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Abstract

We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter
with a general kernel K, a Riesz potential, and a background potential in RN with N ≥ 2
under the volume constraint. We show that the energy has no minimizer for a sufficiently large
mass under suitable assumptions on K. The proof is based on the partition of a minimizer
and the comparison of the sum of the energy for each part with the energy for the original
configuration. This strategy is based on [6] and [11].

1 Introduction

We study the minimizing problem for the following fuctional:

F(K,A)(E) := PK(E) + V1(E)−AR(E) (1.1)

under the volume constraint |E| = m where E ⊂ RN , N ≥ 2, is measurable, and A ≥ 0. Here
PK(E) is the nonlocal perimeter with a general kernel K defined by

PK(E) :=

∫
E

∫
Ec

K(x− y) dx dy, (1.2)

where Ec := RN \ E and the kernel K satisfies the following conditions:

(K1) K(x) > 0, and K(−x) = K(x) for any x ∈ RN .

(K2) K ∈ L1(Bc
1(0)).

(K3) there exists β ≥ N + s such that∣∣∣∣1− |h|
|x|

∣∣∣∣β ≤ K(x)

K(x+ h)
≤

∣∣∣∣1 + |h|
|x|

∣∣∣∣β (1.3)

for any x, h ∈ RN with x ̸= 0 and 0 < |h| < 1.

Moreover, in our study, we further impose either of the following assumptions:

(K4) there exists constants 0 < s < 1 and ε > 2
1

N+s−1 − 1 > 0 such that, for any 0 < |x| < 1 + ε,
K(x) ≤ |x|−(N+s) and, for any |x| ≥ 1 + ε, |x|K(x) ≤ (1 + ε)−(N+s−1).

(K4)’ there exists constants 0 < s < 1, ε > 2
1

N+s−1 − 1 > 0, and λ > 1 such that |x|−(N+s) ≤
K(x) ≤ λ|x|−(N+s) for any 0 < |x| < 1+ ε and |x|−(N+s−1) ≤ |x|K(x) ≤ (1 + ε)−(N+s−1) for
any |x| ≥ 1 + ε.
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For instance, a kernelK(x) := |x|−(N+s) is one of the examples satisfying all of the above conditions
on K. Indeed, we may easily show that K satisfies (K1), (K2), (K4), and (K4)’. Moreover, from
the Taylor expansion of |x|N+s, we have that K satisfies the assumption (K3). From the above
conditions, we can roughly illustrate the shape of K in Figure 1 and 2.

Moreover, V1 is the Riesz potential and is defined by

V1(E) :=
1

2

∫
E

∫
E

1

|x− y|
dx dy, (1.4)

for any measurable E ⊂ RN . Specifically, in the case of N = 3, V1 is said to be the Coulombic
repulsive potential. Finally, R(E) is defined by

R(E) :=

∫
E

1

|x|
dx, (1.5)

for any measureble E ⊂ RN .

Figure 1: Graph of K with (K4) Figure 2: Graph of K with (K4)’

The study of the variational problem of (1.1) is one extension of a series of the previous works
[8, 10, 12, 13], in which they treated the classical perimeter instead of the nonlocal one. Especially,
when N = 3 and A ≡ 0, it is important to consider this minimizing problem in physics. It is known
as the liquid drop model, introduced by Gamow [7] to model the stability of atomic nuclei and
nuclear fission.

In this paper, we consider the nonexistence of the minimizers for (1.1) all over the measurable
sets in RN with the volume constraint. Note that, considering the general Riesz potential Vα,
instead of V1, which is defined by

Vα(E) :=
1

2

∫
E

∫
E

1

|x− y|α
dx dy (1.6)

for any E ⊂ RN and some α ∈ (0, N), we are not able to show the nonexistence of minimizers so
far. This is because we do not overcome the technical difficulties in estimating Vα to obtain the
claim (see the proof of Theorem 2.2 for details).

If we consider each term in (1.1) separately and we choose a function |x|−(N+s) as the kernel
K, then it is known that, by the isoperimetric inequality for the nolocal perimeter, a ball is the
only minimizer for PK all over the sets with finite volume and, by Riesz rearrangement inequality,
a ball is the only maximizer for both Vα and R under the volume constraint. Thus, it is not
trivial whether the minimizing problem of (1.1) has a solution under the volume constraint or
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not. Moreover, we may not expect the existence of a minimizer for (1.1) if m is large. Indeed,
considering the rescaled set λE, we observe

F(K,A)(λE) = λN−s PK(E) + λ2N−1 V1(E)− λN−1AR(E). (1.7)

Thus, when λ is large, the dominating term is λ2N−1 V1(E), however V1 does not admit minimizers.
Note that, if λ is sufficiently small, then the dominating term is λN−s PK(E) because of s < 1.
Especially, in the case that K(x) = |x|−(N+s), it is known that PK admits a minimizer and it is
actually a ball. This implies that, if λ is small, then there may exist a minimizer for (1.1) and it
should be a ball in RN .

Now let us briefly review the previous works concerned with our problem. In the case of the
classical perimeter and the general Riesz potential Vα instead of PK and V1 in (1.1), Knüpfer and
Muratov proved a series of the results stated in [9, 10] as follows; if N = 2, α ∈ (0, 2), and A ≡ 0,
balls are the only minimizer under the volume constraint |E| = m for sufficiently small m > 0.
In addition, for sufficiently large m > 0, there are no minimizers. Finally, in higher dimensions,
if 3 ≤ N ≤ 7 and α ∈ (0, N − 1), then the balls are the only minimizers for sufficiently small
m > 0. In addition, Bonacini and Cristoferi extended some of the above results to the case N ≥ 3
in [1]. Especially, regarding to the nonexistence of minimizers, not only Knüpfer and Muratov
but also Lu and Otto showed in [13] the following result; if N = 3 and A ̸≡ 0, then there exists
a number m0 > 0, which is explictly obtained, that for any m ≥ m0, the minimizing problem
min{P (E) + V1(E) − AR(E) | |E| = m} has no solution. In the case of the nonlocal perimeter,
Figalli et al. in [4] considered the isoperimetric problems with K(x) = |x|−(N+s) in the presence
of the Riesz potential if N ≥ 2. Precisely, they showed that, if m is positive number less than
some number m0, then the problems

inf

{
1− s

ωN−1
Ps(E) + VN−α(E) | |E| = m

}
, Ps(E) :=

∫
E

∫
Ec

1

|x− y|N+s
dx dy, (1.8)

where ωN−1 is the volume of the unit sphere SN−1, admit balls of volume m as their (unique up
to translation) minimizers for any s ∈ (s0, 1) and α ∈ (α0, N) with some uniform lower bounds
s0, α0 > 0.

In this paper, we established the general results of the nonexistence of the minimizers in the
case of nonlocal perimeter. Precisely, we obtain the following two results; the first one is that,
if we assume that K satisfies (K1), (K2), (K3), and (K4)’ and assume A ≥ 0 and m > 0, then
every minimizer E of F(K,A) is bounded. The second one is that, if we assume that K satisfies
(K1), (K2), and (K4) and m > m0(N, s, ε), A, then min{F(K,A)(E) | |E| = m} has no bounded
solutions. Accordingly, if we assume that the conditions (K1), (K2), (K3), and (K4)’ are valid,
then we may have that min{F(K,A)(E) | |E| = m} has no solutions. We emphsize that our result

is one complementing result shown in [4]. Indeed, if we set A ≡ 0 and K(x) = |x|−(N+s), then our
result gives us the solution to the nonexistence problem for the functional Ps(E) + V1(E) under
the volume constraint |E| = m, while the authors in [4] considered the existence of minimizers for
the functional Ps(E) + Vα(E) where α ∈ (α0, N) for some α0 > 0 under the volume constraint.

Our idea for proving the boundedness of minimizers is based on [2]. First, we will show that
the energy (1.1) is stable under some sufficiently small peturbation near a point in the measure-
theoretic boundary of a minimizer. This stability is what we call “Almgren’s lemma”. Secondly,
if we suppose that a minimizer is not bounded, this stability and the minimality make it possible
that one can derive an integral inequality of the volume of a minimizer outside of some ball,
which leads to a contradiction. On the other hand, the idea for proving the main theorem, i.e., the
nonexistence of minimizers is based on [8, 14, 6, 11]. First of all, we recall that, ifK(x) = |x|−(N+s),
then Knüpfer and Muratov showed in [9, 10] the nonexistence of minimizers by the following idea;
first, they showed that the minimizers with large volumes must be long and thin; otherwise the
Riesz potential can gain the energy. Thus, they cut the minimizers for large masses into two
parts by some hyperplane. Then, they moved the two parts far away from each other to reduce
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the energy. As a result, they can compared the energy of the sum of the two sets with that of
the original configuration, to find that it can be represented as a differential inequality for the
volumes of a cross-section of the minimizer by different hyperplanes. In our case, however, due to
the last term of (1.1), even if we cut the minimizers into two parts and move them far away from
each other, there is a possibility that one may decrease the total energy. Thus, the idea in [9, 10]
might not work in our case. Instead, we will take the following strategy; first, we separate RN

into two parts by a hyperplane which is parametrized by a directional parameter ν ∈ SN−1 and a
tranlating parameter l ∈ R. Then, taking any minimzer of (1.1) and considering the intersection
of the minimizer by each separated part (either of them can be an empty set), we compare the sum
of the energy for each intersetion with that of the original set. Integrating the resulitng inequality
with respect to l and then ν, we can obtain the inequality of the mass of a minimizer to find that
it actually shows the upper bound of the mass.

This paper is divided into four sections. In Section 2, we state the two results, one is on the
boundedness of minimizers and the other is on the nonexitence of minimizers. In Section 3, we
first show the boundedness of minimziers under the assumptions (K1), (K2), (K3), and (K4)’ on
the kernel K(x). In Section 4, we next prove the nonexistence of minimizers. Before proving the
nonexitence, we first show the weak subadditivity of the infimum of the energy (1.1) with respect
to the mass m > 0. Finally, in Section 5, we state one possible generalization of the energy and
the proof of the nonexistence of minimizers for it. This is obtained by a simple modification of
the proof done in Section 4.

2 Statement of results

Our main results in this paper is as follows; the first one is on the boundedness of the minimizer
and the second one is on the nonexistence of the minimizers.

Lemma 2.1 Suppose that N ≥ 2 and K satisfies (K1), (K2), (K3), and (K4)’ and let A ≥ 0 and
m ∈ (0, ∞). Then, for every minimizer E of F(K,A), E is bounded.

Theorem 2.2 Suppose that N ≥ 2 and K satisfies (K1), (K2), and (K4) and let A ≥ 0. Then,
there exists a critical mass mc > 0 given by

mc :=

(
1

2
− 1

(1 + ε)N+s−1

)−1(ωN−1

1− s
(1 + ε)1−s +A

)
(2.1)

such that, for any m > mc,

min{F(K,A)(E) | E ⊂ RNmeasureble, |E| = m} (2.2)

has no bounded solutions.
In addition, if we impose the conditions (K3) and (K4)’ instead of (K4) on K, then, for any

m > mc where mc is the same critical mass as (2.1), (2.2) has no solutions.

The proof is based on [6, 11], however, we need to pay more attention on the calculation of
the nonlocal perimeter in order to obtain the explicit lower bound of the mass.

3 Boundedness of minimizers

In this section, we prove Lemma (2.1), i.e., the boundedness of minimizers for the functional (1.1)
under some conditions on a kernelK. First of all, we start to show a generalized version of so-called
Almgren’s lemma (see [15] for the classical results, [5] in the case of an anisotropic perimeter, or
[2] in the case of a nonlocal s-perimeter).
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Lemma 3.1 Suppose that K satisfies (K1), (K2), and (K3). Let E ⊂ RN be a measurable set
with PK(E) + V1(E) +R(E) < ∞. Let x0 ∈ RN and r0 > 0 be such that

|Br0(x0) ∩ E| > 0, |Br0(x0) ∩ Ec| > 0. (3.1)

Then, there exist k0, C > 0 such that, for any k ∈ (−k0, k0), there exists a measurable set Fk ⊂ RN

such that PK(Fk) + V1(Fk) +R(Fk) < ∞ and the following properties hold:

1. E∆Fk ⋐ Br0(x0)

2. |Fk| − |E| = k

3. |F(K,A)(Fk)−F(K,A)(E)| < C k.

Proof. From the density assumption, we have that there exists a function T ∈ C1
c (Br0(x0); RN )

such that

M :=

∫
E
divT (x) dx > 0. (3.2)

Otherwise, by the definition of the classical perimeter, it holds that P (E, Br0(x0)) = 0. How-
ever, by the classical isoperimetric inequality, we have |E ∩ Br0(x0)| = 0, which contradicts the
assumption of E.

For any t ∈ (−1, 1), we define the maps Ψt(x) := x + t T (x) for all x ∈ RN . Then, we may
easily see that there exists δ0 ∈ (0, 1) such that the maps Ψt are diffeomorphisms from RN onto
itself for any t ∈ (−δ0, δ0). Moreover, we have that det(∇Ψt(x)) = 1 + tdivT (x) + o(|t|) for any
t ∈ (−δ0, δ0). By the definition of Ψt, we also have E∆Ψt(E) ⊂⊂ RN and thus, applying the
change of variables,

|Ψt(E)| =
∫
E
|det∇Ψt(x)| dx =

∫
E
(1 + tdivT (x) + o(t)) dx = |E|+ tM + o(|t|), (3.3)

for sufficiently small t ∈ (−δ0, δ0). Therefore, there exists a constant k0 > 0 such that, if we set
Fk := Ψt(k)(E), where t(k) := k/M +o(|k|), for any k ∈ (−k0, k0), Fk satisfies the first and second
properties in Lemma 3.1.

Now, from (K3) and since Ψt(x) ̸= Ψt(y) for sufficiently small t and x ̸= y, it holds that(
1 + |t| |T (x)− T (y)|

|x− y|

)−β

≤ K(Ψt(x)−Ψt(y))

K(x− y)
≤

(
1− |t| |T (x)− T (y)|

|x− y|

)−β

(3.4)

for any x, y ∈ RN with x ̸= y and sufficiently small |t| > 0. From the compactness of the support
and the regularity of T , there exists a constant C0 = C0(T ) > 0 such that

K(x− y)

(1 + C0 |t|)β
≤ K(x− y + t(T (x)− T (y))) ≤ K(x− y)

(1− C0 |t|)β
(3.5)

for any x, y ∈ RN with x ̸= y and sufficiently small t. Moreover, the inequality (3.5) holds even if
x = y since all the sides in (3.5) take values of infinity. Thus, by applying (3.5), we may compute
the difference of the energies, i.e., |F(K,A)(Fk)− F(K,A)(E)| as follows; first of all, from (3.5), we
may have∣∣∣K(Ψt(x)−Ψt(y)) |det∇Ψt(x)| | det∇Ψt(y)| −K(x− y)

∣∣∣
=

∣∣∣K(x− y + t(T (x)− T (y))) (1 + t(divT (x) + divT (y)) + o(|t|))−K(x− y)
∣∣∣

≤ |t|(C̃0(T ) + |o(1)|)K(x− y), (3.6)
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for any x, y ∈ RN with x ̸= y where C̃0(T ) > 0 is some constant. Hence, it holds that

|PK(Ψt(E))− PK(E)|

≤
∫
E

∫
Ec

∣∣∣K(Ψt(x)−Ψt(y)) | det∇Ψt(x)| | det∇Ψt(y)| −K(x− y)
∣∣∣ dx dy

≤ |t|
∫
E

∫
Ec

C1(T )K(x− y) dx dy

≤ C1(T ) |t|PK(E) < ∞, (3.7)

where C1(T ) > 0 is some constant. Secondly, we also have that

|V1(Ψt(E))− V1(E)| ≤
∫
E

∫
E

∣∣∣∣ | det∇Ψt(x)| | det∇Ψt(y)|
|Ψt(x)−Ψt(y)|

− 1

|x− y|

∣∣∣∣ dx dy
=

∫
E

∫
E

∣∣∣∣1 + t(divT (x) + divT (y)) + o(|t|)
|x− y + t(T (x)− T (y))|

− 1

|x− y|

∣∣∣∣ dx dy
≤

∫
E

∫
E

(
C2(T )|t|
|x− y|

+
o(|t|)
|x− y|

)
dx dy

≤ |t|C3(T )V1(E) < ∞, (3.8)

where C2(T ), C3(T ) are positive constants independent of t. Finally, we estimate the difference of
the potentials R(Ψt(E)) and R(E). Since t is sufficiently small, there exists a constant c0(T ) > 0
such that |x|(1 − c0(T ) |t|) ≤ |x + t T (x)| ≤ |x|(1 + c0(T ) |t|) and we have that (1 ± c0(T ) |t|) =
1± c0(T ) |t|+ o(|t|). Hence, we obtain

|R(Ψt(E))−R(E)| ≤
∫
E

∣∣∣∣1 + t divT (x) + o(|t|)
|x+ t T (x)|

− 1

|x|

∣∣∣∣ dx ≤
∫
E

(
C4(T )|t|

|x|
+

o(|t|)
|x|

)
dx

≤ |t|C5(T )R(E) < ∞ (3.9)

where C4(T ), C5(T ) are positive constants independent of t. Therefore, (3.7), (3.8), and (3.9)
imply that the set Fk satisfies the third property in Lemma 3.1 and this completes the proof.

Before starting to prove Lemma 2.1, we need the following isoperimetric inequality of the
nonlocal perimeter PK for sets with small volumes if K satisfies the conditions (K1) and (K4)’.

Lemma 3.2 Suppose that K satisfies (K1) and (K4)’. Then, there exists a constant C =
C(N, s, λ) > 0 such that, for any measurable set F ⊂ RN with 0 < |F | ≤ ωN (1 + ε)N , we
have

C |F |
N−s
N ≤ PK(F ). (3.10)

Proof. If PK(F ) = ∞, then the lemma is proved. Thus, we can assume that PK(F ) is finite.

Setting ρ := ω
−1/N
N |F |1/N ∈ (0, 1 + ε], we may compute the nonlocal perimeter PK(F ) as follows:∫

F

∫
F c

K(x− y) dx dy =

∫
F

∫
F c∩Bρ(y)

K(x− y) dx dy +

∫
F

∫
F c∩(Bρ(y))c

K(x− y) dx dy

≥ 1

ρN+s

∫
F
|F c ∩Bρ(y)| dy +

∫
F

∫
F c∩(Bρ(y))c

K(x− y) dx dy. (3.11)

Here, by the assumption of F , we have |F | = ωNρN = |Bρ(y)| for any y. Thus, it holds that

|Ac ∩Bρ(y)| = |Bρ(y)| − |A ∩Bρ(y)|
= |A| − |A ∩Bρ(y)| = |A ∩ (Bρ(y))

c| (3.12)
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for any y ∈ F . Thus, from (3.11) and (3.12) and recalling the assumption of K and the fact that
λ > 1 and ρ < 1 + ε, we obtain the following inequalty:∫

F

∫
F c

K(x− y) dx dy ≥ 1

ρN+s

∫
F
|F ∩ (Bρ(y))

c| dy +
∫
F

∫
F c∩(Bρ(y))c

K(x− y) dx dy

≥
(
1 + ε

ρ

)−N−s+1 ∫
F

∫
F∩(B1+ε(y))c

(1 + ε)−(N+s−1)

|x− y|
dx dy

+
1

λ

∫
F

∫
F∩(Bc

ρ∩B1+ε(y))

λ

ρN+s
dx dy

+

∫
F

∫
F c∩(Bρ(y))c

K(x− y) dx dy

≥ 1

λ

∫
F

∫
F∩(Bρ(y))c

K(x− y) dx dy +

∫
F

∫
F c∩(Bρ(y))c

K(x− y) dx dy

≥ 1

λ

∫
F

∫
(Bρ(y))c

K(x− y) dx dy

≥ 1

λ

∫
F

∫
(Bρ(y))c

1

|x− y|N+s
dx dy. (3.13)

Moreover, by applying the change of variables, we can further calculate the last term in (3.13) in
the following manner:∫

F

∫
(Bρ(y))c

1

|x− y|N+s
dx dy = |F |ωN−1

∫ ∞

ρ

1

r1+s
dr

= |F |ωN−1

s
ρ−s =

ωN−1ω
s
N
N

s
|F |

N−s
N . (3.14)

Therefore, from (3.13) and (3.14)we obtain

PK(F ) ≥
ωN−1ω

s
N
N

s λ
|F |

N−s
N (3.15)

which is a required inequality.

Now we are prepared to prove Lemma 2.1 by applying the above two claims. The proof is
based on the strategy shown in [2] for instance.

Proposition 3.3 Suppose that K satisfies (K1), (K2), (K3), and (K4)’. Every solution E of

min{F(K,A)(E) | E ⊂ RN measurable, |E| = m} (3.16)

is bounded.

Proof. Let E be a minimizer of min|E|F(K,A)(E). For any r > 0, we define f(r) := |E \ Br(0)|.
Then, by the continuity of measure and |E| = m, f is a non-increasing function and converges to
zero as r → ∞. Moreover, the coarea formula implies

f ′(r) = −HN−1(E ∩ ∂Br(0)). (3.17)

We now show that there exists R > 0 such that f(r) = 0 for all r > R. This implies the
boundedness of minimizers because F(K,A)(E) coincides with F(K,A)(E

′) if E \ E′ is a set of
Lebesgue measure zero and thus we can identify E with E′. Suppose by contradiction that
f(r) > 0 for any r > 0. Without loss of generality, we can assume that |E ∩ B1(0)| > 0 and
|CE ∩ B1(0)| > 0. Choosing k0 as in Lemma 3.1, we may fix R0 > 0 such that f(r) < k0 for any
r ≥ R0. Then, by Lemma 3.1, for any r ≥ R0, there exists Fr ⊂ RN such that the followings are
true:
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1. E∆Fr ⊂⊂ B1(0) ⊂ Br(0).

2. |Fr| = |E|+ f(r).

3. |F(K,A)(E)−F(K,A)(Fr)| < C f(r) for some constant C > 0 independent of r > 0.

Now, letting Gr := Fr ∩Br(0) and recalling the first and second properties of Lemma 3.1, we have
that |Gr| = |E|. Here, in the same way as in [3] for instance, one can prove the equality for a
nonlocal perimeter

PK(U) + PK(W ) = PK(U ∪W ) + 2

∫
U

∫
W

K(x− y) dx dy. (3.18)

for any measurable sets U, W ⊂ RN such that |U ∩W | = 0. Moreover, we also have the equality
for a potential functional

V1(U ∪W ) = V1(U) + V1(W ) +

∫
U

∫
W

1

|x− y|
dx dy. (3.19)

for any measurable U, W ⊂ RN such that |U ∩W | = 0. Therefore, by the minimality of E and
using (3.18) and (3.19), we obtain

F(K,A)(E) ≤ F(K,A)(Gr) = PK(Gr) + V1(Gr)−AR(Gr)

≤ PK(Fr)− PK(Fr \Br(0)) + V1(Fr)− V1(Fr \Br(0))

−AR(Fr) +AR(Fr \Br(0)) + 2

∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy

≤ F(K,A)(E) + C f(r)− PK(Fr \Br(0))

+A

∫
Fr\Br

1

|x|
dx+ 2

∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy. (3.20)

Note that we also used the third property of Lemma 3.1 in the last inequality of (3.20). Since
E \Br(0) = Fr \Br(0), it holds that∫

Fr\Br

1

|x|
dx =

∫
E\Br

1

|x|
dx ≤ 1

r
|E \Br| =

f(r)

r
. (3.21)

By the assumption of K and using the coarea formula, we have that∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy =

∫
E\Br

∫
Fr∩Br∩B1+ε(y)

K(x− y) dx dy

+

∫
E\Br

∫
Fr∩Br∩Bc

1+ε(y)
K(x− y) dx dy

≤
∫
E\Br

∫
Br∩B1+ε(y)

K(x− y) dx dy

+

∫
E\Br

∫
Fr∩Bc

1+ε(y)
K(x− y) dx dy

≤ λ

∫
E\Br

∫
Bc

|y|−r
(y)

1

|x− y|N+s
dx dy

+
1

(1 + ε)N+s

∫
E\Br

|Fr| dy

≤ λωN−1

s

∫
E\Br

1

(|y| − r)s
dy +

1

(1 + ε)N+s
f(r) |E|
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≤ λωN−1

s

∫ ∞

r

1

(t− r)s
HN−1(E ∩ ∂Bt(0)) dt+

m

(1 + ε)N+s
f(r)

= −λωN−1

s

∫ ∞

r

1

(t− r)s
f ′(t) dt+

m

(1 + ε)N+s
f(r). (3.22)

(We may compute this integral in a more generalized way under as few assumptions as possible.
First we assume that K is a continuous function on RN into (0, +∞) and satisfies the following
conditions:

(̃K1) K(x) > 0 and K(−x) = K(x) for any x ∈ RN .

(̃K2) K ∈ L1(Bc
1(0)).

(̃K3) ΦK(1) < +∞.

(̃K4) Assumptions on K which ensure that the isoperimeteric inequality for PK holds are satisfied.
(⇒ for example, )

Here we define ϕK(r) by ϕK(r) :=
∫
Bc

r(0)
K(x) dx (it can happen that ϕK(0) =

∫
RN K(x) dx = +∞)

and ΦK(r) by the primitive of ϕK , i.e., ΦK(r) :=
∫ r
0 ϕK(t) dt. Remark that, from (̃K2), we may

have the inequality that ∥K∥L1(Bc
r(0))

≤ ∥K∥L1(Bc
1(0))

+ [maxx∈∂B1(0)K(x)] |B1 \ Br(0)| for any

0 < r < 1, and thus K ∈ L1(Bc
r(0)) for each r > 0. Moreover, from (̃K3), we may also derive

ΦK(r) < +∞ for each r > 0. Indeed, since ϕK ≥ 0, Φk is a nondecreasing function and thus we
have that, for any r ≥ 1,

ΦK(r) ≤
∫ 1

0
ϕK(t) dt+ ϕk(1) (r − 1) = ΦK(1) + ϕk(1) (r − 1) < +∞.

Note that ϕK(r) is finite for every r > 0 from (̃K2).
We now compute the integral

∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy as follows; by the coarea formula and
the assumptions on K, we have∫

Fr\Br

∫
Fr∩Br

K(x− y) dx dy ≤
∫
E\Br(0)

∫
Br(0)

K(x− y) dx dy

≤
∫
E\Br(0)

∫
Bc

|y|−r
(y)

K(x− y) dx dy

=

∫
E\Br(0)

∫
Bc

|y|−r
(0)

K(x) dx dy

=

∫
E\Br(0)

ϕK(|y| − r) dy

=

∫ ∞

r
ϕK(t− r)HN−1(E ∩ ∂Bt(0)) dt

= −
∫ ∞

r
ϕK(t− r) f ′(t) dt (3.23)

for a.e. r > 0. Then, by combining (3.20) and (3.23), we obtain

PK(E \Br(0)) ≤ C7 f(r)−
∫ ∞

r
ϕK(t− r) f ′(t) dt (3.24)

for a.e. r > 0.
⇒ By taking several steps and from (3.24), we may have

C ′
7 f(r)

N−s
N ≤ −

∫ +∞

r
ϕK(t− r) f ′(t) dt (3.25)
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for a.e. r > 0 and some C ′
7 > 0.)

Substituting (3.22) in (3.20), we obtain

PK(E \Br(0)) ≤ C7 f(r)−
λωN−1

s

∫ ∞

r

1

(t− r)s
f ′(t) dt (3.26)

for some constant C7 > 0 independent of r > 0. For sufficiently large r > 0, we can assume that
|E \Br(0)| < ωN (1 + ε)N and thus, by the isoperimetric inequality stated in Lemma 3.2, it holds
that

C8 |E \Br(0)|
N−s
N ≤ PK(E \Br(0)), (3.27)

where C8 is a positive constant independent of r. Thus, combining (3.26) with (3.27), we have

C8 f(r)
N−s
N ≤ C f(r)− λωN−1

s

∫ ∞

r

1

(t− r)s
f ′(t) dt. (3.28)

Recalling the fact that f(r) → 0 as r → ∞, we can choose R1 > R0 such that

C9 f(r) ≤
C9

2
f(r)

N−s
N (3.29)

for any r ≥ R1. Therefore, for all r ≥ R1, we obtain

sC9

λωN−1
f(r)

N−s
N ≤ −

∫ ∞

r

1

(t− r)s
f ′(t) dt. (3.30)

We integrate over (R, ∞) where R ≥ R1 and then we exchange the order of integration to obtain

sC9

λ1ωN−1

∫ ∞

R
f(r)

N−s
N dr ≤ −

∫ ∞

R

∫ ∞

r

1

(t− r)s
f ′(t) dt dr

= −
∫ ∞

R

∫ t

R

1

(t− r)s
f ′(t) dr dt = − 1

1− s

∫ ∞

R
f ′(t)(t−R)1−s dt. (3.31)

(Integrating the both sides over r ∈ (R, +∞) and exchanging the order of integration, we have

C ′
9

∫ ∞

R
f(r)

N−s
N dr ≤ −

∫ ∞

R

∫ ∞

r
ϕK(t− r) f ′(t) dt dr

= −
∫ ∞

R

∫ t

R
ϕK(t− r) dr f ′(t) dt

= −
∫ ∞

R

∫ t−R

0
ϕK(r) dr f ′(t) dt

= −
∫ ∞

R
ΦK(t−R)f ′(t) dt (3.32)

for all R > 1 and some constant C ′
9 > 0.)

Moreover, recalling f(r) → 0 as r → ∞, we have that

−
∫ ∞

R
f ′(t)(t−R)1−s dt = −

∫ R+1

R
f ′(t)(t−R)1−s dt−

∫ ∞

R+1
f ′(t)(t−R)1−s dt

≤ f(R)− f(R+ 1)−
∫ ∞

R+1
f ′(t)(t−R)1−s dt

≤ f(R) +

∫ ∞

R+1
f ′(t)(1− (t−R)1−s) dt

≤ f(R) + (1− s)

∫ ∞

R+1
f(t)(t−R)−s dt ≤ f(R) +

∫ ∞

R
f(t) dt (3.33)
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for any R > 1.
(We may further compute as follows:

−
∫ ∞

R
ΦK(t−R)f ′(t) dt = −

∫ R+1

R
ΦK(t−R) f ′(t) dt−

∫ +∞

R+1
ΦK(t−R) f ′(t) dt

≤ ΦK(1)(f(R)− f(R+ 1))−
∫ +∞

R+1
ΦK(t−R) f ′(t) dt

= ΦK(1)f(R) +

∫ +∞

R+1
f ′(t) (ΦK(1)− ΦK(t−R)) dt

≤ ΦK(1)f(R) + [f(t) (ΦK(1)− ΦK(t−R))]+∞
t=R+1

+

∫ +∞

R+1
f(t)ϕK(t−R) dt

≤ ΦK(1)f(R) + ϕK(1)

∫ +∞

R
f(t) dt (3.34)

for any R > 1. Therefore, by combining (3.34) with (3.25) and (3.32), we have

C ′
9

∫ +∞

R
f(r)

N−s
N dr ≤ ΦK(1)f(R) + ϕK(1)

∫ +∞

R
f(r) dr. (3.35)

for any large R > 1. Recall that ϕK(1) = ∥K∥L1(Bc
1(0))

< +∞.
⇒ It holds that

C ′
10

ΦK(1)

∫ +∞

R
f(r)

N−s
N dr ≤ f(R) (3.36)

for sufficiently large R > 1 and some C ′
10 > 0. Note that +∞ > ΦK(1) =

∫ 1
0

∫
Bc

r(0)
K(x) dx dr > 0

since K > 0 in RN and (̃K3) holds.)
Thus, substituting (3.33) with (3.31), we obtain

sC9

λωN−1

∫ ∞

R
f(r)

N−s
N dr ≤ f(R) +

∫ ∞

R
f(r) dr. (3.37)

Since f(r) is small for sufficiently large R > R1, we may assume

2

∫ ∞

R
f(r) dr ≤ sC9

λωN−1

∫ ∞

R
f(r)

N−s
N dr (3.38)

for any R > R2 and some R2 > R1. Therefore, we conclude that, for any R > R2,

C10

∫ ∞

R
f(r)

N−s
N dr ≤ f(R), (3.39)

where C10 = C10(N, s, λ) := sC9
2λωN−1

> 0.

Let R > R2 be fixed such that w0 = |E \ BR(0)| > 0 is sufficiently small. For any k ∈ Z with
k ≥ 0, we set α := N−s

N , Rk := R + 1 − 2−k, and wk := f(Rk). Then, from (3.39), we have that
Rk → R∞ := R+ 1 as k → ∞ and

C10 2
−(k+1)wα

k+1 ≤ wk (3.40)

for any k. Then, by iterating this estimate and recalling that w0 can be chosen sufficiently
small, we obtain that wk → 0 as k → ∞. However, by the assumption, we also have that
limk→∞wk = f(R+ 1) = |E \BR+1(0)| > 0, which is a contradiction.
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4 Nonexistence of minimizers for F(K,A)

In this section, we show the proof of Theorem 2.2. First of all, we define the quantity

F(K,A)[m] := inf{F(K,A)(E) | |E| = m, E : bounded} (4.1)

for a given number m ∈ (0, ∞). Because of the last term of the functional (1.1), we cannot expect
the subadditivity of the functional F(K,A). Moreover, if we decompose the Riesz potential V1(E)
into two parts V1(E1) and V1(E2) where E = E1 ∪ E2, then we usually gain the energy while
the nonlocal perimeter PK is not the case. This also implies the invalidity of the subadditivity.
However, since we can move the two bounded sets far away from each other to decrease the extra
potential energy arising from the decomposition, we may have a weak version of the subadditivity
in terms of the quantity (4.1) as follows:

Lemma 4.1 Suppose that K satifies (K1) and (K2). Let m1 and m2 be a positive number. Then,
it holds that

F(K,A)[m1 +m2] ≤ F(K,A)[m1] + F(K, 0)[m2]. (4.2)

Proof of Lemma 4.1. The proof can be done in a similar way with in [13], and thus, we basically
follow their strategy. Let ε > 0 be an arbitrary number. Then, by the definition of (4.1), there
exist bounded subsets E1, E2 ⊂ RN with the volume constraints |E1| = m1 and |E2| = m2 such
that

F(K,A)(E1) + F(K, 0)(E2) ≤ F(K,A)[m1] + F(K, 0)[m2] + ε. (4.3)

Since E1, E2 are bounded, we can find a sufficiently large number d = d(ε) > 0 such that
dist(E1, (E2 + d e1)) ≥ d/2. Then, from (3.18) and (3.19), we may calculate as follows:

F(K,A)(E1 ∪ (E2 + d e1)) = PK(E1 ∪ (E2 + d e1)) + V1(E1 ∪ (E2 + d e1))−AR(E1 ∪ (E2 + d e1))

≤ PK(E1) + PK(E2 + d e1) + V1(E1) + V1(E2 + d e1)

+

∫
E1

∫
E2+d e1

1

|x− y|
dx dy −AR(E1)

≤ F(K,A)(E1) + F(K, 0)(E2) +
2m1m2

d
. (4.4)

Note that PK and V1 is invariant under translations and |x − y| ≥ d/2 for any x ∈ E1 and
y ∈ E2 + d e1. Hence, by the definition of (4.1), we obtain

F(K,A)[m1 +m2] ≤ F(K,A)[m1] + F(K, 0)[m2] + ε+
2m1m2

d
. (4.5)

Letting d → ∞, and then ε → 0, we conclude that the lemma holds.

Proof of Theorem 2.2. First of all, we prove the former claim of the main theorem. To do this, we
assume that K satisfies (K1), (K2), and (K4). We suppose that there exists a bounded minimizer
E ⊂ RN with |E| = m of (4.1) for given m. Then we will show that m actually satisfies the
opposite ineqality to (2.1). In order to divide RN into two parts, we define the hyperplane Hν, l

by Hν, l := {x ∈ RN | x · ν = l} for any parameters ν ∈ SN−1 and l ∈ R. Moreover, we set

H+
ν, l := {x ∈ RN | x · ν ≥ l}, H−

ν, l := RN \H+
ν, l. (4.6)

and
E+

ν, l := E ∩H+
ν, l, E−

ν, l := E ∩H−
ν, l (4.7)

for any set E ⊂ RN for any ν ∈ SN−1 and l ∈ R. Next, we want to compare the sum of the
energies for E+

ν, l and E−
ν, l with the energy for E. To do this, we apply the Lemma 4.1 and use the

minimality of E and then we have

F(K,A)(E) = F(K,A)[m] ≤ F(K,A)[|E+
ν, l|] + F(K, 0)[|E−

ν, l|] ≤ F(K,A)(E
+
ν, l) + F(K, 0)(E

−
ν, l), (4.8)
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Thus, it can be rewritten as

PK(E) + V1(E)−AR(E) ≤ PK(E+
ν, l) + V1(E

+
ν, l)−AR(E+

ν, l) + PK(E−
ν, l) + V1(E

−
ν, l). (4.9)

Therefore, from (3.18) and (3.19), we obtain∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy ≤ 2

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy +A

∫
E−

ν, l

1

|x|
dx. (4.10)

By the layer cake formula and Fubini’s theorem, we may obtain the following integration result:∫
E−

ν, 0

−x · ν
|x|

dx =

∫
E−

ν, 0

∫ 0

−∞

χ(x·ν, 0)(l)

|x|
dl dx

=

∫ 0

−∞

∫
E−

ν, 0

χ{x·ν<l}(x)

|x|
dx dl =

∫ 0

−∞

∫
E−

ν, l

1

|x|
dx dl. (4.11)

Integrating the inequality (4.10) with respect to l from −∞ to 0 and substituting (4.11) for (4.10),
we have∫ 0

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl ≤ 2

∫ 0

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl +A

∫
E−

ν, 0

|x · ν|
|x|

dx. (4.12)

By interchanging the role of E+
ν, l and E−

ν, l in the above calculations, we obtain∫ +∞

0

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

≤ 2

∫ +∞

0

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl +A

∫
E+

ν, 0

|x · ν|
|x|

dx. (4.13)

Thus, summing up (4.12) and (4.13), we have that∫ +∞

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl ≤ 2

∫ +∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl +A

∫
E

|x · ν|
|x|

dx (4.14)

Now, using the layer cake formula and Fubini’s theorem again, we have that∫ +∞

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl =

∫
E

∫
E

∫ +∞

−∞

χ{x·ν<l}(x)χ{y·ν≥l}(y)

|x− y|
dl dx dy

=

∫
E

∫
E

∫ +∞

−∞

χ{x·ν<l<y·ν}(l)

|x− y|
dl dx dy

=

∫
E

∫
E

((y − x) · ν)+
|x− y|

dx dy. (4.15)

For any fixed x ∈ RN , by the spherical polar coordinates with x located on the xN -axis, we obtain∫
SN−1

(x · ν)+ dHN−1(ν) =

∫
SN−2

∫ π
2

0
|x| cos θ dθ dHN−2 = ωN−2 |x|. (4.16)

Since ν ∈ SN−1 is any element, we have, by using Fubini’s theorem again and (4.16), that∫
SN−1

∫
E

∫
E

((y − x) · ν)+
|x− y|

dx dy dHN−1(ν) =

∫
E

∫
E

∫
SN−1

((y − x) · ν)+
|x− y|

dHN−1(ν) dx dy

= ωN−2 |E|2N . (4.17)
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Moreover, by Fubini’s theorem and (4.16), we also obtain∫
SN−1

∫
E

|x · ν|
|x|

dx dHN−1(ν) = 2ωN−2 |E|. (4.18)

Now we consider the third term in (4.10). By the three assumptions on K, and applying the
calculation in (4.15) and Fubini’s theorem, we may also compute as follows:∫

SN−1

∫ +∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl dHN−1(ν)

=

∫
E

∫
E

∫
SN−1

((y − x) · ν)+K(x− y) dHN−1(ν)dx dy

= ωN−2

∫
E

∫
E
|x− y|K(x− y) dx dy.

≤ ωN−2

∫
E

∫
B1+ε(y)

|x− y|K(x− y) dx dy + ωN−2

∫
E

∫
E∩Bc

1+ε(y)
|x− y|K(x− y) dx dy

≤ ωN−2

∫
E

∫
B1+ε(y)

1

|x− y|N+s−1
dx dy + ωN−2

∫
E

∫
E

1

(1 + ε)N+s−1
dx dy

= ωN−2

∫
SN−1

∫ 1+ε

0

1

rs
dr dHN−1 +

ωN−2

(1 + ε)N+s−1
|E|2N

=
ωN−2 ωN−1

1− s
(1 + ε)1−s|E|+ ωN−2

(1 + ε)N+s−1
|E|2N . (4.19)

Therefore, integrating the both sides in (4.14) with respect to ν in SN−1 and substituting (4.17),
(4.18), and (4.19), we obtain

ωN−2 |E|2N ≤ 2ωN−2 ωN−1

1− s
(1 + ε)1−s|E|+ 2ωN−2

(1 + ε)N+s−1
|E|2N + 2AωN−2 |E|. (4.20)

Hence, recalling |E| = m, we conclude that(
1

2
− 1

(1 + ε)N+s−1

)
m ≤ ωN−1 (1 + ε)1−s

1− s
+A. (4.21)

Note that, by the definition of ε, it holds (1 + ε)N+s−1 > 2.
The second claim of the main theorem is readily obtained in the following manner; if we

assume that K satisfies (K1), (K2), (K3), and (K4)’, then, by Lemma 2.1, every minimizer of the
functional F(K,A) under the volume constraint is actually bounded. Then, applying the argument
shown in the above, we may derive the same result.

5 Generalization of results

In this appendix, we slightly modify the energy (1.1) and consider the nonexistence of its mini-
mizers. The modification energy of (1.1) denoted by F(K,A, γ) is defined as follows:

F(K,A, γ)(E) := PK(E) + V1(E)−A

∫
E

1

|x|γ
dx, (5.1)

for any measurable E ⊂ RN with a volume constraint, where γ ∈ [0, N + 1). Note that, if γ = 1,
then we may obtain the same results as discussed in the above. If γ ̸= 1, then we may also obtain
the similar results stated in our main theorem, although the explicit value of the critical mass
cannot be obtained. Indeed, if γ ∈ [0, N + 1), then, by the symmetric rearrangement inequality,
it holds that ∫

E

1

|x|γ
dx ≤

∫
E∗

1

|x|γ
dx (5.2)
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where E∗ is the symmetric rearrangement of any measurable set E with a finite volume. Thus,
setting rE > 0 as a radius of the open ball E∗ with ωN (rE)

N = |E| = m and taking γ < N + 1,
(4.14), (4.16), and (4.18) into consideration, we may compute as follows:∫

SN−1

∫
E∗

|x · ν|
|x|γ

dx dHN−1(ν) = 2ωN−2

∫
E∗

1

|x|γ−1
dx

= 2ωN−2

∫
SN−1

dHN−1

∫ rE

0

1

rγ−1
rN−1 dr

=
2ωN−2ωN−1

(N + 1− γ)ω
1− γ−1

N
N

m1− γ−1
N . (5.3)

Thus, following the argument of the proof of Theorem 2.2 as above and using (5.2) and (5.3), we
have that(

1

2
− 1

(1 + ε)N+1−s

)
m2 ≤ ωN−1

1− s
(1 + ε)1−sm+A

ωN−1

N + 1− γ
ω
−1+ γ−1

N
N m1− γ−1

N . (5.4)

Here we set p := γ−1
N ∈ [− 1

N , 1) and define constants C1, C2, C3 > 0 as

C1 :=

(
1

2
− 1

(1 + ε)N+1−s

)
, C2 :=

ωN−1

1− s
(1 + ε)1−s, C3 :=

ωN−1

N + 1− γ
ω
−1+ γ−1

N
N . (5.5)

Now, considering a profile of the function ϕ(x) := C1 x
1+p − C2 x

p − AC3 for any x > 0, we
may obtain that there exists a unique number mp > 0 such that ϕ(mp) = 0 and ϕ(m) > 0
for any m > mp. Therefore, imposing the same assumptions as in Theorem 2.2 for instance,
we have that there exists a critical mass mp > 0 such that, for any m > mp, the problem
min{F(K,A, γ)(E) | |E| = m} has no solutions.
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