗(θ0ẇ))(t0))L2(Ω)

− ((ρm∗ρm∗(θ0F ))(0), v(0)− w(0))L2(∂NΩ) − ((ρm∗ρm∗(θ0v̇))(0), ẇ(0))L2(Ω)

− (F (0), (ρm∗ρm∗(θ0(v − w)))(0))L2(∂NΩ) − (v̇(0), (ρm∗ρm∗(θ0ẇ))(0))L2(Ω).
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Let us now perform the second passage to the limit: we let the index m associated
to the convolution ρm tend to ∞. Let us study separately the asymptotic of the terms
appearing (1.3.15). The left-hand side converges to

1

2
‖v̇(t0)‖2L2(Ω) +

1

2
(B(t0)∇v(t0),∇v(t0))L2(Ω) −

1

2
‖v̇(0)‖2L2(Ω) −

1

2
(B(0)∇v(0),∇v(0))L2(Ω).

Here we have used the weak continuity of v̇ and ∇v (see Remark 1.2.7), the presence of θ0,
and the fact that ρm∗ρm is still a smooth even mollifier. Similarly, the last eight terms of
Rm(t0) converge to

(F (t0), v(t0))L2(∂NΩ) + (v̇(t0), ẇ(t0))L2(∂NΩ) − (F (0), v0)L2(∂NΩ) − (v1, ẇ(0))L2(∂NΩ).

By the strong approximation property of the convolution and the dominated convergence
theorem, it is easy check the following convergences:

lim
m→∞

∫
R

(Ḃρm∗(θ0∇v), ρm∗(θ0∇v))L2(Ω) dt =

∫ t0

0
(Ḃ∇v,∇v)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0B∇v), ρm∗(θ0∇ẇ))L2(Ω) dt =

∫ t0

0
(B∇v,∇ẇ)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0g), ρm∗(θ0(v̇ − ẇ))L2(Ω) dt =

∫ t0

0
(g, v̇ − ẇ)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0p∇v), ρm∗(θ0(v̇ − ẇ)))L2(Ω) dt =

∫ t0

0
(p∇v, v̇ − ẇ)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0v̇ div b), ρm∗(θ0v̇))L2(Ω) dt =

∫ t0

0
(v̇ div b, v̇ − ẇ)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0v̇ ⊗ b), ρm∗(θ0∇ẇ))L2(Ω) dt =

∫ t0

0
(v̇ ⊗ b,∇ẇ)L2(Ω) dt,

lim
m→∞

∫
R

(ρm∗(θ0Ḟ ), ρm∗(θ0(v − w)))L2(∂NΩ) dt =

∫ t0

0
(Ḟ , v − w)L2(∂NΩ) dt,

lim
m→∞

∫
R

(ρm∗(θ0v̇), ρm∗(θ0ẅ))L2(Ω) dt =

∫ t0

0
(v̇, ẅ)L2(Ω) dt.

For the remaining two terms of Rm(t0) we claim

lim
m→∞

∫
R

(ρm∗(θ0v̇ ⊗ b), ρm∗(θ0∇v̇))L2(Ω) dt = −1

2

∫ t0

0
(v̇ div b, v̇)L2(Ω) dt, (1.3.16)

lim
m→∞

∫
R

(Bρm∗(θ0∇v)− ρm∗(θ0B∇v), ρ̇m∗(θ0∇v))L2(Ω) dt = 0. (1.3.17)

Once proved the claim we are done: indeed, by combining the previous convergences with
identity (1.3.15) we get (1.3.2).

For simplicity we set

ζm := ρm∗(θ0v̇ ⊗ b)− ρm∗(θ0v̇)⊗ b, ϕm := ρm∗(θ0v̇).

Hence, we may rephrase the integral in (1.3.16) as∫
R

(ρm∗(θ0v̇ ⊗ b), ρm∗(θ0∇v̇))L2(Ω) dt

=

∫
R

[
(ϕm ⊗ b,∇ϕm)L2(Ω) + (ζm,∇ϕm)L2(Ω)

]
dt.

(1.3.18)
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By integrating by parts (recall that b satisfies b · ν = 0 on ∂Ω ∪ Γ0) we get

lim
m→∞

∫
R

(ϕm ⊗ b,∇ϕm)L2(Ω) = −1

2
lim
m→∞

∫
R

(ϕm div b, ϕm)L2(Ω) = −1

2

∫ t0

0
(v̇ div b, v̇)L2(Ω) dt,

since ϕm → θ0v̇ in L2(R;L2(Ω;Rd)) as m→∞. Therefore we have to prove that the second
term in the right-hand side of (1.3.18) vanishes as m→∞. Notice that (1.3.10) and (1.3.11)
imply

∇ϕm(t) = (ρ̇m∗(θ0∇v))(t) + ρm(t− t0)∇v(t0)− ρm(t)∇v(0) for t ∈ [0, T ].

Then, we may write∫
R

(ζm(t),∇ϕm(t))L2(Ω) dt

= −
∫
R

(ζ̇m(t), (ρm∗(θ0∇v))(t))L2(Ω) dt+

∫
R

(ζm(t), ρm(t− t0)∇v(t0)− ρm(t)∇v(0))L2(Ω) dt.

Since ρm and θ0 have compact support, for m large enough ζm and ζ̇m are identically zero
outside the interval I = (−2T, 2T ). Clearly ζm → 0 in L2(I;L2(Ω;Rd×d)) as m → ∞, and
let us check that ζ̇m converges to zero weakly in L2(I;L2(Ω;Rd×d)) as m→∞. By (H7) we
know that b ∈ Lip(I;L∞(Ω;Rd)), so that ḃ ∈ L∞(I;L2(Ω;Rd)) and there exists C > 0 such
that ‖ḃ(t)‖L∞(Ω) ≤ C for a.e. t ∈ I. Therefore, for a.e. t ∈ I, we may write

ζ̇m(t) = (ρ̇m∗(θ0v̇ ⊗ b))(t)− (ρ̇m∗(θ0v̇))(t)⊗ b(t)− (ρm∗(θ0v̇))(t)⊗ ḃ(t)

=

∫
R
ρ̇m(t− s)θ0(s)v̇(s)⊗ [b(s)− b(t)] ds−

∫
R
ρm(t− s)θ0(s)v̇(s)⊗ ḃ(t)ds

=

∫ t0

0
ρ̇m(t− s)v̇(s)⊗ [b(s)− b(t)]

(s− t)
(s− t) ds−

∫ t0

0
ρm(t− s)v̇(s)⊗ ḃ(t) ds.

We use the L∞-boundedness of t 7→ ‖v̇(t)‖L2(Ω), the previous properties of b, and the bounds∫
R
|sρ̇m(s)| ds <∞,

∫
R
ρm(s) ds <∞,

to deduce that {ζ̇m}m is uniformly bounded in L2(I;L2(Ω;Rd×d)). This gives that ζ̇m ⇀ 0
in L2(I;L2(Ω;Rd×d)) as m → ∞, since ζm converges to 0 strongly in L2(I;L2(Ω;Rd×d)) as
m→∞. Hence

lim
m→∞

∫
R

(ζ̇m, ρm∗(θ0∇v))L2(Ω) = 0.

Since the embedding H1(I;L2(Ω;Rd×d)) ↪→ C0(I;L2(Ω;Rd×d)) is continuous, the sequence
{ζm}m is bounded in C0(I;L2(Ω;Rd×d)), and

‖ζm(t1)− ζm(t2)‖L2(Ω) ≤ ‖ζ̇m‖L2(Ω)|t1 − t2|1/2 ≤ C|t1 − t2|1/2 for every t1, t2 ∈ I,

with C > 0 independent of t1 and t2. Then the sequence ‖ζm‖L2(Ω) : I → R, m ∈ N,
is equibounded and equicontinuos. By Ascoli-Arzela’s theorem we get that ζm converges
strongly to zero in C0(I;L2(Ω;Rd×d)), since ‖ζm‖L2(Ω) → 0 in L2(I). Notice that the function

t 7→ ρm(t− t0)∇v(t0)− ρm(t)∇v(0) is bounded in L1(I;L2(Ω;Rd×d)), hence

lim
m→∞

∫
R

(ζm(t), ρm(t− t0)∇v(t0)− ρm(t)∇v(0))L2(Ω) dt = 0.

Similarly, by defining

χm := Bρm∗(θ0∇v)− ρm∗(θ0B∇v),
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we may write∫
R

(Bρm∗(θ0∇v)− ρm∗(θ0B∇v), ρ̇m∗(θ0∇v))L2(Ω) dt = −
∫
R

(χ̇m, ρm∗(θ0∇v))L2(Ω) dt.

As before, χ̇m is identically zero outside of I, χm → 0 in L2(I;L2(Ω;Rd×d)), and the sequence
{χ̇m}m is bounded in L2(I;L2(Ω;Rd×d)) thanks to the Lipschitz regularity of B. Hence
χ̇m ⇀ 0 in L2(I;L2(Ω;Rd×d)) and (1.3.17) holds.

This concludes the proof of formula (1.3.2) and implies the desired continuity of the map
t 7→ EB(v; t) in [0, T ].

We are now in a position to prove Theorem 1.2.2.

Proof of Theorem 1.2.2. In view of Theorems 1.2.9 and 1.2.10, we know that problem (1.1.28)
with boundary and initial conditions (1.1.33)–(1.1.36) admits a unique generalized solution v
(cf. Definition 1.2.5). Hence, to conclude the proof, it is enough to show that that every
generalized solution v is indeed a weak solution (cf. Definition 1.1.9), more precisely it
satisfies (1.1.38)–(1.1.41).

As pointed out in Remark 1.2.7, v ∈ C0([0, T ];L2(Ω;Rd)) ∩ C0
w([0, T ];H1(Ω \ Γ0;Rd)),

while v̇ ∈ C0([0, T ];H−1
D (Ω \ Γ0;Rd)) ∩ C0

w([0, T ];L2(Ω;Rd)). In addition, t 7→ EB(v; t) is a
continuous function from [0, T ] to R, thanks to Proposition 1.3.1. Let us now prove that
t 7→ ∇v(t) and t 7→ v̇(t) are strongly continuous from [0, T ] to L2(Ω;Rd×d) and L2(Ω;Rd),
respectively.

Let t0 ∈ [0, T ] be fixed and let {tk}k ⊂ [0, T ] be a sequence of points converging to t0.
Since v̇ is weakly continuous, we have

‖v̇(t0)‖2L2(Ω) ≤ lim inf
k→∞

‖v̇(tk)‖2L2(Ω).

Moreover, condition (1.2.1) implies that (B(t0)∇φ,∇φ)L2(Ω)+c1‖φ‖2L2(Ω), φ ∈ H
1
D(Ω\Γ0;Rd),

is an equivalent norm on H1
D(Ω\Γ0;Rd). Hence, since z := v−w ∈ C0

w([0, T ];H1
D(Ω\Γ0;Rd)),

we have

(B(t0)∇z(t0),∇z(t0))L2(Ω) + c1‖z(t0)‖2L2(Ω)

≤ lim inf
k→∞

[
(B(t0)∇z(tk),∇z(tk))L2(Ω) + c1‖z(tk)‖2L2(Ω)

]
= lim inf

k→∞
(B(t0)∇z(tk),∇z(tk))L2(Ω) + c1‖z(t0)‖2L2(Ω),

thanks to the strong continuity and the weak continuity of z in L2(Ω;Rd) and H1(Ω\Γ0;Rd),
respectively. In particular, we can use (1.1.11) to derive

(B(t0)∇v(t0),∇v(t0))L2(Ω) ≤ lim inf
k→∞

(B(t0)∇v(tk),∇v(tk))L2(Ω).

Moreover, by the strong continuity of t 7→ B(t) from [0, T ] to L∞(Ω; L (Rd×d;Rd×d)) and the
bound (1.2.47) we get

(B(t0)∇v(t0),∇v(t0))L2(Ω)

≤ lim inf
k→∞

[
(B(tk)∇v(tk),∇v(tk))L2(Ω) + ((B(t0)− B(tk))∇v(tk),∇v(tk))L2(Ω)

]
≤ lim inf

k→∞
(B(tk)∇v(tk),∇v(tk))L2(Ω) + C lim

k→∞
‖B(t0)− B(tk)‖L∞(Ω)

= lim inf
k→∞

(B(tk)∇v(tk),∇v(tk))L2(Ω).
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Then

EB(v; t0) ≤ 1

2
lim inf
k→∞

‖v̇(tk)‖2L2(Ω) +
1

2
lim inf
k→∞

(B(tk)∇v(tk),∇v(tk))L2(Ω)

≤ lim
k→∞

EB(v; tk) = EB(v; t0),

which implies the continuity of t 7→ ‖v̇(t)‖2L2(Ω) and t 7→ (B(t)∇v(t),∇v(t))L2(Ω) in t0 ∈ [0, T ].

Thus v̇ and∇v are strongly continuous from [0, T ] to L2(Ω;Rd) and L2(Ω;Rd×d), respectively.
Therefore, properties (1.1.38)–(1.1.40) are readily verified. Finally, since both v̇ and v̈ are
elements of L2(0, T ;H−1

D (Ω \ Γ0;Rd)), we infer that v̇ ∈ H1(0, T ;H−1
D (Ω \ Γ0;Rd)) which is

contained in AC([0, T ];H−1
D (Ω \ Γ0;Rd)). This gives (1.1.41) and concludes the proof.

1.4 Continuous dependence on the data

In this section, following the same procedure adopted in [20, Theorem 4.1], we use the en-
ergy equality (1.3.2) to obtain a continuous dependence result on the data, both for prob-
lem (1.1.14) with boundary and initial conditions (1.1.15)–(1.1.18), and problem (1.1.28) with
boundary and initial conditions (1.1.33)–(1.1.36).

The initial crack Γ0 is kept fixed. For every n ∈ N we consider a family of closed sets
{Γnt }t∈[0,T ] and a complete (d − 1)-dimensional C2 manifold Γn satisfying (H1)–(H8) with
diffeomorphisms Ψn and Φn, and we assume

Γn0 = Γ0 for every n ∈ N. (1.4.1)

Moreover, we consider a sequence An of tensor fields, fn of source terms, wn of Dirichlet
boundary data, Fn of Neumann boundary data, and (u0,n, u1,n) of initial data. The conver-
gences of the corresponding solutions will be obtained under the assumptions detailed in the
following theorem.

Theorem 1.4.1. Assume that Γ, {Γt}t∈[0,T ], Φ, Ψ satisfy (H1)–(H8). Let us consider a ten-
sor field A which satisfies (1.1.8)–(1.1.10) and such that the transformed operator B satisfies
the ellipticity condition (1.2.1). Let us also consider f , w, F , u0, and u1 satisfying (1.1.11)–
(1.1.13). Assume that Γn, {Γnt }t∈[0,T ], Φn, Ψn satisfying (H1)–(H8) and condition (1.4.1)
for every n ∈ N. Let us consider a sequence of tensor fields An which satisfy (1.1.8)–(1.1.10)
for every n ∈ N and such that the operators Bn, constructed starting from An, Φn, and Ψn,
satisfy the ellipticity condition (1.2.1) with constants c0 and c1 independent of n. Let us
consider fn, wn, Fn, u0,n, and u1,n satisfying (1.1.11)–(1.1.13) for every n ∈ N.

We assume there exists of a constant C > 0 such that every n ∈ N and s, t ∈ [0, T ]

‖Φn(t)− Φn(s)‖L∞(Ω) ≤ C|t− s|, ‖Φ̇n(t)− Φ̇n(s)‖L∞(Ω) ≤ C|t− s|, (1.4.2)

‖∂iΦn(t)− ∂iΦn(s)‖L∞(Ω) ≤ C|t− s|, ‖∂2
ijΦ

n(t)‖L∞(Ω) ≤ C, (1.4.3)

‖An(t)− An(s)‖L∞(Ω) ≤ C|t− s|, ‖∂iAn(t)‖L∞(Ω) ≤ C, (1.4.4)

for every i, j = 1, . . . , d. Moreover, we assume the following convergences as n→∞:

Φ̇n(t)→ Φ̇(t) in L2(Ω;Rd), ∂iΦ̇
n(t)→ ∂iΦ̇(t) in L2(Ω;Rd), (1.4.5)

Φ̈n(t)→ Φ̈(t) in L2(Ω;Rd), ∂2
ijΦ

n(t)→ ∂2
ijΦ(t) in L2(Ω;Rd), (1.4.6)

An(t)→ A(t) in L2(Ω; L (Rd×d;Rd×d)), (1.4.7)

∂iAn(t)→ ∂iA(t) in L2(Ω; L (Rd×d;Rd×d)), (1.4.8)

Ȧn(t)→ Ȧ(t) in L2(Ω; L (Rd×d;Rd×d)), (1.4.9)

wn → w in H2(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω \ Γ0;Rd)), (1.4.10)



Chapter 1. Elastodynamics system in domains with growing cracks 29

fn → f in L2(0, T ;L2(Ω;Rd)), Fn → F in H1(0, T ;L2(∂NΩ;Rd)), (1.4.11)

u0,n → u0 in H1(Ω \ Γ0;Rd), u1,n → u1 in L2(Ω;Rd) (1.4.12)

for a.e. t ∈ (0, T ) and for every i, j = 1, . . . , d. Finally, we assume that (1.4.2), (1.4.3),
(1.4.5), and (1.4.6) are true also for the sequence Ψn with limit Ψ.

For every n ∈ N let un be the weak solution to problem (1.1.14) with growing crack Γnt ,
forcing term fn, boundary conditions (1.1.15)–(1.1.17) with w, F , and Γt replaced by wn,
Fn and Γnt , respectively, and initial data (u0,n, u1,n). Similarly, let vn be the weak solution
to (1.1.28) with boundary and conditions (1.1.33)–(1.1.36), where the coefficients (1.1.29)–
(1.1.32) and the initial data (1.1.37) are constructed starting from Φn,Ψn,An, fn, u0,n, u1,n.
Let u and v be the weak solutions to problem (1.1.14) with boundary and initial condi-
tions (1.1.15)–(1.1.18) and problem (1.1.28) with boundary and initial conditions (1.1.33)–
(1.1.36), respectively. Under the previous assumptions, for every t ∈ [0, T ] as n → ∞ we
have:

un(t)→ u(t) in L2(Ω;Rd), ∇un(t)→ ∇u(t) in L2(Ω;Rd×d), (1.4.13)

u̇n(t)→ u̇(t) in L2(Ω;Rd), (1.4.14)

vn(t)→ v(t) in H1(Ω \ Γ0;Rd), v̇n(t)→ v̇(t) in L2(Ω;Rd). (1.4.15)

Remark 1.4.2. In the continuous dependence result of [8], both the initial crack and the
Dirichlet datum are fixed. In this thesis, we consider also the case of a sequence of Dirichlet
data wn converging to w.

Remark 1.4.3. Since Φn(0) = id for every n ∈ N, assumption (1.4.5) implies

Φn(t)→ Φ(t), ∂iΦ
n(t)→ ∂iΦ(t) in L2(Ω;Rd) as n→∞ (1.4.16)

for every t ∈ [0, T ] and i = 1, . . . , d. Moreover, by (1.4.6)–(1.4.9) we also have

Φ̇n(t)→ Φ̇(t) in L2(Ω;Rd), An(t)→ A(t) in L2(Ω; L (Rd×d;Rd×d)) as n→∞
(1.4.17)

for every t ∈ [0, T ]. Finally, we have ‖ det∇Φn(t)‖L∞(Ω) ≤ C and ‖ det∇Ψn(t)‖L∞(Ω) ≤ C for
a constant C > 0 independent of n and t. Thus there exists a constant δ0 > 0, independent
of n, such that

det∇Φn(t, y) ≥ δ0, det∇Ψn(t, x) ≥ δ0 for every t ∈ [0, T ] and x, y ∈ Ω. (1.4.18)

Proof of Theorem 1.4.1. We follow the lines of the proof of [20, Theorem 4.1]. As explained in
the quoted paper, the statement for the sequence {un}n is a consequence of the one for {vn}n.
Indeed, let t ∈ [0, T ] be fixed and let us assume that (1.4.15) is satisfied. By (1.1.27), (1.1.49),
and the bounds (1.4.2) and (1.4.3) on the diffeomorphisms, we deduce that {∇un(t)}n,
{un(t)}n, and {u̇n(t)}n are uniformly bounded in L2(Ω;Rd×d), L2(Ω;Rd), and L2(Ω;Rd),
respectively. In particular, up to a subsequence, ∇un(t), un(t), and u̇n(t) converge weakly in
these spaces. To determine the weak limits we fix a smooth function ψ ∈ C∞c (Ω;Rd×d). By
the change of variable formula (1.1.49), we have

lim
n→∞

(∇un(t), ψ)L2(Ω) = lim
n→∞

(∇vn(t)∇Ψn(t,Φn(t)), ψ(Φn(t)) det∇Φn(t))L2(Ω)

= (∇v(t)∇Ψ(t,Φ(t)), ψ(Φ(t)) det∇Φ(t))L2(Ω) = (∇u(t), ψ)L2(Ω).

Hence ∇un(t) converges weakly to ∇u(t) in L2(Ω;Rd×d). Similarly, by using the conver-
gences (1.4.15) and (1.4.16) we obtain that ‖∇un(t)‖L2(Ω) converges to ‖∇u(t)‖L2(Ω) as

n→∞. Then ∇un(t)→ ∇u(t) in L2(Ω;Rd×d), and the same argument applies to un(t) and
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u̇n(t), which converge strongly in L2(Ω;Rd) to u(t) and u̇(t), respectively. This gives (1.4.13)
and (1.4.14), since these limits do not depend on the subsequence.

Let us denote by Bn, pn, bn, gn, v0,n, and v1,n the coefficients of the system (1.1.28)
constructed starting from Φn, Ψn, An, fn, u0,n, and u1,n. In view of (1.4.2)–(1.4.4) it is easy
to check that for every n ∈ N and i = 1, . . . , d

‖Bn(t)− Bn(s)‖L∞(Ω) ≤ C|t− s|, ‖bn(t)− bn(s)‖L∞(Ω) ≤ C|t− s| (1.4.19)

for every t, s ∈ [0, T ], while

‖∂iBn(t)‖L∞(Ω) ≤ C, ‖∂ibn(t)‖L∞(Ω) ≤ C, ‖pn(t)‖L∞(Ω) ≤ C (1.4.20)

for a.e. t ∈ (0, T ), where C is a constant independent of t, s, n, and i. Furthermore, the
convergences (1.4.5)–(1.4.9), the lower bounds (1.4.18), and Lemma 1.1.2 imply as n→∞

Ḃn(t)→ Ḃ(t) in L2(Ω; L (Rd×d;Rd×d)) for a.e. t ∈ (0, T ), (1.4.21)

pn(t)→ p(t) in L2(Ω; L (Rd×d;Rd)) for a.e. t ∈ (0, T ), (1.4.22)

∂ib
n(t)→ ∂ib(t) in L2(Ω) for a.e. t ∈ (0, T ) (1.4.23)

for every i = 1, . . . , d. By using (1.4.19), (1.4.20), and Ascoli-Arzela’s theorem, we also infer
as n→∞

Bn(t)→ B(t) in C0(Ω; L (Rd×d;Rd×d)) for a.e. t ∈ (0, T ), (1.4.24)

bn(t)→ b(t) in C0(Ω;Rd) for a.e. t ∈ (0, T ). (1.4.25)

Finally, by (1.4.11) and (1.4.12) we obtain as n→∞

gn → g in L2(0, T ;L2(Ω;Rd)), (1.4.26)

v0,n → v0 in H1(Ω \ Γ0;Rd), v1,n → v1 in L2(Ω;Rd). (1.4.27)

In order to prove the validity of (1.4.15), for every ε ∈ (0, 1) we consider the solution vε to
the perturbed problem (1.2.7) with coefficients B, p, b, g, w, F , v0, and v1, and the solution
vnε to the one with coefficients Bn, pn, bn, gn, wn, Fn, v0,n, and v1,n. For every t ∈ [0, T ] as
ε→ 0 we claim

vε(t)→ v(t) in H1(Ω \ Γ0;Rd), v̇ε(t)→ v̇(t) in L2(Ω;Rd). (1.4.28)

Moreover, we claim that there exists a sequence of parameters {εn}n ⊂ (0, 1), converging to 0
as n→∞, such that for every t ∈ [0, T ] as n→∞

vnεn(t)− vεn(t)→ 0 in H1(Ω \ Γ0;Rd), v̇nεn(t)− v̇εn(t)→ 0 in L2(Ω;Rd), (1.4.29)

vnεn(t)− vn(t)→ 0 in H1(Ω \ Γ0;Rd), v̇nεn(t)− v̇n(t)→ 0 in L2(Ω;Rd). (1.4.30)

Notice that (1.4.28)–(1.4.30) imply (1.4.15). Indeed, by the triangle inequality, as n→∞ we
have

‖vn(t)− v(t)‖H1(Ω\Γ0)

≤ ‖vn(t)− vnεn(t)‖H1(Ω\Γ0) + ‖vnεn(t)− vεn(t)‖H1(Ω\Γ0) + ‖vεn(t)− v(t)‖H1(Ω\Γ0) → 0

and the same holds true for ‖v̇n(t) − v̇(t)‖L2(Ω). To prove (1.4.28)–(1.4.30) we divide the
proof into several steps.
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Step 1. Strong convergence of vε. Let us define zε := vε−v. By comparing the two energy
equalities (1.2.26) and (1.3.2) we infer that zε satisfies

EB(zε; t) + ε

∫ t

0
‖v̇ε‖2H1(Ω\Γ0)ds

=

∫ t

0

[
1

2
(Ḃ∇zε,∇zε)L2(Ω) − (p∇zε, żε)L2(Ω) − (żε div b, żε)L2(Ω)

]
ds+Rε(t),

(1.4.31)

where EB is defined in according to (1.3.1), and

Rε(t) :=− (v̇ε(t), v̇(t))L2(Ω) − (B(t)∇vε(t),∇v(t))L2(Ω) + ‖v1‖2L2(Ω) + (B(0)∇v0,∇v0)L2(Ω)

+

∫ t

0

[
(Ḃ∇vε,∇v)L2(Ω) + (B(∇vε +∇v),∇ẇ)L2(Ω) − (p∇vε, v̇)L2(Ω)

]
ds

+

∫ t

0

[
−(p∇v, v̇ε)L2(Ω) + (p(∇vε +∇v), ẇ)L2(Ω) − 2(v̇ div b, v̇ε)L2(Ω)

]
ds

+

∫ t

0

[
2(v̇ε + v̇,div[ẇ ⊗ b])L2(Ω) + ε(v̇ε, ẇ)H1(Ω\Γ0) + (g, v̇ε + v̇ − 2ẇ)L2(Ω)

]
ds

+

∫ t

0

[
−(Ḟ , vε + v − 2w)L2(∂NΩ) − (v̇ε + v̇, ẅ)L2(Ω)

]
ds

+ (F (t), vε(t) + v(t)− 2w(t))L2(∂NΩ) + (v̇ε(t) + v̇(t), ẇ(t))L2(Ω)

− 2(F (0), v0 − w(0))L2(∂NΩ) − 2(v1, ẇ(0))L2(Ω)

for every t ∈ [0, T ]. Thanks to (1.2.28), as ε→ 0+ we have∣∣∣∣ε∫ t

0
(v̇ε, ẇ)H1(Ω\Γ0) ds

∣∣∣∣ ≤ √ε∫ T

0

√
ε‖v̇ε‖H1(Ω\Γ0)‖ẇ‖H1(Ω\Γ0) ds

≤
√
ε‖ẇ‖L2(0,T ;H1(Ω\Γ0))

(∫ T

0
ε‖v̇ε‖2H1(Ω\Γ0) ds

)1/2

≤
√
εC → 0.

Therefore, by using also the weak convergences (1.2.34) and the energy equality (1.3.2), we
deduce that Rε(t) → 0 as ε → 0+. The uniform bounds on Ḃ, p, and div b, the ellipticity
condition (1.2.1), the estimate

‖zε(t)‖2L2(Ω) ≤ T
∫ t

0
‖żε(s)‖2L2(Ω) ds for every t ∈ [0, T ], (1.4.32)

and the identity (1.4.31) imply

‖żε(t)‖2L2(Ω) + ‖zε(t)‖2H1(Ω\Γ0) ≤ C
(
Rε(t) +

∫ t

0

[
‖żε(s)‖2L2(Ω) + ‖zε(s)‖2H1(Ω\Γ0)

]
ds

)
for every t ∈ [0, T ], with C > 0 independent of t and ε. By applying Fatou’s lemma, for every
t ∈ [0, T ] we have

lim sup
ε→0+

[
‖żε(t)‖2L2(Ω) + ‖zε(t)‖2H1(Ω\Γ0)

]
≤ C lim sup

ε→0+

(
Rε(t) +

∫ t

0

[
‖żε(s)‖2L2(Ω) + ‖zε(s)‖2H1(Ω\Γ0)

]
ds

)
≤ C

∫ t

0
lim sup
ε→0+

[
‖żε(s)‖2L2(Ω) + ‖zε(s)‖2H1(Ω\Γ0)

]
ds.
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Thanks to Gronwall’s lemma we conclude

lim
ε→0+

[
‖żε(t)‖2L2(Ω) + ‖zε(t)‖2H1(Ω\Γ0)

]
= 0 for every t ∈ [0, T ],

which gives the convergences (1.4.28).

Step 2. Strong convergence of vnεn − vεn. Let {εn}n ⊂ (0, 1) be a sequence of parameters
to be fixed. The functions vnεn and vεn satisfy (1.2.7) with different coefficients, but with
the same viscosity εn. By linearity, the function zn := (vnεn − vεn)− (wn − w) solves for a.e.
t ∈ (0, T )

〈z̈n(t), φ〉H−1
D (Ω\Γ0) + (B(t)∇zn(t),∇φ)L2(Ω) + (p(t)∇zn(t), φ)L2(Ω)

− 2(∇żn(t)b(t), φ)L2(Ω) + εn(żn(t), φ)H1(Ω\Γ0) = 〈qn(t), φ〉H−1
D (Ω\Γ0)

(1.4.33)

for every φ ∈ H1
D(Ω \ Γ0;Rd), with initial data z0,n := (v0,n − v0) − (wn(0) − w(0)) and

z1,n := (v1,n − v1)− (ẇn(0)− ẇ(0)), and right-hand side defined for t ∈ [0, T ] as

〈qn(t), φ〉H−1
D (Ω\Γ0)

:=− (ẅn(t)− ẅ(t), φ)L2(Ω) − (B(t)(∇wn(t)−∇w(t)),∇φ)L2(Ω)

− (p(t)(∇wn(t)−∇w(t)), φ)L2(Ω) + 2((∇ẇn(t)−∇ẇ(t))b(t), φ)L2(Ω)

− εn(ẇn(t)− ẇ(t), φ)H1(Ω\Γ0) − ((Bn(t)− B(t))∇vnεn(t),∇φ)L2(Ω)

− ((pn(t)− p(t))∇vnεn(t), φ)L2(Ω) − 2(v̇nεn(t)⊗ (bn(t)− b(t)),∇φ)L2(Ω)

− 2((div bn(t)− div b(t))v̇nεn(t), φ)L2(Ω) + (gn(t)− g(t), φ)L2(Ω)

+ (Fn(t)− F (t), φ)L2(Ω). (1.4.34)

In particular, the forcing term qn is an element of L2(0, T ;H−1
D (Ω \ Γ0;Rd)). Notice that we

have used the identity (1.1.46) for both bn and b to derive formula (1.4.33). By combining
the energy equality (1.2.26) with (1.1.1), the uniform ellipticity condition (1.2.1) for Bn,
the uniform bounds (1.4.19) and (1.4.20), and the convergences (1.4.10), (1.4.11), (1.4.26),
and (1.4.27) we conclude that the sequences {vnεn}n and {v̇nεn}n are uniformly bounded with
respect to n in L∞(0, T ;H1

D(Ω \ Γ0;Rd)) and L∞(0, T ;L2(Ω;Rd)), respectively. Moreover,
these bounds do not depend on the sequence {εn}n. By using (1.1.2), (1.4.19), (1.4.20),
and (1.4.22)–(1.4.26) we conclude

qn → 0 in L2(0, T ;H−1
D (Ω \ Γ0;Rd)) as n→∞, (1.4.35)

and the rate of this convergence is independent of the choice of {εn}n ⊂ (0, 1). Notice that, to
pass to the limit in the first two terms in the right-hand side of (1.4.34), we have used (1.4.24)
and (1.4.25).

Since zn ∈ H1(0, T ;H1
D(Ω \ Γ0;Rd)), we can use żn as test function in (1.4.33), and by

integrating by parts in (0, t) for very t ∈ (0, T ], we get

EB(zn; t) + εn

∫ t

0
‖żn‖2H1(Ω\Γ0) ds

= EB(zn; 0) +

∫ t

0

[
1

2
(Ḃ∇zn,∇zn)L2(Ω) − (p∇zn, żn)L2(Ω) ds− (żn div b, żn)L2(Ω)

]
ds

+

∫ t

0
〈qn, żn〉H−1

D (Ω\Γ0) ds.

As in the previous step, the uniform bounds on Ḃ, p and div b, the ellipticity condition (1.2.1),
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and the estimate (1.2.12) applied to zn imply

1

2
‖żn(t)‖2L2(Ω) +

c0

2
‖zn(t)‖2H1(Ω\Γ0) + εn

∫ t

0
‖żn‖2H1(Ω\Γ0) ds

≤ 1

2
‖żn(0)‖2L2(Ω) +

(
c1 +

1

2

)
‖zn(0)‖2H1(Ω\Γ0) + C

∫ t

0

[
‖żn‖2L2(Ω) + ‖zn‖2H1(Ω\Γ0)

]
ds

+

∫ t

0
|〈qn, żn〉H−1

D (Ω\Γ0)|ds

for a suitable constant C > 0 independent of n and t. We estimate from above the last term
in the previous inequality as∫ t

0
|〈qn, żn〉H−1

D (Ω\Γ0)|ds

≤ 1

2
‖qn‖L2(0,T ;H−1

D (Ω\Γ0)) +
1

2
‖qn‖L2(0,T ;H−1

D (Ω\Γ0))

∫ t

0
‖żn‖2H1(Ω\Γ0) ds.

By choosing εn → 0+ such that

εn −
1

2
‖qn‖L2(0,T ;H−1

D (Ω\Γ0)) ≥ 0 for every n ∈ N,

we obtain then following estimate

‖żn(t)‖2L2(Ω) + c0‖zn(t)‖2H1(Ω\Γ0) ≤ Cn + 2C

∫ t

0

(
‖żn‖2L2(Ω) + ‖zn‖2H1(Ω\Γ0)

)
ds,

with
Cn := ‖żn(0)‖2L2(Ω) + (2c1 + 1)‖zn(0)‖2H1(Ω\Γ0) + ‖qn‖L2(0,T ;H−1

D (Ω\Γ0)).

The convergences (1.4.10), (1.4.27), and (1.4.35) yield that Cn → 0 as n → ∞. Therefore,
thanks to Fatou and Gronwall’s lemmas, we derive

lim
n→∞

[
‖żn(t)‖2L2(Ω) + ‖zn(t)‖2H1(Ω\Γ0)

]
= 0 for every t ∈ [0, T ].

This fact, together with (1.4.10), proves (1.4.29).
Step 3. Weak convergence of vn to v. For every n ∈ N, the function vn satisfies for a.e.

t ∈ (0, T )

〈v̈n(t), φ〉H−1
D (Ω\Γ0) + (Bn(t)∇vn(t),∇φ)L2(Ω) + (pn(t)∇vn(t), φ)L2(Ω)

+ 2(v̇n(t), div[φ⊗ bn(t)])L2(Ω) = (gn(t), φ)L2(Ω) + (Fn(t), φ)L2(∂NΩ)

(1.4.36)

for every φ ∈ H1
D(Ω \ Γ0;Rd). As shown in (1.2.47),there exists a constant C > 0 such that

‖v̇n(t)‖2L2(Ω) + ‖vn(t)‖2H1(Ω\Γ0) ≤ C for every t ∈ [0, T ]. (1.4.37)

In particular, the constant C can be chosen independent of n, thanks to (1.1.1), the uniform el-
lipticity condition (1.2.1) for Bn, the bounds (1.4.19), (1.4.20), and the convergences (1.4.10),
(1.4.11), (1.4.26), and (1.4.27). By using (1.4.36), we also infer that {v̈n}n is uniformly
bounded in L2(0, T ;H−1

D (Ω \ Γ0;Rd)). Hence, there exists a function

ζ ∈ L∞(0, T ;H1(Ω \ Γ0;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D (Ω \ Γ0;Rd))

such that, up to a subsequence (not relabeled), as n→∞

vn ⇀ ζ in L2(0, T ;H1(Ω \ Γ0;Rd)), (1.4.38)
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v̇n ⇀ ζ̇ in L2(0, T ;L2(Ω;Rd)), (1.4.39)

v̈n ⇀ ζ̈ in L2(0, T ;H−1
D (Ω \ Γ0;Rd)). (1.4.40)

Moreover, thanks to (1.4.10), we have ζ − w ∈ L∞(0, T ;H1
D(Ω \ Γ0;Rd)). By combining

the strong convergences (1.4.11) and (1.4.22)–(1.4.27) with the weak convergences (1.4.38)–
(1.4.40), we can pass to the limit as n→∞ in (1.4.36) and we derive that ζ is a generalized
solution to the limit problem (1.2.5), with initial conditions v0 and v1. In view of Theo-
rem 1.2.10 such solution is unique, therefore ζ = v. Since the result does not depend on the
subsequence, we conclude that the whole sequence {vn}n satisfies as n→∞

vn ⇀ v in L2(0, T ;H1(Ω \ Γ0;Rd)),
v̇n ⇀ v̇ in L2(0, T ;L2(Ω;Rd)),
v̈n ⇀ v̈ in L2(0, T ;H−1

D (Ω \ Γ0;Rd)).

These convergences, together with the bounds (1.4.37), for every t ∈ [0, T ] imply

vn(t) ⇀ v(t) in H1(Ω \ Γ0;Rd), v̇n(t) ⇀ v̇(t) in L2(Ω;Rd) as n→∞. (1.4.41)

Step 4. Strong convergence of vnεn − v
n. For every n ∈ N we define zn := vnεn − v

n, where
εn ∈ (0, 1) are the parameters chosen in Step 1. Following the same procedure adopted in
Step 1, we get

EB(zn; t) + εn

∫ t

0
‖v̇nεn‖

2
H1(Ω\Γ0) ds

=

∫ t

0

[
1

2
(Ḃn∇zn,∇zn)L2(Ω) − (pn∇zn, żn)L2(Ω) − (żn div bn, żn)L2(Ω)

]
ds+Rn(t),

with

Rn(t) :=− (v̇nεn(t), v̇n(t))L2(Ω) − (Bn(t)∇vnεn(t),∇vn(t))L2(Ω) + ‖v1,n‖2L2(Ω)

+ (Bn(0)∇v0,n,∇v0,n)L2(Ω) +

∫ t

0
(Ḃn∇vnεn ,∇v

n)L2(Ω) ds

+

∫ t

0

[
(Bn(∇vnεn +∇vn),∇ẇn)L2(Ω) − (pn∇vnεn , v̇

n)L2(Ω) − (pn∇vn, v̇nεn)L2(Ω)

]
ds

+

∫ t

0

[
(pn(∇vnεn +∇vn), ẇn)L2(Ω) + 2(v̇nεn + v̇n,div[ẇn ⊗ bn])L2(Ω)

]
ds

+

∫ t

0

[
−2(v̇n div bn, v̇nεn)L2(Ω) + εn(v̇nεn , ẇ

n)H1(Ω\Γ0) + (gn, v̇nεn + v̇n − 2ẇn)L2(Ω)

]
ds

+

∫ t

0

[
−(Ḟn, vnεn + vn − 2wn)L2(∂NΩ) − (v̇nεn + v̇n, ẅn)L2(Ω)

]
ds

+ (Fn(t), vnεn(t) + vn(t)− 2wn(t))L2(∂NΩ) + (v̇nεn(t) + v̇n(t), ẇn(t))L2(Ω)

− 2(Fn(0), v0,n − wn(0))L2(∂NΩ) − 2(v1,n, ẇn(0))L2(Ω) (1.4.42)

for t ∈ [0, T ]. By using the uniform bounds (1.4.19) and (1.4.20), the ellipticity condi-
tion (1.2.1) for Bn and the estimate (1.4.32) for zn, we infer

‖żn(t)‖2L2(Ω) + ‖zn(t)‖2H1(Ω\Γ0) ≤ C
(
Rn(t) +

∫ t

0

[
‖żn‖2L2(Ω) + ‖zn‖2H1(Ω\Γ0)

]
ds

)
(1.4.43)

for every t ∈ [0, T ], where C > 0 is a constant independent of n and t.
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Let us show that Rn(t) → 0 as n → ∞. Thanks to Step 1 and 2, we know that vnεn(t)
converges to v(t) strongly in H1(Ω \ Γ0;Rd) for every t ∈ [0, T ] as n → ∞, while, v̇nεn(t)
converges to v̇(t) strongly in L2(Ω;Rd). We use now the weak convergences (1.4.41), together
with (1.4.16), (1.4.17), (1.4.27), and Lemma 1.1.2, to derive

lim
n→∞

[
(v̇nεn(t), v̇n(t))L2(Ω) + (Bn(t)∇vnεn(t),∇vn(t))L2(Ω)

]
= ‖v̇(t)‖2L2(Ω) + (B(t)∇v(t),∇v(t))L2(Ω),

lim
n→∞

[
‖v1,n‖2L2(Ω) + (Bn(0)∇v0,n,∇v0,n)L2(Ω)

]
= ‖v1‖2L2(Ω) + (B(0)∇v0,∇v0)L2(Ω)

for every t ∈ [0, T ]. Moreover, by arguing as in Step 3, it is easy to check

εn

∫ T

0
‖v̇nεn‖

2
H1(Ω\Γ0)ds ≤ C for every n ∈ N

for a constant C > 0 independent of n. Therefore, for every t ∈ [0, T ] as n→∞∣∣∣∣εn ∫ t

0
(v̇nεn , ẇ

n)H1(Ω\Γ0) ds

∣∣∣∣ ≤ √εn ∫ T

0

√
εn‖v̇nεn‖H1(Ω\Γ0)‖ẇn‖H1(Ω\Γ0) ds

≤
√
ε‖ẇn‖L2(0,T ;H1(Ω\Γ0))

(∫ T

0
εn‖v̇nεn‖

2
H1(Ω\Γ0) ds

)1/2

≤
√
εnC → 0.

since wn → w in L2(0, T ;H1(Ω \ Γ0;Rd)). In view of the previous convergences, (1.4.10),
(1.4.11), (1.4.19)–(1.4.27), and the dominated convergence theorem in the time variable, we
can pass to the limit as n → ∞ in (1.4.42) and, by using the energy equality (1.3.2), we
conclude that Rn(t) → 0 for every t ∈ [0, T ] as n → ∞. Hence, we can apply Fatou and
Gronwall’s lemmas to (1.4.43) to derive

lim
n→∞

[
‖żn(t)‖2L2(Ω) + ‖zn(t)‖2H1(Ω\Γ0)

]
= 0.

This convergence gives (1.4.30) and concludes the proof.





Chapter 2

Dynamic energy-dissipation balance
of a growing crack

In this chapter, we derive a formula for the mechanical energy (8) associated with the solutions
to the wave equation (7), and we derive necessary and sufficient conditions for the validity of
the dynamic energy-dissipation balance (11).

The plan of the chapter is the following: in Section 2.1, we fix the standing assumptions
on the crack set and the matrix A; moreover, we introduce the changes of variables which
transform (7) into (12). Then, in Section 2.2, we prove the decomposition result (9), by
adapting the proof of [43, Theorem 4.8] to our more general case, underlying the main
differences. Finally, in Section 2.3, we prove the energy balance (10) from which we deduce
necessary and sufficient conditions in order to get (11).

The results of this chapter, obtained in collaboration with I. Lucardesi and E. Tasso, are
contained in the submitted paper [9].

2.1 Preliminary results

We consider a bounded open set Ω ⊂ R2 with Lipschitz boundary ∂Ω, we take a Borel subset
∂DΩ of ∂Ω (possibly empty), and we denote by ∂NΩ its complement. We fix a C3,1 curve
γ : [0, `] → Ω parametrized by arc-length, with endpoints on ∂Ω; namely, denoting by Γ the
support of γ, we assume Γ∩ ∂Ω = γ(0)∪ γ(`). Let T be a positive number, s : [0, T ]→ (0, `)
be a non-decreasing function of class C3,1, and let us set

Γt := {γ(σ) : 0 ≤ σ ≤ s(t)} for every t ∈ [0, T ].

Ω

γ(0)

γ(s(0))

γ(s(T ))
γ(`)

�

Figure 2.1: The endpoints of Γ are γ(0) and γ(`) and belong to ∂Ω. We study the evolution
of the crack along Γ from γ(s(0)) to γ(s(T )).

Let A ∈ C2,1(Ω;R2×2
sym) be a matrix field satisfying the ellipticity condition

(A(x)ξ) · ξ ≥ λ0|ξ|2 for every ξ ∈ R2 and x ∈ Ω, (2.1.1)

37
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with λ0 > 0 independent of x. Given a function f ∈ C0([0, T ];H1(Ω))∩Lip([0, T ];L2(Ω)) and
suitable initial data u0 and u1 (for their precise regularity, see Theorems 2.2.4 and 2.2.10),
we consider the differential equation

ü(t)− div(A∇u(t)) = f(t) in Ω \ Γt, t ∈ [0, T ], (2.1.2)

with boundary conditions

u(t) = 0 on ∂DΩ, t ∈ [0, T ], (2.1.3)

(A∇u(t)) · ν = 0 on ∂NΩ ∪ Γt, t ∈ [0, T ], (2.1.4)

where ν denotes the unit normal vector, and initial conditions

u(0) = u0, u̇(0) = u1 in Ω \ Γ0. (2.1.5)

The equation (2.1.2) has to be intended in the following weak sense: for a.e. t ∈ (0, T )

〈ü(t), ψ〉H−1
D (Ω\Γt) + (A∇u(t),∇ψ)L2(Ω) = (f(t), ψ)L2(Ω)

for every ψ ∈ H1
D(Ω \ Γt), where H1

D(Ω \ Γt) and H−1
D (Ω \ Γt) are the spaces defined in

Chapter 1. We implicitly require u(t) to be in H1
D(Ω \ Γt) and ü(t) to be in H−1

D (Ω \ Γt) for
a.e. t ∈ (0, T ) (see also [20, Definition 2.4] and Definition 1.1.6).

We assume that the velocity of s is bounded as follows:

|ṡ(t)|2 ≤ λ0 − δ for every t ∈ [0, T ], (2.1.6)

for a constant 0 < δ ≤ λ0. This relation between ṡ and the ellipticity constant λ0 of A is cru-
cial in order to guarantee the resolvability of the problem (see also (2.1.14) in Lemma 2.1.1).
(2.1.6) can be interpreted saying that the crack must evolve more slowly than the speed of
elastic waves.

2.1.1 The change of variable approach

We fix t0, t1 ∈ [0, T ] such that 0 < t1 − t0 < ρ, with ρ sufficiently small. A comment on the
value of ρ is postponed to Remark 2.1.3. In the following, we perform 4 changes of variables:
first we act on the matrix A, transforming it into the identity on the crack set; then we
straighten the crack in a neighborhood of γ(s(t0)); then we recall the time-dependent change
of variables introduced in [20], that brings Γt into Γt0 for every t ∈ [t0, t1]; finally, we perform
the last change of variables in a neighborhood of the (fixed) crack-tip, in order to make the
principal part of the transformed equation equal to the minus Laplacian. For the sake of
clarity, at each step, we use the superscript i = 1, . . . , 4, to denote the new objects: the

domain Ω(i), the crack set Γ(i), and the time-dependent crack Γ
(i)
t . We will also introduce the

matrix fields A(i), which characterize the leading part (with respect to the spatial variables)
−div(A(i)∇v) of the PDE (2.1.2) transformed.

Step 1. Thanks to the standing assumptions on A, we may find a matrix field Q of class
C2,1(Ω;R2×2) such that

Q(x)A(x)Q(x)T = Id for every x ∈ Ω, (2.1.7)

being Id the identity matrix. In particular we can choose Q(x) to be equal to the square
root matrix of A(x)−1, namely Q(x) = Q(x)T and Q(x)2 = A(x)−1. It is easy to prove the
existence of a smooth diffeomorphism χ ∈ C3,1(Ω;R2) of Ω into itself which is the identity in
a neighborhood of ∂Ω and satisfies ∇χ(x) = Q(x) on Γ∩V , being V a suitable neighborhood
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of γ(s(t0)). Notice that the constraint ∇χ = Q cannot be satisfied in the whole domain, since
the rows of Q in general are not curl free. We set

Ω(1) := Ω, Γ(1) := χ(Γ), Γ
(1)
t := χ(Γt) for t ∈ [t0, t1],

A(1) := [∇χA∇χT ] ◦ χ−1.

Clearly, the matrix A(1) satisfies an ellipticity condition of type (2.1.1) for a suitable positive
constant and it equals the identity matrix on Γ(1). Moreover, we may easily write an arc-
length parametrization γ(1) of Γ(1) exploiting that of Γ, by setting

γ(1) := χ ◦ γ ◦ β, β−1(σ) :=

∫ σ

0

∣∣∣∣ d

dτ
(χ ◦ γ)(τ)

∣∣∣∣ dτ.

Accordingly, the time-dependent crack Γ
(1)
t is parametrized by

Γ
(1)
t = γ(1)(s(1)(t)) for t ∈ [t0, t1], s(1) := β−1 ◦ s.

The function s(1) is of class C3,1([t0, t1]) and, thanks to (2.1.7) and (2.1.6), satisfies the
following bound:

|ṡ(1)(t)|2 =

∣∣∣∣dβ−1

ds
(s(t))

∣∣∣∣2 |ṡ(t)|2 ≤ max
|ξ|=1, x∈Γ∩V

|∇χ(x)ξ|2|ṡ(t)|2 ≤ 1− c2
1 (2.1.8)

for every t ∈ [t0, t1], where, for brevity, we have set c2
1 := δ

λ0
. Moreover, for the sake of clarity,

we also fix a notation for the maximal acceleration: we set c2 as

c2 := max
t∈[t0,t1]

|s̈(1)(t)|. (2.1.9)

A direct computation proves that c2 is bounded and depends on λ0, δ, s̈, γ̈, and ∇2χ.
Step 2. We now provide a change of variables Λ of class C2,1 which straightens the crack

in a neighborhood of γ(1)(s(1)(t0)). First, up to further compose Λ with a rigid motion, we

may assume that the tip of Γ
(1)
t0

is at the origin, and the tangent vector to Γ(1) at the origin
is horizontal, namely

γ(1)(s(1)(t0)) = 0, γ̇(1)(s(1)(t0)) = e1 := (1, 0).

For brevity, we set σ0 := s(1)(t0). We begin by transforming a tubular neighborhood U of
the crack near 0 into a square: setting

U := {γ(1)(σ0 + σ) + τν(1)(σ0 + σ) : σ ∈ (−ε, ε), τ ∈ (−ε, ε)},

with ν(1) := (γ̇(1))⊥ and ε > 0 such that U ⊂⊂ Ω, we define Λ: U → (−ε, ε)2 as the inverse
of the function (σ, τ) 7→ γ(1)(σ + σ0) + τν(1)(σ + σ0). The global diffeomorphism is obtained
by extending Λ to the whole Ω. Accordingly, we set

Ω(2) := Λ(Ω(1)), Γ(2) := Λ(Γ(1)), Γ
(2)
t := Λ(Γ

(1)
t ) for t ∈ [t0, t1],

A(2) := [∇ΛA(1)∇ΛT ] ◦ Λ−1.

The matrix field A(2) still satisfies an ellipticity condition of type (2.1.1), for a suitable
constant.

For x ∈ Γ(2) and in a neighborhood of the origin, setting y := Λ−1(x) ∈ Γ(1), we have

A(2)(x) = ∇Λ(y)A(1)(y)∇Λ(y)T = ∇Λ(y)∇Λ(y)T = [(∇(Λ−1)(x))T∇(Λ−1)(x)]−1 = Id.
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The last equality follows from

∂(Λ−1)

∂σ
(σ, τ) = γ̇(1)(σ0 + σ) + τ ν̇(1)(σ0 + σ),

∂(Λ−1)

∂τ
(σ, τ) = ν(1)(σ0 + σ), (2.1.10)

and the fact that here we consider x of the form x = (σ, 0). In particular, we may be more
precise on the ellipticity constant of A(2) restricted to a neighborhood of the origin: for every
ε ∈ (0, 1), there exists r > 0 such that

(A(2)(x)ξ) · ξ ≥ (1− ε)|ξ|2 for every ξ ∈ R2 and |x| ≤ r. (2.1.11)

Finally, we underline that if ρ := t1 − t0 is small enough (see also Remark 2.1.3), the

whole set Γ
(1)
t1
\ Γ

(1)
t0

is contained in U , so that the time-dependent crack Γ
(2)
t satisfies

Γ
(2)
t = Γ

(2)
t0
∪ {(σ, 0) ∈ R2 : 0 ≤ σ ≤ s(1)(t)− s(1)(t0)} for every t ∈ [t0, t1].

Step 3. Here we introduce a family of 1-parameter C2 diffeomorphisms Ψ(t), t ∈ [t0, t1],

which transform the time-dependent domain Ω(2) \ Γ
(2)
t into Ω(2) \ Γ

(2)
t0

. All in all, we map

the domain {(t, x) : t ∈ [t1, t2], x ∈ Ω(2) \ Γ
(2)
t } into the cylinder [t0, t1] × (Ω(2) \ Γ

(2)
t0

). This
construction can be found in [43] and [20, Example 2.14], thus we limit ourselves to recall

the main properties: the diffeomorphism Ψ: [t0, t1]× Ω
(2) → Ω

(2)
satisfies

Ψ(t0) = id, Ψ(t)|∂Ω(2) = id, Ψ(t,Γ
(2)
t ) = Γ

(2)
t0

for t ∈ [t0, t1].

The corresponding matrix field is

A(3)(t) := [∇Ψ(t)A(2)∇Ψ(t)T − Ψ̇(t)⊗ Ψ̇(t)] ◦Ψ−1(t) for t ∈ [t0, t1].

Notice that A(2) does not depend on time, while A(3) does. For t ∈ [t0, t1] and x in a
neighborhood of the origin we have

Ψ(t, x) = x− (s(1)(t)− s(1)(t0))e1, Ψ−1(t, x) = x+ (s(1)(t)− s(1)(t0))e1, (2.1.12)

so that ∇Ψ(t) = Id, Ψ̇(t) = −ṡ(1)(t)e1, and for x = (σ, 0), with σ small enough in modulus

A(3)(t, x) =

(
1− |ṡ(1)(t)|2 0

0 1

)
.

Step 4. In this last step we apply a change of variables P near the origin (namely the tip

of Γ
(2)
t0

), in order to make the matrix field A(4), constructed as in the previous steps, satisfy

A(4)(t, 0) = Id for every t ∈ [t0, t1]. To this aim, we recall the construction introduced in [43,
Section 4].

We define α : [t0, t1]→ [0,∞) and d : [t0, t1]× Ω
(2) → [0, c1] as

α(t) :=
√

1− |ṡ(1)(t)|2,

d(t, x) := α(t)kη(|x|) + (1− kη(|x|))c1,

where kη is the following cut-off function:

kη(τ) :=


1 if 0 ≤ τ < η/2,(

2 τη − 2
)2 (

4 τη − 1
)

if η/2 ≤ τ < η,

0 if τ ≥ η.

(2.1.13)
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Here η is a positive parameter, whose precise value will be specified later, small enough such
that the ball Bη(0) ⊂ Ω(2). Eventually, we set

P (t, x) :=

(
x1

d(t, x)
, x2

)
t ∈ [t0, t1], x ∈ Ω(2).

For every t ∈ [t0, t1] the map P (t) defines a diffeomorphism of Ω(2) into its dilation in the
horizontal direction

Ω(4) :=

{(
x1

c1
, x2

)
: x ∈ Ω(2)

}
,

which maps 0 in 0 and Γ
(2)
t0

into a fixed set Γ
(4)
t0

, horizontal near the origin. This chain of

transformations maps the Dirichlet part ∂DΩ into ∂DΩ(4) := {(Λ1(x)/c2,Λ2(x)) : x ∈ ∂DΩ}
and the Neumann one ∂NΩ into ∂NΩ(4) := {(Λ1(x)/c2,Λ2(x)) : x ∈ ∂NΩ}.

The matrix field A(4) associated to P reads

A(4)(t) := [∇P (t)A(3)(t)∇P (t)T − Ṗ (t)⊗ Ṗ (t)− 2∇P (t)Ψ̇(t,Ψ−1(t))� Ṗ (t)] ◦ P−1(t)

for t ∈ [t0, t1]. The properties of A(4) are gathered in the following lemma.

Lemma 2.1.1. There exists a constant λ4 > 0 such that for every t ∈ [t0, t1] and x ∈ Ω(4)

(A(4)(t, x)ξ) · ξ ≥ λ4|ξ|2 for every ξ ∈ R2. (2.1.14)

Moreover, for every t ∈ [t0, t1], there holds

A(4)(t, 0) = Id. (2.1.15)

Finally, there exists a vector field W : ∂NΩ(4) ∪ Γ
(4)
t0
→ R2 such that for every t ∈ [t0, t1] and

x ∈ ∂NΩ(4) ∪ Γ
(4)
t0

A(4)(t, x)T ν(x) = W (x), (2.1.16)

and W (x) = ν(x) = e2 := (0, 1) in a neighborhood of the tip of Γ
(4)
t0

.

Proof. Let t ∈ [t0, t1] and x ∈ Ω(4) be fixed. By setting y := P−1(t, x) ∈ Ω(2), we distinguish
the three cases: |y| < η/2, η/2 ≤ |y| ≤ η, and |y| > η, where η is the constant introduced
in (2.1.13). Without loss of generality, up to take η smaller, by recalling (2.1.12) we may
assume that if y ∈ Bη(0)

∇Ψ(t,Ψ−1(t, y)) = Id, Ψ̇(t,Ψ−1(t, y)) = −ṡ(1)(t)e1,

so that
A(3)(t, P−1(t, x)) = A(3)(t, y) = A(2)(y)− |ṡ(1)(t)|2e1 ⊗ e1.

Moreover, we take η < r, where r is the radius associated to ε = c2
1/2 as in (2.1.11), so that

the ellipticity constant of A(2) in Bη(0) is 1− c2
1/2.

If |y| < η/2 we have

∇P (t, y) =

( 1
α(t) 0

0 1

)
, Ṗ (t, y) =

(
−y1

α̇(t)
α2(t)

0

)
,

thus

A(4)(t, x) =

( 1
α(t) 0

0 1

)
A(2)(y)

( 1
α(t) 0

0 1

)
−

(
|ṡ(1)(t)|2
α(t)2 + y1

2ṡ(1)(t)α̇(t)
α3(t)

+ y2
1
α̇2(t)
α4(t)

0

0 0

)
.
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Since P−1(t, 0) = 0 and A(2)(0) = Id, we immediately get (2.1.15). For ξ arbitrary vector
of R2, we have

(A(4)(t, x)ξ) · ξ ≥

(
1− c2

1/2− |ṡ(1)(t)|2

α2(t)
− 2y1

ṡ(1)(t)α̇(t)

α3(t)
− y2

1

α̇2(t)

α4(t)

)
ξ2

1 + (1− c2
1/2)ξ2

2 .

In view of the bounds (2.1.6), (2.1.9), and (2.1.8), we get

|α̇(t)| ≤ c2

c1
, c1 ≤ |α(t)| ≤ 1,

in particular

(A(4)(t, x)ξ) · ξ ≥
(
c2

1

2
− 2η

c2

c4
1

− η2 c
2
2

c6
1

)
ξ2

1 +
ξ2

2

2
.

The coefficient of ξ1 is bounded from below, provided that η is small enough. This gives the
statement (2.1.14) for y ∈ Bη/2(0).

Let now η/2 < |y| < η. In this case we have

∇P (t, y) =
1

d2(t, y)

(
d(t, y)− y1∂1d(t, y) −y1∂2d(t, y)

0 d2(t, y)

)
,

Ṗ (t, y) =
1

d2(t, y)

(
−y1ḋ(t, y)

0

)
.

Again, by exploiting the ellipticity of A(2) with constant (1− c2
1/2) ≥ 1

2 and setting

m := y2
1 ḋ(t, y)2 + 2y1ṡ

(1)(t)ḋ(t, y)(d(t, y)− y1∂1d(t, y)),

p := d(t, y)− y1∂1d(t, y), q := −y1∂2d(t, y), d := d(t, y),

we get

(A(4)(t, x)ξ) · ξ ≥ 1

2
|∇P (t, y)T ξ|2 − m

d4
ξ2

1

=
1

2d4

[
(p2 + q2 − 2m)ξ2

1 + 2qd2ξ1ξ2 + d4ξ2
2

]
≥ 1

2

[
p2 −

(
1

ε
− 1

)
q2 − 2|m|

]
ξ2

1 +
1

2
(1− ε)ξ2

2 ,

(2.1.17)

where in the last inequality we have used d ≤ 1 and Young’s inequality with 0 < ε < 1, whose
precise value will be fixed later. Let us prove that, if η and ε are well chosen, the coercivity
of A(4) is guaranteed. The identities

∇d(t, y) = (α(t)− c1)
y

|y|
k̇η(|y|), ḋ(t, y) = − ṡ

(1)(t)s̈(1)(t)kη(|y|)
α(t)

,

together with the bounds

0 ≤ kη(|y|) ≤ 1, c1 ≤ d(t, y) ≤ α(t) ≤ 1, −3

η
≤ k̇η(|y|) ≤ 0,

give

1

d4
≥ 1, p = d(t, y) +

y2
1

|y|
(α(t)− c1)|k̇η(|y|)| ≥ d(t, y) ≥ c1,

q2 = (α(t)− c1)2 y
2
1y

2
2

|y|2
k̇η(|y|)2 ≤ 9(1− c1)2, |m| ≤ 42c2(1− c2

1)

c1
η +

c2
2(1− c2

1)

c2
1

η2.
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By inserting these estimates into (2.1.17), we infer

(A(4)(t, x)ξ) · ξ ≥
[
c2

1

2
− 9

2

(
1

ε
− 1

)
(1− c1)2 − 42c2(1− c2

1)

c1
η − c2

2(1− c2
1)

c2
1

η2

]
ξ2

1 +
1− ε

2
ξ2

2 .

By taking

ε :=
9(1− c1)2

c2
1/2 + 9(1− c1)2

∈ (0, 1)

we have

c2
1

2
− 9

2

(
1

ε
− 1

)
(1− c1)2 =

c2
1

4
.

Thus, by choosing η small enough, we obtain the desired coercivity of A(4).

Finally, if |y| > η we have

∇P (t, y) =

( 1
c1

0

0 1

)
, Ṗ (t, y) = 0,

and condition (2.1.14) is readily satisfied in view of the ellipticity of A(3).

The assertion (2.1.16) is clearly verified for A(2): the matrix field does not depend on
time and equals to the identity on the crack, in a neighborhood of the origin. The last
diffeomorphisms Ψ and P both act in a neighborhood of the origin modifying the set only
in the horizontal component; in particular they do not modify the normal to the crack in a
neighborhood of the origin. As for the external boundary, Ψ is the identity and P acts as a
constant dilation, so that

W (x) =

( 1
c1

0

0 1

)
A(2)(c1x1, x2)

( 1
c1

0

0 1

)
ν(x) on ∂NΩ(4).

This concludes the proof of the lemma.

Remark 2.1.2. The idea of the proof of Lemma 2.1.1 is taken from [43, Lemma 4.1]. Let
us underline the main differences: in [43] the authors deal with the identity matrix as start-
ing matrix field (here instead we have A(3)) and consider only the dynamics for which the
acceleration of the crack-tip is bounded by a precise constant depending on c1 (in place of
our bound c2, not fixed a priori). We also point out that in [43] the study of the ellipticity
of the transformed matrix field, in the annulus η/2 < |y| < η, is carried out forgetting the
coefficients out of the diagonal.

Remark 2.1.3. In our construction, a control on the maximal amplitude ρ of the time
interval [t0, t1] is needed only in Step 2: roughly speaking, in order to straighten the set

Γ
(1)
t1
\ Γ

(1)
t0

and to remain inside Ω, we need to have enough room. A sufficient condition is

that the length of the set, which is at most ρmaxt∈[0,T ] ṡ
(1)(t), has to be less than or equal

to the distance of the crack-tip γ(1)(s(1)(t)) from the boundary ∂Ω, which is, thanks to the

assumption Γ
(1)
T \ Γ

(1)
0 ⊂⊂ Ω, bounded from below by a positive constant. Notice that if we

considered also a further diffeomorphism which is the identity in a neighborhood of Γ
(1)
T \Γ

(1)
0

and stretches Ω near the boundary, then our results could be stated for every time t ∈ [0, T ].
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2.2 Representation result

In this section we derive the decomposition (9) locally in time, namely in a time interval
[t0, t1] small enough (see Section 2.1 and Remark 2.1.3). Finally, in Theorem 2.2.10 we give
a global representation of u, valid in the whole time interval [0, T ].

Here we recall some classical facts of semigroup theory. Standard references on the subject
are the books [45] and [33]. Let X be a Banach space and A(t) : D(A(t)) ⊆ X → X a
differential operator. Consider the evolution problem

V̇ (t) +A(t)V (t) = G(t), (2.2.1)

with initial condition V (0) = V0 and G forcing term (the boundary conditions are encoded
in the function space X).

Definition 2.2.1. A triplet {A;X,Y } consisting of a family A = {A(t), t ∈ [0, T ]} and
a pair of real separable Banach spaces X and Y is called a constant domain system if the
following conditions hold:

(i) the space Y is embedded continuously and densely in X;

(ii) for every t the operator A(t) is linear and has constant domain D(A(t)) ≡ Y ;

(iii) the family A is a stable family of (negative) generators of strongly continuous semi-
groups on X;

(iv) the operator Ȧ is essentially bounded from [0, T ] to the space of linear functionals from
Y to X.

Theorem 2.2.2. Let {A;X,Y } form a constant domain system. Let us assume that V 0 ∈ Y
and G ∈ Lip([0, T ];X). Then there exists a unique solution V ∈ C0([0, T ];Y )∩C1([0, T ];X)
to (2.2.1) with V (0) = V 0.

2.2.1 Local representation result

We fix t0, t1 ∈ [0, T ] such that 0 < t1 − t0 < ρ. The chain of transformations introduced in
Section 2.1 defines the family of time-dependent diffeomorphisms

Φ(t) := P (t) ◦Ψ(t) ◦ Λ ◦ χ, Φ(t) : Ω→ Ω
(4)
, (2.2.2)

which map Γ into Γ(4), Γt into Γ
(4)
t0

for every t ∈ [t0, t1], ∂Ω into ∂Ω(4), the Dirchlet part ∂DΩ

into ∂DΩ(4), and the Neumann one ∂NΩ into ∂NΩ(4). For the sake of clarity, we denote by x
the variables in Ω and by y the new variables in Ω(4).

Looking for a solution u to (2.1.2) in [t0, t1] is equivalent to look for v := u ◦Φ−1 solution
to the equation

v̈(t)−div(A(4)(t)∇v(t))+p(t) ·∇v(t)−2b(t) ·∇v̇(t) = g(t) in Ω(4) \Γ
(4)
t0
, t ∈ [t0, t1], (2.2.3)

supplemented by the boundary conditions

v = 0 on ∂DΩ(4), t ∈ [t0, t1], (2.2.4)

∂W v = 0 on ∂NΩ(4) ∪ Γ
(4)
t0
, t ∈ [t0, t1], (2.2.5)

and by suitable initial conditions v0 and v1 (see [20]). Here W is the vector field introduced

in (2.1.16) of Lemma 2.1.1, and for t ∈ [t0, t1] and y ∈ Ω
(4)

p(t, y) := −[A(4)(t, y)∇(det∇Φ−1(t, y)) + ∂t(b(t, y) det∇Φ−1(t, y))] det∇Φ(t,Φ−1(t, y)),
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b(t, y) := −Φ̇(t,Φ−1(t, y)),

g(t, y) := f(t,Φ−1(t, y)).

The equation (2.2.3) has to be intended in the weak sense, namely valid for a.e. t ∈ (0, T ) in
duality with an arbitrary test function in the space

H1
D(Ω(4) \ Γ

(4)
t0

) := {v ∈ H1(Ω(4) \ Γ
(4)
t0

) : v = 0 on ∂DΩ(4)}.

We implicitly require v(t) and v̇(t) to be in H1
D(Ω(4) \ Γ(4)(t0)), and v̈(t) to be in the dual

H−1
D (Ω(4) \ Γ(4)(t0)) for a.e. t ∈ (0, T ).

The characterization of u will follow from that of v, slightly easier to be derived. The
advantages in dealing with problem (2.2.3) are essentially 3: first of all, the domain is cylin-
drical and constant in time; then, the fracture set is straight near the tip; finally, even if the
coefficients depend on space and time, the principal part of the spatial differential operator
is constant at the crack-tip. Before stating the result, we define

H := {v ∈ H2(Ω(4) \ Γ
(4)
t0

) : (2.2.5) hold true} ⊕ {kζS : k ∈ R},

where ζ is a cut-off function supported in neighborhood of the origin and

S(y) := Im(
√
y1 + iy2) =

y2√
2
√
|y|+ y1

y ∈ R2 \ {(σ, 0) : σ ≤ 0}, (2.2.6)

with Im denoting the imaginary part of a complex number.

y

0f(σ; 0) : σ ≤ 0g

θ 2 (�π; π)

ρ = jyjS(ρ; θ) := ρ
1

2 sin( θ
2
)

Figure 2.2: In polar coordinates, the function S reads S(ρ, θ) = ρ
1
2 sin( θ2), where ρ is the dis-

tance from the origin and θ ∈ (−π, π) is the angle which has a discontinuity on the horizontal
half line {(σ, 0) : σ ≤ 0}.

Proposition 2.2.3. Take v0 ∈ H, v1 ∈ H1
D(Ω(4) \Γ

(4)
t0

), and g ∈ Lip([t0, t1];L2(Ω(4))). Then
there exists a unique solution v to (2.2.3)–(2.2.5) with v(t0) = v0, v̇(t0) = v1 in the class

v ∈ C([t0, t1];H) ∩ C1([t0, t1];H1
D(Ω(4) \ Γ

(4)
t0

)) ∩ C2([t0, t1];L2(Ω(4))).

Proof. Once we show that the triplet {A;X;Y } defined by

A(t) :=

(
0 −1

−div(A(4)(t)∇(·)) + p(t) · ∇(·) −2b(t) · ∇(·)

)
,

X := H1
D(Ω(4) \ Γ

(4)
t0

)× L2(Ω(4)),

Y := H×H1
D(Ω(4) \ Γ

(4)
t0

),

is a constant domain system in [t0, t1] (cf. Definition 2.2.1), we are done. Indeed, we are in
a position to apply Theorem 2.2.2 with

G(t) :=

(
0
g(t)

)
,
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and the searched v is the second component of the solution V to (2.2.1).
The detailed proof of properties (i)–(iv) in Definition 2.2.1 can be found in [43, Theo-

rem 4.7], with the appropriate modifications (see Remark 2.1.2). Here we limit ourselves
to list the main ingredients. First of all, the domain of div(A(4)(t)∇(·)) is constant in
time: in view (2.1.15), its principal part, evaluated at the crack-tip, is the Laplace op-
erator for every t, thus the domain of div(A(4)(t)∇(·)) can be decomposed as the sum

{v ∈ H2(Ω(4) \ Γ
(4)
t0

) : (2.2.5) holds true} ⊕ {kζS : k ∈ R} = H (cf. [32, Theorem 5.2.7]).
Moreover, in view of (2.1.16), the boundary conditions (2.2.5) do not depend on time. Other
key points are the equicoercivity in time of the bilinear form

(φ0, φ1) 7→ (A(4)(t)∇φ0) · ∇φ1 φ0, φ1 ∈ H1
D(Ω(4) \ Γ

(4)
t0

),

which is guaranteed by (2.1.14) and the property∫
Ω(4)\Γ(4)

t0

φ(y)∇φ(y) · b(t, y) dy = −1

2

∫
Ω(4)\Γ(4)

t0

φ2(y) div b(t, y) dy,

valid for every φ ∈ H1
D(Ω(4) \Γ

(4)
t0

). Finally, the needed continuity of the differential operator
is ensured by the following regularity properties of the coefficients: for every i, j = 1, 2 we
have

A
(4)
ij (t) ∈ C0(Ω

(4)
) for every t ∈ [t0, t1],

A
(4)
ij , pi, bi ∈ Lip([t0, t1];L∞(Ω(4))),

‖∇A(4)
ij (t)‖L∞(Ω(4)) ≤ C, ‖div b(t)‖L∞(Ω(4)) ≤ C for every t ∈ [t0, t1],

for a suitable constant C > 0 independent of t.

We are now in a position to state the following representation result for u.

Theorem 2.2.4. Let f ∈ C0([t0, t1];H1(Ω))∩Lip([t0, t1];L2(Ω)). Consider u0 and u1 of the
form

u0 − k0ζS(Φ(t0)) ∈ H2(Ω \ Γt0), (2.2.7)

u1 −∇u0 ·
(
∇Φ−1(t0,Φ(t0))Φ̇(t0)

)
∈ H1(Ω \ Γt0), (2.2.8)

with u0 satisfying the boundary conditions (2.1.3) and (2.1.4), u1 = 0 on ∂DΩ, ζ cut-off
function supported in neighborhood of γ(s(t0)), and k0 ∈ R. Then there exists a unique
solution to (2.1.2)–(2.1.4) with initial conditions u(t0) = u0, u̇(t0) = u1 of the form

u(t, x) = uR(t, x) + k(t)ζ(t, x)S(Φ(t, x)) t ∈ [t0, t1], x ∈ Ω \ Γt, (2.2.9)

where ζ(t), t ∈ [t0, t1], is a C2 (in time) family of cut-off functions supported in neighborhood
of γ(s(t)), and k is a C2 function in [t0, t1] such that k(t0) = k0. Moreover, uR(t) ∈ H2(Ω\Γt)
for every t ∈ [t0, t1], and

uR ∈ C2([t0, t1];L2(Ω)), ∇uR ∈ C1([t0, t1];L2(Ω;R2)), ∇2uR ∈ C0([t0, t1];L2(Ω;R2×2)).

Remark 2.2.5. Notice that the equality u(t, x) = v(t,Φ(t, x)) implies

u0 = v0(Φ(t0)), u1 = v1(Φ(t0)) +∇v0(Φ(t0)) · Φ̇(t0),

where the last term reads Φ̇(t0) = [Ṗ (t0,Ψ(t0)) + ∇P (t0,Ψ(t0))Ψ̇(t0)] ◦ Λ ◦ χ. A priori,
the function ∇v0 is just in L2 in a neighborhood of the origin and its gradient behaves
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like |y|−3/2; nevertheless, since Ṗ (t, y) ∼ (y1, 0), we recover the L2 integrability of the gra-
dient of ∇v0(Φ(t0)) · [Ṗ (t0,Ψ(t0)) ◦ Λ ◦ χ]. The same reasoning does not apply for the term
∇v0(Φ(t0)) · [(∇P (t0,Ψ(t0))Ψ̇(t0)) ◦Λ ◦ χ], since the singularity of ∇v0 in a neighborhood of
the orgin is not compensated by ∇P · Ψ̇. Therefore we are not free to take u1 ∈ H1

D(Ω \ Γt0)
(as, on the contrary, is done in [43]).

Remark 2.2.6. Notice that the solution u to problem (2.1.2)–(2.1.5) displays a singularity
only at the crack-tip. Clearly, the fracture is responsible for this lack of regularity. On
the other hand, the Dirichlet-Neumann boundary conditions do not produce any further
singularity, due to the compatible initial data chosen.

2.2.2 Global representation result

We conclude the section by showing an alternative representation formula which can be
expressed for every time. This is done providing another expression for the singular function,
as in [38], whose computation does not require to straighten the crack. To simplify the
notation we reduce ourselves to the case A = Id, so that the diffeomorphism χ coincides with
the identity.

The chosen singular part of the solution to (2.1.2)–(2.1.5) is a suitable reparametrization of
the function S introduced in (2.2.6). More precisely, fixed t0, t1 ∈ [0, T ], with 0 < t1− t0 < ρ,
for every t ∈ [t0, t1] and x in a neighborhood of r(t) := γ(s(t)), the singular part reads

S

(
Λ1(x)− (s(t)− s(t0))√

1− |ṡ(t)|2
,Λ2(x)

)
. (2.2.10)

To compute (2.2.10) it is necessary to know the expression of Λ, which is explicit only for
small time and locally in space. We hence provide a more explicit formula for the singular
part, which has also the advantage of being defined for every time: for every t ∈ [0, T ] we set

Ŝ(t, x) := Im

(√
(x− r(t)) · γ̇(s(t))√

1− |ṡ(t)|2
+ i (x− r(t)) · ν(s(t))

)
, (2.2.11)

where ν(σ) ⊥ γ̇(σ) and Ŝ(t) is given by the unique continuous determination of the complex
square function such that in x = r(t)+

√
1− |ṡ(t)|2γ̇(s(t)) takes value 1 and its discontinuity

set lies on Γt. Roughly speaking, if we forget the term
√

1− |ṡ(t)|2, the function (2.2.11) is
the determination of Im(

√
y1 + iy2) in the orthonormal system with center γ(s(t)) and axes

γ̇(s(t)) and ν(s(t)).

Γt

r(t) := γ(s(t)) _γ(s(t))

ν(s(t))
x

ρ = jx � r(t)j

θ

Γt θ

θ = 0

ρ
1

2 sin( θ
2
)

Figure 2.3: A possible choice of determination of Im(
√
y1 + iy2), centered in r(t) = γ(s(t))

with axes γ̇(s(t)) and ν(s(t)), and with Γt as discontinuity set.

For every t ∈ [0, T ] we consider the matrix R(t) ∈ SO(2) that rotates the orthonormal
system with axes γ̇(s(t)) and ν(s(t)) in the one with axes e1 and e2. Thanks to our construc-
tion of Λ, and in particular to (2.1.10), the matrix R(t) coincides with ∇Λ(r(t)) in [t0, t1].
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By setting for t ∈ [0, T ]

L(t) :=

(
1√

1−|s(t)|2
0

0 1

)
, Φ̃(t, x) := L(t)R(t)(x− r(t)) for x ∈ Ω,

Ω̃t := Φ̃(t,Ω), Γ̃t := Φ̃(t,Γt),

we may also write Ŝ(t, x) = S̃(t, Φ̃(t, x)) for t ∈ [0, T ] and x ∈ Ω \ Γt, where S̃(t) is given by
the continuous determination of Im(

√
y1 + iy2) in Ω̃t \ Γ̃t such that in y = (1, 0) takes the

value 1.

Lemma 2.2.7. Let ζ(t), t ∈ [t0, t1], be a C2 (in time) family of cut-off functions with support
in a neighborhood of r(t). Let us define the function

w(t, x) := ζ(t, x)S(Φ(t, x))− Ŝ(t, x) for t ∈ [t0, t1], x ∈ Ω \ Γt . (2.2.12)

Then w(t) ∈ H2(Ω \ Γt) for every t ∈ [t0, t1].

Proof. Let us fix t ∈ [t0, t1]. The function w(t) is of class C2 in Ω \ Γt and belongs to the
space H1(Ω \ Γt) ∩H2((Ω \ Γt) \Bε(r(t))) for every ε > 0. Hence it remains to prove the L2

integrability of its second spatial derivatives in Bε(r(t)). Let us choose ε > 0 so small that
ζ(t) = 1 on Bε(r(t)). In Bε(r(t)) \ Γt we have

∂2
jiw(t) =

d∑
h=1

[∂hS(Φ(t))∂2
jiΦh(t)− ∂hS̃(t, Φ̃(t))∂2

jiΦ̃h(t)]

+

d∑
h,k=1

[∂2
hkS(Φ(t))∂jΦk(t)∂iΦh(t)− ∂2

hkS̃(t, Φ̃(t))∂jΦ̃k(t)∂iΦ̃h(t)]

=: I1(t) + I2(t)

for every i, j = 1, 2.

Notice that ∇S(Φ(t)),∇S̃(t, Φ̃(t)) ∈ L2(Bε(r(t));R2), while ∇2Φ(t) and ∇2Φ̃(t) are uni-
formly bounded in Ω. Therefore I1(t) ∈ L2(Bε(r(t))) and there exists a positive constant C,
independent of t, such that

|I1(t, x)| ≤ C|x− r(t)|−
1
2 for every x ∈ Bε(r(t)) \ Γt,

provided that ε > 0 is small enough.

As for I2(t), we estimate it from above as

|I2(t)| ≤
d∑

h,k=1

|∂2
hkS(Φ(t))− ∂2

hkS̃(t, Φ̃(t))||∂jΦ̃k(t)||∂iΦ̃h(t)|

+

d∑
h,k=1

|∂2
hkS(Φ(t))||∂jΦk(t)∂iΦk(t)− ∂jΦ̃k(t)∂iΦ̃h(t)|.

(2.2.13)

Let us study the right-hand side of (2.2.13). By choosing ε small enough and using the
definitions of Φ(t) and Φ̃(t), for every x ∈ Bε(r(t)) we deduce

|∂jΦk(t, x)∂iΦh(t, x)− ∂jΦ̃k(t, x)∂iΦ̃h(t, x)|

≤ 2

c2
1

‖∇Λ‖L∞(Ω(1))‖∇
2Λ‖L∞(Ω(1))|x− r(t)|,

(2.2.14)
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since ‖∇Φ(t)‖L∞(Ω) ≤ 1
c1
‖∇Λ‖L∞(Ω(1)), ‖∇Φ̃(t)‖L∞(Ω) ≤ 1

c1
‖∇Λ‖L∞(Ω(1)), and

|∇Φ(t, x)−∇Φ̃(t, x)| ≤ 1

c1
|∇Λ(x)−R(t)| ≤ 1

c1
‖∇2Λ‖L∞(Ω(1))|x− r(t)|.

Moreover, the function S satisfies |∇2S(y)| ≤ M |y|−
3
2 for y ∈ R2 \ {(σ, 0) : σ ≤ 0}, with M

positive constant, while Λ is invertible and |P (t, x)| ≥ |x|. This allows us to conclude

|∂2
hkS(Φ(t, x))| ≤M‖∇Λ−1‖

3
2

L∞(Ω(2))
|x− r(t)|−

3
2 for every x ∈ Bε(r(t)) \ Γt. (2.2.15)

For the second term in the right-hand side of (2.2.13), we fix x ∈ Bε(r(t)) and we consider
the segment [Φ(t, x), Φ̃(t, x)] := {λΦ(t, x) + (1 − λ)Φ̃(t, x) : λ ∈ [0, 1]} and the function
d(t, x) := dist([Φ(t, x), Φ̃(t, x)], 0). We claim that we can choose ε > 0 so small that

d(t, x) ≥ 1

2
|x− r(t)| for every x ∈ Bε(r(t)). (2.2.16)

Indeed let y ∈ [Φ(t, x), Φ̃(t, x)] be such that |y| = d(t, x), then

|Φ̃(t, x)| ≤ |y|+ |Φ̃(t, x)− y| ≤ |y|+ |Φ̃(t, x)− Φ(t, x)|.

Since |P (t, x)| ≥ |x| and R(t) is a rotation, for ε small we deduce |Φ̃(t, x)| ≥ |x − r(t)|. On
the other hand, by Lagrange’s theorem there exists z = z(t, x) ∈ Bε(r(t)) such that

Φ(t, x) = Φ(t, r(t)) +∇Φ(t, r(t))(x− r(t)) +∇2Φ(t, z)(x− r(t)) · (x− r(t))
= Φ̃(t, x) +∇2Φ(t, z)(x− r(t)) · (x− r(t)).

Hence we derive the estimate

|Φ(t, x)− Φ̃(t, x)| ≤ 1

c1
‖∇2Λ‖L∞(Ω(1))|x− r(t)|

2 for every x ∈ Bε(r(t)), (2.2.17)

which implies

d(t, x) ≥ |x− r(t)| − 1

c1
‖∇2Λ‖L∞(Ω(1))|x− r(t)|

2 for every x ∈ Bε(r(t)).

In particular we obtain (2.2.16) by choosing ε < c1/(2‖∇2Λ‖L∞(Ω(1))). Notice that ε does
not depend on t ∈ [t0, t1].

Let us now fix x ∈ Bε(r(t)) \ Γt. Thanks to our construction of Φ and Φ̃, it is possible
to find two other determinations S±(t) of Im(

√
y1 + iy2) in R2 such that their discontinuity

sets Γ±(t) do not intersect the segment [Φ(t, x), Φ̃(t, x)], which is far way from 0. Moreover,
we choose them in such a way that S+(t) is positive along {(σ, 0) : σ ≤ 0}, while S−(t) is
negative, and S(Φ(t, x)) = S±(t,Φ(t, x)) if and only if S̃(t, Φ̃(t, x)) = S±(t, Φ̃(t, x)); notice

that |∇3S±(t, y)| ≤M |y|−
5
2 for a positive constant M and for every y ∈ R2 \Γ±(t). By using

Lagrange’s theorem, (2.2.16), and (2.2.17), we deduce

|∂2
hkS(Φ(t, x))− ∂2

hkS̃(t, Φ̃(t, x))| = |∂2
hkS

±(t,Φ(t, x))− ∂2
hkS

±(t, Φ̃(t, x))|
≤ |∇3S±(t, z)||Φ(t, x)− Φ̃(t, x)|

≤ M

c1
‖∇2Λ‖L∞(Ω(1))|d(t, x)|−

5
2 |x− r(t)|2

≤ 4
√

2M

c1
‖∇2Λ‖L∞(Ω(1))|x− r(t)|

− 1
2 ,

(2.2.18)
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where z = z(t, x) ∈ [Φ(t, x), Φ̃(t, x)]. Hence, by combining (2.2.13) with (2.2.14), (2.2.15),
and (2.2.18), we obtain the existence of a positive constant C such that

|I2(t, x)| ≤ C|x− r(t)|−
1
2 for every x ∈ Bε(r(t)) \ Γt.

In particular we get the following bound for ∇2w:

|∇2w(t, x)| ≤ C|x− r(t)|−
1
2 for every x ∈ Bε(r(t)) \ Γt, (2.2.19)

and consequently w(t) ∈ H2(Ω \ Γt) for every t ∈ [t0, t1].

In the following two lemmas, we investigate the regularity in time for w.

Lemma 2.2.8. Under the same assumptions of Lemma 2.2.7, the function w introduced
in (2.2.12) is an element of C0([t0, t1];L2(Ω)). Moreover, ∇w ∈ C0([t0, t1];L2(Ω;R2)) and
∇2w ∈ C0([t0, t1];L2(Ω;R2×2)).

Proof. The function ζ(S ◦Φ) is continuous from [0, T ] to L2(Ω), since S belongs to the space
C2(R2 \ {(σ, 0) : σ ≤ 0}) ∩ L2

loc(R2) and Φ is continuous in [t0, t1] × Ω. We also claim that

Ŝ = S̃ ◦ Φ̃ ∈ C0([t0, t1] × (Ω \ Γ)) ∩ L∞((t0, t1) × Ω). Indeed, let (t∗, x∗) ∈ [t0, t1] × (Ω \ Γ)
and let {(tj , xj)}j ⊂ [t0, t1]× (Ω \Γ) be a sequence of points converging to (t∗, x∗) as j →∞.
Thanks to the convergence Φ̃(tj , xj) → Φ̃(t∗, x∗) ∈ Ω̃t∗ \ Γ̃t∗ as j → ∞, there exists j̄ ∈ N
such that

S̃(tj , Φ̃(tj , xj)) = S̃(t∗, Φ̃(tj , xj)) for every j ≥ j̄.

This allows us to conclude that Ŝ(tj , xj) → Ŝ(t∗, x∗) as j → ∞, since the function S̃(t∗) is

continuous in Ω̃t∗ \ Γ̃t∗ . Furthermore, there exists M > 0 such that |Ŝ(t, x)| ≤M |Φ̃(t, x)|
1
2 for

x ∈ Ω \Γ and t ∈ [t0, t1], which yields that Ŝ is uniformly bounded in Ω \Γ. We hence derive
the claim, which implies Ŝ ∈ C0([t0, t1];L2(Ω)), by the dominated convergence theorem.

Arguing as before, we can easily derive that ∇(ζ(S ◦Φ)) belongs to C0([t0, t1];L2(Ω;R2)),
while ∇Ŝ = ∇Φ̃T (∇S̃ ◦ Φ̃) ∈ C0([t0, t1] × (Ω \ Γ);R2). Therefore, thanks to the estimate

|∇S̃(t, Φ̃(t, x))| ≤ M |Φ̃(t, x)|−
1
2 for x ∈ Ω \ Γ and t ∈ [t0, t1], and the dominated converge

theorem, we conclude that ∇Ŝ ∈ C0([t0, t1];L2(Ω;R2)).
Finally, notice that the function ∇2w is continuous in [t0, t1] × (Ω \ Γ). Let us now fix

t∗ ∈ [t0, t1] and let {tj}j be a sequence of points in [t0, t1] such that tj → t∗ as j → ∞.
Thanks to the estimate (2.2.19), we can find j̄ ∈ N and ε > 0 such that

|∇2w(tj , x)| ≤ C|x− r(tj)|−
1
2 for every x ∈ Bε(r(tj)) \ Γ and j ≥ j̄,

with C independent of j. Here we have used the fact that the constant in (2.2.19) can be
chosen uniform in time. Furthermore, the functions ∇2w(tj) are uniformly bounded with
respect to j outside the ball Bε(r(tj)). We can hence apply the generalized dominated
convergence theorem to deduce that ∇2w(tj) converges strongly to ∇2w(t∗) in L2(Ω;R2×2),
which implies ∇w2 ∈ C0([t0, t1];L2(Ω;R2×2)).

Lemma 2.2.9. Under the same assumptions of Lemma 2.2.7, the function w introduced
in (2.2.12) is an element of C2([0, T ];L2(Ω)); moreover ∇w ∈ C1([0, T ];L2(Ω;R2)).

Proof. For every x ∈ Ω \ Γ the function t 7→ w(t, x) is differentiable in [t0, t1] and

ẇ(t, x) = ζ̇(t, x)S(Φ(t, x)) + ζ(t, x)∇S(Φ(t, x)) · Φ̇(t, x)−∇S̃(t, Φ̃(t, x)) · ˙̃Φ(t, x).

Indeed, fixed (t∗, x∗) ∈ [t0, t1]× (Ω \ Γ), we can find h̄ > 0 such that for every |h| ≤ h̄

S̃(t∗ + h, Φ̃(t∗ + h, x∗))− S̃(t∗, Φ̃(t∗, x∗))

h
=
S̃(t∗, Φ̃(t∗ + h, x∗))− S̃(t∗, Φ̃(t∗, x∗))

h
,
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thanks to the fact that Φ̃(t∗ + h, x∗) → Φ̃(t∗, x∗) ∈ Ω̃t∗ \ Γ̃t∗ for every x∗ ∈ Ω \ Γ as h → 0.

In particular 1
h [S̃(t∗+h, Φ̃(t∗+h, x∗))− S̃(t∗, Φ̃(t∗, x∗))]→ ∇S̃(t∗, Φ̃(t∗, x∗)) · ˙̃Φ(t∗, x∗), since

S̃(t∗) ∈ C2(Ω̃t∗ \ Γ̃t∗). Hence, for every (t, x) ∈ [t0, t1] × (Ω \ Γ) and h ∈ R such that
t+ h ∈ [t0, t1] we may write

w(t+ h, x)− w(t, x)

h
=

1

h

∫ t+h

t
ẇ(τ, x) dτ.

By arguing as in the proof of the previous lemma we deduce that ẇ ∈ C0([t0, t1];L2(Ω)).
Therefore we obtain that as h→ 0

1

h

∫ t+h

t
ẇ(τ) dτ → ẇ(t) in L2(Ω) for every t ∈ [t0, t1],

and consequently 1
h [w(t+ h)− w(t)]→ ẇ(t) in L2(Ω).

Similarly, for every x ∈ Ω \ Γ the map t 7→ ẇ(t, x) is differentiable in [t0, t1] and

ẅ(t, x) = ζ̈(t, x)S(Φ(t, x)) + 2ζ̇(t, x)∇S(Φ(t, x)) · Φ̇(t, x)

+ ζ(t, x)∇S(Φ(t, x)) · Φ̈(t, x)−∇S̃(t, Φ̃(t, x)) · ¨̃Φ(t, x)

+ ζ(t, x)∇2S(Φ(t, x)) · [Φ̇(t, x)⊗ Φ̇(t, x)− ˙̃Φ(t, x)⊗ ˙̃Φ(t, x)]

+ [ζ(t, x)∇2S(Φ(t, x))−∇2S̃(t, Φ̃(t, x))] ˙̃Φ(t, x)⊗ ˙̃Φ(t, x).

We may find ε > 0 so small that |Φ̇(t, x)− ˙̃Φ(t, x)| ≤ C|x−r(t)| in Bε(r(t)) for every t ∈ [t0, t1]
and for a positive constant C. Therefore, we can proceed as in the proof of Lemma 2.2.7 to
obtain that ẅ(t) ∈ L2(Ω) for every t ∈ [t0, t1], with

|ẅ(t, x)| ≤ C|x− r(t)|−
1
2 for every x ∈ Bε(r(t)) \ Γt.

In particular, by arguing as in Lemma 2.2.8, this uniform estimate implies that ẅ belongs to
C0([t0, t1];L2(Ω)). We can hence repeat the same procedure adopted before for ẇ to conclude
that as h→ 0

ẇ(t+ h)− ẇ(t)

h
→ ẅ(t) in L2(Ω) for every t ∈ [t0, t1],

which gives that w ∈ C2([t0, t1];L2(Ω)).
Finally, also the function t 7→ ∇w(t, x) is differentiable in [t0, t1] for every x ∈ Ω \Γ, with

derivative

∇ẇ(t, x) = ∇ζ̇(t, x)S(Φ(t, x)) +∇ζ(t, x)∇S(Φ(t, x)) · Φ̇(t, x) + ζ̇(t, x)∇Φ(t, x)T∇S(Φ(t, x))

+ ζ(t, x)∇Φ̇(t, x)T∇S(Φ(t, x))−∇ ˙̃Φ(t, x)T∇S̃(t, Φ̃(t, x))

+ [ζ(t, x)∇Φ(t, x)T −∇Φ̃(t, x)T ]∇2S(Φ(t, x))Φ̇(t, x)

+ ζ(t, x)∇Φ̃(t, x)T∇2S(Φ(t, x))[Φ̇(t, x)− ˙̃Φ(t, x)]

+∇Φ̃(t, x)T [ζ(t, x)∇2S(Φ(t, x))−∇2S̃(t, Φ̃(t, x))] ˙̃Φ(t, x).

Moreover there exists ε > 0 so small that for every t ∈ [t0, t1]

|∇ẇ(t, x)| ≤ C|x− r(t)|−
1
2 for every x ∈ Bε(r(t)) \ Γt,

which implies the continuity of the map t 7→ ∇ẇ(t) from [t0, t1] to L2(Ω;R2). Therefore, as
h→ 0 we get

∇w(t+ h)−∇w(t)

h
→ ∇ẇ(t) in L2(Ω;R2) for every t ∈ [t0, t1],

and in particular ∇w ∈ C1([t0, t1];L2(Ω;R2)).
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Thanks to previous lemmas we derive the following decomposition result.

Theorem 2.2.10. Let f ∈ C0([0, T ];H1(Ω))∩ Lip([0, T ];L2(Ω)). Consider u0 and u1 of the
form

u0 − k0Ŝ(0) ∈ H2(Ω \ Γ0),

u1 − k0 ˙̂
S(0) ∈ H1(Ω \ Γ0),

with u0 satisfying (2.1.3) and (2.1.4), u1 = 0 on ∂DΩ, and k0 ∈ R. Then there exists a
unique solution u to (2.1.2)–(2.1.4) with initial condition u(0) = u0 and u̇(0) = u1 of the
form

u(t, x) = ûR(t, x) + k(t)Ŝ(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (2.2.20)

where k ∈ C2([0, T ]) and ûR(t) ∈ H2(Ω \ Γt) for every t ∈ [0, T ]. Moreover

ûR ∈ C2([0, T ];L2(Ω)), ∇ûR ∈ C1([0, T ];L2(Ω;R2)), ∇2ûR ∈ C0([0, T ];L2(Ω;R2×2)).
(2.2.21)

In particular the function k does not depend on the choice of Φ, but only on Γ and s.

Proof. Thanks to our assumptions on f , u0 and u1 we can apply Theorem 2.2.4 with t0 = 0.
Indeed, in view of the computations done before, we have

Ŝ(0)− ζ(0)S(Φ(0)) ∈ H2(Ω \ Γ0),

which gives (2.2.7). In particular

∇u0 − k0ζ(0)∇Φ(0)T∇S(Φ(0)) ∈ H1(Ω \ Γ0),

from which we derive

k0 ˙̂
S(0)−∇u0 ·

(
∇Φ−1(0,Φ(0))Φ̇(0)

)
∈ H1(Ω \ Γ0),

since
˙̂
S(0)−ζ(0)∇Φ(0)T∇S(Φ(0)) ∈ H1(Ω\Γ0), by arguing again as in the previous lemmas.

Therefore, also condition (2.2.8) is satisfied. This implies the representation formula (2.2.9)
in [0, t1], with t1 < ρ. By combining (2.2.9) with Lemma 2.2.7, we deduce (2.2.20) in [0, t1].
Indeed, we can write

u(t) = ûR(t) + k(t)Ŝ(t) in Ω \ Γt, t ∈ [0, t1],

where ûR(t) := uR(t) + k(t)[ζ(t)S(Φ(t))− Ŝ(t)] ∈ H2(Ω \ Γt).
We can repeat this construction starting from t1 and we find a finite number of times

{ti}ni=0, with 0 =: t0 < t1 < · · · < tn−1 < tn := T such that the solution u to (2.1.2)–(2.1.4)
with initial conditions u(0) = u0 and u̇(0) = u1 can be written for i = 1, . . . , n as

u(t) = ûRi (t) + ki(t)Ŝ(t) in Ω \ Γt, t ∈ [ti−1, ti].

Define k : [0, T ]→ R and ûR : [0, T ]→ H2(Ω \Γ) as k(t) := ki(t) and ûR := ûRi in [ti−1, ti] for
every i = 1, . . . , n, respectively. The functions k and ûR are well defined and do not depend
on the particular choice of {ti}ni=0. Indeed, if we have

u(t) = ûR1 (t) + k1(t)Ŝ(t) = ûR2 (t) + k2(t)Ŝ(t) in Ω \ Γt

for a time t ∈ [0, T ], then we derive

ûR1 (t)− ûR2 (t) = [k2(t)− k1(t)]Ŝ(t) in Ω \ Γt.

Since the left-hand side belongs to H2(Ω\Γt) while Ŝ(t) is an element of H1(Ω\Γt)\H2(Ω\Γt),
such identity can be true if and only if k1(t) = k2(t) and ûR1 (t) = ûR2 (t). Hence, we deduce
that k ∈ C2([0, T ]) and that u satisfies the decomposition result (2.2.20) in [0, T ].

Finally, by combining the regularity in time of w, proved in Lemmas 2.2.8 and 2.2.9, with
the definition of ûR, we conclude that ûR satisfies (2.2.21).
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Remark 2.2.11. When A 6= Id all the previous results are still true if we define

Ŝ(t, x) := Im

(√
[A(r(t))−1 (x− r(t))] · γ̇(s(t))

cA,γ̇(t)
√

1− |cA,γ̇(t)|2|ṡ(t)|2
+ i

(x− r(t)) · ν(s(t))

cA,ν(t)

)
, (2.2.22)

where cA,γ̇(t) := |A(r(t))−1/2γ̇(s(t))|, cA,ν(t) := |A(r(t))1/2ν(s(t))|, with A1/2 and A−1/2 the

square root matrices of A and A−1, respectively, and where the function Ŝ(t) is given by
the unique continuous determination of the complex square function such that in the point
x = r(t) +

√
1/|cA,γ̇(t)|2 − |ṡ(t)|2γ̇(s(t)) takes the value 1 and its discontinuity set lies on Γt.

Indeed, by exploiting the following identities in [t0, t1]

γ̇(1)(s(1)(t)) =
A(r(t))−1/2γ̇(s(t))

|A(r(t))−1/2γ̇(s(t))|
, ν(1)(s(1)(t)) =

A(r(t))1/2ν(s(t))

|A(r(t))1/2ν(s(t))|
,

ṡ(1)(t) = |A(r(t))−1/2γ̇(s(t))|ṡ(t), ∇χ(r(t)) = A(r(t))−1/2,

where γ̇(1) and ν(1) are, respectively, the tangent and the unit normal vectors to the curve
Γ(1) in the point γ(1)(s(1)(t)), the function (2.2.22) can be rewritten as

Im

(√
[∇χ(r(t)) (x− r(t))] · γ̇(1)(s(1)(t))√

1− |ṡ(1)(t)|2
+ i[∇χ(r(t)) (x− r(t))] · ν(1)(s(1)(t))

)
.

In this case, it is enough to set Φ̃(t, x) := L(t)R(t)∇χ(r(t))(x− r(t)) for t ∈ [0, T ] and x ∈ Ω,
where L and R are constructed starting from γ(1) and s(1), and we can proceed again as in
Lemmas 2.2.7–2.2.9, thanks to the fact that for every t ∈ [t0, t1] and x ∈ Bε(r(t))

|Φ(t, x)− Φ̃(t, x)| ≤ C|x− r(t)|2, |∇Φ(t, x)−∇Φ̃(t, x)| ≤ C|x− r(t)|,

|Φ̇(t, x)− ˙̃Φ(t, x)| ≤ C|x− r(t)|.

We hence obtain the decomposition result (2.2.20) with singular part (2.2.22). As a byprod-
uct, arguing as in Theorem 2.2.10, we derive that the values of k do not depend on the
particular construction of Φ, but only on A, Γ, and s.

We point out that the condition |ṡ(t)|2 < 1/|cA,γ̇(t)|2, which is necessary in order to

define Ŝ, is implied by (2.1.6). Indeed

1 = ∇χ(r(t))A(r(t))∇χ(r(t))T γ̇(s(t)) · γ̇(s(t)) ≥ λ0|A(r(t))−1/2γ̇(s(t))|2 = λ0|cA,γ̇(t)|2.

2.3 Dynamic energy-dissipation balance

In this section we derive formula (10) for the energy

E(t) :=
1

2

∫
Ω
|u̇(t, x)|2dx+

1

2

∫
Ω
A(x)∇u(t, x) · ∇u(t, x) dx t ∈ [0, T ]

associated to u, solution to (2.1.2)–(2.1.4) with initial conditions u(0) = u0 and u̇(0) = u1.
The computation is divided into three steps: first, in Proposition 2.3.5 we consider straight

cracks when A is the identity matrix; then, in Theorem 2.3.7 we adapt the techniques to
curved fractures; finally, in Remark 2.3.9 we generalize the former results to A 6= Id. To this
aim, some preliminaries are in order: first, in Remark 2.3.1 we compute the partial derivatives
of u in a more convenient way, then in Lemmas 2.3.2 and 2.3.3 we provide two key results,
based on Geometric Measure Theory. Once this is done, we deduce formula (10) in the time
interval [t0, t1] where the decomposition (2.2.9) holds.

For brevity of notation, in this section we consider [t0, t1] = [0, 1]. All the results can be
easily extended to the general case. The global result in [0, T ] easily follows by iterating the
procedure a finite number of steps, and using both the additivity of the integrals and the fact
that k depends only on A, Γ, and s (see Theorem 2.2.10 and Remark 2.2.11).
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Remark 2.3.1. Let us focus our attention on a fracture which is straight in a neighborhood
of the tip. Without loss of generality, we may fix the origin so that for every t ∈ [0, 1]

Γt \ Γ0 = {(σ, 0) ∈ R2 : 0 < σ ≤ s(t)− s(0)}.

The diffeomorphisms χ and Λ introduced in Section 2.1 can be both taken equal to the
identity, so that, in a neighborhood of the origin, the diffeomorphisms Φ(t) defined in (2.2.2)
simply read

Φ(t, x) =

(
x1 − (s(t)− s(0))√

1− |ṡ(t)|
, x2

)
for t ∈ [0, 1] and x ∈ Ω.

Accordingly, the decomposition result in Theorem 2.2.4 states that the solution u to (2.1.2)–
(2.1.5) with suitable initial conditions can be decomposed as

u(t, x) = uR(t, x) + k(t)ζ(t, x)S̄(t, x) for t ∈ [0, 1] and x ∈ Ω \ Γt,

where, for brevity, we have set S̄(t, x) := S(Φ(t, x)). We recall that uR(t) ∈ H2(Ω \ Γt) for
every t ∈ [0, 1] and S(y) = y2√

2
√
|y|+y1

for y ∈ R2 \ {(σ, 0) : σ ≤ 0}.
Let us now compute the partial derivatives of u. For t ∈ [0, 1] and x ∈ Ω \ Γt we get

∇u(t, x) = ∇uR(t, x) + k(t)∇ζ(t, x)S̄(t, x) + k(t)ζ(t, x)∇S̄(t, x), (2.3.1)

u̇(t, x) = u̇R(t, x) + k̇(t)ζ(t, x)S̄(t, x) + k(t)ζ̇(t, x)S̄(t, x) + k(t)ζ(t, x) ˙̄S(t, x). (2.3.2)

Since in R2 \ {(σ, 0) : σ ≤ 0} we have

∂1S(y) = − y2

2
√

2|y|
√
|y|+ y1

, ∂2S(y) =

√
|y|+ y1

2
√

2|y|
,

∂2
11S(y) =

2y1y2 + y2|y|
4
√

2|y|3
√
|y|+ y1

, ∂2
22S(y) = − 2y1y2 + y2|y|

4
√

2|y|3
√
|y|+ y1

,

∂2
12S(y) = ∂2

21S(y) =

√
|y|+ y1(|y| − 2y1)

4
√

2|y|3
,

we claim

u̇(t)∇u(t)− k2(t)ζ2(t) ˙̄S(t)∇S̄(t) ∈W 1,1(Ω \ Γt;R2) for every t ∈ [0, 1].

Indeed, ∇uR(t), ζ(t)S̄(t), u̇R(t), ζ(t)S̄(t), and k(t)ζ̇(t)S̄(t) are functions in H1(Ω \ Γt) for
every t ∈ [0, 1]; by the Sobolev embeddings theorem we deduce that they belong to Lp(Ω)

for every p ≥ 1. By using also the explicit form of S̄(t) and ˙̄S(t), one can check that these
functions are elements of W 1,4/3(Ω \ Γt). Therefore, we can easily conclude that the product

of each term in (2.3.1) with each term in (2.3.2), except for k2(t)ζ2(t) ˙̄S(t)∇S̄(t), is a function
in W 1,1(Ω \ Γt;R2) for every t ∈ [0, 1].

Lemma 2.3.2. Let a, b ∈ R, with a < 0 and b > 0, and define H+ := {(x1, x2) ∈ R2 : x2 ≥ 0}
to be the upper half plane in R2. Let g : H+ → R be bounded, continuous at the origin, and
call ω a modulus of continuity for g at x = 0. Then∣∣∣∣1ε

∫ ε

0

(∫ b

a
g(x1, x2)

x2

x2
1 + x2

2

dx1

)
dx2 − πg(0, 0)

∣∣∣∣
≤ ‖g‖L∞(H+)

(
2ε1/2|b− a|+ θ(ε)

)
+ πω(ε1/4),

(2.3.3)
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where

θ(ε) :=

∣∣∣∣π − ∫ 1

0

[
arctan

(
b

εx2

)
− arctan

(
a

εx2

)]
dx2

∣∣∣∣ .
In particular, for every g : H+ → R bounded and continuous at the origin, we have

lim
ε→0+

1

ε

∫ ε

0

(∫ b

a
g(x1, x2)

x2

x2
1 + x2

2

dx1

)
dx2 = πg(0, 0).

Proof. After a change of variable on the integral in (2.3.3), we can rewrite it as∫ 1

0

(∫ b

a
g(x1, εx2)

εx2

x2
1 + (εx2)2

dx1

)
dx2.

Notice that∫ b

a

εx2

x2
1 + (εx2)2

dx1 =

∫ b

a
∂1 arctan

(
x1

εx2

)
dx1 = arctan

(
b

εx2

)
− arctan

(
a

εx2

)
,

therefore∣∣∣∣∫ 1

0

(∫ b

a
g(x1, εx2)

εx2

x2
1 + (εx2)2

dx1

)
dx2 − πg(0, 0)

∣∣∣∣
≤
∣∣∣∣∫ 1

0

(∫ b

a
[g(x1, εx2)− g(0, 0)]

εx2

x2
1 + (εx2)2

dx1

)
dx2

∣∣∣∣+ g(0, 0)θ(ε)

≤

∣∣∣∣∣
∫ 1

0

(∫
(a,b)\(−ε1/4,ε1/4)

[g(x1, εx2)− g(0, 0)]
εx2

x2
1 + (εx2)2

dx1

)
dx2

∣∣∣∣∣+ πω(ε1/4) + g(0, 0)θ(ε).

By using the estimate

sup
x∈[(a,b)\(−ε1/4,ε1/4)]×(0,1)

εx2

(x2
1 + (εx2)2)

≤ ε1/2

1 + ε3/2
≤ ε1/2,

valid for every ε ∈ (0, 1), we can continue the above chain of inequalities and we get∣∣∣∣∫ 1

0

(∫ b

a
g(x1, εx2)

εx2

x2
1 + (εx2)2

dx1

)
dx2 − πg(0, 0)

∣∣∣∣
≤ ε1/2

∫ 1

0

(∫
(a,b)\(−ε1/4,ε1/4)

|g(x1, εx2)− g(0, 0)|dx1

)
dx2 + πω(ε1/4) + g(0, 0)θ(ε)

≤ 2ε1/2‖g‖L∞(H+)|b− a|+ πω(ε1/4) + g(0, 0)θ(ε),

which is (2.3.3).

Lemma 2.3.3. Let Ω ⊂ R2 be open and let γ : [0, `] → Ω be a Lipschitz curve. Let us set

Γ := {γ(σ) : σ ∈ [0, `]}, and for every ε > 0 let us define ϕε(x) := dist(x,Γ)
ε ∧ 1 for x ∈ Ω.

Then for every u ∈W 1,1(Ω \ Γ) and for every v : Ω→ R bounded and satisfying

lim
x→x̄

v(x) = v(x̄) for every x̄ ∈ Γ,

we have

lim
ε→0+

∫
{dist+(x,Γ)<ε}

u(x)v(x)|∇ϕε(x)| dx =

∫
Γ
u+(x)v(x) dH1(x),

where
{dist+(x,Γ) < ε} :=

⋃
σ∈[0,`]

(
Bε(γ(σ)) ∩ {x ∈ Ω : x · (γ̇(σ))⊥ > 0}

)
,



56 2.3. Dynamic energy-dissipation balance

and u+ is the trace on Γ from {dist+(x,Γ) < ε}. Equivalently,

lim
ε→0+

∫
{dist−(x,Γ)<ε}

u(x)v(x)|∇ϕε(x)| dx =

∫
Γ
u−(y)v(y) dH1(y),

where
{dist−(x,Γ) < ε} :=

⋃
σ∈[0,`]

(
Bε(γ(σ)) ∩ {x ∈ Ω : x · (γ̇(σ))⊥ < 0}

)
,

and u− is the trace on Γ from {dist−(x,Γ) < ε}.

Proof. It is enough to apply the coarea formula to the Lipschitz maps ϕε.

Remark 2.3.4. In what follows we compute the energy balance in the case of homogeneous
Neumann conditions on the whole ∂Ω. However, the same proof applies with no changes to
the case of Dirichlet boundary conditions. For example, to treat the homogeneous Dirichlet
condition on ∂DΩ ⊆ ∂Ω, it is enough to check that the time derivative of the solution u̇(t)
has still zero trace on ∂Ω, in such a way that it still remains an admissible test function. But
this is simply because the incremental quotient in time 1

h [u(t + h) − u(t)] converges to u̇(t)
as h→ 0, strongly in H1 in a sufficiently small neighborhood of ∂DΩ, so that u̇ has still zero
trace on the Dirichlet part of the boundary.

Analogously, if we prescribe a regular enough non-homogeneous Dirichlet boundary condi-
tion, we can rewrite the wave equation changing the forcing term f appearing in its right-hand
side, and turn the non-homogeneous Dirichlet condition into a homogeneous one. Also in this
case, the computations follow unchanged.

Proposition 2.3.5. Let Ω ⊂ R2 be an open bounded set with Lipschitz boundary and let
{Γt}t∈[0,1] be a family of rectilinear cracks inside Ω of the form

Γt := Ω ∩ {(σ, 0) ∈ R2 : σ ≤ s(t)},

where s ∈ C2([0, 1]) and ṡ(t) ≥ 0 for every t ∈ [0, 1]. Suppose that a function u : [0, 1]×Ω→ R
can be decomposed as in (2.2.9) for t ∈ [0, 1] and satisfies the wave equation

ü(t)−∆u(t) = f(t) in Ω \ Γt, t ∈ [0, 1], (2.3.4)

with homogeneous Neumann boundary conditions on the boundary and on the cracks. Then
u satisfies the dynamic energy-dissipation balance (11) for every t ∈ [0, 1] if and only if the
stress intensity factor k is constantly equal to 2√

π
in the set {t ∈ [0, 1] : ṡ(t) > 0}.

Proof. By hypothesis we can decompose the function u as u(t, x) = uR(t, x)+k(t)ζ(t, x)S̄(t, x)
for t ∈ [0, 1] and x ∈ Ω \Γt, where uR(t) ∈ H2(Ω \Γt), ζ(t) is a cut-off function supported in
a neighborhood of the moving tip of Γt, and

S̄(t, x) := S

(
x1 − (s(t)− s(0))√

1− |ṡ(t)|2
, x2

)
,

with S(y) = y2√
2
√
|y|+y1

for y ∈ R2 \ {(σ, 0) : σ ≤ 0}.

Let us fix t∗ ∈ [0, 1] and for every ε > 0 let us define ϕε(x) := dist(x,Γt∗\Γ0)
ε ∧ 1 for x ∈ Ω.

Since ϕεu̇(t) belongs to H1(Ω\Γt) for every t ∈ [0, t∗], we can use it as test function in (2.3.4),
and we get ∫ t∗

0
〈ü(t), ϕεu̇(t)〉(H1(Ω\Γt))′ dt+

∫ t∗

0
(∇u(t), ϕε∇u̇(t))L2(Ω) dt

+

∫ t∗

0
(∇u(t),∇ϕεu̇(t))L2(Ω) dt =

∫ t∗

0
(f(t), ϕεu̇(t))L2(Ω) dt.

(2.3.5)
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By using integration by parts with the fact that t 7→ (u̇(t), ϕεu̇(t))L2(Ω) is absolutely contin-
uous, we obtain∫ t∗

0
〈ü(t), ϕεu̇(t)〉(H1(Ω\Γt))′ dt =

1

2

∫ t∗

0

d

dt
(u̇(t), ϕεu̇(t))L2(Ω) dt

=
1

2
(u̇(t∗), ϕεu̇(t∗))L2(Ω) −

1

2
(u̇(0), ϕεu̇(0))L2(Ω),

and by passing to the limit as ε→ 0+ by the dominated convergence theorem, we have

lim
ε→0+

∫ t∗

0
〈ü(t), ϕεu̇(t)〉(H1(Ω\Γt))′ dt =

1

2
‖u̇(t∗)‖2L2(Ω) −

1

2
‖u̇(0)‖2L2(Ω).

Analogously, we take the limit as ε→ 0+ in the right-hand side of (2.3.5) and in the second
term in the left-hand side, and we get

lim
ε→0+

∫ t∗

0
(∇u(t),∇u̇(t)ϕε)L2(Ω) dt =

1

2
‖∇u(t∗)‖2L2(Ω) −

1

2
‖∇u(0)‖2L2(Ω),

lim
ε→0+

∫ t∗

0
(f(t), u̇(t)ϕε)L2(Ω) dt =

∫ t∗

0
(f(t), u̇(t))L2(Ω) dt.

The most delicate term is the third one in the left-hand side of (2.3.5). First of all, we write
the partial derivatives explicitly:

∇[k(t)ζ(t, x)S̄(t, x)] = k(t)∇ζ(t, x)S̄(t, x) + k(t)ζ(t, x)∇S̄(t, x),

∂t[k(t)ζ(t, x)S̄(t, x)] = k̇(t)ζ(t, x)S̄(t, x) + k(t)ζ̇(t, x)S̄(t, x) + k(t)ζ(t, x) ˙̄S(t, x).

Moreover, if we consider Φ1(t, x) = x1−s(t)√
1−|ṡ(t)|2

, we have

∇S̄(t, x) =

(
∂1S(Φ1(t, x), x2)√

1− |ṡ(t)|2
, ∂2S(Φ1(t, x), x2)

)
and

˙̄S(t, x) =
−ṡ(t)(1− |ṡ(t)|2) + ṡ(t)s̈(t)(x1 − (s(t)− s(0)))

(1− |ṡ(t)|2)3/2
∂1S(Φ1(t, x), x2)

= Φ̇1(t, x)
√

1− |ṡ(t)|2∂1S̄(t, x).

Thanks to Remark 2.3.1, the only contribution to the limit as ε→ 0+ is given by∫ t∗

0
k2(t)(ζ2(t)∇S̄(t),∇ϕε ˙̄S(t))L2(Ω) dt.

Therefore, we need to compute

lim
ε→0+

∫ t∗

0

(∫
{dist(x,Γt\Γ0)<ε}

k2(t)ζ2(t, x)∇S̄(t, x) · ∇ϕε(x) ˙̄S(t, x) dx

)
dt. (2.3.6)

To this aim, we set

Iε(t) :=

∫
{dist(x,Γt\Γ0)<ε}

k2(t)ζ2(t, x)∇S̄(t, x) · ∇ϕε(x) ˙̄S(t, x) dx,

and we decompose Iε as I+
ε + I−ε , where I+

ε is the integral restricted to the upper half plane
{x ∈ R2 : x2 > 0} and I−ε is the integral restricted to the lower half plane {x ∈ R2 : x2 < 0}.
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Let us focus on I+
ε (t). For brevity, we write r(t) := (s(t) − s(0), 0) for every t ∈ [0, 1].

The gradient of ϕε reads

∇ϕε(x) =


e2
ε in {x ∈ R2 : 0 ≤ x1 ≤ s(t∗)− s(0), 0 ≤ x2 < ε},
x
ε|x| in {x ∈ R2 : x ∈ Bε(0), x1 < 0, x2 ≥ 0},
x−r(t∗)
ε|x−r(t∗)| in {x ∈ R2 : x ∈ Bε(r(t∗)), x1 > s(t∗)− s(0), x2 ≥ 0},
0 otherwise.

Thus we get

I+
ε (t) =

1

ε

∫
[0,s(t∗)−s(0)]×(0,ε]

k2(t)
√

1− |ṡ(t)|2ζ2(t, x)∂2S̄(t, x)Φ̇1(t, x)∂1S̄(t, x) dx

+
1

ε

∫
Bε(0)∩{x1<0, x2≥0}

k2(t)
√

1− |ṡ(t)|2ζ2(t, x)∇S̄(t, x) · x
|x|

Φ̇1(t, x)∂1S̄(t, x) dx (2.3.7)

+
1

ε

∫
Bε(r(t∗))∩{x1>s(t∗)−s(0), x2≥0}

k2(t)
√

1− |ṡ(t)|2ζ2(t, x)∇S̄(t, x) · x− r(t
∗)

|x− r(t∗)|
Φ̇1(t, x)∂1S̄(t, x) dx.

We notice that the last two terms in (2.3.7) have integrands which are bounded on the
domains of integration, and so passing to the limit as ε goes to 0 they do not give any
contribution. Thus we only have to analyze the first term of (2.3.7). By recalling that

S̄(t, x) = S(Φ1(t, x), x2), Φ1(t, x) = x1−(s(t)−s(0))√
1−|ṡ(t)|2

, and that ζ(t, x) = ζ(Φ1(t, x), x2), with ζ

cut-off function supported in a neighborhood of the origin, and making the change of variable
x′1
√

1− |ṡ(t)|2 = x1 − (s(t)− s(0)), we rewrite the first term of (2.3.7) as

− k2(t)ṡ(t)

ε

∫ ε

0

∫ bt

at

ζ2(x1, x2)∂1S(x1, x2)∂2S(x1, x2) dx1 dx2

+
k2(t)ṡ(t)s̈(t)

ε
√

1− |ṡ(t)|2

∫ ε

0

∫ bt

at

x1ζ
2(x1, x2)∂1S(x1, x2)∂2S(x1, x2) dx1 dx2,

(2.3.8)

where the interval (at, bt) denotes the segment

(at, bt) :=

(
s(0)− s(t)√

1− |ṡ(t)|2
,
s(t∗)− s(t)√

1− |ṡ(t)|2

)
.

Notice that

− k2(t)ṡ(t)

ε

∫ ε

0

∫ bt

at

ζ2(x1, x2)∂1S(x1, x2)∂2S(x1, x2) dx1 dx2

=
k2(t)ṡ(t)

ε

∫ ε

0

∫ bt

at

ζ2(x1, x2)
x2

8|x|2
dx1 dx2,

and that the map (x1, x2) 7→ ζ2(x1, x2) is bounded and continuous in (0, 0), with ζ(0, 0) = 1.
Therefore we are in a position to apply Lemma 2.3.2, which gives

lim
ε→0+

k2(t)ṡ(t)

ε

∫ ε

0

∫ bt

at

ζ2(x1, x2)
x2

8|x|2
dx1 dx2 =

π

8
k2(t)ṡ(t)ζ2(0, 0) =

π

8
k2(t)ṡ(t).

By arguing in the very same way, we can show that the limit as ε → 0+ of the second
term of (2.3.8), thanks to the presence of x1, is zero. This means that the limit of I+

ε (t) is

lim
ε→0+

I+
ε (t) =

π

8
k2(t)ṡ(t),
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and, similarly,

lim
ε→0+

I−ε (t) =
π

8
k2(t)ṡ(t).

All in all,

lim
ε→0+

Iε(t) = lim
ε→0+

(I+
ε (t) + I−ε (t)) =

π

4
k2(t)ṡ(t).

Thanks to the estimate in (2.3.3), we infer that the family of functions {I+
ε (t)}ε>0 are domi-

nated on [0, 1] by a bounded function, and the same holds for {I−ε (t)}ε>0; by the dominated
convergence theorem, we can pass the limit in (2.3.6) inside the integral in time, and we can
write

lim
ε→0+

∫ t∗

0
Iε(t) dt =

∫ t∗

0

π

4
k2(t)ṡ(t) dt.

So we deduce that the dynamic energy-dissipation balance (11) holds for every t ∈ [0, 1] if
and only if the stress intensity factor k(t) is equal to 2√

π
whenever ṡ(t) > 0.

Remark 2.3.6. We underline that our approach is different to that of Dal Maso, Larsen,
and Toader in [17, Section 4]: in order to derive the energy balance associated to a horizontal
crack opening with constant velocity c, they prove that the mechanical energy of u(t) is
constant in the moving ellipse Er(t) := {(x1, x2) ∈ R2 : (x1−ct)2/(1−c2)+x2

2 ≤ r2} centered
at the crack-tip (ct, 0), for some small r > 0, and they make the explicit computation of the
energy in R2 \ Er(t).

We now generalize the previous result to non straight cracks.

Theorem 2.3.7. Let Ω ⊂ R2 be an open bounded set with Lipschitz boundary and let
{Γt}t∈[0,1] be a family of growing cracks inside Ω. Assume that there exists a bi-Lipschitz
map Λ: Ω→ Ω with the following properties:

(i) Λ(Γt \ Γ0) = {(σ, 0) ∈ R2 : 0 < σ ≤ s(t) − s(0)}, where s ∈ C2([0, 1]) and ṡ(t) ≥ 0 for
every t ∈ [0, 1],

(ii) H1 (Λ(Γt \ Γ0)) = H1 (Γt \ Γ0) for every t ∈ [0, 1];

(iii) limx→x̄∇Λ(x) = ∇Λ(x̄) ∈ SO(2)+, for every x̄ ∈ Γ1 \ Γ0.

Suppose that a function u : [0, 1] × Ω → R can be decomposed as in (2.2.9) for t ∈ [0, 1] and
satisfies the wave equation

ü(t)−∆u(t) = f(t) in Ω \ Γt, t ∈ [0, 1], (2.3.9)

with homogeneous Neumann boundary conditions on the boundary and on the cracks. Then
u satisfies the dynamic energy-dissipation balance (11) for every t ∈ [0, 1] if and only if the
stress intensity factor k is constantly equal to 2√

π
in the set {t ∈ [0, 1] : ṡ(t) > 0}.

Proof. In view of (2.2.9), we have u(t, x) = uR(t, x) + k(t)ζ(t,Λ(x))S̄(t,Λ(x)), for t ∈ [0, 1]
and x ∈ Ω\Γt, with uR(t) ∈ H2(Ω\Γt), ζ(t)◦Λ cut-off function supported in a neighborhood
of the moving tip of Γt, and

S̄(t,Λ(x)) := S

(
Λ1(x)− (s(t)− s(0))√

1− |ṡ(t)|2
,Λ2(x)

)
,

being S(y) = y2√
2
√
|y|+y1

for y ∈ R2 \ {(σ, 0) : σ ≤ 0}.
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As in the proof of Proposition 2.3.5, we fix t∗ ∈ [0, 1] and for every ε > 0 we define the

function ϕε(x) := dist(x,Γt∗\Γ0)
ε ∧ 1 for x ∈ Ω. Since ϕεu̇(t) ∈ H1(Ω \ Γt), we can use it as test

function in (2.3.9), and we get∫ t∗

0
〈ü(t), ϕεu̇(t)〉(H1(Ω\Γt))′ dt+

∫ t∗

0
(∇u(t), ϕε∇u̇(t))L2(Ω) dt

+

∫ t∗

0
(∇u(t),∇ϕεu̇(t))L2(Ω) dt =

∫ t∗

0
(f(t), ϕεu̇(t))L2(Ω) dt.

(2.3.10)

By integrating by parts, we easily obtain

lim
ε→0+

∫ t∗

0
〈ü(t), ϕεu̇(t)〉(H1(Ω\Γt))′ dt =

1

2
‖u̇(t∗)‖2L2(Ω) −

1

2
‖u̇(0)‖2L2(Ω), (2.3.11)

lim
ε→0+

∫ t∗

0
(∇u(t), ϕε∇u̇(t))L2(Ω) dt =

1

2
‖∇u(t∗)‖2L2(Ω) −

1

2
‖∇u(0)‖2L2(Ω), (2.3.12)

lim
ε→0+

∫ t∗

0
(f(t), ϕεu̇(t))L2(Ω) dt =

∫ t∗

0
(f(t), u̇(t))L2(Ω) dt. (2.3.13)

The asymptotics as ε→ 0+ of the third term in the left-hand side of (2.3.10) is more delicate
to handle. To simplify the notation, we set

ζ(t, x) := ζ(t,Λ(x)), ϕε(x) := ϕε(Λ
−1(x)) for t ∈ [0, 1] and x ∈ Ω.

By using Lemma 2.3.3 and Remark 2.3.1, as in the proof of the previous proposition for the
rectilinear case, we have that the only contribution to the limit as ε → 0+ is given by the
term∫

Ω
k2(t)ζ

2
(t, x)∇S̄(t,Λ(x)) · ∇ϕε(x) ˙̄S(t,Λ(x)) dx

=

∫
Ω
k2(t)α(t)[∇Λ(x)T∇S̄(t,Λ(x))] · ∇ϕε(x)ζ

2
(t, x)Φ̇1(t,Λ(x))∂1S̄(t,Λ(x)) dx

=

∫
Ω
k2(t)α(t)[∇Λ(Λ−1(x))T∇S̄(t, x)] · ∇ϕε(Λ−1(x))ζ2(t, x)Φ̇1(t, x)∂1S̄(t, x)|JΛ−1(x)| dx

=

∫
Ω
k2(t)α(t)∇S̄(t, x) · [B(Λ−1(x))∇ϕε(x)]ζ2(t, x)Φ̇1(t, x)∂1S̄(t, x)|JΛ−1(x)| dx, (2.3.14)

where Φ1(t, x) := x1−(s(t)−s(0))√
1−|ṡ(t)|2

, B(x) := ∇Λ(x)∇Λ(x)T , JΛ−1(x) := det∇Λ−1(x), and

α(t) :=
√

1− |ṡ(t)|2 for t ∈ [0, 1] and x ∈ Ω. In the last equality we have used the coarea
formula applied with the Lipschitz change of variables Λ−1.

Thanks to our construction of Λ, for any x in a suitable small neighborhood of the tip
of Λ(Γ1) we have

B(Λ−1(x)) =

(
b11(x) 0

0 1

)
,

where b11 : R2 → R is a continuous function with b11(x1, 0) = 1. The last term in (2.3.14)
can be split as∫

Ω
k2(t)α(t)b11(x)∂1ϕε(x)ζ2(t, x)Φ̇1(t, x)(∂1S̄(t, x))2|JΛ−1(x)| dx

+

∫
Ω
k2(t)α(t)∂2S̄(t, x)∂2ϕε(x)ζ2(t, x)Φ̇1(t, x)∂1S̄(t, x)|JΛ−1(x)|dx.
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By construction of Λ, each line parallel to {x ∈ R2 : x2 = 0} is mapped by Λ−1 into a level
set of ϕε; more precisely ϕε(Λ

−1({x ∈ R2 : x2 = s})) = s
ε ∧ 1, and this means that on the set

of points {x ∈ R2 : dist(x,Λ(Γ1)) ≤ ε}, we have

∇ϕε(x) =


e2
ε in {x ∈ R2 : 0 ≤ x1 ≤ s(t∗)− s(0), 0 ≤ x2 < ε},
x
ε|x| in {x ∈ R2 : x ∈ Bε(0), x1 < 0, x2 ≥ 0},
x−r(t∗)
ε|x−r(t∗)| in {x ∈ R2 : x ∈ Bε(r(t∗)), x1 > s(t∗)− s(0), x2 ≥ 0},
0 otherwise,

where, for brevity, we have set r(t) := (s(t)− s(0), 0) for every t ∈ [0, 1].
Since Λ is a bi-Lipschitz map, JΛ−1 is bounded, thus by hypothesis (iii) we have

lim
x→(s(t)−s(0),0)

|JΛ−1(x)| = 1,

for every t ∈ [0, 1]. Moreover, in view of assumption (iii), we have that |JΛ−1| is continuous
on the compact set Γ1 \ Γ0, hence uniformly continuous; therefore, proceeding exactly as in
the proof of Proposition 2.3.5, we can write

lim
ε→0+

∫
Ω
k2(t)α(t)∂2S̄(t, x)∂2ϕε(x)ζ2(t, x)Φ̇1(t, x)∂1S̄(t, x)|JΛ−1(x)|dx

=
π

4
k2(t)ṡ(t).

(2.3.15)

Again by hypothesis (iii), we can apply estimate (2.3.3) and deduce that the sequence of
integrands in (2.3.15) is dominated in t, so that we can apply the dominated convergence
theorem to deduce

lim
ε→0+

∫ t∗

0

(∫
Ω
k2(t)α(t)∂2S̄(t, x)∂2ϕε(x)ζ2(t, x)Φ̇1(t, x)∂1S̄(t, x)|JΛ−1(x)|dx

)
dt

=

∫ t∗

0

π

4
k2(t)ṡ(t) dt.

(2.3.16)

By combining (2.3.10) with (2.3.11)–(2.3.13) and (2.3.16), we infer that

E(t)− E(0) +
π

4

∫ t

0
k2(τ)ṡ(τ) dτ =

∫ t

0
(f(τ), u̇(τ))L2(Ω) dτ for every t ∈ [0, 1]. (2.3.17)

Hence, the dynamic energy-dissipation balance (11) is satisfied if and only if∫ t

0

π

4
k2(τ)ṡ(τ) dτ = H1(Γt \ Γ0) = H1(Λ(Γt \ Γ0)) = s(t) for every t ∈ [0, 1],

which is true if and only if k(t) is equal to 2√
π

whenever ṡ(t) > 0. This concludes the

proof.

Remark 2.3.8. Our approach is constructive and allows us to show the existence of time-
dependent pairs t 7→ (Γt, u(t)) satisfying the dynamic energy-dissipation balance (11). Un-
der the standing assumptions on Γt, it is enough to take the forcing term f associated to

2√
π
ζ(Φ(t))S(Φ(t)) (which of course is a solution u(t)), where ζ is a suitable cut-off function

supported in a neighborhood of the origin. In order to ensure the homogeneous Neumann
condition on the fracture, we choose ζ satisfying ∂2ζ(y1, 0) = 0 for every y1 ∈ R. This can
be achieved, e.g., by taking ζ(y1, y2) = ϕ(y1)ϕ(y2), where ϕ ∈ C∞c (R) has compact support
contained in (−ε, ε) and satisfies ϕ = 1 in (−ε/2, ε/2), for some ε > 0.
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Remark 2.3.9. When in equation (2.1.2) the matrix A is (possibly) not the identity, an
energy balance similar to (2.3.17) is still valid: for every t ∈ [0, 1] there holds

E(t)− E(0) +
π

4

∫ t

0
k2(τ)a(τ)ṡ(τ)dτ =

∫ t

0
(f(τ), u̇(τ))L2(Ω)dτ, (2.3.18)

where a is a function depending only on A, Γ, and s, and it is given by

a(t) := |A(r(t))−1/2γ̇(s(t))| · |A(r(t))1/2ν(s(t))| ·
√

detA(r(t)).

Here A1/2 and A−1/2 denote the square root of the symmetric and positive definite matrices
A and A−1, respectively, and γ̇(s(t)) and ν(s(t)) are the tangent and unit normal vectors
to Γ at the point r(t) := γ(s(t)), respectively. In this case, the dynamic energy-dissipation
balance (11) holds true if and only if the stress intensity factor k(t) satisfies

k(t) =
2√
πa(t)

during the crack opening, namely when ṡ(t) > 0.
In order to derive formula (2.3.18), we use the decomposition result (2.2.9) rewritten as

u(t, x) = uR(t, x) + k(t)ζ(t, x)S̄(t, χ(x)),

where S̄(t, x) is the singular part of the solution relative to the transformed curve Γ(1) = χ(Γ).
Then we proceed as in the previous theorem and proposition: we test the PDE with ϕεu̇(t),

where ϕε(x) := dist(x,Γt∗\Γ0)
ε ∧ 1 for x ∈ Ω, and, as before, we notice that the only delicate

term is the one that converges to the integral in the left hand-side of (2.3.18):

lim
ε→0+

∫ t∗

0
k2(t)

(∫
Ω
ζ2(t, x)[A(x)∇S̄(t, χ(x))] · ∇ϕε(x) ˙̄S(t, χ(x)) dx

)
dt.

By applying the change of variables χ−1, we can rewrite the space integral in the previous
expression as follows:∫

Ω
ζ2(t, x)([∇χA∇χT ](χ−1(x))∇S̄(t, x)) · ∇χ(x)−T∇ϕε(x)(χ−1(x)) ˙̄S(t, x)| det∇χ−1(x)|dx.

Finally, we work on the transformed curve Γ(1), exactly as in the previous theorem, by
using the property of the singular part S̄(t, x) together with the following facts: by con-
struction, [∇χA∇χT ] ◦ χ−1 is a continuous function which agrees with the identity on the
points of Γ(1); moreover ∇χ(x)−T∇ϕε(χ−1(x)) is a continuous function which is equal to
1
ε |A(r(t))1/2ν(s(t))|ν(1)(s(1)(t)) on the points γ(1)(s(1)(t)) of Γ(1); the velocity ṡ(1) of the

curve Γ(1) satisfies ṡ(1)(t) = |A(r(t))−1/2γ̇(s(t))|ṡ(t); finally, |det∇χ−1(x)| is a continuous
function equal to

√
detA(r(t)) on the points γ(1)(s(1)(t)) of Γ(1).

Remark 2.3.10. By combining Theorems 2.2.4 and 2.2.10 with Theorem 2.3.7 and Re-
marks 2.3.4 and 2.3.9 we deduce that if f , u0, and u1 satisfy the assumptions of Theo-
rem 2.2.10, then the unique solution u to (2.1.2)–(2.1.5) satisfies (10) for every t ∈ [0, T ].
This formula gives an important quantitative information on the functions k and s which
satisfy the dynamic energy-dissipation balance (11): for every t ∈ [0, T ](

2√
πa(t)

− k(t)

)
ṡ(t) = 0.

In particular, in the set {t ∈ [0, T ] : ṡ(t) > 0} the stress intensity factor k coincides with the
function 2/

√
πa.



Chapter 3

A dynamic model for viscoelastic
materials with growing cracks

In this chapter we prove an existence and uniqueness result for equation (15) and the analo-
gous problem in linear elasticity, that is system (3.1.12).

This chapter is organized as follows. In Section 3.1 we fix the notation adopted throughout
the chapter, we list the main assumptions on the family of cracks {Γt}t∈[0,T ] and on the
function Θ, and we specify the notion of solution to (3.1.12). In Section 3.2 we state our
main existence result (Theorem 3.2.1), which is obtained by means of a time discretization
scheme. We conclude the proof of Theorem 3.2.1 in Section 3.3, where we show the validity of
the initial conditions (3.1.21) and the energy-dissipation inequality (3.3.4). Section 3.4 deals
with the uniqueness problem. Under stronger regularity assumptions on the cracks sets, in
Theorem 3.4.4 we prove the uniqueness, but only when the space dimension is d = 2. To
this aim, we assume also that the function Θ is zero in a neighborhood of the crack-tip. We
conclude with Section 3.5, where, in dimension d = 2 and for an antiplane evolution, we show
an example of a moving crack which satisfies the dynamic energy-dissipation balance (16).

The results presented here are obtained in collaboration with F. Sapio and are contained
in the submitted paper [10].

3.1 Preliminary results

Let T be a positive real number and let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Let ∂DΩ be a (possibly empty) Borel subset of ∂Ω and let ∂NΩ be its complement.
We assume the following hypotheses on the geometry of the crack sets {Γt}t∈[0,T ]:

(E1) Γ ⊂ Ω is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;

(E2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ
is the union of two disjoint open sets U+ and U− with Lipschitz boundary;

(E3) {Γt}t∈[0,T ] is a family of closed subsets of Γ satisfying Γs ⊆ Γt for every 0 ≤ s ≤ t ≤ T .

Remark 3.1.1. Assumptions (E1)–(E3) are a weaker version of assumptions (H1)–(H3) of
Chapter 1. In particular, we do need Γ to be a C2 manifold of dimension (d − 1), since we
are not interested in define the trace of ψ ∈ H1(Ω \ Γ) on Γ.

Thanks (E1)–(E3) the space L2(Ω \ Γt;Rm) coincides with L2(Ω;Rm) for every t ∈ [0, T ]
and m ∈ N. In particular, we can extend a function ψ ∈ L2(Ω \ Γt;Rm) to a function
in L2(Ω;Rm) by setting ψ = 0 on Γt. Moreover, by arguing as for (1.1.1), the trace of
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ψ ∈ H1(Ω \ Γ;Rd) on ∂Ω is well defined and there exists a constant Ctr > 0, depending only
on Ω and Γ, such that

‖ψ‖L2(∂Ω) ≤ Ctr‖ψ‖H1(Ω\Γ) for every ψ ∈ H1(Ω \ Γ;Rd). (3.1.1)

Hence, for every t ∈ [0, T ] we can define the space H1
D(Ω \ Γt;Rd) as done in (1.1.7), and

we denote its dual by H−1
D (Ω \ Γt;Rd). Similarly, by proceeding as for (1.2.3), we can find a

constant CK , depending only on Ω and Γ, such that

‖∇ψ‖2L2(Ω) ≤ CK
(
‖ψ‖2L2(Ω) + ‖Eψ‖2L2(Ω)

)
for every ψ ∈ H1(Ω \ Γ;Rd). (3.1.2)

Let C,D : Ω→ L (Rd×dsym;Rd×dsym) be two fourth-order tensors satisfying:

C,D ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (3.1.3)

(C(x)ξ1) · ξ2 = ξ1 · (C(x)ξ2) for every ξ1, ξ2 ∈ Rd×dsym and for a.e. x ∈ Ω, (3.1.4)

(D(x)ξ1) · ξ2 = ξ1 · (D(x)ξ2) for every ξ1, ξ2 ∈ Rd×dsym and for a.e. x ∈ Ω. (3.1.5)

We require that C and D satisfy the following ellipticity condition, which is standard in linear
elasticity:

C(x)ξ · ξ ≥ λ1|ξ|2, D(x)ξ · ξ ≥ λ2|ξ|2 for every ξ ∈ Rd×dsym and for a.e. x ∈ Ω, (3.1.6)

for two positive constants λ1, λ2 independent of x. By combining the ellipticity condition
for C with the Korn’s inequality (3.1.2), we can find two constants c0 > 0 and c1 ∈ R such
that

(CEψ,Eψ)L2(Ω) ≥ c0‖ψ‖2H1(Ω\ΓT ) − c1‖ψ‖2L2(Ω) for every ψ ∈ H1(Ω \ ΓT ;Rd). (3.1.7)

Let us consider a function Θ: (0, T )× Ω→ R satisfying

Θ ∈ L∞((0, T )× Ω), ∇Θ ∈ L∞((0, T )× Ω;Rd). (3.1.8)

Given

w ∈ H2(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω \ Γ0;Rd)), (3.1.9)

f ∈ L2(0, T ;L2(Ω;Rd)), F ∈ H1(0, T ;L2(∂NΩ;Rd)), (3.1.10)

u0 − w(0) ∈ H1
D(Ω \ Γ0;Rd), u1 ∈ L2(Ω;Rd), (3.1.11)

we want to find a solution to the viscoelastic dynamic system

ü(t)− div(CEu(t))− div(Θ2(t)DEu̇(t)) = f(t) in Ω \ Γt, t ∈ [0, T ], (3.1.12)

satisfying the following boundary conditions

u(t) = w(t) on ∂DΩ, t ∈ [0, T ], (3.1.13)

(CEu(t) + Θ2(t)DEu̇(t))ν = F (t) on ∂NΩ, t ∈ [0, T ], (3.1.14)

(CEu(t) + Θ2(t)DEu̇(t))ν = 0 on Γt, t ∈ [0, T ], (3.1.15)

and initial conditions

u(0) = u0, u̇(0) = u1 in Ω \ Γ0. (3.1.16)

As pointed out in Chapter 1, the Neumann boundary conditions (3.1.14) and (3.1.15) are
only formal, and their meaning will be specified later in Definition 3.1.5.
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Throughout the chapter we always assume that the family of cracks {Γt}t∈[0,T ] satisfies
(E1)–(E3), as well as C, D, Θ, f , w, F , u0, and u1 satisfy (3.1.3)–(3.1.11). In the following,
we want to specify the notion of solution to problem (3.1.12)–(3.1.15). As pointed out in
Chapter 1, the main difficulty is to give a meaning to ü(t). For this reason, we follow the
definition given in [23, Definition 2.7], which does not require the second derivative of u in
time. To simplify the notation, let us define the following three functional spaces:

V := {ϕ ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)) : ϕ̇ ∈ L2(0, T ;L2(Ω;Rd)),
ϕ(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T )},

VD := {ϕ ∈ V : ϕ(t) ∈ H1
D(Ω \ Γt;Rd) for a.e. t ∈ (0, T )},

W := {u ∈ V : Θu̇ ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)),
Θ(t)u̇(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T )}.

Remark 3.1.2. In the classical viscoelastic case, namely when Θ is identically equal to 1,
the solution u to system (3.1.12) has derivative u̇(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T ) with
Eu̇ ∈ L2(0, T ;L2(Ω;Rd×d)). For a generic Θ we expect to have ΘEu̇ ∈ L2(0, T ;L2(Ω;Rd×d)).
Therefore W is the natural setting where looking for a solution to (3.1.12). Indeed, from a
distributional point of view we have

Θ(t)Eu̇(t) = E(Θ(t)u̇(t))−∇Θ(t)� u̇(t) in Ω \ Γt for a.e. t ∈ (0, T ),

and E(Θu̇),∇Θ� u̇ ∈ L2(0, T ;L2(Ω;Rd×d)) if u ∈ W, thanks to (3.1.8).

Remark 3.1.3. The setW coincides with the collection of functions u ∈ H1(0, T ;L2(Ω;Rd))
such that u(t) and Θ(t)u̇(t) belong to H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T ) and∫ T

0
‖u(t)‖2H1(Ω\Γt) + ‖Θ(t)u̇(t)‖2H1(Ω\Γt) dt <∞. (3.1.17)

Indeed the functions t 7→ u(t) and t 7→ Θ(t)u̇(t) are strongly measurable from (0, T ) to
H1(Ω \ ΓT ;Rd), which gives that (3.1.17) is well defined and u and Θu̇ are elements of
L2(0, T ;H1(Ω \ ΓT ;Rd)). To prove the strong measurability of the two maps, it is enough
to observe that t 7→ u(t) and t 7→ Θ(t)u̇(t) are weakly measurable from (0, T ) to L2(Ω;Rd),
which is a separable Hilbert space. Moreover, t 7→ Eu(t) and t 7→ E(Θ(t)u̇(t)) are weakly
measurable from (0, T ) to L2(Ω;Rd×d), since for every ϕ ∈ C∞c (Ω \ ΓT ) the maps

t 7→
∫

Ω\ΓT
Eu(t, x)ϕ(x) dx = −

∫
Ω\ΓT

u(t, x)�∇ϕ(x) dx,

t 7→
∫

Ω\ΓT
E(Ψ(t, x)u̇(t, x))ϕ(x) dx = −

∫
Ω\ΓT

Ψ(t, x)u̇(t, x)�∇ϕ(x) dx

are measurable from (0, T ) to R, and C∞c (Ω \ ΓT ) is dense in L2(Ω).

Lemma 3.1.4. The spaces V and W are Hilbert spaces with respect to the following norms:

‖ϕ‖V := (‖ϕ‖2L2(0,T ;H1(Ω\ΓT )) + ‖ϕ̇‖2L2(0,T ;L2(Ω)))
1
2 for ϕ ∈ V,

‖u‖W := (‖u‖2V + ‖Θu̇‖2L2(0,T ;H1(Ω\ΓT )))
1
2 for u ∈ W.

Moreover, VD is a closed subspace of V.

Proof. It is clear that ‖·‖V and ‖·‖W are norms on V and W, respectively, induced by scalar
products. We just have to check the completeness of such spaces with respect to these norms.
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Let {ϕk}k ⊂ V be a Cauchy sequence. Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences
in L2(0, T ;H1(Ω \ ΓT ;Rd)) and L2(0, T ;L2(Ω;Rd)), respectively, which are complete Hilbert
spaces. Thus there exists ϕ ∈ L2(0, T ;H1(Ω\ΓT ;Rd)) with ϕ̇ ∈ L2(0, T ;L2(Ω;Rd)) such that
ϕk → ϕ in L2(0, T ;H1(Ω \ ΓT ;Rd)) and ϕ̇k → ϕ̇ in L2(0, T ;L2(Ω;Rd)). In particular there
exists a subsequence {ϕkj}j such that ϕkj (t) → ϕ(t) in H1(Ω \ ΓT ;Rd) for a.e. t ∈ (0, T ).

Since ϕkj (t) ∈ H1(Ω \Γt;Rd) for a.e. t ∈ (0, T ) we deduce that ϕ(t) ∈ H1(Ω \Γt;Rd) for a.e.
t ∈ (0, T ). Hence ϕ ∈ V and ϕk → ϕ in V. With a similar argument, it is easy to check that
VD ⊆ V is a closed subspace.

Let us now consider a Cauchy sequence {uk}k ⊂ W. We have that {uk}k and {Θu̇k}k are
Cauchy sequences in V and L2(0, T ;H1(Ω\ΓT ;Rd)), respectively, which are complete Hilbert
spaces. Thus there exist u ∈ V and z ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)) such that uk → u in V and
Θu̇k → z in L2(0, T ;H1(Ω \ ΓT ;Rd)). Since u̇k → u̇ in L2(0, T ;L2(Ω;Rd)) and Θ belongs
to L∞((0, T ) × Ω), we derive that Θu̇k → Θu̇ in L2(0, T ;L2(Ω;Rd)), which gives z = Θu̇.
Finally let us prove that Θ(t)u̇(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T ). Thanks to the fact
that Θu̇k → Θu̇ in L2(0, T ;H1(Ω \ ΓT ;Rd)), we can find a subsequence {Θu̇kj}j such that

Θ(t)u̇kj (t)→ Θ(t)u̇(t) in H1(Ω\ΓT ;Rd) for a.e. t ∈ (0, T ). Since Θ(t)u̇kj (t) ∈ H1(Ω\Γt;Rd)
for a.e. t ∈ (0, T ), we deduce that Θ(t)u̇(t) ∈ H1(Ω \Γt;Rd) for a.e. t ∈ (0, T ). Hence u ∈ W
and uk → u in W.

We are in a position to define the notion of solution to (3.1.12)–(3.1.15).

Definition 3.1.5. We say that a function u ∈ W is a solution to system (3.1.12) with
boundary conditions (3.1.13)–(3.1.15) if u− w ∈ VD and

−
∫ T

0
(u̇(t), ϕ̇(t))L2(Ω) dt+

∫ T

0
(CEu(t), Eϕ(t))L2(Ω) dt

+

∫ T

0
(D[E(Θ(t)u̇(t))− D∇Θ(t)� u̇(t)],Θ(t)Eϕ(t))L2(Ω) dt

=

∫ T

0
(f(t), ϕ(t))L2(Ω) dt+

∫ T

0
(F (t), ϕ(t))L2(∂NΩ) dt

(3.1.18)

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Remark 3.1.6. When u̇ is enough regular, for example u̇ ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)) with
u̇(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T ), we can write ΘEu̇ = E(Θu̇) − ∇Θ � u̇. There-
fore (3.1.18) is coherent with the strong formulation (3.1.12). In particular, for a function
u ∈ W we can define

ΘEu̇ := E(Θu̇)−∇Θ� u̇ ∈ L2(0, T ;L2(Ω;Rd×d)), (3.1.19)

so that equation (3.1.18) can be written as

−
∫ T

0
(u̇(t), ϕ̇(t))L2(Ω) dt+

∫ T

0
(CEu(t), Eϕ(t))L2(Ω) dt

+

∫ T

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt

=

∫ T

0
(f(t), ϕ(t))L2(Ω) dt+

∫ T

0
(F (t), ϕ(t))L2(∂NΩ) dt

(3.1.20)

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Remark 3.1.7. Notice that equation (3.1.20), which is formally obtained by integrating the
PDE (3.1.12) in time and space and using the integration by part formula, can be rephrased



Chapter 3. A dynamic model for viscoelastic materials with growing cracks 67

pointwise in time, as done in the previous chapters (see, e.g., Definition 1.1.6). Indeed, by
arguing as in [23, Theorem 2.17], it is possible to show that every solution u to (3.1.12)–
(3.1.15) satisfies

〈ü(t), ψ〉H−1
D (Ω\Γt) + (CEu(t), Eψ)L2(Ω) + (D[Θ(t)Eu̇(t)],Θ(t)Eψ)L2(Ω)

= (f(t), ψ)L2(Ω) + (F (t), ψ)L2(∂NΩ)

for every ψ ∈ H1
D(Ω \ Γt;Rd), where the second derivative ü is defined similarly to (1.1.23)

(see [23, Proposition 2.13]).

The notion of solution given in Definition 3.1.5 requires less regularity in time with respect
to the ones given in the previous chapters. In particular, the functions u and u̇ may not be
defined pointwise. Therefore, we define the initial conditions (3.1.16) as in [16].

Definition 3.1.8. We say that u ∈ W satisfies the initial conditions (3.1.16) if

lim
h→0+

1

h

∫ h

0

(
‖u(t)− u0‖2H1(Ω\Γt) + ‖u̇(t)− u1‖2L2(Ω)

)
dt = 0. (3.1.21)

3.2 Existence

We now state our main existence result, whose proof will be given at the end of Section 3.3.

Theorem 3.2.1. There exists a solution u ∈ W to system (3.1.12)–(3.1.15), according to
Definition 3.1.5, which satisfies the initial conditions u(0) = u0 and u̇(0) = u1 in the sense
of (3.1.21). Moreover, we have

u ∈ C0
w([0, T ];H1(Ω \ ΓT ;Rd)),

u̇ ∈ C0
w([0, T ];L2(Ω;Rd)) ∩H1(0, T ;H−1

D (Ω \ Γ0)),

and as t→ 0+

u(t)→ u0 in H1(Ω \ ΓT ;Rd), u̇(t)→ u1 in L2(Ω;Rd).

To prove the existence of a solution to (3.1.12)–(3.1.15), we use a time discretization
scheme in the same spirit of [16]. Let us fix n ∈ N and set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1.

We define

F kn := F (kτn), wkn := w(kτn) for k = 0, . . . , n,

fkn :=
1

τn

∫ kτn

(k−1)τn

f(s) ds, Θk
n :=

1

τn

∫ kτn

(k−1)τn

Θ(s) ds for k = 1, . . . , n,

δF kn :=
F kn − F k−1

n

τn
, δwkn :=

wkn − wk−1
n

τn
for k = 1, . . . , n,

δw0
n := ẇ(0), δ2wkn :=

δwkn − δwk−1
n

τn
for k = 1, . . . , n.

For every k = 1, . . . , n let ukn − wkn ∈ H1
D(Ω \ Γkτn ;Rd), be the solution to

(δ2ukn, ψ)L2(Ω) + (CEukn, Eψ)L2(Ω) + (D[Θk
nEδu

k
n],Θk

nEψ)L2(Ω)

= (fkn , ψ)L2(Ω) + (F kn , ψ)L2(∂NΩ)

(3.2.1)



68 3.2. Existence

for every ψ ∈ H1
D(Ω \ Γkτn ;Rd), where

δukn :=
ukn − uk−1

n

τn
for k = 0, . . . , n, δ2ukn :=

δukn − δuk−1
n

τn
for k = 1, . . . , n.

The existence of a unique solution ukn to (3.2.1) is a consequence of Lax-Milgram’s theorem.

Remark 3.2.2. Since δukn ∈ H1(Ω \ Γkτn ;Rd), we have Θk
nEδu

k
n = E(Θk

nu
k
n) − ∇Θk

n � ukn.
Hence, the discrete equation (3.2.1) is coherent with the weak formulation given in (3.1.18).

In the next lemma we show a uniform estimate for the family {ukn}nk=1 with respect to n
that will be used later to pass to the limit in the discrete equation (3.2.1).

Lemma 3.2.3. There exists a constant C > 0, independent of n, such that

max
i=1,...,n

{‖δuin‖L2(Ω) + ‖uin‖H1(Ω\ΓT )}+
n∑
i=1

τn‖Θi
nEδu

i
n‖2L2(Ω) ≤ C. (3.2.2)

Proof. We fix n ∈ N. To simplify the notation, for every ψ, φ ∈ H1(Ω \ ΓT ;Rd) we set

a(ψ, φ) := (CEψ,Eφ)L2(Ω), bkn(ψ, φ) := (D[Θk
nEψ],Θk

nEφ)L2(Ω) for k = 1, . . . , n.

By taking as test function ψ := τn(δukn − δwkn) ∈ H1
D(Ω \ Γkτn ;Rd) in (3.2.1), we obtain

‖δukn‖2L2(Ω) − (δuk−1
n , δukn)L2(Ω) + a(ukn, u

k
n)− a(ukn, u

k−1
n ) + τnb

k
n(δukn, δu

k
n) = τnL

k
n

for k = 1, . . . , n, where

Lkn :=(fkn , δu
k
n − δwkn)L2(Ω) + (F kn , δu

k
n − δwkn)L2(∂NΩ)

+ (δ2ukn, δw
k
n)L2(Ω) + a(ukn, δw

k
n) + bkn(δukn, δw

k
n).

Thanks to the following identities

‖δukn‖2L2(Ω) − (δuk−1
n , δukn)L2(Ω) =

1

2
‖δukn‖2L2(Ω) −

1

2
‖δuk−1

n ‖2L2(Ω) +
τ2
n

2
‖δ2ukn‖2L2(Ω),

a(ukn, u
k
n)− a(ukn, u

k−1
n ) =

1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) +

τ2
n

2
a(δukn, δu

k
n),

and by omitting the terms with τ2
n, which are non negative, we derive

1

2
‖δukn‖2L2(Ω) −

1

2
‖δuk−1

n ‖2L2(Ω) +
1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) + τnb

k
n(δukn, δu

k
n) ≤ τnLkn.

We fix i ∈ {1, . . . , n} and sum over k = 1, . . . , i to obtain the discrete energy inequality

1

2
‖δuin‖2L2(Ω) +

1

2
a(uin, u

i
n) +

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ E0 +

i∑
k=1

τnL
k
n, (3.2.3)

where E0 := 1
2‖u

1‖2L2(Ω) + 1
2(CEu0, Eu0)L2(Ω). Let us now estimate the right-hand side

in (3.2.3) from above. By (3.1.1) and (3.1.3) we have∣∣∣∣∣
i∑

k=1

τn(fkn , δu
k
n)L2(Ω)

∣∣∣∣∣ ≤ 1

2
‖f‖2L2(0,T ;L2(Ω)) +

1

2

i∑
k=1

τn‖δukn‖2L2(Ω), (3.2.4)∣∣∣∣∣
i∑

k=1

τn(fkn , δw
k
n)L2(Ω)

∣∣∣∣∣ ≤ 1

2
‖f‖2L2(0,T ;L2(Ω)) +

1

2
‖ẇ‖2L2(0,T ;L2(Ω)), (3.2.5)
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∣∣∣∣∣
i∑

k=1

τn(F kn , δw
k
n)L2(∂NΩ)

∣∣∣∣∣ ≤ 1

2
‖F‖2L2(0,T ;L2(∂NΩ)) +

C2
tr

2
‖ẇ‖2L2(0,T ;H1(Ω\Γ0)), (3.2.6)∣∣∣∣∣

i∑
k=1

τna(ukn, δw
k
n)

∣∣∣∣∣ ≤ 1

2
‖C‖L∞(Ω)

(
‖ẇ‖2L2(0,T ;H1(Ω\Γ0)) +

i∑
k=1

τn‖ukn‖2H1(Ω\ΓT )

)
. (3.2.7)

For the other term involving F kn , we perform the following discrete integration by parts

i∑
k=1

τn(F kn , δu
k
n)L2(∂NΩ) = (F in, u

i
n)L2(∂NΩ) − (F (0), u0)L2(∂NΩ)

−
i∑

k=1

τn(δF kn , u
k−1
n )L2(∂NΩ).

(3.2.8)

Hence for every ε ∈ (0, 1), by using (3.1.1) and Young’s inequality, we get∣∣∣∣∣
i∑

k=1

τn(F kn , δu
k
n)L2(∂NΩ)

∣∣∣∣∣ ≤ 1

2ε
‖F in‖2L2(∂NΩ) +

ε

2
‖uin‖2L2(∂NΩ) + ‖F (0)‖L2(∂NΩ)‖u0‖L2(∂NΩ)

+

i∑
k=1

τn‖δF kn‖L2(∂NΩ)‖uk−1
n ‖2L2(∂NΩ) (3.2.9)

≤ Cε +
εC2

tr

2
‖uin‖2H1(Ω\ΓT ) +

C2
tr

2

i∑
k=1

τn‖ukn‖2H1(Ω\ΓT ),

where Cε is a positive constant depending on ε. Similarly to (3.2.8), we can say

i∑
k=1

τn(δ2ukn, δw
k
n)L2(Ω) = (δuin, δw

i
n)L2(Ω) − (δu0

n, δw
0
n)L2(Ω)

−
i∑

k=1

τn(δuk−1
n , δ2wkn)L2(Ω),

(3.2.10)

from which we deduce that for every ε > 0∣∣∣∣∣
i∑

k=1

τn(δ2ukn, δw
k
n)L2(Ω)

∣∣∣∣∣ ≤ 1

2ε
‖δwin‖2L2(Ω) +

ε

2
‖δuin‖2L2(Ω) + ‖u1‖L2(Ω)‖ẇ(0)‖L2(Ω)

+
i∑

k=1

τn‖δuk−1
n ‖L2(Ω)‖δ2wkn‖L2(Ω)

≤C̄ε +
ε

2
‖δuin‖2L2(Ω) +

1

2

i∑
k=1

τn‖δukn‖2L2(Ω),

(3.2.11)

where C̄ε is a positive constant depending on ε. We estimate from above the last term in
right-hand side of (3.2.3) in the following way

i∑
k=1

τnb
k
n(δukn, δw

k
n) ≤

i∑
k=1

τn[bkn(δukn, δu
k
n)]

1
2 [bkn(δwkn, δw

k
n)]

1
2 (3.2.12)

≤ 1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) +

1

2
‖D‖L∞(Ω)‖Θ‖2L∞((0,T )×Ω)‖ẇ‖

2
L2(0,T ;H1(Ω\Γ0)).
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By considering (3.2.3)–(3.2.12) and using (3.1.7) we obtain(
1− ε

2

)
‖δuin‖2L2(Ω) +

c0 − εC2
tr

2
‖uin‖2H1(Ω\Γt) −

c1

2
‖uin‖2L2(Ω) +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n)

≤ Ĉε + Ĉ
i∑

k=1

τn

(
‖δukn‖2L2(Ω) + ‖ukn‖2H1(Ω\ΓT )

)
,

where Ĉε and Ĉ are two positive constants, with Ĉε depending on ε. We can now choose

ε < min
{

1
2 ,

c0
2C2

tr

}
and use the inequality

‖uin‖2L2(Ω) ≤

(
‖u0‖L2(Ω) +

i∑
k=1

τn‖δukn‖L2(Ω)

)2

≤ 2‖u0‖2L2(Ω) + 2T
i∑

k=1

τn‖δukn‖2L2(Ω),

to derive the following estimate

1

4
‖δuin‖2L2(Ω) +

1

4
‖uin‖2H1(Ω\ΓT ) +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n)

≤ C1 + C2

i∑
k=1

τn

(
‖δukn‖2L2(Ω) + ‖ukn‖2H1(Ω\ΓT )

)
,

(3.2.13)

where C1 and C2 are two positive constants depending only on u0, u1, f , F , and w. Thanks
to a discrete version of Gronwall’s lemma (see, e.g., [3, Lemma 3.2.4]) we deduce the existence
of a constant C3 > 0, independent of i and n, such that

‖δuin‖L2(Ω) + ‖uin‖H1(Ω\ΓT ) ≤ C3 for every i = 1, . . . , n and for every n ∈ N.

By combining this last estimate with (3.2.13) and (3.1.6) we finally get (3.2.2) and we con-
clude.

We now want to pass to the limit in (3.2.1) to obtain a solution to problem (3.1.12)–
(3.1.15). To this aim, we define the piecewise affine interpolants un : [0, T ]→ H1(Ω \ΓT ;Rd)
of {ujn}nj=1 and u′n : [0, T ]→ L2(Ω;Rd) of {δujn}nj=1 as

un(t) := ujn + (t− jτn)δujn for t ∈ [(j − 1)τn, jτn], j = 1, . . . , n,

u′n(t) := δujn + (t− jτn)δ2ujn for t ∈ [(j − 1)τn, jτn], j = 1, . . . , n.

We also define the backward interpolants un : [0, T ]→ H1(Ω\ΓT ;Rd), u′n : [0, T ]→ L2(Ω;Rd)
and the forward interpolants un : [0, T ] → H1(Ω \ ΓT ;Rd), u′n : [0, T ] → L2(Ω;Rd) in the
following way:

un(t) := ujn for t ∈ ((j − 1)τn, jτn], j = 1, . . . , n, un(0) = u0
n,

u′n(t) := δujn for t ∈ ((j − 1)τn, jτn], j = 1, . . . , n, u′n(0) = δu0
n,

un(t) := uj−1
n for t ∈ [(j − 1)τn, jτn), j = 1, . . . , n, un(T ) = unn,

u′n(t) := δuj−1
n for t ∈ [(j − 1)τn, jτn), j = 1, . . . , n, u′n(T ) = δunn.

Notice that un ∈ H1(0, T ;L2(Ω;Rd)) with u̇n(t) = δukn = u′n(t) for t ∈ ((k − 1)τn, kτn) and
k = 1, . . . , n. Let us also approximate Θ and w by

Θn(t) := Θk
n for t ∈ ((k − 1)τn, kτn], k = 1, . . . , n, Θn(0) := Θ0

n,

wn(t) := wkn for t ∈ ((k − 1)τn, kτn], k = 1, . . . , n, wn(0) := w0
n,

Θn(t) := Θk−1
n for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n, Θn(T ) := Θn

n,

wn(t) := wk−1
n for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n, wn(T ) := wnn.
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Lemma 3.2.4. There exists a function u ∈ W, with u − w ∈ VD, and a subsequence of n,
not relabeled, such that the following convergences hold as n→∞:

un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)), (3.2.14)

un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)), (3.2.15)

un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)), (3.2.16)

E(Θnu
′
n) ⇀ E(Θu̇) in L2(0, T ;L2(Ω;Rd×d)), (3.2.17)

∇Θn � u′n ⇀ ∇Θ� u̇ in L2(0, T ;L2(Ω;Rd×d)). (3.2.18)

Proof. By Lemma 3.2.3 the sequences {un}n ⊂ L∞(0, T ;H1(Ω\ΓT ;Rd))∩H1(0, T ;L2(Ω;Rd))
and {un}n ⊂ L∞(0, T ;H1(Ω \ ΓT ;Rd)) are uniformly bounded. Therefore, there exist two
functions u ∈ L∞(0, T ;H1(Ω\ΓT ;Rd))∩H1(0, T ;L2(Ω;Rd)) and z ∈ L∞(0, T ;H1(Ω\ΓT ;Rd))
such that, up to a not relabeled subsequence, as n→∞

un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)), u̇n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
un ⇀ z in L2(0, T ;H1(Ω \ ΓT ;Rd)).

Moreover, we have u = z, since we can find a constant C > 0, independent of n, such that

‖un − un‖L∞(0,T ;L2(Ω;Rd)) ≤ Cτn → 0 as n→∞.

Since un(t) = un(t−τn) for t ∈ (τn, T ), u′n(t) = u̇n(t) for a.e. t ∈ (0, T ), and u′n(t) = u′n(t−τn)
for t ∈ (τn, T ), we deduce

un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)).

By using (3.2.2) we derive that the sequences {E(Θnu
′
n)}n ⊂ L2(0, T ;L2(Ω;Rd×d)) and

{∇Θn�u′n}n ⊂ L2(0, T ;L2(Ω;Rd×d)) are uniformly bounded. Indeed, there exists a constant
C > 0 independent of n such that

‖∇Θn � u′n‖2L2(0,T ;L2(Ω)) =
n∑
k=1

∫ kτn

(k−1)τn

‖∇Θk
n � δukn‖2L2(Ω) dt

≤ ‖∇Θ‖2L∞((0,T )×Ω)

n∑
k=1

τn‖δukn‖2L2(Ω) ≤ C,

‖E(Θnu
′
n)‖2L2(0,T ;L2(Ω)) =

n∑
k=1

∫ kτn

(k−1)τn

‖E(Θk
nδu

k
n)‖2L2(Ω) dt

=

n∑
k=1

τn‖Θk
nEδu

k
n +∇Θk

n � δukn‖2L2(Ω)

≤ 2
n∑
k=1

τn‖Θk
nEδu

k
n‖2L2(Ω) + 2

n∑
k=1

τn‖∇Θk
n � δukn‖2L2(Ω) ≤ C.

Therefore, there exists z1, z2 ∈ L2(0, T ;L2(Ω;Rd×d)) such that, up to a further not relabeled
subsequence, as n→∞ we have

∇Θn � u′n ⇀ z1 in L2(0, T ;L2(Ω;Rd×d)), E(Θnu
′
n) ⇀ z2 in L2(0, T ;L2(Ω;Rd×d)).
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We want to identify the limits z1 and z2. We fix a function ϕ ∈ L2(0, T ;L2(Ω;Rd×d)), and
we have∫ T

0
(∇Θn � u′n, ϕ)L2(Ω) dt =

1

2

∫ T

0
(u′n, ϕ∇Θn)L2(Ω) dt+

1

2

∫ T

0
(u′n, ϕ

T∇Θn)L2(Ω) dt

=

∫ T

0
(u′n, ϕ

sym∇Θn)L2(Ω) dt,

being ϕsym := ϕ+ϕT

2 . Since u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)) and ϕsym∇Θn → ϕsym∇Θ in
L2(0, T ;L2(Ω;Rd)) as n→∞ by dominated convergence theorem, we obtain

lim
n→∞

∫ T

0
(∇Θn � u′n, ϕ)L2(Ω) dt =

∫ T

0
(u̇, ϕsym∇Θ)L2(Ω) dt =

∫ T

0
(∇Θ� u̇, ϕ)L2(Ω) dt,

and so z1 = ∇Θ� u̇. Moreover, fixed φ ∈ L2(0, T ;L2(Ω;Rd)) we have

lim
n→∞

∫ T

0
(Θnu

′
n, φ)L2(Ω) dt = lim

n→∞

∫ T

0
(u′n,Θnφ)L2(Ω) dt

=

∫ T

0
(u̇,Θφ)L2(Ω) dt =

∫ T

0
(Θu̇, φ)L2(Ω) dt,

thanks to the fact that u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)) and Θnφ→ Θφ in L2(0, T ;L2(Ω;Rd))
as n → ∞, again by the dominated convergence theorem. Therefore Θnu

′
n ⇀ Θu̇ in

L2(0, T ;L2(Ω;Rd)) as n → ∞, from which we get that E(Θnu
′
n) ⇀ E(Θu̇) in the sense of

distributions as n→∞, that gives z2 = E(Θu̇). In particular, Θu̇ ∈ L2(0, T ;H1(Ω\ΓT ;Rd)).
Let us check that the limit point u is an element of W. To this aim we define the set

E := {v ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)) : v(t) ∈ H1(Ω \ Γt;Rd) for a.e. t ∈ (0, T )}.

Notice that E is a weakly closed subset of L2(0, T ;H1(Ω \ ΓT ;Rd)), since it is closed and
convex. Moreover, we have {un}n, {Θnu

′
n}n ⊂ E. Indeed

un(t) = uk−1
n ∈ H1(Ω \ Γt;Rd) for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

Θn(t)u′n(t) = Θk−1
n δuk−1

n ∈ H1(Ω \ Γt;Rd) for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)) and Θnu
′
n ⇀ Θu̇ in L2(0, T ;H1(Ω \ ΓT ;Rd)), we

conclude that u,Θu̇ ∈ E. Finally, to show that u− w ∈ VD we observe

un(t)− wn(t) = uk−1
n − wk−1

n ∈ H1
D(Ω \ Γt;Rd) for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Therefore

{un − wn}n ⊂ {v ∈ L2(0, T ;H1(Ω \ ΓT ;Rd)) : v(t) ∈ H1
D(Ω \ Γt;Rd) for a.e. t ∈ (0, T )},

which is a closed convex subset of L2(0, T ;H1(Ω \ ΓT ;Rd)), and so it is weakly closed. Since
un ⇀ u in L2(0, T ;H1(Ω \ ΓT ;Rd)) and wn → w in L2(0, T ;H1(Ω \ Γ0;Rd)) as n → ∞, we
get that u(t)− w(t) ∈ H1

D(Ω \ Γt;Rd) for a.e. t ∈ (0, T ), which implies u− w ∈ VD.

We now use Lemma 3.2.4 to pass to the limit in the discrete equation (3.2.1).

Lemma 3.2.5. The function u ∈ W given by Lemma 3.2.4 is a solution to (3.1.12)–(3.1.15),
according to Definition 3.1.5.
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Proof. We only need to prove that u ∈ W satisfies (3.1.18). Fixed n ∈ N, we consider a
function ϕ ∈ C1

c (0, T ;H1(Ω \ ΓT ;Rd)) such that ϕ(t) ∈ H1
D(Ω \ Γt;Rd) for every t ∈ (0, T ),

and we set

ϕkn := ϕ(kτn) for k = 0, . . . , n, δϕkn :=
ϕkn − ϕk−1

n

τn
for k = 1, . . . , n.

By using τnϕ
k
n ∈ H1

D(Ω \ Γkτn ;Rd) as test function in (3.2.1) and summing over k = 1, . . . , n
we get

n∑
k=1

τn(δ2ukn, ϕ
k
n)L2(Ω) +

n∑
k=1

τn(CEukn, Eϕkn)L2(Ω) +
n∑
k=1

τn(D[Θk
nEδu

k
n],Θk

nEϕ
k
n)L2(Ω)

=
n∑
k=1

τn(fkn , ϕ
k
n)L2(Ω) +

n∑
k=1

τn(F kn , ϕ
k
n)L2(∂NΩ). (3.2.19)

Let us define the approximating sequences

ϕn(t) := ϕkn, ϕ′n(t) := δϕkn for t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

Thanks to the identity

n∑
k=1

τn(δ2ukn, ϕ
k
n)L2(Ω) = −

n∑
k=1

τn(δuk−1
n , δϕkn)L2(Ω) = −

∫ T

0
(u′n(t), ϕ′n(t))L2(Ω) dt,

from (3.2.19) we deduce the following equality

−
∫ T

0
(u′n, ϕ

′
n)L2(Ω) dt+

∫ T

0
(CEun, Eϕn)L2(Ω) dt

+

∫ T

0
(D[E(Θnu

′
n)−∇Θn � u′n], Eϕn)L2(Ω) dt

=

∫ T

0
(fn, ϕn)L2(Ω) dt+

∫ T

0
(Fn, ϕn)L2(∂NΩ) dt,

(3.2.20)

where fn and Fn are the backward interpolants of {fkn}nk=1 and {F kn}nk=1, respectively. Notice
that as n→∞ we have

ϕn → ϕ in L2(0, T ;H1(Ω \ ΓT ;Rd)), ϕ′n → ϕ̇ in L2(0, T ;L2(Ω;Rd)),
fn → f in L2(0, T ;L2(Ω;Rd)), Fn → F in L2(0, T ;L2(∂NΩ;Rd)).

By (3.2.14)–(3.2.18) and the above convergences we can pass to the limit as n→∞ in (3.2.20),
and we get that u ∈ W satisfies (3.1.18) for every ϕ ∈ C1

c (0, T ;H1(Ω \ ΓT ;Rd)) such that
ϕ(t) ∈ H1

D(Ω \ Γt;Rd) for every t ∈ (0, T ). Finally, we can use a density argument (see [23,
Remark 2.9]) to conclude that u ∈ W is a solution to (3.1.12)–(3.1.15).

3.3 Initial conditions

To complete our existence result, it remains to prove that the solution u ∈ W to (3.1.12)–
(3.1.15) given by Lemma 3.2.4 satisfies the initial conditions (3.1.16) in the sense of (3.1.21).

We start by showing that the second distributional derivative ü belongs to the space
L2(0, T ;H−1

D (Ω\Γ0;Rd)). By using the discrete equation (3.2.1), for every v ∈ H1
D(Ω\Γ0;Rd)

with ‖v‖H1(Ω\Γ0) ≤ 1 we have

|(δ2ukn, v)L2(Ω)| ≤ ‖C‖L∞(Ω)‖Eukn‖L2(Ω) + ‖D‖L∞(Ω)‖Θ‖L∞((0,T )×Ω)‖Θk
nEδu

k
n‖L2(Ω)

+ ‖fkn‖L2(Ω) + Ctr‖F kn‖L2(∂NΩ),
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and taking the supremum over v, we conclude

‖δ2ukn‖2H−1
D (Ω\Γ0)

≤ C(‖Eukn‖2L2(Ω) + ‖Θk
nEδu

k
n‖2L2(Ω) + ‖fkn‖2L2(Ω) + ‖F kn‖2L2(∂NΩ))

for a positive constant C independent of n. We multiply this inequality by τn, we sum over
k = 1, . . . , n, and we use (3.2.2) to obtain

n∑
k=1

τn‖δ2ukn‖2H−1
D (Ω\Γ0)

≤ C̃ for every n ∈ N, (3.3.1)

where C̃ is a positive constant independent of n. The above estimate implies that the sequence
{u′n}n ⊂ H1(0, T ;H−1

D (Ω\Γ0;Rd)) is uniformly bounded (u̇′n(t) = δ2ukn for t ∈ ((k−1)τn, kτn)
and k = 1, . . . , n). Up to extract a further subsequence (not relabeled) from the one of
Lemma 3.2.4, we deduce that there is z3 ∈ H1(0, T ;H−1

D (Ω \ Γ0;Rd)) such that

u′n ⇀ z3 in H1(0, T ;H−1
D (Ω \ Γ0;Rd)) as n→∞. (3.3.2)

By using the following estimate

‖u′n − u′n‖L2(0,T ;H−1
D (Ω\Γ0)) ≤ τn‖u̇

′
n‖L2(0,T ;H−1

D (Ω\Γ0)) ≤ C̃τn → 0 as n→∞,

we conclude that z3 = u̇, which gives ü ∈ L2(0, T ;H−1
D (Ω \ Γ0;Rd)).

The solution u ∈ W given by Lemma 3.2.4 satisfies

u ∈ L∞(0, T ;H1(Ω \ ΓT ;Rd)), u̇ ∈ L∞(0, T ;L2(Ω;Rd)),

and recalling Remark 1.2.7 we derive

u ∈ C0
w([0, T ];H1(Ω \ ΓT ;Rd)), u̇ ∈ C0

w([0, T ];L2(Ω;Rd)).

Therefore, by (3.2.14) and (3.3.2) for every t ∈ [0, T ] we obtain

un(t) ⇀ u(t) in L2(Ω;Rd), u′n(t) ⇀ u̇(t) in H−1
D (Ω \ Γ0;Rd) as n→∞, (3.3.3)

so that u(0) = u0 and u̇(0) = u1, being un(0) = u0 and u′n(0) = u1 for every n ∈ N.

To prove

lim
h→0+

1

h

∫ h

0

(
‖u(t)− u0‖2H1(Ω\Γt) + ‖u̇(t)− u1‖2L2(Ω)

)
dt = 0

we will actually show as t→ 0+

u(t)→ u0 in H1(Ω \ ΓT ;Rd), u̇(t)→ u1 in L2(Ω;Rd).

This is a consequence of an energy-dissipation inequality which holds for the solution u ∈ W
to (3.1.12)–(3.1.15) given by Lemma 3.2.4. Let us define the mechanical energy of u as

E(t) :=
1

2
‖u̇(t)‖2L2(Ω) +

1

2
(CEu(t), Eu(t))L2(Ω) for t ∈ [0, T ].

Notice that E(t) is well defined for every t ∈ [0, T ] since u ∈ C0
w([0, T ];H1(Ω \ ΓT ;Rd)) and

u̇ ∈ C0
w([0, T ];L2(Ω;Rd)), and that E(0) = 1

2‖u
1‖2L2(Ω) + 1

2(CEu0, Eu0)L2(Ω).
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Theorem 3.3.1. The solution u ∈ W to (3.1.12)–(3.1.15) given by Lemma 3.2.4 satisfies for
every t ∈ [0, T ] the following energy-dissipation inequality

E(t) +

∫ t

0
(D[ΘEu̇],ΘEu̇)L2(Ω) ds ≤ E(0) +Wtot(t), (3.3.4)

where ΘEu̇ is the function defined in (3.1.19) and Wtot(t) is the total work at time t ∈ [0, T ],
which is given by

Wtot(t) :=

∫ t

0

[
(f, u̇− ẇ)L2(Ω) + (CEu,Eẇ)L2(Ω) + (D[ΘEu̇],ΘEẇ)L2(Ω)

]
ds

−
∫ t

0

[
(u̇, ẅ)L2(Ω) + (Ḟ , u− w)L2(∂NΩ)

]
ds+ (u̇(t), ẇ(t))L2(Ω)

+ (F (t), u(t)− w(t))L2(∂NΩ) − (u1, ẇ(0))L2(Ω) − (F (0), u0 − w(0))L2(∂NΩ).

Remark 3.3.2. The total work Wtot(t) is well defined for every t ∈ [0, T ], since we have
F ∈ C0([0, T ];L2(∂NΩ;Rd)), ẇ ∈ C0([0, T ];L2(Ω;Rd)), u ∈ C0

w([0, T ];H1(Ω \ ΓT ;Rd)), and
u̇ ∈ C0

w([0, T ];L2(Ω;Rd)). In particular, the function t 7→ Wtot(t) is continuous from [0, T ]
to R.

Proof of Theorem 3.3.1. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n}
such that t ∈ ((j − 1)τn, jτn]. After setting tn := jτn, we can write (3.2.3) as

1

2
‖u′n(t)‖2L2(Ω) +

1

2
(CEun(t), Eun(t))L2(Ω) +

∫ tn

0
(D[ΘnEu

′
n],ΘnEu

′
n)L2(Ω) ds

≤ E(0) +Wn(t),

(3.3.5)

where

Wn(t) :=

∫ tn

0

[
(fn, u

′
n − w′n)L2(Ω) + (CEun, Ew′n)L2(Ω) + (D[ΘnEu

′
n],ΘnEw

′
n)L2(Ω)

]
ds

+

∫ tn

0

[
(u̇′n, w

′
n)L2(Ω) + (Fn, u

′
n − w′n)L2(∂NΩ)

]
ds.

We want to pass to the limit as n → ∞ in (3.3.5) and we start studying the left-hand side.
Thanks to (3.2.2) and (3.3.1), as n→∞ we have

‖un(t)− un(t)‖L2(Ω) ≤ τn‖δujn‖L2(Ω) ≤ Cτn → 0,

‖u′n(t)− u′n(t)‖2
H−1
D (Ω\Γ0)

≤ τ2
n‖δ2ujn‖2H−1

D (Ω\Γ0)
≤ τn

n∑
k=1

τn‖δ2ukn‖2H−1
D (Ω\Γ0)

≤ C̃τn → 0.

The last two convergences, together (3.3.3), imply

un(t) ⇀ u(t) in L2(Ω;Rd), u′n(t) ⇀ u̇(t) in H−1
D (Ω \ Γ0;Rd) as n→∞,

and since ‖un(t)‖H1(Ω\ΓT ) + ‖u′n(t)‖L2(Ω) ≤ C for every n ∈ N, we conclude

un(t) ⇀ u(t) in H1(Ω \ ΓT ;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd) as n→∞. (3.3.6)

Hence, we get

‖u̇(t)‖2L2(Ω) ≤ lim inf
n→∞

‖u′n(t)‖2L2(Ω), (3.3.7)

(CEu(t), Eu(t))L2(Ω) ≤ lim inf
n→∞

(CEun(t), Eun(t))L2(Ω). (3.3.8)
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Thanks to Lemma 3.2.4 and (3.1.19), as n→∞ we obtain

ΘnEu
′
n = E(Θnu

′
n)−∇Θn � u′n ⇀ E(Θu̇)−∇Θ� u̇ = ΘEu̇ in L2(0, T ;L2(Ω;Rd×d)),

so that ∫ t

0
(D[ΘEu̇],ΘEu̇)L2(Ω) ds ≤ lim inf

n→∞

∫ t

0
(D[ΘnEu

′
n],ΘnEu

′
n)L2(Ω) ds

≤ lim inf
n→∞

∫ tn

0
(D[ΘnEu

′
n],ΘnEu

′
n)L2(Ω) ds,

(3.3.9)

since ϕ 7→
∫ t

0 (DEϕ(s), Eϕ(s))L2(Ω) ds is lower semicontinuous on L2(0, T ;H1(Ω \ ΓT ;Rd))
and t ≤ tn.

Let us study the right-hand side of (3.3.5). By the following convergences as n→∞:

fn → f in L2(0, T ;L2(Ω;Rd)), u′n − w′n ⇀ u̇− ẇ in L2(0, T ;L2(Ω;Rd)),

we deduce

lim
n→∞

∫ tn

0
(fn, u

′
n − w′n)L2(Ω) ds =

∫ t

0
(f, u̇− ẇ)L2(Ω) ds. (3.3.10)

In a similar way, we can prove

lim
n→∞

∫ tn

0
(CEun, Ew′n)L2(Ω) ds =

∫ t

0
(CEu,Eẇ)L2(Ω) ds, (3.3.11)

lim
n→∞

∫ tn

0
(D[ΘnEu

′
n],ΘnEw

′
n)L2(Ω) ds =

∫ t

0
(D[ΘEu̇],ΘEẇ)L2(Ω) ds, (3.3.12)

since the following convergences hold as n→∞:

Ew′n → Eẇ in L2(0, T ;L2(Ω;Rd×d)), CEun ⇀ CEu in L2(0, T ;L2(Ω;Rd×d)),
ΘnEw

′
n → ΘEẇ in L2(0, T ;L2(Ω;Rd×d)), ΘnEu

′
n ⇀ ΘEu̇ in L2(0, T ;L2(Ω;Rd×d)).

Now, we use formula (3.2.10) to derive∫ tn

0
(u̇′n, w

′
n)L2(Ω) ds = (u′n(t), w′n(t))L2(Ω) − (u1, ẇ(0))L2(Ω) −

∫ tn

0
(u′n, ẇ

′
n)L2(Ω) ds.

By arguing as before, we can deduce

lim
n→∞

∫ tn

0
(u̇′n, w

′
n)L2(Ω) ds = (u̇(t), ẇ(t))L2(Ω) − (u1, ẇ(0))L2(Ω) −

∫ t

0
(u̇, ẅ)L2(Ω) ds, (3.3.13)

thanks to (3.3.6) and the following convergences as n→∞

ẇ′n → ẅ in L2(0, T ;L2(Ω;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),

‖w′n(t)− ẇ(t)‖L2(Ω) ≤
1

τn

∫ jτn

(j−1)τn

‖ẇ(s)− ẇ(t)‖L2(Ω) ds→ 0.

Notice that in the last convergence we have used ẇ ∈ C0([0, T ];L2(Ω;Rd)). Similarly we have∫ tn

0
(Fn, u

′
n − w′n)L2(∂NΩ) ds = (Fn(t), un(t)− wn(t))L2(∂NΩ) − (F (0), u0 − w(0))L2(∂NΩ)

−
∫ tn

0
(Ḟn, un − wn)L2(∂NΩ) ds,
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and by using (3.1.1), (3.3.6), the continuity of F from [0, T ] in L2(∂NΩ;Rd), and

Ḟn → Ḟ in L2(0, T ;L2(∂NΩ;Rd)), un − wn ⇀ u− w in L2(0, T ;L2(∂NΩ;Rd))

as n→∞, we get

lim
n→∞

∫ tn

0
(Fn, u

′
n − w′n)L2(∂NΩ) ds = (F (t), u(t)− w(t))L2(∂NΩ) − (F (0), u0 − w(0))L2(∂NΩ)

−
∫ t

0
(Ḟ , u− w)L2(∂NΩ) ds. (3.3.14)

By combining (3.3.7)–(3.3.14), we deduce the energy-dissipation inequality (3.3.4) for every
t ∈ (0, T ]. Finally, for t = 0 the inequality trivially holds since u(0) = u0 and u̇(0) = u1.

Lemma 3.3.3. The solution u ∈ W to (3.1.12)–(3.1.15) given by Lemma 3.2.4 satisfies

u(t)→ u0 in H1(Ω \ ΓT ;Rd), u̇(t)→ u1 in L2(Ω;Rd) as t→ 0+. (3.3.15)

In particular, u satisfies the initial conditions (3.1.16) in the sense of (3.1.21).

Proof. By sending t→ 0+ in the energy-dissipation inequality (3.3.4) and using the fact that
u ∈ C0

w([0, T ];H1(Ω \ ΓT ;Rd)) and u̇ ∈ C0
w([0, T ];L2(Ω;Rd)) we deduce

E(0) ≤ lim inf
t→0+

E(t) ≤ lim sup
t→0+

E(t) ≤ E(0),

since the right-hand side of (3.3.4) is continuous in t, u(0) = u0, and u̇(0) = u1. There-
fore there exists limt→0+ E(t) = E(0). We combine this fact with the lower semicontinuity
properties of t 7→ ‖u̇(t)‖2L2(Ω) and t 7→ (CEu(t), Eu(t))L2(Ω) to derive

lim
t→0+

‖u̇(t)‖2L2(Ω) = ‖u1‖2L2(Ω), lim
t→0+

(CEu(t), Eu(t))L2(Ω) = (CEu0, Eu0)L2(Ω).

Finally, since we have

u̇(t) ⇀ u1 in L2(Ω;Rd), Eu(t) ⇀ Eu0 in L2(Ω;Rd×d) as t→ 0+,

we deduce (3.3.15). In particular, we derive that the functions u : [0, T ] → H1(Ω \ ΓT ;Rd)
and u̇ : [0, T ]→ L2(Ω;Rd) are continuous at t = 0, which implies (3.1.21).

We are now in a position to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. The proof is a consequence of Lemmas 3.2.5 and 3.3.3.

Remark 3.3.4. We have proved Theorem 3.2.1 for the d-dimensional linear elastic case,
namely when the displacement u is a vector-valued function. The same result is true with
identical proofs in the antiplane case, that is when the displacement u is a scalar function
and satisfies (15).

3.4 Uniqueness

In this section we investigate the uniqueness properties of system (3.1.12) with boundary
and initial conditions (3.1.13)–(3.1.16). To this aim, we need to assume stronger regularity
assumptions on the cracks {Γt}t∈[0,T ] and the function Θ. Moreover, we have to restrict
our problem to the dimensional case d = 2, since in our proof we need to build a suitable
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family of diffeomorphisms which maps the time-dependent crack Γt into a fixed set, and this
construction is explicit only for d = 2 (see [20, Example 2.14]).

We proceed in two steps; first, in Lemma 3.4.2 we prove a uniqueness result in every
dimension d, but when the cracks are not increasing, that is ΓT = Γ0. Next, in Theorem 3.4.4
we combine Lemma 3.4.2 with the uniqueness result of [23] and the finite speed propagation
result of [18] to prove the uniqueness in the case of a moving crack in d = 2.

Let us start with the following lemma, whose proof is analogous to the one of Proposi-
tion 2.10 of [23].

Lemma 3.4.1. Let u ∈ W be a solution to (3.1.12)–(3.1.15), according Definition 3.1.5,
satisfying the initial condition u̇(0) = 0 in the following sense:

lim
h→0+

1

h

∫ h

0
‖u̇(t)‖2L2(Ω) = 0.

Then u satisfies

−
∫ T

0
(u̇(t), ϕ̇(t))L2(Ω) dt+

∫ T

0
(CEu(t), Eϕ(t))L2(Ω) dt

+

∫ T

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt

=

∫ T

0
(f(t), ϕ(t))L2(Ω) dt+

∫ T

0
(F (t), ϕ(t))L2(∂NΩ) dt

for every ϕ ∈ VD such that ϕ(T ) = 0, where ΘEu̇ is the function defined in (3.1.19).

Proof. We fix ϕ ∈ VD with ϕ(T ) = 0 and for every ε > 0 we define the function

ϕε(t) :=

{
t
εϕ(t) t ∈ [0, ε],

ϕ(t) t ∈ [ε, T ].

We have that ϕε ∈ VD and ϕε(0) = ϕε(T ) = 0, so we can use ϕε as test function in (3.1.18).
By proceeding as in [23, Proposition 2.10] we obtain

lim
ε→0+

∫ T

0
(u̇(t), ϕ̇ε(t))L2(Ω) dt =

∫ T

0
(u̇(t), ϕ̇(t))L2(Ω) dt,

lim
ε→0+

∫ T

0
(CEu(t), Eϕε(t))L2(Ω) dt =

∫ T

0
(CEu(t), Eϕ(t))L2(Ω) dt,

lim
ε→0+

∫ T

0
(f(t), ϕε(t))L2(Ω) dt =

∫ T

0
(f(t), ϕ(t))L2(Ω) dt.

It remains to consider the terms involving D and F . We have∫ T

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕε(t))L2(Ω) dt

=

∫ ε

0
(D[Θ(t)Eu̇(t)],

t

ε
Θ(t)Eϕ(t))L2(Ω) dt+

∫ T

ε
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt,

and by the dominated convergence theorem we get as ε→ 0+∣∣∣∣∫ ε

0
(D[Θ(t)Eu̇(t)],

t

ε
Θ(t)Eϕ(t))L2(Ω) dt

∣∣∣∣
≤ ‖D‖L∞(Ω)‖Θ‖L∞((0,T )×Ω)

∫ ε

0
‖Θ(t)Eu̇(t)‖L2(Ω)‖Eϕ(t)‖L2(Ω) dt→ 0,
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∫ T

ε
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt→

∫ T

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt.

Similarly, we have∫ T

0
(F (t), ϕε(t))L2(∂NΩ) dt =

∫ ε

0
(F (t),

t

ε
ϕ(t))L2(∂NΩ) dt+

∫ T

ε
(F (t), ϕ(t))L2(∂NΩ) dt,

and as ε→ 0+∣∣∣∣∫ ε

0
(F (t),

t

ε
ϕ(t))L2(∂NΩ) dt

∣∣∣∣ ≤ ∫ ε

0
‖F (t)‖L2(∂NΩ)‖ϕ(t)‖L2(∂NΩ) dt→ 0,∫ T

ε
(F (t), ϕ(t))L2(∂NΩ) dt→

∫ T

0
(F (t), ϕ(t))L2(∂NΩ) dt.

By combining together the previous convergences we get the thesis.

We prove now the uniqueness result in the case of a fixed domain, that is ΓT = Γ0, by
following the same procedure adopted in Theorem 1.2.10 of Chapter 1. On the function Θ
we assume

Θ ∈ Lip([0, T ]× Ω), ∇Θ̇ ∈ L∞((0, T )× Ω;Rd), (3.4.1)

while on ΓT = Γ0 we require only (E1)–(E3).

Lemma 3.4.2. Assume that Θ satisfies (3.4.1) and ΓT = Γ0. Then the viscoelastic dynamic
system (3.1.12) with boundary conditions (3.1.13)–(3.1.15) has a unique solution, according
to Definition 3.1.5, satifying u(0) = u0 and u̇(0) = u1 in the sense of (3.1.21).

Proof. Let u1, u2 ∈ W be two solutions to (3.1.12)–(3.1.15) with initial conditions (3.1.16).
The function u := u1 − u2 satisfies

lim
h→0+

1

h

∫ h

0
(‖u(t)‖2H1(Ω\Γt) + ‖u̇(t)‖2L2(Ω)) dt = 0, (3.4.2)

hence by Lemma 3.4.1 it solves

−
∫ T

0
(u̇(t), ϕ̇(t))L2(Ω) dt+

∫ T

0
(CEu(t), Eϕ(t))L2(Ω) dt

+

∫ T

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕ(t))L2(Ω) dt = 0

(3.4.3)

for every ϕ ∈ VD such that ϕ(T ) = 0. We fix s ∈ (0, T ] and we consider the function

ϕs(t) :=

{
−
∫ s
t u(τ) dτ t ∈ [0, s],

0 t ∈ [s, T ].

Since ϕs ∈ VD and ϕs(T ) = 0, we can use it as test function in (3.4.3) to obtain

−
∫ s

0
(u̇(t), u(t))L2(Ω) dt+

∫ s

0
(CEϕ̇s(t), Eϕs(t))L2(Ω) dt

+

∫ s

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕs(t))L2(Ω) dt = 0.

In particular we deduce

− 1

2

∫ s

0

d

dt
‖u(t)‖2L2(Ω) dt+

1

2

∫ s

0

d

dt
(CEϕs(t), Eϕs(t))L2(Ω) dt

+

∫ s

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕs(t))L2(Ω) dt = 0,
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which implies

1

2
‖u(s)‖2L2(Ω) +

1

2
(CEϕs(0), Eϕs(0))L2(Ω) =

∫ s

0
(D[Θ(t)Eu̇(t)],Θ(t)Eϕs(t))L2(Ω) dt, (3.4.4)

since u(0) = ϕs(s) = 0. From the distributional point of view, the following identity holds

d

dt
(ΘEu) = Θ̇Eu+ ΘEu̇ ∈ L2(0, T ;L2(Ω;Rd×d)). (3.4.5)

Indeed, for every ϕ ∈ C∞c (0, T ;L2(Ω;Rd×d)) we have∫ T

0
(

d

dt
(Θ(t)Eu(t)), ϕ(t))L2(Ω) dt

= −
∫ T

0
(Θ(t)Eu(t), ϕ̇(t))L2(Ω) dt

= −
∫ T

0
(E(Θ(t)u(t))−∇Θ(t)� u(t), ϕ̇(t))L2(Ω) dt

=

∫ T

0
(E(Θ̇(t)u(t)) + E(Θ(t)u̇(t))−∇Θ̇(t)� u(t)−∇Θ(t)� u̇(t), ϕ(t))L2(Ω) dt

=

∫ T

0
(Θ̇(t)Eu(t) + Θ(t)Eu̇(t), ϕ(t))L2(Ω) dt.

In particular ΘEu ∈ H1(0, T ;L2(Ω;Rd×d)), so that by (3.4.2)

‖Θ(0)Eu(0)‖2L2(Ω) = lim
h→0+

1

h

∫ h

0
‖Θ(t)Eu(t)‖2L2(Ω) dt

≤ ‖Θ‖2L∞((0,T )×Ω) lim
h→0+

1

h

∫ h

0
‖u(t)‖2H1(Ω\Γt) dt = 0,

which yields Θ(0)Eu(0) = 0. Thanks to (3.4.5) and to Θu ∈ H1(0, T ;L2(Ω;Rd)), we deduce

d

dt
(D[ΘEu],ΘEϕs)L2(Ω)

= 2(D[ΘEu], Θ̇Eϕs)L2(Ω) + (D[ΘEu̇],ΘEϕs)L2(Ω) + (D[ΘEu],ΘEϕ̇s)L2(Ω),

which implies∫ s

0
(D[ΘEu̇],ΘEϕs)L2(Ω) dt

=

∫ s

0

[
d

dt
(D[ΘEu],ΘEϕs)L2(Ω) − 2(D[ΘEu], Θ̇Eϕs)L2(Ω) − (D[ΘEu],ΘEϕ̇s)L2(Ω)

]
dt

≤ (D[Θ(s)Eu(s)],Θ(s)Eϕs(s))L2(Ω) − (D[Θ(0)Eu(0)],Θ(0)Eϕs(0))L2(Ω)

+

∫ s

0

[
2
(
(D[ΘEu],ΘEu)L2(Ω)

) 1
2
(
(D[Θ̇Eϕs], Θ̇Eϕs)L2(Ω)

) 1
2 − (D[ΘEu],ΘEϕ̇s)L2(Ω)

]
dt

≤
∫ s

0

[
(D[ΘEu],ΘEu)L2(Ω) + (D[Θ̇Eϕs], Θ̇Eϕs)L2(Ω) − (D[ΘEu],ΘEϕ̇s)L2(Ω)

]
dt

≤ ‖D‖L∞(Ω)‖Θ̇‖2L∞((0,T )×Ω)

∫ s

0
‖Eϕs‖2L2(Ω)dt,

since Eϕs(s) = Θ(0)Eu(0) = 0 and Eϕ̇s = Eu in (0, s). By combining the previous inequality
with (3.4.4) and using the coercivity of the tensor C, we derive

λ1

2
‖Eϕs(0)‖2L2(Ω) +

1

2
‖u(s)‖2L2(Ω) ≤

1

2
(CEϕs(0), Eϕs(0))L2(Ω) +

1

2
‖u(s)‖2L2(Ω)

≤ ‖D‖L∞(Ω)‖Θ̇‖2L∞((0,T )×Ω)

∫ s

0
‖Eϕs(t)‖2L2(Ω)dt.
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Let us now set ζ(t) :=
∫ t

0 u(τ) dτ , then

‖Eϕs(0)‖2L2(Ω) = ‖Eζ(s)‖2L2(Ω),

‖Eϕs(t)‖2L2(Ω) = ‖Eζ(t)− Eζ(s)‖2L2(Ω) ≤ 2‖Eζ(t)‖2L2(Ω) + 2‖Eζ(s)‖2L2(Ω),

from which we deduce

λ1

2
‖Eζ(s)‖2L2(Ω) +

1

2
‖u(s)‖2L2(Ω) ≤ C

∫ s

0
‖Eζ(t)‖2L2(Ω) dt+ Cs‖Eζ(s)‖2L2(Ω), (3.4.6)

where C := 2‖D‖L∞(Ω)‖Θ̇‖2L∞((0,T )×Ω). Therefore, if we set s0 := λ1
4C , for all s ≤ s0 we obtain

λ1

4
‖Eζ(s)‖2L2(Ω) ≤

(
λ1

2
− Cs

)
‖Eζ(s)‖2L2(Ω) ≤ C

∫ s

0
‖Eζ(t)‖2L2(Ω) dt.

By Gronwall’s lemma the last inequality implies Eζ(s) = 0 for all s ≤ s0. Hence, thanks
to (3.4.6) we get ‖u(s)‖2L2(Ω) ≤ 0 for all s ≤ s0, which yields u(s) = 0 for all s ≤ s0. Since
s0 depends only on C, D, and Θ, we can repeat this argument starting from s0, and with a
finite number of steps we obtain u = 0 on [0, T ].

We now are in a position to prove the uniqueness in the case of a moving crack. We
consider the dimensional case d = 2, and we require the following assumptions:

(F1) there exists a C2,1 simple curve Γ ⊂ Ω ⊂ R2, parametrized by arc-length γ : [0, `]→ Ω,
such that Γ ∩ ∂Ω = γ(0) ∪ γ(`) and Ω \ Γ is the union of two disjoint open sets with
Lipschitz boundary;

(F2) Γt = {γ(σ) : 0 ≤ σ ≤ s(t)}, where s : [0, T ] → (0, `) is a non-decreasing function of
class C1,1;

(F3) |ṡ(t)|2 < λ1
CK

for every t ∈ [0, T ], where λ1 is the ellipticity constant of C and CK is the
constant that appears in Korn’s inequality (3.1.2).

Remark 3.4.3. Notice that hypotheses (F1) and (F2) imply (E1)–(E3). Moreover, by (F2)
we have ΓT \ Γ0 ⊂⊂ Ω.

We also assume that Θ satisfies (3.4.1) and that there exists a constant ε > 0, independent
of t, such that

Θ(t, x) = 0 for every t ∈ [0, T ] and x ∈ {y ∈ Ω : |y − γ(s(t))| < ε}. (3.4.7)

Theorem 3.4.4. Assume d = 2, (F1)–(F3), and that Θ satisfies (3.4.1) and (3.4.7). Then
the system (3.1.12) with boundary conditions (3.1.13)–(3.1.15) has a unique solution u ∈ W,
according to Definition (3.1.5), satisfying u(0) = u0 and u̇(0) = u1 in the sense of (3.1.21).

Proof. As before let u1, u2 ∈ W be two solutions to (3.1.12)–(3.1.15) with initial condi-
tions (3.1.16). Then u := u1 − u2 satisfies (3.4.2) and (3.4.3) for every ϕ ∈ VD such that
ϕ(T ) = 0. Let us define

t0 := sup{t ∈ [0, T ] : u(s) = 0 for every s ∈ [0, t]},

and assume by contradiction that t0 < T . Consider first the case in which t0 > 0. By (F1),
(F2), (3.4.1), and (3.4.7) we can find two open sets A1 and A2, with A1 ⊂⊂ A2 ⊂⊂ Ω, and
a number δ > 0 such that for every t ∈ [t0 − δ, t0 + δ] we have γ(s(t)) ∈ A1, Θ(t, x) = 0 for
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every x ∈ A2, and (A2 \A1)\Γ is the union of two disjoint open sets with Lipschitz boundary.
Let us define

V̂ 1 := {u ∈ H1((A2 \A1) \ Γt0−δ;R
2) : u = 0 on ∂A1 ∪ ∂A2}, Ĥ1 := L2(A2 \A1;R2).

Since every function in V̂ 1 can be extended to a function in H1
D(Ω \ Γt0−δ;R2), by standard

results for linear hyperbolic equations (se, e.g., [24]) we deduce that ü ∈ L2(t0−δ, t0+δ; (V̂ 1)′)
and u satisfies for a.e. t ∈ (t0 − δ, t0 + δ)

〈ü(t), ψ〉(V̂ 1)′ + (CEu(t), Eψ)Ĥ1 = 0 for every ψ ∈ V̂ 1.

Moreover, we have u(t0) = 0 as element of Ĥ1 and u̇(t0) = 0 as element of (V̂ 1)′, since
u(t) = 0 in [t0 − δ, t0), u ∈ C0([t0 − δ, t0]; Ĥ1), and u̇ ∈ C0([t0 − δ, t0]; (V̂ 1)′). We are now
in a position to apply the finite speed propagation result of [18, Theorem 6.1]. This theorem
ensures the existence of a third open set A3, with A1 ⊂⊂ A3 ⊂⊂ A2, such that, up to choose
a smaller δ, we have u(t) = 0 on ∂A3 for every t ∈ [t0, t0 + δ], and both (Ω \ A3) \ Γ and
A3 \ Γ are union of two disjoint open sets with Lipschitz boundary.

In Ω \A3 the function u solves

−
∫ t0+δ

t0−δ

∫
Ω\A3

u̇(t, x) · ϕ̇(t, x) dx dt+

∫ t0+δ

t0−δ

∫
Ω\A3

C(x)Eu(t, x) · Eϕ(t, x) dx dt

+

∫ t0+δ

t0−δ

∫
Ω\A3

D(x)Θ(t, x)Eu̇(t, x) ·Θ(t, x)Eϕ(t, x) dx dt = 0

for every ϕ ∈ L2(t0− δ, t0 + δ; V̂ 2)∩H1(t0− δ, t0 + δ; Ĥ2) such that ϕ(t0− δ) = ϕ(t0 + δ) = 0,
where

V̂ 2 := {u ∈ H1((Ω \A3) \ Γt0−δ;R
2) : u = 0 on ∂DΩ ∪ ∂A3}, Ĥ2 := L2(Ω \A3;R2).

Since u(t) = 0 on ∂DΩ∪ ∂A3 for every t ∈ [t0 − δ, t0 + δ] and u(t0 − δ) = u̇(t0 − δ) = 0 in the
sense of (3.1.21) (we recall that u = 0 in [t0 − δ, t0)), we can apply Lemma 3.4.2 to deduce
that u(t) = 0 in Ω \A3 for every t ∈ [t0 − δ, t0 + δ].

On the other hand in A3, by setting

V̂ 3
t := {u ∈ H1(A3 \ Γt;R2) : u = 0 on ∂A3}, Ĥ3 := L2(A3;R2),

we get that the function u solves

−
∫ t0+δ

t0−δ

∫
A3

u̇(t, x) · ϕ̇(t, x) dx dt+

∫ t0+δ

t0−δ

∫
A3

C(x)Eu(t, x) · Eϕ(t, x) dx dt = 0

for every function ϕ ∈ L2(t0−δ, t0+δ; V̂ 3
t0+δ)∩H1(t0−δ, t0+δ; Ĥ3) such that ϕ(t) ∈ V̂ 3

t for a.e.
t ∈ (t0− δ, t0 + δ) and ϕ(t0− δ) = ϕ(t0 + δ) = 0. Here we would like to apply the uniqueness
result contained in [23, Theorem 4.3] (which is a slightly generalization of Theorem 1.2.10 of
Chapter 1) for the spaces {V̂ 3

t }t∈[t0−δ,t0+δ] and Ĥ3, endowed with the usual norms, and for
the bilinear form

a(u, v) :=

∫
A3

C(x)Eu(x) · Ev(x) dx for u, v ∈ V̂ 3
t0+δ. (3.4.8)

As show in [20, Example 2.14] we can construct two maps Φ,Ψ ∈ C1,1([t0−δ, t0 +δ]×A3;R2)
such that for every t ∈ [0, T ] the function Φ(t) : A3 → A3 is a diffeomorfisms of A3 in itself
with inverse Ψ(t) : A3 → A3. Moreover, Φ(0, y) = y for every y ∈ A3, Φ(t,Γ ∩ A3) = Γ ∩ A3

and Φ(t,Γt0−δ∩A3) = Γt∩A3 for every t ∈ [t0−δ, t0+δ]. For every t ∈ [t0−δ, t0+δ], the maps



Chapter 3. A dynamic model for viscoelastic materials with growing cracks 83

(Qtu)(y) := u(Φ(t, y)), u ∈ V̂ 3
t and y ∈ A3, and (Rtv)(x) := v(Ψ(t, x)), v ∈ V̂ 3

t0−δ and x ∈ A3,
provide a family of linear and continuous operators which satisfies assumptions (U1)–(U8)
of [23, Theorem 4.3]. The only condition to check is (U5), which is a ensured by (F3). Indeed,
the bilinear form a satisfies the following ellipticity condition:

a(u, u) ≥ λ1‖Eu‖2L2(A3) ≥
λ1

Ĉk
‖u‖2

V̂ 3
t0+δ

− λ1‖u‖2Ĥ3 for every u ∈ V̂ 3
t0+δ, (3.4.9)

where ĈK is the constant in Korn’s inequality in V̂ 3
t0+δ, namely

‖∇u‖2L2(A3) ≤ ĈK
(
‖u‖2L2(A3) + ‖Eu‖2L2(A3)

)
for every u ∈ V̂ 3

t0+δ.

Therefore have to show that Φ satisfies

|Φ̇(t, y)|2 < λ1

ĈK
for every t ∈ [t0 − δ, t0 + δ] and y ∈ A3,

which is analogous to the condition (1.2.4) appearing in Chapter 1. Thanks to (F3), we can
construct the maps Φ and Ψ in such a way that

|Φ̇(t, y)|2 < λ1

CK
for every t ∈ [t0 − δ, t0 + δ] and y ∈ A3,

as explained in [20, Example 3.1]. Moreover, every function in V̂ 3
t0+δ can be extended to a

function in H1(Ω\Γ;Rd). Hence, we can use for Korn’s inequality in V̂ 3
t0+δ the same constant

CK of (3.1.2). This allows us to apply the uniqueness result [23, Theorem 4.3], which implies
u(t) = 0 in A3 for every t ∈ [t0, t0 + δ]. In the case t0 = 0, it is enough to argue as before in
[0, δ], by exploiting (3.4.2). Therefore u(t) = 0 in Ω for every t ∈ [t0, t0 +δ], which contradicts
the maximality of t0. Hence t0 = T , that yields u(t) = 0 in Ω for every t ∈ [0, T ].

Remark 3.4.5. Also Theorem 3.4.4 is true in the antiplane case, i.e, for (15), with identical
proof. Notice that, when the displacement is scalar, we do not need to use Korn’s inequality
in (3.4.9) to get the coercivity in V̂ 3

t0+δ of the bilinear form a defined in (3.4.8). Therefore,
in this case in (F3) it is enough to assume |ṡ(t)|2 < λ1.

3.5 An example of a growing crack

We conclude this chapter with an example of a moving crack {Γt}t∈[0,T ] and a solution to
system (3.1.12)–(3.1.16) which satisfy the dynamic energy-dissipation balance (16), similarly
to the purely elastic case of [17].

In dimension d = 2 we consider an antiplane evolution, which means that the displacement
u is scalar, and we take Ω := BR(0) ⊂ R2, with R > 0. We fix a constant 0 < c < 1 such that
cT < R, and we set

Γt := Ω ∩ {(σ, 0) ∈ R2 : σ ≤ ct} for every t ∈ [0, T ].

Let us define the following function

S(x1, x2) := Im(
√
x1 + ix2) =

x2√
2
√
|x|+ x1

x ∈ R2 \ {(σ, 0) : σ ≤ 0},

where Im denotes the imaginary part of a complex number. Notice that the function S
belongs to H1(Ω \ Γ0) \H2(Ω \ Γ0), and it is a solution to{

∆S = 0 in Ω \ Γ0,

∇S · ν = ∂2S = 0 on Γ0.
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We consider the function

u(t, x) :=
2√
π
S

(
x1 − ct√

1− c2
, x2

)
t ∈ [0, T ], x ∈ Ω \ Γt,

and we define by w(t) its restriction to ∂Ω. Since u(t) has a singularity only at the crack-
tip (ct, 0), the function w(t) can be seen as the trace on ∂Ω of a function belonging to
H2(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω \ Γ0)), still denoted by w(t). It is easy to see that u solves
the wave equation

ü(t)−∆u(t) = 0 in Ω \ Γt, t ∈ [0, T ],

with boundary conditions

u(t) = w(t) on ∂Ω, t ∈ [0, T ],

∂u

∂ν
(t) = ∇u(t) · ν = 0 on Γt, t ∈ [0, T ],

and initial data

u0(x1, x2) :=
2√
π
S

(
x1√

1− c2
, x2

)
∈ H1(Ω \ Γ0),

u1(x1, x2) := − 2√
π

c√
1− c2

∂1S

(
x1√

1− c2
, x2

)
∈ L2(Ω).

Let us consider a function Θ satisfying the regularity assumptions (3.4.1) and condi-
tion (3.4.7), namely

Θ(t) = 0 on Bε(t) := {x ∈ R2 : |x− (ct, 0)| < ε} for every t ∈ [0, T ],

with 0 < ε < R−cT . In this case u is a solution, according to Definition 3.1.5, to the damped
wave equation

ü(t)−∆u(t)− div(Θ2(t)∇u̇(t)) = f(t) in Ω \ Γt, t ∈ [0, T ],

with forcing term f given by

f := −div(Θ2∇u̇) = −∇Θ · 2Θ∇u̇−Θ2∆u̇ ∈ L2(0, T ;L2(Ω)),

and boundary and initial conditions

u(t) = w(t) on ∂Ω, t ∈ [0, T ],

∂u

∂ν
(t) + Θ2(t)

∂u̇

∂ν
(t) = 0 on Γt, t ∈ [0, T ],

u(0) = u0, u̇(0) = u1 in Ω \ Γ0.

Notice that for the homogeneous Neumann boundary conditions on Γt we have used the fact
that ∂u̇

∂ν (t) = ∇u̇(t) · ν = ∂2u̇(t) = 0 on Γt. By the uniqueness result proved in the previous
section, the function u coincides with the solution given by Theorem 3.2.1. Thanks to the
computations done in [17, Section 4], we know that u satisfies for every t ∈ [0, T ] the following
dynamic energy-dissipation balance for the undamped equation, where ct coincides with the
length of Γt \ Γ0:

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω) + ct

=
1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω) +

∫ t

0
(
∂u

∂ν
(s), ẇ(s))L2(∂Ω) ds.

(3.5.1)
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Moreover, we have∫ t

0
(
∂u

∂ν
(s), ẇ(s))L2(∂Ω) ds =

∫ t

0
(∇u(s),∇ẇ(s))L2(Ω) ds−

∫ t

0
(u̇(s), ẅ(s))L2(Ω) ds

+ (u̇(t), ẇ(t))L2(Ω) − (u̇(0), ẇ(0))L2(Ω).

(3.5.2)

For every t ∈ [0, T ] we compute

(f(t), u̇(t)− ẇ(t))L2(Ω) = −
∫

(Ω\Bε(t))\Γt
div[Θ2(t, x)∇u̇(t, x)](u̇(t, x)− ẇ(t, x)) dx

= −
∫

(Ω\Bε(t))\Γt
div[Θ2(t, x)∇u̇(t, x)(u̇(t, x)− ẇ(t, x))] dx

+

∫
(Ω\Bε(t))\Γt

Θ2(t, x)∇u̇(t, x) · (∇u̇(t, x)−∇ẇ(t, x)) dx.

If we denote by u̇+(t) and ẇ+(t) the traces of u̇(t) and ẇ(t) on Γt from above and by u̇−(t)
and ẇ−(t) the trace from below, thanks to the divergence theorem we have∫

(Ω\Bε(t))\Γt
div[Θ2(t, x)∇u̇(t, x)(u̇(t, x)− ẇ(t, x))] dx

=

∫
∂Ω

Θ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ẇ(t, x)) dx+

∫
∂Bε(t)

Θ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ẇ(t, x)) dx

−
∫

(Ω\Bε(t))∩Γt

Θ2(t, x)∂2u̇
+(t, x)(u̇+(t, x)− ẇ+(t, x)) dH1(x)

+

∫
(Ω\Bε(t))∩Γt

Θ2(t, x)∂2u̇
−(t, x)(u̇−(t, x)− ẇ−(t, x)) dH1(x) = 0,

since u(t) = w(t) on ∂Ω, Θ(t) = 0 on ∂Bε(t), and ∂2u̇(t) = 0 on Γt. Therefore for every
t ∈ [0, T ] we get

(f(t), u̇(t)− ẇ(t))L2(Ω) = ‖Θ(t)∇u̇(t)‖2L2(Ω) − (Θ(t)∇u̇(t),Θ(t)∇ẇ(t))L2(Ω). (3.5.3)

By combining (3.5.1)–(3.5.3) we deduce that u satisfies for every t ∈ [0, T ] the following
dynamic energy-dissipation balance

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω) + ct+

∫ t

0
‖Θ(s)∇u̇(s)‖2L2(Ω) ds

=
1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω) +Wtot(t),

(3.5.4)

where in this case the total work takes the form

Wtot(t) :=

∫ t

0

[
(f(s), u̇(s)− ẇ(s))L2(Ω) + (∇u(s),∇ẇ(s))L2(Ω)

]
ds

+

∫ t

0

[
(Θ(s)∇u̇(s),Θ(s)∇ẇ(s))L2(Ω) − (u̇(s), ẅ(s))L2(Ω)

]
ds

+ (u̇(t), ẇ(t))L2(Ω) − (u̇(0), ẇ(0))L2(Ω).

Notice that equality (3.5.4) gives (16). This show that in this model the dynamic energy-
dissipation balance can be satisfied by a moving crack, in contrast with the case Θ = 1, which
always leads to (14).





Chapter 4

A phase-field model of dynamic
fracture

In this chapter we prove an existence result for the dynamic phase-field model of fracture
with a crack-dependent dissipation (D̃1)–(D̃3).

The chapter is organized as follows: in Section 4.1 we list the main assumptions on our
model, and in Theorem 4.1.5 we state our existence result. Section 4.2 is devoted to the
study of the time discretization scheme. We construct an approximation of our evolution
by solving, with an alternate minimization procedure, problems (D̃1) and (D̃2). Next, we
show that this discrete evolution satisfies the estimate (4.2.17), which allows us to pass to
the limit as the time step tends to zero. For every k ∈ N ∪ {0} we obtain the existence of a
dynamic evolution t 7→ (u(t), v(t)) which satisfies (D̃1) and (D̃2), and the energy-dissipation
inequality (4.2.32). We complete the proof of Theorem 4.1.5 in Section 4.3, where we prove
that for k > d/2 our evolution is more regular in time, and it satisfies the dynamic energy-
dissipation balance (18). Finally, in Section 4.4 we study the dynamic phase-field model
without dissipative terms (D1)–(D3).

The results contained in this chapter are the basis of the submitted paper [7].

4.1 Preliminary results

Let T be a positive number and let Ω ⊂ Rd be a bounded open set with Lipschitz boundary.
We fix two (possibly empty) Borel subsets ∂D1Ω, ∂D2Ω of ∂Ω, and we denote by ∂N1Ω, ∂N2Ω
their complements. We introduce the spaces

H1
D1

(Ω;Rd) := {ψ ∈ H1(Ω;Rd) : ψ = 0 on ∂D1Ω},
H1
D2

(Ω) := {ϕ ∈ H1(Ω) : ϕ = 0 on ∂D2Ω},

and we denote by H−1
D1

(Ω;Rd) the dual space of H1
D1

(Ω;Rd). The transpose of the natural

embedding H1
D1

(Ω;Rd) ↪→ L2(Ω;Rd) induces the embedding of L2(Ω;Rd) into H−1
D1

(Ω;Rd),
which is defined by

〈g, ψ〉H−1
D1

(Ω)
:= (g, ψ)L2(Ω) for g ∈ L2(Ω;Rd) and ψ ∈ H1

D1
(Ω;Rd).

Let C : Ω→ L (Rd×dsym;Rd×dsym) be a fourth-order tensor field satisfying the following natural
assumptions in linear elasticity:

C ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (4.1.1)

(C(x)ξ1) · ξ2 = ξ1 · (C(x)ξ2) for a.e. x ∈ Ω and for every ξ1, ξ2 ∈ Rd×dsym, (4.1.2)
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C(x)ξ · ξ ≥ λ0|ξ|2 for a.e. x ∈ Ω and for every ξ ∈ Rd×dsym, (4.1.3)

for a constant λ0 > 0. Thanks to second Korn’s inequality there exists a constant CK > 0,
depending on Ω, such that

‖∇ψ‖L2(Ω) ≤ CK(‖ψ‖L2(Ω) + ‖Eψ‖L2(Ω)) for every ψ ∈ H1(Ω;Rd).

By combining Korn’s inequality with (4.1.3), we obtain that C satisfies the following ellipticity
condition of integral type:

(CEψ,Eψ)L2(Ω) ≥ c0‖ψ‖2H1(Ω) − c1‖ψ‖2L2(Ω) for every ψ ∈ H1(Ω;Rd), (4.1.4)

for two constants c0 > 0 and c1 ∈ R.
We fix ε > 0 and we consider a map b : R→ [0,+∞) satisfying

b ∈ C1(R) is convex and non-decreasing, (4.1.5)

b(s) ≥ η for every s ∈ R and some η > 0. (4.1.6)

We define the functionals elastic energy E : H1(Ω;Rd)×H1(Ω)→ [0,∞] and surface energy
H : H1(Ω)→ [0,∞) in the following way:

E (u, v) :=
1

2

∫
Ω
b(v(x))C(x)Eu(x) · Eu(x) dx,

H (v) :=
1

4ε

∫
Ω
|1− v(x)|2 dx+ ε

∫
Ω
|∇v(x)|2 dx

for u ∈ H1(Ω;Rd) and v ∈ H1(Ω). We also define the kinetic energy K : L2(Ω;Rd)→ [0,∞)
and the dissipative energy G : Hk(Ω)→ [0,∞) for every k ∈ N ∪ {0} as

K (w) :=
1

2

∫
Ω
|w(x)|2 dx, G (σ) :=

k∑
i=0

αi

∫
Ω
|∇iσ(x)|2dx

for w ∈ L2(Ω;Rd) and σ ∈ Hk(Ω), where αi, i = 0, . . . , k, are non negative numbers with
α0, αk > 0 (we recall that H0(Ω) := L2(Ω)). Notice that, by [1, Corollary 4.16], the functional
G induces a norm on Hk(Ω) which is equivalent to the standard one. In particular, there
exist two constants β0, β1 > 0 such that

β0‖σ‖2Hk(Ω) ≤ G (σ) ≤ β1‖σ‖2Hk(Ω) for every σ ∈ Hk(Ω).

Finally, we define the total energy F : H1(Ω;Rd)× L2(Ω;Rd)×H1(Ω)→ [0,∞] as

F (u,w, v) := K (w) + E (u, v) + H (v)

for u ∈ H1(Ω;Rd), w ∈ L2(Ω;Rd), and v ∈ H1(Ω).
Throughout the chapter we always assume that C and b satisfy (4.1.1)–(4.1.3), (4.1.5),

and (4.1.6), and that ε is a fixed positive number. Given

w1 ∈ H2(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)), (4.1.7)

w2 ∈ H1(Ω) ∩Hk(Ω) with w2 ≤ 1 on ∂D2Ω, (4.1.8)

f ∈ L2(0, T ;L2(Ω;Rd)), g ∈ H1(0, T ;H−1
D1

(Ω;Rd)), (4.1.9)

u0 − w1(0) ∈ H1
D1

(Ω;Rd), u1 ∈ L2(Ω;Rd), (4.1.10)

v0 − w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with v0 ≤ 1 in Ω, (4.1.11)
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we search a pair (u, v) which solves the elastodynamics system

ü(t)− div[b(v(t))CEu(t)] = f(t) + g(t) in Ω, t ∈ [0, T ], (4.1.12)

with boundary conditions formally written as

u(t) = w1(t) on ∂D1Ω, t ∈ [0, T ], (4.1.13)

v(t) = w2 on ∂D2Ω, t ∈ [0, T ], (4.1.14)

(b(v(t))CEu(t))ν = 0 on ∂N1Ω, t ∈ [0, T ], (4.1.15)

and initial conditions

u(0) = u0, u̇(0) = u1, v(0) = v0 in Ω. (4.1.16)

In addition, we require the irreversibility condition:

v(t) ≤ v(s) in Ω for 0 ≤ s ≤ t ≤ T , (4.1.17)

and for a.e. t ∈ (0, T ) the following crack stability condition:

E (u(t), v∗)− E (u(t), v(t)) + H (v∗)−H (v(t))

+
k∑
i=0

αi(∇iv̇(t),∇iv∗ −∇iv(t))L2(Ω) ≥ 0
(4.1.18)

among all v∗ −w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with v∗ ≤ v(t). Notice that the space H1(Ω) ∩Hk(Ω)

coincides with either H1(Ω) (when k = 0) or Hk(Ω) (for k ≥ 1). Finally, for every t ∈ [0, T ]
we ask the dynamic energy-dissipation balance:

F (u(t), u̇(t), v(t)) +

∫ t

0
G (v̇(s)) ds = F (u0, u1, v0) + Wtot(u, v; 0, t), (4.1.19)

where Wtot(u, v; t1, t2) is the total work over the time interval [t1, t2] ⊆ [0, T ], defined as

Wtot(u, v; t1, t2) :=

∫ t2

t1

[
(f(s), u̇(s)− ẇ1(s))L2(Ω) + (b(v(s))CEu(s), Eẇ1(s))L2(Ω)

]
ds

−
∫ t2

t1

[
(u̇(s), ẅ1(s))L2(Ω) + 〈ġ(s), u(s)− w1(s)〉H−1

D1
(Ω)

]
ds

+ (u̇(t2), ẇ1(t2))L2(Ω) + 〈g(t2), u(t2)− w1(t2)〉H−1
D1

(Ω)

− (u̇(t1), ẇ1(t1))L2(Ω) − 〈g(t1), u(t1)− w1(t1)〉H−1
D1

(Ω).

Remark 4.1.1. A simple prototype for the function b is given by

b(s) := (s ∨ 0)2 + η for s ∈ R.

In this case, the elastic energy becomes

E (u, v) =
1

2

∫
Ω

[(v(x) ∨ 0)2 + η]C(x)Eu(x) · Eu(x) dx (4.1.20)

for u ∈ H1(Ω;Rd) and v ∈ H1(Ω), which corresponds to the phase-field model of dynamic
fracture (D̃1)–(D̃3) considered in the introduction. Usually, in the phase-field setting, the
elastic energy functional is defined as

1

2

∫
Ω

[(v(x))2 + η]C(x)Eu(x) · Eu(x) dx

for u ∈ H1(Ω;Rd) and v ∈ H1(Ω), with v satisfying 0 ≤ v ≤ 1. In our case, due to the
presence of the dissipative term introduced in (D̃2) and (D̃3), we need to consider phase-field
functions v which may assume negative values. Therefore, we have to slightly modify the
elastic energy functional by considering (4.1.20).
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Remark 4.1.2. We give an idea of the meaning of the term G (v̇) in the phase-field setting,
by comparing it with a dissipation, in the sharp-interface case, which depends on the velocity
of the crack-tips. We consider just an example in the particular case d = 2 and k = 0
of a rectilinear crack Γt := {(σ, 0) : σ ≤ s(t)}, t ∈ [0, T ], moving along the x1-axis, with
s ∈ C1([0, T ]), s(0) = 0, and ṡ(t) ≥ 0 for every t ∈ [0, T ]. In view of the analysis done in [4],
the sequence vε(t) which best approximate Γt takes the following form:

vε(t, x) := Ψ

(
dist(x,Γt)

ε

)
for (t, x) ∈ [0, T ]× R2.

Here, Ψ: R → [0, 1] is a C1 function satisfying Ψ(s) = 0 for |s| ≤ δ, with 0 < δ < 1, and
Ψ(s) = 1 for |s| ≥ 1. The function vε ∈ C1([0, T ]× R2) is constantly 0 in a εδ-neighborhood
of Γt, and takes the value 1 outside a ε-neighborhood of Γt. Moreover, its time derivative
satisfies

v̇ε(t, x) = − ṡ(t)
ε
∂1Φ

(
x− (s(t), 0)

ε

)
for (t, x) ∈ [0, T ]× R2,

where Φ(y) := Ψ(dist(y,Γ0)) for y ∈ R2. In particular for every t ∈ [0, T ] we deduce

‖v̇ε(t)‖2L2(Ω) =
ṡ(t)2

ε2

∫
R2

∣∣∣∣∂1Φ

(
x− (s(t), 0)

ε

)∣∣∣∣2 dx = ṡ(t)2

∫
R2

|∂1Φ(y)|2 dy = CΦṡ(t)
2.

Therefore, this term can be used to detect the dissipative effects due to the velocity of the
moving crack. With similar computations, if there are m crack-tips with different velocities
ṡi(t), i = 1, . . . ,m, then the term ‖v̇ε(t)‖2L2(Ω) corresponds to a dissipation of the form∑m

i=1Ciṡ
2
i (t), with Ci positive constants.

To precise the notion of solution to problem (4.1.12)–(4.1.19), we consider a pair of func-
tions (u, v) satisfying the following regularity assumptions:

u ∈ C0([0, T ];H1(Ω;Rd)) ∩ C1([0, T ];L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)), (4.1.21)

u(t)− w1(t) ∈ H1
D1

(Ω;Rd) for every t ∈ [0, T ], (4.1.22)

v ∈ C0([0, T ];H1(Ω)) ∩H1(0, T ;Hk(Ω)), (4.1.23)

v(t)− w2 ∈ H1
D2

(Ω) and v(t) ≤ 1 in Ω for every t ∈ [0, T ]. (4.1.24)

Definition 4.1.3. Let w1, w2, f , and g be as in (4.1.7)–(4.1.9). We say that (u, v) is a weak
solution to the elastodynamics system (4.1.12) with boundary conditions (4.1.13)–(4.1.15), if
(u, v) satisfies (4.1.21)–(4.1.24), and for a.e. t ∈ (0, T ) we have

〈ü(t), ψ〉H−1
D1

(Ω) + (b(v(t))CEu(t), Eψ)L2(Ω) = (f(t), ψ)L2(Ω) + 〈g(t), ψ〉H−1
D1

(Ω) (4.1.25)

for every ψ ∈ H1
D1

(Ω;Rd).

Remark 4.1.4. Since b satisfies (4.1.5) and (4.1.6), and v(t) ≤ 1 for every t ∈ [0, T ], the
function b(v(t)) belongs to L∞(Ω) for every t ∈ [0, T ]. Hence, equation (4.1.25) makes sense
for every ψ ∈ H1

D1
(Ω;Rd). Moreover, if (u, v) satisfies (4.1.21)–(4.1.24), then the function

(t1, t2) 7→ Wtot(u, v; t1, t2) is well defined and continuous, thanks to the previous assumptions
on C, b, w1, f , and g.

We state now our main result, whose proof will be given at the end of Section 4.3.

Theorem 4.1.5. Let k > d/2 and let w1, w2, f , g, u0, u1, and v0 be as in (4.1.7)–(4.1.11).
Then there exists a weak solution (u, v) to problem (4.1.12) with boundary conditions (4.1.13)–
(4.1.15) and initial conditions (4.1.16). Moreover, the pair (u, v) satisfies the irreversibility
condition (4.1.17), the crack stability condition (4.1.18), and the dynamic energy-dissipation
balance (4.1.19).
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Remark 4.1.6. According to Griffith’s dynamic criterion (see [41]), we expect the sum of
kinetic and elastic energy to be dissipated during the evolution, while it is balanced when we
take into account the surface energy associated to the phase-field function v. This happens
in our case if we also consider

∫ t
0 G (v̇) ds. The presence of this term takes into account

the rate at which the function v is decreasing and it is a consequence of the crack stability
condition (4.1.18).

We need k > d/2 in order to obtain the energy equality (4.1.19). Indeed, in this case
the embedding Hk(Ω) ↪→ C0(Ω) is continuous and compact (see, e.g., [1, Theorem 6.2]),
which implies that v̇(t) ∈ C0(Ω) for a.e. t ∈ (0, T ). This regularity is crucial, since we
obtain (4.1.19) throughout another energy balance (see (4.3.20)), which is well defined only
when v̇(t) ∈ L∞(Ω).

Remark 4.1.7. In Theorem 4.1.5 we consider only the case of zero Neumann boundary data.
Anyway, the previous result can be easily adapted to Neumann boundary conditions of the
form

(b(v(t))CEu(t))ν = F (t) on ∂N1Ω, t ∈ [0, T ], (4.1.26)

provided that F ∈ H1(0, T ;L2(∂N1Ω;Rd)). In this case a weak solution to problem (4.1.12)
with Dirichlet boundary conditions (4.1.13) and (4.1.14), and Neumann boundary condi-
tion (4.1.26) is a pair (u, v) satisfying (4.1.21)–(4.1.24) and for a.e. t ∈ (0, T ) the equation

〈ü(t), ψ〉H−1
D1

(Ω) + (b(v(t))CEu(t), Eψ)L2(Ω) = (f(t), ψ)L2(Ω) + 〈g̃(t), ψ〉H−1
D1

(Ω)

for every ψ ∈ H1
D1

(Ω;Rd), where the term g̃(t) ∈ H−1
D1

(Ω;Rd) is defined for t ∈ [0, T ] as

〈g̃(t), ψ〉H−1
D1

(Ω)
:= 〈g(t), ψ〉H−1

D1
(Ω) +

∫
∂N1

Ω
F (t, x) · ψ(x)dH d−1(x) for ψ ∈ H1

D1
(Ω;Rd).

Since g̃ ∈ H1(0, T ;H−1
D1

(Ω;Rd)), we can apply Theorem 4.1.5 with g̃ instead of g, and we
derive the existence of a weak solution (u, v) to (4.1.12)–(4.1.14) with Neumann boundary
condition (4.1.26).

In the next lemma we show that for k > d/2 the dynamic energy-dissipation balance can
be rephrased in the following identity:

∂vE (u(t), v(t))[v̇(t)] + ∂H (v(t))[v̇(t)] + G (v̇(t)) = 0 for a.e. t ∈ (0, T ), (4.1.27)

where the derivatives ∂vE and ∂H take the form

∂vE (u, v)[χ] =
1

2

∫
Ω
ḃ(v)χCEu · Eudx for u ∈ H1(Ω;Rd) and v, χ ∈ H1(Ω) ∩ L∞(Ω),

∂H (v)[χ] =
1

2ε

∫
Ω

(v − 1)χdx+ 2ε

∫
Ω
∇v · ∇χdx for v, χ ∈ H1(Ω).

Lemma 4.1.8. Let k > d/2 and let w1, w2, f , g, u0, u1, and v0 be as in (4.1.7)–(4.1.11). As-
sume that (u, v) is a weak solution to problem (4.1.12)–(4.1.15) with initial conditions (4.1.16).
Then the dynamic energy-dissipation balance (4.1.19) is equivalent to identity (4.1.27).

Proof. We follow the same techniques of [21, Lemma 2.6]. Let us fix 0 < h < T and let us
define the function

ψh(t) :=
u(t+ h)− u(t)

h
− w1(t+ h)− w1(t)

h
for t ∈ [0, T − h].
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We use ψh(t) as test function in (4.1.25) first at time t, and then at time t+ h. By summing
the two expressions and integrating in a fixed time interval [t1, t2] ⊆ [0, T −h], we obtain the
identity∫ t2

t1

〈ü(t+ h) + ü(t), ψh(t)〉H−1
D1

(Ω) dt

+

∫ t2

t1

(b(v(t+ h))CEu(t+ h) + b(v(t))CEu(t), Eψh(t))L2(Ω) dt

=

∫ t2

t1

(f(t+ h) + f(t), ψh(t))L2(Ω) dt+

∫ t2

t1

〈g(t+ h) + g(t), ψh(t)〉H−1
D1

(Ω) dt.

(4.1.28)

We study these four terms separately. By performing an integration by parts, the first one
becomes ∫ t2

t1

〈ü(t+ h) + ü(t), ψh(t)〉H−1
D1

(Ω) dt

= −
∫ t2

t1

(u̇(t+ h) + u̇(t), ψ̇h(t))L2(Ω) dt+ (u̇(t2 + h) + u̇(t2), ψh(t2))L2(Ω)

− (u̇(t1 + h) + u̇(t1), ψh(t1))L2(Ω)

= −1

h

∫ t2+h

t2

‖u̇(t)‖2L2(Ω)dt+
1

h

∫ t1+h

t1

‖u̇(t)‖2L2(Ω)dt

+
1

h

∫ t2

t1

(u̇(t+ h) + u̇(t), ẇ1(t+ h)− ẇ1(t))L2(Ω) dt

+ (u̇(t2 + h) + u̇(t2), ψh(t2))L2(Ω) − (u̇(t1 + h) + u̇(t1), ψh(t1))L2(Ω).

Since u,w1 ∈ C1([0, T ];L2(Ω;Rd)), by sending h→ 0+ we deduce

lim
h→0+

[
−1

h

∫ t2+h

t2

‖u̇(t)‖2L2(Ω)dt+
1

h

∫ t1+h

t1

‖u̇(t)‖2L2(Ω)dt

]
= −‖u̇(t2)‖2L2(Ω) + ‖u̇(t1)‖2L2(Ω),

(4.1.29)

lim
h→0+

[
(u̇(t2 + h) + u̇(t2), ψh(t2))L2(Ω) − (u̇(t1 + h) + u̇(t1), ψh(t1))L2(Ω)

]
= 2‖u̇(t2)‖2L2(Ω) − 2(u̇(t2), ẇ1(t2))L2(Ω) − 2‖u̇(t1)‖2L2(Ω) + 2(u̇(t1), ẇ1(t1))L2(Ω).

(4.1.30)

Notice that 1
h [ẇ1( ·+h)−ẇ1] converges strongly to ẅ1 in L2(t1, t2;L2(Ω;Rd)) as h→ 0+, since

ẇ1 belongs to H1(0, T ;L2(Ω;Rd)). Therefore, there exist a sequence hm → 0+ as m → ∞,
and a function κ ∈ L2(t1, t2) such that for a.e. t ∈ (t1, t2)

1

hm
(u̇(t+ hm) + u̇(t), ẇ1(t+ hm)− ẇ1(t))L2(Ω) → 2(u̇(t), ẅ1(t))L2(Ω) as m→∞,∣∣∣∣ 1

hm
(u̇(t+ hm) + u̇(t), ẇ1(t+ hm)− ẇ1(t))L2(Ω)

∣∣∣∣ ≤ 2‖u̇‖L∞(0,T ;L2(Ω))κ(t) for every m ∈ N.

By the dominated convergence theorem we derive

lim
h→0+

1

h

∫ t2

t1

(u̇(t+ h) + u̇(t), ẇ1(t+ h)− ẇ1(t))L2(Ω) dt = 2

∫ t2

t1

(u̇(t), ẅ1(t))L2(Ω) dt, (4.1.31)

since the limit does not depend on the subsequence {hm}m. For the term involving f , we
observe that f( · + h) → f and ψh → u̇ − ẇ1 in L2(t1, t2;L2(Ω;Rd)) as h → 0+. Hence, we
have

lim
h→0+

∫ t2

t1

(f(t+ h) + f(t), ψh(t))L2(Ω) dt = 2

∫ t2

t1

(f(t), u̇(t)− ẇ1(t))L2(Ω) dt. (4.1.32)
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By using the identity∫ t2

t1

〈g(t+ h) + g(t), ψh(t)〉H−1
D1

(Ω) dt

=
2

h

∫ t2+h

t2

〈g(t), u(t)− w1(t)〉H−1
D1

(Ω) dt− 2

h

∫ t1+h

t1

〈g(t), u(t)− w1(t)〉H−1
D1

(Ω) dt

− 1

h

∫ t2

t1

〈g(t+ h)− g(t), u(t+ h) + u(t)− w1(t+ h)− w1(t)〉H−1
D1

(Ω) dt,

and proceeding as before, we also deduce

lim
h→0+

∫ t2

t1

〈g(t+ h) + g(t), ψh(t)〉H−1
D1

(Ω) dt

= 2〈g(t2), u(t2)− w1(t2)〉H−1
D1

(Ω) − 2〈g(t1), u(t1)− w1(t1)〉H−1
D1

(Ω)

− 2

∫ t2

t1

〈ġ(t), u(t)− w1(t)〉H−1
D1

(Ω) dt.

(4.1.33)

It remains to study the last term, that can be rephrased in the following way∫ t2

t1

(b(v(t+ h))CEu(t+ h) + b(v(t))CEu(t), Eψh(t))L2(Ω) dt

=
1

h

∫ t2+h

t2

(b(v(t))CEu(t), Eu(t))L2(Ω) dt− 1

h

∫ t1+h

t1

(b(v(t))CEu(t), Eu(t))L2(Ω) dt

− 1

h

∫ t2

t1

([b(v(t+ h))− b(v(t))]CEu(t), Eu(t+ h))L2(Ω) dt

− 1

h

∫ t2

t1

(b(v(t+ h))CEu(t+ h) + b(v(t))CEu(t), Ew1(t+ h)− Ew1(t))L2(Ω) dt.

Since Hk(Ω) ↪→ C0(Ω), we deduce that v belongs to the space C0([0, T ];C0(Ω)). This
property, together with b ∈ C1(R) and u ∈ C0([0, T ];H1(Ω;Rd)), implies

lim
h→0+

[
1

h

∫ t2+h

t2

(b(v(t))CEu(t), Eu(t))L2(Ω) dt− 1

h

∫ t1+h

t1

(b(v(t))CEu(t), Eu(t))L2(Ω) dt

]
= (b(v(t2))CEu(t2), Eu(t2))L2(Ω) − (b(v(t1))CEu(t1), Eu(t1))L2(Ω). (4.1.34)

Moreover, the sequence 1
h [v( · +h)−v] converges strongly to v̇ in L2(t1, t2;C0(Ω)) as h→ 0+.

Therefore, there exist a subsequence hm → 0+ as m→∞ and a function κ ∈ L2(t1, t2) such
that for a.e. t ∈ (t1, t2)

v(t+ hm)− v(t)

hm
→ v̇(t) in C0(Ω) as m→∞,∥∥∥∥v(t+ hm)− v(t)

hm

∥∥∥∥
L∞(Ω)

≤ κ(t) for every m ∈ N.

Thanks to (4.1.5), we can apply Lagrange’s theorem to derive for a.e. t ∈ (t1, t2)

1

hm
(b(v(t+ hm))− b(v(t))CEu(t), Eu(t+ hm))L2(Ω)

→ (ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω),
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as m→∞, while for every m ∈ N∣∣∣∣ 1

hm
([b(v(t+ hm))− b(v(t))]CEu(t), Eu(t+ hm))L2(Ω)

∣∣∣∣
≤ ḃ(1)‖C‖L∞(Ω)‖Eu‖2L∞(0,T ;L2(Ω))κ(t),

since u ∈ C0([0, T ];H1(Ω;Rd)) and v(t) ≤ 1 for every t ∈ [0, T ]. The dominated convergence
theorem yields

lim
h→0+

1

h

∫ t2

t1

([b(v(t+ h))− b(v(t))]CEu(t), Eu(t+ h))L2(Ω) dt

=

∫ t2

t1

(ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω) dt,

(4.1.35)

being the limit independent of the subsequence {hm}m. Finally, 1
h [Ew1( · + h)− Ew1] con-

verges strongly to Eẇ1 in L2(t1, t2;L2(Ω;Rd×d)) as h → 0+. By arguing as in (4.1.31), this
fact gives

lim
h→0+

1

h

∫ t2

t1

(b(v(t+ h))CEu(t+ h) + b(v(t))CEu(t), Ew1(t+ h)− Ew1(t))L2(Ω) dt

= 2

∫ t2

t1

(b(v(t))CEu(t), Eẇ1(t))L2(Ω) dt.

(4.1.36)

We combine together (4.1.28)–(4.1.36) to derive

K (u̇(t2)) + E (u(t2), v(t2))− 1

2

∫ t2

t1

(ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω) dt

= K (u̇(t1)) + E (u(t1), v(t1)) + Wtot(u, v; t1, t2)

for every t1, t2 ∈ [0, T ) with t1 < t2. Since all terms in the previous equality are contin-
uous with respect to t2, we deduce that a weak solution to (4.1.12)–(4.1.15) with initial
conditions (4.1.16) satisfies the energy balance

K (u̇(t2)) + E (u(t2), v(t2))− 1

2

∫ t2

t1

(ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω) dt

= K (u̇(t1)) + E (u(t1), v(t1)) + Wtot(u, v; t1, t2)

(4.1.37)

for every t1, t2 ∈ [0, T ] with t1 < t2.
Let us assume now (4.1.27). Since v ∈ H1(0, T ;Hk(Ω)), the function t 7→ ζ(t) := H (v(t))

is absolutely continuous on [0, T ], with ζ̇(t) = ∂H (v(t))[v̇(t)] for a.e. t ∈ (0, T ). By integrat-
ing (4.1.27) over [t1, t2] ⊆ [0, T ], we obtain

− 1

2

∫ t2

t1

(ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω) dt = H (v(t2))−H (v(t1))+

∫ t2

t1

G (v(t)) dt. (4.1.38)

This identity, together with (4.1.37), implies the dynamic energy-dissipation balance (4.1.19).
On the other hand, if (4.1.19) is satisfied, by comparing it with (4.1.37) we deduce (4.1.38)
for every interval [t1, t2] ⊆ [0, T ], from which (4.1.27) follows.

Remark 4.1.9. When k > d
2 , the crack stability condition (4.1.18) is equivalent for a.e.

t ∈ (0, T ) to the following variational inequality

∂vE (u(t), v(t))[χ] + ∂H (v(t))[χ] +

k∑
i=0

αi(∇iv̇(t),∇iχ)L2(Ω) ≥ 0 (4.1.39)
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among all χ ∈ H1
D2

(Ω)∩Hk(Ω) with χ ≤ 0. Indeed, for every s ∈ (0, 1] we can take v(t) + sχ
as test function in (4.1.18). After some computations and by dividing by s, we deduce

E (u(t), v(t) + sχ)− E (u(t), v(t))

s
+ ∂H (v(t))[χ] +

k∑
i=0

αi(∇iv̇(t),∇iχ)L2(Ω)

+ s

[
1

4ε
‖χ‖2L2(Ω) + ε‖∇χ‖2L2(Ω)

]
≥ 0.

(4.1.40)

Let us fix x ∈ Ω. By Lagrange’s theorem there exists zs(t, x) ∈ [v(t, x) + sχ(x), v(t, x)] such
that

b(v(t, x) + sχ(x))− b(v(x))

s
= ḃ(zs(t, x))χ(x),

since b ∈ C1(R). In particular, we have

lim
s→0+

b(v(t, x) + sχ(x))− b(v(x))

s
= ḃ(v(t, x))χ(x),∣∣∣∣b(v(t, x) + sχ(x))− b(v(x))

s

∣∣∣∣ ≤ ḃ(1)|χ(x)|,

because ḃ ∈ C0(R) is non negative, non-decreasing, and zs(t, x) ≤ v(t, x) ≤ 1. Then, the
dominated convergence theorem yields

lim
s→0+

E (u(t), v(t) + sχ)− E (u(t), v(t))

s
=

1

2

∫
Ω
ḃ(v(t))χCEu(t)·Eu(t) dx = ∂vE (u(t), v(t))[χ].

By sending s → 0+ in (4.1.40) we hence deduce (4.1.39). On the other hand, it is easy to
check that (4.1.39) implies (4.1.18), by exploiting the convexity of v∗ → E (u(t), v∗) + H (v∗)
and taking χ := v∗ − v(t) for every v∗ − w2 ∈ H1

D2
(Ω) ∩Hk(Ω) with v∗ ≤ v(t).

The inequality (4.1.39) gives that for a.e. t ∈ (0, T ) the distribution

−1

2
ḃ(v(t))CEu(t) · Eu(t)− 1

2ε
(v(t)− 1) + 2ε∆v(t)−

k∑
i=0

αi(−1)i∆iv̇(t)

is positive on Ω. Therefore it coincides with a positive Radon measure µ(t) on Ω, by Riesz’s
representation theorem. In particular, since Hk(Ω) ↪→ C0(Ω), for a.e. t ∈ (0, T ) we deduce

〈ζ(t), χ〉(Hk(Ω))′ := ∂vE (u(t), v(t))[χ]+∂H (v(t))[χ]+
k∑
i=0

αi(∇iv̇(t),∇iχ)L2(Ω) = −
∫

Ω
χdµ(t)

for every function χ ∈ Hk(Ω) with compact support in Ω. We combine this fact with
identity (4.1.27) to derive for our model an analogous of the classical activation rule in
Griffith’s criterion: for a.e. t ∈ (0, T ) the positive measure µ(t) must vanish on the set of
points x ∈ Ω where v̇(t, x) > 0. Indeed, let us consider a sequence {ϕm}m ⊂ C∞c (Ω) such that
0 ≤ ϕm ≤ ϕm+1 ≤ 1 in Ω for every m ∈ N, and ϕm(x)→ 1 for every x ∈ Ω as m→∞. The
function v̇(t) is admissible in (4.1.39) for a.e. t ∈ (0, T ), since 1

h [v(t + h) − v(t)] ∈ H1
D2

(Ω)

converges strongly to v̇(t) in Hk(Ω) as h → 0+, and t 7→ v(t) is non-decreasing in [0, T ].
Therefore, thanks to (4.1.27) and (4.1.39), for a.e. t ∈ (0, T ) we get

0 = 〈ζ(t), v̇(t)〉(Hk(Ω))′ = 〈ζ(t), v̇(t)ϕm〉(Hk(Ω))′ + 〈ζ(t), v̇(t)(1− ϕm)〉(Hk(Ω))′

≥ 〈ζ(t), v̇(t)ϕm〉(Hk(Ω))′ = −
∫

Ω
v̇(t)ϕmdµ(t) ≥ 0,

because v̇(t)ϕm ∈ Hk(Ω) has compact support. Hence, for a.e. t ∈ (0, T ) we have

0 = lim
m→∞

∫
Ω
v̇(t)ϕmdµ(t) =

∫
Ω
v̇(t) dµ(t),

by the monotone convergence theorem, which implies our activation condition.



96 4.2. The time discretization scheme

4.2 The time discretization scheme

In this section we show some general results that are true for every k ∈ N ∪ {0}. In par-
ticular, we prove that problem (4.1.12)–(4.1.16) admits a solution (u, v) (in a weaker sense)
which satisfies the irreversibility condition (4.1.17) and the crack stability condition (4.1.18).
Throughout this section, we always assume that the functions w1, w2, f , g, u0, u1, and v0

satisfy (4.1.7)–(4.1.11).
We start by introducing the following notion of solution, which requires less regularity on

the time variable.

Definition 4.2.1. The pair (u, v) is a generalized solution to (4.1.12)–(4.1.15) if

u ∈ L∞(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)), (4.2.1)

u(t)− w1(t) ∈ H1
D1

(Ω;Rd) for every t ∈ [0, T ], (4.2.2)

v ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk(Ω)), (4.2.3)

v(t)− w2 ∈ H1
D2

(Ω) and v(t) ≤ 1 in Ω for every t ∈ [0, T ], (4.2.4)

and for a.e. t ∈ (0, T ) equation (4.1.25) holds.

Remark 4.2.2. By arguing as in Remark 1.2.7, we derive that a generalized solution (u, v)
to problem (4.1.12)–(4.1.15) satisfies u ∈ C0

w([0, T ];H1(Ω;Rd)), u̇ ∈ C0
w([0, T ];L2(Ω;Rd)),

and v ∈ C0
w([0, T ];H1(Ω)). Therefore, the initial conditions (4.1.16) makes sense, since the

functions u(t), u̇(t), and v(t) are uniquely defined for every t ∈ [0, T ] as elements of H1(Ω;Rd),
L2(Ω;Rd), and H1(Ω), respectively.

To show the existence of a generalized solution to (4.1.12)–(4.1.16), we approximate our
problem by means of a time discretization with an alternate scheme, as done in [6, 36]. We
divide the time interval [0, T ] by introducing n equispaced nodes, and in each of them we
first solve the elastodynamics system (4.1.4), keeping v fixed, and then the crack stability
condition (4.1.18), keeping u fixed. Finally, we consider some interpolants of the discrete
solutions and, thanks to an a priori estimate, we pass to the limit as n→∞.

We fix n ∈ N, and we set

τn =
T

n
, u0

n := u0, u−1
n := u0 − τnu1, v0

n := v0,

gjn := g(jτn), wjn := w1(jτn) for j = 0, . . . , n,

f jn :=
1

τn

∫ jτn

(j−1)τn

f(s) ds for j = 1, . . . , n.

For j = 1, . . . , n we consider the following two minimum problems:

(i) ujn − wjn ∈ H1
D1

(Ω;Rd) is the minimizer of

u∗ 7→ 1

2τ2
n

∥∥u∗ − 2uj−1
n − uj−2

n

∥∥2

L2(Ω)
+ E (u∗, vj−1

n )− (f jn, u
∗)L2(Ω) − 〈gjn, u∗ − wjn〉H−1

D1
(Ω)

among every u∗ − wjn ∈ H1
D1

(Ω;Rd);

(ii) vjn − w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with vjn ≤ vj−1
n is the minimizer of

v∗ 7→ E (ujn, v
∗) + H (v∗) +

1

2τn
G (v∗ − vj−1

n )

among every v∗ − w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with v∗ ≤ vj−1
n .
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Since C and b satisfy assumptions (4.1.1)–(4.1.3), (4.1.5), and (4.1.6), the discrete problems
(i) and (ii) are well defined. In particular, for every j = 1, . . . , n there exists a unique pair
(ujn, v

j
n) ∈ H1(Ω;Rd)× (H1(Ω) ∩Hk(Ω)) solution to (i) and (ii).

Let us define

δujn :=
ujn − uj−1

n

τn
for j = 0, . . . , n,

δ2ujn :=
δujn − δuj−1

n

τn
, δvjn :=

vjn − vj−1
n

τn
for j = 1, . . . , n.

For j = 1, . . . , n the minimality of ujn implies

(δ2ujn, ψ)L2(Ω) + (b(vj−1
n )CEujn, Eψ)L2(Ω) = (f jn, ψ)L2(Ω) + 〈gjn, ψ〉H−1

D1
(Ω) (4.2.5)

for every ψ ∈ H1
D1

(Ω;Rd), which is the discrete counterpart of (4.1.25). Moreover, we can

characterize the function vjn in the following way.

Lemma 4.2.3. For j = 1, . . . , n the function vjn − w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with vjn ≤ vj−1
n is

the unique solution to the variational inequality

E (ujn, v
∗)− E (ujn, v

j
n) + ∂H (vjn)[v∗ − vjn] +

k∑
i=0

αi(∇iδvjn,∇iv∗ −∇ivjn)L2(Ω) ≥ 0 (4.2.6)

among all v∗ − w2 ∈ H1
D2

(Ω) ∩ Hk(Ω) with v∗ ≤ vj−1
n . In particular, we have vjn ≤ 1 in Ω

and
E (ujn, v

j
n)− E (ujn, v

j−1
n )

τn
+ ∂H (vjn)[δvjn] + G (δvjn) ≤ 0. (4.2.7)

Finally, if k = 0, w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s ∨ 0)2 + η for s ∈ R, then
vjn ≥ 0 in Ω for every j = 1, . . . , n.

Proof. Let vjn be the solution to (ii) and let v∗−w2 ∈ H1
D2

(Ω)∩Hk(Ω) be such that v∗ ≤ vj−1
n .

For every s ∈ (0, 1] the function vjn + s(v∗− vjn) is a competitor for (ii). Hence, by exploiting
the minimality of vjn and dividing by s, we deduce the following inequality

E (ujn, v
j
n + s(v∗ − vjn))− E (ujn, v

j
n)

s
+ ∂H (vjn)[v∗ − vjn] +

k∑
i=0

αi(∇iδvjn,∇iv∗ −∇ivjn)L2(Ω)

+ s

[
1

4ε
‖v∗ − vjn‖2L2(Ω) + ε‖∇v∗ −∇vjn‖2L2(Ω) +

1

2τn
G (v∗ − vjn)

]
≥ 0. (4.2.8)

Notice that

E (ujn, v
j
n + s(v∗ − vjn))− E (ujn, v

j
n)

s
≤ E (ujn, v

∗)− E (ujn, v
j
n) for every s ∈ (0, 1], (4.2.9)

since the difference quotients are non-decreasing in s ∈ (0, 1], being b is convex. By combin-
ing (4.2.8) with (4.2.9) and passing to the limit as s → 0+, we derive (4.2.6). On the other
hand, it is easy to see that every solution to (4.2.6) satisfies (ii), thanks to the convexity of
H and G . Finally, for every j = 1, . . . , n we have vjn ≤ v0 ≤ 1 in Ω, and the inequality (4.2.7)
is obtained by taking v∗ = vj−1

n in (4.2.6) and dividing by τn.
Let us assume that k = 0, w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s∨0)2 + η for s ∈ R.

The function v1
n ∨ 0 is a competitor for (ii) and satisfies

E (u1
n, v

1
n ∨ 0) + H (v1

n ∨ 0) +
1

2τn
G ((v1

n ∨ 0)− v0) ≤ E (u1
n, v

1
n) + H (v1

n) +
1

2τn
G (v1

n − v0),
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being E (u1
n, v

1
n ∨ 0) = E (u1

n, v
1
n), H (v1

n ∨ 0) ≤ H (v1
n), and |(v1

n ∨ 0) − v0| ≤ |v1
n − v0| in Ω,

which is a consequence of v0 ≥ 0. Hence, the function v1
n ∨ 0 solves (ii). This fact implies

v1
n = (v1

n ∨ 0) ≥ 0 in Ω, since the minimum point is unique (the L2 norm is strictly convex).
We now proceed by induction: if vj−1

n ≥ 0 in Ω, we can argue as before to get

E (ujn, v
j
n ∨ 0) + H (vjn ∨ 0) +

1

2τn
G ((vjn ∨ 0)− vj−1

n ) ≤ E (ujn, v
j
n) + H (vjn) +

1

2τn
G (vjn− vj−1

n ),

which gives vjn = (vjn ∨ 0) ≥ 0 in Ω for every j = 1 . . . , n.

As done in [36], we combine equation (4.2.5) with inequality (4.2.7) to derive a discrete
energy inequality for the family {(ujn, vjn)}nj=1.

Lemma 4.2.4. The family {(ujn, vjn)}nj=1, solution to problems (i) and (ii), satisfies for every
j = 1, . . . , n the discrete energy inequality

F (ujn, δu
j
n, v

j
n) +

j∑
l=1

τnG (δvln) +

j∑
l=1

τ2
nD

l
n

≤ F (u0, u1, v0) +

j∑
l=1

τn

[
(f ln, δu

l
n − δwln)L2(Ω) + (b(vl−1

n )CEuln, Eδwln)L2(Ω)

]

−
j∑
l=1

τn

[
(δul−1

n , δ2wln)L2(Ω) − 〈δgln, ul−1
n − wi−1

n 〉H−1
D1

(Ω)

]
+ (δujn, δw

j
n)L2(Ω)

+ 〈gjn, ujn − wjn〉H−1
D1

(Ω) − (u1, ẇ1(0))L2(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω),

(4.2.10)

where δw0
n := ẇ1(0), δwjn := 1

τn
(wjn − wj−1

n ), δ2wjn := 1
τn

(δwjn − δwj−1
n ), δgjn := 1

τn
(gjn − gn−1

n )

for j = 1, . . . , n, and the dissipation Dj
n are defined for j = 1, . . . , n as

Dj
n :=

1

2
‖δ2ujn‖2L2(Ω) +

1

2
(b(vj−1

n )CEδujn, Eδujn)L2(Ω) +
1

4ε
‖δvjn‖2L2(Ω) + ε‖∇δvjn‖2L2(Ω).

Proof. By using ψ := τn(δujn − δwjn) ∈ H1
D1

(Ω;Rd) as test function in (4.2.5), for every
j = 1, . . . , n we deduce the following identity

τn(δ2ujn, δu
j
n)L2(Ω) + τn(b(vj−1

n )CEujn, Eδujn)L2(Ω)

= τn(f jn, δu
j
n − δwjn)L2(Ω) + τn〈gjn, δujn − δwjn〉H−1

D1
(Ω)

+ τn(δ2ujn, δw
j
n)L2(Ω) + τn(b(vj−1

n )CEujn, Eδwjn)L2(Ω).

(4.2.11)

Thanks to the identity |a|2 − a · b = 1
2 |a|

2 − 1
2 |b|

2 + 1
2 |a− b|

2 for a, b ∈ Rd, we can write the
first term as

τn(δ2ujn, δu
j
n)L2(Ω) = ‖δujn‖2L2(Ω) − (δuj−1

n , δujn)L2(Ω)

= K (δujn)−K (δuj−1
n ) +

τ2
n

2
‖δ2ujn‖2L2(Ω).

(4.2.12)

Similarly, we have

τn(b(vj−1
n )CEujn, Eδujn)L2(Ω) = E (ujn, v

j
n)− E (uj−1

n , vj−1
n ) +

τ2
n

2
(b(vj−1

n )CEδujn, Eδujn)L2(Ω)

+
1

2
([b(vj−1

n )− b(vjn)]CEujn, Eujn)L2(Ω). (4.2.13)
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We use (4.2.7) to estimate from below the last term in the previous inequality as

1

2
([b(vj−1

n )− b(vjn)]CEujn, Eujn)L2(Ω)

≥ τn
2ε

(vjn − 1, δvjn)L2(Ω) + 2ετn(∇vjn,∇δvjn)L2(Ω) + τnG (δvjn)

= H (vjn)−H (vj−1
n ) + τnG (δvjn) +

τ2
n

4ε
‖δvjn‖2L2(Ω) + ετ2

n‖∇δvjn‖2L2(Ω).

(4.2.14)

By combining (4.2.11)–(4.2.14), for every j = 1, . . . , n we obtain

F (ujn, δu
j
n, v

j
n)−F (uj−1

n , δuj−1
n , vj−1

n ) + τnG (δvjn) + τ2
nD

j
n

≤ τn(f jn, δu
j
n − δwjn)L2(Ω) + τn〈gjn, δujn − δwjn〉H−1

D1
(Ω)

+ τn(δ2ujn, δw
j
n)L2(Ω) + τn(b(vj−1

n )CEujn, Eδwjn)L2(Ω).

Finally, we sum over l = 1, . . . , j for every j ∈ {1, . . . , n}, and we use the identities

j∑
l=1

τn〈gln, δuln − δwln〉H−1
D1

(Ω) = 〈gjn, ujn − wjn〉H−1
D1

(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω)

−
j∑
l=1

τn〈δgln, ul−1
n − wl−1

n 〉H−1
D1

(Ω),

(4.2.15)

j∑
l=1

τn(δ2uln, δw
l
n)L2(Ω) = (δujn, δw

j
n)L2(Ω) − (u1, w1(0))L2(Ω)

−
j∑
l=1

τn(δul−1
n , δ2wln)L2(Ω),

(4.2.16)

to deduce the discrete energy inequality (4.2.10).

The first consequence of (4.2.10) is the following a priori estimate.

Lemma 4.2.5. There exists a constant C > 0, independent of n, such that

max
j=1,...,n

{‖δujn‖L2(Ω) + ‖ujn‖H1(Ω) + ‖vjn‖H1(Ω)}+
n∑
j=1

τn‖δvjn‖2Hk(Ω) +
n∑
j=1

τ2
nD

j
n ≤ C. (4.2.17)

Proof. Thanks to (4.1.4) and (4.1.6) we can estimate from below the left-hand side of (4.2.10)
in the following way

F (ujn, δu
j
n, v

j
n) +

j∑
l=1

τnG (δvln) +

j∑
l=1

τ2
nD

l
n

≥ 1

2
‖δujn‖2L2(Ω) +

ηc0

2
‖ujn‖2H1(Ω) −

ηc1

2
‖ujn‖2L2(Ω)

(4.2.18)

for every j = 1, . . . , n. Let us now bound from above the right-hand side of (4.2.18). We
define

Ln := max
j=1,...,n

‖δujn‖L2(Ω), Mn := max
j=1,...,n

‖ujn‖H1(Ω),

and we use (4.1.7)–(4.1.11) to derive for every j = 1, . . . , n the following estimates:

j∑
l=1

τn(f ln, δu
l
n − δwln)L2(Ω) ≤ C1Ln + C2, (4.2.19)
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(δujn, δw
j
n)L2(Ω) − (u1, w1(0))L2(Ω) −

j∑
l=1

τn(δul−1
n , δ2wln)L2(Ω) ≤ C1Ln + C2, (4.2.20)

〈gjn, ujn − wjn〉H−1
D1

(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω) −
j∑
l=1

τn〈δgln, ul−1
n − wl−1

n 〉H−1
D1

(Ω)

≤ C1Mn + C2,

(4.2.21)

for two positive constants C1 and C2 independent of n. Moreover, since C belongs to
L∞(Ω; L (Rd×d;Rd×d)), b is non-decreasing, and vj−1

n ≤ 1, we get

j∑
l=1

τn(b(vl−1
n )CEuln, Eδwln)L2(Ω) ≤ b(1)‖C‖L∞(Ω)

√
T‖Eẇ1‖L2(0,T ;L2(Ω))Mn (4.2.22)

for every j = 1, . . . , n. By combining (4.2.10) with (4.2.18)–(4.2.22) and the following estimate

‖ujn‖L2(Ω) ≤
n∑
l=1

τn‖δuln‖L2(Ω) + ‖u0‖L2(Ω) ≤ TLn + ‖u0‖L2(Ω) for every j = 1, . . . , n,

we obtain the existence of two positive constants C̃1 and C̃2, independent of n, such that

(Ln +Mn)2 ≤ C̃1(Ln +Mn) + C̃2 for every n ∈ N.

This implies that Ln and Mn are uniformly bounded in n. In particular, there exists a
constant C > 0, independent of n, such that

K (δujn) + E (ujn, v
j
n) + H (vjn) +

j∑
l=1

τnG (δvln) +

j∑
l=1

τ2
nD

l
n ≤ C for every j = 1, . . . , n.

Finally, for j = 1, . . . , n we have

min

{
ε,

1

4ε

}
‖vjn − 1‖2H1(Ω) ≤H (vjn) ≤ C, β0

n∑
j=1

τn‖δvjn‖2Hk(Ω) ≤
n∑
j=1

τnG (δvjn) ≤ C,

which gives the remaining estimates.

Remark 4.2.6. By combining together (4.2.5) and (4.2.17) we also obtain

n∑
j=1

τn‖δ2ujn‖2H−1
D1

(Ω)
+ max
j=1,...,n

‖vjn‖Hk(Ω) ≤ C

for a positive constant C independent of n. Indeed, by (4.2.5), for every j = 1, . . . , n we have

‖δ2ujn‖H−1
D1

(Ω) = sup
ψ∈H1

D1
(Ω;Rd), ‖ψ‖H1(Ω)≤1

∣∣(δ2ujn, ψ)L2(Ω)

∣∣
≤ b(1)‖C‖L∞(Ω)‖Eujn‖2 + ‖f jn‖L2(Ω) + ‖gjn‖H−1

D1
(Ω).

Hence, thanks to (4.1.9) and (4.2.17), there exists a constant C > 0, independent of n, such
that

n∑
j=1

τn‖δ2ujn‖2H−1
D1

(Ω)
≤ C(1 + ‖f‖L2(0,T ;L2(Ω)) + ‖g‖H1(0,T ;H−1

D1
(Ω))).

Finally, also ‖vjn‖Hk(Ω) is uniformly bounded with respect to j and n, since

‖vjn‖Hk(Ω) ≤
√
T

(
n∑
l=1

τn‖δvln‖2Hk(Ω)

)1/2

+ ‖v0‖Hk(Ω) for every j = 1, . . . , n.
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We now use the family {(ujn, vjn)}nj=1 to construct a generalized solution to (4.1.12)–

(4.1.18). As in Chapter 3, we denote by un : [0, T ] → H1(Ω;Rd) and u′n : [0, T ] → L2(Ω;Rd)
the piecewise affine interpolants of {ujn}nj=1 and {δujn}nj=1, respectively, which are defined in
the following way:

un(t) := ujn + (t− jτn)δujn for t ∈ [(j − 1)τn, jτn], j = 1, . . . , n,

u′n(t) := δujn + (t− jτn)δ2ujn for t ∈ [(j − 1)τn, jτn], j = 1, . . . , n.

We also define the backward interpolants un : [0, T ]→ H1(Ω;Rd) and u′n : [0, T ]→ L2(Ω;Rd),
and the forward interpolants un : [0, T ]→ H1(Ω;Rd) and u′n : [0, T ]→ L2(Ω;Rd) as:

un(t) := ujn for t ∈ ((j − 1)τn, jτn], j = 1, . . . , n, un(0) = u0
n,

u′n(t) := δujn for t ∈ ((j − 1)τn, jτn], j = 1, . . . , n, u′n(0) = δu0
n,

un(t) := uj−1
n for t ∈ [(j − 1)τn, jτn), j = 1, . . . , n, un(T ) = unn,

u′n(t) := δuj−1
n for t ∈ [(j − 1)τn, jτn), j = 1, . . . , n, u′n(T ) = δunn.

In a similar way, we can define the piecewise affine interpolant vn : [0, T ] → H1(Ω) of
{vjn}nj=1, as well as the backward interpolant vn : [0, T ]→ H1(Ω), and the forward interpolant

vn : [0, T ] → H1(Ω). Notice that un ∈ H1(0, T ;L2(Ω;Rd)), u′n ∈ H1(0, T ;H−1
D1

(Ω;Rd)),
and vn ∈ H1(0, T ;Hk(Ω)), with u̇n(t) = u′n(t) = δujn, u̇′n(t) = δ2ujn, and v̇n(t) = δvjn for
t ∈ ((j − 1)τn, jτn) and j = 1, . . . , n.

Lemma 4.2.7. There exist a subsequence of n, not relabeled, and two functions

u ∈ L∞(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)),

v ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk(Ω)),

such that the following convergences hold as n→∞:

un ⇀ u in H1(0, T ;L2(Ω;Rd)), u′n ⇀ u̇ in H1(0, T ;H−1
D1

(Ω;Rd)),

un → u in C0([0, T ];L2(Ω;Rd)), u′n → u̇ in C0([0, T ];H−1
D1

(Ω;Rd)),

un ⇀ u in L2(0, T ;H1(Ω;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
un ⇀ u in L2(0, T ;H1(Ω;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
vn ⇀ v in H1(0, T ;Hk(Ω)), vn → v in C0([0, T ];L2(Ω)),

vn ⇀ v in L2(0, T ;H1(Ω)), vn ⇀ v in L2(0, T ;H1(Ω)).

Proof. Thanks to (4.2.17) the sequence {un}n ⊂ L∞(0, T ;H1(Ω;Rd))∩W 1,∞(0, T ;L2(Ω;Rd))
is uniformly bounded. Hence, by Aubin-Lions’s lemma (see [50, Corollary 4]) there exist a
subsequence of n, not relabeled, and a function

u ∈ L∞(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)),

such that

un ⇀ u in H1(0, T ;L2(Ω;Rd)), un → u in C0([0, T ];L2(Ω;Rd)) as n→∞.

Moreover, the sequence {un}n ⊂ L∞(0, T ;H1(Ω;Rd)) is uniformly bounded, and satisfies

‖un(t)− un(t)‖L2(Ω) ≤ τn‖u̇n‖L∞(0,T ;L2(Ω)) ≤ Cτn for every t ∈ [0, T ] and n ∈ N, (4.2.23)
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where C is a positive constant independent of n and t. Therefore, there exists a further
subsequence, not relabeled, such that

un ⇀ u in L2(0, T ;H1(Ω;Rd)), un → u in L∞(0, T ;L2(Ω;Rd)) as n→∞.

Similarly, we have

un ⇀ u in L2(0, T ;H1(Ω;Rd)), un → u in L∞(0, T ;L2(Ω;Rd)) as n→∞.

Let us now consider the sequence {u′n}n ⊂ L∞(0, T ;L2(Ω;Rd)) ∩ H1(0, T ;H−1
D1

(Ω;Rd)).
Since it is uniformly bounded with respect to n, we can apply again the Aubin-Lions’s lemma
and we deduce the existence of

z ∈ L∞(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H−1
D1

(Ω;Rd))

such that, up to a further (not relabeled) subsequence

u′n ⇀ z in H1(0, T ;H−1
D1

(Ω;Rd)), u′n → z in C0([0, T ];H−1
D1

(Ω;Rd)) as n→∞.

Furthermore, we have

‖u′n(t)− u̇n(t)‖H−1
D1

(Ω) = ‖u′n(t)− u′n(t)‖H−1
D1

(Ω) ≤
√
τn‖u̇′n‖L2(0,T ;H−1

D1
(Ω)) ≤ C

√
τn (4.2.24)

for every t ∈ [0, T ] and n ∈ N, with C > 0 independent of n and t. This fact implies that
z = u̇, and

u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)), u′n → u̇ in L2(0, T ;H−1
D1

(Ω;Rd)) as n→∞.

In a similar way, we get

u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)), u′n → u̇ in L2(0, T ;H−1
D1

(Ω;Rd)) as n→∞.

Finally, the thesis for the sequences {vn}n, {vn}n, and {vn}n is obtained as before, by
using (4.2.17) and the compactness of the embedding H1(Ω) ↪→ L2(Ω).

Remark 4.2.8. As already observed in Remark 4.2.2, we have u ∈ C0
w([0, T ];H1(Ω;Rd)),

u ∈ C0
w([0, T ];L2(Ω;Rd)), and v ∈ C0

w([0, T ];H1(Ω)). By using the estimate (4.2.17), we get

‖un(t)‖H1(Ω) + ‖u′n(t)‖L2(Ω) ≤ C for every t ∈ [0, T ] and n ∈ N

for a constant C > 0 independent of n and t. Hence, for every t ∈ [0, T ] we derive

un(t) ⇀ u(t) in H1(Ω;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd) as n→∞,

thanks to the previous convergences. In particular, for every t ∈ [0, T ] we can use (4.2.23)
and (4.2.24) to obtain

un(t) ⇀ u(t) in H1(Ω;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd) as n→∞,
un(t) ⇀ u(t) in H1(Ω;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd) as n→∞.

With a similar argument, for every t ∈ [0, T ] we have

vn(t) ⇀ v(t) in H1(Ω), vn(t) ⇀ v(t) in H1(Ω), vn(t) ⇀ v(t) in H1(Ω) as n→∞.

We are now in a position to pass to the limit in the discrete problem (4.2.5).
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Lemma 4.2.9. The pair (u, v) given by Lemma 4.2.7 is a generalized solution to prob-
lem (4.1.12)–(4.1.15). Moreover, (u, v) satisfies the initial conditions (4.1.16) and the ir-
reversibility condition (4.1.17). Finally, if k = 0, w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and
b(s) = (s ∨ 0)2 + η for s ∈ R, then v(t) ≥ 0 in Ω for every t ∈ [0, T ].

Proof. The pair (u, v) given by Lemma 4.2.7 satisfies (4.2.1), (4.2.3), and the initial condi-
tions (4.1.16), since u0 = un(0) ⇀ u(0) in H1(Ω;Rd), u1 = u′n(0) ⇀ u̇(0) in L2(Ω;Rd), and
v0 = vn(0) ⇀ v(0) in H1(Ω) as n → ∞. If we consider the piecewise affine interpolant wn
of {wjn}nj=1, for every t ∈ [0, T ] we have un(t) − wn(t) ∈ H1

D1
(Ω;Rd) for every n ∈ N and

wn(t)→ w1(t) in H1(Ω;Rd) as n→∞. Therefore, the function u satisfies (4.2.2). Similarly,
vn(t)− w2 ∈ H1

D2
(Ω) and vn(t) ≤ vn(s) ≤ 1 in Ω for every 0 ≤ s ≤ t ≤ T and n ∈ N, which

give (4.2.4) and (4.1.17). Finally, if k = 0, w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s∨0)2+η
for s ∈ R, then for every t ∈ [0, T ] we deduce vn(t) ≥ 0 in Ω, by Lemma 4.2.3, which implies
v(t) ≥ 0 in Ω.

It remains to prove the validity of (4.1.25) for a.e. t ∈ (0, T ). For every j = 1, . . . , n
we know that (ujn, v

j
n) satisfies (4.2.5). In particular, by integrating it in [t1, t2] ⊆ [0, T ] and

using the previous notation, we derive∫ t2

t1

〈u̇′n(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(vn(t))CEun(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(fn(t), ψ)L2(Ω) dt+

∫ t2

t1

〈gn(t), ψ〉H−1
D1

(Ω) dt

(4.2.25)

for every ψ ∈ H1
D1

(Ω;Rd), where fn and gn are the backward interpolants of {f jn}nj=1 and

{gjn}nj=1, respectively. We now pass to the limit as n→∞ in (4.2.25). For the first term we
have

lim
n→∞

∫ t2

t1

〈u̇′n(t), ψ〉H−1
D1

(Ω) dt =

∫ t2

t1

〈ü(t), ψ〉H−1
D1

(Ω) dt,

since u̇′n ⇀ ü in L2(0, T ;H−1
D1

(Ω;Rd)) as n → ∞. Moreover, as n → ∞ it is easy to check

that fn converges strongly to f in L2(0, T ;L2(Ω;Rd)), while gn converges strongly to g in
L2(0, T ;H−1

D1
(Ω;Rd)), which implies

lim
n→∞

[∫ t2

t1

(fn(t), ψ)L2(Ω) dt+

∫ t2

t1

〈gn(t), ψ〉H−1
D1

(Ω) dt

]
=

∫ t2

t1

(f(t), ψ)L2(Ω) dt+

∫ t2

t1

〈g(t), ψ〉H−1
D1

(Ω) dt.

It remains to analyze the second term of (4.2.25). By the previous remark and using the
compactness of the embedding H1(Ω) ↪→ L2(Ω), we get that vn(t)→ v(t) in L2(Ω) as n→∞
for every t ∈ [0, T ]. Thanks to the estimate

|b(vn(t, x))C(x)Eψ(x)| ≤ b(1)‖C‖L∞(Ω) |Eψ(x)| for every t ∈ [0, T ] and a.e. x ∈ Ω

and the dominated convergence theorem, we conclude that b(vn)CEψ converges strongly to
b(v)CEψ in L2(0, T ;L2(Ω;Rd×d)). Hence, we obtain

lim
n→∞

∫ t2

t1

(b(vn(t))CEun(t), Eψ)L2(Ω) dt =

∫ t2

t1

(b(v(t))CEu(t), Eψ)L2(Ω) dt,

since Eun ⇀ Eu in L2(0, T ;L2(Ω;Rd×d)). Therefore, the pair (u, v) solves∫ t2

t1

〈ü(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(v(t))CEu(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(f(t), ψ)L2(Ω) dt+

∫ t2

t1

〈g(t), ψ〉H−1
D1

(Ω) dt
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for every ψ ∈ H1
D1

(Ω;Rd) and [t1, t2] ⊆ [0, T ]. We fix a countable dense set D ⊂ H1
D1

(Ω;Rd).
By Lebesgue’s differentiation theorem, we derive that the pair (u, v) solves (4.1.25) for a.e.
t ∈ (0, T ) and for every ψ ∈ D . Finally, we use the density of D in H1

D1
(Ω;Rd) to conclude

that the equation (4.1.25) is satisfied for every ψ ∈ H1
D1

(Ω;Rd).

In the next lemma we exploit the inequality (4.2.6) to prove (4.1.18).

Lemma 4.2.10. The pair (u, v) given by Lemma 4.2.7 satisfies for a.e. t ∈ (0, T ) the crack
stability condition (4.1.18).

Proof. For every j = 1, . . . , n the pair (ujn, v
j
n) satisfies the inequality (4.2.6), that can be

rephrased in
E (un(t), v∗)− E (un(t), vn(t)) + ∂H (vn(t))[v∗ − vn(t)]

+
k∑
i=0

αi(∇iv̇n(t),∇iv∗ −∇ivn(t))L2(Ω) ≥ 0
(4.2.26)

for a.e. t ∈ (0, T ) and for every v∗ − w2 ∈ H1
D2

(Ω) ∩ Hk(Ω) with v∗ ≤ vn(t). Given

χ ∈ H1
D2

(Ω) ∩Hk(Ω) with χ ≤ 0, the function χ+ vn(t) is admissible for (4.2.26). After an
integration in [t1, t2] ⊆ [0, T ], we deduce the following inequality∫ t2

t1

[E (un(t), χ+ vn(t))− E (un(t), vn(t))] dt

+

∫ t2

t1

∂H (vn(t))[χ] dt+

k∑
i=0

αi

∫ t2

t1

(∇iv̇n(t),∇iχ)L2(Ω) dt ≥ 0.

(4.2.27)

Let us send n→∞. We have

lim
n→∞

k∑
i=0

αi

∫ t2

t1

(∇iv̇n(t),∇iχ)L2(Ω) dt =
k∑
i=0

αi

∫ t2

t1

(∇iv̇(t),∇iχ)L2(Ω) dt, (4.2.28)

since v̇n ⇀ v̇ in L2(0, T ;Hk(Ω)). Moreover vn ⇀ v in L2(0, T ;H1(Ω)), which implies

lim
n→∞

∫ t2

t1

∂H (vn(t))[χ] dt =

∫ t2

t1

∂H (v(t))[χ] dt. (4.2.29)

The function φ(x, y, ξ) := 1
2 [b(y) − b(χ(x) + y)]C(x)ξsym · ξsym, (x, y, ξ) ∈ Ω × R × Rd×d,

satisfies the assumptions of Ioffe-Olech’s theorem (see, e.g., [14, Theorem 3.4]). Thus, for
every t ∈ [0, T ] we derive

E (u(t), v(t))− E (u(t), χ+ v(t)) =

∫
Ω
φ(x, v(t, x), Eu(t, x)) dx

≤ lim inf
n→∞

∫
Ω
φ(x, vn(t, x), Eun(t, x)) dx

= lim inf
n→∞

[E (un(t), χ+ vn(t))− E (un(t), vn(t))],

since vn(t) → v(t) in L2(Ω) and Eun(t) ⇀ Eu(t) in L2(Ω;Rd×d) for every t ∈ [0, T ]. By
Fatou’s lemma, we conclude∫ t2

t1

[E (u(t), v(t))− E (u(t), χ+ v(t))] dt

≤
∫ t2

t1

lim inf
n→∞

[E (un(t), vn(t))− E (un(t), χ+ vn(t))] dt

≤ lim inf
n→∞

∫ t2

t1

[E (un(t), vn(t))− E (un(t), χ+ vn(t))] dt,
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which gives ∫ t2

t1

[E (u(t), χ+ v(t))− E (u(t), v(t))] dt

≥ lim sup
n→∞

∫ t2

t1

[E (un(t), χ+ vn(t))− E (un(t), vn(t))] dt.

(4.2.30)

By combining (4.2.27)–(4.2.30) we obtain the following inequality∫ t2

t1

[
E (u(t), χ+ v(t))− E (u(t), v(t)) + ∂H (v(t))[χ] +

k∑
i=0

αi(∇iv̇(t),∇iχ)L2(Ω)

]
dt ≥ 0.

We choose now a countable dense set D ⊂ {χ ∈ H1
D2

(Ω) ∩ Hk(Ω) : χ ≤ 0}. Thanks to
Lebesgue’s differentiation theorem for a.e. t ∈ (0, T ) we derive

E (u(t), χ+ v(t))− E (u(t), v(t)) + ∂H (v(t))[χ] +
k∑
i=0

αi(∇iv̇(t),∇iχ)L2(Ω) ≥ 0 (4.2.31)

for every χ ∈ D . Finally, we use a density argument and the dominated convergence theorem
to deduce that (4.2.31) is satisfied for every χ ∈ H1

D2
(Ω) ∩Hk(Ω) with χ ≤ 0. In particular,

for a.e. t ∈ (0, T ) we get

E (u(t), v∗)− E (u(t), v(t)) + ∂H (v(t))[v∗ − v(t)] +
k∑
i=0

αi(∇iv̇(t),∇iv∗ −∇iv(t))L2(Ω) ≥ 0,

for every v∗ − w2 ∈ H1
D2

(Ω) ∩Hk(Ω) with v∗ ≤ v(t), by taking χ := v∗ − v(t). This implies
the crack stability condition (4.1.18), since the map v∗ 7→H (v∗) is convex.

We conclude this section by showing that the pair (u, v) given by Lemma 4.2.7 sat-
isfies an energy-dissipation inequality. Notice that also for a generalized solution (u, v)
the total work Wtot(u, v; t1, t2) is well defined for every t1, t2 ∈ [0, T ]. Indeed, we have
u ∈ C0

w([0, T ];H1(Ω;Rd)) and u̇ ∈ C0
w([0, T ];H1(Ω;Rd)), which gives that u(t) − w1(t) and

u̇(t) are uniquely defined for every t ∈ [0, T ] as elements of H1
D1

(Ω;Rd) and L2(Ω;Rd), respec-
tively. Moreover, by combining the weak continuity of u and u̇, with the strong continuity of
g, w1, and ẇ1, it is easy to see that the function (t1, t2)→ Wtot(t1, t2, u, v) is continuous.

Lemma 4.2.11. The pair (u, v) given by Lemma 4.2.7 satisfies for every t ∈ [0, T ] the
energy-dissipation inequality

F (u(t), u̇(t), v(t)) +

∫ t

0
G (v̇(s)) ds ≤ F (u0, u1, v0) + Wtot(u, v; 0, t). (4.2.32)

Proof. Let gn, wn, and w′n be the piecewise affine interpolants of {gjn}nj=1, {wjn}nj=1, and

{δwjn}nj=1, respectively, and let wn, w
′
n and wn, w

′
n be the backward and the forward inter-

polants of {wjn}nj=1 and {δwjn}nj=1, respectively.
For t = 0 the inequality (4.2.32) trivially holds thanks to our initial conditions (4.1.16).

We fix t ∈ (0, T ] and for every n ∈ N we consider the unique j ∈ {1, . . . , n} such that
t ∈ ((j − 1)τn, jτn]. As done before, we use the previous interpolants and (4.2.10) to write

F (un(t), u′n(t), vn(t)) +

∫ tn

0
G (v̇n) ds

≤ F (u0, u1, v0) +

∫ tn

0
[(fn, u

′
n − w′n)L2(Ω) + (b(vn)CEun, Ew′n)L2(Ω)] ds

−
∫ tn

0
[〈ġn, un − wn〉H−1

D1
(Ω) + (u′n, ẇ

′
n)L2(Ω)] ds+ 〈gn(t), un(t)− wn(t)〉H−1

D1
(Ω)

+ (u′n(t), w′n(t))L2(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω) − (u1, w1(0))L2(Ω),

(4.2.33)
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where we have set tn := jτn, and we have neglected the terms Dj
n, which are non negative.

It easy to see that the following convergences hold as n→∞:

fn → f in L2(0, T ;L2(Ω;Rd)), ġn → ġ in L2(0, T ;H−1
D1

(Ω;Rd)),

wn → w1 in L2(0, T ;H1(Ω;Rd)), w′n → ẇ1 in L2(0, T ;H1(Ω;Rd)),
ẇ′n → ẅ1 in H1(0, T ;L2(Ω;Rd)).

By using also the ones of Lemma 4.2.7 and observing that tn → t as n→∞, we deduce

lim
n→∞

∫ tn

0
(fn(s), u′n(s)− w′n(s))L2(Ω) ds =

∫ t

0
(f(s), u̇(s)− ẇ1(s))L2(Ω) ds, (4.2.34)

lim
n→∞

∫ tn

0
〈ġn(s), un(s)− wn(s)〉H−1

D1
(Ω) ds =

∫ t

0
〈ġ(s), u(s)− w1(s)〉H−1

D1
(Ω) ds, (4.2.35)

lim
n→∞

∫ tn

0
(u′n(s), ẇ′n(s))L2(Ω) ds =

∫ t

0
(u̇(s), ẅ1(s))L2(Ω) ds. (4.2.36)

Moreover, the strong continuity of g, w1, and ẇ1 in H−1
D1

(Ω;Rd), H1(Ω;Rd), and L2(Ω;Rd),
respectively, and the convergences of Remark 4.2.8, imply

lim
n→∞

〈gn(t), un(t)− wn(t)〉H−1
D1

(Ω) = 〈g(t), u(t)− w1(t)〉H−1
D1

(Ω), (4.2.37)

lim
n→∞

(u′n(t), w′n(t))L2(Ω) = (u̇(t), ẇ1(t))L2(Ω). (4.2.38)

It is easy to check that b(vn)CEw′n → b(v)CEẇ1 in L2(0, T ;L2(Ω;Rd×d)), thanks to the
dominated convergence theorem. By combining it with Eun ⇀ Eu in L2(0, T ;L2(Ω;Rd×d)),
we conclude

lim
n→∞

∫ tn

0
(b(vn(s))CEun(s), Ew′n(s))L2(Ω) ds =

∫ t

0
(b(v(s))CEu(s), Eẇ1(s))L2(Ω) ds. (4.2.39)

If we now consider the left-hand side of (4.2.33), we get

K (u̇(t)) ≤ lim inf
n→∞

K (u′n(t)), H (v(t)) ≤ lim inf
n→∞

H (vn(t)), (4.2.40)

since u′n(t) ⇀ u̇(t) in L2(Ω,Rd) and vn(t) ⇀ v(t) in H1(Ω). Furthermore, we have v̇n ⇀ v̇ in
L2(0, T ;Hk(Ω)) and t ≤ tn, which gives∫ t

0
G (v̇(s)) ds ≤ lim inf

n→∞

∫ t

0
G (v̇n(s)) ds ≤ lim inf

n→∞

∫ tn

0
G (v̇n(s)) ds. (4.2.41)

Finally, let us consider the function φ(x, y, ξ) := 1
2b(y)C(x)ξsym ·ξsym, (x, y, ξ) ∈ Ω×R×Rd×d.

As in the previous lemma, the function φ satisfies the assumption of Ioffe-Olech’s theorem,
while vn(t)→ v(t) in L2(Ω) and Eun(t) ⇀ Eu(t) in L2(Ω;Rd×d). Thus, we obtain

E (u(t), v(t)) =

∫
Ω
φ(x, v(t, x), Eu(t, x)) dx

≤ lim inf
n→∞

∫
Ω
φ(x, vn(t, x), Eun(t, x)) dx = lim inf

n→∞
E (un(t), vn(t)).

(4.2.42)

By combining (4.2.33) with (4.2.34)–(4.2.42) we deduce the inequality (4.2.32) for every
t ∈ (0, T ].
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4.3 Proof of the main result

In this section we show that for k > d/2 the generalized solution (u, v) given by Lemma 4.2.7
is a weak solution and satisfies the identity (4.1.27). To this aim we need several lemmas: we
start by proving that, given a function v ∈ H1(0, T ;C0(Ω)) satisfying (4.1.17), there exists
a unique solution u to equation (4.1.25). As a consequence, we deduce that the mechanical
energy associated to u satisfies formula (4.3.20) for every t ∈ [0, T ], which guarantees that the
function u is more regular in time, namely u ∈ C0([0, T ];H1(Ω;Rd)) ∩ C1([0, T ];L2(Ω;Rd)).
Finally, we use the crack stability condition (4.1.18) and the energy-dissipation inequal-
ity (4.2.32) to obtain (4.1.19) from (4.3.20).

Lemma 4.3.1. Let w1, f , g, u0, and u1 be as in (4.1.7), (4.1.9), and (4.1.10). Let us
assume that σ ∈ H1(0, T ;C0(Ω)) satisfies (4.1.17). Then there exists a unique function z
which satisfies (4.2.1), (4.2.2), the initial conditions z(0) = u0 and ż(0) = u1, and which
solves for a.e. t ∈ (0, T ) the following equation:

〈z̈(t), ψ〉H−1
D1

(Ω) + (b(σ(t))CEz(t), Eψ)L2(Ω) = (f(t), ψ)L2(Ω) + 〈g(t), ψ〉H−1
D1

(Ω) (4.3.1)

for every ψ ∈ H1
D1

(Ω;Rd).

Proof. To prove the existence of a solution z to (4.3.1), we proceed as before. We fix n ∈ N
and we define

τn :=
T

n
, z0

n := u0, z−1
n := u0 − τnu1, σjn := σ(jτn) for j = 0, . . . , n.

For j = 1, . . . , n we consider the unique solution zjn − wjn ∈ H1
D1

(Ω;Rd) to

(δ2zjn, ψ)L2(Ω) + (b(σj−1
n )CEzjn, Eψ)L2(Ω) = (f jn, ψ)L2(Ω) + 〈gjn, ψ〉H−1

D1
(Ω) (4.3.2)

for every ψ ∈ H1
D1

(Ω;Rd), where we have set δzjn := 1
τn

(zjn − zj−1
n ) for j = 0, . . . , n, and

δ2zjn := 1
τn

(δzjn−δzj−1
n ) for j = 1, . . . , n. By using ψ := τn(δzjn−δwjn) as test function in (4.3.2)

and proceeding as in Lemma 4.2.4, we get that the function zjn satisfies for j = 1, . . . , n

[K (δzjn) + E (zjn, σ
j
n)]− [K (δzj−1

n ) + E (zj−1
n , σj−1

n )]− 1

2
([b(σjn)− b(σj−1

n )]CEzjn, Ezjn)L2(Ω)

≤ τn(f jn, δz
j
n − δwjn)L2(Ω) + τn〈gjn, δzjn − δwjn〉H−1

D1
(Ω)

+ τn(δ2zjn, δw
j
n)L2(Ω) + τn(b(vj−1

n )CEzjn, Eδwjn)L2(Ω).

In particular, we can sum over l = 1, . . . , j for every j ∈ {1, . . . , n} and use the identi-
ties (4.2.15) and (4.2.16) to derive the discrete energy inequality

K (δzjn) + E (zjn, σ
j
n)− 1

2

j∑
l=1

([b(σln)− b(σl−1
n )]CEzln, Ezln)L2(Ω)

≤ K (u1) + E (u0, σ(0)) +

j∑
l=1

τn[(f ln, δz
l
n − δwln)L2(Ω) + (b(σl−1

n )CEzln, Eδwln)L2(Ω)]

−
j∑
l=1

τn[〈δgln, zl−1
n − wl−1

n 〉H−1
D1

(Ω) + (δzl−1
n , δ2wln)L2(Ω)] + 〈gjn, zjn − wjn〉H−1

D1
(Ω)

+ (δzjn, δw
j
n)L2(Ω) − 〈g(0), u0 − w1(0)〉H−1

D1
(Ω) − (u1, w1(0))L2(Ω).

(4.3.3)
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Since σjn ≤ σj−1
n and b is non-decreasing, the last term in the left-hand side is non negative.

Hence, by arguing as in Lemma 4.2.5 and in Remark 4.2.6, we can find a constant C > 0,
independent of n, such that

max
j=1,...,n

[
‖δzjn‖L2(Ω) + ‖zjn‖H1(Ω)

]
+

n∑
j=1

τn‖δ2zjn‖2H−1
D1

(Ω)
≤ C.

Let zn, z′n, zn, z′n, and zn, z′n be the piecewise affine, the backward, and the forward inter-
polants of {zjn}nj=1 and {δzjn}nj=1, respectively. As in Lemma 4.2.7, the above estimate implies
the existence of a subsequence of n, not relabeled, and function z satisfying (4.2.1), (4.2.2)
and the initial conditions z(0) = u0 and ż(0) = u1, such that the following convergences hold
as n→∞:

zn ⇀ z in H1(0, T ;L2(Ω;Rd)), z′n ⇀ ż in H1(0, T ;H−1
D1

(Ω;Rd)),

zn → z in C0([0, T ];L2(Ω;Rd)), z′n → ż in C0([0, T ];H−1
D1

(Ω;Rd)),

zn ⇀ z in L2(0, T ;H1(Ω;Rd)), z′n,⇀ ż in L2(0, T ;L2(Ω;Rd)),
zn ⇀ z in L2(0, T ;H1(Ω;Rd)), z′n ⇀ ż in L2(0, T ;L2(Ω;Rd)).

Let us now define the backward interpolant σn and the forward interpolant σn of {σjn}nj=1.
By integrating the equation (4.3.2) in the time interval [t1, t2] ⊆ [0, T ], we obtain∫ t2

t1

〈ż′n(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(σn(t))CEzn(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(fn(t), ψ)L2(Ω) dt+

∫ t2

t1

〈gn(t), ψ〉H−1
D1

(Ω) dt

for every ψ ∈ H1
D1

(Ω;Rd). Thanks to the fact that σ ∈ H1(0, T ;C0(Ω)) and the previous
convergences, we can pass to the limit as n→∞ as done in Lemma 4.2.9, and we deduce∫ t2

t1

〈z̈(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(σ(t))CEz(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(f(t), ψ)L2(Ω) dt+

∫ t2

t1

〈g(t), ψ〉H−1
D1

(Ω) dt

for every ψ ∈ H1
D1

(Ω;Rd). By Lebesgue’s differentiation theorem and a density argument we

can conclude that the function z solves (4.3.1) for a.e. t ∈ (0, T ) and for every ψ ∈ H1
D1

(Ω;Rd).
To prove the uniqueness, we use the same technique adopted in Theorem 1.2.10 and

Lemma 3.4.2. Let z1 and z2 be two solutions to (4.3.1) satisfying (4.2.1), (4.2.2), and the
initial conditions u0 and u1. The function z =: z1 − z2 belongs to the space

L∞(0, T ;H1
D1

(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)),

and for a.e. t ∈ (0, T ) solves

〈z̈(t), ψ〉H−1
D1

(Ω) + (b(σ(t))CEz(t), Eψ)L2(Ω) = 0 for every ψ ∈ H1
D1

(Ω;Rd),

with initial conditions z(0) = ż(0) = 0. We fix s ∈ (0, T ], and we consider the function

ϕs(t) =

{
−
∫ s
t z(r) dr if t ∈ [0, s],

0 if t ∈ [s, T ].
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Clearly, we have ϕs ∈ C0([0, T ];H1
D1

(Ω;Rd)) and ϕs(s) = 0. Moreover

ϕ̇s(t) =

{
z(t) if t ∈ [0, s),

0 if t ∈ (s, T ],

which implies ϕ̇s ∈ L∞(0, T ;H1
D1

(Ω;Rd)). We use ϕs(t) as test function in (4.3.1) and we
integrate in [0, s] to deduce∫ s

0
〈z̈(t), ϕs(t)〉H−1

D1
(Ω) dt+

∫ s

0
(b(σ(t))CEz(t), Eϕs(t))L2(Ω) dt = 0. (4.3.4)

By integration by parts, the first term becomes∫ s

0
〈z̈(t), ϕs(t)〉H−1

D1
(Ω) dt = −

∫ s

0
(ż(t), z(t))L2(Ω) dt = −1

2
‖z(s)‖2L2(Ω),

since ϕs(s) = ż(0) = z(0) = 0. Moreover, the function t 7→ (b(σ(t))CEϕs(t), Eϕs(t))L2(Ω) is

absolutely continuous on [0, T ], because ϕs ∈ H1(0, T ;H1
D1

(Ω;Rd)) and σ ∈ H1(0, T ;C0(Ω)).
Hence, we can integrate by parts the second terms of (4.3.4) to obtain∫ s

0
(b(σ(t))CE(z(t)), Eϕs(t))L2(Ω) dt

= −1

2

∫ s

0
(ḃ(σ(t))σ̇(t)CEϕs(t), Eϕs(t))L2(Ω) dt− 1

2
(b(σ(0))CEϕs(0), Eϕs(0))L2(Ω),

since ϕs(s) = 0. These two identities imply that z and ϕs satisfy

‖z(s)‖2L2(Ω) + (b(σ(0))CEϕs(0), Eϕs(0))L2(Ω) = −
∫ s

0
(ḃ(σ(t))σ̇(t)CEϕs(t), Eϕs(t))L2(Ω) dt.

In particular, we get

‖z(s)‖2L2(Ω) + ηλ0‖Eϕs(0)‖2L2(Ω)

≤ ḃ(‖σ‖L∞(0,T ;C0(Ω)))‖C‖L∞(Ω)

∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eϕs(t)‖2L2(Ω)dt,

since ḃ is non-decreasing. Let us define ζ(t) :=
∫ t

0 z(r) dr for t ∈ [0, s]. Since ϕs(t) = ζ(t)−ζ(s)
for t ∈ [0, s], we deduce that ‖Eϕs(0)‖L2(Ω) = ‖Eζ(s)‖L2(Ω) and∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eϕs(t)‖2L2(Ω)dt

≤ 2‖Eζ(s)‖2L2(Ω)

∫ s

0
‖σ̇(t)‖L∞(Ω) dt+ 2

∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eζ(t)‖2L2(Ω)dt

≤ 2
√
s‖σ̇‖L2(0,T ;C0(Ω))‖Eζ(s)‖2L2(Ω) + 2

∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eζ(t)‖2L2(Ω)dt.

Hence, we have

‖z(s)‖2L2(Ω) +
[
ηλ0 − 2ḃ(‖σ‖L∞(0,T ;C0(Ω)))‖C‖L∞(Ω)‖σ̇‖L2(0,T ;C0(Ω))

√
s
]
‖Eζ(s)‖2L2(Ω)

≤ 2ḃ(‖σ‖L∞(0,T ;C0(Ω)))‖C‖L∞(Ω)

∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eζ(t)‖2L2(Ω)dt.

Let us set

t0 :=

(
ηλ0

4ḃ(‖σ‖L∞(0,T ;C0(Ω))‖C‖L∞(Ω)‖σ̇‖L2(0,T ;C0(Ω))

)2

.
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By the previous estimate, for every s ∈ [0, t0] we derive

‖z(s)‖2L2(Ω) +
ηλ0

2
‖Eζ(s)‖2L2(Ω)

≤ 2ḃ(‖σ‖L∞(0,T ;C0(Ω)))‖C‖L∞(Ω)

∫ s

0
‖σ̇(t)‖L∞(Ω)‖Eζ(t)‖2L2(Ω)dt.

Thanks to Gronwall’s lemma (see, e.g., [24, Chapitre XVIII, §5, Lemme 1]), this inequality
implies that z(s) = Eζ(s) = 0 for every s ∈ [0, t0]. Since t0 depends only on C, b, and σ, we
can repeat this procedure starting from t0 and, with a finite number of steps, we obtain that
z = 0 on the whole interval [0, T ].

Corollary 4.3.2. Let w1, f , g, u0, u1, and σ be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u0 and ż(0) = u1 satisfies for every t ∈ [0, T ] the
following energy-dissipation inequality

K (ż(t)) + E (z(t), σ(t))− 1

2

∫ t

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

≤ K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t).

(4.3.5)

Proof. For t = 0 the inequality (4.3.5) is trivially true, thanks to the initial conditions of z.
We fix t ∈ (0, T ] and we write the inequality (4.3.3) as

K (z′n(t)) + E (zn(t), σn(t))− 1

2τn

∫ tn

0
([b(σn)− b(σn)]CEzn, Ezn)L2(Ω) ds

≤ K (u1) + E (u0, σ(0)) +

∫ tn

0
[(fn, z

′
n − w′n)L2(Ω) + (b(σn)CEzn, Ew′n)L2(Ω)] ds

−
∫ tn

0
[〈ġn, zn − wn〉H−1

D1
(Ω) + (z′n, ẇ

′
n)L2(Ω)] ds+ 〈gn(t), zn(t)− wn(t)〉H−1

D1
(Ω)

+ (z′n(t), w′n(t))L2(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω) − (u1, w1(0))L2(Ω),

(4.3.6)

where tn := jτn, and j is the unique element in {1, . . . , n} for which t ∈ ((j−1)τn, jτn]. To pass
to the limit as n → ∞ in (4.3.6), we follow the same procedure adopted in Lemma 4.2.11.
Notice that zn(t) ⇀ z(t) in H1(Ω;Rd) and z′n(t) ⇀ ż(t) in L2(Ω;Rd), by arguing as in
Remark 4.2.8, while σn(t)→ σ(t) in C0(Ω). Hence, we derive

K (ż(t)) ≤ lim inf
n→∞

K (z′n(t)), E (z(t), σ(t)) ≤ lim inf
n→∞

E (zn(t), σn(t)). (4.3.7)

Similarly, we combine the convergences given by the previous lemma, with σn(s) → σ(s) in
C0(Ω) for every s ∈ [0, T ] and tn → t as n→∞, to deduce

lim
n→∞

∫ tn

0
(fn(s), z′n(s)− w′n(s))L2(Ω) ds =

∫ t

0
(f(s), ż(s)− ẇ1(s))L2(Ω) ds, (4.3.8)

lim
n→∞

∫ tn

0
(b(σn(s))CEzn(s), Ew′n(s))L2(Ω)] ds =

∫ t

0
(b(σ(s))CEz(s), Eẇ(s))L2(Ω) ds, (4.3.9)

lim
n→∞

∫ tn

0
(z′n(s), ẇ′n(s))L2(Ω) ds =

∫ t

0
(ż(s), ẅ1(s))L2(Ω) ds, (4.3.10)

lim
n→∞

∫ tn

0
〈ġn(s), zn(s)− wn(s)〉H−1

D1
(Ω) ds =

∫ t

0
〈ġ(s), z(s)− w1(s)〉H−1

D1
(Ω) ds, (4.3.11)

lim
n→∞

(z′n(t), w′n(t))L2(Ω) = (ż(t), ẇ1(t))L2(Ω), (4.3.12)

lim
n→∞

〈gn(t), zn(t)− wn(t)〉H−1
D1

(Ω) = 〈g(t), z(t)− w1(t)〉H−1
D1

(Ω). (4.3.13)
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Finally, for a.e. s ∈ (0, T ) we have∥∥∥∥σn(s)− σn(s)

τn
− σ̇(s)

∥∥∥∥
L∞(Ω)

≤ 1

τn

∫ s+τn

s−τn
‖σ̇(r)− σ̇(s)‖L∞(Ω) → 0 as n→∞, (4.3.14)

since σ̇ ∈ L2(0, T ;C0(Ω)). Let us fix s ∈ (0, T ) for which (4.3.14) holds. By Lagrange’s
theorem for every x ∈ Ω there exists a point rn(s, x) ∈ [σn(s, x), σn(s, x)] such that

b(σn(s, x))− b(σn(s, x))

τn
= ḃ(rn(s, x))

σn(s, x)− σn(s, x)

τn
.

Notice that rn(s, x)→ σ(s, x) as n→∞ for every x ∈ Ω. Hence, for a.e. s ∈ (0, T ) we get

lim
n→∞

b(σn(s, x))− b(σn(s, x))

τn
= ḃ(σ(s, x))σ̇(s, x) for every x ∈ Ω.

Furthermore, thanks to (4.3.14) there is a constant Cs > 0, which may depend on s, but it is
independent of n, such that for every x ∈ Ω∣∣∣∣b(σn(s, x))− b(σn(s, x))

τn

∣∣∣∣ ≤ ḃ(‖σ‖L∞(0,T ;C0(Ω)))

∥∥∥∥σn(s)− σn(s)

τn

∥∥∥∥
L∞(Ω)

≤ ḃ(‖σ‖L∞(0,T ;C0(Ω)))Cs.

Therefore, for a.e. s ∈ (0, T ) we can apply the dominated convergence theorem to deduce

b(σn(s))− b(σn(s))

τn
→ ḃ(σ(s))σ̇(s) in L2(Ω) as n→∞.

The function φ(x, y, ξ) := 1
2 |y|C(x)ξsym · ξsym, (x, y, ξ) ∈ Ω×R×Rd×d, satisfies the assump-

tions of Ioffe-Olech’s theorem, while Ezn(s) ⇀ Ez(s) in L2(Ω;Rd×d) for every s ∈ [0, T ].
Then, we have

− 1

2
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω)

=

∫
Ω
φ(x, ḃ(σ(s))σ̇(s, x), Ez(s, x)) dx

≤ lim inf
n→∞

∫
Ω
φ

(
x,
b(σn(s, x))− b(σn(s, x))

τn
, Ezn(s, x)

)
dx

= lim inf
n→∞

[
− 1

2τn
([b(σn(s))− b(σn(s))]CEzn(s), Ezn(s))L2(Ω)

]
for a.e. s ∈ (0, T ), being b(σn(s)) ≤ b(σn(s)) in Ω. In particular, thanks to Fatou’s lemma
we get

− 1

2

∫ t

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

≤
∫ t

0
lim inf
n→∞

[
− 1

2τn
([b(σn(s))− b(σn(s))]CEzn(s), Ezn(s))L2(Ω)

]
ds

≤ lim inf
n→∞

[
− 1

2τn

∫ tn

0
([b(σn(s))− b(σn(s))]CEzn(s), Ezn(s))L2(Ω) ds

]
,

(4.3.15)

since t ≤ tn. By combining (4.3.6)–(4.3.13) with (4.3.15) we deduce the inequality (4.3.5) for
every t ∈ (0, T ].
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The other inequality, at least for a.e. t ∈ (0, T ), is a consequence of equation (4.3.1).

Lemma 4.3.3. Let w1, f , g, u0, u1, and σ be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u0 and ż(0) = u1 satisfies for a.e. t ∈ (0, T )

K (ż(t)) + E (z(t), σ(t))− 1

2

∫ t

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

≥ K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t).

(4.3.16)

Proof. It is enough to proceed as done in Lemma 4.1.8, by using Lebesgue’s differentiation
theorem and the fact that z ∈ C0

w([0, T ];H1(Ω;Rd)) and ż ∈ C0
w([0, T ];L2(Ω;Rd)). This

ensures that z satisfies

K (ż(t2)) + E (z(t2), σ(t2))− 1

2

∫ t2

t1

(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

= K (ż(t1)) + E (z(t1), σ(t1)) + Wtot(z, σ; t1, t2)

for a.e. t1, t2 ∈ (0, T ) with t1 < t2. Since the right-hand side is lower semicontinuous with
respect to t1, while the left-hand side is continuous, sending t1 → 0+ we deduce (4.3.16).

By combining the two previous results we obtain that the solution z to (4.3.1) satisfies

K (ż(t)) + E (z(t), σ(t))− 1

2

∫ t

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

= K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t).

(4.3.17)

for a.e. t ∈ (0, T ). Actually, this is true for every time, as shown in the following lemma.

Lemma 4.3.4. Let w1, f , g, u0, u1, and σ be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u0 and ż(0) = u1 satisfies equality (4.3.17) for
every t ∈ [0, T ]. In particular, the function t 7→ K (ż(t)) + E (z(t), σ(t)) is continuous from
[0, T ] to R and

z ∈ C0([0, T ];H1(Ω;Rd)) ∩ C1([0, T ];L2(Ω;Rd)). (4.3.18)

Proof. We may assume that σ, w1, f , and g are defined on [0, 2T ] and satisfy the hypotheses of
Lemma 4.3.1 with T replaced by 2T . As for w1 and σ, we can set w1(t) := 2w1(T )−w1(2T−t)
and σ(t) := σ(T ) for t ∈ (T, 2T ], respectively. By Lemma 4.3.1, the solution z on [0, T ] can
be extended to a solution on [0, 2T ] still denoted by z. Thanks to Corollary 4.3.2 and
Lemma 4.3.3, the function z satisfies equality (4.3.17) for a.e. t ∈ (0, 2T ), and inequal-
ity (4.3.5) for every t ∈ [0, 2T ]. By contradiction assume the existence of a point t0 ∈ [0, T ]
such that

K (ż(t0)) + E (z(t0), σ(t0))− 1

2

∫ t0

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

< K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t0).

We have z(t0) − w(t0) ∈ H1
D1

(Ω;Rd) and ż(t0) ∈ L2(Ω;Rd), since z ∈ C0
w([0, T ];H1(Ω;Rd))

and ż ∈ C0
w([0, T ];L2(Ω;Rd)). Then we can consider the solution z0 to (4.3.1) in [t0, 2T ] with

these initial conditions. The function defined by z in [0, t0] and z0 in [t0, 2T ] is still a solution
to (4.3.1) in [0, 2T ] and so, by uniqueness, we have z = z0 in [t0, 2T ]. Furthermore, in view
of (4.3.5) we deduce

K (ż(t)) + E (z(t), σ(t))− 1

2

∫ t

t0

(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

≤ K (z(t0)) + E (z(t0), σ(t0)) + Wtot(z, σ; t0, t)
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for every t ∈ [t0, 2T ]. By combining the last two inequalities, we get

K (ż(t)) + E (z(t), σ(t))− 1

2

∫ t

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

≤ K (z(t0)) + E (z(t0), σ(t0)) + Wtot(z, σ; t0, t)−
1

2

∫ t0

0
(ḃ(σ(s))σ̇(s)CEz(s), Ez(s))L2(Ω) ds

< K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t0) + Wtot(z, σ; t0, t)

= K (u1) + E (u0, σ(0)) + Wtot(z, σ; 0, t)

for every t ∈ [t0, 2T ], which contradicts (4.3.17). Therefore, equality (4.3.17) holds for every
t ∈ [0, T ], which implies the continuity of the function t 7→ K (ż(t))+E (z(t), σ(t)) from [0, T ]
to R.

Let us now prove (4.3.18). We fix t0 ∈ [0, T ] and we consider a sequence of points {tm}m
converging to t0 as m → ∞. Since z ∈ C0

w([0, T ];H1(Ω;Rd)) and ż ∈ C0
w([0, T ];L2(Ω;Rd)),

we have

K (ż(t0)) ≤ lim inf
m→∞

K (ż(tm)), E (z(t0), σ(t0)) ≤ lim inf
m→∞

E (z(tm), σ(t0)).

Moreover, σ ∈ C0([0, T ];C0(Ω)) and b ∈ C1(R), which implies as m→∞

|E (z(tm), σ(t0))− E (z(tm), σ(tm))|

≤ 1

2
ḃ(‖σ‖L∞(0,T ;C0(Ω)))‖C‖L∞(Ω)‖Ez‖2L∞(0,T ;L2(Ω))‖σ(t0)− σ(tm)‖L∞(Ω) → 0.

In particular, we deduce

E (z(t0), σ(t0)) ≤ lim inf
m→∞

E (z(tm), σ(tm)).

The above inequalities and the continuity of t 7→ K (ż(t)) + E (z(t), σ(t)) gives

K (ż(t0)) + E (z(t0), σ(t0)) ≤ lim inf
m→∞

K (ż(tm)) + lim inf
m→∞

E (z(tm), σ(tm))

≤ lim
m→∞

[K (ż(tm)) + E (z(tm), σ(tm))]

= K (ż(t0)) + E (z(t0), σ(t0)),

which implies the continuity of t 7→ K (ż(t)) and t 7→ E (z(t), σ(t)) in t0 ∈ [0, T ]. In particular,
we derive that the functions t 7→ ‖ż(t)‖L2(Ω) and t 7→ ‖z(t)‖H1(Ω) are continuous from [0, T ]
to R. By combining this fact with the weak continuity of ż and z, we get (4.3.18).

We are now in a position to prove Theorem 4.1.5.

Proof of Theorem 4.1.5. By Lemmas 4.2.9 and 4.2.10, there exists a generalized solution
(u, v) to (4.1.12)–(4.1.15) satisfying the initial conditions (4.1.16), the irreversibility con-
dition (4.1.17), and the crack stability condition (4.1.18). Clearly, the function v satis-
fies (4.1.23), since k ≥ 1. Moreover, the function v = σ is admissible in Lemmas 4.3.1
and 4.3.4, since Hk(Ω) ↪→ C0(Ω). Therefore, u = z satisfies (4.1.21), which gives that (u, v)
is a weak solution to (4.1.12)–(4.1.15).

It remains to prove that (u, v) satisfies the dynamic energy-dissipation balance (4.1.19).
As observed in Remark 4.1.9, for k > d/2 the crack stability condition (4.1.18) is equivalent
to the variational inequality (4.1.39) for a.e. t ∈ (0, T ) and the function v̇(t) ∈ Hk(Ω) is
admissible in (4.1.39). Therefore, we have

∂vE (u(t), v(t))[v̇(t)] + ∂H (v(t))[v̇(t)] + G (v̇(t)) ≥ 0 for a.e. t ∈ (0, T ).
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By integrating the above inequality in [0, t0] for every t0 ∈ [0, T ], we get∫ t0

0
∂vE (u(t), v(t))[v̇(t)] dt+ H (v(t0))−H (v0) +

∫ t0

0
G (v̇(t)) dt ≥ 0. (4.3.19)

Thanks to Lemma 4.3.4, for every t0 ∈ [0, T ] the pair (u, v) satisfies

K (u̇(t0)) + E (u(t0), v(t0))− 1

2

∫ t0

0
(ḃ(v(t))v̇(t)CEu(t), Eu(t))L2(Ω) dt

= K (u1) + E (u0, v0) + Wtot(u, v; 0, t0).

(4.3.20)

Hence, by combining (4.3.19) and (4.3.20), we deduce

F (u(t0), u̇(t0), v(t0)) +

∫ t0

0
G (v̇(t)) dt ≥ F (u0, u1, v0) + Wtot(u, v; 0, t0)

for every t0 ∈ [0, T ]. This inequality, together with (4.2.32), implies (4.1.19) and concludes
the proof.

4.4 The case without dissipative terms

We conclude the chapter by analyzing the dynamic phase-field model of crack propagation
without dissipative terms. Given w1, w2, f , g, u0, u1, and v0 satisfying (4.1.7)–(4.1.11) and

v0 ∈ arg min{E (u0, v∗) + H (v∗) : v∗ − w2 ∈ H1
D2

(Ω), v∗ ≤ v0 in Ω}, (4.4.1)

we search a pair (u, v) which solves the elastodynamics system (4.1.12) with boundary and
initial conditions (4.1.13)–(4.1.16), the irreversibility condition (4.1.17), and the following
crack stability condition for every t ∈ [0, T ]

E (u(t), v(t)) + H (v(t)) ≤ E (u(t), v∗) + H (v∗) (4.4.2)

among all v∗ − w2 ∈ H1
D2

(Ω) with v∗ ≤ v(t).

Remark 4.4.1. We need the compatibility conditions (4.4.1) for the initial data (u0, v0),
since we want that (4.4.2) is satisfied for every time. Notice that, given u0 ∈ H1(Ω;Rd),
an admissible v0 can be constructed by minimizing v∗ 7→ E (u0, v∗) + H (v∗) among all
v∗ − w2 ∈ H1

D2
(Ω) with v∗ ≤ 1 in Ω.

In this section we consider the following notion of solution, which is a slightly modification
of Definition 4.2.1.

Definition 4.4.2. Let w1, w2, f , and g be as in (4.1.7)–(4.1.9). The pair (u, v) is a generalized
solution to (4.1.12)–(4.1.15) if

u ∈ L∞(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)), (4.4.3)

u(t)− w1(t) ∈ H1
D1

(Ω;Rd) for every t ∈ [0, T ], (4.4.4)

v : [0, T ]→ H1(Ω) with v ∈ L∞(0, T ;H1(Ω)), (4.4.5)

v(t)− w2 ∈ H1
D2

(Ω) and v(t) ≤ 1 in Ω for every t ∈ [0, T ], (4.4.6)

and for a.e. t ∈ (0, T ) equation (4.1.25) holds.

Remark 4.4.3. By exploiting the regularity properties (4.4.3), we deduce that u belongs to
C0
w([0, T ];H1(Ω;Rd)), while u̇ is an element of C0

w([0, T ];L2(Ω;Rd)). Therefore, it makes sense
to evaluate u and u̇ at time 0. On the other hand, we require v to be defined pointwise for every
t ∈ [0, T ], so that we can consider its precise value at 0. Hence, the initial condition (4.1.16)
are well defined.
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The main result of this section is the following theorem.

Theorem 4.4.4. Assume that w1, w2, f , g, u0, u1, and v0 satisfy (4.1.7)–(4.1.11) and
(4.4.1). Then there exists a generalized solution (u, v) to problem (4.1.12)–(4.1.15) satisfying
the initial condition (4.1.16), the irreversibility condition (4.1.17), and the crack stability
condition (4.4.2). Moreover, the pair (u, v) satisfies for every t ∈ [0, T ] the following energy-
dissipation inequality

F (u(t), u̇(t), v(t)) ≤ F (u0, u1, v0) + Wtot(u, v; 0, t). (4.4.7)

Finally, if w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s∨ 0)2 + η for s ∈ R, then we can take
v(t) ≥ 0 in Ω for every t ∈ [0, T ].

Remark 4.4.5. By choosing b(s) = (s∨0)+η for s ∈ R we deduce the existence of a dynamic
phase-field evolution (u, v) satisfying (D1) and (D2), since we can take v(t) ≥ 0 in Ω and∫

Ω
[(v(x) ∨ 0)2 + η]C(x)Eu(x) · Eu(x) dx ≤

∫
Ω

[(v(x))2 + η]C(x)Eu(x) · Eu(x) dx

for every u ∈ H1(Ω;Rd) and v ∈ H1(Ω). Without adding a dissipative term to the model, we
are not able to show the dynamic energy-dissipation balance (D3). However, we can always
select a solution (u, v) which satisfies (4.4.7) for every t ∈ [0, T ].

To prove Theorem 4.4.4 we perform a time discretization, as done in the previous sections.
From now on we assume that w1, w2, f , g, u0, u1, and v0 satisfy (4.1.7)–(4.1.11) and (4.4.1).
We fix n ∈ N and for every j = 1, . . . , n we define inductively:

(i) ujn − wjn ∈ H1
D1

(Ω;Rd) is the minimizer of

u∗ 7→ 1

2τ2
n

∥∥u∗ − 2uj−1
n − uj−2

n

∥∥2

L2(Ω)
+ E (u∗, vj−1

n )− (f jn, u
∗)L2(Ω) − 〈gjn, u∗ − wjn〉H−1

D1
(Ω)

among every u∗ − wjn ∈ H1
D1

(Ω;Rd);

(ii) vjn − w2 ∈ H1
D2

(Ω) with vjn ≤ vj−1
n is the minimizer of

v∗ 7→ E (ujn, v
∗) + H (v∗)

among every v∗ − w2 ∈ H1
D2

(Ω) with v∗ ≤ vj−1
n .

As before, for every j = 1, . . . , n there exists a unique pair (ujn, v
j
n) ∈ H1(Ω;Rd)×H1(Ω)

solution to problems (i) and (ii). Moreover, the function ujn solves (4.2.5), while the function
vjn satisfies

E (ujn, v
∗)− E (ujn, v

j
n) + ∂H (vjn)[v∗ − vjn] ≥ 0 (4.4.8)

among all v∗ − w2 ∈ H1
D2

(Ω) with v∗ ≤ vj−1
n , arguing as in Lemma 4.2.3. In particular, if

w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s ∨ 0)2 + η for s ∈ R, then for every j = 1, . . . , n
we can use vjn ∨ 0 ∈ H1(Ω) as a competitor in (ii) to derive that vjn = vjn ∨ 0 ≥ 0 in Ω.

Lemma 4.4.6. The family {(ujn, vjn)}nj=1, solution to (i) and (ii), satisfies for j = 1, . . . , n
the discrete energy inequality

F (ujn, δu
j
n, v

j
n) +

j∑
l=1

τ2
nD

l
n

≤ F (u0, u1, v0) +

j∑
l=1

τn[(f ln, δu
l
n − δwln)L2(Ω) + (b(vl−1

n )CEuln, Eδwln)L2(Ω)]

−
j∑
l=1

τn[(δul−1
n , δ2wln)L2(Ω) − 〈δgln, ul−1

n − wi−1
n 〉H−1

D1
(Ω)] + (δujn, δw

j
n)L2(Ω)

+ 〈gjn, ujn − wjn〉H−1
D1

(Ω) − (u1, ẇ1(0))L2(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω).
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In particular, there exists a constant C > 0, independent of n, such that

max
j=1,...,n

[
‖δujn‖L2(Ω) + ‖ujn‖H1(Ω) + ‖vjn‖H1(Ω)

]
+

n∑
j=1

τn‖δ2ujn‖2H−1
D1

(Ω)
+

n∑
j=1

τ2
nD

j
n ≤ C. (4.4.9)

Proof. It is enough to proceed as in Lemmas 4.2.4 and 4.2.5, and Remark 4.2.6.

As done in Section 4.2, we use the family {(ujn, vjn)}nj=1 and the estimate (4.4.9) to con-
struct a generalized solution (u, v) to (4.1.12)–(4.1.16). Let un, u′n, un, u′n, and un, u′n be
the piecewise affine, the backward, and the forward interpolants of {ujn}nj=1 and {δujn}nj=1,
respectively. Moreover, we consider the backward interpolant vn and the forward interpolant
vn of {vjn}nj=1.

Before passing to the limit as n → ∞, we recall the following Helly’s type result for
vector-valued functions.

Lemma 4.4.7. Let [a, b] ⊂ R and let ϕm : [a, b]→ L2(Ω), m ∈ N, be a sequence of functions
satisfying

ϕm(s) ≤ ϕm(t) in Ω for every a ≤ s ≤ t ≤ b and m ∈ N.
Assume there exists a constant C, independent of m, such that

‖ϕm(t)‖L2(Ω) ≤ C for every t ∈ [a, b] and m ∈ N.

Then there is a subsequence of m, not relabeled, and a function ϕ : [a, b] → L2(Ω) such that
for every t ∈ [a, b]

ϕm(t) ⇀ ϕ(t) in L2(Ω) as m→∞.
Moreover, we have ‖ϕ(t)‖L2(Ω) ≤ C for every t ∈ [a, b] and

ϕ(s) ≤ ϕ(t) in Ω for every a ≤ s ≤ t ≤ b. (4.4.10)

Proof. Let us consider a countable dense set D ⊂ {χ ∈ L2(Ω) : χ ≥ 0} and let us fix χ ∈ D .
For every m ∈ N the map t 7→

∫
Ω ϕm(t, x)χ(x) dx is non-decreasing and uniformly bounded

in [a, b], since ∣∣∣∣∫
Ω
ϕm(t, x)χ(x) dx

∣∣∣∣ ≤ C‖χ‖L2(Ω) for every t ∈ [a, b]. (4.4.11)

By applying the Helly’s theorem, we can find a subsequence of m, not relabeled, and a
function aχ : [a, b]→ R such that for every t ∈ [a, b]∫

Ω
ϕm(t, x)χ(x) dx→ aχ(t) as m→∞.

Moreover, thanks to a diagonal argument, the subsequence of m can be chosen independent
of χ ∈ D .

We now fix t ∈ [a, b] and χ ∈ L2(Ω) with χ ≥ 0. Given h > 0, there is χh ∈ D such that
‖χ − χh‖L2(Ω) < h. Moreover, thanks to the previous convergence we can find m̄ ∈ N such
that for every m, l > m̄∣∣∣∣∫

Ω
ϕm(t, x)χh(x) dx−

∫
Ω
ϕj(t, x)χh(x) dx

∣∣∣∣ < h.

Therefore, the sequence
∫

Ω ϕm(t, x)χ(x) dx, m ∈ N, is Cauchy in R. Indeed, for every h > 0
there exists m̄ ∈ N such that for every m, l > m̄∣∣∣∣∫

Ω
ϕm(t, x)χ(x) dx−

∫
Ω
ϕl(t, x)χ(x) dx

∣∣∣∣
≤ 2C‖χ− χh‖L2(Ω) +

∣∣∣∣∫
Ω
ϕm(t, x)χh(x) dx−

∫
Ω
ϕj(t, x)χh(x) dx

∣∣∣∣
< (2C + 1)h.



Chapter 4. A phase-field model of dynamic fracture 117

Hence, we can find an element aχ(t) ∈ R such that∫
Ω
ϕm(t, x)χ(x) dx→ aχ(t) as m→∞.

In particular, for every t ∈ [a, b] and χ ∈ L2(Ω) we have as m→∞∫
Ω
ϕm(t, x)χ(x) dx =

∫
Ω
ϕm(t, x)χ+(x) dx−

∫
Ω
ϕm(t, x)χ−(x) dx

→ aχ+(t)− aχ−(t) =: aχ(t),

where we have set χ+ := χ ∨ 0 and χ− := (−χ) ∨ 0. For every t ∈ [a, b] fixed, let us consider
the functional ζ(t) : L2(Ω)→ R defined by

ζ(t)(χ) := aχ(t) for χ ∈ L2(Ω).

We have that ζ(t) linear and continuous on L2(Ω). Indeed, by (4.4.11) we deduce

|ζ(t)(χ)| ≤ C‖χ‖L2(Ω) for every χ ∈ L2(Ω).

Hence, Riesz’s representation theorem implies the existence of a function ϕ(t) ∈ L2(Ω) such
that

aχ(t) =

∫
Ω
ϕ(t, x)χ(x) dx for every χ ∈ L2(Ω).

In particular, for every t ∈ [a, b] we deduce that ϕm(t) ⇀ ϕ(t) in L2(Ω) as m → ∞ and
‖ϕ(t)‖L2(Ω) ≤ C. Finally observe that {χ ∈ L2(Ω) : χ ≥ 0} is a weakly closed subset of
L2(Ω). Therefore, we derive (4.4.10), since ϕm(t)−ϕm(s) ⇀ ϕ(t)−ϕ(s) in L2(Ω) as m→∞
and ϕm(t)− ϕm(s) ∈ {χ ∈ L2(Ω) : χ ≥ 0} for every m ∈ N and a ≤ s ≤ t ≤ b.

Lemma 4.4.8. There exist a subsequence of n, not relabeled, and two functions

u ∈ L∞(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)) ∩H2(0, T ;H−1
D1

(Ω;Rd)),
v : [0, T ]→ H1(Ω) with v ∈ L∞(0, T ;H1(Ω)),

such that as n→∞

un ⇀ u in H1(0, T ;L2(Ω;Rd)), u′n ⇀ u̇ in H1(0, T ;H−1
D1

(Ω;Rd)),

un → u in C0([0, T ];L2(Ω;Rd)), u′n → u̇ in C0([0, T ];H−1
D1

(Ω;Rd)),

un ⇀ u in L2(0, T ;H1(Ω;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
un ⇀ u in L2(0, T ;H1(Ω;Rd)), u′n ⇀ u̇ in L2(0, T ;L2(Ω;Rd)),
vn → v in L2(0, T ;L2(Ω)), vn ⇀ v in L2(0, T ;H1(Ω)),

vn → v in L2(0, T ;L2(Ω)), vn ⇀ v in L2(0, T ;H1(Ω)).

Moreover, for every t ∈ [0, T ] as n→∞ we have

vn(t)→ v(t) in L2(Ω), vn(t) ⇀ v(t) in H1(Ω).

Proof. The existence of a limit point u and the related convergences can be obtained by
arguing as in Lemma 4.2.7. Let us now consider the sequence {vn}n. For every n ∈ N the
functions vn : [0, T ]→ L2(Ω) are non-increasing in [0, T ], that is

vn(t) ≤ vn(s) in Ω for every 0 ≤ s ≤ t ≤ T ,
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and, in view of Lemma 4.4.6, there exists C > 0, independent of n, such that

‖vn(t)‖H1(Ω) ≤ C for every t ∈ [0, T ] and n ∈ N. (4.4.12)

Therefore, we can apply Lemma 4.4.7. Up to extract a subsequence (not relabeled), we obtain
the existence of a non-increasing function v : [0, T ]→ L2(Ω) such that as n→∞

vn(t) ⇀ v(t) in L2(Ω) for every t ∈ [0, T ].

Moreover, by (4.4.12) for every t ∈ [0, T ] we derive that v(t) ∈ H1(Ω) and as n→∞

vn(t) ⇀ v(t) in H1(Ω), vn(t)→ v(t) in L2(Ω),

thanks to Rellich’s theorem. Notice that the function v : [0, T ]→ H1(Ω) is strongly measur-
able. Indeed, it is weak measurable, since it is non-increasing, and with values in a separable
Hilbert space. In particular, we have v ∈ L∞(0, T ;H1(Ω)), since ‖v(t)‖H1(Ω) ≤ C for every
t ∈ [0, T ]. By the dominated convergence theorem, as n→∞ we conclude

vn → v in L2(0, T ;L2(Ω)), vn ⇀ v in L2(0, T ;H1(Ω)).

Finally, as n→∞ we have

vn → v in L2(0, T ;L2(Ω)), vn ⇀ v in L2(0, T ;H1(Ω)),

since vn(t) = vn(t− τn) for a.e. t ∈ (τn, T ).

Remark 4.4.9. As pointed out in Remark 4.2.8, for every t ∈ [0, T ] we have as n→∞

un(t) ⇀ u(t) in H1(Ω;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd),
un(t) ⇀ u(t) in H1(Ω;Rd), u′n(t) ⇀ u̇(t) in L2(Ω;Rd).

We are now in a position to prove Theorem 4.4.4.

Proof of Theorem 4.4.4. Thanks to the previous lemma there exists a pair (u, v) satisfy-
ing (4.4.3)–(4.4.6), since un(t) − wn(t) ∈ H1

D1
(Ω;Rd) and vn(t) − w2 ∈ H1

D2
(Ω) for every

t ∈ [0, T ] and n ∈ N. Moreover, (u, v) satisfies the irreversibility condition (4.1.17) and
the initial conditions (4.1.16), thanks to (4.4.10) and the fact that u0 = un(0) ⇀ u(0) in
H1(Ω;Rd), u1 = u′n(0) ⇀ u̇(0) in L2(Ω;Rd), and v0 = vn(0) ⇀ v(0) in H1(Ω) as n→∞.

For every n ∈ N and j = 1, . . . , n the pair (ujn, v
j
n) solves equation (4.2.5). In particular,

by integrating it over the time interval [t1, t2] ⊆ [0, T ], we deduce∫ t2

t1

〈u̇′n(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(vn(t))CEun(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(fn(t), ψ)L2(Ω) dt+

∫ t2

t1

〈gn(t), ψ〉H−1
D1

(Ω) dt

for every ψ ∈ H1
D1

(Ω;Rd). Let us pass to the limit as n→∞. We have

lim
n→∞

∫ t2

t1

〈u̇′n(t), ψ〉H−1
D1

(Ω) dt =

∫ t2

t1

〈ü(t), ψ〉H−1
D1

(Ω) dt,

lim
n→∞

∫ t2

t1

(fn(t), ψ)L2(Ω) dt =

∫ t2

t1

(f(t), ψ)L2(Ω) dt,

lim
n→∞

∫ t2

t1

〈gn(t), ψ〉H−1
D1

(Ω) dt =

∫ t2

t1

〈g(t), ψ〉H−1
D1

(Ω) dt,
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since u̇′n ⇀ ü in L2(0, T ;H−1
D1

(Ω;Rd)), gn → g in L2(0, T ;H−1
D1

(Ω;Rd)), and fn → f in

L2(0, T ;L2(Ω;Rd)) as n → ∞. Moreover, the dominated convergence theorem yields that
b(vn)CEψ → b(v)CEψ in L2(0, T ;L2(Ω;Rd×d)) as n→∞, being

|b(vn(t, x))C(x)Eψ(x)| ≤ b(1)‖C‖L∞(Ω)|Eψ(x)| for every t ∈ [0, T ] and a.e. x ∈ Ω,

and vn → v in L2(0, T ;L2(Ω)). Therefore, we derive

lim
n→∞

∫ t2

t1

(b(vn(t))CEun(t), Eψ)L2(Ω) dt =

∫ t2

t1

(b(v(t))CEu(t), Eψ)L2(Ω) dt,

because Eun ⇀ Eu in L2(0, T ;L2(Ω;Rd×d)) as n→∞. These facts imply that the pair (u, v)
solves ∫ t2

t1

〈ü(t), ψ〉H−1
D1

(Ω) dt+

∫ t2

t1

(b(v(t))CEu(t), Eψ)L2(Ω) dt

=

∫ t2

t1

(f(t), ψ)L2(Ω) dt+

∫ t2

t1

〈g(t), ψ〉H−1
D1

(Ω) dt

for every ψ ∈ H1
D1

(Ω;Rd) and [t1, t2] ⊆ [0, T ]. By Lebesgue’s differentiation theorem and a
density argument we hence obtain (4.1.25) for a.e. t ∈ (0, T ).

For t = 0 the crack stability condition (4.4.2) trivially holds, since (u, v) satisfies the
initial conditions (4.1.16) and the compatibility condition (4.4.1). We fix t ∈ (0, T ] and we
use the variational inequality (4.4.8) to derive

E (un(t), v∗)− E (un(t), vn(t)) + ∂H (vn(t))[v∗ − vn(t)] ≥ 0 (4.4.13)

among all v∗ − w2 ∈ H1
D2

(Ω) with v∗ ≤ vn(t− τn). Given χ ∈ H1
D2

(Ω), with χ ≤ 0 in Ω, the
function χ+ vn(t) is admissible for (4.4.13). Hence, we have

E (un(t), χ+ vn(t))− E (un(t), vn(t)) + ∂H (vn(t))[χ] ≥ 0.

Let us send n→∞. Since vn(t) ⇀ v(t) in H1(Ω), we deduce

lim
n→∞

∂H (vn(t))[χ] = ∂H (v(t))[χ].

Moreover, Eun(t) ⇀ Eu(t) in L2(Ω;Rd×d) and vn(t) → v(t) in L2(Ω) as n → ∞, which
implies

E (u(t), χ+ v(t))− E (u(t), v(t)) ≥ lim sup
n→∞

[E (un(t), χ+ vn(t))− E (un(t), vn(t))]

by Ioffe-Olech’s theorem, as in Lemma 4.2.10. If we combine these two results, for every
t ∈ (0, T ] we get

E (u(t), χ+ v(t))− E (u(t), v(t)) + ∂H (v(t))[χ] ≥ 0

for every χ ∈ H1
D2

(Ω) with χ ≤ 0 in Ω. This implies (4.4.2), since the map v∗ 7→ H (v∗) is
convex.

It remains to prove the energy-dissipation inequality (4.4.7) for every t ∈ [0, T ]. For t = 0
we have actually the equality, thanks to the initial conditions (4.1.16). We now fix t ∈ (0, T ]
and we use (4.3.3) to write

F (un(t), u′n(t), vn(t))

≤ F (u0, u1, v0) +

∫ tn

0
[(fn, u

′
n − w′n)L2(Ω) + (b(vn)CEun, Ew′n)L2(Ω)] ds

−
∫ tn

0
[〈ġn, un − wn〉H−1

D1
(Ω) + (u′n, ẇ

′
n)L2(Ω)] ds+ 〈gn(t), un(t)− wn(t)〉H−1

D1
(Ω)

+ (u′n(t), w′n(t))L2(Ω) − 〈g(0), u0 − w1(0)〉H−1
D1

(Ω) − (u1, w1(0))L2(Ω)
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for every n ∈ N, where tn is the same number defined in Lemma 4.2.11. By using the fact
that vn(t) ⇀ v(t) in H1(Ω) as n→∞, we deduce

H (v(t)) ≤ lim inf
n→∞

H (vn(t)).

Similarly, thanks to Ioffe-Olech’s theorem we derive

E (u(t), v(t)) ≤ lim inf
n→∞

E (un(t), vn(t)),

since vn(t)→ v(t) in L2(Ω) and Eun(t) ⇀ Eu(t) in L2(Ω;Rd×d). Finally, we can argue as in
Lemma 4.2.11 to derive that the remaining terms converge to Wtot(u, v; 0, t) as n → ∞. By
combining the previous results, we deduce (4.4.7) for every t ∈ (0, T ].

Finally, if w2 ≥ 0 on ∂D2Ω, v0 ≥ 0 in Ω, and b(s) = (s ∨ 0)2 + η for s ∈ R, then we have
vn(t) ≥ 0 in Ω for every t ∈ [0, T ], which implies v(t) ≥ 0 in Ω.
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[3] L. Ambrosio, N. Gigli, and G. Savaré: Gradient flows in metric spaces and in the
space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
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