Twenty First International Conference on Geometry, Integrability and Quantization June 03–08, 2019, Varna, Bulgaria Ivaïlo M. Mladenov and Vladimir Pulov Editors **Avangard Prima**, Sofia 2020, pp 1–11 doi: 10.7546/giq-21-2020-1-11

THE CANHAM-HELFRICH MODEL FOR THE ELASTICITY OF BIOMEMBRANES AS A LIMIT OF MESOSCOPIC ENERGIES

LUCA LUSSARDI

Dipartimento di Scienze Matematiche "G.L. Lagrange", Politecnico di Torino 10129 Torino, Italy

Abstract. In this paper we review some recent results concerning the variational deduction of a Canham-Helfrich model for biomembranes obtained starting from a mesoscopic model which implements the amphiphilic behavior of the lipid molecules and the head-tail connection. The 2-dimensional analysis is complete while in the 3-dimensional case we have partial results and open problems.

MSC: 49J45, 49Q20, 74K15, 92C05. *Keywords*: Biomembranes, curvature functionals, Γ -convergence, varifolds.

1. Introduction

A prominent way to model biomembranes is given by shape energies of *Canham-Helfrich* type [2,5]. These type of energies have the general form

$$E(S) = \int_{S} \kappa_1 (H - H_0)^2 - \kappa_2 K \, d\mathcal{H}^2 \tag{1}$$

where S denotes a smooth surface in \mathbb{R}^3 , H and K are the mean curvature and the Gaussian curvature of S respectively, and the bending moduli κ_1, κ_2 and the spontaneous curvature H_0 are constant. Typically, $\kappa_1 > \kappa_2 > 0$ is a compatibility condition coming both from mathematical considerations and from experiments [12, 14]. The shape of the membrane is an absolute minimizer of E among a suitable class of surfaces. We notice that, thanks to the Gauss-Bonnet's Theorem, when the spontaneous curvature is zero and the topology of S is fixed the minimization problem for the Canham-Helfrich functional reduces to the minimization problem for the very well studied *Willmore functional* [7, 11, 13]. The Canham-Helfrich energy functional had been introduced starting from physical experiments while much less is known about its deduction from simpler models. In this paper we review some recent results concerning a rigorous deduction of the Canham-Helfrich energy functional. We refer to the microscopic model proposed by Peletier and Röger in 2009 [10, App. A]. Here the authors implemented the amphiphilic behavior of the lipid molecules that constitute the cell membrane and the covalent bond between head and tail of any molecule. A mesoscopic model had been formally derived from the microscopic one [10, App. A] and in the same paper a complete analysis in the 2-dimensional case had been performed. Precisely, the authors proved that the limit, in the sense of Γ -convergence, of the mesoscopic energies introduced by them is the Euler elastica functional on suitable families of closed curves in the plane. The analysis in the 3-dimensional case is much harder and there are only partial results [8, 9]. In such a case deep tools from Geometric Measure Theory, like currents and curvature varifolds, are necessary.

The paper is organized as follows. In Section 2 we recall the mesoscopic model proposed by Peletier and Röger [10]. In Section 3 we review the notion of Γ -convergence, essential in order to understand the correct way to pass to the limit in a family of variational problems. Then, in Section 4 we describe the 2-dimensional analysis done by Peletier and Röger [10]. Finally, the last section is dedicated to the partial results obtained in the 3-dimensional case [8,9].

2. The Peletier-Röger mesoscopic model

In 2009 Peletier and Röger [10] proposed a mesoscale model for biomembranes in the form of an energy for idealized and rescaled head and tail densities. Such a model originates from a probabilistic micro-scale description in which heads and tails are treated as separate particles. The energy functional introduced by Peletier and Röger has essentially two contributions: the first one penalizes the proximity of tail to polar (head or water) particles, and the second one implements the head-tail connection as an energetic penalization. Configurations of head and tail particles are described by two rescaled density functions

$$u \in BV(\mathbb{R}^n; \{0, \varepsilon^{-1}\}), \quad v \in L^1(\mathbb{R}^n; \{0, \varepsilon^{-1}\})$$

with uv = 0 a.e. in \mathbb{R}^n and with prescribed total mass, namely

$$\int u(x) \, dx = \int v(x) \, dx = M_T.$$

Here $\varepsilon > 0$ is a small parameter. We call

$$K_{\varepsilon} \subset X := L^1(\mathbb{R}^n) \times L^1(\mathbb{R}^n)$$

the set of such a configurations. The energy functional is defined by

$$F_{\varepsilon}(u,v) := \begin{cases} \varepsilon \int |\nabla u| + \frac{1}{\varepsilon} d_1(u,v) & \text{if } (u,v) \in K_{\varepsilon} \\ +\infty & \text{otherwise in } X. \end{cases}$$

In this model u corresponds to the tail density while v is the density of heads. The term

$$\varepsilon \int |\nabla u|$$

is, up to the constant ε , the total variation of u and it measures the boundary size of the support of tails: this corresponds to the contribution which arises from the amphiphilic behavior of the polar particles. The second term which appear in the energy functional F_{ε} , that is

$$\frac{1}{\varepsilon}d_1(u,v)$$

takes into account the implicit implementation of the head-tail connection and it is given by the *Monge-Kantorovich distance between* u and v. Let us explain briefly what is d_1 and the relation with the optimal transport problem; for details we refer to [1, 4]. Consider two mass distributions $u, v \in L^1(\mathbb{R}^n)$ with compact support and with

$$\int u(x) \, dx = \int v(x) \, dx = 1.$$

We denote by $\mathcal{A}(u, v)$ the set of all Borel vector fields $T \colon \mathbb{R}^n \to \mathbb{R}^n$ pushing u forward to v, that is

$$\int \eta(T(x))u(x)\,dx = \int \eta(y)v(y)\,dy, \quad \forall \eta \in C^0(\mathbb{R}^n).$$

The Monge-Kantorovich distance between u and v is therefore defined by

$$d_1(u,v) := \min_{T \in \mathcal{A}(u,v)} \int |x - T(x)| u(x) \, dx.$$
(2)

Moreover, it turns out that there exists the so called *Kantorovich potential* ϕ , that is a 1-Lipschitz map $\mathbb{R}^n \to \mathbb{R}$ characterized by

$$\phi(x) - \phi(T(x)) = |x - T(x)|, \quad \text{a.e. } x \in \operatorname{spt}(u)$$

whenever T solves the optimization problem (2). A key property of d_1 is the presence of *transport rays*. Let ϕ be a Kantorovich potential as above. A *transport ray* is a maximal line segment in \mathbb{R}^n with endpoints $a, b \in \mathbb{R}^n$ such that ϕ has slope

one on that segment, that is

$$\begin{split} & a \in \operatorname{spt}(u), \quad b \in \operatorname{spt}(v), \quad a \neq b, \\ & \phi(a) - \phi(b) = |a - b|, \\ & |\phi(a + t(a - b)) - \phi(b)| < |a + t(a - b) - b|, \quad \forall t > 0, \\ & |\phi(b + t(b - a)) - \phi(a)| < |b + t(b - a) - a|, \quad \forall t > 0. \end{split}$$

Two transport rays can only intersect in a common endpoint and if z lies in the interior of a ray with endpoints $a \in \operatorname{spt}(u), b \in \operatorname{spt}(v)$ then ϕ is differentiable in z and

$$\nabla\phi(z) = \frac{a-b}{|a-b|}.$$

Let us back to F_{ε} . In order to understand what happens we consider ring structures (for details on the computations see [10]). Let the supports of u and v be the ring structures of Fig.2: the support of u is a single ring between circles of radii r_2 and r_3 , and the support of v is given by two rings flanking spt(u), namely between radii r_1 and r_2 and between radii r_3 and r_4 . Expanding F_1 we find

Figure 1. The densities u and v are disposed forming a ring structure (courtesy of [10]).

$$F_1 \sim 2M_T + M_T \left(\frac{r_4 - r_1}{2} - 2\right)^2 + \frac{M_T}{(r_4 + r_1)^2}$$

The constant term $2M_T$ is simply the Lagrange multiplier due to the total mass constraint. We then see a preference for thickness

$$\frac{r_4 - r_1}{2} = 2.$$

Moreover, we also notice a penalization of the curvature of the structure do to the term

$$\frac{M_T}{(r_4+r_1)^2}$$

After rescaling and renormalization we see that

$$F_{\varepsilon} \sim 2M_T + M_T \left(\frac{r_4 - r_1}{2\varepsilon} - 2\right)^2 + \frac{M_T \varepsilon^2}{(r_4 + r_1)^2}$$

Then, the ε -ring structure prefers the thickness 2ε and again we notice a penalization of the curvature. In order to capture such a penalization, the right energy to investigate is given by

$$G_{\varepsilon}(u,v) := \frac{F_{\varepsilon}(u,v) - 2M_T}{\varepsilon^2}.$$

The main problem now is the following one: what happens when $\varepsilon \to 0$? The limit structure should be a surface S (the membrane) and the energy G_{ε} should converge, in a suitable way, to an energy functional defined on S which penalizes the curvatures of S.

3. An overwiew on Γ -convergence

In this section we review the notion of Γ -convergence which is the right way to pass to the limit in a family of variational problems. The theory of Γ -convergence dates back to De Giorgi (1975), for the general theory see [3]. We give the definition only for metric spaces even if it is possible to extend to topological spaces. Let (X, d) be a metric space. Let (F_h) be a sequence of functions $X \to \mathbb{R} \cup \{\pm \infty\}$. We say that $(F_h) \Gamma$ -converges, as $h \to +\infty$, to $F: X \to \mathbb{R} \cup \{\pm \infty\}$, if for all $u \in X$ we have:

(a) (*liminf inequality*) For every $u \in X$ and for every sequence $u_h \to u$ it holds

$$F(u) \leq \liminf_{h \to +\infty} F_h(u_h).$$

(b) (existence of a recovery sequence) For every $u \in X$ there exists a sequence $u_h \rightarrow u$ such that

$$F(u) \ge \limsup_{h \to +\infty} F_h(u_h).$$

It is easy to extend this definition of convergence to families depending on a real parameter. Given a family $(F_{\varepsilon})_{\varepsilon>0}$ of functions $X \to \mathbb{R} \cup \{\pm\infty\}$, we say that it Γ -converges, as $\varepsilon \to 0$, to $F: X \to \mathbb{R} \cup \{\pm\infty\}$ if for every positive infinitesimal sequence (ε_h) the sequence (F_{ε_h}) Γ -converges to F. The most important consequence of the definition of Γ -convergence is the following result about the convergence of minimizers [3, Cor. 7.20].

Theorem 1. Let $F_h: X \to \mathbb{R} \cup \{\pm \infty\}$ be a sequence of functions which Γ converges to some $F: X \to \mathbb{R} \cup \{\pm \infty\}$. Assume that

$$\inf_{v \in X} F_h(v) > -\infty$$

for every $h \in \mathbb{N}$. Let (ε_h) be a positive infinitesimal sequence, and for every $h \in \mathbb{N}$ let $u_h \in X$ be an ε_h -minimizer of F_h , i.e.

$$F_h(u_h) \le \inf_{v \in X} F_h(v) + \varepsilon_h$$

Assume that $u_h \rightarrow u$ for some $u \in X$. Then u is a minimum point of F, and

$$F(u) = \lim_{h \to +\infty} F_h(u_h).$$

4. The 2D analysis

The 2-dimensional analysis had been investigated in 2009 by Peletier and Röger [10]. The mathematical analysis of the mesoscopic model in dimension 2 confirms that such a model shows the key properties of biomembranes, that is a preference for uniformly thin structures without ends and a resistance to bending of the structure. In [10] the authors proved a full Γ -convergence result for the family $\{G_{\varepsilon}\}_{\varepsilon>0}$ in two space dimensions. In that limit the densities concentrate on families of $W^{2,2}$ -curves and a generalized Euler elastica energy is obtained for moderate-energy structures. To be precise first of all we recall the notion of system of $W^{2,2}$ -curves. Let $\mathcal{C} = \{\gamma_i\}_{i=1,\ldots,N}$ be a finite collection of maps $W^{2,2}_{\text{loc}}(\mathbb{R}; \mathbb{R}^2)$. We say that \mathcal{C} is a $W^{2,2}$ -system of closed curves if $\gamma'_i \neq 0$ and γ_i are L_i -periodic for some $L_i > 0$, $i = 1, \ldots, N$. We also let

$$\operatorname{spt}(\mathcal{C}) := \bigcup_{i=1}^N \gamma_i(\mathbb{R}), \quad |\mathcal{C}| := \sum_{i=1}^N \int_0^{L_i} |\gamma'_i(s)| \, ds.$$

Moreover, we define the corresponding Radon measure $\mu_{\mathcal{C}}$ on \mathbb{R}^2 to be the measure that satisfies

$$\int \varphi \, d\mu_{\mathcal{C}} = \sum_{i=1}^{N} \int_{0}^{L_{i}} \varphi(\gamma_{i}(s)) |\gamma_{i}'(s)| \, ds, \quad \forall \varphi \in C_{c}^{0}(\mathbb{R}^{2}).$$

We finally say that C has no transversal crossings if for any $1 \le i, j \le N, s_i, s_j \in \mathbb{R}$

 $\gamma_i(s_i) = \gamma_j(s_j) \Longrightarrow \gamma'_i(s_i)$ and $\gamma'_j(s_j)$ are parallel.

We remark that we can represent a given system of closed curves C as a finite collection $\{\gamma_i\}_{i=1,...,N}$ where for any i = 1,...,N we have that γ_i is one-periodic, with 1 being the smallest possible period, and γ_i is parametrized proportional to

arclength. We are therefore able to generalize the classical curve bending energy to $W^{2,2}$ -systems of closed curves. Precisely, we let

$$\mathcal{W}(\mathcal{C}) := \frac{1}{2} \sum_{i=1}^{N} L_i^{-3} \int_0^1 \gamma_i''(s)^2 \, ds.$$

We are ready to state the main theorem by Peletier and Röger [10, Thm. 4.1] which essentially says that the family $\{G_{\varepsilon}\}_{\varepsilon>0}$ Γ -converges to \mathcal{W} with respect to the weak*-convergence of Radon measures on \mathbb{R}^2 .

Theorem 2. The following facts hold true.

(a) Let $(u_{\varepsilon}, v_{\varepsilon}) \in L^1(\mathbb{R}^2) \times L^1(\mathbb{R}^2)$, R > 0 and a Radon measure μ on \mathbb{R}^2 be given with

$$\operatorname{spt}(u_{\varepsilon}) \subset B_R(0), \quad \text{for all } \varepsilon > 0$$

 $u_{\varepsilon} \mathcal{L}^2 \stackrel{*}{\rightharpoonup} \mu \quad \text{as Radon measures on } \mathbb{R}^2$

and

 $\liminf_{\varepsilon \to 0} G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) < +\infty.$

Then there is a $W^{2,2}$ -system of closed curves $\mathcal{C} = \{\gamma_i\}_{i=1,...,N}$ such that $2\mu_{\mathcal{C}} = \mu, 2|\mathcal{C}| = M_T$, $\operatorname{spt}(\mathcal{C})$ is bounded, \mathcal{C} has no transversal crossings, and

$$\mathcal{W}(\mathcal{C}) \leq \liminf_{\varepsilon \to 0} G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}).$$

(b) Let $C = \{\gamma_i\}_{i=1,...,N}$ be a $W^{2,2}$ -system of closed curves such that 2|C| = M, $\operatorname{spt}(C)$ is bounded and with no transversal crossings. Then there exists $(u_{\varepsilon}, v_{\varepsilon}) \in K_{\varepsilon}$ such that $\operatorname{spt}(u_{\varepsilon}) \subset B_R(0)$ for all $\varepsilon > 0$ and for some R > 0, such that

 $u_{\varepsilon}\mathcal{L}^2 \stackrel{*}{\rightharpoonup} 2\mu_{\mathcal{C}}$ as Radon measures on \mathbb{R}^2

and such that

$$\mathcal{W}(\mathcal{C}) \geq \limsup_{\varepsilon \to 0} G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}).$$

5. The 3D analysis

The analysis in the 3-dimensional case is much more complicated and there are only partial results. The main starting point of such an analysis is the following theorem [8, Thm. 2.1] that can be proved parametrizing spt(u) by means of transport rays. Let $(u, v) \in K_{\varepsilon}$ and let ϕ be the corresponding Kantorovich potential as in Section 2. We let $\theta := \nabla \phi$. Moreover, for an arbitrary 3×3 matrix A we let

$$Q(A) := \frac{1}{4} (\operatorname{tr} A)^2 - \frac{1}{6} \operatorname{tr}(\operatorname{cof} A)$$

with cof A denoting the cofactor matrix of A.

Luca Lussardi

Theorem 3. Let $(u, v) \in K_{\varepsilon}$ and assume that $J_u =: S$ is compact, orientable surfaces of class C^1 in \mathbb{R}^3 . Then there exist non-negative measurable functions $M: S \to \mathbb{R}$ such that

$$M_T = \int_S M \, d\mathcal{H}^2$$

such that θ and the inner unit normal field ν of spt(u) on S satisfy $\theta \cdot \nu > 0$ everywhere on $\{M > 0\}$, and such that

$$G_{\varepsilon}(u,v) \geq \frac{1}{\varepsilon^2} \int_S (M-1)^2 d\mathcal{H}^2 + \frac{1}{\varepsilon^2} \int_S \left(\frac{1}{\theta \cdot \nu} - 1\right) M^2 d\mathcal{H}^2 + \int_S \frac{M^4}{(\theta \cdot \nu)^3} Q(D\theta) d\mathcal{H}^2.$$
(3)

Estimate (3) suggests the form of the Γ -limit. Indeed, take $(u, v) \in K_{\varepsilon}$ such that $G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) \leq c$. Correspondingly we have $S_{\varepsilon}, M_{\varepsilon}, \theta_{\varepsilon}, \nu_{\varepsilon}$ satisfying Theorem 3. If we assume that some compactness for $\{S_{\varepsilon}\}$ hold true, say $S_{\varepsilon} \to S$ in some sense, thanks to

$$\frac{1}{\varepsilon^2} \int_{S_{\varepsilon}} (M_{\varepsilon} - 1)^2 \, d\mathcal{H}^2 \le c$$

we expect that functions M_{ε} tend to be 1 as $\varepsilon \to 0$. As a consequence, since

$$\frac{1}{\varepsilon^2} \int_{S_{\varepsilon}} \left(\frac{1}{\theta_{\varepsilon} \cdot \nu_{\varepsilon}} - 1 \right) M_{\varepsilon}^2 \, d\mathcal{H}^2 \le c$$

we can conjecture that θ_{ε} tends to be orthogonal to S. Putting all together these informations, if the estimate (3) was optimal, the limit of $G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon})$ should be

$$\int_{S} Q(D\nu) d\mathcal{H}^2 = \int_{S} \frac{1}{4} H^2 - \frac{1}{6} K d\mathcal{H}^2$$

which is a functional of Canham-Helfrich-type: choose, in (1), $\kappa_1 = \frac{1}{4}$, $\kappa_2 = \frac{1}{6}$ and $H_0 = 0$. This heuristic explanation can be formalized at least for the existence of a recovery sequence accordingly with the very definition of Γ -convergence. Indeed, the following theorem holds true [8, Thm. 2.5].

Theorem 4. Fix a smooth compact orientable surface $S \subset \mathbb{R}^3$ without boundary such that $\mathcal{H}^2(S) = M_T$. Then there exists a family $(u_{\varepsilon}, v_{\varepsilon})_{\varepsilon>0}$ in K_{ε} such that

 $u_{\varepsilon}\mathcal{L}^3 \stackrel{*}{\rightharpoonup} \mathcal{H}^2 \sqcup S$ as Radon measures on \mathbb{R}^2

and

$$G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) \to \int_{S} \frac{1}{4} H^2 - \frac{1}{6} K \, d\mathcal{H}^2.$$

The main problem is the compactness and the limit inequality. The first difficulty stems in the fact that we are not able to prove rigorously that $M_{\varepsilon} \rightarrow 1$, so that in order to have some compactness and limit inequality we need to simplify the

setting. Precisely, fix $\Omega \subset \mathbb{R}^3$ open and let \mathcal{M} be the set of tuples (S, θ) , where S is a compact and orientable surface of class C^2 in \mathbb{R}^3 that is given by the boundary of an open set $A(S) \subset \Omega$, and $\theta \colon S \to \mathbb{R}^3$ is a Lipschitz vector field such that

$$|\theta| = 1$$
 and $\theta \cdot \nu > 0$ on S

where $\nu: S \to \mathbb{R}^3$ denotes the outer unit normal field on S. For any $p \in S$ denote by $L(p): \mathbb{R}^3 \to \mathbb{R}^3$ the extension of $D\theta(p): T_pS \to \mathbb{R}^3$ defined by the properties

$$L(p)\tau = D\theta(p)\tau$$
 for all $\tau \in T_pS$, $L(p)\theta(p) = 0$

if $D\theta(p)$ exists and L(p) = 0 else. We next define $\mathcal{Q}_{\varepsilon} : \mathcal{M} \to [0, +\infty)$ as

$$\mathcal{Q}_{\varepsilon}(S,\theta) := \frac{1}{\varepsilon^2} \int_S \frac{1}{\theta \cdot \nu} - 1 \, d\mathcal{H}^2 + \int_S Q(L(p)) \, d\mathcal{H}^2(p). \tag{4}$$

The functional Q_{ε} is a simplification of the right-hand side of (3) and could represent a good functional to study in order to understand the general case. The analysis of Q_{ε} in terms of compactness and liminf inequality is contained in [9]. A bound $Q_{\varepsilon}(S_{\varepsilon}, \theta_{\varepsilon}) \leq c$ at a first sight produces only a bound on the area of S_{ε} but we have to produce curvatures in the limit. The idea is to look at the family of measures $\mathcal{H}^2 \sqcup S_{\varepsilon}$ and its weak*-limit μ in the sense of Radon measures on \mathbb{R}^2 . Indeed, it is possibile to prove, but the proof is very complicated [9], that μ is supported on a sort of *weak surface* for which curvatures make sense, precisely an *integral curvature varifold*. We briefly recall the main definitions, and we refer to Hutchinson [6] for details. Let G(2,3) denote the Grassmann manifold of all two-dimensional unoriented planes in \mathbb{R}^3 . An *integral curvature varifold* V in \mathbb{R}^3 is a Radon measure on $\mathbb{R}^3 \times G(2,3)$ characterized by

$$V(\psi) = \int_{S} \psi(x, T_x S) \beta(x) \, d\mathcal{H}^2(x), \quad \text{for all } \psi \in C_c^0(\mathbb{R}^3 \times G(2, 3))$$

where $S \subset \mathbb{R}^3$ is a 2-rectifiable set, $\beta \colon S \to \mathbb{N}$ is locally \mathcal{H}^2 -integrable, and such that there exist V-measurable functions $A_{ijk} \colon \mathbb{R}^3 \times G(2,3) \to \mathbb{R}, 1 \leq i, j, k \leq 3$ such that for any $\varphi \in C^1(\mathbb{R}^3 \times \mathbb{R}^{3 \times 3})$ compactly supported with respect to the first variable

$$0 = \int \left(P_{ij} \partial_j \varphi + A_{ijk} \partial_{jk}^* \varphi + A_{jij} \varphi \right) dV(x, P), \quad i = 1, 2, 3$$
 (5)

where we identify $P \in G(2,3)$ and the associated orthogonal projection $\mathbb{R}^3 \to P$ with matrix representation (P_{ij}) and where ∂^* denotes the derivatives with respect to the P variable. We also let $\mu_V := \beta \mathcal{H}^2 \sqcup S$, which therefore is a Radon measure on \mathbb{R}^3 . Formula (5) generalizes the integration by parts on smooth manifolds without boundary, and the idea is that starting from $A = (A_{ijk})$ it is possibile, as in the smooth differential geometry, to construct mean curvature vector and Gauss curvature. Precisely, we let

$$H_i := A_{jij}, \quad K := \sum_k \operatorname{tr}(\operatorname{cof}(A_{ijk})_{ij}).$$

As a consequence the mean curvature square is defined as the norm square of H_i , so that for an integral curvature varifolds the quantity H^2 and K are well defined. We are ready to go back to compactness and limit inequality for the family $\{Q_{\varepsilon}\}_{\varepsilon>0}$. The main result is the following compactness and lower bound statements [9, Thm. 2.2].

Theorem 5. Let $(\varepsilon_j)_{j\in\mathbb{N}}$ be an infinitesimal sequence of positive numbers and $(S_j, \theta_j)_{j\in\mathbb{N}}$ be a sequence in \mathcal{M} such that $\sup_j \mathcal{H}^2(S_j) < \infty$ and

$$\bigcup_{j} S_{j} \subset \tilde{\Omega} \quad \textit{for some } \tilde{\Omega} \subset \subset \Omega$$

and that for a fixed $\Lambda > 0$

$$\mathcal{Q}_{\varepsilon_i}(S_j, \theta_j) \leq \Lambda \quad \text{for all } j \in \mathbb{N}$$

Assume furthermore that in the sense of Radon measures on Ω

$$\mathcal{H}^2 \sqcup S_j \to \mu \quad as \ j \to \infty.$$

Then $\mu = \mu_V$ where V is an integral curvature varifold and

$$\int \frac{1}{4}H^2 - \frac{1}{6}K \, dV \leq \liminf_{j \to +\infty} \mathcal{Q}_{\varepsilon_j}(S_j, \theta_j).$$

References

- Caffarelli L.A., Feldman L. and McCann R.J., Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002), 1–26.
- [2] Canham P.B., *The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell*, J. Theor. Biol. **61** (1970).
- [3] Dal Maso, G., An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
- [4] Feldman L. and McCann R.J., *Uniqueness and transport density in Monge's mass transportation problem*, Calc. Var. Partial Differential Equations **15** (2002), 81–113.
- [5] Helfrich, W., *Elastic properties of lipid bilayers: theory and possible experiments*, Z. Naturforsch. Teil C 28 (1973) 693–703.
- [6] Hutchinson, J.E., Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J. 35 (1986), 45–71.
- [7] Kuwert, E. and Schätzle, R., *The Willmore functional*, In Topics in Modern Regularity Theory vol. **13** of CRM Series (2012), 1–115.

- [8] Lussardi L., Peletier M.A. and Röger M., Variational analysis of a mesoscale model for bilayer membranes, J. Fixed Point Theory Appl. 15 (2014), 217–240.
- [9] Lussardi L. and Röger M., *Gamma convergence of a family of surface-director bending energies with small tilt*, Arch. Rational Mech. Anal. **219** (2016), 985–1016.
- [10] Peletier M.A. and Röger M., *Partial localization, lipid bilayers, and the elastica functional*, Arch. Rational Mech. Anal. **193** (2009) 475–537.
- [11] Riviére, T., Analysis aspects of Willmore surfaces, Invent. Math. 174 (2008) 1-45.
- [12] Siegel D.P. and Kozlovy M.M., The Gaussian curvature elastic modulus of Nmonomethylated dioleoylphosphatidylethanolamine: Relevance to membrane fusion and lipid phase behavior, Biophys. J. 87 (2004), 366–374.
- [13] Simon, L., *Existence of surfaces minimizing the Willmore functional*, Commun. Anal. Geom. 1 (1993) 281–326.
- [14] Templer R.H., Khoo B.J. and Seddon J.M., *Gaussian curvature modulus of an amphiphilic monolayer*, Langmuir **14** (1998), 7427–7434.