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Introduction

This thesis is devoted to the study of several mathematical problems in fracture mechanics
for brittle materials. The main ingredient to develop a reasonable model of these phenomena
is Griffith’s criterion, originally formulated in [31] for the quasi-static setting, namely when
the external data vary slowly compared to the elastic wave speed of the material. In this
case, Griffith states there is an exact balance between the decrease of elastic energy during
the evolution, and the energy used to increase the crack, which is assumed to be proportional
to its area.

In sharp-interface models, i.e., when the crack is identified with the discontinuity surface
of the displacement in the reference configuration, this principle was turned into a precise
definition by Francfort and Marigo in [26]. In the context of small-strain antiplane shear, the
following energy functional of Mumford-Shah’s type is considered:

1 w2 dp + 1!
P CCIRERE L] (1)

Here, Q C R? (with d = 2 being the physically relevant case) is an open bounded set with
Lipschitz boundary, which represents the reference configuration of the elastic material, the
closed set I' C Q describes the crack, and u € H'(Q\ T') is the antiplane displacement. The
first term represents the stored elastic energy of a homogeneous and isotropic material, while
the second one, called surface energy, models the energy used to produce the crack. Here and
henceforth all physical constants are normalized to 1.

In this setting, given a time-dependent Dirichlet datum ¢ — w(t) acting on 952, a quasi-
static evolution is a pair ¢t — (u(t),Iy) which at every time ¢ minimizes (1) among all pairs
(u*,T*), where I'* is a closed set with T'* D Ty, and u* € H'(2\ I'*) with u* = w(t) on
0Q \ I'*. The minimum problem is complemented with the irreversibility condition I'y C T'
for every s <t (meaning the crack can only increase in time), and with an energy-dissipation
balance for every time.

The first rigorous existence result for quasi-static evolutions was due to Dal Maso and
Toader in [22] in dimension d = 2, and with a restriction on the number of connected com-
ponents of the crack set. Later, Francfort and Larsen in [27] removed these assumptions, by
setting the problem in the space SBV of special functions with bounded variation, introduced
by De Giorgi and Ambrosio in [25]. More in general, in the context of linear elasticity, the dis-
placement u: Q\I' — R? is vector-valued, and the term |Vu|? in the elastic energy is replaced
by CEu - Eu, where Eu is the symmetric part of the gradient, namely Eu = %(Vu + Vaul),
and C is the elastic tensor. Existence results for quasi-static evolutions in linear elasticity can
be found only in dimension d = 2, see [11] (which works under the same geometric restric-
tions of [22]) and [29] (for the general case). For related results in dimension d > 2 we refer
to [12, 13]. A detailed analysis of variational models of quasi-static fracture can be found
in [5] and in the references therein.

In this thesis, we study several mathematical problems in fracture dynamics. In this
setting, the stationarity condition for the displacement has to be replaced by the fact that
u solves the elastodynamics system out of the crack, while the crack evolves according to a

ix



X Introduction

dynamic version of Griffith’s criterion, see [41, 28]. Therefore, any reasonable mathematical
model should follow the following principles:

(a) elastodynamics: away from the crack set, the displacement u evolves according to the
elastodynamics system:;

(b) irreversibility: the time-dependent crack t — I'; is increasing in time with respect to
inclusion (I's C T for every s < t);

(¢) dynamic energy-dissipation balance: the work done by external forces is balanced by
the mechanical energy (sum of kinetic and elastic energy) and the energy dissipated to
create a crack;

(d) mazimal dissipation: if the crack can propagate while balancing energy, then it should
propagate.

The last condition, introduced in [35], is needed because a time-independent crack always

satisfies the first three principles. So far, it was not possible to prove the existence of a

solution for a model satisfying (a)—(d) without stronger a priori regularity conditions on the

cracks and their evolutions, which have not mechanical justifications. Some models for a

peeling test in dimension 1, based on similar principles, have been recently analyzed in detail

in [19, 47], obtaining existence and uniqueness results without a priori regularity assumptions.
The contents of the thesis are organized into four chapters.

Chapter 1: Elastodynamics system in domains with growing cracks

According to the principles stated before, a first step to study the dynamic crack propagation
in an elastic material is to solve the elastodynamics system for a prescribed time-dependent
crack {Pt}te[O,T] satisfying the irreversibility condition. From the mathematical point of view,
this means solving a hyperbolic-type system of the form

i(t,z) — div(C(t,z)Eu(t,z)) = f(t,x) t€[0,T], x € Q\ Ty, (2)

supplemented by boundary and initial conditions; the main difficulty in such a problem is
that the domain Q \ I'; depends on time. In the literature, we can find several different
approaches to hyperbolic systems in time-dependent domains. The first one is developed
in [16] for the antiplane case, i.e., for the wave equation

u(t,x) — Au(t,z) = f(t,z) t€]0,T], z € Q\Ty, (3)

with homogeneous Neumann conditions on the boundary of Q\I';. The existence of a solution
with assigned initial data is proved by using a time-discrete approximation and passing to
the limit as the time step tends to zero. This construction leads to an existence result under
very weak conditions on the cracks {Ft}te[O,T]~ A generalization of this construction to the
vector-valued case can be found in the recent work [52]. Unfortunately, the uniqueness of
these solutions is still an open problem in this setting.

In [43, 20] the authors use a different technique to study (3), which is based on a suitable
change of variables of class C? that maps the domain {(t,z) € [0,T] x Q : z € Q\ I';}
into the cylinder [0,7] x (2 \ I'p). In this way, the wave equation (3) is transformed into a
new hyperbolic equation in a fixed domain, with coefficients depending also on the change of
variables. This method allows proving the existence and uniqueness of a solution, as well as
a continuous dependence result. Nevertheless, such a change of variable can be constructed
only under very strong regularity assumptions on the cracks (see [20]).
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Finally, a third possible approach to the study of (3) can be found in a very recent
paper [15]. In this case, existence is proved by means on a suitable approximation of the
wave equation via minima of convex functionals (see [48, 49]).

In Chapter 1 (which contains the results of [8]) we study the existence, uniqueness, and
continuous dependence on the data for the solutions of the elastodynamics system (2). On
the cracks {I't }4¢[o,7] We assume the irreversibility condition and that they are contained in a
given C? manifold I" of dimension d — 1. The system (2) is supplemented by mixed Dirichlet-
Neumann boundary conditions on 9€2 and by homogeneous Neumann boundary conditions
on the cracks I'; (traction free case).

These results are obtained by adapting the change of variable method introduced in [20]
to the vector-valued case. Since the operator C is usually defined only on the subspace of
symmetric matrices, it is convenient to introduce a new operator A defined on all R**¢ as

A(t, )¢ = C(t,z)E%9™  for every & € R¥*?,
where £%¥" denotes the symmetric part of £. In this way, system (2) can be rephrased as
iu(t,x) — div(A(t, z)Vu(t,z)) = f(t,z) t€[0,T], x € Q\ Ty, (4)
and the change of variable approach leads to the transformed system

1').(75, y) — diV(B(t’ y)V’U(t, y))

+p(t,y)Vu(t,y) + Vo(t,y)b(t,y) = g(t,y) t€[0,T], y € Q\Ty, (5)

where the new coefficients B, p, b, and g are constructed starting from A and f. The boundary
conditions are also transformed by the change of variables and lead to mixed Dirichlet-
Neumann boundary conditions on 9¢2, and homogeneous Neumann boundary conditions on
the fixed crack I'y.

The main changes with respect to the paper [20] are in the treatment of the terms involv-
ing B. Indeed, in linear elasticity, the natural ellipticity condition on A is the following:

A(t,2)€- € > Nol€¥™? for every & € R4, (6)

with A\g positive constant. Unfortunately, this condition is not inherited by the transformed
operator B. To overcome this difficulty, we assume that B satisfies a weaker ellipticity assump-
tion of integral type (see (1.2.1)), which always holds when A satisfies (6) and the velocity
of the time-dependent diffeomorphisms used in the change of variables is sufficiently small
(see (1.2.4)). Another difference with respect to [20] is that we consider also the case of non-
homogeneous Neumann boundary conditions on the Neumann part of 0€2. This completes
the study of [20], including the case of traction forces acting on the boundary.

We first prove the existence and uniqueness of solutions to (5), with assigned initial and
boundary conditions. Moreover, we prove an energy equality (see (1.3.2)), which is slightly
different from the one in [20], and takes into account the non-homogeneous boundary terms.
This energy balance allows us to prove suitable continuity properties with respect to time for
the solutions v, which are important in the proof of the main existence result for (4).

Finally, in the last part, we prove the continuous dependence of the solutions on the
cracks {T" t}te[O,T] and on the manifold I'. More precisely, given a sequence ', of manifolds
and a sequence {I'}{ };co 7] of time-dependent cracks contained in I'", we use the energy
equality (1.3.2) to prove that, under appropriate convergence conditions, the solutions u"
and v™ to problems (4) and (5) corresponding to {I'{' }4c[o,7] converge to the solutions u and
v of the limit problems corresponding to {T't };c(0,7)-

These results have been used in [18] to prove an existence theorem for a model in fracture
dynamics based on (a)—(d) with suitable conditions on the regularity of the cracks.
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Chapter 2: Dynamic energy-dissipation balance of a growing crack

Once we are able to solve the elastodynamics system on €2\ I'; under suitable assumptions
on {Ft}te[O,T]a the next step towards the solution to the dynamic fracture problem, according
to (a)-(d), is to select those cracks {I'; };c[o,r] such that the corresponding solutions u satisfy
the dynamic energy-dissipation balance.

In Chapter 2 (which contains the results of [9], obtained in collaboration with I. Lu-
cardesi and E. Tasso) we compute the mechanical energy (kinetic 4 elastic) of the solution
corresponding to a sufficiently regular crack evolution {Ft}te[O,T] in the antiplane case. We
consider as reference configuration a bounded open set Q of R? with Lipschitz boundary and
we assume that all the cracks I'; are contained in a fixed C®! curve I' C Q with endpoints
on Jf). In this case, I'y is determined at time ¢ by the crack-tip position on T', described
by the arc-length parameter s(t). Here we assume t — s(t) non-decreasing (irreversibility
assumption) and of class C*1([0,T]). Far from the crack set, the displacement u satisfies a
wave equation of the form

i(t,z) — div(A(z)Vu(t,z)) = f(t,z) te€[0,T],z € Q\ T}, (7)

where A is a suitable matrix field satisfying the usual ellipticity condition. The equation is
supplemented by homogeneous mixed Dirichlet-Neumann boundary conditions on 9€2, homo-
geneous Neumann boundary conditions on I'y, and initial conditions.

The mechanical energy associated with u at time ¢ is given by

‘—1 ux2zl z)Vu(t,x) - Vu(t,z)dz
E(t) ._2/9\1}‘ (t,z)]°d +2 Q\FtA( YWVu(t,z) - Vu(t,z)dx. (8)

The difficulty of computing (8) is twofold: on one hand, the displacement has a singular
behavior near the crack-tip; moreover, the domain of wu(t) contains a crack and varies in
time. To handle the first issue, a representation result for w is in order: under suitable
conditions on the initial data (see Theorems 2.2.4 and 2.2.10) we prove that for every time ¢
the displacement is of class H' in a neighborhood of the tip of I'; and of class H? far from
it, namely u(t) is of the form

u(t, ) = u?(t,z) + k(t)C(t, 2)S(®(t,x)) z € Q\TY, (9)

where uft(t) € H2(Q\Ty), k(t) € R, {(t) is a cut-off function supported in a neighborhood of
the moving tip of I'y, S € H'(R?\ {(c,0) : 0 < 0}), and ®(¢) is a diffeomorphism of Q which
maps the tip of T'; into the origin. Once fixed ¢, S, and ®, the function u® and the constant
k are uniquely determined. Actually, the coefficient k& only depends on A, I', and s. In
addition, we provide another decomposition for u which is more explicit and better explains
the behavior of the singular part (see Theorem 2.2.10).

The second issue is technical and we overcome it exploiting Geometric Measure Theory
techniques. The computation leads to the following formula:

™

E(t) + 4/ E*(1)a(T)$(r) dr = £(0) —I—/O /Q\F f(ryz)u(r, ) dedr (10)

0

for every t, where a is a positive function which depends on A, I', and s, and is equal
to 1 when A is the identity matrix; see Theorem 2.3.7 for the proof of (10) when A = Id,
and Remark 2.3.9 for the general case. We compare it with the dynamic energy-dissipation
balance, which in this case reads

5(t)+7—l1(1“t\1“0):€(0)+/0 /Q\F F(r2)i(r, ) dz dr (11)
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for every t. We deduce that (11) is satisfied if and only if at every time ¢ in which the crack is
moving, namely when $(¢) > 0, the function k(t), often called dynamic stress intensity factor,
is equal to 2/+/ma(t).

We mention that a similar result for a horizontal crack I'; == QN {(0,0) € R? : o < ct}
moving with constant velocity ¢ (with a suitable boundary datum) can be found in the
paper [17, Section 4]. The representation result stated in (9) extends the one of [43] valid for
straight cracks and A the identity matrix. Here we adapt their proof to the case of a curved
crack and a constant (in time) matrix A, possibly depending on z; moreover, we remove a
restrictive assumption on the acceleration §.

The main steps in the proof of (10) are the following: by performing four changes of
variables, we reduce problem to a second order PDE of the form

o(t,z) — div(A(t, ) Vo(t, z)) + Lot. = f(t,z) te[0,T], z € Q\Ty, (12)

with Q Lipschitz planar domain and Ty a C3! curve which is straight near its tip. The
matrix field A has time-dependent coefficients, but at the tip of I'y it is constantly equal
to the identity. Finally, the decomposition result for the solution v to (12), obtained via
semi-group theory, leads to (9) for u, the solution to the original problem.

Chapter 3: A dynamic model for viscoelastic materials with growing cracks

When we want to study the dynamic evolution of deformed materials with viscoelastic prop-
erties, Kelvin-Voigt’s model is the most common one. If no crack is present, this leads in the
antiplane case to the damped wave equation

u(t,z) — Au(t,x) — Au(t,z) = f(t,z) (t,x) € [0,T] x Q.

As it is well known, the solutions to this equation satisfy the dynamic energy-dissipation
balance

t
E(t) + / / \Vi(r, z)|*dz dT = £(0) + work of external forces
0 JQ

for every ¢, where in this case £(t) == 1 [, |a(t, )[*dz + [, |Vu(t, z)|*dz. If we consider also
the presence of a crack in the viscoelastic material, the damped wave equation becomes

i(t,z) — Au(t,z) — Au(t,z) = f(t,z) te€[0,T], x € Q\ T}, (13)

and in this case, the dynamic energy-dissipation balance reads
t
E(t) + HT T\ To) + / / |V (T, z)|*dz dr = £(0) + work of external forces. (14)
0o JO\r-

For a prescribed crack evolution, this model was already considered by [16] in the antiplane
case, and more in general by [52] for the vector-valued case. As proved in the quoted papers,
the solutions to (13) satisfy

t
E(t) + / / \Va(r, z)2dz dr = £(0) + work of external forces
0o Jo\r,

for every time ¢t. This equality implies that (14) cannot be satisfied unless I'y = Iy for every t,
which means that the crack is not allowed to increase in time. This phenomenon was already
well known in mechanics as the viscoelastic paradox, see for instance [51, Chapter 7).

To overcome this problem, in Chapter 3 (which contains the results of [10], obtained
in collaboration with F. Sapio) we modify Kelvin-Voigt’s model by considering a possibly
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degenerate viscosity term depending on ¢ and x. More precisely, we study the following
equation

i(t,z) — Au(t, z) — div(02(t, z)Va(t,z)) = f(t,z) t€[0,T], = € Q\ T, (15)

On the function ©: (0,7") X2 — R we only require some regularity assumptions; a particularly
interesting case is when © assumes the value zero on some points of €2, which means that the
material has no longer viscoelastic properties in such a zone.

The main result of Chapter 3 is Theorem 3.2.1 (see also Remark 3.3.4), in which we show
the existence of a solution to (15) and, more in general, to the analogous problem for the
d-dimensional linear elasticity. To this aim, we first perform a time discretization in the same
spirit of [16], and then we pass to the limit as the time step goes to zero by relying on energy
estimates. As a byproduct, we derive an energy-dissipation inequality (see (3.3.4)), which is
used to prove the validity of the initial conditions. By using the change of variables method
implemented in [43, 20], we also prove a uniqueness result, but only in dimension d = 2 and
when ©(t) vanishes on a neighborhood of the tip of T';.

We complete the chapter by providing an example in d = 2 of a solution to (15) for which
the crack can grow while balancing the energy. As we remarked before, this cannot happen
for the Kelvin-Voigt’s model. More precisely, when the crack I'; moves with constant speed
along the z1-axis and ©(t) is zero in a neighborhood of the crack-tip, we construct a function
u which solves (15) and satisfies

t
E(t) +H Ty \To) +/ / |O(7, 2)Vi(r, 2)|*dz dr = £(0) + work of external forces (16)
o Jo\r,

for every time t. Notice that (16) is the natural formulation of the dynamic energy-dissipation
balance in this setting.

Chapter 4: A phase-field model of dynamic fracture

An alternative approach to the study of crack evolution is based on the so-called phase-field
model, which relies on the Ambrosio-Tortorelli’s approximation of the energy functional (1).
According to Ambrosio and Tortorelli [4], the (d — 1)-dimensional set I' is replaced by a
phase-field variable v.: Q — [0, 1] which is close to 0 in an e-neighborhood of I, and close
to 1 away from it. Accordingly, the Griffith’s functional (1) is replaced by the e-dependent
elliptic functionals

& (u,v) + Hz(v)

for u,v € H*(), where

&) = 5 [ [(0@) + ] [Vu(o)* do.

(V) ::4}6/Q\1—v(a:)\Qda:—i—a/Q]Vv(x)\zdx,

with 0 < 7. < &. A minimum point (ug,v:) of & + 2 provides a good approximation of
a minimizer (u,T') of (1) as € — 07, in the sense that u. is close to u, v, is close to 0 near
I, and &.(ue,v.) + HZ(v:) approximates the energy (1). For the corresponding quasi-static
evolution ¢ — (ue(t),ve(t)), the minimality condition for (1) is replaced by

&z (ue(t), v=(t)) + Hz(v=(t)) < E-(u, %) + Az (V") (17)

among every pair (u*,v*) with v* < v.(¢t) and v* = w(t) on 9. Notice that the inequality
v* < v.(t) reflects the inclusion I'* D T';. As before, the minimum problem (17) is com-
plemented with the irreversibility condition 0 < wv.(t) < v.(s) < 1 for every s < ¢, and
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with the energy-dissipation balance for every time; we refer to [30] for the convergence of
this evolution, as € — 0", toward the sharp-interface one described at the beginning of the
introduction.

In particular, a quasi-static phase-field evolution ¢ — (u(t), v:(t)) satisfies:

(Q1) for every t € [0,7] the function wu.(t) solves div([(ve(t))? + n:]Vuc(t)) = 0 in Q with
suitable boundary conditions;

(Q2) the map t — v.(t) is non-increasing (v:(t) < ve(s) for 0 < s < ¢ < T') and for every
t € [0,T] the function v.(t) satisfies

e (ue(t), ve(t)) + Az (ve(t)) < E(ue(t),v”) + Hz(v7)
for every v* < v (t);
(Q3) for every t € [0,T] the pair (us(t),v:(t)) satisfies the energy-dissipation balance
Ee(us(t),ve(t)) + 2 (ve(t)) = z(us(0),v:(0)) + H#Z2(v:(0)) + work of external data.

As explained before for the sharp interface model, in the dynamic case the first condition
is replaced by the wave equation, while in the energy balance we need to take into account
the kinetic energy term. Developing these principles, in [6, 35, 36] the authors propose the
following phase-field model of dynamic crack propagation in linear elasticity:

(D1) e solves ii. — div([v? 4+ n:JCEu.) = 0 in (0,7T) x Q with suitable boundary and initial
conditions;

(D2) the map t — v.(t) is non-increasing and for every ¢ € [0, T] the function v.(t) solves

Ee(us(t), ve(t)) + Hz(ve(t)) < Ec(ue(t),v*) + Hz(v*)  for every v* < v.(1);

(D3) foreveryt € [0,T] the pair (u.(t), v:(t)) satisfies the dynamic energy-dissipation balance

3 | 1)+ £(ue(0). 0 (0) + (e (0)

1
= 2/Q |12 (0))?dz + & (ue(0),v:(0)) + 2 (v-(0)) + work of external data,

where &.(u,v) =% [,[((v(2))? + n.]C(z) Eu(z) - Eu(z) dz for u € H'(;RY) and v € H'(2).
A solution to this model is approxnnated by means of a time discretization with an alternate
scheme: to pass from the previous time to the next one, one first solves the wave equation for
u, keeping v fixed, and then a minimum problem for v, keeping u fixed. This method is used
in [36] to prove the existence of a pair (u,v) satisfying (D1)-(D3). For technical reasons, a
viscoelastic dissipative term is added to (D;), which means that in [36] the following system
is considered
iie — div([v? + 7:|C(Fu. + Eu.)) =0 in (0,T) x €.

The disadvantage of this term appears when we consider the behavior of the solution as
e — 0T, a problem which is out of the scope of this thesis. If we were able to prove the
convergence of the solution toward a dynamic sharp-interface evolution, then the dynamic
energy-dissipation balance for the damped wave equation in cracked domains of [16, 52] would
imply that the limit crack does not depend on time, as explained above in the section about
viscoelastic materials.

To avert this problem, in Chapter 4 (which contains the results of [7]) we propose a
different model that avoids viscoelastic terms depending on the displacement and consider
instead a dissipative term related to the speed of the crack-tips. More precisely, given a
natural number & € NU {0}, we consider a dynamic phase-field evolution ¢ — (u.(t),v:(t))
satisfying:
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(D1) e solves iic — div([(ve V 0)2 +n.JCEu.) = 0 in (0,T) x Q with suitable boundary and
initial conditions;

(D3) the map t — v.(t) is non-increasing and for a.e. ¢t € (0,7 the function v.(t) solves the
variational inequality

e (ue(t),v7) = e (ue(t), ve(t)) + He(v") = He(ve(t)) + (0=(1), 0" = ve(t)) i) = 0
for every v* < wv.(t);

(D3) for every t € [0, T] the pair (u.(t),v-(t)) satisfies the dynamic energy-dissipation balance

/,us DIPde + & (us(8), vo(1)) + A (vat /||v€ B

(18)

-2 / i (0)2d + & (uz(0), v2(0)) + H2(v2(0)) + work of external data,
Q

where in this case & (u,v) = % [,[(v 2 4+ n:]C(x)Eu(z) - Fu(x)dz. Notice that for

technical reasons the dissipative term fo |v5 T) d7 contains the norm in the Sobolev

i
space H"(Q), rather then the norm in L?(f2), which is more frequently used in the literature.
This choice guarantees more regularity in time for the phase-field function, more precisely
that v. € H(0,T; H*(Q)).

In the quasi-static setting, a condition similar to (D) can be found in [42, 2], where it
defines a unilateral gradient flow evolution for the phase-field function v.. In sharp-interface
models, a crack-dependent term analogous to fOtHUE(T)H?{k (Q)dT arises in the study of the
so-called vanishing viscosity evolutions, which are linked to the analysis of local minimizers
of Griffith’s functional (1), see for example [46, 39]. We point out that a similar dissipative
term also appears in [37] for a 1-dimensional debonding model.

By adapting the time discretization scheme of [6, 36], we show the existence of a dynamic
phase-field evolution (u,v.) which satisfies (D1)-(Ds3), provided that k > d/2, where d is
the dimension of the ambient space. This condition is crucial to obtain the validity of the
dynamic energy-dissipation balance since in our case the viscoelastic dissipative term used
in [36] is not present.

We conclude Chapter 4 by analyzing the dynamic phase-field model (D;)—(D3) with no
viscous terms. We show the existence of an evolution t — (uc(t),v(t)) which satisfies (Dy)
and (Dz), but only an energy-dissipation inequality (see (4.4.7)) instead of (Ds).
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Notation

R™*d: in

Basic notation. The space of m x d matrices with real entries is denoted by
case m = d, the subspace of symmetric matrices is denoted by ngﬁg, and the subspace of
orthogonal d x d matrices with determinant equal to 1 by SO(d). We denote by AT and
A~! respectively, the transpose and the inverse of A € R%*? by A~ the transpose of the
inverse, and by A*Y™ the symmetric part, namely ASY™ := %(A + AT); we use Id to denote
the identity matrix in R?*¢, The Euclidian scalar product in R? is denoted by - and the
corresponding Euclidian norm by | - |; the same notation is used also for R™*¢. We denote
by a ® b € R¥? the tensor product between two vectors a,b € R?, and by a ® b € R4*¢ the

sym
symmetrized tensor product, namely the symmetric part of a ® b.

The d-dimensional Lebesgue measure in R? is denoted by £%, and the (d — 1)-dimensional
Hausdorff measure by #%~!. Given a bounded open set € with Lipschitz boundary, we denote
by v the outer unit normal vector to 02, which is defined %% !-a.e. on the boundary. We use
B,.(x) to denote the ball of radius r and center = in R?, namely B, (z) = {y € R%: |y—z| < r},
and id to denote the identity function in R? possibly restricted to a subset. Given two
numbers c1, ca € R, we set ¢1 V ¢2 := max{cy, c2} and ¢; A co := min{cy, ca}.

The partial derivatives with respect to the variable x; are denoted by 0; or 0,,. Given
a function u: R — R™, we denote its Jacobian matrix by Vu, whose components are
(Vu);j = Oju; for i = 1,...,m and j = 1,...,d. When u: R? = RY we use Eu to de-
note its symmetryzed gradient, namely Fu = %(Vu + VuTl). Given u: R — R, we use Au
to denote its Laplacian, which is defined as Au = Zle O?u. We set V2u := V(Vu) and
A%y = A(Au), and we define inductively V¥u and AFuy for every k € N, with the convention
Vo = A% = wu. For a tensor field T: R? — R™*¢ by divT we mean its divergence with
respect to rows, namely (divT); :== Z;l:l 0;T;; fori=1,...,m.

Function spaces. Given two metric spaces X and Y, we use C°(X;Y) and Lip(X;Y) to
denote, respectively, the space of continuous and Lipschitz functions from X to Y. Given
an open set  C R? we denote by C*(Q; R™) the space of R™-valued functions with k con-
tinuous derivatives; we use C*(Q; R™) and C*1(Q; R™) to denote, respectively, the subspace
of functions with compact support in €2, and of functions whose k-derivatives are Lipschitz.
For every 1 < p < oo we denote by LP(£2;R™) the Lebesgue space of p-th power integrable
functions, and by W#*P(Q;R™) the Sobolev space of functions with k derivatives; for p = 2
we set HF(Q;R™) := WH2(Q; R™), and for m = 1 we omit R™ in the previous spaces. The
boundary values of a Sobolev function are always intended in the sense of traces. The scalar
product in L*(Q;R™) is denoted by (-,-)12(q) and the norm in LP(;R™) by || - [|1r); a
similar notation is valid for the Sobolev spaces. For simplicity, we use || - ||z (q) to denote
also the supremum norm of continuous and bounded functions.

The norm of a generic Banach space X is denoted by || - || x; when X is a Hilbert space,
we use (-,-)x to denote its scalar product. We denote by X’ the dual of X, and by (-,-)x/
the duality product between X’ and X. Given two Banach spaces X1 and X, the space of
linear and continuous maps from X; to Xy is denoted by £ (X1; Xo); given A € Z(X1; X2)
and v € X1, we write Au € X9 to denote the image of u under A.

Given an open interval (a,b) C R and 1 < p < oo, we denote by LP(a,b; X) the space
of LP functions from (a,b) to X; we use W*P(a,b; X) and H*(a,b; X) (for p = 2) to denote
the Sobolev space of functions from (a,b) to X with k derivatives. Given u € WP (a,b; X),
we denote by @ € LP(a,b; X) its derivative in the sense distributions. The set of functions
from [a,b] to X with k continuous derivatives is denoted by C*([a, b]; X); we use C*(a, b; X)
to denote the subspace of functions with compact support in (a,b). The space of absolutely
continuous functions from [a,b] to X is denoted by AC([a,b]; X); we use CO([a,b]; X) to
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denote the set of weakly continuous functions from [a, b] to X, namely
C0([a,b]; X) := {u: [a,b] = X : t > (2/,u(t))xs is continuous in [a, b] for every 2’ € X'}.

When dealing with an element v € H'(a,b; X) we always assume u to be the continuous
representative of its class. In particular, it makes sense to consider the pointwise value wu(t)
for every ¢ € [a, b].



Chapter 1

Elastodynamics system in domains
with growing cracks

In this chapter, we prove the existence, uniqueness, and continuous dependence results for
the elastodynamics system (4) via the change of variable approach of [43, 20].

The chapter is organized as follows. In Section 1.1 we list the main assumptions on the
set ), on the geometry of the cracks I'y, and on the diffeomorphisms used for the changes of
variables. Moreover, in Definitions 1.1.6 and 1.1.9 we specify the notion of weak solution to
problems (4) and (5). Section 1.2 deals with the study of the two problems (see Theorems 1.2.2
and 1.2.3). We first show their equivalence (see Theorem 1.1.16), and then we prove an
existence and uniqueness result for (5) in a weaker sense (see Theorems 1.2.9). In Section 1.3
we complete the proof of Theorems 1.2.2 and 1.2.3 by showing the energy equality (1.3.2),
which ensures that the solution given by Theorem 1.2.9 is indeed a weak solution. Finally,
Section 1.4 is devoted to the continuous dependence result, which is proved in Theorem 1.4.1.

The results contained in this chapter have been published in [8].

1.1 Preliminary results

Let T be a positive number, Q C R¢ be a bounded open set with Lipschitz boundary, 9pQ
be a (possibly empty) Borel subset of 02, and Oy be its complement. Throughout this
chapter we assume the following hypotheses on the geometry of the crack sets {Ft}te[o,T} and
on the diffeomorphisms of €2 into itself mapping 'y into I'y:

(H1) T ¢ R? is a complete (d — 1)-dimensional C? manifold with boundary OT' such that
OrNQ =0 and HYT N IN) = 0;

(H2) for every x € I'NQ there exists an open neighborhood U of = in R? such that (UNQ)\T
is the union of two disjoint open sets UT and U~ with Lipschitz boundary;

(H3) {Tt}iejo,r is a family of (possibly irregular) closed subsets of I' N Q satisfying I'y C T’y
forevery 0 < s <t <T;

(H4) @, : [0,7] x @ — Q are two continuous maps and the partial derivatives 9,®, 9;¥,
0;®, ;U, 92D, 92V, 0,0, = 0,0;®, 0,0,V = 0,0;¥ exist and are continuous for
i g K
L) =1L,

(H5) ©(t,Q) =Q, (¢, T'NnQ)=I'NQ, ®(t,Ig) =TI, and ®(¢,y) =y for every t € [0,7] and
y in a neighborhood of 0€2;

(H6) W(t,®(t,y)) =y, ®(t,¥(t,r)) =z, and ®(0,y) =y for every t € [0,7] and x,y € Q;

1
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(H7) 0@, 0.V, 0;®, 0,7, 8%@, 8%\1/, 0;0;®, 9;0;¥ belong to the space Lip([0, T]; C°(Q; R?))
fori,j=1,....,d;

(H8) there exists a constant L > 0 such that
0:0:0(t, 2) — 9,0,@(t,y)| < Llx —yl,  [0:0:9 (¢, x) — 0:0,¥ (¢, y)| < Llx — |
for every t € [0,T], z,y € Q,and i = 1,...,d.

By using (H4) and (H6) we derive that det VO (¢,y) # 0 and det V¥(¢,x) # 0 for every
t € [0,T] and z,y € Q. In particular, both determinants are positive, since V®(0, ) = Id for
every y € Q.

Assumptions (H1) and (H2) imply the existence of the trace of v» € H'(Q\T') on 09, and
on I' N Q from both sides. Indeed, we can find a finite number of open sets with Lipschitz
boundary U; € Q\T', j = 1,...m, such that (I'NQ)UoN)\ (I'NIQ) C UTL,0U;. Moreover,
since H4H(T N 0N) = 0, there exists a constant Cy,. > 0, depending only on Q and T, such

that
¥l z200) < Coll¥llm@r)  for every i € H'(Q\T). (1.1.1)

In a similar way we obtain the embedding H'(Q \ T') < LP(Q) for every p € [1,2*], where
2% = % is the usual critical Sobolev exponent. In particular, there exists a constant C,, > 0,

depending on 2, I', and p, such that

19/l Le) < Cpllllmary for every ¢ € H(Q\T). (1.1.2)

Given a point y € I' N, its trajectory in time is described by the time-dependent map
t— ®(t,y) € T'. We infer that its velocity is tangential to the manifold I' at the point ®(¢,y),
that is ®(¢,y) - v(®(t,y)) = 0, where v(x) is the unit normal vector to I' at . By combining
this equality with the relation

Ve(t,y) vy

v(®(t,y)) = Vo, y)_Tl/Ey;] fory e I'NQ,

we deduce
(VO(t,y) td(t,y)) - v(y) = B (t, ®(t,y)) - v(y) =0 foryel NQ, (1.1.3)

or equivalently

O(t,¥(t,x)) -v(z) =0 forxel NO. (1.1.4)

In the following lemmas, we investigate some regularity properties of functions defined in
Q\T', when composed with suitable diffecomorphisms of the domain into itself. Let us specify
the class of diffeomorphisms under study.

Definition 1.1.1. We say that A: [0,7] x Q — R? is admissible if it belongs to the space
CY([0,T] x % R?) and for every t € [0,T] the function A(t) is a C? diffeomorphism of Q in
itself such that A(¢,Q) = Q and A(t,I'NQ) =T NO.

Notice that, according to (H4)-(H6), both ® and ¥ are admissible.

Lemma 1.1.2. Let f and f*, n € N, be elements of L*(Q), and let A and A", n € N, be
admissible diffeomorphisms. Assume there exist 01,92 > 0 such that 61 < det VA™(t,x) < do
for every t € [0,T), z € Q, and n € N. Assume also that for every t € [0,T]

AY(t) = A(t) i L2(RY), P — f in L*(Q) asn — .
Then, for every t € [0,T] we have
FYUA™ME)) — F(AR) in L2(Q) asn — oo.



Chapter 1. FElastodynamics system in domains with growing cracks 3

Proof. The proof of this result can be found in [20, Lemma A.7]. O

Lemma 1.1.3. Let A be admissible. There exists a constant C > 0 such that for every
Y € HY(Q\T) we have

[0 (AW®) = $AS) 2@ < CIVE 2@l = sl for every 0 < s <t <T.

Proof. Tt is sufficient to repeat the proof of [20, Lemmas A.5], by approximating 1 € H*(Q\TI')
with a sequence of functions ¥. € C*®°(Q\ )N H(Q\T) given by Meyers-Serrin’s theorem
(see, e.g, [1, Theorem 3.16]), and integrating over Q \ T O

Lemma 1.1.4. Let A be admissible and let t € [0,T) be fived. Then for every 1 € HY(Q\T)

%[gb(/\(t + h)) — (A1) = V(A®t)) - A(t) in L2(Q\T) as h— 0.

Proof. We argue again as in the proof of [20, Lemmas A.6], by approximating ¢ with a
sequence of functions 1. € C°(Q\T)N HY(Q\T) given by Meyers-Serrin’s theorem, and by
integrating over 2\ I'. We only have to check that as h — 0

h
Ty () = ill/o Vipe (At + 7)) - At + 1) dr — L(tpe) == Vb (A(t)) - A(t) in L2(Q\T).

Since A: [0, 7] x Q — R? is uniformly continuous, for every § > 0 there exists p > 0 such that
|A(t+7,y) — A(t,y)| <& for every |r| < p and y € Q. (1.1.5)

Similarly, fixed ¢ € [0, 7], the map A~Y(t): © — R? is uniformly continuous, and so for every
1 > 0 there exists § > 0 such that

At (t,y) — ANt 2)| < n for every y,z € Q, with |y — 2| < 4. (1.1.6)
By combining (1.1.5) and (1.1.6), we get that for every n > 0 there exists p > 0 such that
At +7,A) C A(t, I,,(A)) for every set A C Q and || < p,

where I,,(A) == {z € Q: dist(z, 4) < n} (we recall that dist(z, A) == infyca |z — y]).

For every n € N we define K,, .= {x € Q\ T : dist(z,0(Q2\I')) > 1/n}. The sets K,, are
compact, with K, C K41, and U, K,, = Q\ T'. Fixed n € N, there exists > 0 such that
I (Ky,) cC Q\ T, which implies that A(t, I,(K,)) CC Q\TI'. Therefore there exists p > 0
such that for every |h| < p and y € K,

1 [ .
0

for a constant C' > 0 independent of h. Hence, by the dominated convergence theorem we
conclude that ||} (¥:) — L(Ye)ll2(k,) — 0 as h — 0, since Th(¢)(y) — L(¢c)(y) for every
y € Q\T'. Similarly, there exists > 0 such that I,(Q2\T') \ K1) C (Q\T') \ K,, and so
we can find p > 0 such that for every |h| < p

1 h ,
T nnsni < 5 [ | vt m) - A+ m)Pardy
(A\T)N\Kny1 40O

<C IV (A(t,y))[*dy.
() Ko
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Therefore, for every |h| < p

1Th(¥e) = L(ve) [ L2y
< NTh(e) = L)l L2 (i) + TR (@) L2 @00\ Kni) + L) 200\ Ki1)
< Th(e) = L)l 2 (K pyr) + 2C1 V(A L2\ D)\ Kn)
and consequently lim supy,_,o |75 (¥e) — L(ve) | L2y < 2C[[VYe(A(#)[ L2 ((\r)\ k) for every

n € N. To conclude it is enough to observe that £I((Q\T')\ K,) — 0 as n — oo, and
Vb (A(t)) € L2(Q\ T;RY). O

For every ¢ € [0,T] we introduce the space
HLH(Q\ T4 RY) = {yp € H(Q\Ti;RY) : 4p = 0 on 9pQ}, (1.1.7)

where the equality ¢ = 0 on dp{2 refers to the trace of 1) on 9. We have that H}(Q\T'y; RY)
is a Hilbert space endowed with the norm of H'(Q \ I'y;R?), and its dual is denoted by
Hp'(Q\ Ty;RY). The canonical isomorphism between H}(Q \ Ty;R?) and [Hj(Q \ Ty)]?
induces an isomorphism of H,'(Q\ Ty; R?) into [H ' (Q\ Ty)]%

The transpose of the natural embedding HL(Q\ I'y; R?) — L2(Q; R?) induces the embed-
ding of L2(Q;R?) into Hp'(Q\ T; RY), which is defined by

(9,9 1oy = (9. 0)12() for g € L2(RY) and o € HH(Q\ T RY).

Given 0 < s <t < T, let Py: Hp'(Q\Ty;;RY) — H;'(Q\ Ts;RY) be the transpose of the
natural embedding HL(Q\ Ts; RY) — HL(Q\ Ty;RY), ie.,

(Pt(9): D) 1 nr,) = (90 vonry  for 9 € Hp'(Q\ Ty RY) and v € Hp(Q\ T;RY).

The operator Py is continuous, with norm less than or equal to 1, but in general is not
injective, since HA (2 \ T's; R?) is not dense in HA(Q \ Ty; R?). Notice that Py(g) = g for
every g € L2(Q;RY).

Let C: [0,T] x Q — L (R%¢4: R%*4) be a time varying tensor field satisfying

syms Esym

C e Lip([0, T]; C°(Q; L (REX4, REXd)Y),

sym» “rsym

C(t) € Lip(€; Z(REd, RIxdY)), [VC() | ooy < C  for every t € [0,T],

sym> Ssym
(C(twr)gl) '52 = gl ' (C(t7w)§2) for every 51752 € RdXd te [OaT]a T € ﬁv

sym>

where C' > 0 is a constant independent of ¢. Starting from the operator C(¢, z) it is convienent
to define a new operator A(t,z) € L (R4 R¥¥9) as:

A(t, )& = C(t,z)E9™  for every £ € R4 t € [0,T], x € Q.
Clearly, A satisfies

A € Lip((0, T]; CO(T%: £ (R4 R*4Y)), (1.18)
A(t) € Lip(€; Z(R™*; RI*4Y)), IVA(@) || o) < C  for every t € [0,T], (1.1.9)
(A(tvx)gl) ’ 62 = 51 ’ (A(ta x)f?) for every 517§2 € Rdde te [OaT]a z € Q. (1110)

Given

w e H*(0,T; L*(RY)) N HY (0, T; HY(Q\ Tp; RY)), (1.1.11)
feL?0,T; L2(Q;RY), Fe HY0,T; L*(0yQ;RY)), (1.1.12)
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u’ —w(0) € HH(Q\To;RY), wul e L2(Q;RY), (1.1.13)
we study the linear hyperbolic system
i(t) — div(A(t)Vu(t)) = f(t) in Q\Ty, t€[0,T], (1.1.14)

with boundary conditions formally written as

u(t) =w(t) on dpf,te(0,T], (1.1.15)
(A(t)Vu(t))y = F(t) on N9, t e [0,T], (1.1.16)
(A()Vu(t))yr =0 on Ty, te€]0,T], (1.1.17)
and initial conditions
u(0) = u®,  w(0) =u' in Q\Ty. (1.1.18)

Remark 1.1.5. To give a precise meaning to (1.1.14)—(1.1.18), it is convenient to introduce
the following notation. Given 1 € H'(Q\ T'y; R?), its gradient in the sense of distributions
is denoted by Vi and it is an element of L(Q \ I';; R¥9). We extend it to a function in
L?(Q; R¥*9) by setting Vb = 0 on T'y. Notice that this is not the gradient in the sense of
distributions on 2 of the function v, considered as defined almost everywhere on §2; indeed
the equality

/va(:c) cw(z)de = —/Qw(x) ~divw(z) dz

holds for every w € C2°(Q\ T'y; R?*?), but in general not for w € C°(; R¥*9). Similarly, we
extend divy € L2(Q2\ T}) to a function in L?(€2) by setting diviy = 0 on T.

We recall the notion of solution to (1.1.14)—(1.1.17) given in [20, Definition 2.4]. We
consider functions u satisfying the following regularity assumptions:

u € CH([0, T]; LA RY)), (
u(t) —w(t) € Hy(Q\ Ty RY) for every t € [0, 7], (
Vu € C°([0, T); L*(Q; R¥*%)), (1.1.21
i€ AC([s,T); H'(Q\ T's; RY)) for every s € [0,7), (
%[u(t +h) —a(t)] = i in Hy'(Q\ Ty RY) for ace. t € (0,T) as h — 0, (
the function ¢ — |]il(t)\|H51(Q\rt) is integrable in (0,7). (

The relationship between i and the distributional time derivative of 4 is explained in [20,

Lemma 2.2], which shows that, under assumptions (1.1.19)—(1.1.24), the map ¢t — Pg(i(t)) is
the distributional derivative of the function ¢ ~ (t) from (s, T') to Hp'(Q\T's; RY). Moreover

t
u(t) —a(s) = / Py (i(7))dr forevery 0 <s <t <T.
S
Definition 1.1.6. Let A, w, f, and F' be as in (1.1.8)—(1.1.12). We say that u is a weak
solution to the hyperbolic system (1.1.14) with boundary conditions (1.1.15)—(1.1.17) if u
satisfies (1.1.19)—(1.1.24), and for a.e. t € (0,7") we have

(i(0), ) -1 ey + (A Tult), Vi) 120y = (1), ) 2y + (FO). ) 2(oyey (11:25)

for every ¢ € H1(Q\ T'y; R?), where ii(t) is defined in (1.1.23).
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Remark 1.1.7. Let us check that (1.1.25) makes sense for a.e. ¢ € (0,7"). Thanks to (1.1.23)
we have that ii(t) € Hp'(Q\ T'y;R?) for a.e. ¢t € (0,7), therefore it is in duality with
Y € HEH(Q\ Ty;RY). Moreover, assumptions (1.1.8) and (1.1.21) implies that A(t)Vu(t)
belongs to L2(Q; R?*?) for every t € [0,T]. Finally, thanks to (1.1.1) the last term of (1.1.25)
is well defined for every t € [0, T7.

Remark 1.1.8. Notice that the Neumann boundary conditions (1.1.16) and (1.1.17) are in
general only formal. They can be obtained from (1.1.25), by using integration by parts in
space, only when u(t) and I'; are sufficiently regular.

Following [43], to prove the existence and uniqueness of a weak solution, we perform a
change of variable. We denote by

v(t,y) =u(t,®(t,y)) te[0,T],yeQ\TIy, (1.1.26)
where @ is the diffeomorphism introduced in (H4)—(HS8), so that
u(t,z) =v(t,¥(t,z)) te€[0,T], zeQ\ T (1.1.27)
Notice that v(t) € H'(Q\ To; R?) if and only if u(t) € H'(Q\ T'y; R?) and that this change of
variables maps the domain {(¢,z) : t € [0,T],x € Q\ I';} into the cylinder [0,7] x (2\ I'p).
The transformed system reads
0(t) — div(B(t)Vu(t)) + p(t)Vo(t) — 2Vo(t)b(t) = g(t) in Q\ Ty, t € [0,T7], (1.1.28)

where B(t,y) € LR R p(t,y) € L(R>ERY) b(t,y) € RY, and g(t,y) € R? are
defined for t € [0,7] and y € Q as

B(t, y)¢ = (A(t, D(t,9))[EV (L, B(t,9))]) V(L B(t,y))" — Eb(t,y) @ b(t,y), (1.1.29)
pt, y)E = —[(B(t,y))V(detVd(t, y)) + dp(£b(t, y) det VB(t, y))] det VT (t, B(L,y)), (1.1.30)
b(t,y) = —W(t, D(t,y)), (1.1.31)
g9(t.y) = f(t, 2(t,y)) (1.1.32)

for every ¢ € R4*?¢. The system is supplemented by boundary conditions formally written as

v(t) =w(t) on dpQ,te[0,T], (1.1.33)
(B(t)Vu(t))y = F(t) on dnQ, t € [0,T], (1.1.34)
(B(t)Vu(t))y =0 on Ty, t €[0,T], (1.1.35)
and initial conditions
v(0) =%, 0(0) =o' in Q\ T, (1.1.36)
with initial data _
00 =0, ol = ul 4 Vuld(0). (1.1.37)

To give a precise meaning to the notion of solution to system (1.1.28) with boundary condi-
tions (1.1.33)—(1.1.35), we consider functions v which satisfy the following regularity assump-
tions:

v e CL([0,T); L2 (% RY)), (1.1.38)
v(t) — w(t) € HH(Q\ Do; RY) for every t € [0, 77, (1.1.39)
Vo € C°([0, T]; L*(Q; R¥*?)), (1.1.40)
b € AC([0,T]; Hp' (Q\ To; RY)). (1.1.41)
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Definition 1.1.9. Let A, w, f, and F be as in (1.1.8)—(1.1.12). Let B, p, b, and g be
defined according to (1.1.29)—(1.1.32). We say that v is a weak solution to the transformed
system (1.1.28) with boundary conditions (1.1.33)—(1.1.35), if v satisfies (1.1.38)—(1.1.41) and
for a.e. t € (0,7) we have

(0(1), ) -1 (nrg) + (BEOVO(L), VO)L2(0) + (P(OV(E), d) 22(02)
+2(0(t), div [p @ b(1)]) p2(0) = (9(1), ®) r2(0) + (F(1), §) 2 (0n0)
for every ¢ € H5(Q\ To; R9).

Remark 1.1.10. Notice that (H5) and (1.1.3) imply b(¢f) = 0 on the boundary of 2\ I'y.
Hence, in the weak formulation of (1.1.28), it makes sense to pass from —2(V(¢)b(t), ¢)12(q)

to 2(0(t), div[¢ @ b(t)]) r2(), which can be defined even for o(t) € L*(€; RY).

Remark 1.1.11. Let v be a function which satisfies (1.1.38)—(1.1.41). Let us check that
the scalar products in (1.1.42) are well defined for a.e. t € (0,7). By (1.1.41) we have
i(t) € Hp'(Q\ To;RY) for ae. t € (0,T), therefore it is duality with ¢ € Hp(Q \ To; RY).
In view of (1.1.38) and (1.1.40), for every ¢ € [0,7] the functions v(¢) and Vuv(t) belong to
L2(;R?Y) and L?(Q;R¥*?), respectively. Hence, to ensure that the scalar products in the
left-hand side of (1.1.42) are well defined, we need to show that the coefficients B, p, b, and
div b are essentially bounded in space for almost every time.

Thanks to (H4), (H7), (H8), (1.1.8), and (1.1.9), we derive that the maps t — A(¢, ®(t)),
t— VU(t,®(t)), t — U(t,®(t)), and t — div(¥ (¢, ®(t))) are Lipschitz continuous from [0, T’
to L°(Q; Z(R¥*4; R4xd)) [2°(Q; R¥*9), L>°(Q; RY), and L>(R), respectively. Therefore, we
get

(1.1.42)

B e Lip([0, T); L (Q; £ (R4 RI*4))), (1.1.43)
b € Lip([0, T]; L>=(Q;RY)), divb € Lip([0, T]; L=()). (1.1.44)

We split the coefficient p defined in (1.1.30) into the sum p = pP1 + P2, where the operators
pi(t,y), p2(t, y) € L (R¥4 R) are defined for t € [0,T] and y € Q as

P1(t, )& = —[(B(t,y)§)V(det VO(t,y)) + £b(t, y) Oy (det VO(t, y))] det VI (£, (2, y)),
pZ(ta y)é- = —fb(t, y)
for every & € R™?. In view of the discussion above, p; € Lip([0,T]; L*°(8; 2 (R4, R9))),

while py is an element of L>°(0, T; L?(Q; . (R¥*?; R%))), being b the distributional derivative
of a function in Lip([0,T]; L%°(2; R?)). Moreover, there exists a constant C' > 0 such that
[P2(t)|| oo () < C for ae. t € (0,T). Finally, the function g defined in (1.1.32) belongs to
L%(0,T; L2(Q;RY)), since f € L?(0,T; L*(Q;RY)). Then the right-hand side of (1.1.42) is
well defined for a.e. t € (0,7).

Remark 1.1.12. Thanks to (H1) and (H2), together with a partition of unity, we can
integrate by part in  \ I and derive the following formula:

/ Vi(x) - h(z)p(xr)dr = —/ Y(z) divh(z)p(z)] dx (1.1.45)
Q Q

for every 1, ¢ € H'(Q\T), and for every h € WH>(Q;RY), with h-v = 0 on (I' N Q) UIN.
Similarly, for every 1 € W1(Q\T') we have

/ Vi(x) - h(z)dz = —/ Y(x)div h(z) dz. (1.1.46)
Q Q

In particular, formulas (1.1.45) and (1.1.46) are satisfied if h is either W(¢, ®(t)) or (¢, ¥(t)),
thanks to (1.1.3), (1.1.4), (H4), and (H5).
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Let us clarify the relation between problem (1.1.14) with boundary conditions (1.1.15)—
(1.1.17), and problem (1.1.28) with boundary conditions (1.1.33)—(1.1.35). We start with the
following lemma.

Lemma 1.1.13. Suppose that u and v are related by (1.1.26) and (1.1.27). Then u satis-
fies (1.1.19)—(1.1.24) if and only if v satisfies (1.1.38)—(1.1.41).

Proof. The proof is straightforward by applying Lemmas 2.8 and 2.11 of [20] to the com-
ponents of w and v, which is possible thanks to our Lemmas 1.1.3 and 1.1.4, and for-
mula (1.1.45). O

By using the identification H;,'(Q\ Ty;R?) = [H;'(Q\ T4)]? and Lemmas 2.9 and 2.12
of [20] we derive the following two results.

Lemma 1.1.14. Assume that u satisfies (1.1.19)—(1.1.24). Then for a.e. t € (0,T) we have

(0(1), 9) -1 (o)
= (a(t), p(U (1)) det V(1)) -1 g,y + (Vult), O[¢(¥ (1) © O(t, (t)) det V(1)) 12(0
+ (a(t), O [p(T(t)) det V()] — div]p(P(t)) ® <i>(t, W(t)) det VU(2)]) 20 (1.1.47)

for every ¢ € HL(Q2\ To; RY).

Lemma 1.1.15. Assume that v satisfies (1.1.38)—(1.1.41). Then for a.e. t € (0,T) we have

(@), ) -1 nry)
= (0(2), p(®(1)) det V(1)) 10y + (VO (1), A0 (2(F)) © U(t, (1)) det VO(1)]) 120
+ (8(1), [ (D(1)) det VE(t)] — div[p(®(t)) @ W(t, (1)) det VO(1)]) £2(q)
for every i € HL(Q\ Ty; RY).
We can now specify the relation between the two problems.

Theorem 1.1.16. Under the assumptions of Definition 1.1.6, a function u is a weak solu-
tion to problem (1.1.14) with boundary conditions (1.1.15)—(1.1.17), if and only if the cor-
responding function v introduced in (1.1.26) is a weak solution to (1.1.28) with boundary
conditions (1.1.33)-(1.1.35).

Proof. Let us assume that u is a weak solution to problem (1.1.14) with boundary condi-
tions (1.1.15)—(1.1.17). Thanks to Lemmas 1.1.13 and 1.1.14, the function v satisfies (1.1.38)—
(1.1.41) and (1.1.47). Take an arbitrary test function ¢ € H}(Q2\To; R?). For every ¢ € [0, 7]
the function ¢(¥(t)) det V() is in Hy(Q \ I'y; R?). Thus, by (1.1.25) we have
((t), (W (1)) det VU(t)) 1 (o0,
= —(AO)Vu(t), V[p(¥ (1)) det VU (1)]) L2() + (f(£), o (2)) det VI(#)) 12 (q)
+ (F(2), o(¥ (1)) det VU(2)) L2 (a5 0)-

By inserting this expression in (1.1.47) and using assumption (H4), we get

(4(t), ¢>H51(Q\Fo)

= —(A@)Vu(t), V[p(¥(t) det VU (1)]) 12(0) + (f (1), o(¥(2)) det VU (E)) 2(q)
+ (F(1), 9) r20ny0) + (Vult), 0[o(¥(1) @ (1, ‘I’(t))det QIIE)
+ (a(t), D@ (¥ (¢)) det V(1)) — div[p(¥(1)) @ D¢, V(1)) det VE(1)]) 2(q)-

(1.1.48)
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Thanks to (1.1.27), by performing the same computations done in [20] we get

Vu(t) = Vou(t, ¥ (t))VU(t), u(t) =0t ¥(t)) + Vo(t,U(t))P(t). (1.1.49)

We insert this expression in (1.1.48) and we obtain that v satisfies (1.1.42). Notice that

the boundary terms w and F' remain the same through the change of variables since the
diffeomorphisms ® and ¥ are the identity in a neighborhood of 0f2.

Similarly, by applying Lemmas 1.1.13 and 1.1.15, it is easy to check that if v is a weak

solution to problem (1.1.28) with boundary conditions (1.1.33)—(1.1.35), then w is a weak
solution to problem (1.1.14) with boundary conditions (1.1.15)—(1.1.17). O

Remark 1.1.17. Given a weak solution u to (1.1.14)—(1.1.17), we can improve the integra-
bility condition (1.1.24). Indeed, by (1.1.25), the Lipschitz regularity of A, the continuity
property (1.1.21) of Vu, and (1.1.1), we infer

@) 1 @vryy < CA+NF D2 + [F@)ll20n)  for ae. t € (0,T),

where C' > 0 is a constant independent of ¢. Therefore, the function ¢ — Hu(t)”Hgl(Q\Ft)
belongs to L2(0,T), since f € L?(0,T;L?(;R?)) and F € C°([0,T]; L2(On%;R?)). In ad-
dition, if f € LP(0,T; L*(;R%)), with p € (2, 00|, then the function # Hu(t)”Hgl(Q\Ft)
belongs to LP(0,7). The same property is true also for a weak solution v of (1.1.28) with

boundary conditions (1.1.33)—(1.1.35), by exploiting the regularity properties of ¥ and Vv,
and the regularity of the coefficients (1.1.29)—(1.1.32) discussed in Remark 1.1.11.

1.2 Existence and uniqueness

To prove our existence and uniqueness results, for both problems (1.1.14) and (1.1.28), we
require an additional hypothesis on the operator B. We assume that there exist two constants
cp > 0 and ¢; € R such that for every t € [0,T]

(B(t)Ve, Vo) r2(0) = CO||¢||%{1(Q\FO) - ClH¢‘|%2(Q) for every ¢ € Hp(Q\ To; RY).  (1.2.1)

Notice that assumption (1.2.1) is satisfied whenever the velocity of the diffeomorphism @ is
sufficiently small and A satisfies the following standard ellipticity condition in linear elasticity:

(A(t,2)€) - € > Xo|€¥™|?  for every £ € R ¢t €[0,T), z € Q, (1.2.2)

for a suitable constant Ao > 0, independent of ¢ and z. Indeed, thanks to assumptions (H1)
and (H2) we can find a finite number of open sets U; C Q\ I, j = 1,...m, with Lipschitz
boundary, such that Q\T' = U7L,Uj. By using second Korn’s inequality in each Uj (see, e.g.,
[44, Theorem 2.4]) and taking the sum over j, we can find a constant C'x, depending only on
Q and I', such that

IV9[I72(0) < Cr (||w||%2<m + HE¢||%2(Q)) for every ¢ € H'(Q\ T;RY), (1.2.3)
where Ev) is the symmetrized gradient of v, namely E1) := %(V?/J + V4T). Define

M:= max detV®(t,y), m:= min _det VO®(t,y).
(t,y)€[0,T]x2 (t,y)€l0,T]xQ2

For every ¢t € [0,7] and ¢ € HL(Q\ I'p; RY) we use the definition of B and the change of
variables formula, together with (1.1.10), (1.2.2), and (1.2.3), to derive

M / B(t,y)Vo(y) - Vo(y) dy
Q
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> / B(t, 4)Vo(y) - Vo(y) det VO(t, y) dy
Q

= [ A0V (E) - VoW (t0) do - / VUt 2)(t, W(t, 2)) Pd
>/\0/ |E(p(U(t, x) de—/ V(¢ 2)))®(t, U (t, x))|*dx
> CK/ IV(o(W(t, ) 2dx—)\0/ |p(T(t, x) 2da:—/ IV (p(U(t,x)))D(t, U(t,z))|*de,

since p(U(t)) € HY(Q\ T'y;RY) ¢ HY(Q\ T;R?) for every t € [0, T]. Hence, if we assume
1D(t, ) < 070 for every t € [0,T] and y € 0, (1.2.4)
K
then by (H4) we obtain the existence of a constant 6 > 0 such that

[ B0)vow) - Vol dy = 57 / Vo)V, B(t, y))dy — 720 / () Pdy,
Q

which implies (1.2.1).

Remark 1.2.1. Assumption (1.2.4) imposes a condition on the velocity of the growing crack
which depends on the geometry of the crack itself.

We have seen that problem (1.1.14) with boundary conditions (1.1.15)—(1.1.17), and prob-
lem (1.1.28) with boundary conditions (1.1.33)—(1.1.35) are equivalent. We want to prove the
following existence theorem.

Theorem 1.2.2. Let be given A, w, f, F, u°, u' as in (1.1.8)(1.1.13). Let B, p, b, g,
v, v be defined according to (1.1.29)~(1.1.32) and (1.1.37), with B satisfying (1.2.1). Then
problem (1.1.28) with boundary conditions (1.1.33)—(1.1.35) and initial conditions (1.1.36)
admits a unique solution v, according to Definition 1.1.9.

The proof of Theorem 1.2.2 will be postponed at the end of Section 1.3 and it will obtained
as a consequence of Theorems 1.2.9 and 1.2.10 below and Proposition 1.3.1. Thanks to
Theorem 1.1.16, as corollary we readily obtain the following result.

Theorem 1.2.3. Let be given A, w, f, F, u°, u! as in (1.1.8)~(1.1.13). Assume that the
operator B defined in (1.1.29) satisfies (1.2.1). Then problem (1.1.14) with boundary condi-
tions (1.1.15)—(1.1.17) and initial conditions (1.1.18) admits a unique solution u, according
to Definition 1.1.6.

Proof. By using Theorems 1.1.16 and 1.2.2 there exists a solution u to (1.1.14)—(1.1.17).
Moreover, the initial conditions (1.1.18) follows from the regularity conditions (1.1.19)-
(1.1.24) of u and from the initial conditions of v. Finally, the solution is unique since
every solution u to (1.1.14) with boundary and initial conditions (1.1.15)-(1.1.18), gives
a solution v to (1.1.28) with boundary and initial conditions (1.1.33)—(1.1.36), thanks to
Theorem 1.1.16. O

Remark 1.2.4. The existence and uniqueness results of this thesis improve the ones con-
tained in [8]. Indeed, to prove Theorems 1.2.2 and 1.2.3 we only assume that w satis-
fies (1.1.11), while in [8] is required

w e H*(0,T; (% RY) N H'(0,T; H'(2\ To; RY)) N L*(0, T; H*(2\ Tg; RY)).
Moreover, we remove the assumption
(A(t)Vw(t))y =0 on ONQUT, t € [0,T],

which, on the contrary, is needed in [8].
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To prove Theorem 1.2.2, we introduce a notion of solution to (1.1.28) which is weaker than
the one considered in Definition 1.1.9. Later, in Section 1.3, we will prove an energy equality
which ensure that this type of solution is more regular, namely it satisfies the regularity
conditions (1.1.38)—(1.1.41).

Definition 1.2.5. Let A, w, f, and F be as in (1.1.8)—(1.1.13). Let B, p, b, and g be
defined according to (1.1.29)-(1.1.32). We say that v is a generalized solution to (1.1.28)
with boundary conditions (1.1.33)—(1.1.35) if

v € L®(0,T; HY(Q\ To; RY)) n Whee(0, T; L2(; RY) N H2(0, T; Hp'(Q \ To; RY)),
v—we L0, T; Hp(Q\ To; RY),
and for a.e. t € (0,T) we have
(0(1), ) -1 (anr) T (BEOVU(E), VO) L20) + (P(H)V(E), 6)2(0)
+2(0(t),div[¢ @ b(t)]) L2() = (9(t), @) 2y + (F (1), &) L2(ay0)
for every ¢ € H5(Q \ To; R9).

Remark 1.2.6. Since C°(0,7) ® H5(Q \ To; R?) is dense in L2(0,T; H5(Q \ To; RY)), we
can recast equality (1.2.5) in the framework of the duality between L2(0,T; Hp'(Q\ To; RY))
and L2(0,T; H5(Q \ To; R%)). Indeed, it is easy to see that (1.2.5) is equivalent to

(1.2.5)

T
/0 [(500), 0(0)) -1y + (BEOYT0(), o (1)) 2 + (BT (1), (1)) g2y |

T T
+2/0 (0(t), divp(t) @ b()]) 120 dt:/o [(9(8), o) L2(2) + (F(1), (1)) L2 (0] A

for every o € L2(0,T; H5(Q \ To; RY)).

Remark 1.2.7. Let us clarify the meaning of the initial conditions (1.1.36) for a generalized
solution. We recall that if X,Y are two reflexive Banach spaces, with embedding X — Y
continuous, then

Co ([0, T Y) N L®(0,T; X) = Cp([0,T]; X),

see for instance [24, Chapitre XVIII, §5, Lemme 6], where C2([0,T]; X) and C2([0,7];Y)
denote the spaces of weakly continuous functions from [0,7] to X and Y, respectively. In
particular, we can apply this result to a generalized solution v. By taking X = H'(Q\T'o; R%)
and Y = L%*(Q; R?) and using

v e CO([0,T); L*(2; RY) N L>(0, T; H' (2 \ To; RY)),

we have v € CO([0,T]; HY (2 \ Tp; R?)). Therefore v(0) is an element of H'(2\ T'g; RY).
Similarly, by taking X = L2(Q;R?) and Y = H;'(Q\To; RY) we get © € C9([0, T; L2(Q; RY)),
since

i € CO([0,T); Hp (2 \ To; RY)) N L(0,T; L*(; RY)).

Therefore (0) is an element of L2(£2;R?). In particular, the initial conditions (1.1.36) are
well defined if v° € H'(Q\To; R?) and v! € L?(; RY). With a similar argument we also have
v—w € CY[0,T]; H5 (2 \ To; RY)), which yields v(t) = w(t) on dpf in the sense of traces
for every t € [0, 7).

We recall an existence result for evolutionary problems of second order in time, whose
proof can be found for example in [24]. Let V, H be two separable Hilbert spaces, with
embedding V' < H continuous and dense, and for every t € [0,7T] let B(t;-), Ai(t;-),
As(t;): V. x V. — R be three families of continuous bilinear forms satisfying the follow-
ing properties:
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(7) the bilinear form B(¢;-) is symmetric for every ¢ € [0,T7;

(i4) there exist co > 0, ¢; € R such that B(t;1,1) > col|¢||? — c1||¢]|3; for every ¢ € [0,T]
and ¢ € V;

(791) for every v, ¢ € V the function t — B(t; 1), ¢) is continuously differentiable in [0, T7;
(iv) there exists co > 0 such that |B(t; ¥, ¢)| < cal[¥)||v |||y for every t € [0,T] and ¢, $ € V;
(v) for every 1, ¢ € V the function ¢ — Ay (t;1, ¢) is continuous in [0, 77;

(vi) there exists c3 > 0 such that |Ai(¢;9,9)| < cs||¢|v]élla for every ¢ € [0,7] and

v, 0V

(vii) for every v, ¢ € V the function ¢ — As(t;1, ¢) is continuous in [0,77;

(viii) there exists ¢4 > 0 such that |[Aa(t;¢,¢)| < cal|¥||v]@|a for every ¢ € [0,7] and
Y, 9eV;

where t — B(t; 1, $) denotes the derivative of t — B(t; 1), ¢) for 1, ¢ € V.

Theorem 1.2.8. Lete >0, v° € V, vl € H, g € L*(0,T; V"), and B(t;-), Ai(t;-), Aa(t; ),

t € [0,T], be three families of continuous bilinear forms over V- x V satisfying assumptions

(i) —(viii) above. Then there exists a function v € H'(0,T;V)NWhH*(0,T; H) N H?*(0,T; V")
solution for a.e. t € (0,T) to

(U(t), p)vr + B(t; v(t), @) + A1t v(t), @) + A2(t;0(t), @) +e(0(t), d)v = (9(t), ¢)vr (1.2.6)

for every ¢ € V', with initial conditions v(0) = v° and ©¥(0) = vl.

Proof. See [24, Chapitre XVIII, §5, Théoreme 1 and Remarque 4]. O
We are now in a position to state the first existence result.

Theorem 1.2.9. Let A, w, f, F, u°, and u' be as in (1.1.8)~(1.1.13). Let B, p, b, g, v°,
and v be defined according to (1.1.29)~(1.1.32) and (1.1.37). Assume that B satisfies (1.2.1).
Then there exists a generalized solution to (1.1.28) with boundary conditions (1.1.33)—(1.1.35)
satisfying the initial conditions (1.1.36).

Proof. As in [20, Theorem 3.6], the proof is based on a perturbation argument, following the
standard procedure of [24]: we first fix ¢ € (0,1) and we study equation (1.2.5) with the
additional term

e((t), ®)monry) for ¢ € Hp(Q\ To;RY),

and then we let the viscosity parameter € tend to zero.
Step 1: the perturbed problem. Let ¢ € (0,1) be fixed. We want to show the existence of
a function

ve € HY(0,T; H (2 \ To; RY)) nWH>(0, T; L*(Q; RY) N H?(0,T; Hp' (Q\ To; RY)),
with ve —w € HY(0,T; H5(Q \ To; R?)), solution for a.e t € (0,T) to the equation

<1'}5(t), ¢>H]51(Q\FO) + (B(t)V’Ue(t), v¢)L2(Q) + (p(t)Vve(t), ¢)L2(Q)

1.2.7
— 2(Voe(£)b(t), #) r2(q) + (0e(t), @) (o) = (9(1), @) r2() + (F(), 9)r2(050) 127

for every ¢ € HL(Q\ To;RY), and which satisfies the initial conditions v.(0) = v° and
¥:(0) = v'. To this aim, we regularize our coefficient with respect to time by means of a
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sequence of mollifiers. Let {p,}n C C°(R) be a sequence of functions such that p, > 0,
supp(pn) C [=1/n,1/n], and [ pp dz =1 for every n € N, and let us extend our coefficients
B and p to all R, as done in [20, Theorem 3.6]. To deal with the boundary terms w and F
we introduce the function § € L?(0,T; HBI(Q \ T'o; RY)) defined for a.e. t € (0,T) as

(60).8) =1 @npoy = — (0(1). 0) 2 — (0o *B) OV (£), V) 20
— (P D) (V0 (1), 0) 120 + 2(Veb(£)b(8), B)
— e((t), 8) i (enro) + (9(2), D)2 <F<t>,¢>>L2 (o)

for ¢ € HL(Q\ To;RY); the regularity of § is a consequence of (1.1.1), (1.1.11), (1.1.12),
and Remark 1.1.11. We apply Theorem 1.2.8 with Hilbert spaces V = H5(Q\ T'o;R?), H =

L*(R7), bilinear forms B(t)(1,¢) = ((pn*B)(t) Ve, Vo), Ai(t)(,¢) = (pu*P)(t) VY, 6),
and Ax(t)(¢, ¢) = —2(Vyb(t),¢) for ¢,¢ € V and t € [0,T], forcing term §, and initial

conditions 9° = v® — w(0) and ' = v! — 1w (0). For every n € N this leads to a solution

9" to (1.2.6) which satisfies the initial conditions 9° and #!. In particular, the function
vl = 0 + w solves equation (1.2.7) with B(¢) and p(¢) replaced by (p,*B)(t) and (pnxp)(t),
respectively, and initial conditions v* and v!.

We fix tg € (0,T]. By taking 07 (t) — w(t) as test function in (1.2.7) and integrating over
(0,%0), we get

/Oto [@g’ o — w>H51(Q\FO) + ((pn*xB)VoL, VI — Vo) 2@ | di
[ (o) V0202 = )13y~ 220,82 — i)y + 02,2 = o]
= /Oto [(g,0F — ) 2(0) + (F, 08 — ) 2oy ] dt. (1.2.8)
For the first term we use the integration by parts formula

o 1o . 1 .
=82 = ) g = 152000 = k) ey — g = 0O ey

to deduce

0 Lo 1 n .
/0 (U7, o — w>H51(Q\p0) dt = 5”% (tO)H%z(Q) - §‘|UIH%2(Q) — (02 (t0), w(to)) 2()

t (1.2.9)
+ (Ul,w(O))L2(Q) + /0 (U?,’U))LQ(Q) dt.
Similarly, for the second term we have
to
/O (pn #B)V?, Vil — Vi) 2y dt
1 1
= 5((pn*B)(t0)V’U?(to), va(to))Lz(Q) — 5((pn*B)(O)VUO, V’UO)L2(Q) (1.2.10)

to 1
_/0 |:2(8t(pn*B)VU?ang)L2(Q)+((pn*B)vv?’Vw)L2(Q) dt.

Since v (t) — w(t) € HLH(Q\ To;R?) for every t € [0,T], by (1.2.1) we derive the following
estimate

((pn*B)(t0) [VVL (to) — Vw(to)], Vvl (to) — Vw(to)) L2y = collvZ (to) — w<t0)H§{1(Q\F0)
— c1]|[vZ (to) — w(to) |72 (0y-
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In particular, thanks to (1.1.11), (1.1.43), and Young’s inequality, there exists a constant
C > 0, independent of n, ¢, and ¢y, such that

c n n n n
O o2 (t0) B ) < (9B (1002 0), T2 ) 2y + C(1+ [ (1) gy (1211)
5 (91\Io) ()
In addition, since v”(tg) = v° + fto o1 (t) dt, we get
to 5
o (00l < 200y +27 [ 1 e (1.212)

By the regularity properties of B, p, g, and w we obtain another constant C' > 0, independent
of n, e, and tg, such that

to to
(0, ) pogy dt| < C [ [[62][72(0 dt; (1.2.13)
0 0 ()
fo 1 fo ni2
/0 5 Oh(pn*B) VAL, V) 12(0 dt\ <c /0 (oS FA—T (1.2.14)
to to 9
/0 (P *B) Vo2, Vi) 12(0) dt] <c /0 [E4FAp—r (1.2.15)

to to
/0 ((pn*P) VU, 07 — ) 12(q) df‘ < C/o [Hv?H%{l(Q\FO) 0812y | At (1.2.16)

to to

Furthermore, we can use Young’s inequality and (1.1.11) to find a further constant C' > 0,
independent of n, €, and tg, such that

(62 (1), t(t0)) 2@y — (v, 0(0)) gy | < + 62 (t0) 2y + C- (1.2.18)
4

By formula (1.1.45) we derive

to to
2/ (vab, w)Lz(Q) dt = —2/ (U?, le[w & b])Lz(Q) dt,
0 0

which implies the existence of C' > 0, independent of n, €, and tg, such that

to

to
‘2/ (Vorb, ) gy dt| < C [ 62 2 At (1.2.19)
0 0

Thanks to (1.1.46), for every ¢ € H}(Q2\ T'p; RY) we have

2(V6h(0).0) 120 = [ W) VIo)Pdy = - [ dvbeloPay.  (1.2:20)
Therefore, by (1.1.44) there exits a constant C' > 0, independent of n, ¢, and ¢y, such that
to to 9

Since F' € H'(0,T; L>(On§;R?)), we can integrate the last term in (1.2.8) by parts with
respect to time, and we obtain

to
/0 (F, ol — ) 2(ay0) At = (F(to),v2 (to) — w(to)) 2oy ) — (F(0),0° = w(0)) 2 (a0

to .
— / (F, U? - ’LU)L2(3NQ) dt.
0
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We use the previous identity, together with (1.1.1) and Young’s inequality, to deduce the
existence of a constant C' > 0, independent of n, €, and tg, such that

t

oo €Oy n O n
[ = )iz, ] < L gy + € (14 [ 1By ) (1222

Finally, again by Young’s inequality

L e [l 1 [t
e [Cmr —imowgdt> 5 [l a5 [ lolparydt (1229

By combining (1.2.8)—(1.2.19) with (1.2.21)—(1.2.23), we infer
1, . Co e [to
1200 sy + 2 o) ey + 5 [ 192 oy

to
<Ci+Co [ 121y + 12 i onry]

for two constants C7 and Cs independent of n, €, and tg.
Thanks to Gronwall’s lemma we conclude that there exists C' > 0, independent of n, ¢,
and ty, such that

”i}?(to)niz(g) + ”U?(tO)H?{l(Q\FO) < C for every ty € [0,T]. (1.2.24)
Hence, we have
{v"}, is bounded in L>=(0,T; H*(Q \ ['p; RY)),
{0}, is bounded in L*°(0, T} L2(Q;Rd))7
{Vev'}, is bounded in L*0,T; HY(Q \ Fo;Rd)),

uniformly with respect to n and €. From these estimates, by using also the equation solved
by vZ and (1.2.20), we derive

{vg}n is bounded in LQ(O7 T; HBI(Q \ FO; IRd))7

uniformly with respect to n and . Therefore, up to a not relabeled subsequence, v}’ con-
verges weakly to a function v, in H*(0,T; H'(Q\ T'p; R%)) and ©? converges weakly to i in
L2(0,T; Hy (2 \ To; RY)) as n — oco. Finally, we have ve —w € HY(0,T; Hh(Q \ To; RY)),
since v —w € HY(0,T; H (2 \ To; RY)) for every n € N.

Let us show that v, satisfies (1.2.7). Since B is symmetric, for every ¢ € H(Q \ To; RY)
we have

((onxB) (1) VUL (t), V@) 12(02) = (VUL (1), (pn*B) (1) V) 12(01)
((pnxp) (B) V0L (E), 9) 12(02) = (VVZ(H), (P P™) (1)) 2(0)

where p*(t,5) € Z(R% R%*9) is the transpose operator of p(t,y) € .Z (R4, RY), defined for
t€[0,T] and y € Q by

(p*(t,y)a) - € = (p(t,y)E) -a for every a € R? and ¢ € R4, (1.2.25)
By the regularity properties of B and p, as n — oo we have

(pn*B)(H)Vh — B(t)Vé in L2(Q; R for every t € [0,T],
(pn*p*) ()¢ — P*(t)¢ in LA R for ae. t € (0,7T).



16 1.2. Existence and uniqueness

Thanks to the strong convergences above and the weak convergences of v, v
pass to the limit as n — oo in the PDE solved by v? and we obtain that the weak limit v,
satisfies equation (1.2.7) (see Remark 1.2.6). Furthermore, the bound (1.2.24) and the weak

convergences of v, v and 97, imply for every t € [0, T

and U, we can

o(t) = vo(t) in HY(Q\To;RY), 07(t) — v(t) in L*(QRY) as n — oo.
Hence v, satisfies the initial conditions v.(0) = v* and ©.(0) = v?.
Step 2. Vanishing viscosity. As already done in Step 1 for v], we take U, — w as test
function in (1.2.7), and we integrate in (0,%p) to derive the energy equality

1,. 1 o
§||Ue(750)||%2(9) + 5 (B(to) Ve (to), Ve (to)) 2(q) +€/0 (e, D — W) g1 (1) At

1

1
= 51 2 + 5 (BO0)T2(0), Ver(0)) 2oy

to 1 .
+ / [(BVUE, VUE)Lz(Q) + (vag, V’Lb)LQ(Q) - (pVUg, i}g - w)LQ(Q) dt
o L2 (1.2.26)

to
+ / [—(0e div b, ) + 2(0e, div[w @ b]) 12y + (g, 0F — W) 12(q)] dt
0

+ /O 0 |:_(F,Ug - w)LQ(aNQ) — (’l')g,’l:l.))LQ(Q)i| dt + (F<t0)7va(t0) — w(to))LQ(E)NQ)
+ (0e(to), w(to)) 20y — (F(0),v° — w(0) 2(oy0) — (v, 0(0)) 2()-

By arguing as before and using the ellipticity condition (1.2.1) of B, we get the following
estimate:

1. . Co 3 to .
1||Ue(t0)H%2(Q) + gHUa(to)H?{l(Q\rO) + 2/ 191171 g\ Ut
0 (1.2.27)

to
sa+@4hm@@+m%mmﬁh

where C and Cy are two constants independent of € and tg. Therefore, Gronwall’s lemma
yields
0= (60} 120y + 1o (t0) 3 ey < € for every to € [0,7] (1.2.28)

for a constant C independent of ¢ and ty. This implies that the sequence {v.}. is uni-
formly bounded in L>°(0,T; H'(Q2\ I'p; RY)) and the sequence {v.}. is uniformly bounded in
L>®(0,T; L?(£;R?)). Moreover, by combining (1.2.27) and (1.2.28), we infer

T
[ ey dt < € (1.2.29)
for a constant C' independent of €. By formula (1.1.45) for a.e. t € (0,7") we have

(Vi()b(t), §) 12() = —(0=(t),div]p @ b(t)]) r2(q) for every ¢ € HLH(Q\ To;RY).

Thanks to (1.2.7) and the previous estimates we conclude that the sequence {¥.}. is uni-
formly bounded in L2(0,T; H;'(Q\ T'o; RY)). Therefore, there exists a subsequence of & (not
relabeled) and a function

v € L=(0,T; H'(Q\ To; RY)) n W (0, T; L*(Q; RY)) N H*(0,T; Hp' (2 \ To; RY))
such that the following convergences hold as e — 07:

ve = v in L2(0,T; HY(Q\ Tp; RY)), (1.2.30)



Chapter 1. FElastodynamics system in domains with growing cracks 17

v — 0 in L(0,T; L*(; RY)), (1.2.31)
e — ¥ in L2(0,T; Hp'(Q\ To; RY). (1.2.32)

Moreover, we have v —w € L*(0,T; H%)(Q \ T'o;R%)). Notice that, a priori, the weak limit v
is not unique, but might depend on the particular subsequence chosen.

Let us show that v, solves (1.2.5). We fix a test function ¢ € L2(0,T; H5(Q \ T'o; R%))
for (1.2.5) (see Remark 1.2.6), and for every € € (0,1) we have

T
/0 [(fbe, 90>H51(Q\F0) + (BVve, Vo) 20y + (PVV=, 9) 12(q) + 2(0e, divp @ b]) 12(q) | dt

T T
+€/0 (@aysﬁ)Hl(Q\FO)dt:/O [(9, 0)12(0) + (F, 0)12(ay0) dL- (1.2.33)

Thanks to (1.2.29), as € — 0" we get

T T
5/0 (i’aa@)Hl(Q\Fo)dt‘ < \/5/0 Velloell a@yro) 1l m @rg) dt

T 1/2
< Vellollz2o,mm1 (\r0) </0 5\\%“%{1(9\%) dt> < \eC — 0.

The last property, together with (1.2.30)—(1.2.32) and (1.2.33), gives that v solves (1.2.5).
Finally, by arguing as in Step 1, for every ¢ € [0,7] we obtain

ve(t) = v(t) in H(Q\To;RY), o.(t) = o(t) in L2 (Q;RY) ase—0T.  (1.2.34)
This gives the validity of the initial conditions for v. O

The proof of uniqueness is similar to the one in [20] and relies on a standard technique
due to Ladyzenskaya [34], which consists in taking as test function in (1.2.5) the primitive of
a solution.

Theorem 1.2.10. Under the assumptions of Theorem 1.2.9, there exists at most one gen-
eralized solution to (1.1.28) with boundary conditions (1.1.33)—(1.1.35) satisfying the initial
conditions (1.1.36).

Proof. By linearity, it is enough to show that the unique generalized solution v to prob-
lem (1.1.28) with

is u = 0. The proof is divided into two steps: first, we show the uniqueness in a small interval
[0,t0]; then, by a continuity argument, we deduce the uniqueness in the all [0, 7.
Step 1. Let s € (0,7 be fixed and let s € L2(0,T; HL(Q \ To; RY)) be defined as

= [fu(r)ar if t € [0, s],
Palf) = {0 if t € [s,T).

Notice that ps(s) = ¢s(T) = 0. Moreover ¢, € L2(0,T; HL (22 \ To; RY)), indeed

. v(t) ift €[0,s),
Ps(t) = .
0 ift € (s,T7.
By taking @5 as test function in (1.2.5), we get

/s [(v(t), SOS(t))Hgl(Q\FO) + (B()Vo(?), V%(t))m(m} de
0 (1.2.35)

+ /OS [(P()VU(t), 05(t)) L2(0) + 2(0(1), div[ps(t) @ b(t)]) 12(0)] dt = 0.
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We integrate the first term by parts with respect to time, and we obtain

[ 6000y = = [ @O0 dt = 3l (1:230)

since v° = vl = p,(s) = 0.

Let us rewrite the second term involving B. By Definition 1.2.5 of generalized solution it
is easy to see that o, € Lip([0,T); HL (92 \ T'o; R?)). Therefore, thanks to (1.1.43), we have
that BV, € Lip([0, T]; L2(2;R¥*?)). We perform an integration by parts with respect to
time and we use the fact that ¢s(s) = 0 in Hp(Q\ T'o; R?) to derive

/0 “B)Vo(t), V() 12 dt

—— [ (V0. BOTe )20y dt (1237
- _%(B(o)ws(o% Vips(0)) r2(0) — % / S(B(t)ws(t), Vips(t)) L2 (e dt,
0

By combining (1.2.35)—(1.2.37) we get

1 1
5””(5)”%2(9) + 5 BO)Ves(0), Ves(0) £2(q)

_— (1.2.38)
— /o {—2(BV%, Vos)r2) + (PVY, 0s)2() + 2(0, div[ps @ b]) 12y | dt.

Let us bound from above the scalar products in the right-hand side of (1.2.38). By the
Lipschitz regularity of B there is C' > 0 such that ||B(t)|| () < C for a.e. t € (0,T), and so

‘/ Ves(t), Vos(t)) 2o )dt' <C/ s ()1 1 g AL (1.2.39)

For every t € [0,T] we split div[ps(t) ® b(t)] into the sum @g(t) divb(t) + Vps(t)b(t).
As already pointed in (1.1.44) we have divb € Lip([0,T]; L>°(£2)), therefore we can repeat
the same argument as before. By integrating by parts with respect to time and using the
equalities v° = ¢4(s) = 0, we obtain

/ (5(t), pa(t) div b(£)) 2y df = — / (0(t), v(t) div b(t) + s (t) div b(£)) 12
0 0 (1.2.40)
<0 | [0z + ool @y 4
for some C > 0 independent of s. For the other term, we first perform an integration by
parts with respect to time exploiting the assumptions v° = vs(s) = 0, and then we use
formula (1.1.46) and the regularity properties (1.1.44) of b to deduce

S

[ 60 Vet i = [

<C/ Ol + IIsos(t)Hip(Q\FO)] dt, (1.2.41)

[;( (t) divd(t),v(t))2(0) — (U(t%v@s(t)b(t))LQ(Q)} dt

for a constant C > 0 independent of s.
We now split p as p1 +Pa, where p1(t,y), p2(t,y) € £ (R¥>9;RY) are defined for t € [0, T
and y € Q as
P1(t,y)¢ = p1(t,9)€ — P1(0,9)¢ = P1(t,9)€ + £b(0, y) div (0, ),
P2(t,y)& = Pa(t, y)é + P1(0,9)¢ = —E[b(t, ) + b(0, y) div (0, y)].



Chapter 1. FElastodynamics system in domains with growing cracks 19

We have py € Lip([0, T]; L (; 2 (R% RX4))), therefore py € L(0, T; L*(Q; £ (R4 R 4)))
and there exists C' > 0 such that [[p1()|[z~@) < C for a.e. t € (0,T). By integrating by
parts with respect to time and by exploiting the equalities ¢4(s) = p1(0) = 0, we get

A?mawwwwgmymﬂuz/VV%@Lmawxmmmwt
VQ,OS )308( ) + f)jlk(t)sos (t))LQ(Q) di

(1.2.42)
V(,Os ( ) + v(t))L2(Q) dt

IN
Q
hho

MMW9@+Wﬂm@mWJ®

for a constant C' > 0 independent of s, where py is the transpose operator of p1, defined in
a similar way to (1.2.25). On the other hand, by (1.1.44) we have divb € L°°(0,T; L?(2))
and there exits C' > 0 such that || divb(t )HLoo @ < C for ae. t € (0,7). Furthermore,

b(0) div ®(0) € Lip(Q; R?) thanks to (HS). Hence, by performing an integration by parts
with respect to the space variable we obtain

ﬂﬂm@wmmmmmmwz—fﬁwm%@®wm+mm®@mmm@w
_ / (0(t), divipa(t) © (b() + b(0) div B(0))]) 2y df (1.2.43)

0
<C [ [l + le Ol @y at

for a constant C' > 0 independent of s. To derive (1.2.43) we have used formula (1.1.45) with
h == b(t)+b(0) div ®(0). This is possible since the function b(t)+b(0) div ®(0) € W= (Q; RY)
for a.e. t € (0,T) and satisfies (b(t) 4 b(0) div (0)) - = 0 on (T'NQ)UHQ. Indeed b(t)-v = 0
on (I'N Q) U for every t € [0,T] by (1.1.3) and (H5), and #[b(t + h) — b(t)] — b(t) in
CO(Q;RY) for a.e. t € (0,T) by (H7).

Thanks to (1.2.38), the coercivity property (1.2.1) of B, the upper bounds (1.2.39)—
(1.2.43), and

S
PXUITANES o MECT A

we conclude
o)y + colles Oy < T [ [IORa@ + hoslanry & (1240
for a constant C' independent of the parameter s chosen. Let us consider
C(t) = /Otv(T) dr tel0,T].
Then we can write @4(t) = ((t) — ((s) for every t € [0, s]; in particular

s (O)|| 71 (\r) = 1K) |1 (A1) (1.2.45)

/0 s (117 1oy A < 28/1C ()71 \rg) + 2/0 IS o) At (1.2.46)

By combining (1.2.44)—(1.2.46), we obtain

[0(s)[1 20 + (co = 2Cs)[[C ()1 Frr () < 2 / [H (72 + HC(t)H%{l(Q\FU)} dt.
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If s is small enough, e.g., s <ty := we can apply Gronwall’s lemma and obtain

40’

v(s) =0 for every s € [0, t].

Step 2. Notice that the functions v: [0,T] — L*(Q;R?) and @: [0,T] — Hp (Q \ To; RY)
are continuous, therefore we can define

t* == sup{t € [0,T] : v(s) =0 for every s € [0,t]}.

Thanks to Step 1 and the continuity of v and ©, we get that t* > ¢y > 0 and v(t*) = 0(t*) = 0.
Let us assume by contradiction that t* < T. By repeating the strategy adopted in Step 1,
with starting point ¢* and initial set 2\ I+, we can find a point t; > ¢* such that v(s) =0
for every s € [t*, 1], which leads to a contradiction. Therefore t* = T and so v(s) = 0 for
every s € [0, 7. O

Remark 1.2.11. Let v be the generalized solution to system (1.1.28) with boundary condi-
tions (1.1.33)—(1.1.35) and initial conditions (1.1.36), and let v. be its viscous approximation
obtained by solving (1.2.7). By using (1.2.28), (1.2.34), and the weak lower semicontinuity
of the norm, there is a constant C' > 0, independent of ¢, such that

1061720y + 0O Fary) < C - for every t € [0,T]. (1.2.47)

If we consider u defined by (1.1.27), by using formulas (1.1.49) it is immediate to check that
for another constant C' > 0, independent of ¢, we have

||u(t)H%2(Q) + ||u(t)H§{1(Q\Ft) < C for every t € [0,T].

1.3 Energy balance

In this section, following [20, Proposition 3.11], we prove an energy equality for the generalized
solution v to (1.1.28). In order to state this result, we introduce the following definition for
the energy: given a function z € C9([0,T]; H'(Q \ T'o;R?)), with distributional derivative
2 € CY([0, T]; L2(S; RY)), we set

1

Ep(zit) = f|| ()HL2 +§(B(t)Vz(t),Vz(t))L2(Q) for t € [0, T, (1.3.1)

where B is the operator defined in (1.1.29).

Proposition 1.3.1. Under the assumptions of Theorem 1.2.9, let v be the unique generalized
solution to (1.1.28) with boundary conditions (1.1.33)—(1.1.35), satisfying the initial condi-
tions (1.1.36). Then the energy t — Eg(v;t) is a continuous function from [0,T] to R and
satisfies

Er(v;t) = Eg(v;0) + R(v;t)  for every t € [0,T], (1.3.2)

where the remainder R is defined as
t 1 .
R(U; t) = / |:2 (]B%VU VU)LQ( Q) + (BV’U, Vw)Lz(Q) - (va, v — w)LQ(Q) dt

t
/ —(0div b, 0) r2(q) + 2(0, div]h ® b)) r2(q) + (9,0 — W) 2] dt
0

t

; W) r2an0) — (0, W0)r2(0) | dt + (F(t),v(t) — w(t)) 2oy )

+ (0(t) ,W( D2y — (F(0),0(0) — w(0)) 2oy ) — (0(0),w(0)) 2(0)-



Chapter 1. FElastodynamics system in domains with growing cracks 21

Remark 1.3.2. If the solution v were smooth enough, then (1.3.2) would be straightforward
by taking © — w as test function in (1.2.5). In our case, we follow the proof of [20, Proposi-
tion 3.11] by approximating ¥ — 1 with H} (2 \ I'g; R)-valued functions, in the same spirit
of [40, Chapter 3, Lemma 8.3].

Proof of Proposition 1.3.1. The function t — (F(t),v(t))r2(9,0) is continuous from [0, 7]
to R, since F € CO([0, T]; L?(On;RY)) and v € CO([0,T]; L*(OnQ; RY)), thanks to (1.1.1).
Similarly, also the function ¢ — (0(t), w(t))2q) is continuous from [0, 7] to R. Then, to prove
that ¢ — Eg(v;t) is continuous, it is enough to show that equality (1.3.2) holds.

For t = 0 equality (1.3.2) is trivial. Let ¢ty € (0,7] be fixed and let ) denote the
characteristic function of the time interval (0,¢p). For every § > 0, we call 5: R — R
the function equals to 1 in [d,t9 — d], O outside [0,%p], and which is linear in [0,0] and
[to — J,t0]; notice that 65 — &y in L}(R) as § — 07. We also consider a sequence of mollifiers
{pm}m C CZ(R).

We want to approximate the function 6o(v — w): [0,7] — H} (2 \ To; R?) by a suitable
sequence of functions in C°(R; H5(Q \ T'o; R?)). To this aim, we first extend the function
Oo(v — w) to all R be setting Oy(v — w) = 0 outside [0, T]. In a similar way we extend every
function multiplied by either 6y or 6.

For brevity, we set z := v — w. In view of the above definitions, for every m and § fixed
we have

pm*(052) € C°(R; HhH(Q\ To; RY),

since 05z € L=(R; HL(Q \ To; RY)) has compact support, and the regularity follows from

k k
o 052) = (G ) +059)

Moreover, we have p,,*(0s52) € C°(R; L?(€;R?)) and

Pm*(052) = pm*(052) — pm*(052), (1.3.3)

which implies p, * (052) € C(R; H5 (2 \ To; R?)). In a similar way, we can deduce that
o (633) € C2°(R: L2(Q: RY). since ps (65%) € C22(R; Hp (2 To; BY) and

Pm*(05%) = pm*(05%) — pm*(053). (1.3.4)

Since pp, *(05%) € C°(R; L?(Q;RY)), we derive

d .
| 3o+ (052) eyt =0,

By differentiating the integrand and exploiting the properties of the convolution, we get
0= / [(Pm*(ézsé), Pm*(052))2(Q) + (Pm*(052), prm* (052)) L2 () | dt, (1.3.5)
R

being p,#(05%) well defined in L?(R; L?(Q; R?)). Let us study separately the behavior of each
term in (1.3.5) as § — 0T, keeping m fixed. For the first one we have

li % (052), pm* (052 dt
S, R(p #(052), pm* (052)) L2(q)

= lim /95(é,pm*pm*(902))L2(Q) dt (1.3.6)
R

6—0t

= —(£(t0), (pm*pm*(002)) (o)) L2(0) + (2(0), (om*pm*(00%))(0)) L2(02)-
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To obtain (1.3.6), we have split 5 as (0s — 6p) + 6y and used the following facts:

pm*(052) = pm*(002) in L*(R; L2(Q;RY)) asd — 07,
{pm=(65%)}s is uniformly bounded in L?(R; L?(€;R%)),
s = (2(5), (pm*pm*(002))(5))2(q) 1s continuous on R.

The last property is a consequence of the fact that py,* pm* (6p2) € CO(R; L?(;R?)) and
2 € CO(R; L2(Q;RY)) (see Remark 1.2.7). The second term of (1.3.5) satisfies

lim (pm*(e(gz), pm*(agz))Lz(Q) dt = /(pm*(902)7 pm*(eoz))LQ(Q) dt. (137)
§—0t Jr R

Indeed, the sequence {p, *(0s%)}s is uniformly bounded in L?(R; L?(Q;R%)) by (1.3.4) and
pm*(05%) converges strongly to p#(0p%) in L2(R; Hp' (2\To; RY)) as § — 0F. These two facts
imply that pn,*(0o2) is an element of L2(R; L?(Q;R?)) and py,*(0s%) converges to p,(0o2)
weakly in L?(R; L?(£;R%)) as § — 0F. By combining (1.3.5)(1.3.7), we get

/R(pm* (002)7 Pm* (902))L2(Q) dt
= ((to), (o pm*(802))(t0)) 2(2) = (2(0): (P *pm* (002)) (0)) 2(20)-

In a similar way, we can prove

/R(pm*(eoﬂ}), pm*(eow))[g(g) dt
= (W(t0), (pm*pm*(0ow))(t0)) r2(0) — (W(0), (pm*pm*(00w))(0)) 2(q)-
From the last two identities we deduce
[ (pox 608).pu (002)) 0

= (0(to), (Pm* pm* (000)) (o)) 2(0) — (9(0), (Pm* pm* (000))(0)) L2(0
((pm*pm*(a()i)))(t(]%w(tO))L2(Q) _( ( ) (Pm*Pm*(Qow )(t )) (1'3'8)
+ ((pm*pm* (000))(0), w(0)) £2(0) + (0(0), (pm *pm * (Bot) (0))L2(m

+ / (Pm*(000), pm* (0010)) 2 (0 dt.
R

We apply the same argument to the function (Bpm*(05Vv), pm*(05Vv))12(q) € Whee(R),
which has compact support. Starting from the identity

d
/Rdt(BPm*(t%Vv), pm*(05V0)) 12() dt = 0,

we infer
0= B (0570), o+ (8590)) 12(0) + 2om* (O5BY0), po+ (057)) p2(y | dt
+ /R 2o (05BY0), pon (0550)) 120y (1.3.9)
+ /R 2B+ (05V0) — pmx (0BV0), pr % (05V0)) 120 A,

where p,,*(05V0) is well defined in L?(R; L?(Q; R%*9)) as

m*(05V0) == V(pm#(050)) = prm*(05V0) — pm* (05V0). (1.3.10)
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Since py, *(059) is uniformly bounded in L?(R; H} (2 \ To; RY)) by (1.3.3), and it converges
strongly to pn,*(000) in L2(R; L2(;RY)) as § — 07, we get

Pm*(05V0) = prx (0VD) == V(pm#(000)) in L*(R; L2(Q;R¥*?)) asé — 0F.  (1.3.11)

Moreover, the operator B € Lip(R; L°(€; .Z(R%*4, R4*9))), which yields that B is an element
of L®(R; L?(Q; 2 (R¥™4 RI*4))) and there exists C > 0 such that HIB%(S)HLOQ(Q) < C for
a.e. s € R. By passing to the limit as 6 — 07 in (1.3.9), thanks to (1.3.11) and the properties:

Bpm*(05V0) = Bppx(0gVo)  in L2(R; L2(Q;RPY))  as § — 07,

Bpm*(05Vv) = Bppx(0oVo)  in L2(R; L2(Q; RY4))  as § — 07,

Pm* (0:BVV) = pr*(0BVo) in L2(R; L2(Q;R>9)) as § — 07,

Pm*(05V0) = prx (V) in L2(R; L2(Q;RYY))  as § — 0T,

Pm*(05V0) = prmx(0oVo)  in L2(R; L2(Q;RPY)  as § — 07,

{pm*(05Vv)}s is uniformly bounded in L*(R; L?(Q; R%¥*%)),

s+ ((pm*pm*(00BVv))(s), Vu(s))r2(q) 1s continuous on R,

we obtain the following identity

/R(pm * (QOBVU), Pm* (90v2))L2(Q) dt
= ((pm* pm* (00BVv)) (t0), Vo (to)) L2() = ((om* pm* (00BV0))(0), Vo (0)) L2(0)

1. . (1.3.12)
—/R[2(Epm*(90Vv),pm*(HOVv))Lz(Q)+(pm*(QOIBBVv),pm*(QOVw))Lz(Q) dt

+ /(Pm*(eoﬁwv) = Bpm (60 Vv), prx (00V)) 12(q) di.
R

Let us consider the function (pm*(05F), pm*(052))12(ay0) € C°(R). We have

d
/R gz (Pm* (05 F), pm*(052)) 120 ) dt = 0,

which implies
0 :/R [(pm*(géF)>pm*(06z))L2(aNQ) + (pm*(agF),pm*(e(gz))Lg(aNQ)] dt
+/R {(pm*(%F)’pm*(952))L2(aNﬂ) + (Pm*(%F),pm*(%é))LQ(aNm] dt,

being pm*(0s52) well defined in L2(R; L2(9n$;R?)) (see (1.1.1) and (1.3.3)). By the following
facts:

m*(05F) = pm*(00F) in L*(R; L2(OnQ;RY)) asd — 07,

m* (05 F) = pm*(00F) in L2(R; L2(OnyQ;RY)) as 6 — 07,

Pm*(052) — pm*(60z) in L*(R; L2(On;RY) as d — 0T,

pm*(052) = pm*(602) in L2(R; L2(OnQ;RY)) asd — 07,

{pm*(0sF)}s is uniformly bounded in L?(R; L?(dyQ; R%)),

{pm*(6s5z)}s is uniformly bounded in L*(R; L?(dnQ;RY)),

s> (F(8), (pm*pm*(002))(8)) 2(ay0) is continuous on R,

DD

s> ((pmxpm*(00F))(8), 2(s)) 2(ay0) is continuous on R,
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as § — 07 we get

/R (Pr* (B0F). pon (02)) 120y

= ((pmxpm*(00F))(t0), 2(to)) L2(ay0) + (F(to); (pm*pm*(002))(t0)) L2(ax0)
— ((pm*pm*(00F))(0), 2(0)) L2(ay ) — (F(0), (pm*pm*(802))(0)) 2oy 0)

_ /R(pm*(eoF), pm*(eoz))LQ(aNQ) dt.

(1.3.13)

We know that the function v solves
/R [(%% Pl @) T (00BVY, Vo) 12(0) + (00pVv, ) 12(0) + 2(000, div]p ® b])LQ(Q)} dt
= /R [(Bog, ©)12(0) + (00F, @) 12(ay 0] dt
for every ¢ € L%(R; H5(2\ Tp; RY)) (see Remark 1.2.6). In particular, by considering the

function ¢ = py*(pm*(002)), which belongs to L2(R; H1(Q\ To; RY)) thanks to (1.3.3), and
exploiting the properties of the convolution, we obtain

/R [(pm#(009), pm* (002)) 12(02) + (Pm* (00BVV), p* (B0V2)) £2(y] dlt

+ / [(pm* (00PVV), prm*(002)) £2(02) + 2(Pm* (000 @ ), pim* (00V 2)) 12(0] dt
R

(1.3.14)
+ /R 2(pm* (0o div b), pm* (00%)) 12(0) dt
_ /R [(Pm*(009), o (002)) 120y + (o * (00 F), pu* (B02)) 2oy ] It
We combine (1.3.8) and (1.3.12) (1.3.14) to derive the following identity
(0(t0), (pm* pm* (600)) (t0)) L2(2) + ((om* pm* (B0BVV))(t0), Vu(to)) 12(q) (1.3.15)

= (0(0), (pm o (009)) (0)) 12(02) = ((prm o (00 BV0)) (0), V(0)) £2(02) = Rm (o),

where
1. .
Rm(to) ::/ §(Bpm*(90Vv),pm*(GOVU))Lz(Q) + (Pm* (00BVV), pm* (00VW)) 2(qy | dt
R

+ /R(pm*(eog) — pm*(6oPVV) = 2p5 % (000 div D), pm* (0o (0 — W))) 2 di

—l—/(Bpm*(HOVU) — P (00BV), pm* (00VV)) 2(qy dt
R
— / 2(pm>k((902} (%9 b), pm*(GO(Vv — V’U))))LQ(Q) dt

R

—/R [(Pm*(eop)ypm*(‘g()(“ —w)))r2(ayQ) T (Pm*(000), prmx (0010)) £2(qy | dt

((Pmxpmx (00 F)) (t0), v(to) — w(to)) L2(anq) + ((Pm*pm*(000))(t0), w(to)) L2()
(F'(to)s (pmxpm* (6o (v — w)))(t0)) L2(ay0) T (0(0), (Pm*pm*(00))(t0)) 2 ()
= ((pm*xpm*(00F))(0),v(0) — w(0)) 2oy 0) — ((Pm*pm*(000))(0),w(0)) £2(0)
= (F(0), (pm#pm* (0o (v — w)))(0)) L2an0) — (0(0), (pm*pm*(60w))(0)) £2(q)-
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Let us now perform the second passage to the limit: we let the index m associated
to the convolution p,, tend to co. Let us study separately the asymptotic of the terms
appearing (1.3.15). The left-hand side converges to

1 1 1

S50 22(0) + 5 (Blto) Vu(to), Volto)) 2@ — 5 10(0)aa) — 5(BOVL(0), To(0)) 2.

Here we have used the weak continuity of © and Vv (see Remark 1.2.7), the presence of 6,
and the fact that p,, *pp, is still a smooth even mollifier. Similarly, the last eight terms of
Rm(to) converge to

(F(to), v(t0)) r2 (o) + (8(t0), w(t0)) 2oy ) — (F(0),0°) 205 0) — (1, 0(0)) 20y 0)-

By the strong approximation property of the convolution and the dominated convergence
theorem, it is easy check the following convergences:

. to .
lim (Bpm* (GOVU), Pm * (HQV’U))LQ Q) dt = / (va, VU)LQ(Q) dt,
0

m—00 R

to
lim (pm* (QoBV’L}), Pm * (QOVw))Lz(Q) dt = / (va, Vﬂ))]} Q) dt,
0

m—r0o0 R

to
lim R(Pm*wog)a Pm* (0o (0 — W) p2(0) dt = /0 (9,0 — ) 2(q) dt,

m—o0
to
i [ (o (BopY0),p (0006 — )y dt = [ BV, 10) e
to
lgn (pm*(907) div b),pm*(e(ﬂ)))LQ(Q) dt = / (U div b,v - w)Lz(Q) dt,

m—o0

to
lim (pm*(e(ﬂ} & b), pm*(eovw))Lz(Q) dt = / (1') ® b, v’li))LQ(Q) dt,
R 0
. to .
lim | (pm*(00F), pm*(00(v — w)))r2(ay0) dt = /0 (F,v—w)r2y0) dt,
to
lgn (pm* (907)), Pm * (6()1'1')))[/2 Q) dt = / (U, w)Lz(Q) dt.

For the remaining two terms of R,,(tg) we claim

1 [to
lim (pm*(eov X b), pm*(GOVv))Lz(Q) dt = —= / (’U div b, ’U)LQ(Q) dt, (1316)
m—oo Jp 2 Joy
liﬁm (Bom*(00Vv) — prm* (60BVV), prm*x(00VV)) 2y dt = 0. (1.3.17)
m (o] R

Once proved the claim we are done: indeed, by combining the previous convergences with
identity (1.3.15) we get (1.3.2).
For simplicity we set

Cm = pm* (000 @ D) — pprx(0p0) @ b, O = pm*(00).

Hence, we may rephrase the integral in (1.3.16) as

/(pm*(g(ﬂ) & b), pm*(aovv))L2(Q) dt
R (1.3.18)

= /I‘% [(‘Pm @ b, V‘Pm)L%Q) + (Gm» v@m)LQ(Q)] dt.
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By integrating by parts (recall that b satisfies b-v =0 on 9QUT) we get

1 fo
im | (¢m @b, Vom)2) = —5 Im [ (¢ndivd, ¢m)r2) = —/ (0divb, v) 2 (q) dt,
R R 0

m—00 2 m—oo 2

since @, — 0o in L2(R; L?(;RY)) as m — oco. Therefore we have to prove that the second
term in the right-hand side of (1.3.18) vanishes as m — co. Notice that (1.3.10) and (1.3.11)
imply

Vom(t) = (pm*(00V0))(t) + pm(t — to)Vu(to) — pm(t)Vo(0) for ¢ € [0,T].

Then, we may write
_ /IR (o). (o (B0 0)) (1)) 2yl + /R (), — )V l0) — pon()T0(0)) g2

Since p,, and 6y have compact support, for m large enough (,, and (m are identically zero
outside the interval I = (—2T,2T). Clearly ¢, — 0 in L?(I; L2(Q;R%*9)) as m — oo, and
let us check that (,, converges to zero weakly in L?(I; L?(Q; R%*%)) as m — co. By (H7) we
know that b € Lip(T; L>®(€;RY)), so that b € L(I; L*(; R%)) and there exists C' > 0 such
that ][B(t)][Loo(Q) < C for a.e. t € I. Therefore, for a.e. t € I, we may write

Cm(t) = (b * (B01 @ b)) () — (pm* (B00))(£) @ b(t) — (pm*(B00)) () @ b(t)
= [ ult = 960(5)0(9) 0 b(s) = b0 ds = [ pult = 9B0(s)i(5) @ bt

[b(s) = b(D)]
t

to to .
= / Pm(t — 8)0(s) ® (s —t)ds — / pm(t — $)0(s) @ b(t) ds.
0 0

We use the L>-boundedness of ¢ — [|0(t)|[12(q), the previous properties of b, and the bounds

/ |spm(s)]ds < oo, / pm(s) ds < oo,
R R

to deduce that {(m}m is uniformly bounded in L2(I; L2(Q; R9*9)). This gives that (, — 0
in L2(I; L?(; R*)) as m — oo, since ¢, converges to 0 strongly in L2(I; L?(£2; R%*%)) as
m — co. Hence

lim R(ém,pm*(ﬂow))mm =0.

m—00

Since the embedding H'(I; L?(2;R4*?)) — CO(T; L?(Q; R¥*9)) is continuous, the sequence
{Gn}m is bounded in CO(T; L2(£; R*%)), and

1m(t1) = Gn(t2)llr2() < Némllrzqylts — ta|'/? < Clty — ta]'/? for every ty, 85 €T,

with ' > 0 independent of ¢; and t3. Then the sequence [[(nl2(): I = R, m € N,
is equibounded and equicontinuos. By Ascoli-Arzela’s theorem we get that (,, converges
strongly to zero in CO(T; L?(2; R?*?)), since I¢mllz2() — 0in L?(I). Notice that the function
t > pm(t — t0)Vo(to) — pm(t)Vu(0) is bounded in L(I; L?(£; R?*?)), hence

lim [ (Gn(), pm(t — t0) Vo (to) — pm (£)V0(0)) 12 dt = 0.

m—0o0 R
Similarly, by defining

Xm = Bpm*(00Vv) — pm*(60BVv),
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we may write
/(Bpm*(GQVv) — pm*¥(00BVV), pm* (00 Vv)) 2y dt = — / (Xm» pm*(00VV)) 2(q) dt.
R R

As before, X, is identically zero outside of I, x,,, — 0 in L?(I; L?(€2;R9*%)), and the sequence
{Xm}m is bounded in L?(I;L?(Q;R¥*%)) thanks to the Lipschitz regularity of B. Hence
Xm — 0 in L2(I; L2(; R9*4)) and (1.3.17) holds.

This concludes the proof of formula (1.3.2) and implies the desired continuity of the map
t — Eg(v;t) in [0, 7. O

We are now in a position to prove Theorem 1.2.2.

Proof of Theorem 1.2.2. In view of Theorems 1.2.9 and 1.2.10, we know that problem (1.1.28)
with boundary and initial conditions (1.1.33)—(1.1.36) admits a unique generalized solution v
(cf. Definition 1.2.5). Hence, to conclude the proof, it is enough to show that that every
generalized solution v is indeed a weak solution (cf. Definition 1.1.9), more precisely it
satisfies (1.1.38)—(1.1.41).

As pointed out in Remark 1.2.7, v € C°([0,T]; L?(;R%)) N CY([0,T]; H (2 \ Tp; RY)),
while » € C([0,T); Hp'(Q \ To; R%)) N CY([0, T]; L2(2;RY)). In addition, ¢ — Ex(v;t) is a
continuous function from [0,7] to R, thanks to Proposition 1.3.1. Let us now prove that
t + Vu(t) and t ~ 0(t) are strongly continuous from [0,T] to L?(Q;R%*9) and L?(Q;RY),
respectively.

Let top € [0,T] be fixed and let {tx}r C [0,7] be a sequence of points converging to to.
Since v is weakly continuous, we have

. 2 . . 2
[o(to)lI72(q) < hkfgggf [o(tR)72(0)-

Moreover, condition (1.2.1) implies that (B(to) Ve, ng)Lz(Q)—I—clquH%Q(Q), ¢ € HL(Q\To; RY),
is an equivalent norm on H4,(Q2\To; RY). Hence, since z == v—w € CO([0,T]; H1 (Q2\To; RY)),
we have

(B(to)Vz(to), Vz(to)) 20 + cillz(to) 1720

< liminf |(B(to) Va(ta), Va(tn) 120 + etll(t) [F20)

= lim inf (B(to) Vz(tr), V2(t1)) 2() + c1]l2(t0) |72 (0

k—o0

thanks to the strong continuity and the weak continuity of z in L?(£2; R%) and H'(Q\To; R?),
respectively. In particular, we can use (1.1.11) to derive

(B(to)Vo(to), Vo(to))2(o) < liminf(B(to) Vo(tk), Voltr))L2(q)-

Moreover, by the strong continuity of ¢ — B(t) from [0, T] to L>(Q; £ (R¥*4; R?*4)) and the
bound (1.2.47) we get

(B(to)Vu(to), Vu(to)) r2(a)

< liminf [(B(te) Vo(tr), Vo(te)) L2) + ((B(to) — B(tk))Vo(te), Vo(tr)) L2 ()]
< lm inf(B(t,) Vo(t), Vo(ts)) 2 + € lim [[B(to) — B(tk)l z(0)

= lim inf(B(t) Vo(ty), Vo(te) 12(0)-
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Then

Er(vito)

IN

.. 1. .
5 liminf [0(te) 1720y + 5 hkn_lg.}f(B(tk)Vv(tk), Vou(te))r2(o)

< lim &g(v;tg) = Ep(v;to),
k—o0

which implies the continuity of ¢ — ||1}(t)||%2(9) and t — (B(t)Vu(t), Vv(t))Lz(Q) intg € [0,7].
Thus © and Vo are strongly continuous from [0, 7] to L?(€; R?) and L?(Q; R?*?), respectively.
Therefore, properties (1.1.38)—(1.1.40) are readily verified. Finally, since both ¢ and ¥ are
elements of L2(0,T; Hp (2 \ To; RY)), we infer that v € H*(0,T; H;,'(Q \ To; R?)) which is
contained in AC([0,T]; Hp' (2 \ To; RY)). This gives (1.1.41) and concludes the proof. O

1.4 Continuous dependence on the data

In this section, following the same procedure adopted in [20, Theorem 4.1], we use the en-
ergy equality (1.3.2) to obtain a continuous dependence result on the data, both for prob-
lem (1.1.14) with boundary and initial conditions (1.1.15)—(1.1.18), and problem (1.1.28) with
boundary and initial conditions (1.1.33)—(1.1.36).

The initial crack I'g is kept fixed. For every n € N we consider a family of closed sets
{T}}ep,r) and a complete (d — 1)-dimensional C* manifold I'™ satisfying (H1)-(H8) with
diffeomorphisms ¥” and ®", and we assume

0 =Ty forevery n € N. (1.4.1)

Moreover, we consider a sequence A" of tensor fields, f™ of source terms, w™ of Dirichlet
boundary data, F™ of Neumann boundary data, and (u®", u") of initial data. The conver-
gences of the corresponding solutions will be obtained under the assumptions detailed in the
following theorem.

Theorem 1.4.1. Assume that I', {T't}icpor), @, ¥ satisfy (H1)-(HS). Let us consider a ten-
sor field A which satisfies (1.1.8)—=(1.1.10) and such that the transformed operator B satisfies
the ellipticity condition (1.2.1). Let us also consider f, w, F, u°, and u' satisfying (1.1.11)~
(1.1.13). Assume that T, {T'}}ic0.m1, @7, " satisfying (H1)-(HS) and condition (1.4.1)
for every n € N. Let us consider a sequence of tensor fields A™ which satisfy (1.1.8)—(1.1.10)
for every n € N and such that the operators B™, constructed starting from A™, ®™ and U™,
satisfy the ellipticity condition (1.2.1) with constants ¢y and ¢y independent of n. Let us
consider f, w", F™, u%", and ub™ satisfying (1.1.11)~(1.1.13) for every n € N.
We assume there exists of a constant C' > 0 such that every n € N and s,t € [0,T]

107 () — 0" () ey < Clt = 5l,  |197(8) — &"(5) | ey < Ct — s, (1.4.2)
907 (1) — D™ ()| ey < Ol — sl, 3397 (1) 1= (o) < C. (1.4.3)
JA™ () — A™() | gy < Clt — 5l,  [9A™ (1)l (e < C, (1.4.4)
for every i,5 =1,...,d. Moreover, we assume the following convergences as n — oo:
P(t) — D(t) in L2(Q;RY),  9;9"(t) — 9;®(t) in L2(Q;RY), 1.4.5
O"(t) — ®(t) in L*(ZRT), 0Z0"(t) — 950(t) in L* (4 RY), 1.4.6
A"(t) — A1)

&A”(t) — @A(t) n L2(Q;$(RdXd;RdXd))7
Amt) = At) in L3(Q; 2 (R, REXDY)),

(
(
in L?(Q; L (R4, RI*dY), (1.4.7
(
(
w" = w in H3(0,T; L2(Q;RY)) N HY(0,T; HY(Q \ To; RY)), (1.4.10
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= f in L*(0,T; L2 (s RY), F"— F in H'(0,T; L*(On; R)), (1.4.11)
w0 = in HY(Q\ Tg;RY),  ub™ —wl  in L2 RY) (1.4.12)

for a.e. t € (0,T) and for every i,j = 1,...,d. Finally, we assume that (1.4.2), (1.4.3),
(1.4.5), and (1.4.6) are true also for the sequence U™ with limit V.

For every n € N let u™ be the weak solution to problem (1.1.14) with growing crack I'},
forcing term f™, boundary conditions (1.1.15)—(1.1.17) with w, F, and Ty replaced by w",
F™ and T}, respectively, and initial data (u®™, u>"). Similarly, let v be the weak solution
to (1.1.28) with boundary and conditions (1.1.33)—(1.1.36), where the coefficients (1.1.29)—
(1.1.32) and the initial data (1.1.37) are constructed starting from ®7, W™ A", f* 40n ybn,
Let w and v be the weak solutions to problem (1.1.14) with boundary and initial condi-
tions (1.1.15)—(1.1.18) and problem (1.1.28) with boundary and initial conditions (1.1.33)—
(1.1.36), respectively. Under the previous assumptions, for every t € [0,T] as n — oo we
have:

u(t) — u(t) in L2(Q;RY), Vu(t) = Vu(t) in L*(Q;R¥?), (1.4.13)
W (t) — u(t) in L2(Q;RY), (1.4.14)
v (t) = v(t) i HY(Q\To;RY), o"(t) — o(t) n L2 RY). (1.4.15)

Remark 1.4.2. In the continuous dependence result of [8], both the initial crack and the
Dirichlet datum are fixed. In this thesis, we consider also the case of a sequence of Dirichlet
data w™ converging to w.

Remark 1.4.3. Since ®"(0) = id for every n € N, assumption (1.4.5) implies
P(t) = B(t), ;P (t) — 8;®(t) in LK RY) asn — oo (1.4.16)
for every t € [0,7] and i = 1,...,d. Moreover, by (1.4.6)—(1.4.9) we also have

d(t) — ®(t) in L2 RY), A"(t) —» A(t) in L*(Q; LR>ER>D)  asn — oo
(1.4.17)
for every ¢ € [0, 7. Finally, we have || det V" (t)| () < C and || det VU (t)][ oo () < C for
a constant C' > 0 independent of n and t. Thus there exists a constant §y > 0, independent
of n, such that

det VO"(t,y) > &y, det VU"(t,x) > for every t € [0,T] and =,y € (. (1.4.18)

Proof of Theorem 1.4.1. We follow the lines of the proof of [20, Theorem 4.1]. As explained in
the quoted paper, the statement for the sequence {u"},, is a consequence of the one for {v"},,.
Indeed, let ¢t € [0, T] be fixed and let us assume that (1.4.15) is satisfied. By (1.1.27), (1.1.49),
and the bounds (1.4.2) and (1.4.3) on the diffeomorphisms, we deduce that {Vu"(¢)},,
{u™(t)}n, and {a"(t)}, are uniformly bounded in L?(Q;R¥*?) L2(;R%), and L?(2;RY),
respectively. In particular, up to a subsequence, Vu™(t), u™(t), and @"(t) converge weakly in
these spaces. To determine the weak limits we fix a smooth function ¢ € C°(Q; R?*?). By
the change of variable formula (1.1.49), we have
lim (Vu"(t),9)r2() = lim (Vo" () V" (£, @"(1)), (" (1)) det VO™ (1)) 12(q)

n—o0 n—o0

= (Vot)VU(t, @(t)), p(P(t)) det VO(t)) L2y = (Vult), ) r2(q)-

Hence Vu"™(t) converges weakly to Vu(t) in L2(£;R%*9). Similarly, by using the conver-
gences (1.4.15) and (1.4.16) we obtain that [[Vu"(t)|12(q) converges to [[Vu(t)||r2q) as
n — co. Then Vu™(t) — Vu(t) in L?(£2;R%*?), and the same argument applies to u"(t) and
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u"(t), which converge strongly in L?(Q;R?) to u(t) and 7(t), respectively. This gives (1.4.13)
and (1.4.14), since these limits do not depend on the subsequence.

Let us denote by B™, p”, b", ¢", v*" and v'" the coefficients of the system (1.1.28)
constructed starting from ®", U™, A", f*, u%" and u'". In view of (1.4.2)—(1.4.4) it is easy
to check that for every n e Nandi=1,...,d

IB(6) — B (3)ll i@y < Clt— sl [6°(6) — B*(3)l| iy < Cl— s (1.4.19)
for every t,s € [0, 7], while
[0:B™ ()| o) < €, 100" (@) [|L() < C, [[P"(O)lze) < C (1.4.20)

for a.e. t € (0,T), where C is a constant independent of ¢, s, n, and 7. Furthermore, the
convergences (1.4.5)—(1.4.9), the lower bounds (1.4.18), and Lemma 1.1.2 imply as n — oo

B"(t) — B(t) in L*(Q; 2R R for ae. t € (0,T), (1.4.21)
p"(t) = p(t) in L*(Q; LR RY)  for ae. t € (0,T), (1.4.22)
oib™(t) — 9;b(t) in L*(Q) for a.e. t € (0,T) (1.4.23)

for every i = 1,...,d. By using (1.4.19), (1.4.20), and Ascoli-Arzela’s theorem, we also infer
as n — 0o

B (t) — B(t) in C°(Q; 2R R>Y))  for ae. t € (0,T), (1.4.24)
b (t) — b(t) in CO(Q;RY)  for a.e. t € (0,T). (1.4.25)

Finally, by (1.4.11) and (1.4.12) we obtain as n — oo

g" — g in L?(0,T; L*(Q; RY), (1.4.26)
O™ =00 in HY(Q\ Tg;RY), oM™ =0t in L2(Q;RY). (1.4.27)

In order to prove the validity of (1.4.15), for every e € (0, 1) we consider the solution v to
the perturbed problem (1.2.7) with coefficients B, p, b, g, w, F, v°, and v', and the solution
v™ to the one with coefficients B™, p”, b", g™, w", F", v%" and v!'". For every t € [0,T] as
€ — 0 we claim

ve(t) = v(t) in HY(Q\To;RY), o.(t) = 0(t) in L2 RY). (1.4.28)

Moreover, we claim that there exists a sequence of parameters {¢, },, C (0, 1), converging to 0
as n — oo, such that for every ¢t € [0,T] as n — oo

o () = ve, (1) = 0 in HY(Q\To; RY), 0 (¢) — 0., (t) - 0 in L2(Q;RY),  (1.4.29)
ol (1) —v™(t) = 0 in HY(Q\To;RY), o (t) —o™(t) = 0 in L*(QRY). (1.4.30)

Notice that (1.4.28)—(1.4.30) imply (1.4.15). Indeed, by the triangle inequality, as n — oo we
have

[[0" () = ()| i1 (\ro)

< lo™(#) — oz, Ol g @vro) + 102, () — 0=, (Dl g1 @vro) + 1020 () — 0@l 51 (@\1g) = 0

and the same holds true for [[9"(t) — 0(¢)|[z2(q)- To prove (1.4.28)—(1.4.30) we divide the
proof into several steps.
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Step 1. Strong convergence of v.. Let us define z. := v. —v. By comparing the two energy
equalities (1.2.26) and (1.3.2) we infer that z. satisfies

t
EB(Ze;t)+€/ [6e 1371 \ry) 48
0 (1.4.31)

L . N
= / |:2(IBVZ§, VZg)Lz(Q) - (sza, Zs)LQ Q) — (Za div b, Za)LQ(Q):| ds + Rg (t),
0
where &p is defined in according to (1.3.1), and

Re(t) = — (0:(1),0(t)) £2(0) — (B()Vve(t), Vo(t)) 2(@) + [[v! [72() + (BO) V", Vo°) 129

vag,vv 2@ + (B(Voe + Vo), Vib) 12(q) — (pvvg,@)p(m} ds

~

+

~+

+ va UE L2(Q) ( (VUE + VU), w)LQ(Q) - 2(1') div b, bs)LQ(Q)] ds

_|_

UE + 0 dlv[w X b])LQ( Q) + 5(®€7w)H1(Q\I‘O) + (g,i}s + 0 — QM)Lz(Q)] ds

~

Nﬁo\h

{ (F', v + v — 2w) 20y — (6 +0,1) 2 | ds

(F (), v=(t) + v(t) = 2w(t) 205 0) + (0=(t) + 5(t), (1)) 2(0)
—2(F(0),v° — w(0)) 2050 — 2(v",0(0)) r2(0)

for every ¢ € [0,T]. Thanks to (1.2.28), as € — 07 we have

+ o+

t T
c /0 (62, 10) 1oy ds| < VE /0 Velbelars o Il s ey ds

1/2

T
< Velwllze o, @\ro) </0 elloe 1 o) d3> <VeC 0.

Therefore, by using also the weak convergences (1.2.34) and the energy equality (1.3.2), we
deduce that R.(t) — 0 as ¢ — 07. The uniform bounds on B, p, and divb, the ellipticity
condition (1.2.1), the estimate

t
||z€(t)||%2(ﬂ) < T/ ||Z€(5)||%2(Q) ds for every t € [0, 7], (1.4.32)
0

and the identity (1.4.31) imply

t
12: (D720 + 12Ol @) < € (Ra(t> +/0 [Héé(s)“%?(ﬂ) + Hzfz‘(s)”%il(ﬂ\l“o)} ds)

for every t € [0,T], with C' > 0 independent of ¢t and e. By applying Fatou’s lemma, for every
t € [0,7] we have

limSIip [|’25(t)|’%2(g) + st(t)H%ﬁ(Q\Fo)}

e—0

t
< Climsup (w) b [ (1 ey + o)) 05

e—0t

<C/ lim sup Hza )H%Q(Q)"i_Hza(s)H%{l(Q\Fo)} ds.

e—0t
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Thanks to Gronwall’s lemma we conclude
. . 2 2 _
tim {2872y + 170 3| =0 for every t € 0,71,

which gives the convergences (1.4.28).
Step 2. Strong convergence of vl — v, . Let {e,}n C (0,1) be a sequence of parameters
to be fixed. The functions v? and v, satisfy (1.2.7) with different coefficients, but with

the same viscosity e,,. By linearity, the function 2" = (v2, —wv.,) — (w™ — w) solves for a.e.
€ (0,T)

("), ) -1 anrg) T BV (1), VO) L2(0) + (P(H)V2" (1), ) 12(0)

' ' (1.4.33)
= 2(V2"()b(1), ) 12(0) + n(Z" (1), D) (@vro) = (4" (8): D) -1 (onro)

for every ¢ € HL(Q \ To; RY), with initial data 29" = (0" — v%) — (w™(0) — w(0)) and
b= (b — 1) — (™(0) — @ (0)), and right-hand side defined for ¢ € [0, 7] as

— (W"(t) — (1), d)r2() — BE)(Vw"(t) — Vw(?)), Vo) r2(q)

— (P@)(Vw"(t) = Vw(t)), ¢)r2(q) + 2((Vu" (t) — Vi (t))b(t), d)2(a)
—en(W"(t) — w(t), ) mrrg) — (( "(t) = B(1))VZ (1), Vo) r2(q)
= ((P"(t) = p() VL, (1), @) r2(0) — 2(02, (¢) ® (b"(t) — b(t)), VP) 12(q)
—2((divd"(t) — div b(t))U?n( ), ®)r2(e) + (9" (8) — 9(t), &) r2(q)

+ (F"(t) = F(1), ) 2 (0)- (1.4.34)

In particular, the forcing term ¢" is an element of L2(0,T; H,'(Q \ T'o; R)). Notice that we
have used the identity (1.1.46) for both " and b to derive formula (1.4.33). By combining
the energy equality (1.2.26) with (1.1.1), the uniform ellipticity condition (1.2.1) for B”,
the uniform bounds (1.4.19) and (1.4.20), and the convergences (1.4.10), (1.4.11), (1.4.26),
and (1.4.27) we conclude that the sequences {v? }, and {07 }, are uniformly bounded with
respect to n in L(0,T; H5 (2 \ To; RY)) and L%°(0,T; L2(9;RY)), respectively. Moreover,
these bounds do not depend on the sequence {e,},. By using (1.1.2), (1.4.19), (1.4.20),
and (1.4.22)—(1.4.26) we conclude

¢" — 0 in L*(0,T; HBI(Q \Tp;RY)) asn — oo, (1.4.35)

and the rate of this convergence is independent of the choice of {e,}, C (0, 1). Notice that, to
pass to the limit in the first two terms in the right-hand side of (1.4.34), we have used (1.4.24)
and (1.4.25).

Since 2" € HY(0,T; H5(Q \ T'o; RY)), we can use " as test function in (1.4.33), and by
integrating by parts in (0,¢) for very t € (0,7, we get

t
E5(:10) +u [ 121y 0o
t
1 .
:5]5(2";0)—!—/ [Q(IB%VZ",V,Z") r2@) — (PV2", 2" 2 ds — (2" divb, 2") 2(q) | ds
0

t
+/0 (q", 2n>H51(Q\F0) ds.

As in the previous step, the uniform bounds on B, p and div b, the ellipticity condition (1.2.1),
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and the estimate (1.2.12) applied to z" imply

1 ‘n C n t .n
1O+ IOy +0 [ 121y 0o

<

N

n 1 n ! n n
12"(0) 1720y + <Cl + 2> [ERO] e +C/0 [HZ 720y + 112 ||%{1(Q\Fo)} ds

t
+/O ‘(qn72n>H51(Q\rO)‘d3

for a suitable constant C' > 0 independent of n and t. We estimate from above the last term
in the previous inequality as

t
/0 [(q", 5n>H51(Q\r0)‘ ds

< s oo + e g 1 ds.
=9 L2(0,T5HG " (\To)) ' 9o L2(0,T;Hp " (2\TI'o)) 0 H1(\TIo)

By choosing &, — 07 such that

1
e — §||anL2(o,T;H,31(Q\F0)) >0 foreveryneN,

we obtain then following estimate

t
IOl 0y + <oll="Olnonesy < G +2C | (121 Ex) + 1" ey 4
with
Chn = Hz’”(O)H%g(Q) + (2a1 + 1)“'2”(0)”%11(9\1“0) + ”anm(o,T;HBl(Q\ro))-
The convergences (1.4.10), (1.4.27), and (1.4.35) yield that C,, — 0 as n — oo. Therefore,

thanks to Fatou and Gronwall’s lemmas, we derive

lim Hzn(t)H%z(Q) + Hzn(t)”%{l(Q\Fo)} =0 for everyt e [0,T].

n—oo

This fact, together with (1.4.10), proves (1.4.29).
Step 8. Weak convergence of v™ to v. For every n € N, the function v™ satisfies for a.e.
te(0,7)

(5 (6).6) =1 () + B (OVE"(1). V) 12y + (B"(H)V"(1). 6) 20y
+ 206" (8), div]g © B (1)) 200y = (97 8) 120 + (F"(), 6) 12050

for every ¢ € HL(Q\ To; RY). As shown in (1.2.47),there exists a constant C' > 0 such that

(1.4.36)

167(8) 1220 + 0™ ()12 pyy < € for every ¢ € [0, T. (1.4.37)

In particular, the constant C' can be chosen independent of n, thanks to (1.1.1), the uniform el-
lipticity condition (1.2.1) for B", the bounds (1.4.19), (1.4.20), and the convergences (1.4.10),
(1.4.11), (1.4.26), and (1.4.27). By using (1.4.36), we also infer that {9"},, is uniformly
bounded in L2(0,T; Hp' (2 \ To; RY)). Hence, there exists a function

¢ € L0, T; H(Q\ To; RY) nWheo(0, T; L*(Q; RY)) N H*(0,T; Hy' (2 \ To; RY))
such that, up to a subsequence (not relabeled), as n — oo

o™ — ¢ in L2(0,T; H(Q\ Ig; RY)), (1.4.38)
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" — ¢ in L2(0,T; L2(Q;RY)), (1.4.39)
" — ¢ in L*(0,T; Hp' (2 \ To; RY)). (1.4.40)
Moreover, thanks to (1.4.10), we have ¢ —w € L*>(0,T; H5(Q \ To;RY)). By combining
the strong convergences (1.4.11) and (1.4.22)—(1.4.27) with the weak convergences (1.4.38)—
(1.4.40), we can pass to the limit as n — oo in (1.4.36) and we derive that ( is a generalized
solution to the limit problem (1.2.5), with initial conditions v and v!. In view of Theo-

rem 1.2.10 such solution is unique, therefore ( = v. Since the result does not depend on the
subsequence, we conclude that the whole sequence {v™},, satisfies as n — oo

o™ — o in L2(0,T; H(Q\ Tp; RY)),
" — o in L2(0,T; L*(Q;RY)),
$" = in L*(0,T; H,' (Q\ To; RY)).
These convergences, together with the bounds (1.4.37), for every ¢ € [0,T] imply
o"(t) = u(t) in HY(Q\To;RY),  o"(t) = o(t) in L2(GRY) asn —oo.  (1.4.41)
Step 4. Strong convergence of v —v™. For every n € N we define 2" := v —v", where

en € (0,1) are the parameters chosen in Step 1. Following the same procedure adopted in
Step 1, we get

t
5B(z”;t)+en/0 ||@?n||§{1(9\r0) ds
t
1 .
:/o [Q(Eann,Vz”)m(Q) = (P"V2", 2" p2) — (2" div "™, ) f2(q) | ds + Ra(t),

Ra(t) = — (02, (1), 0" () 20y — (B"(H) VL, (£), VO (1)) 2 () + 101" 172
+ (B (0) VO™, V) 120 + /0 t (B"Vo? , Vu™) 2o ds
+ /Ot [(B™(VoZ, + V™), Vi) 2(q) — (P"VOL,, 0") r2() — (P"VO", 08 ) 20 ] ds
+ /Ot (P (V2 + V™), ™) 20y + 2(07, + 0", div[i™ ® b)) r2(q ] ds
+ /Ot [—2(0" div b, 0 ) p2(q) + en(08,, 0™) i(onry) + (97 0, + 0" — 20™) 12(q) ] ds

t
+/o [—(F", o2 " = 20" )2 ay0) — (UF, + 0", ﬂ'}n)p(n)] ds

+ (F"(t), 02, (t) +v"™(t) — 20" () 205 0) + (02, (1) + 0" (1), " (¥)) 2(q)
— 2(F™(0), 0% — w™(0)) 2oy 0) — 201", ™(0)) 12(q) (1.4.42)

for t € [0,7]. By using the uniform bounds (1.4.19) and (1.4.20), the ellipticity condi-
tion (1.2.1) for B" and the estimate (1.4.32) for 2", we infer

t
10 ey + 1" Oanrg < € (Ra®)+ [ (1270 + 1B ey d5) - (1443)

for every t € [0,T], where C' > 0 is a constant independent of n and t.
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Let us show that R,(f) — 0 as n — oco. Thanks to Step 1 and 2, we know that vZ ()
converges to v(t) strongly in H'(2\ T'p;R?) for every ¢t € [0,T] as n — oo, while, 97 (t)
converges to () strongly in L?(£2; R?). We use now the weak convergences (1.4.41), together
with (1.4.16), (1.4.17), (1.4.27), and Lemma 1.1.2, to derive

Jim [(07 ( ))r2() + (B (VL (t), Vo' (1)) 20

= ||U(75)||L2(Q) +( (t)Vou(t), Vo(t)) 2 (),
lim | [[o"" 72, + (B n(o)vvo’navvo’n)m(ﬂ)] = v 172(q) + BO)VL’, Vo©) 12

n—oo

for every t € [0,T]. Moreover, by arguing as in Step 3, it is easy to check
T
an/ H@?nH%p(Q\FO)ds < C foreveryneN
0

for a constant C' > 0 independent of n. Therefore, for every ¢t € [0,7] as n — oo

T
< Vo /0 Va2 et 0 s o) ds

t
En/o (02,,0") g1 (Q\ro) ds

1/2

T
< \@”wnHL%o,T;Hl(Q\Fo)) (/0 5n||@gn||%11(n\ro) dS)
< e, C — 0.

since w™ — w in L%(0,T; HY(Q \ To;R?)). In view of the previous convergences, (1.4.10),
(1.4.11), (1.4.19)—(1.4.27), and the dominated convergence theorem in the time variable, we
can pass to the limit as n — oo in (1.4.42) and, by using the energy equality (1.3.2), we
conclude that R, (t) — 0 for every t € [0,7] as n — oo. Hence, we can apply Fatou and
Gronwall’s lemmas to (1.4.43) to derive

tim [1127(8)32(0) + 12" OBy =0

n—

This convergence gives (1.4.30) and concludes the proof. O






Chapter 2

Dynamic energy-dissipation balance
of a growing crack

In this chapter, we derive a formula for the mechanical energy (8) associated with the solutions
to the wave equation (7), and we derive necessary and sufficient conditions for the validity of
the dynamic energy-dissipation balance (11).

The plan of the chapter is the following: in Section 2.1, we fix the standing assumptions
on the crack set and the matrix A; moreover, we introduce the changes of variables which
transform (7) into (12). Then, in Section 2.2, we prove the decomposition result (9), by
adapting the proof of [43, Theorem 4.8] to our more general case, underlying the main
differences. Finally, in Section 2.3, we prove the energy balance (10) from which we deduce
necessary and sufficient conditions in order to get (11).

The results of this chapter, obtained in collaboration with I. Lucardesi and E. Tasso, are
contained in the submitted paper [9].

2.1 Preliminary results

We consider a bounded open set 2 C R? with Lipschitz boundary 02, we take a Borel subset
OpQ of 9 (possibly empty), and we denote by dy(2 its complement. We fix a C*! curve
v: [0,4] — Q parametrized by arc-length, with endpoints on 9€2; namely, denoting by T' the
support of v, we assume I' N 9Q = v(0) U~v(¢). Let T be a positive number, s: [0, 7] — (0, ¢)

be a non-decreasing function of class C*1, and let us set

'y ={v(0):0< o <s(t)} foreverytel0,T].

Figure 2.1: The endpoints of T' are v(0) and v(£) and belong to 0. We study the evolution
of the crack along I' from ~v(s(0)) to y(s(T")).

Let A € C%1(Q;R2X2) be a matrix field satisfying the ellipticity condition

sym

(A(x)€) - € > \o|€]?  for every € € R? and = € Q, (2.1.1)

37
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with Ag > 0 independent of z. Given a function f € C°([0, T]; H'(2))NLip([0, T; L*(2)) and
suitable initial data u” and u! (for their precise regularity, see Theorems 2.2.4 and 2.2.10),
we consider the differential equation

i(t) — div(AVu(t)) = f(t) in Q\ Ty, te0,T], (2.1.2)
with boundary conditions

u(t) =0 on dpf, te0,T], (2.1.3)
(AVu(t))-v=0 on INQUTY, t €[0,T],

where v denotes the unit normal vector, and initial conditions
u(0) = u®,  w0)=u' in Q\T. (2.1.5)
The equation (2.1.2) has to be intended in the following weak sense: for a.e. ¢t € (0,7)
(@), V) o1 onry + (AVU(t), V) r2iq) = (F(8): ¥) 220

for every ¢ € HL(Q\ Ty), where Hh(Q\ Ty) and Hp'(Q \ T;) are the spaces defined in
Chapter 1. We implicitly require u(t) to be in H} (2 \ T;) and i(t) to be in Hp'(Q\ Ty) for
a.e. t € (0,T) (see also [20, Definition 2.4] and Definition 1.1.6).

We assume that the velocity of s is bounded as follows:

|5()> < Xg— 0 for every t € [0,T], (2.1.6)

for a constant 0 < § < X\g. This relation between $ and the ellipticity constant Ay of A is cru-
cial in order to guarantee the resolvability of the problem (see also (2.1.14) in Lemma 2.1.1).
(2.1.6) can be interpreted saying that the crack must evolve more slowly than the speed of
elastic waves.

2.1.1 The change of variable approach

We fix to,t1 € [0,T] such that 0 < ¢t; — tp < p, with p sufficiently small. A comment on the
value of p is postponed to Remark 2.1.3. In the following, we perform 4 changes of variables:
first we act on the matrix A, transforming it into the identity on the crack set; then we
straighten the crack in a neighborhood of v(s(tp)); then we recall the time-dependent change
of variables introduced in [20], that brings I'; into I'y, for every ¢ € [to, t1]; finally, we perform
the last change of variables in a neighborhood of the (fixed) crack-tip, in order to make the
principal part of the transformed equation equal to the minus Laplacian. For the sake of
clarity, at each step, we use the superscript ¢ = 1,...,4, to denote the new objects: the
domain Q| the crack set I'®, and the time-dependent crack ng). We will also introduce the
matrix fields A, which characterize the leading part (with respect to the spatial variables)
— div(A®Vv) of the PDE (2.1.2) transformed.

Step 1. Thanks to the standing assumptions on A, we may find a matrix field @ of class
C%1(Q; R?*2) such that

Q(z)A(x)Q(x)T =1Id for every z € Q, (2.1.7)

being Id the identity matrix. In particular we can choose Q(z) to be equal to the square
root matrix of A(x)~!, namely Q(z) = Q(z)” and Q(z)? = A(z)~!. It is easy to prove the
existence of a smooth diffeomorphism y € C*1(Q; R?) of € into itself which is the identity in
a neighborhood of 9 and satisfies Vx(z) = Q(z) on 'V, being V a suitable neighborhood
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of v(s(to)). Notice that the constraint Vy = @) cannot be satisfied in the whole domain, since
the rows of @) in general are not curl free. We set

QM =, W .= (1), I’El) = x(I'y) fort € [to, 1],
AW = [VxAVXT] o x L.

Clearly, the matrix A satisfies an ellipticity condition of type (2.1.1) for a suitable positive
constant and it equals the identity matrix on T'"). Moreover, we may easily write an arc-
length parametrization v(!) of I'") exploiting that of T', by setting

4 o)) dr.

YW i=xoy0B, B (o) ¢=/0 I

Accordingly, the time-dependent crack Fgl) is parametrized by

Fgl) =AW (W @) fort e fto,ty], sV :=p"os.
The function s(!) is of class C%'([tg,t1]) and, thanks to (2.1.7) and (2.1.6), satisfies the
following bound:
2

SOF < max [VX@EPEOP <1-d 218

1
0 = [ st

for every t € [to,t1], where, for brevity, we have set c¢? = )\%. Moreover, for the sake of clarity,
we also fix a notation for the maximal acceleration: we set ¢y as

= s (#)). 2.1.
c2 teﬁ[ﬁi}\s (®)] (2.1.9)

A direct computation proves that ¢y is bounded and depends on Ay, d, §, 4, and V2.
Step 2. We now provide a change of variables A of class C?! which straightens the crack
in a neighborhood of 4 (s (ty)). First, up to further compose A with a rigid motion, we

may assume that the tip of Fg;) is at the origin, and the tangent vector to I'")) at the origin
is horizontal, namely

YD (sD(te) =0, 5D (sM(tg)) = e1 = (1,0).

For brevity, we set g = 5(1)(t0). We begin by transforming a tubular neighborhood U of
the crack near 0 into a square: setting

U:={7Dog+0c)+mWM(og+0):0 € (—¢,e), 7 € (—¢,e)},

with (1) := ()L and € > 0 such that U cC Q, we define A: U — (—¢,¢)? as the inverse
of the function (o, 7) = v (o + 00) + 7vM (0 + o). The global diffeomorphism is obtained
by extending A to the whole €. Accordingly, we set

0@ = AQD), 7@ .= ATD®), TE = ATM) for t € [to, t1],

A® = [VAADOVAT) o AL
The matrix field A®) still satisfies an ellipticity condition of type (2.1.1), for a suitable

constant.
For z € T® and in a neighborhood of the origin, setting y = A (z) e 'V, we have

AP (2) = VAW)AD (5)VA()T = VAE)VAW)T = (VA (@) VA (@)™ = Id
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The last equality follows from

I(A™)
do

O(A™Y)
or

(0'7 7') = ’y(l) (UO + U) + Tb(l) (UU + 0)7 (07 T) = V(l) (00 + U)a (2110)

and the fact that here we consider = of the form = = (0,0). In particular, we may be more
precise on the ellipticity constant of A®?) restricted to a neighborhood of the origin: for every
e € (0,1), there exists r > 0 such that

(AP (2)€)- £ > (1 —€)|¢]* for every £ € R? and |z| < r. (2.1.11)

Finally, we underline that if p = t; — ¢y is small enough (see also Remark 2.1.3), the
whole set T’ 8) \I‘Eé) is contained in U, so that the time-dependent crack F§2) satisfies

I‘E2) = FE? U{(c,0) € R2:0< o< s (t) — 5(1)(250)} for every t € [to, t1].

Step 3. Here we introduce a family of 1-parameter C? diffeomorphisms W(t), t € [to, 1],
which transform the time-dependent domain Q) \I‘Ez) into Q) \I‘g). All in all, we map

the domain {(t,z) : t € [t1,t2], z € Q® \ng)} into the cylinder [to, ;] x (Q(2) \Fgg)) This
construction can be found in [43] and [20, Example 2.14], thus we limit ourselves to recall

the main properties: the diffeomorphism U: [tg, ;] 5(2) — ﬁ(g) satisfies
U(to) = id, W(t)|pqe =id, V(TP =T for t € [to, t1].
The corresponding matrix field is
AB() = [VU()APTO )T — U (t) @ U(t)] o U™L(t) for t € [to, t1].

Notice that A®) does not depend on time, while A®) does. For t € [to,t;] and z in a
neighborhood of the origin we have

Ut z) =2 — (sVt) = sW(to))er, Tt z) =z + (sV(t) —sW(t0))ey, (2.1.12)

so that VU(t) = Id, ¥(t) = —$1)(t)ey, and for z = (o,0), with o small enough in modulus

—15MW(4)]2
A<3><t7x):<1 500 g)_

Step 4. In this last step we apply a change of variables P near the origin (namely the tip
of I‘gg)), in order to make the matrix field A®, constructed as in the previous steps, satisfy

AW (t,0) = Id for every t € [to,t1]. To this aim, we recall the construction introduced in [43,
Section 4].

We define a: [to, t1] — [0,00) and d: [t,t1] X a® 5 [0,c1] as
a(t) =/1 =[5 ()2,
d(t, z) = a(t)ky(|]) + (1 = ky(|z]))er,
where £, is the following cut-off function:

1 if0<7<n/2

ki (7) = (2% . 2)2 ( T 1) if /2 <7<, (2.1.13)
0 it >n.
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Here 7 is a positive parameter, whose precise value will be specified later, small enough such
that the ball B,(0) C Q). Eventually, we set

X
P(t,x) = (M,m) t € [to, t1], z € Q.

For every t € [to,t1] the map P(t) defines a diffecomorphism of Q(?) into its dilation in the
horizontal direction
QW = RS zo ) 1z e QP
Cl Y 9y
(2)

which maps 0 in 0 and I';;” into a fixed set Fgg), horizontal near the origin. This chain of
transformations maps the Dirichlet part dpQ into dpQ®W = {(A1(z)/co, Ao(x)) : = € IpN}
and the Neumann one dyQ into dyQ®W = {(A1(z)/co, Ao(2)) : 2 € INQ}.

The matrix field A® associated to P reads

AN @) = VP AP )VPH)T — P(t) @ P(t) — 2VP(t)W(t, UL (t)) @ P(t)] o P1(2)
for t € [to,t1]. The properties of A® are gathered in the following lemma.

Lemma 2.1.1. There exists a constant Ay > 0 such that for every t € [to,t1] and z € Q¥
(AD(t,2)E) - € > M|¢]>  for every € € R?. (2.1.14)
Moreover, for everyt € [ty,t1], there holds
AD(t,0) = Id. (2.1.15)

Finally, there exists a vector field W: Q™ U Fgé) — R? such that for every t € [to,t1] and
reayQWurd

AW, 2)Tv(x) = W (), (2.1.16)
and W(z) = v(z) = eg := (0,1) in a neighborhood of the tip of Fﬁjf).

Proof. Let t € [to,t1] and z € QW be fixed. By setting y == P~(¢,z) € Q%) we distinguish
the three cases: |y| < n/2, n/2 < |y| <n, and |y| > 7, where 7 is the constant introduced
in (2.1.13). Without loss of generality, up to take n smaller, by recalling (2.1.12) we may
assume that if y € B, (0)

VU Nt y)) =1d, U0 (¢t y) = —sD(t)ey,

so that
AB (¢, P (t2)) = AD (1) = A2 (y) — sV () Per @ 1.

Moreover, we take 7 < r, where r is the radius associated to e = ¢2/2 as in (2.1.11), so that
the ellipticity constant of A®) in B, (0) is 1 — ¢2/2.
If |y| < n/2 we have

1 ) —y a(t)
vp<t7y) = ( oz(()t) 1 > ) P(tv y) = a®(t) )

1 1 51 (1|2 250 (1)) & (1)
AW (¢, z) = < a(t) (1) )A(2)(y)< a(()t) (1) ) - ( sz TU 33(0 +y%a4(t) 8 )
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Since P~1(¢,0) = 0 and A®)(0) = Id, we immediately get (2.1.15). For £ arbitrary vector
of R?, we have

—c1/2— |5 sV (t)a a2
(A(4)(t,a:)€)'52<1 1/2 ZIOOR 4, 080 e 48)& (1- /8.

In view of the bounds (2.1.6), (2.1.9), and (2.1.8), we get

in particular

(AW (t,z)¢) - € > <—2n4— 262)51 &,

2 i

The coefficient of £; is bounded from below, provided that 7 is small enough. This gives the
statement (2.1.14) for y € B, 5(0).
Let now 1/2 < |y| < n. In this case we have

VP(t,y) = b < d(t,y) — y101d(t, y) y182d(t), Y) ) |

d*(t,y) 0 d*(t,y
. 1 i
P =g ()

Again, by exploiting the ellipticity of A®) with constant (1 — ¢7/2) > % and setting

pi= d(t,y) —y1od(t,y), q=—yidd(t,y), d:=d(t,vy),

we get )
(AW (1,2)6) - € 2 SIVP(ty)TEP - e

= o [0+~ 2m)E} + 206 + ) (2.1.17)

>3 |- (2-1) @ -] @+ 5008,

where in the last inequality we have used d < 1 and Young’s inequality with 0 < € < 1, whose
precise value will be fixed later. Let us prove that, if n and ¢ are well chosen, the coercivity
of AW is guaranteed. The identities

s ()50 () ky (|y1)

Vd(t,y) = (a(t) - ) ka(lyl),  d(t,y) = -

together with the bounds
3 .
0<ky(lyl) <1, e <d(t,y) <a(t) <1, —= <k(ly]) <0
n
give

1 i ~
2L p=dy) + el - elk(s)] 2 d(ty) 2

yIy3 42¢5(1 — ¢2) (1 —c2)
7 = (@(t) = 1) ha(ly)® <O =), Jml < ===y 4+ ==
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By inserting these estimates into (2.1.17), we infer

2 2 2 2
(4) > ca 91 _ 2_4202(1*01) _02(1*01) ol 2, 1—€.9
(A0 € > |F -3 (3-1) a-ay - 220, Sl Alp g ot
By taking
9(1—61)2
= € (0,1
C%/2+9(1—01)2 ( )
we have

Thus, by choosing 7 small enough, we obtain the desired coercivity of A®),
Finally, if |y| > n we have

1 9 .
ven = (1) P =o

and condition (2.1.14) is readily satisfied in view of the ellipticity of AB).

The assertion (2.1.16) is clearly verified for A®): the matrix field does not depend on
time and equals to the identity on the crack, in a neighborhood of the origin. The last
diffeomorphisms ¥ and P both act in a neighborhood of the origin modifying the set only
in the horizontal component; in particular they do not modify the normal to the crack in a
neighborhood of the origin. As for the external boundary, ¥ is the identity and P acts as a
constant dilation, so that

1 1
W(z) = < Cd (1) )A(Q)(Cm?l,m) < 001 (1] )V(a:) on OyOW.

This concludes the proof of the lemma. O

Remark 2.1.2. The idea of the proof of Lemma 2.1.1 is taken from [43, Lemma 4.1]. Let
us underline the main differences: in [43] the authors deal with the identity matrix as start-
ing matrix field (here instead we have A(3)) and consider only the dynamics for which the
acceleration of the crack-tip is bounded by a precise constant depending on ¢; (in place of
our bound ¢y, not fixed a priori). We also point out that in [43] the study of the ellipticity
of the transformed matrix field, in the annulus 1/2 < |y| < n, is carried out forgetting the
coefficients out of the diagonal.

Remark 2.1.3. In our construction, a control on the maximal amplitude p of the time
interval [tg,t1] is needed only in Step 2: roughly speaking, in order to straighten the set

Fgll) \I‘g) and to remain inside 2, we need to have enough room. A sufficient condition is
that the length of the set, which is at most pmax;c(y 1 5 (t), has to be less than or equal
to the distance of the crack-tip v (s(M)(t)) from the boundary 99, which is, thanks to the
assumption I‘(Tl ) \F(()l) CC €2, bounded from below by a positive constant. Notice that if we

considered also a further diffeomorphism which is the identity in a neighborhood of I’(Tl ) \F(()l)
and stretches Q near the boundary, then our results could be stated for every time t € [0, 7.
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2.2 Representation result

In this section we derive the decomposition (9) locally in time, namely in a time interval
[to, t1] small enough (see Section 2.1 and Remark 2.1.3). Finally, in Theorem 2.2.10 we give
a global representation of u, valid in the whole time interval [0, 7.

Here we recall some classical facts of semigroup theory. Standard references on the subject
are the books [45] and [33]. Let X be a Banach space and A(t): D(A(t)) € X — X a
differential operator. Consider the evolution problem

V(t)+ AV (t) = G(t), (2.2.1)

with initial condition V(0) = Vj and G forcing term (the boundary conditions are encoded
in the function space X).

Definition 2.2.1. A triplet {A; X,Y} consisting of a family A = {A(t), t € [0,7]} and
a pair of real separable Banach spaces X and Y is called a constant domain system if the
following conditions hold:

(1) the space Y is embedded continuously and densely in X;
(73) for every t the operator A(t) is linear and has constant domain D(A(t)) = Y;

(7i7) the family A is a stable family of (negative) generators of strongly continuous semi-
groups on X;

(iv) the operator A is essentially bounded from [0, 7] to the space of linear functionals from
Y to X.

Theorem 2.2.2. Let {A; X, Y} form a constant domain system. Let us assume that V° € Y
and G € Lip([0,T); X). Then there exists a unique solution V € C°([0,T);Y) N C*([0,T]; X)
to (2.2.1) with V(0) = V0.

2.2.1 Local representation result
We fix tg,t; € [0,7] such that 0 < t; — ¢ty < p. The chain of transformations introduced in
Section 2.1 defines the family of time-dependent diffeomorphisms

®(t) = P(t)oU(t)oAoy, &) :0Q— Y, (2.2.2)

which map T into I'® | T, into I‘gg) for every t € [tg, t1], O into INQ®), the Dirchlet part dpQ
into dpQ?¥, and the Neumann one 9y into dyQ®. For the sake of clarity, we denote by
the variables in Q and by y the new variables in Q4.

Looking for a solution u to (2.1.2) in [to, 1] is equivalent to look for v := uo ®~1 solution
to the equation

B(t) — div(AD (£)Vo(t)) +p(t) - Vo(t) — 2b(t) - Vi(t) = g(t) in QO\TD ¢ € [to,11], (2.2.3)

supplemented by the boundary conditions

v=0 on 8DQ(4), t e [to,tl], (2.2.4)
o =0 on anQWDUTY 1€ [t, 1], (2.2.5)

and by suitable initial conditions v* and v! (see [20]). Here W is the vector field introduced
in (2.1.16) of Lemma 2.1.1, and for ¢t € [to, 1] and y € oW

p(t,y) = —[AW (¢, y)V(det VO~ L(t, 1)) + 0:(b(t, y) det VO~ (t,y))] det VO (t, D1 (t,y)),
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b(t.y) = —@(t, 27 (t,y)),

g(t,y) = f(t, 27 (t,y)).
The equation (2.2.3) has to be intended in the weak sense, namely valid for a.e. t € (0,7) in
duality with an arbitrary test function in the space

H(QIN\TWY) = {v e H'(OQWA\TY) : v =0 on 9p0¥}.

0

We implicitly require v(t) and () to be in Hp (W \ T (ty)), and i(t) to be in the dual
Hp (QWN\TW(ty)) for ae. t € (0,T).

The characterization of u will follow from that of v, slightly easier to be derived. The
advantages in dealing with problem (2.2.3) are essentially 3: first of all, the domain is cylin-
drical and constant in time; then, the fracture set is straight near the tip; finally, even if the
coefficients depend on space and time, the principal part of the spatial differential operator
is constant at the crack-tip. Before stating the result, we define

Ho={ve H*(QW\T) : (2.2.5) hold true} ® {k(S : k € R},
where ( is a cut-off function supported in neighborhood of the origin and

S(y) = Im(*/yl”y”:mﬁfm y€R?\{(0,0):0 <0}, (226

with I'm denoting the imaginary part of a complex number.

Figure 2.2: In polar coordinates, the function S reads S(p,0) = p% sin(g), where p is the dis-
tance from the origin and 6 € (—m,m) is the angle which has a discontinuity on the horizontal
half line {(0,0) : ¢ < 0}.

Proposition 2.2.3. Take v" € H, v' € Hp(QW \FESL)), and g € Lip([to, t1]; L>(QW)). Then
there exists a unique solution v to (2.2.3)—(2.2.5) with v(ty) = v°, ¥(tg) = v! in the class
v € Clto, 11} H) N C (o, 1] HH(QD \T3) 0 O (o, 1a]: L Q).

Proof. Once we show that the triplet {A; X; Y} defined by

. 0 1
A(t) = < —div( AW )V () + p(t) - V() —2b(t) - V() > ;
X = HH@W\ 1)) x 22(QW),
Y= Hox Hy(QD\T()),

0

is a constant domain system in [tg,¢;] (cf. Definition 2.2.1), we are done. Indeed, we are in
a position to apply Theorem 2.2.2 with
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and the searched v is the second component of the solution V to (2.2.1).

The detailed proof of properties (i)—(iv) in Definition 2.2.1 can be found in [43, Theo-
rem 4.7], with the appropriate modifications (see Remark 2.1.2). Here we limit ourselves
to list the main ingredients. First of all, the domain of div(A®(¢)V(-)) is constant in
time: in view (2.1.15), its principal part, evaluated at the crack-tip, is the Laplace op-
erator for every t, thus the domain of div(A®(¢)V(-)) can be decomposed as the sum
{v e H*(QW \ng‘)) : (2.2.5) holds true} & {k(S : k € R} = H (cf. [32, Theorem 5.2.7]).
Moreover, in view of (2.1.16), the boundary conditions (2.2.5) do not depend on time. Other
key points are the equicoercivity in time of the bilinear form

(0,01) = (AD (&) Vo) - Vo1 o, 61 € HH(QD\T)),
which is guaranteed by (2.1.14) and the property
1 .
o 0050 bt dy =5 [ ) divhity)
Q(4)\F£0> 2 Q(4)\1-§0)

valid for every ¢ € H}, QW \Fgé)). Finally, the needed continuity of the differential operator
is ensured by the following regularity properties of the coefficients: for every i,j5 = 1,2 we
have

A(4)( t) € C’O(Q( )) for every t € [to, t1],
AL pi, bi € Lip([to, ta]; L)),
IVAL (D) ooy < C, ([ divD(t) gy < C for every t € [to, ],
for a suitable constant C' > 0 independent of ¢. O
We are now in a position to state the following representation result for u.

Theorem 2.2.4. Let f € C°([to, t1]; H () NLip([te, t1]; L*(Q)). Consider u® and u' of the
form

u’ — k0CS(®(tg)) € H*(Q\ Ty,), (2.2.7)
ul — vl (vqu(to, <I>(t0))<i>(to)> e HY(Q\Ty,), (2.2.8)

with u® satisfying the boundary conditions (2.1.3) and (2.1.4), u* = 0 on OpQ, ¢ cut-off
function supported in neighborhood of v(s(tg)), and k° € R. Then there exists a unique
solution to (2.1.2)~(2.1.4) with initial conditions u(ty) = u®, u(tg) = u' of the form

u(t,z) = ult(t,z) + k(t)C(t,2)S(®(t,z)) t € [to, t1], z € Q\ Ty, (2.2.9)

where ((t), t € [to,t1], is a C? (in time) family of cut-off functions supported in neighborhood
of ¥(s(t)), and k is a C? function in [to, t1] such that k(to) = k°. Moreover, uf'(t) € H*(Q\I';)
for every t € [to,t1], and

u e C¥([to, t1]; LA(),  Vul € C([to, t1]; L2(:R?)),  V2ult € CO([to, t1]; L2 (9; R?¥?)).
Remark 2.2.5. Notice that the equality u(t, x) = v(t, (¢, x)) implies
u® = 0%(®(tg)), u' =0 (D(to)) + Voo (B(tg)) - B(to),

where the last term reads ®(tg) = [P(to, ¥(to)) + VP (to, ¥(to))¥(tg)] o A o x. A priori,
the function Vo? is just in L? in a neighborhood of the origin and its gradient behaves
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like |y|~3/2; nevertheless, since P(t,y) ~ (y1,0), we recover the L? integrability of the gra-
dient of VoO(®(tg)) - [P(to, ¥(ty)) o A o x]. The same reasoning does not apply for the term
Vol (®(to)) - [(VP(to, ¥(to))¥(tn)) o A o x], since the singularity of Vo° in a neighborhood of
the orgin is not compensated by VP - ¥. Therefore we are not free to take u' € Hp(Q\ Ty,)
(as, on the contrary, is done in [43]).

Remark 2.2.6. Notice that the solution u to problem (2.1.2)—(2.1.5) displays a singularity
only at the crack-tip. Clearly, the fracture is responsible for this lack of regularity. On
the other hand, the Dirichlet-Neumann boundary conditions do not produce any further
singularity, due to the compatible initial data chosen.

2.2.2 Global representation result

We conclude the section by showing an alternative representation formula which can be
expressed for every time. This is done providing another expression for the singular function,
as in [38], whose computation does not require to straighten the crack. To simplify the
notation we reduce ourselves to the case A = Id, so that the diffeomorphism x coincides with
the identity.

The chosen singular part of the solution to (2.1.2)—(2.1.5) is a suitable reparametrization of
the function S introduced in (2.2.6). More precisely, fixed to,t1 € [0,T], with 0 < t; —tg < p,
for every ¢ € [tg,t1] and x in a neighborhood of r(t) := v(s(t)), the singular part reads

Aq(z) — (s(t) — s(to))
S( ! T 0 ,AQ(CL‘)) . (2.2.10)

To compute (2.2.10) it is necessary to know the expression of A, which is explicit only for
small time and locally in space. We hence provide a more explicit formula for the singular
part, which has also the advantage of being defined for every time: for every t € [0, 7] we set

S(t,z) = Im <\/(”” =) A®) ;e - u(s(t))) , (2.2.11)

1—13()P

where (o) L 4(c) and S(t) is given by the unique continuous determination of the complex
square function such that in x = r(t) ++/1 — |$(¢)|*%(s(t)) takes value 1 and its discontinuity
set lies on I';. Roughly speaking, if we forget the term /1 — |$(¢)|?, the function (2.2.11) is
the determination of Im(y/y1 + 7y2) in the orthonormal system with center v(s(t)) and axes

3(s(t)) and v(s(t)).

p? sin(§)

Pt [

Figure 2.3: A possible choice of determination of Im(\/y1 + iy2), centered in r(t) = vy(s(t))
with azes Y(s(t)) and v(s(t)), and with T'y as discontinuity set.

For every t € [0,T] we consider the matrix R(t) € SO(2) that rotates the orthonormal
system with axes ¥(s(t)) and v(s(t)) in the one with axes e; and e3. Thanks to our construc-
tion of A, and in particular to (2.1.10), the matrix R(¢) coincides with VA(r(t)) in [to, t1].
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By setting for ¢ € [0, T

1
L(t) = ( \/1—(\)s<t>|2 ? ) . ®(t,z) = LR (x —r(t)) forz €,

Qt = i)(t, Q), ft = (i)(t,rt),

we may also write S(t,z) = S(t, ®(¢,z)) for t € [0,T] and 2 € Q\ I';, where S(t) is given by

the continuous determination of I'm(yv/y; + iy2) in Q \ Ty such that in y = (1,0) takes the
value 1.

Lemma 2.2.7. Let ((t), t € [to,t1], be a C? (in time) family of cut-off functions with support
in a neighborhood of r(t). Let us define the function

w(t,z) = C(t,z)S(®(t,x)) — S(t,z) forte [to,t1], z € Q\T}. (2.2.12)
Then w(t) € H2(Q\ Ty) for every t € [to, t1].

Proof. Let us fix t € [tg,t1]. The function w(t) is of class C? in Q \ T'; and belongs to the
space HY(Q\ Ty) N H2((Q\ Ty) \ B:(r(t))) for every ¢ > 0. Hence it remains to prove the L?
integrability of its second spatial derivatives in B.(r(t)). Let us choose € > 0 so small that
¢(t) =1 on B(r(t)). In Be(r(t)) \ 'y we have

d
O5w(t) = Y [0S (B(t)05@n(t) — OnS(t, B(t))05Dn(t)]
h=1
d
+ D [OaS(R(1) 0Pk (£)0:Pa(t) — 0y, S (¢, B (1)) 0Pk (£) 0 P (8)]
hok=1

=1 (t) + IQ(t)

for every i,5 =1, 2.

Notice that V.S(®(t)), V.S(t, ®(t))
formly bounded in Q. Therefore I(t)
independent of ¢, such that

€ L%(B.(r(t)); R?), while V2®(t) and V2®(t) are uni-
€ L%(B(r(t))) and there exists a positive constant C,

II1(t,z)| < Clz —r(t)| "2 for every = € B.(r(t)) \ Iy,

provided that € > 0 is small enough.
As for I5(t), we estimate it from above as

d
L) < Y 078 (@(1)) — O S(t, B(0)110;21(1)]10: %1 (1)

b=l (2.2.13)

d
+ ) 07 S(@(1))]]0;01 ()0 (1) — 8; ()P (t)]-
h,k=1

Let us study the right-hand side of (2.2.13). By choosing ¢ small enough and using the
definitions of ®(t) and ®(t), for every z € B.(r(t)) we deduce

|0; P (t, x)0;Pp(t, x) — 3j&>k(t, x)ai(i)h(t, x)|

2 (2.2.14)
< %HVAHLOO(Q(U)||V2A||Loo(Q(1))|l' —r(t)],
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since |[VO(t)|| o) < = IVAll e @y VRl () < 2 IIVA[ oo )y, and

=5 o
- 1 1
Ve(tz) = Vot z)| < ~[VA@) = R < VAl e @)l = r(#)]-

Moreover, the function S satisfies |V2S(y)| < M]y\_% for y € R?2\ {(c,0) : ¢ < 0}, with M
positive constant, while A is invertible and |P(t,x)| > |z|. This allows us to conclude

3
102,5(D(t, 2))| < M| VA2 |z —r(t)|"2 forevery z € Bo(r(t)) \Ty.  (2.2.15)

< (0@)

For the second term in the right-hand side of (2.2.13), we fix € B.(r(?)) and we consider
the segment [®(t,z), P(¢,x)] = {AP(¢t,z) + (1 — \)P(t,z) : A € [0,1]} and the function

d(t,z) == dist([® (¢, x), (¢, z)],0). We claim that we can choose € > 0 so small that
1
d(t,x) > §|x —r(t)] for every x € B.(r(t)). (2.2.16)

Indeed let y € [®(t,z), ®(t, x)] be such that |y| = d(t, x), then
@t 2)| < |yl + |B(t,2) —y| < |y| + D (t, 2) — B(t,2)].

Since |P(t,z)| > |z| and R(t) is a rotation, for e small we deduce |®(t,z)| > |z — r(t)|. On
the other hand, by Lagrange’s theorem there exists z = z(t,z) € B:(r(t)) such that

O(t,z) = O(t,r(t)) + VO, 7(t)(z — r(t)) + V2®(t, 2)(x — r(t) - (x — (1))
= O(t,z) + V20(t, 2)(x — r(t)) - (x — r(t)).

Hence we derive the estimate
|B(t, ) — (L, 2)| < 611HV2A|L0<>(Q<1))’£L“ —r(t)|* for every z € B.(r(t)), (2.2.17)
which implies
d(t,2) > |o = 1(6)] = - [V*All (ol = 70 for every = € Be(r().

In particular we obtain (2.2.16) by choosing ¢ < cl/(2||V2A||Loo(Q(1))). Notice that ¢ does
not depend on t € [tg, t1].

Let us now fix x € B.(r(t)) \ T';. Thanks to our construction of ® and ®, it is possible
to find two other determinations S*(t) of Im(y/y1 + iy2) in R? such that their discontinuity
sets ['F(t) do not intersect the segment [®(t, x), ®(t, z)], which is far way from 0. Moreover,
we choose them in such a way that S*(¢) is positive along {(c,0) : o < 0}, while S™(¢) is
negative, and S(®(t,z)) = S*(t,®(t,z)) if and only if S(t, ®(t,z)) = S*(t, ®(t, x)); notice
that |[V3SE(t,y)| < M]y|7% for a positive constant M and for every y € R?\T'*(¢). By using
Lagrange’s theorem, (2.2.16), and (2.2.17), we deduce

lazks((b(tv x)) - 8%k§(t’ (i)(t7$))‘ = ’a%zksi(tv (I)(tv x)) - a%ksi(tv i’(t, $))|
< |V3SE(t, 2)||®(t, ) — B(t, )|

M _3
< VRl @uyld(t, )| H e =@ (2218)

4/2M
C1

=

<

HV2AHL°°(Q(1))‘$ — ()] 2,
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where z = z(t,z) € [®(t,x), P(¢,z)]. Hence, by combining (2.2.13) with (2.2.14), (2.2.15),
and (2.2.18), we obtain the existence of a positive constant C' such that

\L(t,2)| < Clz —r(t)| "2 for every z € Be(r(t)) \ Ty
In particular we get the following bound for V2w:
|V2w(t,z)| < Clz — r(t)|_% for every x € B.(r(t)) \ T'y, (2.2.19)
and consequently w(t) € H(Q \ T;) for every t € [to, t1]. O
In the following two lemmas, we investigate the regularity in time for w.

Lemma 2.2.8. Under the same assumptions of Lemma 2.2.7, the function w introduced
in (2.2.12) is an element of C°([to,t1]; L%(Q)). Moreover, Vw € C%([to, t1]; L?>(Q;R?)) and
Viw € CO([to,tl];L2(Q;R2X2)).

Proof. The function ((S o ®) is continuous from [0, 7] to L%(), since S belongs to the space
C%R?\ {(0,0) : 0 < 0}) N L2 (R?) and @ is continuous in [to, 1] x Q. We also claim that
S=S80d e C%to, t1] x (Q\T)) N L®((to, t1) x Q). Indeed, let (t*,z*) € [to, t1] x (Q\T)
and let {(¢j,2;)}; C [to,t1] x (2\T') be a sequence of points converging to (t*,z*) as j — oo.
Thanks to the convergence ®(t;,x;) — ®(t*,2*) € Qp \ T« as j — oo, there exists j € N
such that
g(tj, @(tj,xj)) = S(t, é(tj,xj)) for every j > j.

This allows us to conclude that S(t;,z;) — S(t*,z*) as j — oo, since the function S(t*) is
continuous in = \ I'y+. Furthermore, there exists M > 0 such that |S(¢, z)| < M|®(t, x)]% for
z € Q\T and ¢ € [to, 1], which yields that S is uniformly bounded in 2\ T'. We hence derive
the claim, which implies S$ € C([to, t1]; L?(Q)), by the dominated convergence theorem.

Arguing as before, we can easily derive that V({(So®)) belongs to C%([to, t1]; L2(2; R?)),
while VS = V&T(VS 0 &) € COto,t1] x (2 \ I'); R2). Therefore, thanks to the estimate
IVS(t, ®(t,z))| < M|D(t, x)\_% for x € Q\ T and ¢ € [ty,t1], and the dominated converge
theorem, we conclude that VS € CO([to, t1]; L2(; R?)).

Finally, notice that the function V2w is continuous in [tg, 1] x (2 \ T'). Let us now fix
t* € [to,t1] and let {t;}; be a sequence of points in [to,?;] such that ¢t; — t* as j — oo.
Thanks to the estimate (2.2.19), we can find j € N and £ > 0 such that

IV2w(t;,z)| < Clo — r(tj)|_% for every z € B.(r(t;)) \T and j > j,

with C independent of j. Here we have used the fact that the constant in (2.2.19) can be
chosen uniform in time. Furthermore, the functions VZw(t;) are uniformly bounded with
respect to j outside the ball B.(r(t;)). We can hence apply the generalized dominated
convergence theorem to deduce that V2w(t;) converges strongly to V2w (t*) in L2(€; R?*?),
which implies Vw? € CO([to, t1]; L*(€2; R?*?)). O

Lemma 2.2.9. Under the same assumptions of Lemma 2.2.7, the function w introduced

in (2.2.12) is an element of C*([0,T]; L*()); moreover Vw € C([0, T); L*(Q; R?)).

Proof. For every x € Q\ I' the function ¢ — w(t, z) is differentiable in [t, 1] and

w(t,z) = C(t, ) S(P(t, ) + C(t, 2)VS(D(t, z)) - D(t,z) — VS(L, (L, x)) - D(L, z).

Indeed, fixed (t*,2*) € [to,t1] x (2 \ T'), we can find h > 0 such that for every |h| < h

S(t* 4+ h, ®(t* + h,x*)) — S(t*, d(t*,z*))  S(t*, ®(t* + h,z*)) — S(t*, D(t*, z*))

h h ’
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thanks to the fact that ®(t* 4 h,z*) — ®(t*,2*) € Q= \ Ty for every z* € Q\I'as h — 0.
In particular %[S(t* + h, ®(t* + h,z*)) — S(t*, ®(t*, 2%))] — VS(t*, D(t*, z%)) - B(t*, 2*), since
S(t*) € C?(Qy~ \ T's+). Hence, for every (t,x) € [to,t1] x (2\T) and h € R such that
t+ h € [to, t1] we may write

_ t+h
wt+hz) —wtz) _ 1/ w(r,z)dr.
t

h h

By arguing as in the proof of the previous lemma we deduce that w € C°([to,t1]; L?(£2)).
Therefore we obtain that as h — 0

1 t+h
h/ w(T)dr — w(t) in L*(Q) for every t € [tg, t1],
t

and consequently +[w(t + h) — w(t)] — w(t) in L*(Q).
Similarly, for every x € Q\ T the map t — w(t, z) is differentiable in [tg,¢;] and

W(t,z) = C(t, x)S(B(t, ) 4+ 2 (t, 2)VS(B(t, z)) - D(t, )
C(t2)VS(®(t, z)) - d(t, ) — VE(t, (t,z)) - B(t, z)

£, 2)V2S(D(t, ) - [B(t,x) ® B(t, ) — (¢, 2) @ B(t, )]
+ [C(t, 2)V2S(D(t, ) — V2S(t, ®(t, )] D(t, ) ® D(t, x).

+C(,
+¢(

We may find € > 0 so small that ]fi’(t,x)—é(t,x)] < Clz—r(t)|in B:(r(t)) for every t € [to, 1]
and for a positive constant C. Therefore, we can proceed as in the proof of Lemma 2.2.7 to
obtain that @ (t) € L*(Q2) for every t € [tg, 1], with

lw(t,z)| < Clx — r(t)|_% for every x € B.(r(t)) \ I't.

In particular, by arguing as in Lemma 2.2.8, this uniform estimate implies that @ belongs to
CY([to, t1]; L*(2)). We can hence repeat the same procedure adopted before for 1 to conclude
that as h — 0

Wit + h) — i(t)
h

which gives that w € C?([to, t1]; L*(2)).
Finally, also the function t — Vw(t, x) is differentiable in [to, t1] for every x € Q\ I, with
derivative

Vit w) = V((t,2)S(®(t,2)) + V((t,2)VS((t,2)) - (¢, ) + ((t, 2)VO(t, 2)" VS(®(t, 7))
(t,2)V(t, x)TVS( (t.z)) - V(t, ) S(t, 9(t,x))
+ [t 2)VO(t )" = V(t,2) VS (@ (L, 2)) b (t, 2)
+ C(t,m)Vti)(t,x)TV2S(<I>(t,x))[<I>(t x) (t x)]
+ VO (t,2)T[((t,2)VES(B(t, x)) — VS(1, B(t, 2))]d(t, ).
€ [to, t1]

[Vuw(t,z)] < Cle —r(t)|"2 for every z € B:(r(t)) \ T,

—w(t) in L*(Q) for every t € [tg, 1],

+ ¢t x

Moreover there exists € > 0 so small that for every ¢

which implies the continuity of the map t +— Vi (t) from [to,t1] to L?(€2;R?). Therefore, as
h — 0 we get

Vw(t+ h) — Vuw(t)
h
and in particular Vw € C([to, t1]; L2(; R?)). O

— Va(t) in L2(;R?)  for every t € [to, t1],
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Thanks to previous lemmas we derive the following decomposition result.

Theorem 2.2.10. Let f € CO([0,T]; HY(Q)) NLip([0, T); L*(Q)). Consider u® and u' of the

form
u® — £°S(0) € H*(Q\ Ty),
ul — K08(0) € HY(Q\ Ty),
with u® satisfying (2.1.3) and (2.1.4), u' = 0 on OpQ, and k° € R. Then there exists a
unique solution u to (2.1.2)~(2.1.4) with initial condition u(0) = u® and @(0) = u' of the
form R
u(t,z) = al'(t,x) + k(t)S(t,x) t€[0,T], 2 € Q\ T}, (2.2.20)
where k € C2([0,T]) and 0 (t) € H*(Q\T}) for every t € [0,T]. Moreover
a e C*([0,T]; L*(), VaTe CY([0,T]; L* (% R?)), V%' e CO([0, T); L*(2;R**?)).
(2.2.21)
In particular the function k does not depend on the choice of ®, but only on I' and s.

Proof. Thanks to our assumptions on f, u and u! we can apply Theorem 2.2.4 with to = 0.
Indeed, in view of the computations done before, we have

S(0) = ¢(0)S(2(0)) € H*(Q\ ),
which gives (2.2.7). In particular
Vul — K°C(0)Ve(0)TVS(2(0)) € HY(Q\ Ip),

from which we derive

A

K95(0) — vl - (vqu(o, c1>(0))<i>(0)) e HY(Q\ Ty),

since S(0) —¢(0)V®(0)'VS(®(0)) € H(Q\Tp), by arguing again as in the previous lemmas.
Therefore, also condition (2.2.8) is satisfied. This implies the representation formula (2.2.9)
in [0, 1], with ¢; < p. By combining (2.2.9) with Lemma 2.2.7, we deduce (2.2.20) in [0, ¢1].
Indeed, we can write

u(t) = al(t) + k@)S(t) in Q\ Ty, te[0,t],

where aft(t) = uf(t) + E()[C(£)S(D(t)) — S(t)] € HX(Q\T).

We can repeat this construction starting from ¢; and we find a finite number of times
{ti}? ), with 0 =: ¢t < t1 < -++ < tp—1 < tp := T such that the solution u to (2.1.2)—(2.1.4)
with initial conditions u(0) = u® and %(0) = u! can be written for i = 1,...,n as

u(t) = alf(t) + ki(#)S(t) in Q\ Ty, t € [t;i1, ).
Define k: [0,T] — R and @f*: [0, T] — H?(Q\T) as k(t) == k;(t) and @ == 4l in [t;_1,;] for

i
every i = 1,...,n, respectively. The functions k and @ are well defined and do not depend

on the particular choice of {¢;}!' . Indeed, if we have
u(t) = at'(t) + k1(t)S(t) = a5 (¢) + ka2(£)S(t) in Q\ Ty

for a time ¢ € [0, 7], then we derive

ay(t) = ag'(t) = [ka(t) — k1 (£)]S(8) n Q\ .
Since the left-hand side belongs to H2(Q\T';) while S(¢) is an element of H(Q\T,)\H2(Q\I;),
such identity can be true if and only if k1(t) = k2(t) and af(t) = ad(t). Hence, we deduce
that k € C%([0,7]) and that u satisfies the decomposition result (2.2.20) in [0, T].
Finally, by combining the regularity in time of w, proved in Lemmas 2.2.8 and 2.2.9, with
the definition of 4, we conclude that 4% satisfies (2.2.21). O
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Remark 2.2.11. When A # Id all the previous results are still true if we define

Seo) o 1 [ AT @@ 560) G =r(®) v(s(0)
caq(t)v/1 = leaz (O)P[3(t)]2 cau(t)
where cg5(t) = |A(r(t)) Y24 (s(t))], cay(t) = |A(r(t))?v(s(t))|, with A2 and A=1/2 the
square root matrices of A and A~!, respectively, and where the function S(t) is given by
the unique continuous determination of the complex square function such that in the point
z=7(t)+/1/|cas(t)]> — [5(t)[>7(s(t)) takes the value 1 and its discontinuity set lies on I';.
Indeed, by exploiting the following identities in [tg, ¢1]

r(t) V24 (s r(t)Y2u(s
s0() = 1A (0)) 23 (s()I31),  Vx(r(t) = A(r(1) 2,

where 4 and (M) are, respectively, the tangent and the unit normal vectors to the curve
T in the point v (s (t)), the function (2.2.22) can be rewritten as

m ( \/ [Vx(r(t) (= — ()] 4D D) |, |
1P

) , (2.2.22)

Vx(r@®)) (x —r(t))] - V(”(s(”(t))> :

In this case, it is enough to set ®(¢,z) = L(t)R(t)Vx(r(t))(x —r(t)) for t € [0,T] and z € Q,
where L and R are constructed starting from 4" and s(!), and we can proceed again as in
Lemmas 2.2.7-2.2.9, thanks to the fact that for every t € [to, 1] and z € B.(r(t))

[9(t.) = B(t,2)| < Cla— (O, [VO(t.) = VO(t.2)| < Cla = (1),
Bt 2) — d(t,2)| < Cla—r(t)].

We hence obtain the decomposition result (2.2.20) with singular part (2.2.22). As a byprod-
uct, arguing as in Theorem 2.2.10, we derive that the values of £ do not depend on the
particular construction of ®, but only on A, I', and s.

We point out that the condition [$(t)|> < 1/|cax(t)|?, which is necessary in order to
define S, is implied by (2.1.6). Indeed

L= Vx(r()Ar(®)Vx(r(6)) (s(8)) - 4 (s(8) = Mol A(r(£)) /25 (s()1* = Aoleas (D).

2.3 Dynamic energy-dissipation balance

In this section we derive formula (10) for the energy
1 1
Et) = 2/ |a(t, x)|*dx + 2/ A(x)Vu(t,z) - Vu(t,x)dz t € [0,T]
Q Q

associated to u, solution to (2.1.2)—(2.1.4) with initial conditions u(0) = u° and 7(0) = u'.

The computation is divided into three steps: first, in Proposition 2.3.5 we consider straight
cracks when A is the identity matrix; then, in Theorem 2.3.7 we adapt the techniques to
curved fractures; finally, in Remark 2.3.9 we generalize the former results to A # Id. To this
aim, some preliminaries are in order: first, in Remark 2.3.1 we compute the partial derivatives
of w in a more convenient way, then in Lemmas 2.3.2 and 2.3.3 we provide two key results,
based on Geometric Measure Theory. Once this is done, we deduce formula (10) in the time
interval [to, 1] where the decomposition (2.2.9) holds.

For brevity of notation, in this section we consider [to, 1] = [0,1]. All the results can be
easily extended to the general case. The global result in [0, T] easily follows by iterating the
procedure a finite number of steps, and using both the additivity of the integrals and the fact
that k depends only on A, I', and s (see Theorem 2.2.10 and Remark 2.2.11).
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Remark 2.3.1. Let us focus our attention on a fracture which is straight in a neighborhood
of the tip. Without loss of generality, we may fix the origin so that for every ¢ € [0, 1]

[ \To={(0,0) eR?: 0 < o < s(t) —5(0)}.

The diffeomorphisms x and A introduced in Section 2.1 can be both taken equal to the
identity, so that, in a neighborhood of the origin, the diffecomorphisms ®(t) defined in (2.2.2)
simply read

_ (2= ) =s0) x or and z
O(t,x) = < 50 , 2) for t € [0,1] and = € Q.

Accordingly, the decomposition result in Theorem 2.2.4 states that the solution u to (2.1.2)—
(2.1.5) with suitable initial conditions can be decomposed as

u(t,z) = u?(t,z) + k(t)C(t,z)S(t,x) fort e [0,1] and z € Q\ T},

where, for brevity, we have set S(t,z) := S(®(t,z)). We recall that u®(t) € H?(Q\ T) for
every t € [0,1] and S(y) = WWforyERQ\{(JO) o < 0}.
Let us now compute the partial derivatives of u. For ¢ € [0,1] and x € Q \ I'; we get
Vau(t,z) = Vul(t, 2) + k(t)VC(t,2)S(t, ) + k(t)((t, 2)VS(t, z), (2.3.1)
a(t, x) = il (L, x) + k()L 2)S(t ) + k(O 2)S(t, 2) + k(S 2)S(Lx).  (23.2)

Since in R?\ {(0,0) : 0 < 0} we have

Sy = ———Y g5y = VT
2v2y[/ Tyl + n1 2v/2)y|

92, 8(y) = 2y192 + Y2y  ALS(y) = — 2y1y2 + y2|y| ’
AV2lyP/lyl + AV20yP/yl +

9%58(y) = 03,S(y) = il Z\y}(nz“?’_ 2y1)7

we claim
W) Vult) — E2)C)S(E)VS(E) € WH(Q\ Ty R?)  for every t € [0,1].

Indeed, Vuli(t), C(t)S(t), af(t), ¢(t)S(t), and k(t)((t)S(t) are functions in H'(Q\ T';) for
every t € [0, 1]; by the Sobolev embeddings theorem we deduce that they belong to LP(Q)

for every p > 1. By using also the explicit form of S(t) and S(t), one can check that these
functions are elements of W14/3(Q\ T;). Therefore, we can easily conclude that the product

of each term in (2.3.1) with each term in (2.3.2), except for k?(t)¢? (t)g’(t)vg(t), is a function
in WhH1(Q\ I'y; R?) for every ¢ € [0,1].

Lemma 2.3.2. Leta,b € R, witha < 0 and b > 0, and define H' = {(x1,22) € R? : 29 > 0}
to be the upper half plane in R%2. Let g: HT — R be bounded, continuous at the origin, and
call w a modulus of continuity for g at x = 0. Then

1 5 b To
- 9(x1,72) 5 dxy | dzy — 7g(0,0)
€Jo \Ja Ty + T3 (2.3.3)

< llgllzoo(ar+) (261/2|b —al + 0(5)) + Ww(€1/4)’
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! b
a
T — / [arctan <> — arctan <>] dxg
0 EXQ EXY

In particular, for every g: HT — R bounded and continuous at the origin, we have

where

0(e) ==

1 5 b X9
lim — </ 9(r1,72) 5 d:c1> dze = 7g(0,0).
0 a x] +

e—0t € 1 5

Proof. After a change of variable on the integral in (2.3.3), we can rewrite it as

f ([ stov o ean)
T1,£x2)—5———— dx 3.
0 ag 1 295%4—(5332)2 1 2
Notice that

b b
ET T b a
/ 2722 dr| = / 01 arctan <1> dz; = arctan <> — arctan (> ,
o x7+ (ex2) a £T9 ET9 £T9

therefore

/1 /b (z1,¢€ )72 d dze — 7g(0,0)
T1,ET T T

' ’ EX2
= = 9(0,0)] 5———5 dz1 |d 0,0)6
< /0 </a [9(x1,e22) — g(0, )]:U%Jr(sxg)? x1> 22| + ¢(0,0)0(¢)
' ET9
= —9(0,0)] 5——— <5 dz1 | d 1/4 0,0)0(z).
B /0 </(a,b>£”((]£fll/’4?ﬁ/24)) 9(0, )]x%+(ax2)2 1 | dzg| + mw(e/") +9(0,0)0(e)

By using the estimate

X9 gl/2

<el/?

sup <
vel(ab)\(—el/4 1/ x(0,1) (2 + (e72)2) ~ 1 4€3/2

valid for every € € (0,1), we can continue the above chain of inequalities and we get

/1 /b (x1,¢e )72 d dze — 7g(0,0)
T1,ET z x

1
<12 / ( / g1, 222) — 9(0,0)| d:cl) da + mo(e/1) + 9(0,0)0()
0 (a,b)\(—el/4,e1/4)

< 262\ gl oo 51y |b — al + 7w (M) + g(0,0)6(c),

which is (2.3.3). O

Lemma 2.3.3. Let Q C R? be open and let v: [0,£] — Q be a Lipschitz curve. Let us set
I = {y(0) : 0 € [0,€]}, and for every e > 0 let us define p-(x) = M A1 for x € Q.
Then for every u € WHYH(Q\T) and for every v:  — R bounded and satisfying

lim v(z) =v(Z) for everyz €T,
Tr—T

we have

lim u(z)v(z)|Vee(x)| de = / ut(x)v(x) dH! (),

e—=0% J{dist ™+ (x,I")<e} r

where

{dist" (., T) <} = <B€(’y(a)) N{zeQ:z- (3o)t > 0}) ,
c€l0,4]
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and u™t is the trace on T from {dist* (z,T') < e}. Equivalently,

lim w(@)o(@)| Ve (a)] de = / w (y)oly) dH (y),
=01 J{dist™ (z,I)<e} r

where

{dist™(,T) <} = (Be(fy(o')) N{zeQ:z- (3(0)* < 0}) ,
o€]0,4]

and u~ is the trace on T from {dist™ (z,T') < e}.
Proof. 1t is enough to apply the coarea formula to the Lipschitz maps .. O

Remark 2.3.4. In what follows we compute the energy balance in the case of homogeneous
Neumann conditions on the whole 0€2. However, the same proof applies with no changes to
the case of Dirichlet boundary conditions. For example, to treat the homogeneous Dirichlet
condition on dpQ C 99, it is enough to check that the time derivative of the solution ()
has still zero trace on 0€2, in such a way that it still remains an admissible test function. But
this is simply because the incremental quotient in time 3 [u(t + h) — u(t)] converges to 7u(t)
as h — 0, strongly in H' in a sufficiently small neighborhood of dpf2, so that 1 has still zero
trace on the Dirichlet part of the boundary.

Analogously, if we prescribe a regular enough non-homogeneous Dirichlet boundary condi-
tion, we can rewrite the wave equation changing the forcing term f appearing in its right-hand
side, and turn the non-homogeneous Dirichlet condition into a homogeneous one. Also in this
case, the computations follow unchanged.

Proposition 2.3.5. Let Q C R? be an open bounded set with Lipschitz boundary and let
{Ci}eepo,1) be a family of rectilinear cracks inside 2 of the form

I =0n{(0,0) eR?: 0 < s(t)},

where s € C%([0,1]) and $(t) > 0 for every t € [0,1]. Suppose that a function u: [0,1]xQ — R
can be decomposed as in (2.2.9) for t € [0,1] and satisfies the wave equation

i(t) — Au(t) = f(t) in Q\Ty, telo,1], (2.3.4)

with homogeneous Neumann boundary conditions on the boundary and on the cracks. Then
u satisfies the dynamic energy-dissipation balance (11) for every t € [0,1] if and only if the
stress intensity factor k is constantly equal to % in the set {t € [0,1] : 5(t) > 0}.

Proof. By hypothesis we can decompose the function u as u(t, z) = u®(t,z)+k(t)((t, z)S(t, x)
for t € [0,1] and = € Q\ Ty, where uf(t) € H2(Q\T}), ¢(t) is a cut-off function supported in
a neighborhood of the moving tip of I'y, and

S(t,z) =S (ml — (s(t) — 5(0)>,x2> :

1—13()?

Let us fix t* € [0,1] and for every € > 0 let us define p.(z) : A1l for z € Q.
Since @.1u(t) belongs to H(Q\T}) for every t € [0,t*], we can use it as test function in (2.3.4),
and we get

_ dist(ac,Ft* \Fo)
- €

/<il(t)’¢£u(t)>(H1(Q\Ft))/dt-i—/ (Vu(t), pe Vi(t)) p2 () dt
0 0 (2.3.5)

+ / (Vu(t), Vepei(t)) 12 dt = / (F(8), pein(t)) L2y .
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By using integration by parts with the fact that ¢ — (1(t), pc1(t))2(q) is absolutely contin-
uous, we obtain

v . Ld ,
/ <u(t)7906u(t)>(H1(Q\Ft))’dt:2/ &(U(t),%u(ﬂ)m(ﬂ)dt
0 0
1

= S (), i) () — 5 (0(0), 9i(0) 2,

and by passing to the limit as ¢ — 0" by the dominated convergence theorem, we have
t*

. ) . 1 1
lim (@(t), petu(t)) @y dt = 5 Jlu(t 229y — §||U(0)||2L2(Q)

e—0t Jo

Analogously, we take the limit as € — 0T in the right-hand side of (2.3.5) and in the second
term in the left-hand side, and we get

t*
. . 1 * 2 1 2
Jim ; (Vu(t), Vi(t)pe) 2() dt = 5 [Vult)z2(q) = 51IVulO)lL2 ()
t* t*
lim [ (£, Oz dt = [ (0.0 0
e—=0t Jo 0

The most delicate term is the third one in the left-hand side of (2.3.5). First of all, we write
the partial derivatives explicitly:

VIE(C (L, 2)S(t 2)] = k() V(L 2)S (8 x) + k(t)C(t, 2) VS (¢ ),
Kk()C (8, 2)S(t )] = B(E)C(t,2)S(t 7) + k(D (8, 2)S(E, @) + k(L 2)S(t, ).

z1—35(1)

Moreover, if we consider @4 (t,z) = = we have
— . 815(¢1(t,$),1‘2) ) r
VS(t,2) = ( S a8, 2>)
and
$(t.2) = —$(H)(1 — Is(t)|2() + s|( g )(| ))(3/2 (s(t) — 5(0)))818@1@793)7@)
= &y (t,2)/1— |5(t)]201S(t, =

Thanks to Remark 2.3.1, the only contribution to the limit as e — 07 is given by
t* .
K2 (8)(CP()VS(t), VoS (1)) 12 dt.

0

Therefore, we need to compute

e—0t

t* .
Jim / K2 (628 2)VS(, 2) - Voo (2)8(t, ) da | dt. (2.3.6)
0 {dist(z,I'+\I'0)<e}
To this aim, we set
L(t) = / (0t 2)VE(E, 2) - Ve (2)8(t, x) da,
{dist(z,I't\I'o)<e}

and we decompose I. as I + I, where I is the integral restricted to the upper half plane
{r € R? : 13 > 0} and I_ is the integral restricted to the lower half plane {x € R? : x5 < 0}.
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Let us focus on I (t). For brevity, we write r(t) = (s(t) — s(0),0) for every t € [0,1].
The gradient of ¢, reads

— in {z €R?:0< 21 <s(t*) —5(0), 0< g <e},
z in {z € R?: x € B.(0), 21 <0, x5 > 0},
Vipe(z) = § L (t*)
W in {z € R?: 2 € B.(r(t")), z1 > s(t*) — s(0), 29 > 0},

0 otherwise.

Thus we get

IF(t) = 1/ /1 — [5(6)|2¢%(t, )02 S (t, ) D1 (¢, 2)D1 S(t, ) da
[0,s(t*)— 8(0)]X

(0,¢]

+1/ (V1= [5O3, 2)VS (L, ) - 7d)1(t, 2)01S(t, x) dx (2.3.7)
B:(0)

ﬂ{x1<0 x2>0} ’ |

+i/ Jl_ig £ )VS(E ) ) (4 )0, 58 2) da
Be(r(t+))

m{x1>s t*)—s(0), £2>0} |95 —r(t*)|

We notice that the last two terms in (2.3.7) have integrands which are bounded on the
domains of integration, and so passing to the limit as € goes to 0 they do not give any

contribution. Thus we only have to analyze the first term of (2.3.7). By recalling that
S(t,x) = S(P t,x,x,@t,x:w,andthat t,x) = ((D1(¢t,2), @ ith

(t,z) (®1(t, @), z2), P1(t,2) P C(t,z) = ((P1(t, @), 22), With ¢
cut-off function supported in a neighborhood of the origin, and making the change of variable

/1 —15(t)]?2 = z1 — (s(t) — s(0)), we rewrite the first term of (2.3.7) as

K2(t)s(t) € [P
— (25()/ CQ(LL“l,xg)als(x1,$2)823($1,x2) dl‘l d.’L'Q

kQ(t)
ey/1—|5(t)]2
where the interval (a¢, b;) denotes the segment

(a0, 50) = < $(0) —s(t) () — (1) ) |
| VI-BOP V1-BOP

b, (2.3.8)
/ / x CQ xl,xg)(‘)lS(xl,xg)agS(afl,xg) dl‘l dxg,

Notice that

2(t be
>s// ¢ (21, 2)018 (w1, £2)02S (w1, x2) daq dao

€
ts be

T, dzy dzs,
. / ¢( 128|]2 1 dzo

and that the map (z1,x2) = ¢%(21,22) is bounded and continuous in (0,0), with ¢(0,0) = 1.
Therefore we are in a position to apply Lemma 2.3.2, which gives

e—0t

2 : € bt
lim W/O ; 42@1,@);72'2 dzy doy = gk2(t)5(t)c2(0,0) = gk2(t)é(t).

By arguing in the very same way, we can show that the limit as ¢ — 0% of the second
term of (2.3.8), thanks to the presence of x1, is zero. This means that the limit of I (¢) is

lim I (t) = —k2(t)5(t),

e—0t 8
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and, similarly,
lim I-(t) = %kQ(t)é(t).

e—0t+
All in all,
nmg@:nm@ﬂwHym:%M@my

e—0t e—0t
Thanks to the estimate in (2.3.3), we infer that the family of functions {I(¢)}.~o are domi-
nated on [0, 1] by a bounded function, and the same holds for {I=(t) }c>0; by the dominated
convergence theorem, we can pass the limit in (2.3.6) inside the integral in time, and we can

write
t*

lim I.(t)dt = / : % K2(t)$(t) dt.
0

e—0* Jo

So we deduce that the dynamic energy-dissipation balance (11) holds for every t € [0,1] if
and only if the stress intensity factor k(¢) is equal to \F whenever $(¢) > 0. O

Remark 2.3.6. We underline that our approach is different to that of Dal Maso, Larsen,
and Toader in [17, Section 4]: in order to derive the energy balance associated to a horizontal
crack opening with constant velocity ¢, they prove that the mechanical energy of wu(t) is
constant in the moving ellipse E,(t) = {(x1,22) € R? : (z1—ct)?/(1—c?) +3 < 72} centered
at the crack-tip (ct,0), for some small > 0, and they make the explicit computation of the
energy in R?\ E,.(t)

We now generalize the previous result to non straight cracks.

Theorem 2.3.7. Let Q@ C R? be an open bounded set with Lipschitz boundary and let
{Ci}ecpo,n) be a family of growing cracks inside 2. Assume that there erists a bi-Lipschitz
map N: Q — Q with the following properties:

(i) ATy \To) = {(0,0) € R?2: 0 < o < s(t) — 5(0)}, where s € C?([0,1]) and 5(t) > 0 for
every t € [0,1],

(ii) HY(A(Ty \To)) = H(Ty \ To) for every t € [0,1];
(141) limg_z VA(z) = VA(Z) € SO(2)*", for every € T'1 \ T.

Suppose that a function u: [0,1] x Q@ — R can be decomposed as in (2.2.9) for t € [0,1] and
satisfies the wave equation

i(t) — Au(t) = f(t) in Q\ Ty, te0,1], (2.3.9)

with homogeneous Neumann boundary conditions on the boundary and on the cracks. Then
u satisfies the dynamic energy-dissipation balance (11) for every t € [0, 1] if and only if the
stress intensity factor k is constantly equal to % in the set {t € [0,1] : 5(t) > 0}.

Proof. In view of (2.2 9), we have u(t,r) = uf'(t,z) + k(t)(t, A(x))S(t, A(z)), for t € [0,1]
and x € Q\ Ty, with uft(t) € H2(Q\Ty), ¢(t )oA cut-off function supported in a neighborhood
of the moving tip of I'4, and

5 _ o [ Milz) = (s(t) = 5(0))
S@A@»_s< = ,M@O,

being S(y) = for y € R2\ {(0,0) : 0 < 0}.

f\/ly\ +y1
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As in the proof of Proposition 2.3.5, we fix t* € [0,1] and for every ¢ > 0 we define the
function pe(z) = w A1 for x € Q. Since p.u(t) € HY(Q\T;), we can use it as test
function in (2.3.9), and we get

t* t*
| e ecttNanaoy dt+ [ (Vul®). eVl sz de
R L (2.3.10)
+ [ (V). Vi) ey dt = [ (70 pei®)rage .
By integrating by parts, we easily obtain
R : 4t = Yiacee 1o 0311
S| {a(t), peu(®)) (mr@ryy dt = 514t [ 120) = 512(0)I22(q), (2.3.11)
t*
. . _ 1 * 2 1 2
i, ; (Vu(t), - Vi(t)) r2() dt = SIVut)lz2 (@) = SIVu(0)lzz), (2.3.12)
t* t*
lim (f(t)v¢au(t))L2(Q)dt:/ (f(t),0(t)) L2 di. (2.3.13)
e—0t Jo 0

The asymptotics as € — 07 of the third term in the left-hand side of (2.3.10) is more delicate
to handle. To simplify the notation, we set

((t2) =t A2)), Pe(a) = po(A"(2)) forte[0,1] and x € Q.
By using Lemma 2.3.3 and Remark 2.3.1, as in the proof of the previous proposition for the

rectilinear case, we have that the only contribution to the limit as ¢ — 0T is given by the
term

| BOF 2V A@) - Vo)t Aw) da
- /Q K(6)a(t)[VA(2)T VS, A(2))] - Ve (2)C (¢, 2) b1 (£, A()01S(1, A(w)) da
= /Qkz(t)a(t)[VA(A_l(x))TVS(t,:J:)]-V@E(A_l(x))cg(t,x)‘il(t,x)(?lS(t, z)|JA (z)| dx

- /Q K2 (H)a(t)VE(t, z) - [BA () VE. ()| CA(t, 2) 1 (t, 2)08(t, )| JA~  (z)| dz, (2.3.14)

where ®1(t,z) = W B(z) = VA@)VA®)T, JA " (z) == det VA~!(z), and

a(t) = /1 —1s(t)]? for t € [0,1] and = € Q. In the last equality we have used the coarea
formula applied with the Lipschitz change of variables A~1.
Thanks to our construction of A, for any z in a suitable small neighborhood of the tip

of A(T'1) we have
st = ("0 ),

where bj;: R? — R is a continuous function with byj(21,0) = 1. The last term in (2.3.14)
can be split as

/Q k‘Q(t)oz(t)bn(x)alae(x)ga(t, x)@l(t, z)(01S(t, z))?|JA ™  (z)| dz

+ /Q k2 (t)a(t)0aS(t, )05, (2) 2 (t, ) D1 (t, )01 S (t, )| JA ™ (2)] da.
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By construction of A, each line parallel to {z € R? : x5 = 0} is mapped by A~! into a level

S

set of ¢.; more precisely p.(A~'({z € R? : x3 = s})) = £ A1, and this means that on the set
of points {z € R? : dist(z, A(T'1)) < £}, we have

8?2 in{xeRQ:OleSS(t*)—S(O%0§$2<€}’
V5. (z) = ﬁ - in {z € R?2:z € B:(0), 71 <0, x5 >0},
e T ] ) :
Er;?—’ri”‘(t*)‘ o {x€R2 :xGBE(T(t ))’ 1 >5(t )_3(0)7 ) Zo}a
0 otherwise,

where, for brevity, we have set r(t) := (s(t) — s(0),0) for every t € [0, 1].
Since A is a bi-Lipschitz map, JA™! is bounded, thus by hypothesis (iii) we have

lim |JA N (2)] =1,
z—(s(t)—s(0),0)

for every t € [0,1]. Moreover, in view of assumption (iii), we have that |JA~!| is continuous
on the compact set I'1 \ T'g, hence uniformly continuous; therefore, proceeding exactly as in
the proof of Proposition 2.3.5, we can write

1im+ E2(t)a(t)0aS(t, )093, (2) 2 (t, )@y (t, )01 S(t, )| JA ™ ()| da
e=0mJa (2.3.15)

= ZkQ(z&)s'(t).

Again by hypothesis (iii), we can apply estimate (2.3.3) and deduce that the sequence of
integrands in (2.3.15) is dominated in ¢, so that we can apply the dominated convergence
theorem to deduce

lim t </ kz(t)a(t)agg(t,x)82g05(x)g2(t,x)i)l(t,x)alg(t,a:)ul\1(x)\dx> dt
Q

e—=0t Jo

. (2.3.16)
Py
_ / T R2(0)5(8) dt.
o 4
By combining (2.3.10) with (2.3.11)—(2.3.13) and (2.3.16), we infer that
t t
E(1) - EO) + ] / K2 (7)8(7) dr = / (F(r),i(r)) 2y dr for every t € [0,1].  (2.3.17)
0 0

Hence, the dynamic energy-dissipation balance (11) is satisfied if and only if

/Ot %kQ(T)g(T) dr = HY Ty \ To) = HY (AT \ Ty)) = s(t) for every t € [0,1],

% whenever $(t) > 0. This concludes the

proof. ]

which is true if and only if k(¢) is equal to

Remark 2.3.8. Our approach is constructive and allows us to show the existence of time-
dependent pairs ¢t — (I'y, u(t)) satisfying the dynamic energy-dissipation balance (11). Un-
der the standing assumptions on I';, it is enough to take the forcing term f associated to
%C(@(t))S(q)(t)) (which of course is a solution u(t)), where ( is a suitable cut-off function
supported in a neighborhood of the origin. In order to ensure the homogeneous Neumann
condition on the fracture, we choose ( satisfying d2((y1,0) = 0 for every y; € R. This can
be achieved, e.g., by taking ((y1,vy2) = ¢(y1)p(y2), where p € C°(R) has compact support
contained in (—¢,¢) and satisfies ¢ = 1 in (—¢/2,¢/2), for some € > 0.



62 2.3. Dynamic energy-dissipation balance

Remark 2.3.9. When in equation (2.1.2) the matrix A is (possibly) not the identity, an
energy balance similar to (2.3.17) is still valid: for every t € [0, 1] there holds

™

¢ ¢
E(t)—&(0) + 4/ E*(1)a(T)$(r)dr = / (f(7), (7)) 2y dT, (2.3.18)
0 0
where a is a function depending only on A, I'; and s, and it is given by

a(t) = [A(r(£)) 725 (s(D)] - |A(r (1) 2u(s(t)] - V/det Ar(1)).

Here A2 and A~1/2 denote the square root of the symmetric and positive definite matrices
A and A~!) respectively, and ¥(s(t)) and v(s(t)) are the tangent and unit normal vectors
to I' at the point r(t) := v(s(t)), respectively. In this case, the dynamic energy-dissipation
balance (11) holds true if and only if the stress intensity factor k(t) satisfies

2
ma(t)

k(t) =

during the crack opening, namely when $(¢) > 0.
In order to derive formula (2.3.18), we use the decomposition result (2.2.9) rewritten as

u(t,z) = ul(t,z) + k()¢(t, 2)S(t, x(2)),

where S(t, x) is the singular part of the solution relative to the transformed curve ™) = y(I").
Then we proceed as in the previous theorem and proposition: we test the PDE with p.a(t),
where ¢ (z) = w A1 for x € ), and, as before, we notice that the only delicate

term is the one that converges to the integral in the left hand-side of (2.3.18):

i [ 10 ([ @S] Te @3 o) de
0 Q

e—0t

1

By applying the change of variables x ™", we can rewrite the space integral in the previous

expression as follows:
/QCQ(ta ) ([VXAVYT (0 (2) VS (@) - V() Ve () (x () S(t, )| det Vi~ ()| da.

Finally, we work on the transformed curve I'D), exactly as in the previous theorem, by
using the property of the singular part S(t,z) together with the following facts: by con-
struction, [VxAVXT] o x~! is a continuous function which agrees with the identity on the
points of T'M; moreover Vy(z)~TVp.(x ' (x)) is a continuous function which is equal to
%|A(T(t))1/21/(8(t))’I/(l)(s(l)(t)) on the points 7(1)(5(1)(0) of TM: the velocity $M) of the
curve T satisfies 50 (t) = |A(r(t))"24(s(t))|5(t); finally, |det Vx~!(z)| is a continuous
function equal to \/det A(r(t)) on the points v (s(D(#)) of (1),

Remark 2.3.10. By combining Theorems 2.2.4 and 2.2.10 with Theorem 2.3.7 and Re-
marks 2.3.4 and 2.3.9 we deduce that if f, u°, and u' satisfy the assumptions of Theo-
rem 2.2.10, then the unique solution u to (2.1.2)—(2.1.5) satisfies (10) for every ¢t € [0,T.

This formula gives an important quantitative information on the functions k£ and s which
satisfy the dynamic energy-dissipation balance (11): for every t € [0, 7]

(:a(t) - k(t)> 5(t) = 0.

In particular, in the set {¢t € [0, 7] : $(¢t) > 0} the stress intensity factor k coincides with the

function 2/y/7a.



Chapter 3

A dynamic model for viscoelastic
materials with growing cracks

In this chapter we prove an existence and uniqueness result for equation (15) and the analo-
gous problem in linear elasticity, that is system (3.1.12).

This chapter is organized as follows. In Section 3.1 we fix the notation adopted throughout
the chapter, we list the main assumptions on the family of cracks {T't};,cjo,r) and on the
function O, and we specify the notion of solution to (3.1.12). In Section 3.2 we state our
main existence result (Theorem 3.2.1), which is obtained by means of a time discretization
scheme. We conclude the proof of Theorem 3.2.1 in Section 3.3, where we show the validity of
the initial conditions (3.1.21) and the energy-dissipation inequality (3.3.4). Section 3.4 deals
with the uniqueness problem. Under stronger regularity assumptions on the cracks sets, in
Theorem 3.4.4 we prove the uniqueness, but only when the space dimension is d = 2. To
this aim, we assume also that the function © is zero in a neighborhood of the crack-tip. We
conclude with Section 3.5, where, in dimension d = 2 and for an antiplane evolution, we show
an example of a moving crack which satisfies the dynamic energy-dissipation balance (16).

The results presented here are obtained in collaboration with F. Sapio and are contained
in the submitted paper [10].

3.1 Preliminary results

Let T be a positive real number and let § C R? be a bounded open set with Lipschitz
boundary. Let Op{2 be a (possibly empty) Borel subset of 92 and let On € be its complement.
We assume the following hypotheses on the geometry of the crack sets {T't }1c[o,77:

(E1) ' € Qs a closed set with £4(T") = 0 and H*~1(I' N 9Q) = 0;

(E2) for every z € T" there exists an open neighborhood U of  in R? such that (U N Q) \ T’
is the union of two disjoint open sets Ut and U~ with Lipschitz boundarys;

(E3) {Tt}iecpo,r) is a family of closed subsets of T satisfying I's C I'; for every 0 < s <t < T.

Remark 3.1.1. Assumptions (E1)-(E3) are a weaker version of assumptions (H1)-(H3) of
Chapter 1. In particular, we do need I' to be a C? manifold of dimension (d — 1), since we
are not interested in define the trace of v € H(Q\T) on .

Thanks (E1)-(E3) the space L?(Q2\ T'y; R™) coincides with L?(Q;R™) for every t € [0, 7]

and m € N. In particular, we can extend a function v € L?(Q2\ I';;R™) to a function
in L?(Q;R™) by setting 1» = 0 on I';. Moreover, by arguing as for (1.1.1), the trace of
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Y € HY(Q\ T;R?) on 99 is well defined and there exists a constant Cy, > 0, depending only
on 2 and I', such that

¥l r200) < Crrll¥llm@yr)  for every ¢ € H'(Q\ I3 RY). (3.1.1)

Hence, for every t € [0,7] we can define the space Hp,(Q \ I't; R?) as done in (1.1.7), and
we denote its dual by Hp'(2\ T'y; R?). Similarly, by proceeding as for (1.2.3), we can find a
constant Ci, depending only on 2 and I', such that

IV61220) < O (161320 + 1EWI2q ) for every v € HIQ\TIRY.  (3.1.2)

Let C,D: Q — Z(R%*d: R9*d) he two fourth-order tensors satisfying:

syms “Esym

C,D € L LR RIX), (3.1.3)
(C(2)&1) & =& - (C(x)&a)  for every &1, & € R4 and for ae. z € Q, (3.1.4)
(D(x)&1) - &2 = &1 - (D(x)&2)  for every &1,&2 € ]ngxﬂl and for a.e. z € Q. (3.1.5)

We require that C and D satisfy the following ellipticity condition, which is standard in linear
elasticity:

C(x)&- &> M€, D(@)€-€ > Nfé* for every € € RO and for ae. 2 €Q, (3.1.6)

for two positive constants Ai, Ao independent of z. By combining the ellipticity condition
for C with the Korn’s inequality (3.1.2), we can find two constants ¢y > 0 and ¢; € R such
that

(CEY, EY)12() = colldllzonryy — cillYlliz) for every v € H'(Q\Tr;RY).  (3.1.7)

Let us consider a function ©: (0,7T) x  — R satisfying

0 € L>®((0,T) x Q), VO e L>®((0,T) x ;RY). (3.1.8)

Given
w e H*(0,T; L*(;RY)) N HY(0,T; HY(Q\ Tp; RY)), (3.1.9)
feL*0,T;L*(Q;RY), F e HY0,T; L2(0xQ;RY)), (3.1.10)
u® —w(0) € HH(Q\ To; RY), w! € L2 RY), (3.1.11)

we want to find a solution to the viscoelastic dynamic system
ii(t) — div(CEu(t)) — div(©*(t)DEu(t)) = f(t) in Q\ Ty, t € [0,T], (3.1.12)

satisfying the following boundary conditions

u(t) =w(t) on dpQ,te0,T], (3.1.13)
(CEu(t) + ©%(t)DEu(t))y = F(t) on dyQ, t € [0,T), (3.1.14)
(CEu(t) + ©%(t)DEu(t))y =0 on Ty, t € [0,T), (3.1.15)

and initial conditions
u(0) =u°, w(0)=u' in Q\T. (3.1.16)

As pointed out in Chapter 1, the Neumann boundary conditions (3.1.14) and (3.1.15) are
only formal, and their meaning will be specified later in Definition 3.1.5.
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Throughout the chapter we always assume that the family of cracks {I'¢},c(o7) satisfies
(E1)-(E3), as well as C, D, O, f, w, F, u°, and u® satisfy (3.1.3)~(3.1.11). In the following,
we want to specify the notion of solution to problem (3.1.12)-(3.1.15). As pointed out in
Chapter 1, the main difficulty is to give a meaning to (t). For this reason, we follow the
definition given in [23, Definition 2.7], which does not require the second derivative of u in
time. To simplify the notation, let us define the following three functional spaces:

Vi={p e L*0,T; H(Q\T'1;RY) : ¢ € L*(0,T; L* (4 RY)),
o(t) € HY(Q\T';RY) for ae. t € (0,T)},
Vo ={peV:pt) € HH(Q\TH;RY) for ae. t € (0,7)},
W={ueV:0uec L*0,T; H (Q\ I'r;R%)),
O(t)u(t) € HY(Q\ 'y RY) for ae. t € (0,T)}.

Remark 3.1.2. In the classical viscoelastic case, namely when © is identically equal to 1,
the solution u to system (3.1.12) has derivative u(t) € H'(Q\ Ty; R?) for a.e. t € (0,T) with
Ei € L0, T; L?(Q; R¥*%)). For a generic © we expect to have O Eu € L?(0,T; L*(Q; R¥*%)).

Therefore W is the natural setting where looking for a solution to (3.1.12). Indeed, from a
distributional point of view we have

Ot)Eu(t) = E(O(t)u(t)) — VO(t) ©u(t) in Q\Iy forae. te (0,7),
and F(04),VO © 4 € L*(0,T; L?(;R¥4)) if w € W, thanks to (3.1.8).

Remark 3.1.3. The set W coincides with the collection of functions v € H'(0,T; L?(£; R?))
such that u(t) and ©(t)1u(t) belong to H'(2\ Ty; R?) for a.e. t € (0,T) and

T
/0 w7 @ry) + 1O@) ()1 31 0,y dE < 00 (3.1.17)

Indeed the functions ¢ — wu(t) and ¢ — O(t)u(t) are strongly measurable from (0,7") to
HY(Q\ T'r;RY), which gives that (3.1.17) is well defined and v and ©u are elements of
L2(0,T; HY(Q\ I'7;R%)). To prove the strong measurability of the two maps, it is enough
to observe that ¢ — u(t) and t — O(t)1u(t) are weakly measurable from (0,7 to L?(£;R%),
which is a separable Hilbert space. Moreover, t — Fu(t) and ¢t — E(O(t)u(t)) are weakly
measurable from (0,7) to L?(£2; R?*?)  since for every ¢ € C>(Q2\ I'7') the maps

t— Eu(t,z)p(x)de = —/ u(t,z) © Vo(z)dz,
Q\FT Q\FT

t— E(Y(t,z)u(t,x))p(r)dr = —/ U(t,z)u(t,z) © Vo(z)de
Q\FT Q\FT

are measurable from (0,7 to R, and C°(Q\ I'r) is dense in L?(9).
Lemma 3.1.4. The spaces V and W are Hilbert spaces with respect to the following norms:
, 1
lolly = (HQOH%Q(O,T;Hl(Q\FT)) + HQOH%Q(QT;L?(Q)))Q foro eV,
. 1
lullw = (luld + 1©0lZ20z.11 c0rpy)? for u € W.
Moreover, Vp is a closed subspace of V.

Proof. Tt is clear that ||-||y and ||-||yy are norms on V and W, respectively, induced by scalar
products. We just have to check the completeness of such spaces with respect to these norms.
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Let {¢r}r C V be a Cauchy sequence. Then, {¢x}r and {¢x}r are Cauchy sequences
in L2(0,T; H'(Q\ I'7; RY)) and L2(0,T; L2(Q; R?)), respectively, which are complete Hilbert
spaces. Thus there exists ¢ € L2(0,T; H(Q\T'r; R?)) with ¢ € L2(0,T; L*(Q;RY)) such that
o — @ in L2(0,T; HY(Q\ T'r;RY)) and ¢, — ¢ in L2(0,T; L?(Q;RY)). In particular there
exists a subsequence {(y, }; such that ¢y (£) — ¢(t) in H'(Q\ I'r;RY) for ae. t € (0,7).
Since ¢y, (t) € HH(Q\T;;R?) for a.e. t € (0,T) we deduce that ¢(t) € H'(Q\I'y; RY) for a.e.
t € (0,T). Hence ¢ € V and ¢, — ¢ in V. With a similar argument, it is easy to check that
Vp C V is a closed subspace.

Let us now consider a Cauchy sequence {ug}r C W. We have that {uy}r and {Oy} are
Cauchy sequences in V and L?(0, T; H'(Q\ I'r; RY)), respectively, which are complete Hilbert
spaces. Thus there exist v € V and z € L*(0,T; H'(Q\ T'p;R%)) such that uj, — u in V and
Ouy — z in L2(0,T; HY(Q \ T'r;RY)). Since 1y, — @ in L2(0,T; L?(;R?)) and © belongs
to L>2((0,T) x Q), we derive that Oy — Ou in L2(0,T; L?(;R?)), which gives z = 1.
Finally let us prove that ©(t)u(t) € H'(Q\ Ty; R?) for a.e. t € (0,7). Thanks to the fact
that ©1uy, — Ou in L2(0,T; H'(Q \ I'r;R?)), we can find a subsequence {©1y, }; such that
O (t)iu, (t) — O(t)u(t) in H(Q\I'p;R?) for a.e. ¢ € (0,T). Since O(t)i, (t) € H'(Q\T'y; RY)
for a.e. t € (0,T), we deduce that O(t)u(t) € H'(Q\Ty;RY) for a.e. ¢t € (0,T). Hence u € W
and up — uw in W. ]

We are in a position to define the notion of solution to (3.1.12)-(3.1.15).

Definition 3.1.5. We say that a function v € W is a solution to system (3.1.12) with
boundary conditions (3.1.13)—(3.1.15) if u —w € Vp and

T T
— [0 oD+ [ (CBule), Bp(0) ey
0 0
T
+/O (DIE(O(t)u(t)) — DVO(t) © u(t)], O(t) Ep(t)) 2(q) dt (3.1.18)

T T
=/Xﬂmﬂmm@a+/<ﬂmmmm%mw
0 0

for every ¢ € Vp such that ¢(0) = ¢(T") = 0.

Remark 3.1.6. When % is enough regular, for example @ € L(0,T; H'(Q \ I'r; RY)) with
u(t) € HY(Q\ Ty;RY) for ae. t € (0,T), we can write OF4 = E(Ou) — VO ® @. There-
fore (3.1.18) is coherent with the strong formulation (3.1.12). In particular, for a function
u € W we can define

OFu = E(01) — VO ® 4 € L*(0,T; L?(Q; R*4)), (3.1.19)
so that equation (3.1.18) can be written as
T T
- /O (a(t), $(t)) L2() dt +/0 (CEu(t), Eo(t)) 120 dt

T
+ /0 (DIO(1) Bi(t)], O(t) Bolt)) 12y (3.1.20)

T T
:/ (f(8), 0(t)) L2 () dt+/ (F(t),¢(t)) 2oy dt
0 0

for every ¢ € Vp such that p(0) = ¢(T) = 0.

Remark 3.1.7. Notice that equation (3.1.20), which is formally obtained by integrating the
PDE (3.1.12) in time and space and using the integration by part formula, can be rephrased
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pointwise in time, as done in the previous chapters (see, e.g., Definition 1.1.6). Indeed, by
arguing as in [23, Theorem 2.17|, it is possible to show that every solution u to (3.1.12)-
(3.1.15) satisfies

(@(t), V) g1y + (CEu(t), EY) p2(q) + (DO) Eu(t)], O) EY) 20
= (f(), V)2 + (F(#), %) 2005 0)

for every ¢ € HE(2\ I's;RY), where the second derivative i is defined similarly to (1.1.23)
(see [23, Proposition 2.13]).

The notion of solution given in Definition 3.1.5 requires less regularity in time with respect
to the ones given in the previous chapters. In particular, the functions v and @ may not be
defined pointwise. Therefore, we define the initial conditions (3.1.16) as in [16].

Definition 3.1.8. We say that u € W satisfies the initial conditions (3.1.16) if

.1t 012 . 102
Jim 5 [ (1000 = g + 100 = 0! o)) dt =0, (3.1.21)

3.2 Existence

We now state our main existence result, whose proof will be given at the end of Section 3.3.

Theorem 3.2.1. There exists a solution u € W to system (3.1.12)—(3.1.15), according to
Definition 3.1.5, which satisfies the initial conditions u(0) = u® and @(0) = u' in the sense
of (3.1.21). Moreover, we have

we CO[0,T]; H'(Q\ I'r;RY)),
i € Co([0,T]; L*(RY) N H' (0, T; Hp' (2\ Tp)),

and ast — 0t
u(t) = u® i HY(Q\ T RY,  a(t) —ut  in LE2(Q;RY).

To prove the existence of a solution to (3.1.12)—(3.1.15), we use a time discretization
scheme in the same spirit of [16]. Let us fix n € N and set

T
Tp = Py ug = uo, u;l =’ — Tnul.
We define
FF = F(kr,), wF=wkr) fork=0,...,n,
1 kTn 1 kTn
f,’f ::/ f(s)ds, @Z = O(s)ds fork=1,...,n,
Tn J(k—1)m, Tn J(k—1)m,
Fk _ Fk—l k _ k=1
SFk =" _n sk = Un "% for k= 1,...,n,
Tn Tn
) k _ 5 k—1
ow? = w(0), 6wk = WWn Z %0 for k= 1,...,n.
Tn

For every k =1,...,n let uf —wk € HL(Q\ Tk, ; R?), be the solution to

(0%up, ¥) 12(q) + (CEuy, EY) 120y + (D[OF Edul), ©5 Ev) 12(q)

3.2.1
= (f1§7w)L2(Q) + (FT’f,w)LQ(BNQ) ( )
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for every ¢ € HL(Q\ Tkr,y; R9), where

k k—1 k k—1
ur —u our — du
ouf =" fork=0,....,n, 6uF=—"""_ fork=1,....,n

n n
Tn Tn

The existence of a unique solution u” to (3.2.1) is a consequence of Lax-Milgram’s theorem.

Remark 3.2.2. Since duf € H'(Q\ Ty, ; R?), we have OF Esul = E(QFuk) — VOE @ uk.
Hence, the discrete equation (3.2.1) is coherent with the weak formulation given in (3.1.18).

In the next lemma we show a uniform estimate for the family {uf}?_, with respect to n
that will be used later to pass to the limit in the discrete equation (3.2.1).

Lemma 3.2.3. There exists a constant C > 0, independent of n, such that
Dnax {1031 220 + llunll @0y + ZTnH@Z Ebu; |[72(0) < C. (3.2.2)
=1

Proof. We fix n € N. To simplify the notation, for every ¢, ¢ € H'(Q\ I'r; R%) we set
a(¥,¢) = (CE}, E) 20y, bh(¥,¢) = (D[OLEY], 0L E¢) 12y fork=1,...,n
By taking as test function ¢ = 7, (6uk — swk) € HL(Q \ Tk, ; R?) in (3.2.1), we obtain
0 12y — (B, 8uE) oy + (s ut) — aul, w1 + 7b (6uk, 6uk) = 7 L
for k=1,...,n, where
Ly = (£}, 6up, — dwp) 2o + (B, dup — 5wy 12 (a5 0)
+ (8%uk, 5wf;)L2(Q) + a(uf, 6wk) 4 oF (5uk, suwk).
Thanks to the following identities

_ 1 1, 2
1S 1720y — (Fup ", 6ult) L2y = §H5UZ||%2(Q) - §||5u7’§ 220 + 5“5%@“%2(9)

2

1 1
bl = ca(ul,ub) — Sa(up T ul ) + %a(éuﬁ,éuﬁ),

a(up, up) — a(uy,

and by omitting the terms with 72, which are non negative, we derive
Lo k2 k—1 Lok ky_ Lokt k1 ks k sk k
§”5un”L2(Q ||6u ||L2 + 2a(u u ) - §a(un ) Up ) + Tnbn(dunv 5un) < TnLn‘

We fix i € {1,...,n} and sum over kK = 1,...,4 to obtain the discrete energy inequality
7
fH(SunHLg + a (b, ub) + Zmbk (6uk, 6ur) < & + ZTanL, (3.2.3)

where & = %HulHLQ @ T 5(CEu®, Eu®)12(). Let us now estimate the right-hand side
in (3.2.3) from above. By (3.1.1) and (3.1.3) we have

Zﬂz(f!f?‘suﬁ)L?(Q)

k=1

: 1
ZTn(fwlfa(Swz)LQ(Q) <
=1

1 1 ¢
< §Hf‘|%2(O,T;L2(Q)) T3 > malldunliza ) (3.2.4)
k=1

L. .
§”fHQL2(o,T;L2(Q)) + §Hw”%2(o,T;L2(Q))’ (3.2.5)
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1 c2
Z'Tn F 6'11) L2(8NQ) S §HF”%2(O,T;L2(8NQ)) + TtHwH%Z(O,T;Hl(Q\FQ))’ (326)

ZTn u 5w

For the other term involving F¥, we perform the following discrete integration by parts

1 _ !
< 5ICl L) <||wH%2(0,T;H1(Q\FO)) + ZTnHuﬁ”%ﬁ(Q\FT)) - (327)
=1

ZTnF Sul) r2(one) = (Fp ) r2aye) — (F(0),u%) 12(050)

(3.2.8)
—ZTn (5F7]§, n_l LQ(QNQ)'
Hence for every € € (0, 1), by using (3.1.1) and Young’s inequality, we get
ZTn (FY, 8up) 1205 0) ||FZHL2 oxe) T 5 =l 12 one) T IFO) 20y 1v’ [l 2050
i
5 Tll6FE oy e s oy (3.2.9)
k=1
eC2 C2
<C:+ 2” s 12 @y + % >l i @yrgys
k=1
where C; is a positive constant depending on e. Similarly to (3.2.8), we can say
Z’Tn (6%uk, swk) 2Q) = (5“;,5“};{1)[/2(9) - (5ug,5w2)L2(Q)
(3.2.10)
- ZTH n 8w i),
from which we deduce that for every € > 0
¥ < 1 Swi |12 € Su 112 1 H(0
ZTn up, W) 20| < 25” Wnllz2(0) + 5 ll0unlize () + llullz2 @l (0)l 2 (q)
i
+ ) malloul pe) 6% wh | 120y (3.2.11)

k=1

e 1<
<C: + §H5UZ||%2(Q) t3 > malloug |70
k=1

where C. is a positive constant depending on €. We estimate from above the last term in
right-hand side of (3.2.3) in the following way

Z TabE (0ur  owk) < Z Ta[bF (Suk | 5uk)) 2 [bF (5wk, (5w,’2)]% (3.2.12)

1 1 '
<3 > mabl(Suf, oub) + §HD||L°°(Q)||9||%°°((0,T)XQ)Hw”%Q(O,T;Hl(Q\Fo))'
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By considering (3.2.3)—(3.2.12) and using (3.1.7) we obtain

1—¢ ; co—eC? . 1, 4 1<
(555 ) 160 sy + 2 I By — Sl ey + 5 D (O )
k=1

i
A A k2 k2
<C+C) <H5unHL2(Q) + Hun”Hl(Q\FT)> ;
k=1
where C. and C are two positive constants, with C. depending on €. We can now choose

€ < min {%, 28%} and use the inequality

i 2 i
[un 720y < <||U0HL2(Q) + ZTansuﬁHm(Q)) < 200’2y + 2T ) mullug 720,
k=1 k=1

to derive the following estimate

1, 1, e
ZH(SunH%?(Q) + ZHunH%ﬂ(Q\FT) 3 > bl (Sus, Suy)
k=t (3.2.13)

i
k2 k2
<Cr+ Gy ZTn <H5unHL2(Q) + HunHHl(Q\FT)> g
k=1
where C; and Cy are two positive constants depending only on «°, u', f, F, and w. Thanks
to a discrete version of Gronwall’s lemma (see, e.g., [3, Lemma 3.2.4]) we deduce the existence
of a constant C3 > 0, independent of ¢ and n, such that

HéuleB(Q) + ‘|u;i1HH1(Q\FT) < (5 foreveryi=1,...,n and for every n € N.

By combining this last estimate with (3.2.13) and (3.1.6) we finally get (3.2.2) and we con-
clude. 0

We now want to pass to the limit in (3.2.1) to obtain a solution to problem (3.1.12)-
(3.1.15). To this aim, we define the piecewise affine interpolants u,: [0,7] — H*(Q\ I'r; RY)
of {uh}_) and uj,: [0,T] — L*(RY) of {un}l_, as

Un(t) = ud + (t — jrp)0ul, fort € [(j — V)Tn,j7al, j = 1,...,7,
ul (t) = 6ul 4 (t — j7,)0%ul, for t € [(j — V)T, 7], 5= 1,..., 7.

We also define the backward interpolants @, : [0, 7] — H'(Q\T';RY), @, : [0,T] — L*(Q;RY)
and the forward interpolants w,,: [0,7] — H'(Q\ I'r;RY), w/,: [0,T] — L?(;R?) in the
following way:

Tp(t) =l fort € ((j — Drn,iml, 5=1,...,n, Tn(0) = ul,

@, (t) = oul forte ((j— V)7, jm),i=1,...,n, @,(0)=0dul,
u,(t) =ul "t fort € [(j— DT, i), d=1,...,n, u,(T) = ul,
w,(t) = oul™t forte[(j—V)Tn, i), d=1,...,n, u,(T)=0u".

Notice that u, € H'(0,T; L2(Q;R?)) with w,(t) = dul = a/,(t) for t €
k=1,...,n. Let us also approximate © and w by
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Lemma 3.2.4. There exists a function v € W, with w —w € Vp, and a subsequence of n,
not relabeled, such that the following convergences hold as n — oco:

Uy —u in L20,T; HY(Q\ T RY), o), —a in L?(0,T; L*(Q; RY), (3.2.14)
Tp —u in L2(0,T; HY(Q\ I RY), @, = in L*0,T; L(Q;RY)), (3.2.15)
u, —=u i L20,T; HH(Q\I';RY), u, = in L*0,T; L*(Q;RY)), (3.2.16)
E(©,u,) = E(0u) in L*(0,T; L*(Q;R¥?)), (3.2.17)
VO, 0T, =~ VO ou in L*(0,T; L*(Q;R™)). (3.2.18)

Proof. By Lemma 3.2.3 the sequences {uy, }, C L>(0,T; H (Q\I'r; RY))NH (0, T; L2(Q; RY))
and {t,}, C L>(0,T; H' (2 \ I'r;RY)) are uniformly bounded. Therefore, there exist two
functions u € L>®(0,T; HY(Q\I'r; RY))NH (0, T; L2(Q;RY)) and z € L*°(0, T; H(Q\I'1; RY))
such that, up to a not relabeled subsequence, as n — oo

U, —u in L2(0,T; H*(Q\ I';RY), i, — @ in L*(0,T; L*(;RY)),
T, — 2z in L2(0,T; HY(Q\ T'p; RY)).

Moreover, we have u = z, since we can find a constant C' > 0, independent of n, such that
”Un - ﬂnHLOO(O,T;L2(Q;Rd)) S CTn —0 asn — oco.

Since u,, (t) = Up(t—7,) for t € (7, T), @, (t) = U (t) for a.e. t € (0,T), and u),(t) =, (t—7,)
for t € (7, T'), we deduce

u, —u in L2(0,T; HY(Q\I'r;RY), @, =@ in L0, T; L*(;RY)),
ul, =0 in L2(0,T; L*(Q; RY)).

By usmg (3.2.2) we derive that the sequences {E(0,7,)}, C L?(0,T; L?(£; R¥*%)) and
{VO, o, }, C L*(0,T; L?(2; R¥*4)) are uniformly bounded. Indeed, there exists a constant
C>0 independent of n such that

kTn

198, © 7, 220 7510 Y_Ej/‘ IVOE @ 6uk 220 dt

-1,

< HVGH%W((O,T)XQ) ZTn”‘S“ﬁ”%%Q) <G
k=1

kTn

anwgwp)—Z/ | B (O 60 2

-1,

= Zmu@’;Eéun + VO 0 dup|iaq)
k=1

<2 Tl O8Edug |32y +2) Tl VO © dup s < C.
k=1 k=1

Therefore, there exists 21, zo € L?(0,T; L?(Q; R?*%)) such that, up to a further not relabeled
subsequence, as n — oo we have

VO, 0T, — 2z in L*(0,T; L*(Q;R™Y), E(©,7,) — z in L*(0,T; L*(Q;R>?)).
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We want to identify the limits z; and zp. We fix a function ¢ € L2(0,T; L?(£; R%*%)), and
we have

T o B 1 T B o 1 T B o
/o (VO, O, ) 1200 dt = 5 /0 (T, VOR) r2(q) dt + 5 /0 (W, 0" VOR) r2(0 dt
T PR—
= / (ﬂ%, cpsymV@n)LQ(Q) dt,
0

eto”

being @Y™ = Since @/, — u in L2(0,T; L*(;RY)) and ¢*¥"VO,, — ¢*¥™VO in
L?(0,T; L*(Q;RY)) as n — oo by dominated convergence theorem, we obtain
T T T
lim (VO, © ﬂ'lm SO)LQ(Q) dt = / (1, @symVQ)LQ(Q) dt = / (VO © a, SO)LQ(Q) dt,
0 0

n—oo 0

and so z; = VO ® . Moreover, fixed ¢ € L?(0,T; L?(£;R?)) we have

T T
lim (@nﬁ%, ¢)L2(Q) dt = lim (ﬂ%, @n(b)LQ(Q) dt

T T
— /0 (i, 0) 20y dt = /0 (O, 6) 12y dt,

thanks to the fact that @/, — @ in L?(0,T; L?(Q;R?)) and ©,,¢ — O¢ in L?(0,T; L(Q;R?))
as n — oo, again by the dominated convergence theorem. Therefore ©,u/, — ©u in
L2(0,T; L?(;RY)) as n — oo, from which we get that F(©,u,) — F(Ou) in the sense of
distributions as n — oo, that gives zo = F(0Ou). In particular, Ou € L2(0,T; H'(Q\T'r; R9)).
Let us check that the limit point u is an element of WW. To this aim we define the set

E:={ve L*0,T; H(Q\Tr;RY) : v(t) € H(Q\Ty;RY) for ae. t € (0,T)}.

Notice that E is a weakly closed subset of L?(0,T; H'(Q \ I'r;R?)), since it is closed and
convex. Moreover, we have {u, }n, {0, u,}» C E. Indeed

u,(t) =uF"t e HY(Q\TxRY) fort e [(k— 1), k), k=1,...,n,
0, (H)u,(t) = 0F tsurft ¢ HY(Q\T;RY) fort € [(k— 1)1, k), k=1,...,n.

Since u,, — w in L?(0,T; H'(Q \ I'r;R?Y)) and ©,,u/, — O in L?(0,T; H'(Q \ I'r; RY)), we
conclude that u, 01 € E. Finally, to show that u — w € Vp we observe

u, (t) — w, (t) = vt~ —wht e HL(Q\Ty;RY) for t € [(k— 1)1, km), k=1,...,n.
Therefore
{u, —w,}n C {ve L0, T; HY(Q\Tr;RY)) : v(t) € HH(Q\ Ty;RY) for ae. t € (0,T)},
which is a closed convex subset of L2(0,T; H'(Q\ T'r;R?)), and so it is weakly closed. Since
u, — win L2(0,T; HY(Q\ T'r;RY)) and w,, — w in L2(0,T; H' (2 \ To; RY)) as n — oo, we
get that u(t) —w(t) € Hy(Q\ T'y; R?) for ae. t € (0,7T), which implies u — w € Vp. O
We now use Lemma 3.2.4 to pass to the limit in the discrete equation (3.2.1).

Lemma 3.2.5. The function u € W given by Lemma 3.2.4 is a solution to (3.1.12)—(3.1.15),
according to Definition 3.1.5.
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Proof. We only need to prove that u € W satisfies (3.1.18). Fixed n € N, we consider a
function ¢ € C1(0,T; H(Q \ I'r; R?)) such that ¢(t) € HL(Q\ T'y; RY) for every t € (0,T),
and we set
ko k=1
gofb = @(kty,) fork=0,...,n, 5g0ﬁ S £ S Sy N 1,...,n.
Tn

By using 7,¢% € HE(Q\ Ty, ; RY) as test function in (3.2.1) and summing over k = 1,...,n
we get

Zm(éZUfL, oh) 2y + Z T (CEu), Egl)r2(0) + Z 7(D[O) Edul], O El) 120

k=1 k=1 k=1
n n
= w5 o8 e + Dl En i) 2on)- (3.2.19)
k=1 k=1

Let us define the approximating sequences
B,(t) =k, F(t) =0pF forte ((k—1Dm, k], k=1,...,n.

Thanks to the identity

n

n T
> T(8%uk, ob) ey = =D m(0ul 00k pae) = —/0 (un (1), P () L2(0 dt,
k=1 k=1

from (3.2.19) we deduce the following equality
T T
- / (U, ) 12() A + / (CEUy, E,,)12(q) dt
0 0
T — _—
+ / (D[E(Onty) — VO, O], EB,) 20 dt (3.2.20)
0

T T
= /0 (fn>¢n)L2(Q) dt + /0 (Fn,gn)LQ(aNQ) dt,

where f,, and F,, are the backward interpolants of { f¥}7_, and {F¥}?_,, respectively. Notice
that as n — oo we have

Po ¢ L0, T HYQ\PRY), @, ¢ in L*(0,T; LA RY),

fo— f in L*0,T; L*(Q;RY)), F, = F in L*0,T; L*(On; RY)).
By (3.2.14)—(3.2.18) and the above convergences we can pass to the limit as n — oo in (3.2.20),
and we get that u € W satisfies (3.1.18) for every ¢ € C}(0,T; H'(Q \ T'r;R?)) such that

o(t) € H5(Q\ Ty;RY) for every t € (0,7). Finally, we can use a density argument (see [23,
Remark 2.9]) to conclude that w € W is a solution to (3.1.12)—(3.1.15). O

3.3 Initial conditions

To complete our existence result, it remains to prove that the solution u € W to (3.1.12)—
(3.1.15) given by Lemma 3.2.4 satisfies the initial conditions (3.1.16) in the sense of (3.1.21).

We start by showing that the second distributional derivative i belongs to the space
L2(0,T; Hy' (2\To; RY)). By using the discrete equation (3.2.1), for every v € Hp (Q\To; R?)
with [[v]| g1(\rg) < 1 we have

(8%, v) 2| < ICll Lo @I BuL ] L2y + 1P| oo (@) Ol 2o (0.7 x ) | O B || 120
+ £l 2@ + CerllFrll 2on9):
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and taking the supremum over v, we conclude
k k k k
162517 1 o rgy < CUBUR N2 0) + 107 ESup |20y + 1120 + 1F0 12 (on0)

for a positive constant C' independent of n. We multiply this inequality by 7,,, we sum over
k=1,...,n, and we use (3.2.2) to obtain

ZTnHa? ﬁ||2 L) for every n € N, (3.3.1)

where C is a positive constant independent of n. The above estimate implies that the sequence
{ul,}, € HY(0,T; Hp' (Q\To; R?)) is uniformly bounded (1), (t) = 6%uk for t € ((k—1)7y, k7n)
and k = 1,...,n). Up to extract a further subsequence (not relabeled) from the one of
Lemma 3.2.4, we deduce that there is z3 € H'(0, T’; HBI(Q \ Tg; R%)) such that

ul, = 23 in H'(0,T; Hy (2 \ To; RY))  as n — . (3.3.2)

By using the following estimate

Hu;’), - H;L”LQ(O,T,Hgl(Q\FO)) S TnHu;,LHLQ(O’T,Hgl(Q\FO)) S CTn _> O as n _> OO7

we conclude that z3 = 1, which gives i € L2(0,T; H,' (Q \ To; RY)).
The solution u € W given by Lemma 3.2.4 satisfies

we L0, T; HH(Q\ T RY), 4 e L0, T; L*(Q; RY)),
and recalling Remark 1.2.7 we derive
u € Cu((0, T HYQ\TrsRY), i€ Cy([0, T); L* (4 RY)).
Therefore, by (3.2.14) and (3.3.2) for every t € [0,T] we obtain
un(t) = u(t) in LA(Q;RY), wul(t) —a(t) in Hy'(Q\To;RY) asn—oo, (3.3.3)
so that u(0) = u" and u(0) = u', being u,(0) = u° and u/,(0) = u® for every n € N.

To prove

h—0+ h

1 .
tim, 5 [ (1ett) = ol + i) = o' [y )t = 0
we will actually show as ¢t — 0%
ut) = u® in HY(Q\Tr;RY),  a(t) = u' in L2(Q;RY).

This is a consequence of an energy-dissipation inequality which holds for the solution u € W
0 (3.1.12)—(3.1.15) given by Lemma 3.2.4. Let us define the mechanical energy of u as

£() = 5 li0) a0y + 5(CEU(), But)) 2@y for t € [0,T]

Notice that £(t) is well defined for every ¢ € [0,T] since u € C9([0,T]; H'(Q \ I'7;RY)) and
u € CY([0,T]; L*(Q; RY)), and that £(0) = §||u1|yL2(Q) 3(CEu’, Eu®) 12 (q).
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Theorem 3.3.1. The solution uw € W to (3.1.12)—(3.1.15) given by Lemma 3.2./ satisfies for
every t € [0,T] the following energy-dissipation inequality

() + /0 t(]D[@Eu], OF) 12() ds < E(0) + Wian(1), (3.3.4)

where ©E is the function defined in (3.1.19) and Wi (t) is the total work at time t € [0,T],
which is given by

t
Wiot(t) i= / [(f, & — W) [2(q) + (CEu, Bw) 2(0) + (D[OEG], O Et) 2(qy)] ds
0

t
[ )220y + (o= ) oy s+ (000). 0 g0
+ (F), ult) — w(t) r2an0) — (' 9(0) 120y — (F(0),u” — w(0)) 2(a50)-

Remark 3.3.2. The total work Wy, (t) is well defined for every t € [0,T], since we have
F e C%0,T]; L? (0% RY)), w0 € CO([0, T]; L2(Q;RY)), w € CO([0, T); H'(Q \ T'r; RY)), and
w € CY([0,T); L?(;R%)). In particular, the function ¢ + Wy (t) is continuous from [0, 7]
to R.

Proof of Theorem 3.53.1. Fixed t € (0,T], for every n € N there exists a unique j € {1,...,n}
such that t € ((j — 1)7n, j7n]. After setting t,, == j7,, we can write (3.2.3) as

1 - —
5” n(t )||L2 @ T35 (CEUn( )s Etn(t)) 12(0) +/0 (D[O, ETy,], ©,ET;,) 120 ds
< E(0) + Wy (t),

(3.3.5)

where
tn B B
Wi(t) = / (s W, — W) 12(0) + (CEUn, EWy,) 12(0) + (D[, W), ©, EW,,) 120y ] ds
0

tn -
+/0 (i, @) 12(02) + (Fns W, — W07,) 12050y ds.

We want to pass to the limit as n — oo in (3.3.5) and we start studying the left-hand side.
Thanks to (3.2.2) and (3.3.1), as n — oo we have

[un(t) = n(t)| L2y < Tll0W || 12() < CTa — 0,

46 = T, oy < Iy < 0 S0 TP, sy < G 0.
k=1

The last two convergences, together (3.3.3), imply
Tp(t) = u(t) in L2(RY), @,(t) —a(t) in Hy'(Q\To;RY) asn — oo,
and since ||t (t) || g1 o\ry) + 185 (1) || L2 < C for every n € N, we conclude

Up(t) = u(t) in HY(Q\ T RY), @, (t) = a(t) in L2(GRY) asn— oo (3.3.6)

Hence, we get
l(®)l3 0y < lminf 7, (8132 (3:3.7)
(CEu(t), Eu(t))L2(Q) < linl}inf((CEﬂn(t), Eﬂn(t))Lz(Q). (3.3.8)
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Thanks to Lemma 3.2.4 and (3.1.19), as n — oo we obtain
0, Eu, = E(©,1,) - VO, 01, -~ E(0u) - VO 0 u=0FEu in L?(0,T; L*(Q;R™*?),

so that

t t

o (3.3.9)
< hnimf (D[@nEﬂ;]a @NEEITL)LQ(Q) dS,
n—0o0 0

since ¢ +— fOt(ID)Ecp(s),Ego(s))Lg(Q) ds is lower semicontinuous on L2(0,T; H'(Q \ I'r; R?))
and t < t,,.
Let us study the right-hand side of (3.3.5). By the following convergences as n — 0o:
fo— f in L*0,T; L*(:RY), @, —w, = a—w in L?(0,T;L*(Q;RY),

n

we deduce
tn ¢
h_>11’1 (fn,ﬂ% — @/n)LQ(Q) ds = / (f,u— w)Lz(Q) ds. (3.3.10)
In a similar way, we can prove
tn ¢
nh—>n;o ; ((CEﬂn, E@%)Lz(g) ds = /0 (CEU, EZU)L2(Q) ds, (3311)
tn o t
1i_>m (D[O, Eu,), @nE@;l)LQ(Q) ds = / (D[OFEY], 0FEw) 120 ds, (3.3.12)
since the following convergences hold as n — co:
EW, — Ew in L*(0,T; L2(; R&>%Y), CEw, — CEu in L*(0,T; L*(Q; R%*4),

6,Ew, — OFw in L*(0,T; L*(;R™1)), ©,Fu, = ©F4 in L*(0,T; L*(2;R™)).

Now, we use formula (3.2.10) to derive

tn

tn
/ (417,07, ) 120 ds = (@, (£), W, () r2(0) — (u',0(0)) 120 —/0 (U, Wy,) 2(2) ds.
0

By arguing as before, we can deduce

tn

t
lim [ (i, 0,) 20y ds = (@(t),@(t)) 2 () — (u',@(0)) 2y —/0 (4, @) 2(q) ds, (3.3.13)

n—oo 0
thanks to (3.3.6) and the following convergences as n — oo
wl, — W in L2(0,T; L2 (4 RY),  wl, — o in L2(0,T; L*(Q; RY)),

_ . 1 [ , .
[y, (t) — w(t)]| L2 (0) < / () — w(t)| p2(q ds — 0.

n J—1)n

Notice that in the last convergence we have used w € C°([0, T]; L?(£; R?%)). Similarly we have
th _
/0 (F iy, — W) 120y 0) ds = (F(t),Un(t) — Wn(t) 12(ay0) — (F(0),u” —w(0)) 125y 0)

tn
- / (F, up _Mn)L2(8NQ) ds,
0
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and by using (3.1.1), (3.3.6), the continuity of F from [0, 7] in L?(dxQ;R%), and
F, — F in L*(0,T; L>(ONQ;RY)),  w, —wp, —u—w in L2(0,T; L*(OnQ; RY))

as n — 0o, we get

tn

lim (Fo, W, —W0,,) 120y 0) ds = (F(£),u(t) — w(t) r2(ay0) — (F(0),u° —w(0)) 2oy 0)

n—oo 0
t
—/0 (F,u—w)r2@y0) ds. (3.3.14)

By combining (3.3.7)-(3.3.14), we deduce the energy-dissipation inequality (3.3.4) for every
t € (0, 7). Finally, for t = 0 the inequality trivially holds since u(0) = u" and %(0) = u!. [

Lemma 3.3.3. The solution uw € W to (3.1.12)~(3.1.15) given by Lemma 3.2.4 satisfies
u(t) = u® in H(Q\ T RY),  a(t) - ul in L2(RY) ast — 0T, (3.3.15)
In particular, u satisfies the initial conditions (3.1.16) in the sense of (3.1.21).

Proof. By sending t — 0% in the energy-dissipation inequality (3.3.4) and using the fact that
u € CY([0,T]; HY(Q\ T'7;RY)) and @ € C9 ([0, T); L*(Q;RY)) we deduce

£(0) < liminf &(t) < limsup &(t) < £(0),

t—0t+ t—0+

since the right-hand side of (3.3.4) is continuous in ¢, u(0) = u°, and (0) = u'. There-
fore there exists lim;_,o+ £(t) = £(0). We combine this fact with the lower semicontinuity
properties of ¢ — ||u(t)H%2(Q) and t — (CEu(t), Bu(t))2(q) to derive

m+(CEu(t),Eu(t))L2(Q) = ((CEuO,EuO)Lz(Q).

. i 2 o 12 1
Jm ()] F20) = ' a0y, Ji

Finally, since we have
w(t) —u' in L2(Q;RY), Eu(t) = Eu® in L(Q;RY™Y) ast — 07,

we deduce (3.3.15). In particular, we derive that the functions u: [0,T] — H'(Q\ I'r;R9)
and u: [0, T] — L%(;R%) are continuous at ¢ = 0, which implies (3.1.21). O

We are now in a position to prove Theorem 3.2.1.
Proof of Theorem 3.2.1. The proof is a consequence of Lemmas 3.2.5 and 3.3.3. 0

Remark 3.3.4. We have proved Theorem 3.2.1 for the d-dimensional linear elastic case,
namely when the displacement w is a vector-valued function. The same result is true with
identical proofs in the antiplane case, that is when the displacement u is a scalar function
and satisfies (15).

3.4 Uniqueness

In this section we investigate the uniqueness properties of system (3.1.12) with boundary
and initial conditions (3.1.13)—(3.1.16). To this aim, we need to assume stronger regularity
assumptions on the cracks {I';},co7] and the function ©. Moreover, we have to restrict
our problem to the dimensional case d = 2, since in our proof we need to build a suitable
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family of diffeomorphisms which maps the time-dependent crack I'; into a fixed set, and this
construction is explicit only for d = 2 (see [20, Example 2.14]).

We proceed in two steps; first, in Lemma 3.4.2 we prove a uniqueness result in every
dimension d, but when the cracks are not increasing, that is I'r = I'g. Next, in Theorem 3.4.4
we combine Lemma 3.4.2 with the uniqueness result of [23] and the finite speed propagation
result of [18] to prove the uniqueness in the case of a moving crack in d = 2.

Let us start with the following lemma, whose proof is analogous to the one of Proposi-
tion 2.10 of [23].

Lemma 3.4.1. Let u € W be a solution to (3.1.12)~(3.1.15), according Definition 3.1.5,
satisfying the initial condition u(0) = 0 in the following sense:

Then u satisfies

T T
— / (F(0) (1)) 12yt + / (F(8), 0(1)) 2oy dt
0 0

for every ¢ € Vp such that o(T') = 0, where OEw is the function defined in (3.1.19).

Proof. We fix ¢ € Vp with ¢(T') = 0 and for every ¢ > 0 we define the function

We have that ¢. € Vp and ¢.(0) = ¢.(T") = 0, so we can use ¢, as test function in (3.1.18).
By proceeding as in [23, Proposition 2.10] we obtain

T T
i [0, o0yt = [ (0(0) 2001200y
e— 0 0
T T
1ir(1)1+ (CEu(t), E¢e(t))r2(0) dt:/ (CEu(t), Ep(t)) 2 dt,
e— 0 0
T T
tim [ (@O de = [ (70, 9001200 .
e— 0 0

It remains to consider the terms involving D and F'. We have
T
| @), 00 e t)re) i

€ T
= [ @Oz, 0B 20 dt + | (BIOOEIDLOOEo()) 1200 a1

and by the dominated convergence theorem we get as ¢ — 0"

[ @i Lot B

g
< 1D e sy O 0.1 / 10t Bi(t) | 2 | B0 () | 2y dt — 0,
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T T
/ (DO Ei(t)], O(t) Ep(t)) 12y dt — /0 (DIOW) Ei(t)], O(t) Bp(t)) 12(cy dt.
Similarly, we have

T € t T
| EO o= [ FO. Lo+ [ FO0O)mo0
0 0 €

and as ¢ — 0T

€ t €
[0 oo it < [IFOIa0 el it 0

T T
/ (F (), () 2oy At — /O (F (), 0()) 2oy .

By combining together the previous convergences we get the thesis. O

We prove now the uniqueness result in the case of a fixed domain, that is I'r = I'g, by
following the same procedure adopted in Theorem 1.2.10 of Chapter 1. On the function ©
we assume

0 € Lip([0,T] x Q), VO € L=((0,T) x ;RY), (3.4.1)
while on I'r = I'g we require only (E1)-(E3).

Lemma 3.4.2. Assume that O satisfies (3.4.1) and I'r =T'g. Then the viscoelastic dynamic
system (3.1.12) with boundary conditions (3.1.13)—(3.1.15) has a unique solution, according
to Definition 5.1.5, satifying u(0) = u® and u(0) = u' in the sense of (3.1.21).

Proof. Let u1,u2 € W be two solutions to (3.1.12)—(3.1.15) with initial conditions (3.1.16).
The function u := u; — ugy satisfies

.1 2 N2
Jim 5 [ (0 o,y + 10 ) dt =0 (3.4.2)

hence by Lemma 3.4.1 it solves

T T
- / (t), §(1)) 12y df + / (CEu(t), Bol(t)) 120y dt
0 0 (3.4.3)

T
+ [ ez, e Be(t) 1z dt =0
for every ¢ € Vp such that ¢(7T") = 0. We fix s € (0,7] and we consider the function

= [umdr telo,s],
Pell) = {0 t tels,T).

Since s € Vp and ¢s(T") = 0, we can use it as test function in (3.4.3) to obtain
- [ 0w+ [ (CBAW, Bt o)
+ [ Ie®ED]. 00 Bon(t) )it =
In particular we deduce

1 /% d 1 /°d
—2/0 &Hu(t)H%Q(Q) dt+2/0 a(CESOS(t%ESOs(t))L?(Q) dt

+ [ e Eun). o) Bon()ao) dt =
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which implies

1 1 s .

§HU(S)H2L2(Q) + i(CEQDS(O)vEQOS(O))Lz(Q) :/o (D[O(t)Eu(t)], O(t)Eps(t))12(0) dt, (3.4.4)
since u(0) = ps(s) = 0. From the distributional point of view, the following identity holds
d ' 72 200y dxd

—(©Fu) = ©Fu+ ©OFu € L*(0,T; L*(2; R*%)). (3.4.5)

dt
Indeed, for every ¢ € C2°(0,T; L?(£2; R¥*4)) we have

T d
| GO Bu®). (1) (0

-/ (O Eu(t) £(0)) g

= —/OT (E(O)u(t) — VO(t) ©u(t), $(1)) 210 dt

= /OT(E(Q(t)U(t)) + E(O(t)u(t) — VO(t) 0 u(t) — VO(t) © u(t), p(t)) 2o dt
_ /O O Bult) + 0@ Baw), (1)) 12(ey dt.

In particular @ Bu € H'(0,T; L?(Q; R¥*%)), so that by (3.4.2)
00)Bu(0) 320 = lm, / 160 Bu(®) ey

< H@H%OO((O,T)XQ) hlggg h/o Hu(t)H%Tl(Q\Ft) dt =0,

which yields ©(0)Eu(0) = 0. Thanks to (3.4.5) and to Ou € H'(0,T; L?(£;R?)), we deduce
d
dt
= 2(D[OFu], 0Ep,)12(0) + (D[OEL], OEps)2(q) + (D[OEU], OE$,) 120,

which implies

0

(D[@EU], @EQOS)LQ(Q)

= /(j [i(D[@Eu], @Eﬁps)Lz(Q) - Q(D[@EU], GESOS)L?(Q) - (D[@Eu], @EQOS)L2(Q):| dt
< (D[O(s)Eu(s)], O(s) Eps(s)) 2() — (DO(0) Eu(0)], ©(0) Eps(0)) L2(0)

+ /0 S [2(D[OFU], ©Fu)12(0))* ((DIOFp,), OF,) 12 (0)

D=

— (D[OEY], 0Ep,) LQ(Q)} dt
< /0 (DIOEU], 0Fu) 2(0) + (DIOEw,], OBp,) 2(q) — (DIOEuU], OE,) 20y | dt

< D) 1€ w1 x00 /0 1Bl 20t

since Eys(s) = ©(0)Eu(0) = 0 and Eps = Euin (0, s). By combining the previous inequality
with (3.4.4) and using the coercivity of the tensor C, we derive

IN

1 1
§(CE%(0)7 Eps(0)r2) + §||U(8)H%2(Q)

Il e @ 1012 (0.1 x60 / | By (8)] 22 gyt

A 1
5 1B 0)[720) + 516l 12(0)

IN
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Let us now set ((t) == f(f u(7)dr, then

HE%(O)”%%Q) = ||EC(5)||%2(Q)7
[Es (Ol 720) = I1EC(E) = BC)720) < 2Bz () + 2 EU$) 20

from which we deduce
EHEC(S)!F +1|| ()72 < C SHEC(t)HQ dt + Cs|| E¢(s)|7 (3.4.6)
9 r2@) T gtz e =+ L2(9) 5 5)llL2 () -

where C' == 2\|D||Loo(9)||®H%oo((07T)XQ). Therefore, if we set sg := ;\—é, for all s < sg we obtain

A A ’
THIEC(S) 220y < (21 - Cs) IEC(9) 172 < C/ 1022 (o -
0

By Gronwall’s lemma the last inequality implies E((s) = 0 for all s < s9. Hence, thanks
to (3.4.6) we get ||u(s)|]%2(m < 0 for all s < sg, which yields u(s) = 0 for all s < sp. Since
sg depends only on C, D, and ©, we can repeat this argument starting from sg, and with a
finite number of steps we obtain u = 0 on [0, 7. O

We now are in a position to prove the uniqueness in the case of a moving crack. We
consider the dimensional case d = 2, and we require the following assumptions:

(F1) there exists a C?! simple curve I' C Q C R?, parametrized by arc-length ~: [0,£] — €,
such that I'N9Q = ~v(0) U~(¢) and Q \ I" is the union of two disjoint open sets with
Lipschitz boundary;

(F2) Ty = {y(0) : 0 < o < s(t)}, where s: [0,7] — (0,¢) is a non-decreasing function of
class Cb1;

(F3) |5(t)]? < é\—;{ for every t € [0, 7], where \; is the ellipticity constant of C and Ck is the
constant that appears in Korn’s inequality (3.1.2).

Remark 3.4.3. Notice that hypotheses (F1) and (F2) imply (E1)—-(E3). Moreover, by (F2)
we have I'p \ T'g CC Q.

We also assume that © satisfies (3.4.1) and that there exists a constant € > 0, independent
of t, such that

O(t,z) =0 foreveryt e [0,T] and z € {y € Q: |y —y(s(t))| < €} (3.4.7)

Theorem 3.4.4. Assume d =2, (F1)-(F3), and that © satisfies (3.4.1) and (3.4.7). Then
the system (3.1.12) with boundary conditions (3.1.13)—(3.1.15) has a unique solution u € W,
according to Definition (3.1.5), satisfying u(0) = u® and u(0) = u! in the sense of (3.1.21).

Proof. As before let uj,us € W be two solutions to (3.1.12)—(3.1.15) with initial condi-
tions (3.1.16). Then u = wu; — ug satisfies (3.4.2) and (3.4.3) for every ¢ € Vp such that
©(T) = 0. Let us define

to == sup{t € [0,T] : u(s) = 0 for every s € [0, ]},
and assume by contradiction that ¢y < T". Consider first the case in which tp > 0. By (F1),

(F2), (3.4.1), and (3.4.7) we can find two open sets A; and Ag, with Ay CC Ay CC Q, and
a number § > 0 such that for every ¢t € [to — 6,%0 + ] we have y(s(t)) € A1, O(t,x) = 0 for
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every € Ay, and (As\ A1) \T is the union of two disjoint open sets with Lipschitz boundary.
Let us define

V= {ue H ((A2\ A)\Tsy_5;R?) :u=0o0n dA; UDA}, H':=L*(A3\ A1;R?).

Since every function in V! can be extended to a function in HE(Q\ Ty,—s;R?), by standard
results for linear hyperbolic equations (se, e.g., [24]) we deduce that ii € L2(tg—0, to+0; (V1))
and u satisfies for a.e. t € (tg — d,t0 + 9)

(ii(t), V) g1y + (CEu(t), E) g =0 for every ¢ € V.

Moreover, we have u(tg) = 0 as element of H' and (ty) = 0 as element of (V') since
u(t) = 0 1in [tg — 6,t0), u € CO[to — &, t0]; HY), and @ € CO([tg — 8, to; (V1)). We are now
in a position to apply the finite speed propagation result of [18, Theorem 6.1]. This theorem
ensures the existence of a third open set Az, with A1 CC A3z CC As, such that, up to choose
a smaller §, we have u(t) = 0 on 0A3 for every t € [tg,to + d], and both (2\ A3) \ I" and
A3 \ T are union of two disjoint open sets with Lipschitz boundary.

In 2\ A3 the function u solves

to+0 to+0
/ / u(t,x) - o(t, z)de dt + / C(x)Eu(t,z) - Ep(t,z)dxdt
to Q\Ag to—0 Q\A3
to+0
/ / O(t,z)Eu(t,x) - O(t,x)Ep(t,z)dzdt =0
to Q\A3

for every o € L2(to—0,to+0; V2) N H (tg — 8, to + 6; H?) such that o(tg—0) = p(tg+4) = 0,
where

V2i={ue H((Q\ A3) \Ty_5;R?) :u =0 on dpQUIA3}, H?:=L}Q\ A3;R?).

Since u(t) = 0 on IpQLUOA3 for every t € [tg — d,to + d] and u(ty — 0) = 4(to — ) = 0 in the
sense of (3.1.21) (we recall that w = 0 in [tp — d,t0)), we can apply Lemma 3.4.2 to deduce
that u(t) = 0 in Q\ Ajs for every t € [to — 0, o + 9.

On the other hand in As, by setting

Vt3 ={u € Hl(Ag \ I’t;RQ) :u=0on 043}, H3 = L2(A3;]R2),

we get that the function u solves

to+0 to+9
/ / (t,z) - ¢o(t,x) dadt + / C(x)Eu(t,z) - Ep(t,z)dxdt =0
to As to—9d As

for every function o € L%(tg—§,to+0; ‘A/;%Jr(;)ﬂHl(to—é, to+0; H3) such that o(t) € V;3 for a.e.
t € (to—9d,to+0) and @(tg — ) = p(to+ 0) = 0. Here we would like to apply the uniqueness
result contained in [23, Theorem 4.3] (which is a slightly generalization of Theorem 1.2.10 of
Chapter 1) for the spaces {ﬂg}te[to_&tﬁg] and H?, endowed with the usual norms, and for
the bilinear form

a(u,v) = A C(z)Eu(z) - Ev(x)dz for u,v € Vtiﬂg. (3.4.8)
3

As show in [20, Example 2.14] we can construct two maps ®, ¥ € CH([tg—, o+ J] x A3z; R?)
such that for every ¢t € [0,T] the function ®(¢): A3 — As is a diffeomorfisms of A3 in itself
with inverse W(t): A3 — A3. Moreover, ®(0,y) = y for every y € Az, ®(t,I' N A3) =T N A3
and ®(t,Ty,_sNA3) = 1N A3 for every t € [tg—J,to+6]. For every t € [tg—d,ty+0d], the maps
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(Quu)(y) = u(®(t,y)), u € V> and y € As, and (Ryv)(z) = v(¥(t,z)), v € V3 _; and x € A3,
provide a family of linear and continuous operators which satisfies assumptions (U1)—(U8)
of [23, Theorem 4.3]. The only condition to check is (U5), which is a ensured by (F3). Indeed,
the bilinear form a satisfies the following ellipticity condition:

A .
2 L2 2 3
a(u, u) = M| Eullz2(ay) = a|’u‘|‘4%+é — Mlullfs  for every u € Vi s, (3.4.9)
where C is the constant in Korn’s inequality in f/;?) 450 Damely
2 A 2 2 73
IVull3a(agy < Cr (Nul2aay) + 1 BulZagay) ) for every u e Vi,
Therefore have to show that ® satisfies

|D(t,y)|* < %\1 for every t € [to — d,t9 + 8] and y € As,
K

which is analogous to the condition (1.2.4) appearing in Chapter 1. Thanks to (F3), we can
construct the maps ® and ¥ in such a way that

. A _
|®(t, y)|* < CTI( for every t € [to — d,t0 + 0] and y € A3,

as explained in [20, Example 3.1]. Moreover, every function in f/;i 45 can be extended to a
function in H'(Q\T;R?). Hence, we can use for Korn’s inequality in TA/ti s the same constant
Ck of (3.1.2). This allows us to apply the uniqueness result [23, Theorem 4.3], which implies
u(t) = 0 in Az for every ¢ € [to,to + d]. In the case tg = 0, it is enough to argue as before in
[0, 6], by exploiting (3.4.2). Therefore u(t) = 0 in Q for every t € [to, to+d], which contradicts
the maximality of ¢y. Hence to = T, that yields u(t) = 0 in  for every t € [0, T. O

Remark 3.4.5. Also Theorem 3.4.4 is true in the antiplane case, i.e, for (15), with identical
proof. Notice that, when the displacement is scalar, we do not need to use Korn’s inequality
in (3.4.9) to get the coercivity in \A/ti 4o of the bilinear form a defined in (3.4.8). Therefore,
in this case in (F3) it is enough to assume [$(¢)|> < A;.

3.5 An example of a growing crack

We conclude this chapter with an example of a moving crack {I't};c[or) and a solution to
system (3.1.12)—(3.1.16) which satisfy the dynamic energy-dissipation balance (16), similarly
to the purely elastic case of [17].

In dimension d = 2 we consider an antiplane evolution, which means that the displacement
u is scalar, and we take 2 :== Bg(0) C R?, with R > 0. We fix a constant 0 < ¢ < 1 such that
cl' < R, and we set

I, :=Qn{(0,0) eR*: 0 <ct} foreveryte [0,T].
Let us define the following function

S(x1,z2) = Im(v/x1 +ixg) = \/§\/|a;2|TfI31 z € R?\ {(c,0): 0 <0},

where I'm denotes the imaginary part of a complex number. Notice that the function S
belongs to HY(Q\ T'p) \ H2(2\ Ty), and it is a solution to

AS=0 iHQ\Fo,
VS - v=05=0 onTly.
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We consider the function

2
N3
and we define by w(t) its restriction to 0. Since u(t) has a singularity only at the crack-
tip (ct,0), the function w(t) can be seen as the trace on 02 of a function belonging to

H2(0,T; L?(Q)) N HY(0,T; H'(Q \ I'y)), still denoted by w(t). It is easy to see that u solves
the wave equation

u(t,x) = S(M x2> te[0,T], x € Q\ Ty,

i(t) — Au(t) =0 in Q\Ty, te€[0,T],
with boundary conditions
u(t) =w(t) on 9, te[0,T],

)
Ty =Vu(t) - v=0 onTy, tel0,T),
ov
and initial data

T

— 2
ud (21, 1) = ﬁS( v

2 c x

1 1 2

= L= ().
u'(z1,x2) NN c261$< T 62,x2> € L*(2)

Let us consider a function O satisfying the regularity assumptions (3.4.1) and condi-
tion (3.4.7), namely

.732) (S Hl(Q\Fo),

O(t)=0 on B.(t) :={z € R : |z — (ct,0)| < &} for every t € [0,T],

with 0 < e < R—T'. In this case u is a solution, according to Definition 3.1.5, to the damped
wave equation

i(t) — Au(t) — div(0*(H)Va(t)) = f(t) in Q\ Ty, t €[0,T),
with forcing term f given by

f = —div(0?Vai) = —VO - 20Vu — ©2Au € L*(0,T; L*(Q2)),
and boundary and initial conditions

u(t) =w(t) on dQ, te0,T],

ou ou

a(t) + @2(15)%@) =0 onTy, tel0,T],
u(0) = u®,  w(0) =u' in Q\T.

Notice that for the homogeneous Neumann boundary conditions on I'y we have used the fact
that %(t) = Viu(t) - v = du(t) = 0 on I';. By the uniqueness result proved in the previous
section, the function w coincides with the solution given by Theorem 3.2.1. Thanks to the
computations done in [17, Section 4], we know that u satisfies for every ¢ € [0, T the following
dynamic energy-dissipation balance for the undamped equation, where ¢t coincides with the
length of I'; \ T'p:

1, . 1
5”““)”%2(9) + §||VU('5)H%2(Q) +ct

ou (3.5.1)

1. 1 ! ,
= 5”“(0)”%2(9) + §||VU(0)HQL2(Q) +/0 (ay(3)7w(s))L2(8Q) ds.
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Moreover, we have

t ou . t . L ..
| G zomy ds = [ (Tuls). Vi) gy ds = [ (is) (5) g ds

(3.5.2)
+ (u(t), w(t))r2(e) — (@(0),w(0)) 2(0)-
For every t € [0,T] we compute
(f(@),a(t) —w(t)) ) = —/ div[0?(t, z)Va(t, z)](u(t, x) — w(t, z)) dz
(Q\Bs(t))\rt

_ / div[O2(t, 2)Va(t, 2)(alt, ¥) — w(t, )] dz
(Q\Bs(t))\rt
+/ O2(t, x)Vu(t, z) - (Va(t,z) — Vab(t, x)) da.
@B,

If we denote by @7 (t) and w™(t) the traces of 4(t) and ww(t) on I'; from above and by ™ (t)
and w~ (t) the trace from below, thanks to the divergence theorem we have

/ div[O2(t, 2)Va(t, o) (alt, ¢) — i(t, 2))] da
(O\BLONTY

= 2x@xu:v—u')$:z: Qx@a:ux—u')xx
= m@ (t )5 (L a)(alt, 2) —w(t 2))d +/{)Ba(t)@ (t,2) 5 () (alt o) —w(t 2))d

- / O%(t,z)0pt ™ (t, z) (0w (t, x) — W (t,z)) dH  (z)
(Q\B:(t))NC;

—|—/ O%(t, z)0ptu™ (t, x) (0 (t,x) — W™ (t,z)) dH (z) =0,
(Q\B:(t))NC;

since u(t) = w(t) on 9N, O(t) = 0 on IB(t), and du(t) = 0 on I';. Therefore for every
t €10,T] we get

(F(0), (1) = (1)) 20y = 1O Vilb)[220) — (OO Vi(t), OV (t) oy (353)

By combining (3.5.1)—(3.5.3) we deduce that wu satisfies for every t € [0,T] the following
dynamic energy-dissipation balance

1. 1 ¢ .
5””@)”%2(9) + §\|Vu(t)H%2(Q) +ct +/0 1©(s)Vir(s) |72 ds (3.5.4)
L. 1 o
= 5”“(0)”%2(9) + §||VU(0)||%2(Q) + Wiat (1),

where in this case the total work takes the form
Wiat(t) ::/0 [(f(5),a(s) = () L2 () + (Vu(s), Vid(s)) 2o ] ds
+/0 [(©(5)Vi(s), O(s) Vi (s)) p2(q) — (i(s), W(s)) 12()] ds

+ ((t), w(t)) r2(0) — (@(0), w(0)) L2(0)-

Notice that equality (3.5.4) gives (16). This show that in this model the dynamic energy-
dissipation balance can be satisfied by a moving crack, in contrast with the case © = 1, which
always leads to (14).






Chapter 4

A phase-field model of dynamic
fracture

In this chapter we prove an existence result for the dynamic phase-field model of fracture
with a crack-dependent dissipation (D1)—(Ds).

The chapter is organized as follows: in Section 4.1 we list the main assumptions on our
model, and in Theorem 4.1.5 we state our existence result. Section 4.2 is devoted to the
study of the time discretization scheme. We construct an approximation of our evolution
by solving, with an alternate minimization procedure, problems (D;) and (D;). Next, we
show that this discrete evolution satisfies the estimate (4.2.17), which allows us to pass to
the limit as the time step tends to zero. For every k € NU {0} we obtain the existence of a
dynamic evolution ¢ — (u(t),v(t)) which satisfies (D1) and (D3), and the energy-dissipation
inequality (4.2.32). We complete the proof of Theorem 4.1.5 in Section 4.3, where we prove
that for k > d/2 our evolution is more regular in time, and it satisfies the dynamic energy-
dissipation balance (18). Finally, in Section 4.4 we study the dynamic phase-field model
without dissipative terms (D;)—(Ds3).

The results contained in this chapter are the basis of the submitted paper [7].

4.1 Preliminary results

Let T be a positive number and let Q € R? be a bounded open set with Lipschitz boundary.
We fix two (possibly empty) Borel subsets dp, 2, dp,§2 of 092, and we denote by dn, 2, In, 2
their complements. We introduce the spaces

Hp (GRY) = {y € H'(Q;R?) :4p = 0 on 9p, 0},
HEQ(Q) ={p € H(Q): ¢ = 0 on dp, 0},
and we denote by HE}(Q;Rd) the dual space of HEI(Q;]RCZ). The transpose of the natural

embedding Hbl (4 RY) — L2(;RY) induces the embedding of L?(Q;R?) into HE}(Q;]Rd),
which is defined by

(9:0) 51 (0) = (9V)12@) for g € LA(QRY) and ¢ € Hp, (R,

Let C: Q — Z (R4 RI%d) he a fourth-order tensor field satisfying the following natural

sym>? “Ssym
assumptions in linear elasticity:

C e L®(Q; LRy Rs), (4.1.1)
(C(z)&1) - & =& - (C(x)&2) for a.e. z € Q and for every &;,& € R‘si;g, (4.1.2)

87
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C(z)€- &> Nlé> for ae. z € Q and for every £ € R¥X4 (4.1.3)

sym>

for a constant Ag > 0. Thanks to second Korn’s inequality there exists a constant C'x > 0,
depending on 2, such that

IVl r2@) < Cr (¢l 2@ + BV r2@)  for every 1 € H' (4 RY).

By combining Korn’s inequality with (4.1.3), we obtain that C satisfies the following ellipticity
condition of integral type:

(CEY, BY)12(q) = coll$ling) — alldllfeq for every ¢ € H'(Q;RY), (4.1.4)

for two constants ¢y > 0 and ¢; € R.
We fix € > 0 and we consider a map b: R — [0, +00) satisfying

b € C(R) is convex and non-decreasing, (4.1.5)

b(s) > n for every s € R and some n > 0.

We define the functionals elastic energy &: H'(Q;R?) x H'(Q) — [0, 00] and surface energy
A HY(Q) — [0,00) in the following way:

1

& (u,v) = 2/91)(1}(93))((:(93)Eu(x) - Bu(x) dz,

H(v) = 415/Q|1—v(a:)|2dx+5/Q|Vv(a:)\2d:c

for u € H'(Q;R?) and v € H'(Q). We also define the kinetic energy .# : L?(Q; R?) — [0, 00)
and the dissipative energy 4 : H*(Q) — [0, 00) for every k € NU {0} as

k
H(w) = ;/ﬂ\w(x)\zdw, G (o) = ;ai/ﬂ |Vio(z)|*da

for w € L2(Q;R?%) and o0 € H*(Q), where o4, i = 0,...,k, are non negative numbers with
g, ag > 0 (we recall that H°(Q) := L?(Q)). Notice that, by [1, Corollary 4.16], the functional
¢ induces a norm on H*(Q) which is equivalent to the standard one. In particular, there
exist two constants Sy, 81 > 0 such that

Bollo gy < 9(0) < Billoldug, for every o € HH(Q).
Finally, we define the total energy .7 : H'(Q;RY) x L2(;R?Y) x HY(Q) — [0, 0] as
F(u,w,v) =K (w) + &(u,v) + H(v)
for u € H'(Q;R?), w € L2(Q;R?), and v € HY(Q).

Throughout the chapter we always assume that C and b satisfy (4.1.1)—(4.1.3), (4.1.5),
and (4.1.6), and that ¢ is a fixed positive number. Given

wy € H*(0,T; L2(Q;RY)) n HY(0, T; H' (% RY)), (4.1.7)
wy € HY(Q) N H*(Q) with wy < 1 on dp, 9, (4.1.8)
f e L0, T LAQRY), g e HY(0,T; HyL(9RY), (4.1.9)
u’ —wi(0) € Hp, (%R,  u' € L2 (4 RY), (4.1.10)
v —wy € HE, () N H*(Q) with v° < 1in Q, (4.1.11)
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we search a pair (u,v) which solves the elastodynamics system

i(t) — div[b(v(t))CEu(t)] = f(t) + g(t) inQ, tel0,T], (4.1.12)
with boundary conditions formally written as
u(t) =w1(t) ondp,Q, te€l0,T], (4.1.13)
v(t) =we on dp,, te0,T], (4.1.14)
(b(v(t))CEu(t))y =0 on dn,Q2, te]0,T], (4.1.15)
and initial conditions
u(0) =u°, w(0)=u', v(0)=v" in Q. (4.1.16)

In addition, we require the irreversibility condition:
v(t) <wv(s) InQ for0<s<t<T, (4.1.17)
and for a.e. t € (0,7T) the following crack stability condition:
& (u(t),v") — & (u(t), v(t)) + A (v") — H(v(t))
k
. . : 4.1.18
+ Zai(vlz}(t), Vi® = V'(t))p2q) > 0 ( )
i=0

among all v* —wq € H})Q(Q) N H*(Q) with v* < v(t). Notice that the space H'(Q) N H*(Q)
coincides with either H1(Q) (when k = 0) or H*(Q) (for k > 1). Finally, for every ¢ € [0, 7]
we ask the dynamic energy-dissipation balance:

¢
F(u(t),u(t),v(t)) —I—/ G (i(s))ds = .F (u®, ul, %) + Wt (u, v; 0, 1), (4.1.19)
0
where #jot(u,v;t1,ta) is the total work over the time interval [tq,ts] C [0,7], defined as

Wiot(u,v;t1,t2) ::/ i [(f(s),ﬂ(s) - wl(s))Lz(Q) + (b(v(s))CEu(s), Ewl(s))Lz(Q)] ds

- [ D ey + 5 ) 0161 |
(a(tz), w1 (t2))r2o) + (9(te), ultz) — wit2)) 1 o
( ¢

= (A(t1),w1(t1)) 2y — (9(t1), ults) — wl(tl»HEll(Q)'

+

Remark 4.1.1. A simple prototype for the function b is given by
b(s):=(sVv0)2+n forsecR.

In this case, the elastic energy becomes
1
E(u,v) = 3 / [(v(x) V 0)* + n]C(z) Eu(x) - Bu(z) dz (4.1.20)
Q

foru e H i(Q;Rfl) and v € H'(Q2), which corresponds to the phase-field model of dynamic
fracture (D;1)—(Ds3) considered in the introduction. Usually, in the phase-field setting, the
elastic energy functional is defined as

1

3 [0 + €@ Pu(o) - Bu(e) do

for u € HY(Q;RY) and v € H'(Q), with v satisfying 0 < v < 1. In our case, due to the
presence of the dissipative term introduced in (D3) and (Ds3), we need to consider phase-field
functions v which may assume negative values. Therefore, we have to slightly modify the
elastic energy functional by considering (4.1.20).
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Remark 4.1.2. We give an idea of the meaning of the term ¢(?0) in the phase-field setting,
by comparing it with a dissipation, in the sharp-interface case, which depends on the velocity
of the crack-tips. We consider just an example in the particular case d = 2 and &k = 0
of a rectilinear crack I'y == {(0,0) : 0 < s(¢)}, t € [0,7T], moving along the z;-axis, with
s € C1([0,T]), s(0) = 0, and 5(t) > 0 for every t € [0, T]. In view of the analysis done in [4],
the sequence v.(t) which best approximate I'; takes the following form:

dist(z, I'y)
5

ve(t,z) = ( > for (t,z) € [0,T] x R?.
Here, U: R — [0,1] is a C! function satisfying ¥(s) = 0 for |s| < §, with 0 < § < 1, and
WU(s) =1 for |s| > 1. The function v. € C*([0,T] x R?) is constantly 0 in a eé-neighborhood

of I't, and takes the value 1 outside a e-neighborhood of I';. Moreover, its time derivative

satisfies '
oct,n) = —Doye <~’C—<<t>0>

- ) for (t,x) € [0,T] x R?,

where ®(y) = U(dist(y,[g)) for y € R2. In particular for every t € [0, 7] we deduce

o () 2y = 5(t)? /RZ o <x—(s(t)0>>

g2 €

2

dz = $(t)? /RQ 101D (y)|* dy = Cops(t)2.

Therefore, this term can be used to detect the dissipative effects due to the velocity of the
moving crack. With similar computations, if there are m crack-tips with different velocities
5i(t), i = 1,...,m, then the term Hi;s(t)H%Q(Q) corresponds to a dissipation of the form

S, C;s3(t), with C; positive constants.

To precise the notion of solution to problem (4.1.12)-(4.1.19), we consider a pair of func-
tions (u,v) satisfying the following regularity assumptions:

we CO0, T HY (4 RY)) N CH([0, T]; L* (9 RY)) N H?(0, T; Hp (4 RY)),
u(t) —wi(t) € Hp, (Q;R?) for every t € [0,T],

ve C%0,T); HY(Q)) N HY(0,T; H*(Q)),

v(t) —wq € HEQ(Q) and v(t) < 1in § for every t € [0, 7.

4.1.21)
4.1.22)
4.1.23)

)

(
(
(
(4.1.24
Definition 4.1.3. Let wq, wa, f, and g be as in (4.1.7)-(4.1.9). We say that (u,v) is a weak
solution to the elastodynamics system (4.1.12) with boundary conditions (4.1.13)—(4.1.15), if

(u,v) satisfies (4.1.21)—(4.1.24), and for a.e. t € (0,T) we have
(u(t), 1/1>H511(Q) + (b(v(t))CEu(t), E¥) 2y = (f(1),¥) r200) + (9(1), 1/1>H511(Q) (4.1.25)

for every ¢ € Hll)l(Q;]Rd).

Remark 4.1.4. Since b satisfies (4.1.5) and (4.1.6), and v(t) < 1 for every ¢ € [0,T], the
function b(v(t)) belongs to L>() for every t € [0, T]. Hence, equation (4.1.25) makes sense
for every 9 € Hll)l(Q;]Rd). Moreover, if (u,v) satisfies (4.1.21)—(4.1.24), then the function
(t1,t2) = Wiot(u, v;ty, t2) is well defined and continuous, thanks to the previous assumptions
on C, b, wy, f, and g.

We state now our main result, whose proof will be given at the end of Section 4.3.

Theorem 4.1.5. Let k > d/2 and let wi, wa, f, g, u°, u', and v° be as in (4.1.7)~(4.1.11).
Then there exists a weak solution (u,v) to problem (4.1.12) with boundary conditions (4.1.13)—
(4.1.15) and initial conditions (4.1.16). Moreover, the pair (u,v) satisfies the irreversibility
condition (4.1.17), the crack stability condition (4.1.18), and the dynamic energy-dissipation
balance (4.1.19).
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Remark 4.1.6. According to Griffith’s dynamic criterion (see [41]), we expect the sum of
kinetic and elastic energy to be dissipated during the evolution, while it is balanced when we
take into account the surface energy associated to the phase-field function v. This happens
in our case if we also consider fot 4(0)ds. The presence of this term takes into account
the rate at which the function v is decreasing and it is a consequence of the crack stability
condition (4.1.18).

We need k& > d/2 in order to obtain the energy equality (4.1.19). Indeed, in this case
the embedding H*(Q) — C°(Q) is continuous and compact (see, e.g., [1, Theorem 6.2]),
which implies that o(t) € C°(Q) for a.e. t € (0,7). This regularity is crucial, since we
obtain (4.1.19) throughout another energy balance (see (4.3.20)), which is well defined only
when v(t) € L>®(9).

Remark 4.1.7. In Theorem 4.1.5 we consider only the case of zero Neumann boundary data.
Anyway, the previous result can be easily adapted to Neumann boundary conditions of the
form

(b(v(t))CEu(t))v = F(t) on dy,Q, te 0,7, (4.1.26)

provided that F' € H(0,T; L?(0n,Q;R?)). In this case a weak solution to problem (4.1.12)
with Dirichlet boundary conditions (4.1.13) and (4.1.14), and Neumann boundary condi-
tion (4.1.26) is a pair (u,v) satisfying (4.1.21)—(4.1.24) and for a.e. t € (0,T) the equation

Gi(1),) 151 @)+ (OOE)CEU), B) 12 = (F(0), )2y + (00, 91 )

for every ¢ € Hbl(Q;Rd), where the term g(t) € HB}(Q;Rd) is defined for ¢t € [0,7] as

<§(t)a¢>H—1(Q) = <9(t)7¢>H51(Q) +/8 QF(t7f’3) : 7/’(37)d<%ﬂd_1(1‘) for ¢ € H})I(Q;Rd).

Since § € H'(0,T; HB}(Q;Rd)), we can apply Theorem 4.1.5 with ¢ instead of g, and we
derive the existence of a weak solution (u,v) to (4.1.12)—(4.1.14) with Neumann boundary
condition (4.1.26).

In the next lemma we show that for & > d/2 the dynamic energy-dissipation balance can
be rephrased in the following identity:

Bp (u(t), v(t))[0()] + DA (v(t)[0(t)] + F(5(t)) =0 for ae. t € (0,T), (4.1.27)

where the derivatives 0,& and 9.9 take the form

0p& (u,v)[x] = ;Ab(v)x(CEu -Budz  for u € H'(Q;R?) and v, x € H(Q) N L®(Q),

0 (v)[x] = zléj/gz(v—l)xdx—i-%/QVv-dem for v, x € H'(Q).

Lemma 4.1.8. Let k > d/2 and let wy, wa, f, g, u®, u', and v° be as in (4.1.7)-(4.1.11). As-
sume that (u, v) is a weak solution to problem (4.1.12)—(4.1.15) with initial conditions (4.1.16).
Then the dynamic energy-dissipation balance (4.1.19) is equivalent to identity (4.1.27).

Proof. We follow the same techniques of [21, Lemma 2.6]. Let us fix 0 < h < T and let us
define the function

nt) = u(t—}-h}i—u(t) B wl(t-i-h})L —w(t) for t € [0,T — ],
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We use 9, (1) as test function in (4.1.25) first at time ¢, and then at time ¢ + h. By summing
the two expressions and integrating in a fixed time interval [tq,t2] C [0,T — h|, we obtain the
identity

[t )+ 0. 000 100

t1 1

+ / tQ(b(v(t + h))CEu(t + h) + b(v(£))CEu(t), Edn(t)) 20 dt (4.1.28)

= [ O 00y A+ [ o+ B+ (0,000

We study these four terms separately. By performing an integration by parts, the first one
becomes

/ i+ ) + (), 90 (0) 1 g

t1

- / (t + ) + (), n () gy dE + (it + h) + (ta), v (12)) 20y

t1

= (a(ty + h) +a(tr), wh(tl))m(g)

1 to+h ) 1 t1+h )

= —— it dt + — 1t dt

RGP E - R IO
to

+ % ) (@t + ) + (), i (t + h) — 1 (£)) 2 A
+ (a(te + h) + alte), Ya(t2)) L2y — (Wt + k) +a(t), ¥n(t1)) r2()-
Since u,w; € C1([0,T]; L?(92;R%)), by sending h — 0% we deduce
1 ta+h 1 ti+h
N e A LI R LT 1)
= —[la(t2) 1 F2qy + la(t) | 720y,
Jim, [tz + h) +a(t2), Yn(ta)) L2(q) — (@(ty + h) +alt), ¥n(t)) 2 (o)

= 2[Ji(t2)[|72 (0 — 2(@(t2), i (t2)) o) — 2M(t1) 1720 + 2(@(tr), i (t1)) L2(0)-

Notice that # [t ( - +h)—11] converges strongly to @y in L2(t1, ta; L*(;R?)) as h — 0%, since
iy belongs to HY(0, T} LZ(Q;Rd)). Therefore, there exist a sequence h,, — 07 as m — oo,
and a function k € L?(t1,t2) such that for a.e. t € (t1,t2)

(4.1.30)

hi@(t i) (), i (4 Bm) — t1(8)) 2y — 200(8), @1(8)) 2y 85 m - o0,

I . . , :
‘h(u(t + b)) + w(t), Wi (t + hm) — w1(t)) 20| < 2|l Lo 0,102 (0))K(t)  for every m € N.

By the dominated convergence theorem we derive

1 to to
hlir(r]lJr - / (u(t + h) +0(t), w1t + h) —w1(t)) 2oy dt = 2/ (u(t), 1 (t))p2(q)dt, (4.1.31)
- t1 t1
since the limit does not depend on the subsequence {h;,},,. For the term involving f, we
observe that f(- 4+ h) — f and v, — @ — 1wy in L?(ty,te; L2(Q;RY)) as h — 0F. Hence, we
have
to

to
lim [ (f(t+h)+ f(t),¥n(t)) 20 dt = 2/ (f(t),a(t) — w1 (t))p2(odt.  (4.1.32)

h—07+ J¢, t1
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By using the identity

[ a4 )+ 900) 001

1 ta+h 1 ti+h
- % /t (g (t), u(t) —wi(t)) pr1 o) At ~ % /t (9(8), ult) = wi(t)) 1
- ;L/t g+ h) — g(0) e+ )+ ult) —wr(t+ ) - wi () 11 (@) b

and proceeding as before, we also deduce

to
tim [ gt + )+ 900), Un(0) g

h—0t J¢,

= 2(g(t2), u(t2) — wl(t2)>H51(Q) — 2(g(t1),u(t1) — wl(t1)>H511(Q) (4.1.33)

1

to
=2 [0 u(0) — w10 510y

t1

It remains to study the last term, that can be rephrased in the following way

/ “(b(o(t + 1)CEu(t + ) + b(o(t)) CEu(t), Bn(t)) 2oy dt

ta+h t1+h
=5 | GEICEU), Eut) e it [ G)CEU), Bu(h) 10 di
— 3 |t 1) = OB, Bult + 1) 20
1

-z /t " (b(o(t + R)CEU(t + ) + () CEu(t), Bun(t + h) — Euwn(t))12(e) dt

Since H*(Q) — C°Q), we deduce that v belongs to the space C°([0,7T];C°(Q)). This
property, together with b € C'(R) and u € C°([0, T]; H'(€; R?)), implies

to+h ti+h
T, [;L /t (b(o(1))CBu(t), Bu(t)) 2oy ot — /t O0)CE), Bult) 3o
= (b(U(tz))CEu(tg), Eu(tg))Lz(Q) — (b(v(tl))CEu(tl), EU(tl))LQ(Q). (4.1.34)

Moreover, the sequence 3 [v( - +h) —v] converges strongly to © in L?(t1,t2; C%(Q2)) as h — 07.
Therefore, there exist a subsequence h,, — 07 as m — oo and a function x € L?(t1,t2) such
that for a.e. t € (t1,t2)

v(t + hp) —v(t)
hom,

v(t + hm) —v(t)
B,

— o) inC'Q) asm — oo,

< k(t) for every m € N.
L>(9Q)

Thanks to (4.1.5), we can apply Lagrange’s theorem to derive for a.e. t € (t1,t2)

e (b0t + ) = W) CBu(t), Bult + hn) 1200

= (b((1)o()CEu(t), Bult)) 12(0).
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as m — oo, while for every m € N

(B0t + Bon)) = B(e(E)ICEU(E), Bult + b)) 2(0)

< b(D)[|IC] oo () 1BulZ 00 (0712 0y 5 (E)

since u € C°([0, T]; H'($;R?)) and v(t) < 1 for every t € [0,7]. The dominated convergence
theorem yields

T, % / ([b(o(t + h)) — b(u(E)|CEut), Bult + h)) 2o dt
h (4.1.35)

ta |
= [ e)iICEU), Bu) ) i,
t1

being the limit independent of the subsequence {fm }y. Finally, +[Ew; (- + h) — Ew;] con-
verges strongly to Eun in L2(t1,ta; L*(Q; R%*9)) as h — 01. By arguing as in (4.1.31), this
fact gives

lim L / * (b(o(t + B))CEu(t + h) + b(u()) CEu(t), Bwn(t + h) — Bwn () ey

h—0+ h t1

_» / (b((t))CEu(t), Bin (1)) 20 dt.

t1

(4.1.36)

We combine together (4.1.28)—(4.1.36) to derive

1

ty
H (u(tz)) + & (ultz), v(t2)) — 2/t (b(v(1))0(t)CEu(t), Eu(t))r2(o) dt

= (u(t1)) + & (u(tr), v(t1)) + Hior(u, vita, t2)

for every ti,ty € [0,T) with ¢; < to. Since all terms in the previous equality are contin-
uous with respect to t2, we deduce that a weak solution to (4.1.12)—(4.1.15) with initial
conditions (4.1.16) satisfies the energy balance

1

H (ilts)) + E(u(t), v(ts)) — 2/tQ(B(U(t))@(t)CE“(t)’E“(t))LQGD dt (4.1.37)

= %(u(tl)) =+ éa(u(tl), U(tl)) + %ot(u, v; 11, tg)

for every ty,ty € [0,T] with ¢; < to.

Let us assume now (4.1.27). Since v € HY(0,T; H*(2)), the function ¢ +— ((t) :== 2 (v(t))
is absolutely continuous on [0, T], with {(t) = 8.2 (v(t))[0(t)] for a.e. t € (0,T). By integrat-
ing (4.1.27) over [t1,t2] C [0,T], we obtain

1 / (b(o(t))o () CEu(t), Bu(t)) g2 dt = A (ul(ts))— A (o(t))+ | F(o(t)) dt. (4.1.38)

2 t1 t1

This identity, together with (4.1.37), implies the dynamic energy-dissipation balance (4.1.19).
On the other hand, if (4.1.19) is satisfied, by comparing it with (4.1.37) we deduce (4.1.38)
for every interval [t1,t2] C [0,T], from which (4.1.27) follows. O

Remark 4.1.9. When £ > %l, the crack stability condition (4.1.18) is equivalent for a.e.
t € (0,7T) to the following variational inequality

k
0v (u(t), v(t)[X] + 07 (W())X] + D a(V'0(t), ViX) 120 > 0 (4.1.39)
=0
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among all x € Hb2 ()N H*(Q) with x < 0. Indeed, for every s € (0,1] we can take v(t) + sx
as test function in (4.1.18). After some computations and by dividing by s, we deduce

& (u(t),v(t) + sx) — &(u(t), v(t)) b oA +Za, Vio(

S

), V) 2
(4.1.40)

Lo 2
+5 | Ixlza) +ellVxllzzg) | 2 0.
Let us fix z € Q. By Lagrange’s theorem there exists z5(t, z) € [v(t,x) + sx(z),v(t, z)] such

that
b(v(t, x) + sx(x)) — bv(x))
s
since b € C*(R). In particular, we have

o BOlE) + sx(r) ~ bo(z)
s—0t S

b(u(t, z) + sx(x)) — bv(x)) ‘

S

= b(zs(t, 7)) x(2),

= b(v(t,z))x(z),

< b(1)[x(2)],

because b € CO(R) is non negative, non-decreasing, and z,(t,z) < v(t,z) < 1. Then, the
dominated convergence theorem yields

lim éa(u(t)v U(t) + SX) - @‘"(u(t),v(t)) _ 1/ b(v(t))x(CEu(t)Eu(t) dr = &,éa(u(t),v(t))[x].
Q

s—0t S 2

By sending s — 0% in (4.1.40) we hence deduce (4.1.39). On the other hand, it is easy to
check that (4.1.39) implies (4.1.18), by exploiting the convexity of v* — & (u(t), v*) + H(v*)
and taking x = v* — v(t) for every v* —wq € HbQ(Q) N H*(Q) with v* < v(t).

The inequality (4.1.39) gives that for a.e. ¢ € (0,7 the distribution

L (o(t) — 1) + 2c80(t Zaz

—%l}(v(t))(CEu(t) Bult) - 5

is positive on €. Therefore it coincides with a positive Radon measure p(t) on €2, by Riesz’s
representation theorem. In particular, since H*(Q) < CO(Q) for a.e. t € (0,T) we deduce

(C()s XD (rx () = & (u(t), v(t))[x]+ 07 (v +Z ai(V'o(t), V'X) 12(0) = —/Qxdﬂ(f)

for every function y € H¥(Q) with compact support in . We combine this fact with
identity (4.1.27) to derive for our model an analogous of the classical activation rule in
Griffith’s criterion: for a.e. ¢t € (0,7") the positive measure p(t) must vanish on the set of
points x € 2 where 0(¢,z) > 0. Indeed, let us consider a sequence {¢m }m C C°(§2) such that
0<¥m < pmse1 <1in Q for every m € N, and ¢, () — 1 for every z € Q as m — oo. The
function 7(¢) is admissible in (4.1.39) for a.e. t € (0,7, since +[v(t + h) — v(t)] € Hp, (Q)
converges strongly to ¥(t) in H¥(Q) as h — 0%, and t ~ v(t) is non-decreasing in [0, T].
Therefore, thanks to (4.1.27) and (4.1.39), for a.e. t € (0,7 we get

0= (¢(t), 0(t)) (zrr (eyy = (C(8), 0(E)om) ey + (C(2), 0 (E)(L = om)) (arr(0)y
> (0O, o) pmmiayy = = [ 5Oendu(t) 20

because ©(t)¢m € H*(Q) has compact support. Hence, for a.e. t € (0,T) we have

0= Jim_ [ ohpndut) = [ o) duto),

m—r0o0 0

by the monotone convergence theorem, which implies our activation condition.
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4.2 The time discretization scheme

In this section we show some general results that are true for every £k € N U {0}. In par-
ticular, we prove that problem (4.1.12)—(4.1.16) admits a solution (u,v) (in a weaker sense)
which satisfies the irreversibility condition (4.1.17) and the crack stability condition (4.1.18).
Throughout this section, we always assume that the functions wq, ws, f, ¢, u°, u! 0
satisfy (4.1.7)—(4.1.11).

We start by introducing the following notion of solution, which requires less regularity on
the time variable.

, and v

Definition 4.2.1. The pair (u,v) is a generalized solution to (4.1.12)—(4.1.15) if

w e L0, T; H (9 RY) N W0, T; L* (@ RY) N H*(0,T; Hp ! (2 RY)), (4.2.1)
u(t) —wi(t) € Hp (Q;RY) for every t € [0, 7], ( )
ve L°0,T; HY(Q)) N HY(0,T; H*(Q)), (4.2.3)
v(t) —wq € H}b(Q) and v(t) <1 in Q for every t € [0, 7], ( )

and for a.e. t € (0,T") equation (4.1.25) holds.

Remark 4.2.2. By arguing as in Remark 1.2.7, we derive that a generalized solution (u,v)
to problem (4.1.12)—(4.1.15) satisfies u € CO([0,T]; H(Q;RY)), @ € CY([0,T]; L?(Q;RY)),
and v € C9(]0,T); HY(Q2)). Therefore, the initial conditions (4.1.16) makes sense, since the
functions u(t), u(t), and v(t) are uniquely defined for every t € [0, T] as elements of H'(Q; R?),
L2(;R%Y), and H'(Q), respectively.

To show the existence of a generalized solution to (4.1.12)—(4.1.16), we approximate our
problem by means of a time discretization with an alternate scheme, as done in [6, 36]. We
divide the time interval [0,7] by introducing n equispaced nodes, and in each of them we
first solve the elastodynamics system (4.1.4), keeping v fixed, and then the crack stability
condition (4.1.18), keeping u fixed. Finally, we consider some interpolants of the discrete
solutions and, thanks to an a priori estimate, we pass to the limit as n — oo.

We fix n € N, and we set

T

Tn = —, u?l = uo, u;l =’ — Tnul, vg = vo,
n

g =g(im), wl =wi(jm,) forj=0,...,n,

. 1 [I™

== f(s)ds forj=1,...,n.

n J(j—1)m
For j =1,...,n we consider the following two minimum problems:

(i) ul, —wi, € Hbl (;R?) is the minimizer of

* 1 * j—1 i—21(2 * j—1 j % j * j
U Hﬁ Hu —2ul T —ul HLQ(Q) +EW v ) = (flu )LQ(Q) — (g, u _wg‘>H5i(Q)

among every u* — wi, € Hbl (Q;RY);

(i1) vl —wy € Hp, ()N H*(Q) with v}, < vJ"" is the minimizer of
. 1 .
v = E(ud,v*) + A (0T) + ?%(v* — vl
n

among every v* — ws € H}b(Q) N H*(Q) with v* < o},
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Since C and b satisfy assumptions (4.1.1)-(4.1.3), (4.1.5), and (4.1.6), the discrete problems
(1) and (i7) are well defined. In particular, for every j = 1,...,n there exists a unique pair
(ul,,v) € HY(Q; RY) x (H'(Q) N H*(Q)) solution to (i) and (i4).

Let us define

i uh—ul ,
ou), = ——— forj=0,...,n,
Tn
o dud —oul ! A .
O =" " Sl =" forj=1,...,n.
Tn Tn
For j =1,...,n the minimality of ul, implies
(6%uf,, ) L2y + (b(v), " )CEW),, BY) 2y = (f, ) 120 + (9%7¢>H51(Q) (4.2.5)

for every ¢ € H%l(Q;Rd), which is the discrete counterpart of (4.1.25). Moreover, we can
characterize the function vy, in the following way.

Lemma 4.2.3. For j =1,...,n the function v, — wy € H}b(Q) N H*(Q) with v, < vl is

the unique solution to the variational inequality

k
&l v*) — Eud vl + 0 (V) [v* — vl] + Zai(viévfl, Viv* — viU%)LQ(Q) >0 (4.2.6)
=0

among all v* — wy € HbQ(Q) N Hk(Q) with v* < v%_l. In particular, we have v% <1linQ
and

éa(u%,v,]l) — éa(u%,vﬁfl
Tn
Finally, if k = 0, wy > 0 on 9p,Q, v" > 0 in Q, and b(s) = (s V 0)*> +n for s € R, then
vh >0 4n Q for every j =1,...,n.

) + 0 (v])[6v2] + 4 (5v)) < 0. (4.2.7)

Proof. Let v4, be the solution to (i) and let v* —ws € Hp, (Q)NHY(Q) be such that v* < vi, .

For every s € (0, 1] the function vl 4 s(v* —v}) is a competitor for (ii). Hence, by exploiting

the minimality of v7, and dividing by s, we deduce the following inequality

el vl *_od)) — € vl . - o o
(un, vn + (v S” ) = &(un, vn) + 0 W) — ]+ Y ai(Vieud, Vi — Vivd) 120
=0
Fs | 0" = 0l oy + £ VO* = Vi 200 + —— @ (0" —wi)| >0 (4.2.8)
A nllL2(Q) nllL2(Q) 27 n)| = Y- il

Notice that

é”(u%,v% + s(v* — vfl)) — é"(u%,v%

S

) < &l v*) — Eul,vl)  for every s € (0,1], (4.2.9)

since the difference quotients are non-decreasing in s € (0, 1], being b is convex. By combin-
ing (4.2.8) with (4.2.9) and passing to the limit as s — 0", we derive (4.2.6). On the other
hand, it is easy to see that every solution to (4.2.6) satisfies (7i), thanks to the convexity of
A and 4. Finally, for every j =1,...,n we have vl <0 < 1inQ, and the inequality (4.2.7)
is obtained by taking v* = v in (4.2.6) and dividing by 7,,.

Let us assume that k = 0, wy > 0 on 9p, 2, v* > 0in Q, and b(s) = (s 0)% +1 for s € R.
The function v} Vv 0 is a competitor for (i7) and satisfies

8 (uby oV 0) + ARV 0) + 5 F (0} v 0) %) < Sk, vh) + A (0h) + 5~ F(vh — ),

27 "
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being &(ul, vl vV 0) = &(uk,vl), (vl v0) < H#(vl), and |(v) vV 0) — 00| < |vl — 00| in Q,
which is a consequence of v° > 0. Hence, the function v} Vv 0 solves (ii). This fact implies
vl = (v} Vv 0) >0 in €, since the minimum point is unique (the L? norm is strictly convex).

We now proceed by induction: if v, ' > 01n ), we can argue as before to get

1 . .
7g(v% - 'Ugtil)7

&(ud vl \/0)+%”(v%\/0)+ig((v£\/0) —vl ™Y < &l vl) + A (vd) +

e 2Tn 2Ty

which gives v}, = (v}, vV 0) >0 in Q for every j =1...,n. O
As done in [36], we combine equation (4.2.5) with inequality (4.2.7) to derive a discrete

energy inequality for the family {(u,, U%,)}?:l.

Lemma 4.2.4. The family {(qul7 v%) 7_1, solution to problems (i) and (ii), satisfies for every

j=1,...,n the discrete energy inequality

J J
F (uh, St vh) + a9 (6v,) + 3 7Dy
=1 =1
J
< ‘g(uoa ula UO) + ZTn |:(le1,7 5uln - 5w1l¢)L2(Q) + (b(vflil)(CEuiu E5w£L)L2(Q):| (4 )
— 2.10

- Tn |:(5u£1_17 52w£1)L2(Q) - <5g7lw uiz_l - w'fz—1>H’1(Q) + (51‘%7 5w%)L2(Q)
1

!
g = ) iy — (01 (0)) 2y — (9(0),w

— w1 (O)>H51(Q)7

(wh —wh 1), 02wl = L (6wl — dwh V), 0gh = 2 (gh — gi")

for j=1,... n, and the dissipation Di, are defined for j=1,...,n as

1

Tn

where dw? = 1y (0), dwd = %

T 1 . . 1 .
Dy = 5!\52%“%2(9) + 5 (b(wn YCEbu, Eéu),)r2() + EH&J%H%%Q) +el|Vovh 172 (q)-

Proof. By using ¢ = 7,(0ul, — dwi)) € H}Dl(Q;Rd) as test function in (4.2.5), for every
j=1,...,n we deduce the following identity

S CRTE 5U%)L2(Q) + T (b(vi HCEu, E(S'Ule)[ﬂ(ﬂ)
= 7a(f, 0uh, = 0wh) L2(0) + Talgh, uly = wh) o ) (4.2.11)
+ 7 (6%, 5w%)L2(Q) + 7 (b(v) " HCEu?, E(SwZL)Lz(Q).
Thanks to the identity |a|* —a-b = : la|* — : b + Tla— b|? for a,b € RY, we can write the
first term as

To(6%uh, 0ul)) o) = 100|172 () — (00", 0ud,) 2@
‘ A -2 , (4.2.12)
= A (0uf) — A (Ful ) + 0% |72 -

Similarly, we have

Ta(b(v), " )CEu), Bdul) 120y = & (uf, v]) — E(ufy 07 + %”(b(v%‘l)CEM%,, Edu},) 12
+ 1([1)(@3‘;1) — b(v})|CEu),, Bul) 20 (4.2.13)

2
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We use (4.2.7) to estimate from below the last term in the previous inequality as
1
5([5( ) = 0(v})|CEu, Bul,) 120
> 2—(1;3 — 1,000 22 + 2e7, (Vvd, Vvl 2@ + T (607) (4.2.14)

= A (v)) = H (1) + % (00]) + T 22 19vn 72 () + emnlIVOuL 1220
By combining (4.2.11)—(4.2.14), for every j = 1,...,n we obtain
F(ul), 0ul, vl) — F(ul 1 sul vl ™Y + 1,9 (6v)) + 72DJ
< 7 %a 5“% - 5w%)L2(Q) + Tn<92w 6”% - 5w7j~;>H5i(Q)
+ T (620, 5w‘%)L2(Q) + T (b(vi " HCEW, E(;’LUZL)L2(Q).
Finally, we sum over [ = 1,...,j for every j € {1,...,n}, and we use the identities

J
Zm(giufsuib - 6w’fl>HBi(Q) = (gh,uf, — w]>H L) — <g(0),u0 - w1(0)>H*1(Q)

D1 Dy
= } (4.2.15)
- Z Tn<59£u Uln_l - /w1l®_1>H_1(Q)7
=1 o1

j . .

Z (6%, dw},) 12y = (ul,, 0w)) p2i) — (u', w1(0)) r2(q)

= } (4.2.16)

- ZTn(5U£z_1a 52 wh)r2(0),
=1

to deduce the discrete energy inequality (4.2.10). O

The first consequence of (4.2.10) is the following a priori estimate.

Lemma 4.2.5. There exists a constant C > 0, independent of n, such that

n n
[max {l16u 20y + 1wl ) + 03l ey} + D Tall 803 |3k 0 + Y 7D} < C. (4.2.17)
ot j=1 j=1

Proof. Thanks to (4.1.4) and (4.1.6) we can estimate from below the left-hand side of (4.2.10)
in the following way

J J
F(ul, 6ul  vl) + Z AR Z 2Dk
= — (4.2.18)

7700 ” 7701 ’

1
> 5\\5%”%2( Al |} 1720

for every j = 1,...,n. Let us now bound from above the right-hand side of (4.2.18). We
define

L, :_Jnrllax H(Su HLE(Q)a M, = jgf}fn\lufé”m(m’

yeees Tl

and we use (4.1.7)—(4.1.11) to derive for every j =1,...,n the following estimates:

J
ZTn( b 0ul, — 6wh) 20y < CiLy + Cs, (4.2.19)
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(5ufl, 511)%)[/2(9) (U w1 LQ(Q) Z Tn l_l, 52w,ln)L2(Q) < Can + CQ, (4220)

<gn7u3 - w]>HD Q@ <9(0)a u’ — w1(0)>H51 Tn<5g£zau£;1 -
1 1

-1
Un Hple)  (g9.9)

|
-
I Mu,
I

< Can + C27

for two positive constants C; and Cs 1ndependent of m. Moreover, since C belongs to
L%°(Q; (R4 RI%dY)) b is non-decreasing, and v, * < 1, we get

> a(b(vy CEu,, Edw) 20y < b()[|C] oe(e) VT B || 120,222 M (4.2.22)
forevery j = 1,...,n. By combining (4.2.10) with (4.2.18)-(4.2.22) and the following estimate
[l p2(0) < iTnHM%HL?(Q) + 1w r2) < TLn + |u°| 2y for every j=1,...,n,

=1
we obtain the existence of two positive constants C; and C’Q, independent of n, such that

(Lp + M,)? < Cy(Ly,, + M,) +Co for every n € N.

This implies that L, and M, are uniformly bounded in n. In particular, there exists a
constant C' > 0, independent of n, such that

J J
H(6ul) + & (ul,vl) + 0 (v)) + ZTng(évL) + ZT&D; <C foreveryj=1,...,n
=1 =1

Finally, for j = 1,...,n we have

. 1 - . n ,
min {5, 48} ||l — lHip(Q) < W) <C, 502771\](51)%\\%% Z 4(svl) < C,
i=1 i=1

which gives the remaining estimates. O

Remark 4.2.6. By combining together (4.2.5) and (4.2.17) we also obtain
ZTnH52 ||2 ot max o] ]l < C
7j=1,..n

for a positive constant C' independent of n. Indeed, by (4.2.5), for every j = 1,...,n we have

|!52U%HH51(Q) = sup (8%, ) 2|
1 YeH], (BRD), 9]l 1 () <1

b(l)”C”L‘X’(Q)HEugL”? + ||frj;HL2(Q) + ||g%||HBi(Q)

Hence, thanks to (4.1.9) and (4.2.17), there exists a constant C' > 0, independent of n, such
that

ZTnH‘SQU%H%[Bi(Q) <C(1+ HfHL2(0,T;L2(Q)) + HgHHl(O,T;HBi(Q)))'

Finally, also ||v3]| m* () is uniformly bounded with respect to j and n, since

n 1/2
[0 | ey < VT (Z Tn\avgy@k(m> + 00| ey for every j=1,....n.
=1
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We now use the family {(u%,v%) "_, to construct a generalized solution to (4.1.12)-

(4.1.18). As in Chapter 3, we denote by Up: [0,T] — HY(RY) and ul,: [0,T] — L?(;RY)
the piecewise affine interpolants of {uf,}_; and {sul '_1, respectively, which are defined in
the following way:

up(t) = uﬁl + (¢ —an)éuﬂ fort€[(j—V)m,jdml, i =1,...,n,
u, (t) = (SuzZ + (t— j7'n)52u¥Z forte[(j—Vm,jml,i=1,...,n

We also define the backward interpolants @, : [0, T] — H'(£;RY) and @, : |
and the forward interpolants w,,: [0, 7] — H*(Q;RY) and u/,: [0,T] — L*(Q;RY) as:

Tn(t) =l fort € ((j — DTn,dmal, 5=1,...,n, Tn(0) = ud,

., (t) =oul forte ((j— V)7, jmal, j=1,...,n, w@,(0)=0du’,
w,(t) =ul "t forte[(j—Dr, i), i=1,...,n, u,(T)=u?,
w(t) = 0ul™t forte[(j— V), jm),j=1,...,n, u,(T)=du’.

In a similar way, we can define the piecewise affine interpolant v,: [0,7] — H'(Q) of
{vh}j_,, as well as the backward interpolant vy, [0,T] — H 1(Q), and the forward interpolant

v,: [0,T] — H'(Q). Notice that u, € H'(0,T;L*(%:R?), w, € H'(0,T; Hy (RY)),
and v, € HY(0,T; H*(Q)), with i, (t) = @, (t) = oul,, @, (t) = 6%ul, and 0,(t) = v}, for
€((j—Drp,gm)and j=1,...,n

Lemma 4.2.7. There exist a subsequence of n, not relabeled, and two functions

we L®(0,T; H (4 RY)) nWH(0, T; L*(; RY) N H*(0,T; Hp ! (4 RY)),
ve L0, T; H () N HY(0,T; H*(Q)),

such that the following convergences hold as n — oco:

U, = u in HY(0,T; L*(Q;RY)), up, =4 in H'(0,T; HpH(Q;RY)),
u, = u in CO([0,T); L2(Q;RY)), ul, = in CO([0,T]; H Dy L(Q;R%)),
Tp —u in L2(0,T; H(Q;RY), a, — 4 in L?(0,T; L*(;RY)),

u, —u in L?(0,T; H'(;RY), ul, —a in L?(0,T; L*(€; RY)),

v, = v in HY(0,T; H¥(Q)), v, — v in C°([0,T); L3(Q)),

Ty — v in L2(0,T; HY(Q)), v, = v in L*(0,T; H(Q)).

Proof. Thanks to (4.2.17) the sequence {uy,}, C L>=(0,T; H'(Q; RY))NW (0, T; L2(Q; RY))
is uniformly bounded. Hence, by Aubin-Lions’s lemma (see [50, Corollary 4]) there exist a
subsequence of n, not relabeled, and a function

we L0, T; HH (% RY)) n Whe(0, T; L2 (Q; RY)),
such that
U, —u in HY(0,T; L2 (4 RY), w, —u in C°[0,T); L2(Q;RY))  as n — oco.
Moreover, the sequence {%,}, C L>®(0,T; H'(Q;R?)) is uniformly bounded, and satisfies

un(t) = n ()l 2@y < Tulltnllpoeo,r;22(0)) < Cn for every t € [0,7] and n € N, (4.2.23)



102 4.2. The time discretization scheme

where C' is a positive constant independent of n and t. Therefore, there exists a further
subsequence, not relabeled, such that

Up —u in L2(0,T; HY(GRY), @, —u  in L0, T; L2 RY)  as n — oo.
Similarly, we have
u, —u in L2(0,T; H'(Q;RY), w, —u in L=(0,T;L*(Q;RY)) as n — oco.
Let us now consider the sequence {u/,}, C L>®(0,T; L?(;R%)) N HY(0,T; HEE(Q;Rd)).

Since it is uniformly bounded with respect to n, we can apply again the Aubin-Lions’s lemma
and we deduce the existence of

z € L™(0,T; L*(RY) n H'(0, Ty Hp ! (2 RY))
such that, up to a further (not relabeled) subsequence
up, =z in H'(0,T; HpH(RY), ), >z in C°((0,T); Hpl (% RY)  as n — oo,
Furthermore, we have
J4(8) = i) 151y = 1(8) = T 151 ) < VTl o ozt < OV (4:2:24)

for every t € [0,7] and n € N, with C > 0 independent of n and ¢. This fact implies that
z =1, and

u, =4 in L*(0,T; L*(RY), @, —a in L*(0,T; Hp! (4 RY))  as n — oo.
In a similar way, we get
w, =4 in L*(0,T; L*(RY), w, — 4 in L*(0,T; Hy (4 RY))  as n — oc.

Finally, the thesis for the sequences {v,}n, {Un}n, and {v,}, is obtained as before, by
using (4.2.17) and the compactness of the embedding H'(Q) — L?(€). O

Remark 4.2.8. As already observed in Remark 4.2.2, we have u € CO ([0, T]; H'(£;R?)),
u € CO([0,T]; L2(;RY)), and v € CO([0,T]; H'(Q)). By using the estimate (4.2.17), we get

()l 1) + llup ()| 2y < C - for every t € [0,T] and n € N
for a constant C' > 0 independent of n and ¢. Hence, for every ¢ € [0,T] we derive
U (t) = u(t) in HY(Q;RY), o (t) = a(t) in L2(QRY) asn — oo,

thanks to the previous convergences. In particular, for every ¢ € [0,7] we can use (4.2.23)
and (4.2.24) to obtain

Tp(t) — u(t) in HY(Q;RY), @, (t) —u(t) in L2(LRY)  asn — oo,
w,(t) = u(t) in HY(GRY), o), (t) = a(t) in L2(Q;RY) asn — oco.

With a similar argument, for every ¢ € [0,7] we have
va(t) = v(t) in HY(Q), T,(t) =v(t) in H(Q), wv,(t) —v(t) in H(Q) asn — occ.

We are now in a position to pass to the limit in the discrete problem (4.2.5).



Chapter 4. A phase-field model of dynamic fracture 103

Lemma 4.2.9. The pair (u,v) given by Lemma 4.2.7 is a generalized solution to prob-
lem (4.1.12)—(4.1.15). Moreover, (u,v) satisfies the initial conditions (4.1.16) and the ir-
reversibility condition (4.1.17). Finally, if k = 0, wa > 0 on 9p,Q, v° > 0 in Q, and
b(s) = (sV0)2+1n for s € R, then v(t) >0 in Q for every t € [0,T].

Proof. The pair (u,v) given by Lemma 4.2.7 satisfies (4.2.1), (4.2.3), and the initial condi-
tions (4.1.16), since u® = u,(0) — u(0) in H'(Q;RY), u! = u},(0) — 4(0) in L2(;R?), and
00 = v, (0) — v(0) in H'(Q) as n — oco. If we consider the piecewise affine interpolant wy,
of {wn}?_,, for every ¢ € [0,T] we have up(t) — wy(t) € Hp, (Q;RY) for every n € N and
wp(t) = wy(t) in HY(;RY) as n — oo. Therefore, the function u satisfies (4.2.2). Similarly,
vn(t) —we € H}DZ(Q) and vy, (t) < wvp(s) < 1in Q for every 0 < s <t < T and n € N, which
give (4.2.4) and (4.1.17). Finally, if k = 0, wy > 0 on 9p,Q, v > 0in Q, and b(s) = (sV0)2+7n
for s € R, then for every ¢ € [0,T] we deduce v,(t) > 0 in 2, by Lemma 4.2.3, which implies
v(t) >0 in Q.

It remains to prove the validity of (4.1.25) for a.e. ¢ € (0,T'). For every j = 1,...,n
we know that (uj,vy,) satisfies (4.2.5). In particular, by integrating it in [t1,ts] C [0,7] and
using the previous notation, we derive

|00 et + [ bl 0)CET 0, Bo) de
b ' b (4.2.25)

ta t2
= [( Dt [ G0

t1

for every 1 € H})I(Q;Rd), where f, and g, are the backward interpolants of { f 71 and

{g%}?zl, respectively. We now pass to the limit as n — oo in (4.2.25). For the first term we

have
to

t2
lim <U{n (t), @ZJ>H—1(Q) dt = / <u(t)a Q;Z)>H5i () dt’

n—o00 t Dy 4

since @/, — i in L%(0,T; HB}(Q;Rd)) as n — 0o. Moreover, as n — oo it is easy to check
that f,, converges strongly to f in L2(0,T; L?(€;R%)), while g, converges strongly to g in
L2(0,T; HBll (Q; R?)), which implies

ta to
lim [ /t (Fut),¥) 20 dt + / (Tn (), V) 1151 ()

n—oo t
1

= (U@ e+ [ o0 0

t1 t1

It remains to analyze the second term of (4.2.25). By the previous remark and using the
compactness of the embedding H'(Q) «— L?(£2), we get that v, (t) — v(t) in L*(Q) as n — oo
for every t € [0,T]. Thanks to the estimate

b(v,, (£, 2))C(z) E(z)| < b(L)||Cl| oo () [E9(x)| for every t € [0,T] and a.e. x € Q
and the dominated convergence theorem, we conclude that b(v,,)CE1 converges strongly to
b(v)CE® in L?(0,T; L?(Q; R?*?)). Hence, we obtain

to

lim [ (b (6) CEw (1), B) 2y dt = /t (b(u(t))CEu(t), B) 2 dt,

n—oo tl
since Eu, — Eu in L?(0,T; L?(Q;R4*?)). Therefore, the pair (u,v) solves

/ i(8), ) 1t + / " (b(o(t)) CEu(t), B) 120y

t1 1 t1

to t2
= [ U@t [ a0, 650000

t1 t1
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for every ¢ € HEI(Q;Rd) and [t1,t2] C [0,T]. We fix a countable dense set ¥ C Hbl(Q;Rd).
By Lebesgue’s differentiation theorem, we derive that the pair (u,v) solves (4.1.25) for a.e.
t € (0,T) and for every ¢ € 2. Finally, we use the density of Z in HEI(Q;Rd) to conclude
that the equation (4.1.25) is satisfied for every ¢ € H%h (Q; RY). O

In the next lemma we exploit the inequality (4.2.6) to prove (4.1.18).

Lemma 4.2.10. The pair (u,v) given by Lemma 4.2.7 satisfies for a.e. t € (0,T) the crack
stability condition (4.1.18).

Proof. For every j = 1,...,n the pair (uﬁl,v%) satisfies the inequality (4.2.6), that can be
rephrased in

E(Un(t), v") = EWn(t), Un(t)) + 0H (Un (1)) [v" — Tn(t)]

- : ’ : 4.2.26
+ Y ai(Vion(t), Vo' = Vo, (t)) 2(0) = 0 (4:2.26)
=0

for a.e. t € (0,T) and for every v* —wy € Hp, () N H¥(Q) with v* < v,(t). Given
X € Hp, () N H*() with x < 0, the function x + T,(t) is admissible for (4.2.26). After an
integration in [t1,t2] C [0, 7], we deduce the following inequality

/1ﬂ%mm+%wwﬂwmmmth

t1

N . no | (4.2.27)
+ [ oI+ Y as [ (Va0 V) 2 0
t1 i=0 t1
Let us send n — co. We have
li_>m Zai/ (V%’;n(t),le)Lz(Q) dt = Zai/ (V%’;(t),VZX)Lz(Q) dt, (4.2.28)
=0 t1 i=0 t1

since 0, — © in L2(0,T; H*(Q)). Moreover v, — v in L%(0,T; H*(Q)), which implies

to t2

lim [ 0@ 0)X]dt= | 0w()]dt. (4.2.29)

n—oo t t

The function ¢(z,y,€) = 3[b(y) — b(x(x) + PIC@EV™ - €97, (z,5,6) € Q x R x R,
satisfies the assumptions of Ioffe-Olech’s theorem (see, e.g., [14, Theorem 3.4]). Thus, for
every t € [0,T] we derive

E(u(t),v(t)) — &(u(t),x +v(t) = /Qgi)(x, v(t,z), Bu(t,z))dz

n—oo

— i €[ (@ (£), X + Tn(t)) — & (Tn(t), Tu(t))],

n—oo

since T, (t) — v(t) in L?(Q) and E7,(t) — Fu(t) in L*(Q;R*?) for every t € [0,T]. By
Fatou’s lemma, we conclude

< liminf / (2, Tn(t,7), Blin(t, ) da
Q

/ 6 (u(t), v(t) — E(ult), x + o)) dt

t1

n—0o0

< /t B nf [ (T (), T (1)) — & (@n(8), X + Tn(£))]

to
< lim inf / (& (T, (1), Tn(t)) — E(Tn(t), x +Tn(t))] dt,

n—oo t1
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which gives

/ 2 [6(u(t), x +v(t) = &(u(t), v(t)] dt
h (4.2.30)

> limsup/ 2[5’(ﬂn(t),x + (1)) — E(Un(t),vn(t))] dt.

n—oo Jit;

By combining (4.2.27)—(4.2.30) we obtain the following inequality

/t2
t1

We choose now a countable dense set Z C {x € HbQ(Q) N H*) : x < 0}. Thanks to
Lebesgue’s differentiation theorem for a.e. ¢ € (0,7") we derive

E(u(t), x +v(t) — &(u(t), v(t)) + 02 (v(t)[x] + Zaz Vi (t), Vix) p2q | dt > 0.

E(u(t), x +v(t)) — &(ut), v(t)) + 82 (v(t))[x] + Zaz (Vio(t), ViX)r2@) >0 (4.2.31)

for every x € 4. Finally, we use a density argument and the dominated convergence theorem
to deduce that (4.2.31) is satisfied for every y € HbQ(Q) N H*(Q) with y < 0. In particular,
for a.e. t € (0,T) we get

E(u(t),v”) — &(u(t),v(t)) + 05 (v(t))[v* — v(t ZO‘Z Vio(t), Viv* Viv(t))p(g) >0,

for every v* —wy € H}h(ﬂ) N H*(Q) with v* < v(t), by taking x = v* — v(t). This implies
the crack stability condition (4.1.18), since the map v* — 2 (v*) is convex. O

We conclude this section by showing that the pair (u,v) given by Lemma 4.2.7 sat-
isfies an energy-dissipation inequality. Notice that also for a generalized solution (u,v)
the total work #ie(u,v;t1,te) is well defined for every ti,to € [0,7]. Indeed, we have
u € CO([0,T]; HY(;RY)) and @ € CO([0,T); H*(Q;RY)), which gives that u(t) — wy(t) and
u(t) are uniquely defined for every ¢ € [0, 7] as elements of Hp, (€; R?) and L?(92;RY), respec-
tively. Moreover, by combining the weak continuity of v and %, with the strong continuity of
g, wi, and wy, it is easy to see that the function (t1,t2) — #ot(t1,t2,u,v) is continuous.

Lemma 4.2.11. The pair (u,v) given by Lemma 4.2.7 satisfies for every t € [0,T] the
energy-dissipation inequality

Z (u(t),u / G (v F(u, ut,v°) + Wiot(u,v; 0, ). (4.2.32)

Proof. Let gy, wp, and w], be the piecewise affine interpolants of {g%}?zl, {w%};‘:l, and
{511)5}? 1» respectively, and let w,,w, and w,,w] be the backward and the forward inter-
polants of {wn} ', and {5wn}] 1, respectively.

Fort =0 the inequality (4.2.32) trivially holds thanks to our initial conditions (4.1.16).
We fix t € (0,7] and for every n € N we consider the unique j € {1,...,n} such that
t € ((j — 1)Tn, j7n). As done before, we use the previous interpolants and (4.2.10) to write

F (W (), T, (1), 0n(0) + [ D () ds

tn
< Z(u,u',0°) +/ [(frs T, — @) 12() + (0(v,,)CEtn, EW0,) 20 ds
0 (4.2.33)

- A n[<gnagn - wn>H*1(Q) + (ul w )LQ(Q)] ds + <gn( ) (t) - E’Vl<t)>H*1(Q)

Dy

+ (@, (), Wy, (1)) r2(0) — (9(0),u’ — w1(0)>H51(Q) - (U17w1(0))L2(Q)7
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where we have set t,, == j7,, and we have neglected the terms D%, which are non negative.
It easy to see that the following convergences hold as n — co:

fo— f in L0, T; L*(2RY)), gn— ¢ in L*(0,T; Hp! (5 RY)),
w, —wy in L2(0,T; H(Q;RY), w, — iy in L2(0,T; H(Q;RY),
W =y in HY(0,T; L2(Q;RY)).

By using also the ones of Lemma 4.2.7 and observing that ¢, — t as n — oo, we deduce

nlggo n(?n(s)aﬂ%(s)—@%(3))L2(Q) d3:/ (f(s),u(s) —1(s))r2(q)ds, (4.2.34)
0 0

I [ 500600 sy 85 = [ 156D 006) (D) sy 05, (12389

Tim [0, (5). 0 () 20 s = / (), 1 (5)) 2y ds. (4.2.36)
0 0

Moreover, the strong continuity of g, wi, and ; in HE}(Q; RY), H'(Q;RY), and L?(Q;RY),
respectively, and the convergences of Remark 4.2.8, imply

lim (g, (1), wn () — @n(t»HBi(Q) = (g(t),u(t) - wl(t»HBi(Q)a (4.2.37)
Jim (7@, (8), @, (1)) 2() = (@(t), b1 (1)) L2(0)- (4.2.38)

It is easy to check that b(v,)CEwW!,, — b(v)CEw; in L%(0,T; L?(2;R%¥*9)), thanks to the
dominated convergence theorem. By combining it with E%, — Eu in L?(0,T; L?(Q; R?*%)),
we conclude

tn

lim (b(v,,(s))CEu,(s), Ew,,(s)) 2.0 ds:/o(b(v(s))(CEu(s),Ewl(s))Lz(Q) ds. (4.2.39)

n—oo 0
If we now consider the left-hand side of (4.2.33), we get

H(u(t)) < lirginf,}i/(ﬂ;(t)), H(v(t)) < liniinf I (U (1)), (4.2.40)
since @, (t) — (t) in L?*(Q,R?) and 7, (t) — v(t) in H'(Q). Furthermore, we have 0, — o in
L?(0,T; H*(Q)) and t < t,,, which gives

/t%(ij(s)) ds < lim inf /tg(i}n(s)) ds < lim inf " G (0n(s))ds. (4.2.41)
0 0

Finally, let us consider the function ¢(z,y,&) = %b(y)C(m){sym-fsym, (z,y,&) € AxRxRI*4,

As in the previous lemma, the function ¢ satisfies the assumption of Ioffe-Olech’s theorem,
while o, (t) = v(t) in L2(2) and Eu,(t) — Eu(t) in L?(Q; R?*?). Thus, we obtain

E(u(t),v(t)) = / d(z,v(t,x), Bu(t,z)) dx

@ (4.2.42)

< lim inf/ Oz, Tp(t, z), EUp(t, x)) de = liminf & (u,(t), v, (t)).
Q

n—oo n—oo

By combining (4.2.33) with (4.2.34)—(4.2.42) we deduce the inequality (4.2.32) for every
t € (0,7]. O
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4.3 Proof of the main result

In this section we show that for £ > d/2 the generalized solution (u,v) given by Lemma 4.2.7
is a weak solution and satisfies the identity (4.1.27). To this aim we need several lemmas: we
start by proving that, given a function v € H'(0,T;C%(Q)) satisfying (4.1.17), there exists
a unique solution u to equation (4.1.25). As a consequence, we deduce that the mechanical
energy associated to u satisfies formula (4.3.20) for every t € [0,T], which guarantees that the
function u is more regular in time, namely u € C°([0, T]; H'(€;R%)) N C'([0, T); L2(; RY)).
Finally, we use the crack stability condition (4.1.18) and the energy-dissipation inequal-
ity (4.2.32) to obtain (4.1.19) from (4.3.20).

Lemma 4.3.1. Let wy, f, g, u°, and u' be as in (4.1.7), (4.1.9), and (4.1.10). Let us
assume that o € HY(0,T;C°(Q)) satisfies (4.1.17). Then there erists a um’que function z
which satisfies (4.2.1), (4.2.2), the initial conditions 2(0) = u® and 2(0) = u', and which
solves for a.e. t € (0,T) the following equation:

(0 )51 (o) + (BOEICE(), B2y = (1) D)rzoy + 90 B yny  (A31)

1
for every ¢ € HBI(Q;]Rd).

Proof. To prove the existence of a solution z to (4.3.1), we proceed as before. We fix n € N
and we define

T .
Twi=—, 20=u, zt=u' -1t o) =0(jm) forj=0,...,n

n

For j =1,...,n we consider the unique solution 2 —wl e H}Dl(Q; R%) to
0%z, V)20 + (b0 )CEz, BY) ) = (s V)2 + (90 Vi) (4.3.2)

for every ¢ € H}Dl(Q;Rd), where we have set 8z, = L+ (z% — 2 Y for j = 0,...,n, and
62z = %(62%—5,2%_1) forj=1,...,n. By using ¢ := Tn((Szn dw?,) as test function in (4.3.2)
and proceeding as in Lemma 4.2.4, we get that the function 2 satisfies for ji=1,....n

nr-n

D (028) + 6 (o)) — [ (2571) + 68l )] = S(blod) — bt ICEh, Bxf) 1
< 528 — i)y + a6 07— 0 g
+ 70 (6227, (5’[1)'3;/)[/2(&’2) + 7 (b(v) HCEZ!, E(Sw%)Lz(Q).

In particular, we can sum over [ = 1,...,j for every j € {1,...,n} and use the identi-
ties (4.2.15) and (4.2.16) to derive the discrete energy inequality

i
H(0z}) + & (2, 00) — ; > ([b(ay,) = b(oy ICEz,, Ez) 20
=1

< H(uh) + &( u ,o(0)) + ZTn l,dzfl — 6w,£L)L2(Q) + (b(UﬁL_l)CEzfl, Edw%)LQ(Q)] (433
j . . .
- ZTn[@grfm Zi,_l - w'fl_1>H_1(Q) + (522—1’ 52w£1)L2(Q)] + (g, 2, — wgz>H_1(Q)

-1 Dy Dy

+ (5ZZU 5“’%)9(9) —(9(0), u’ — w1(0)>H’1(Q) - <u17w1(0)>L2(Q)~

Dy
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Since o*% < Jﬂ'fl and b is non-decreasing, the last term in the left-hand side is non negative.
Hence, by arguing as in Lemma 4.2.5 and in Remark 4.2.6, we can find a constant C' > 0,
independent of n, such that

max 164 z2(0) + 1510 0] AL Yoy <C
” J 1

Let 2y, 2,,, Zn, Zy,, and z,,, z;, be the piecewise affine, the backward, and the forward inter-
polants of {zn} - and {(5zn} #_1, respectively. As in Lemma 4.2.7, the above estimate implies
the existence of a subsequence of n, not relabeled, and function z satisfying (4.2.1), (4.2.2)
and the initial conditions z(0) = u® and #(0) = u!, such that the following convergences hold
as n — oo:

zn — 2z in HY0,T; L*(;RY)), 2, =% in H'(0,T; HpH (4 RY)),
zn — 2z in CU([0, T]; L2(Q; RY)), z, =% in C([0,T]; Hp! (9 RY)),
Z, — z in L2(0,T; H(Q; RY), zZ,,— % in L*0,T; L2(Q R%)),
2, — 2z in L*(0,T; H'(;RY), 2, — % in L*(0,T; L*(Q; RY)).

Let us now define the backward interpolant &,, and the forward interpolant ¢,, of {U% Fi
By integrating the equation (4.3.2) in the time interval [t1,t2] C [0, T], we obtain

[0ttt [0, 0)CEz(0, B0

t1 ! tq

to . t2
= / (fn(t)> w)LQ(Q) dt + / <§n(t)> w>H51(Q) de
t1 t1 1

for every ¢ € Hbl(Q;Rd). Thanks to the fact that o € H'(0,T;C%(Q)) and the previous
convergences, we can pass to the limit as n — oo as done in Lemma 4.2.9, and we deduce

|0 @t + [ @o@)CE), B de

t1 b1 131

_/Q(f(t)7w)L2(Q) dt+/2<g(t),1/1>HD11(Q)dt

t1 t1

for every ¢ € Hllj1 (Q;R%). By Lebesgue’s differentiation theorem and a density argument we
can conclude that the function z solves (4.3.1) for a.e. ¢ € (0,T) and for every ¢ € Hp, (€; RY).

To prove the uniqueness, we use the same technique adopted in Theorem 1.2.10 and
Lemma 3.4.2. Let z; and z2 be two solutions to (4.3.1) satisfying (4.2.1), (4.2.2), and the
initial conditions u° and u!. The function z =: z; — 2 belongs to the space

L(0,T; Hp, (9 RY)) nWH(0, T; L*(9; RY)) N H*(0,T; Hpy (4 RY)),
and for a.e. t € (0,7T) solves

(E(),9) =10y + (B(o (D) CE2(t), BY)2(0) = 0 for every ¢ € Hp (9 RY),

1

with initial conditions z(0) = 2(0) = 0. We fix s € (0,7, and we consider the function

=[Py dr it e0,4],
pall) = {0 t it ¢ e s, T).
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Clearly, we have ¢, € C°([0,T]; H})I(Q;Rd)) and @s(s) = 0. Moreover

R (9! if t € [0, s),
2sll) = {o itt e (5,7,

which implies ¢5 € L*(0,T; H})I(Q;Rd)). We use p;(t) as test function in (4.3.1) and we
integrate in [0, s] to deduce

/0 ), s (8)) -1 (g A + /0 (b(o(t))CE= (1), Eps(t)) 12(0 dt = 0. (4.3.4)

1

By integration by parts, the first term becomes

| O i dt = = [ OO0 = 5120 e,

Dy

since ¢;(s) = £(0) = 2(0) = 0. Moreover, the function t — (b(c(t))CEps(t), Eps(t))r2(q) is
absolutely continuous on [0, 7], because ¢s € H*(0, T} H})I(Q; RY)) and o € H'(0,T;C°(Q)).
Hence, we can integrate by parts the second terms of (4.3.4) to obtain

/Os(b(O'(t))(CE(Z(t)), E@s(t))Lz(Q) dt

1 1

= _5 /()S(b(a(t))d(t)CEsos(t)? E‘Ps(t))L2(Q) dt — i(b((j(O))CESDS(O)v E‘PS(O))LQ(Q)a

since pg(s) = 0. These two identities imply that z and ¢, satisfy
12(5)[172 () + (B((0))CEps(0), Eps(0)) 120 = —/O (b(o(£))5 () CEps(t), Es(1)) 12() dt.
In particular, we get
12(5) 1720y + Mol Bps(0)]1 720

< b0l e o 7o) IC =) /0 16 (8) | oo e 1B (8) 22y

since b is non-decreasing. Let us define ((t) = fg z(r)dr fort € [0, s]. Since ps(t) = ((t)—C((s)
for t € [0, s], we deduce that [|Eps(0)[|z2(q) = [[EC(s)|12(0) and

LIPS AN A
< B ey [ 100 ey e+ 2 [ 160 | ECOIa oyt
< 2\/§HdHL2(O,T;CO(§))HEC(S)H%P(Q) + 2/OS”fT(t)HLOO(Q)HEC(t)H%z(Q)dt-
Hence, we have
12()1172(52) + [77)\0 - QE(HUHLOO(O,T;CO(Q)))H(C”LOO(Q)HdH[P(O,T;CO(ﬁ))\/E} 1EC(5)]1 720
< 20(lo o o) Il | 16Ol ECE) et

Let us set )

ol )
to= [ — _ :

4b( ||U||Loo(o,T;CO(ﬁ) Nl L0 HUHLQ(QT;CO@))
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By the previous estimate, for every s € [0,tg] we derive

nA
5 IBC($)l1Z2(0)

< 25(10 | o 0,500 IClL22= ) /0 16 (8) | oy |G (0)] 22yl

I2(s)II72(0y +

Thanks to Gronwall’s lemma (see, e.g., [24, Chapitre XVIII, §5, Lemme 1]), this inequality
implies that z(s) = E((s) = 0 for every s € [0,tp]. Since ¢y, depends only on C, b, and o, we
can repeat this procedure starting from ¢y and, with a finite number of steps, we obtain that
z = 0 on the whole interval [0, 7T7]. O

Corollary 4.3.2. Letwy, f, g, u°, u', and o be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u® and #(0) = u' satisfies for every t € [0,T) the
following energy-dissipation inequality

2
< H (u) + EWO,0(0)) + Wi (2,030, 1).

HEWD) + EE), o) - 5 /0 (b(0(5))5(5)CE=(s), B2(s)) r2() ds (4.3.5)

Proof. For t = 0 the inequality (4.3.5) is trivially true, thanks to the initial conditions of z.
We fix ¢t € (0,7] and we write the inequality (4.3.3) as

IR
H (7, (1) + & (Zn(t), Tn(t) - 27/0 ([b(@n) — b(2,)|CEZn, EZn)r2(0) ds
tn
< (u') + &, 0(0)) +/ [(fnsZ — @) 12(0) + (b(a,,)CEZy, EWy,) 12(0)] ds
0 (4.3.6)
t'"/
- /0 [<gna§n - wn>HBi(Q) + (g'lm w;z)L2(Q)] ds + <§n(t)agn(t) - wn(t»Hl;ll(Q)
+ (2,(1), W, (1)) £2(0) — (9(0), 1 — w1(0)>H51(Q) = (uh,w1(0)) 2()
where t,, := j7,, and j is the unique element in {1, ..., n} for which t € ((j—1)7,, j7n]. To pass

to the limit as n — oo in (4.3.6), we follow the same procedure adopted in Lemma 4.2.11.
Notice that Z,(t) — z(t) in HI(Q;Rd)End zZ (1) — 2(t) in L*(Q;RY), by arguing as in
Remark 4.2.8, while 7,,(¢t) — o(t) in C°(Q). Hence, we derive

H(3(t)) < liminf #(Z,(t), E(2(t),0(t)) < liminf &(Z,(t), Fn(t)). (4.3.7)

n—oo n—o0

Similarly, we combine the convergences given by the previous lemma, with ¢,(s) — o(s) in
CY(Q) for every s € [0,T] and t,, — t as n — oo, to deduce

in

lim [ (f,(s),Z,(s) = W,(5))12(0) ds :/0 (f(s), 2(s) — () r2(e) ds, (4.3.8)

n—oo Jg
in

lim (b(on(s))(CEzn(s),Ew%(s))Lz(Q)]ds:/O (b(a(s))CEz(s), E(s)) 2 ds, (4.3.9)

n—o0 0

Jim n(ig(s)aw;(s))w(m ds = / (2(s),w1(s))r2(0) ds, (4.3.10)
0 0

Jim ; n<§ln(s)»§n(3) - wn(S»HBll(Q) ds = /o (9(s),2(s) — w1(5)>H]311(Q) ds, (4.3.11)

nllngo(za(t)awiz(t))L2(Q) = (2(t),01(t)) r2(0) (4.3.12)

lim (G (£). Za(t) = Ta(t)) g1 = (9(8),2(6) = w01(8) g1 (4.3.13)

n—o0
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Finally, for a.e. s € (0,T) we have

EH(S) —Qn(S) . O'(S)

1 S+Tn
- < 7_/ |6(r) —(s)l|Le)y =0 asn— oo, (4.3.14)

Lo ()

since & € L%(0,T;C%(Q)). Let us fix s € (0,T) for which (4.3.14) holds. By Lagrange’s
theorem for every x € €2 there exists a point r,(s, x) € [o,(s,z), 0, (s, z)] such that

F(s,2)) ~blonlo,0)) o Tals )~ (s,2)

Notice that r,(s,x) — o(s,z) as n — oo for every x € 2. Hence, for a.e. s € (0,T) we get

nlglgo b(an(s,x))T— blon(s, z)) = b(o(s,z))(s,z) for every z € Q.

Furthermore, thanks to (4.3.14) there is a constant Cs > 0, which may depend on s, but it is
independent of n, such that for every x € Q

Tn(s) = 2n(s)

b(@n(s,x)) — blan(s, z)) < b(

™ HUHLoo(o,T;CO(ﬁ)))

L ()

< b(|lo]| oo (0,720 1)) ) Cs-

Therefore, for a.e. s € (0,7) we can apply the dominated convergence theorem to deduce

b(@n(s)) = blan(s)) b(o(s))5(s) in L*(Q) asn — oo.

Tn

The function ¢(z,y,&) = % ly| C(z)Esym - £39™ (1,4, &) € Q x R x R¥*? satisfies the assump-
tions of Ioffe-Olech’s theorem, while EZ,(s) — FEz(s) in L?(£;R¥9) for every s € [0,T].
Then, we have

1
2

J

(b(o(s))5(s)CE2(s), Ez(s)) 120
Q(;5(:6,b(a(s))d(s,:ﬂ),Ez(s,x))dx

. b(an(s,z)) —bla,(s,z))
< lim mf/Q 1) (x, ,EZn (s, x)) dz

n—00 Tn

— lim inf {—;([b(an(s)) — b(g, (5))|CEZ(s), Ezn(s))Lg(Q)]

n—00 Tn

for a.e. s € (0,7, being b(7,(s)) < b(g,,(s)) in Q. In particular, thanks to Fatou’s lemma
we get

I _

-5 | Glol)sICE(). B2(s)) (e ds

< [tmint |5 (00 (6) ~ HoaICEZ ). Ern | s (4315)
0 n

< lim inf [_1 /O " (@ () — bl ()ICEZn(s), Ezn(s)) 120y ds] ,

n—00 27y,

since t < t,,. By combining (4.3.6)—(4.3.13) with (4.3.15) we deduce the inequality (4.3.5) for
every t € (0,77. O
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The other inequality, at least for a.e. ¢ € (0,7'), is a consequence of equation (4.3.1).

Lemma 4.3.3. Let wy, f, g, u°, u', and o be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u® and #(0) = u' satisfies for a.e. t € (0,T)

H(2(t) + E(2(t),0(t)) — ;/0 (6(0(3))&(3)@]52’(3),Ez(s))Lz(Q) ds

> (uh) + EW,0(0)) + Wit (2,0:0,1).

(4.3.16)

Proof. 1t is enough to proceed as done in Lemma 4.1.8, by using Lebesgue’s differentiation
theorem and the fact that z € C9([0,T]; H'(Q;R%)) and z € CY(]0,T]; L*(Q;R%)). This
ensures that z satisfies

H (2At2)) + E(:(t2). (1) = 5 [ (o6 5)CE=(). P2(3)) (e ds

=X (2(t1)) + E(2(t1),0(t1)) + Wit (2,03 1, t2)

for a.e. t1,ty € (0,T) with ¢; < t3. Since the right-hand side is lower semicontinuous with
respect to t1, while the left-hand side is continuous, sending t; — 0" we deduce (4.3.16). O

By combining the two previous results we obtain that the solution z to (4.3.1) satisfies

t .
H(2(t)) + E(2(t),0(t)) — ;/0 (b(a(s))a(s)CE2(s), Ez(s)) 2(q) ds

= (u') + EW’,0(0)) + Hhotr(2,050,1).

(4.3.17)

for a.e. t € (0,7T). Actually, this is true for every time, as shown in the following lemma.

Lemma 4.3.4. Let wy, f, g, u°, u', and o be as in Lemma 4.3.1. Then the unique solution
z to (4.3.1) with initial conditions z(0) = u® and #(0) = u' satisfies equality (4.3.17) for
every t € [0,T). In particular, the function t — S (2(t)) + & (2(t),0(t)) is continuous from
[0,T] to R and

z € CO[0,T); HY(Q; RY)) nCY([0, T); L*(Q; RY)). (4.3.18)

Proof. We may assume that o, wi, f, and g are defined on [0, 27| and satisfy the hypotheses of
Lemma 4.3.1 with T replaced by 2T. As for w; and o, we can set w (t) := 2w (T) — w1 (2T —1t)
and o(t) == o(T) for t € (T, 2T, respectively. By Lemma 4.3.1, the solution z on [0,7] can
be extended to a solution on [0,27] still denoted by z. Thanks to Corollary 4.3.2 and
Lemma 4.3.3, the function z satisfies equality (4.3.17) for a.e. t € (0,27), and inequal-
ity (4.3.5) for every t € [0,27]. By contradiction assume the existence of a point ¢y € [0, 7]
such that

1

A (E{t0) + 6(:(0).0(00)) = 5 | (Ho(9)F(5ICE=(). B=(s)) (o)

< %(ul) + éa(uo, 0(0)) + ot (2,0;0,tp).

We have z(to) — w(to) € H}, (€ R?) and %(to) € L*(;R?), since z € C([0,T); H*(Q; RY))
and 2 € C9([0,T); L*(Q;RY)). Then we can consider the solution zq to (4.3.1) in [to, 27 with
these initial conditions. The function defined by z in [0, to] and zp in [to, 27] is still a solution
to (4.3.1) in [0,27] and so, by uniqueness, we have z = zy in [tg, 27]. Furthermore, in view
of (4.3.5) we deduce

1

H(2(t) + E(2(t),0(t)) — 2/t (b(a(s))d(s)CEz(s), E2(s))r2(0) ds

< K (2(tg)) + E(2(to), 0(to)) + #iot (2, 05 to, t)
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for every t € [tp,2T]. By combining the last two inequalities, we get

H(2(t)) + E(2(t),0(t)) — ;/0 (b(a(s))d(s)(CEz(s), Ez(s))r2(0) ds
< (alto)) + E(alto), o(10) + Hian(2, 03 10,1) — 5 /0 (b(0 ()3 (5)CE=(s), E2(5)) 12 s

< A (u') + EW°,0(0) + Wiot (2,00, t0) + #hot(2, 05 to, t)
= A (u) + EW®,0(0)) + #hot (2,03 0,1)

for every t € [to, 2T], which contradicts (4.3.17). Therefore, equality (4.3.17) holds for every
t € [0, 7], which implies the continuity of the function t — £ (2(t)) + & (2(t), o (t)) from [0, T
to R.

Let us now prove (4.3.18). We fix tog € [0, 7] and we consider a sequence of points {tm, }m
converging to tg as m — oo. Since z € CO([0,T]; H'(;R?)) and 2 € CY([0, T]; L?(£; R?)),
we have

H(2(to)) < liminf # (2(ty)), & (2(t0),0(to)) < liminf &(2(t,), o(to))-

m—00 m—00
Moreover, o € C°([0,T]; C°(Q)) and b € C*(R), which implies as m — oo

|6 (2(tm), o(t0)) = & (2(tm), o (tm))|

< b0l o oy €l e @l B2 0oy () = 0 i)y = 0.
In particular, we deduce

& (2(tg),o(to)) < liminf &(2(ty), o(tm)).

m—ro0

The above inequalities and the continuity of ¢ — J# (2(t)) + &(2(t), o(t)) gives

A (%(to)) + € (2(t0), o (to)) < liminf A (2(tn)) + lim inf & (2(tm), 0 (tm))

m—r0o0

< lim [ (2(tw)) + E(2(tw), o (tm))]
0

m—o0

= X (3(to)) + &(2(t0), o(t0)),

which implies the continuity of ¢ — £ (2(t)) and t — &(z(t),o(t)) intg € [0,T]. In particular,
we derive that the functions t +— ||2(t)|[12(q) and t = ||2(?)|| g1(q) are continuous from [0, 7]
to R. By combining this fact with the weak continuity of Z and z, we get (4.3.18). O

We are now in a position to prove Theorem 4.1.5.

Proof of Theorem 4.1.5. By Lemmas 4.2.9 and 4.2.10, there exists a generalized solution
(u,v) to (4.1.12)—(4.1.15) satisfying the initial conditions (4.1.16), the irreversibility con-
dition (4.1.17), and the crack stability condition (4.1.18). Clearly, the function v satis-
fies (4.1.23), since k& > 1. Moreover, the function v = o is admissible in Lemmas 4.3.1
and 4.3.4, since H*(Q) — C°(Q). Therefore, u = z satisfies (4.1.21), which gives that (u,v)
is a weak solution to (4.1.12)—(4.1.15).

It remains to prove that (u,v) satisfies the dynamic energy-dissipation balance (4.1.19).
As observed in Remark 4.1.9, for £ > d/2 the crack stability condition (4.1.18) is equivalent
to the variational inequality (4.1.39) for a.e. t € (0,7) and the function 0(t) € H¥(Q) is
admissible in (4.1.39). Therefore, we have

Bp (u(t), v(t))[0()] + DA (v(t)[0(t)] + F((t)) > 0 for ace. t € (0,T).
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By integrating the above inequality in [0, to] for every ¢y € [0,T], we get

/Oto 0,8 (u(t), v()[6(D)] dt + A (v(to)) — A (°) + /Oto G(0(t)) dt > 0. (4.3.19)
Thanks to Lemma 4.3.4, for every ¢ € [0,T] the pair (u,v) satisfies
H (1) + 6(ult0)v(00) ~ [ GOEIOCEUD, Bt oyt

= (u') + EW®,00) + Hor (u, v 0, tg).
Hence, by combining (4.3.19) and (4.3.20), we deduce

F (u(to), u(tg), v(tg)) + Oto G (o(t))dt > .F (ul,ut, v°) + Wor (u, v;0, 1)

for every to € [0,7]. This inequality, together with (4.2.32), implies (4.1.19) and concludes
the proof. 0

4.4 The case without dissipative terms

We conclude the chapter by analyzing the dynamic phase-field model of crack propagation
without dissipative terms. Given wy, wo, f, g, u®, u', and v satisfying (4.1.7)-(4.1.11) and

00 € argmin{& (u®,v*) + A (v*) 1 v* —wy € H}D2(Q), v* <% in Q}, (4.4.1)

we search a pair (u,v) which solves the elastodynamics system (4.1.12) with boundary and
initial conditions (4.1.13)-(4.1.16), the drreversibility condition (4.1.17), and the following
crack stability condition for every t € [0, T

E(u(t),v(t)) + H(v(t)) < E(u(t),v”) + H#(v*) (4.4.2)
among all v* —wy € H}b (Q) with v* < wv(t).
Remark 4.4.1. We need the compatibility conditions (4.4.1) for the initial data (u",v?),
since we want that (4.4.2) is satisfied for every time. Notice that, given u® € H'(Q;R?),

an admissible v° can be constructed by minimizing v* — &(u®,v*) + J#(v*) among all
vt —wa € H%z(Q) with v* <1 in Q.

In this section we consider the following notion of solution, which is a slightly modification
of Definition 4.2.1.

Definition 4.4.2. Let wy, wa, f, and g be asin (4.1.7)—(4.1.9). The pair (u,v) is a generalized
solution to (4.1.12)—(4.1.15) if
we L0, T H' (Q;RY) n WH*(0, T; L*(; RY) N H*(0,T; Hp ! (4 RY)), (
u(t) —wi(t) € Hp, (Q;RY) for every t € [0, 7], (4.4.4
v: [0,T] = HY(Q) with v € L>=(0,T; H*(Q)), (
v(t) — we € Hp, (Q) and v(t) < 1 in Q for every ¢ € [0, 7], (

and for a.e. t € (0,T") equation (4.1.25) holds.

Remark 4.4.3. By exploiting the regularity properties (4.4.3), we deduce that u belongs to
CO ([0, T); HY(Q;RY)), while @ is an element of C9 ([0, T]; L?(2; R?)). Therefore, it makes sense
to evaluate v and 4 at time 0. On the other hand, we require v to be defined pointwise for every
t € [0, 7], so that we can consider its precise value at 0. Hence, the initial condition (4.1.16)
are well defined.
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The main result of this section is the following theorem.

Theorem 4.4.4. Assume that wi, wo, f, g, u®, u', and v° satisfy (4.1.7)-(4.1.11) and
(4.4.1). Then there exists a generalized solution (u,v) to problem (4.1.12)—~(4.1.15) satisfying
the initial condition (4.1.16), the irreversibility condition (4.1.17), and the crack stability
condition (4.4.2). Moreover, the pair (u,v) satisfies for every t € [0,T] the following energy-
dissipation inequality

F(u(t),u(t),v(t)) < F @’ ul,v°) + Wit (u,v;0,1). (4.4.7)
Finally, if wa >0 on dp,Q, v° >0 in Q, and b(s) = (s V 0)2 +1n for s € R, then we can take
v(t) >0 in Q for every t € [0,T].
Remark 4.4.5. By choosing b(s) = (sV0)+n for s € R we deduce the existence of a dynamic
phase-field evolution (u,v) satisfying (D;) and (D3), since we can take v(¢) > 0 in © and

/ [(v(z) V 0)? + n]C(z)Eu(z) - Bu(z)dz < / [(v(2))? 4 1]C(z) Bu(z) - Eu(x) dz
Q Q

for every u € H'(Q;R?) and v € H'(Q2). Without adding a dissipative term to the model, we

are not able to show the dynamic energy-dissipation balance (D3). However, we can always
select a solution (u,v) which satisfies (4.4.7) for every t € [0, 7.

To prove Theorem 4.4.4 we perform a time discretization, as done in the previous sections.
From now on we assume that wy, we, f, g, u°, u!, and v° satisfy (4.1.7)—(4.1.11) and (4.4.1).
We fix n € N and for every j = 1,...,n we define inductively:

(i) ul, —wi, € Hp, (9 R9) is the minimizer of
* 1 * j—1 i—21(2 * j—1 j % j * j
wt g et = 26—+ ST = (Rl e — (0~ el
among every u* — wi € Hll)1 (Q;RY);

(i1) vl —wy € H}, () with vl < 31 is the minimizer of

v* = é"(ufl,v*) + A (v)

among every v* — wg € H}DQ(Q) with v* < v

As before, for every j =1,...,n there exists a unique pair (uf, vl) € HY (4 RY) x HY(Q)

solution to problems () and (i¢). Moreover, the function u, solves (4.2.5), while the function
v}, satisfies ' o ' '

E(ul,,v*) — &, vl) + 05 (v])[v" —vl] >0 (4.4.8)
among all v* —wy € H}, () with v* < vl !, arguing as in Lemma 4.2.3. In particular, if
wy > 0 on dp,Q, v° > 01in Q, and b(s) = (s V0)> + 17 for s € R, then for every j =1,...,n
we can use v;, V 0 € H'(Q) as a competitor in (i7) to derive that v}, = vj, V.0 > 0 in €.
Lemma 4.4.6. The family {(uﬁ,v%) _1, solution to (i) and (ii), satisfies for j =1,...,n
the discrete energy inequality

J
F(ul, oul vl + ZfﬁD,ﬁ
=1
J
< F W0, ul, %) + Z’fn[( L dul — 5w£l)L2(Q) + (b(vE"HCEYL, an,f,L)LQ(Q)]
=1

- Z Tn[(éu'ln_la 62w£1)L2(Q) - <5g£w uil_l - w:z_1>H5}(Q)] + (5u¥w 511]%)]42((2)

+ (g, ufy — wZL>H511(Q) - (u', w1(0))r2(0) — (9(0),u” — w1(0)>H51(Q)'
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In particular, there exists a constant C' > 0, independent of n, such that

n n
e (Il + ol o+ Il ]+ 30 7l gy + D0 72DE < €. (149)
=Ly j=1 1 j=1

Proof. 1t is enough to proceed as in Lemmas 4.2.4 and 4.2.5, and Remark 4.2.6. 0

As done in Section 4.2, we use the family {(u,,v})}"_, and the estimate (4.4.9) to con-

=1
struct a generalized solution (u,v) to (4.1.12)—(4.1.16).jLet Up, Uy, Tp, Uy, and u,, u;, be
the piecewise affine, the backward, and the forward interpolants of {u%}?zl and {5u%}?:1,
respectively. Moreover, we consider the backward interpolant v,, and the forward interpolant
v, of (v}

Before passing to the limit as n — oo, we recall the following Helly’s type result for

vector-valued functions.

Lemma 4.4.7. Let [a,b] C R and let o, : [a,b] — L?(), m € N, be a sequence of functions
satisfying
Om(s) < om(t) nQ  for everya <s<t<bandm €N.

Assume there exists a constant C, independent of m, such that
lom@)||L2) < C for every t € [a,b] and m € N.

Then there is a subsequence of m, not relabeled, and a function ¢: [a,b] — L?(2) such that
for every t € [a,b]
om(t) = @) in L*(Q) as m — co.

Moreover, we have ||¢(t)||12(q) < C for every t € [a,b] and
o(s) <p(t) inQ foreverya<s<t<b. (4.4.10)

Proof. Let us consider a countable dense set 2 C {x € L?(2) : x > 0} and let us fix y € 2.
For every m € N the map t — [, om(t,2)x(2) dz is non-decreasing and uniformly bounded
in [a, b], since

‘/ om(t,x)x(x)dz| < C|x|lr2() for every t € [a, b]. (4.4.11)
Q

By applying the Helly’s theorem, we can find a subsequence of m, not relabeled, and a
function a, : [a,b] — R such that for every t € [a, b]

/ om(t,z)x(x)dz — ay(t) as m — oo.
Q

Moreover, thanks to a diagonal argument, the subsequence of m can be chosen independent
of x € 2.

We now fix ¢ € [a,b] and y € L*(Q) with x > 0. Given h > 0, there is x;, € Z such that
X = xnllz2(0) < h. Moreover, thanks to the previous convergence we can find m € N such
that for every m,l > m

/ ot 1) xn () dz — / o3t 2)xn(z) dz
Q Q

< h.

Therefore, the sequence [, om(t,2)x(2) dz, m € N, is Cauchy in R. Indeed, for every h > 0
there exists m € N such that for every m,l > m

/Q om(t, 2)x() dz — /Q ot 2)x () de

<2C|Ix = xnllr2@) + ‘/me(t, z)xn(z) dr — /QSOj(ta z)Xxn(r)dz

< (2C + 1)h.
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Hence, we can find an element a,(¢) € R such that

/Q@m(t, z)x(z)dz — ay(t) as m — oco.

In particular, for every ¢ € [a,b] and x € L?(2) we have as m — oo

/Q om(t, 2)x(x) dz = /Q om(t ) ys () dz — /Q om(t )y (z) dz
= ay, (1) —ay_(t) =t ay(),

where we have set x4+ = x V0 and x_ := (—x) V0. For every ¢ € [a,b] fixed, let us consider
the functional ((t): L?(f2) — R defined by

C(t)(x) = ay(t) for x € L*(Q).
We have that ((t) linear and continuous on L?(Q2). Indeed, by (4.4.11) we deduce
[CE 001 < Clixllzzq)  for every x € L*(Q).

Hence, Riesz’s representation theorem implies the existence of a function ¢(t) € L?(§2) such
that

ay(t) = /Qgp(t,x)x(x) dz for every x € L3(Q).

In particular, for every t € [a,b] we deduce that ¢,,(t) — ©(t) in L?(Q) as m — oo and
lo(t)llr2@) < C. Finally observe that {x € L*(Q) : x > 0} is a weakly closed subset of
L?(9). Therefore, we derive (4.4.10), since @, (t) — @m(s) — @(t) —@(s) in L*(Q) as m — oo
and o, (t) — pm(s) € {x € L2(R2) : x > 0} for every m € Nand a < s <t < b. O

Lemma 4.4.8. There exist a subsequence of n, not relabeled, and two functions

w € L®(0,T; H (4 RY)) nWH*(0, T; L*(; RY) N H*(0,T; Hp (4 RY)),
v: [0,T] — HYQ) with v € L>(0,T; H(Q)),

such that as n — oo

w, —u in HY(0,T; L*(;RY)), up, =4 in H'(0,T; HpH(Q;RY)),
u, = u in CO([0,T); L?(Q;RY)), ul, = in CO([0,T); H D L(Q;R?)),
Tp —u in L2(0,T; HY(Q; RY)), w, —a in L?(0,T; L*(; RY),

u, —u in L?(0,T; H(;RY), ul, =4 in L2(0,T; L*(€;RY)),
Tn — v in L2(0,T; L*(Q)), T, — v in L?(0,T; H'(Q)),
v, = v in L*(0,T; L*(Q)), v, = v in L*(0,T; H(Q)).

Moreover, for everyt € [0,T] as n — oo we have
Tn(t) = v(t) in L*(Q), Ta(t) = v(t) in HY(Q).

Proof. The existence of a limit point v and the related convergences can be obtained by
arguing as in Lemma 4.2.7. Let us now consider the sequence {v,},. For every n € N the
functions v, : [0,T] — L?(2) are non-increasing in [0, 7], that is

Up(t) <Tp(s) inQ forevery 0 <s<t<T,
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and, in view of Lemma 4.4.6, there exists C' > 0, independent of n, such that
105 ()| 1) < € for every t € [0,T] and n € N. (4.4.12)

Therefore, we can apply Lemma 4.4.7. Up to extract a subsequence (not relabeled), we obtain
the existence of a non-increasing function v: [0, T] — L?(Q) such that as n — oo

Tn(t) = v(t) in L*(Q) for every t € [0,T].
Moreover, by (4.4.12) for every t € [0, T] we derive that v(t) € H'(2) and as n — oo
Tn(t) = v(t) in HY(Q), T,(t) = v(t) in L*(Q),

thanks to Rellich’s theorem. Notice that the function v: [0,T] — H(f) is strongly measur-
able. Indeed, it is weak measurable, since it is non-increasing, and with values in a separable
Hilbert space. In particular, we have v € L>(0,T; H'(Q2)), since |[v(t)|| 1oy < C for every
t € [0,T]. By the dominated convergence theorem, as n — oo we conclude

T, — v in L2(0,T; (), T, —v in L*(0,T; H(Q)).
Finally, as n — oo we have

v, — v in L*(0,T; L*()), v, —v in L*0,T;H(Q)),
since v, (t) = U, (t — 7,) for ae. t € (1,,T). O
Remark 4.4.9. As pointed out in Remark 4.2.8, for every ¢ € [0,7] we have as n — oo

Tp(t) = u(t) in HY (G RY), @, (t) — a(t) in LE2(Q;RY),

n

w,(t) = u(t) in HY(QRY), o), (t) —a(t) in LE(Q;RY).
We are now in a position to prove Theorem 4.4.4.

Proof of Theorem /.4.4. Thanks to the previous lemma there exists a pair (u,v) satisfy-
ing (4.4.3)—(4.4.6), since up(t) — wy(t) € HBI(Q;RC[) and U, (t) — wy € Hp, (Q) for every
t € [0,T] and n € N. Moreover, (u,v) satisfies the irreversibility condition (4.1.17) and
the initial conditions (4.1.16), thanks to (4.4.10) and the fact that u® = u,(0) — u(0) in
HY(Q;RY), u! = u},(0) = 4(0) in L*(Q;R?), and v¥ = 1,(0) — v(0) in H'(2) as n — oc.
For every n € N and j = 1,...,n the pair (uj,,v5,) solves equation (4.2.5). In particular,

by integrating it over the time interval [t1,t2] C [0, 7], we deduce
to [
0 e [ 00 0)CET 0, B e

t1 ! t1

to to
= [T vt [ @005

t1

for every ¢ € H},l(Q; R%). Let us pass to the limit as n — co. We have

to to
lim a (t), 1 dt:/ (), _1,0n dt,
Jim G050 A= [0V g
to . to
T [0 vy de = [ (001200 .
t1 t1

to

2
i 005100000 = 00,0 510

n—oo Ji. t Dy
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since 1, — i in L*(0,T; Hy (4 RY)), g, — g in L*(0,T; Hy (% RY)), and f, — f in
L?(0,T; L?(2;RY)) as n — co. Moreover, the dominated convergence theorem yields that
b(v,)CEY — b(v)CEY in L*(0,T; L2(Q;R¥*9)) as n — oo, being

1b(v,, (¢, 2))C(z) Ep(2)| < b(L)||C| oo ()| EY ()| for every ¢ € [0,T] and a.e. x € Q,

and v,, — v in L?(0,T; L*(2)). Therefore, we derive
to

lim [ (b(v, (1)) CEw,(t), EY)2(0) dt = /t 2(b(v(t))CEu(lt% E) 12 dt,

n—oo tl
because Et,, — Eu in L?(0,T; L*(Q; R%*9)) as n — oo. These facts imply that the pair (u,v)
solves

to t2
/ (ii(£),9) g1 (g A+ / (b(v(£))CEu(t), Etb) 2(q dt

t1 N 1 t1 .
_/ (f@®),¥)r20) dt—l—/ <9(t)a¢>H51(ﬂ) dt
t1 t1 1

for every ¢ € Hbl(Q;Rd) and [t1,t2] C [0,T]. By Lebesgue’s differentiation theorem and a
density argument we hence obtain (4.1.25) for a.e. t € (0, 7).

For t = 0 the crack stability condition (4.4.2) trivially holds, since (u,v) satisfies the
initial conditions (4.1.16) and the compatibility condition (4.4.1). We fix t € (0,T] and we
use the variational inequality (4.4.8) to derive

E (U (t),v*) — E(Un(t), Ty (t)) + 05 (Vs (t))[v" — Up(t)] > 0 (4.4.13)
among all v* — wy € H&(Q) with v* <0, (t — 7). Given x € H1132(Q), with x <0 in €, the
function x + v, (t) is admissible for (4.4.13). Hence, we have

EUn(t), X +0n(t)) = & (Wn(t), on(t)) + 07 (0n(t))[x] = 0.

Let us send n — oco. Since 7, (t) — v(t) in H*(2), we deduce

Tim 05, (1)[x] = 04 (v(1)[x-

Moreover, Et,(t) — Fu(t) in L?(Q;R¥™4) and v,(t) — v(t) in L?(Q) as n — oo, which
implies

E(u(t), x +v(t)) — & (u(t),v(t)) = limsup [&(Un(t), X + Vn(t)) — & (Un(t), Un(t))]

n—00

by Ioffe-Olech’s theorem, as in Lemma 4.2.10. If we combine these two results, for every
t € (0, 7] we get

&(u(t), x +v(t)) = E(u(t), v(t) + 07 (v(t))[x] = 0

for every x € H1132 (©) with x < 0 in Q. This implies (4.4.2), since the map v* — J(v*) is
convex.

It remains to prove the energy-dissipation inequality (4.4.7) for every ¢ € [0,T]. For t =0
we have actually the equality, thanks to the initial conditions (4.1.16). We now fix ¢ € (0, 7]
and we use (4.3.3) to write

F (T (t), Uy, (t), Un (1))
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for every n € N, where t,, is the same number defined in Lemma 4.2.11. By using the fact
that v, (t) — v(t) in HY(Q) as n — oo, we deduce

H(v(t)) < liminf (v, (t)).

n—oo

Similarly, thanks to loffe-Olech’s theorem we derive

E(u(t),v(t)) < lminf & (u,(t), va(t)),
n—oo
since Ty, (t) — v(t) in L*(Q) and ET,(t) — FEu(t) in L?(Q; R?*?). Finally, we can argue as in
Lemma 4.2.11 to derive that the remaining terms converge to #;(u,v;0,t) as n — co. By
combining the previous results, we deduce (4.4.7) for every t € (0,7].
Finally, if wy > 0 on 9p,Q, v¥ > 0in 2, and b(s) = (s V 0)% + 7 for s € R, then we have
Up(t) > 0 in Q for every ¢ € [0, 7], which implies v(¢) > 0 in . O



Bibliography

1]

2]

[11]

[12]

[13]

[14]

R.A. AbpAMS: Sobolev spaces. Pure and Applied Mathematics, Vol. 65, Academic Press,
New York, 1975.

S. Armi, S. BELZ, AND M. NEGRI: Convergence of discrete and continuous unilat-
eral flows for Ambrosio-Tortorelli energies and application to mechanics. ESAIM Math.

Model. Numer. Anal. 53 (2019), 659-699.

L. AMBROSIO, N. GIGLI, AND G. SAVARE: Gradient flows in metric spaces and in the
space of probability measures. Lectures in Mathematics ETH Ziirich. Birkhauser Verlag,

Basel, 2005.

L. AMBROSIO AND V.M. TORTORELLI: Approximation of functionals depending on
jumps by elliptic functionals via I'-convergence. Comm. Pure Appl. Math. 43 (1990),
999-1036.

B. BOUrDIN, G.A. FRANCFORT, AND J.J. MARIGO: The variational approach to frac-
ture. Reprinted from J. Elasticity 91 (2008), Springer, New York, 2008.

B. BourDIN, C.J. LARSEN, AND C.L. RICHARDSON: A time-discrete model for dy-
namic fracture based on crack regularization. Int. J. Fracture 168 (2011), 133-143.

M. CapronI: Existence of solutions to a phase-field model of dynamic fracture
with a crack-dependent dissipation. Submitted for publication (2018). Preprint SISSA
06/2018 / MATE.

M. CAPONI: Linear hyperbolic systems in domains with growing cracks, Milan J. Math.
85 (2017), 149-185.

M. CapoNI, I. LUCARDESI, AND E. TASSO: Energy-dissipation balance of a smooth
moving crack. Submitted for publication (2018). Preprint SISSA 31/2018/MATE.

M. CAPONI AND F. SAPIO: A dynamic model for viscoelastic materials with prescribed
growing cracks. Submitted for publication (2019). Preprint SISSA 12/2019/MATE.

A. CHAMBOLLE: A density result in two-dimensional linearized elasticity, and applica-
tions. Arch. Ration. Mech. Anal. 167 (2003), 211-233.

A. CHAMBOLLE AND V. CRISMALE: Compactness and lower semicontinuity in GSBD.
To appear on J. Eur. Math. Soc. (JEMS) (2018). Preprint arXiv:1802.03302.

A. CHAMBOLLE AND V. CRISMALE: Existence of strong solutions to the Dirichlet prob-
lem for the Griffith energy. Published online on Calc. Var. Partial Differential Equations

(2019). DOI: https://doi.org/10.1007/300526-019-1571-7.

B. DACOROGNA: Direct methods in the calculus of variations. Applied Mathematical
Sciences, Vol. 78, Springer-Verlag, Berlin, 1989.

121



122

Bibliography

[15]

G. DAL Maso AND L. DE Luca: A minimization approach to the wave equa-
tion on time-dependent domains. Published online on Adv. Calc. Var. (2019). DOLI:
https://doi.org/10.1515/acv-2018-0027.

G. DAL Maso AND C.J. LARSEN: Existence for wave equations on domains with ar-
bitrary growing cracks. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011),
387-408.

G. DAL Maso, C.J. LARSEN, AND R. TOADER: Existence for constrained dynamic
Griffith fracture with a weak maximal dissipation condition. J. Mech. Phys. Solids 95
(2016), 697-707.

G. DAL MAso, C.J. LARSEN, AND R. TOADER: Existence for elastodynamic Griffith
fracture with a weak maximal dissipation condition. J. Math. Pures Appl. 127 (2019),
160-191.

G. DAL MAso, G. LAZZARONI, AND L. NARDINI: Existence and uniqueness of dynamic
evolutions for a peeling test in dimension one. J. Differential Equations 261 (2016),
4897-4923.

G. DAL Maso AND I. LUCARDESI: The wave equation on domains with cracks growing
on a prescribed path: existence, uniqueness, and continuous dependence on the data.
Appl. Math. Res. Express 2017 (2017), 184-241.

G. DAL MASO AND R. ScALA: Quasistatic evolution in perfect plasticity as limit of
dynamic processes. J. Dynam. Differential Equations 26 (2014), 915-954.

G. DAL MAso AND R. TOADER: A model for the quasi-static growth of brittle fractures:
existence and approximation results. Arch. Rat. Mech. Anal. 162 (2002), 101-135.

G. DAL MaAso AND R. TOADER: On the Cauchy problem for the wave equation on
time-dependent domains. J. Differential Equations 266 (2019), 3209-3246.

R. DAUTRAY AND J.L. LIONS: Analyse mathématique et calcul numérique pour les
sciences et les techniques. Vol. 8. Evolution: semi-groupe, variationnel. Masson, Paris,
1988.

E. DE GIorai, L. AMBROSIO: Un nuovo tipo di funzionale del calcolo delle variazioni.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210.

G.A. FRANCFORT AND J.J. MARIGO: Revisiting brittle fracture as an energy mini-
mization problem. J. Mech. Phys. Solids 46 (1998), 1319-1342.

G.A. FRANCFORT AND C.J. LARSEN: Existence and convergence for quasi-static evo-
lution in brittle fracture. Comm. Pure Appl. Math. 56 (2003), 1465-1500.

L.B. FREUND: Dynamic fracture mechanics. Cambridge Monographs on Mechanics and
Applied Mathematics, Cambridge University Press, Cambridge, 1990.

M. FRIEDRICH AND F. SOLOMBRINO: Quasistatic crack growth in 2d-linearized elastic-
ity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 28-64

A. GIACOMINI: Ambrosio-Tortorelli aproximation of quasi-static evolution of brittle
fractures. Calc. Var. Partial Differential Equations 22 (2005), 129-172.

A.A. GrIFFITH: The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc.
London 221-A (1920), 163-198.



Bibliography 123

32]

33]

[34]

[35]

P. GrisvarD: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in
Math., vol. 24, Pitman, Boston, 1985.

T. KaAT0: Abstract differential equations and nonlinear mixed problems. Accademia
Nazionale dei Lincei, Scuola Normale Superiore, Lezione Fermiane, Pisa, 1985.

O.A. LADYZENSKAYA: On integral estimates, convergence, approximate methods, and
solution in functionals for elliptic operators. Vestnik Leningrad. Univ. 13 (1958), 60—69.

C.J. LARSEN: Models for dynamic fracture based on Griffith’s criterion. In: Hackl K.
(eds.) “IUTAM Symposium on Variational Concepts with Applications to the Mechanics
of Materials”, IUTAM Bookseries, Vol 21, Springer, Dordrecht, 2010, 131-140.

C.J. LARSEN, C. ORTNER, AND E. SULI: Existence of solutions to a regularized model
of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010), 1021-1048.

G. LAzzZARONI AND L. NARDINI, Analysis of a dynamic peeling test with speed-
dependent toughness. SIAM J. Appl. Math. 78 (2018), 1206-1227.

G. LazzARONI AND R. TOADER: Energy release rate and stress intensity factor in
antiplane elasticity. J. Math. Pures Appl. 95 (2011), 565-584.

G. LAzzZARONI AND R. TOADER: A model for crack propagation based on viscous
approximation. Math. Models Methods Appl. Sci. 21 (2011), 2019-2047.

J.L. LioNs AND E. MAGENES: Non-homogeneous boundary value problems and applica-
tions. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-
Verlag, New York-Heidelberg, 1972.

N.F. MoTT: Brittle fracture in mild steel plates. Engineering 165 (1948), 16-18.

M. NEGRI: A unilateral L?-gradient flow and its quasi-static limit in phase-field fracture
by an alternate minimizing movement. Adv. Calc. Var. 12 (2019), 1-29.

S. NICAISE AND A.M. SANDIG: Dynamic crack propagation in a 2D elastic body: the
out-of-plane case. J. Math. Anal. Appl. 329 (2007), 1-30.

O.A. OLEINIK, A.S. SHAMAEV, AND G.A. YOSIFIAN: Mathematical problems in elas-

ticity and homogenization. Studies in Mathematics and its Applications, 26. North-
Holland Publishing Co., Amsterdam, 1992.

A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equa-
tions. Appl. Math. Sci., vol. 44, Springer-Verlag, Berlin (1983)

S. RACCA: A viscosity-driven crack evolution. Adv. Calc. Var. 5 (2012), 433-483.

F. RivA AND L. NARDINI: Existence and uniqueness of dynamic evolutions for a one
dimensional debonding model with damping. Submitted for publication (2018). Preprint
SISSA 28/2018/ MATE.

E. SERRA AND P. TiLLI: Nonlinear wave equations as limits of convex minimization
problems: proof of a conjecture by De Giorgi. Ann. of Math. 175 (2012), 1551-1574.

E. SERRA AND P. TILLI: A minimization approach to hyperbolic Cauchy problems. J.
Eur. Math. Soc. 18 (2016), 2019-2044.

J. SimON: Compact sets in the space LP(0,T; B). Ann. Mat. Pura Appl. 146 (1987),
65-96.



124 Bibliography

[51] L.I. SLEPYAN: Models and phenomena in fracture mechanics. Foundations of Engineer-
ing Mechanics. Springer-Verlag, Berlin, 2002.

[52] E. Tasso: Weak formulation of elastodynamics in domains with growing cracks. Sub-
mitted for publication (2018). Preprint SISSA 51/2018/MATE.



	Introduction
	Elastodynamics system in domains with growing cracks
	Preliminary results
	Existence and uniqueness
	Energy balance
	Continuous dependence on the data

	Dynamic energy-dissipation balance of a growing crack
	Preliminary results
	The change of variable approach

	Representation result
	Local representation result
	Global representation result

	Dynamic energy-dissipation balance

	A dynamic model for viscoelastic materials with growing cracks
	Preliminary results
	Existence
	Initial conditions
	Uniqueness
	An example of a growing crack

	A phase-field model of dynamic fracture
	Preliminary results
	The time discretization scheme
	Proof of the main result
	The case without dissipative terms

	Bibliography

