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Abstract. In this paper we review some recent results concerning the vari-
ational deduction of a Canham-Helfrich model for biomembranes obtained
starting from a mesoscopic model which implements the amphiphilic behav-
ior of the lipid molecules and the head-tail connection. The 2-dimensional
analysis is complete while in the 3-dimensional case we have partial results
and open problems.
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1. Introduction

A prominent way to model biomembranes is given by shape energies of Canham-
Helfrich type [2,5]. These type of energies have the general form

E(S) = / k1(H — Hy)? — ko K dH? (1)
S

where S denotes a smooth surface in R3, H and K are the mean curvature and
the Gaussian curvature of S respectively, and the bending moduli k1, k2 and the
spontaneous curvature Hy are constant. Typically, k1 > k2 > 0 is a compati-
bility condition coming both from mathematical considerations and from exper-
iments [12, 14]. The shape of the membrane is an absolute minimimizer of F
among a suitable class of surfaces. We notice that, thanks to the Gauss-Bonnet’s
Theorem, when the spontaneous curvature is zero and the topology of S' is fixed
the minimization problem for the Canham-Helfrich functional reduces to the min-
imization problem for the very well studied Willmore functional [7,11,13]. The
Canham-Helfrich energy functional had been introduced starting from physical ex-
periments while much less is known about its deduction from simpler models. In
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this paper we review some recent results concerning a rigorous deduction of the
Canham-Helfrich energy functional. We refer to the microscopic model proposed
by Peletier and Roger in 2009 [10, App. A]. Here the authors implemented the am-
phiphilic behavior of the lipid molecules that constitute the cell membrane and the
covalent bond between head and tail of any molecule. A mesoscopic model had
been formally derived from the microscopic one [10, App. A] and in the same pa-
per a complete analysis in the 2-dimensional case had been performed. Precisely,
the authors proved that the limit, in the sense of I'-convergence, of the mesoscopic
energies introduced by them is the Euler elastica functional on suitable families of
closed curves in the plane. The analysis in the 3-dimensional case is much harder
and there are only partial results [8,9]. In such a case deep tools from Geometric
Measure Theory, like currents and curvature varifolds, are necessary.

The paper is organized as follows. In Section 2 we recall the mesoscopic model
proposed by Peletier and Roger [10]. In Section 3 we review the notion of I'-
convergence, essential in order to understand the correct way to pass to the limit in
a family of variational problems. Then, in Section 4 we describe the 2-dimensional
analysis done by Peletier and Roger [10]. Finally, the last section is dedicated to
the partial results obtained in the 3-dimensional case [8, 9].

2. The Peletier-Roger mesoscopic model

In 2009 Peletier and Roger [10] proposed a mesoscale model for biomembranes
in the form of an energy for idealized and rescaled head and tail densities. Such a
model originates from a probabilistic micro-scale description in which heads and
tails are treated as separate particles. The energy functional introduced by Peletier
and Roger has essentially two contributions: the first one penalizes the proximity of
tail to polar (head or water) particles, and the second one implements the head-tail
connection as an energetic penalization. Configurations of head and tail particles
are described by two rescaled density functions

ue BV(R%{0,e7'}), ve L'(R"{0,e7'})
with uv = 0 a.e.in R™ and with prescribed total mass, namely
/u(a?) dx = /v(m) dx = M.
Here € > 0 is a small parameter. We call

K. C X := LY(R™) x L'(R")
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the set of such a configurations. The energy functional is defined by
1
5/ |Vu| + =di(u,v) if (u,v) € K.
€
F.(u,v) =
400 otherwise in X.

In this model u corresponds to the tail density while v is the density of heads. The

term
€ / |Vul

is, up to the constant ¢, the total variation of » and it measures the boundary size
of the support of tails: this corresponds to the contribution which arises from the
amphiphilic behavior of the polar particles. The second term which appear in the
energy functional F¢, that is

1
—d
c 1(u7 U)

takes into account the implicit implementation of the head-tail connection and it is
given by the Monge-Kantorovich distance between u and v. Let us explain briefly
what is d; and the relation with the optimal transport problem; for details we refer
to [1,4]. Consider two mass distributions u,v € L'(R™) with compact support

and with
/u(a:) dx = /v(a:) dx = 1.

We denote by A(u,v) the set of all Borel vector fields 7': R" — R"™ pushing u
forward to v, that is

/ (T ())u(z) dz = / n(w)o(y) dy, Vi € COR™).

The Monge-Kantorovich distance between u and v is therefore defined by

TGAuv

dy (u,v) min /\m - () dz. (2)

Moreover, it turns out that there exists the so called Kantorovich potential ¢, that
is a 1-Lipschitz map R"™ — R characterized by

o(x) —o(T(x)) = |z —T(x)|, ae.x € spt(u)

whenever T solves the optimization problem (2). A key property of d; is the
presence of transport rays. Let ¢ be a Kantorovich potential as above. A transport
ray is a maximal line segment in R” with endpoints a, b € R such that ¢ has slope
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one on that segment, that is

a € spt(u), bespt(v), a#b,

o(a) — H(6) = la — b,

|p(a+t(a—b)) —o(b)] < |a+t(a—b)—b|, Vt>D0,
lp(b+t(b—a)) —¢a)] <|b+t(b—a)—al, Vt>D0.

Two transport rays can only intersect in a common endpoint and if z lies in the
interior of a ray with endpoints a € spt(u), b € spt(v) then ¢ is differentiable in z
and

_a—b

Ja—bl

Let us back to F;. In order to understand what happens we consider ring structures
(for details on the computations see [10]). Let the supports of v and v be the ring
structures of Fig.2: the support of u is a single ring between circles of radii ro and
r3, and the support of v is given by two rings flanking spt(u), namely between
radii 7; and r2 and between radii 73 and r4. Expanding F; we find

Vo(z)

Figure 1. The densities v and v are disposed forming a ring structure
(courtesy of [10]).

T4 —T1 2 M
Fy ~2M7p + My 5 -2 (

re+11)?
The constant term 2M7 is simply the Lagrange multiplier due to the total mass

constraint. We then see a preference for thickness

r4—T1
2

=2
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Moreover, we also notice a penalization of the curvature of the structure do to the

term
Mr

(ra + 7’1)2.
After rescaling and renormalization we see that
T4 —T1 9 2 MT€2
2¢e (T4 + 7“1)2 '
Then, the e-ring structure prefers the thickness 2¢ and again we notice a penaliza-

tion of the curvature. In order to capture such a penalization, the right energy to
investigate is given by

FENQMT+MT<

Ge(u,v) ==

The main problem now is the following one: what happens when ¢ — 0? The
limit structure should be a surface S (the membrane) and the energy G. should
converge, in a suitable way, to an energy functional defined on S which penalizes
the curvatures of S.

3. An overwiew on ['-convergence

In this section we review the notion of I'-convergence which is the right way to pass
to the limit in a family of variational problems. The theory of I"-convergence dates
back to De Giorgi (1975), for the general theory see [3]. We give the definition
only for metric spaces even if it is possible to extend to topological spaces. Let
(X, d) be a metric space. Let (F},) be a sequence of functions X — R U {Zo00}.
We say that (F},) I'-converges, as h — +oo, to F': X — R U {£o0}, if for all
u € X we have:

(a) (liminfinequality) For every u € X and for every sequence u; — w it holds

F < liminf F; .
(u) < lim inf Fj (us)

(b) (existence of a recovery sequence) For every u € X there exists a sequence
up, — u such that
F(u) > limsup Fp(up).
h—+o00

It is easy to extend this definition of convergence to families depending on a real
parameter. Given a family (F.).~¢ of functions X — R U {+o0}, we say that
it -converges, as ¢ — 0, to F: X — R U {%o0} if for every positive infini-
tesimal sequence (ej,) the sequence (F, ) I'-converges to F'. The most important
consequence of the definition of I'-convergence is the following result about the
convergence of minimizers [3, Cor. 7.20].
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Theorem 1. Let Fy,: X — R U {£oo} be a sequence of functions which T'-
converges to some F': X — RU {£o0}. Assume that

inf F) -
o Fulv) > oo

forevery h € N. Let (g1,) be a positive infinitesimal sequence, and for every h € N
let up, € X be an gy -minimizer of Fy, i.e.

Fy(up) < inf Fy(v) + ep.
veX
Assume that up, — u for some u € X. Then u is a minimum point of F', and

F(u) = hEIJPoo Fp(up).

4. The 2D analysis

The 2-dimensional analysis had been investigated in 2009 by Peletier and Roger
[10]. The mathematical analysis of the mesoscopic model in dimension 2 con-
firms that such a model shows the key properties of biomembranes, that is a pref-
erence for uniformly thin structures without ends and a resistance to bending of
the structure. In [10] the authors proved a full I'-convergence result for the fam-
ily {G:}:>0 in two space dimensions. In that limit the densities concentrate on
families of W22-curves and a generalized Euler elastica energy is obtained for
moderate-energy structures. To be precise first of all we recall the notion of system
of W22-curves. Let C = {v;};—1.... v be a finite collection of maps I/Vlicz(]R, R?).
We say that C is a W22-system of closed curves if . # 0 and -; are L;-periodic
for some L; > 0,7 =1,..., N. We also let

N N L;
spt(0)i= Jn(®), 1= [ hio)lds
i=1 i=1 70

Moreover, we define the corresponding Radon measure jic on R? to be the measure
that satisfies

N L;
[edue=3" /O ()| ds, g € COR?).
=1

We finally say that C has no transversal crossings if forany 1 <i,57 < N, s;,5; €
R

i(si) = 7v;(s;) = 7i(si) and 7;(s;) are parallel.
We remark that we can represent a given system of closed curves C as a finite
collection {~; };=1,.._n where forany i = 1,..., N we have that ~y; is one-periodic,
with 1 being the smallest possible period, and ~; is parametrized proportional to



The Canham-Helfrich model as a limit of mesoscopic energies 7

arclength. We are therefore able to generalize the classical curve bending energy
to WW22-systems of closed curves. Precisely, we let

1< 1
W(C) = 2ZL;3/0 ()2 ds.
=1

We are ready to state the main theorem by Peletier and Réger [10, Thm. 4.1] which
essentially says that the family {G.}.~o I'-converges to WV with respect to the
weak*-convergence of Radon measures on R?.

Theorem 2. The following facts hold true.
(a) Let (us,ve) € L*(R?) x LY(R?), R > 0 and a Radon measure i on R? be

given with
spt(ue) C Br(0), foralle >0

*
ucL? = 11 as Radon measures on R?

and
liminf G (ue, ve) < +00.
e—0

Then there is a W2’2-system of closed curves C = {v;}i=1,.. N such that
2uc = p, 2|C| = My, spt(C) is bounded, C has no transversal crossings,
and

W(C) < liminf G¢(ue, ve).
e—0

(b) Let C = {vi}iz1...n be a W*2-system of closed curves such that 2|C| =
M, spt(C) is bounded and with no transversal crossings. Then there exists
(ue,ve) € K. such that spt(u:) C Bpgr(0) for all ¢ > 0 and for some
R > 0, such that

*
uL? 2 2u¢  as Radon measures on R?

and such that
W(C) > limsup G.(ue, ve).

e—0
5. The 3D analysis

The analysis in the 3-dimensional case is much more complicated and there are
only partial results. The main starting point of such an analysis is the following
theorem [8, Thm. 2.1] that can be proved parametrizing spt(u) by means of trans-
port rays. Let (u,v) € K, and let ¢ be the corresponding Kantorovich potential as
in Section 2. We let 6 := V. Moreover, for an arbitrary 3 x 3 matrix A we let

Q(A) = i(trA)Q - %tr(cofA)

with cof A denoting the cofactor matrix of A.
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Theorem 3. Let (u,v) € K. and assume that J, =: S is compact, orientable
surfaces of class C' in R3. Then there exist non-negative measurable functions
M: S — R such that

My :/MdH2
S

such that 0 and the inner unit normal field v of spt(u) on S satisfy 0 - v > 0
everywhere on { M > 0}, and such that

1 1 1
Ge(u,v) > 2/(M— 1)2dH? + 2/ < — 1>M2d7-[2

e’ Js e? Jg\b-v
| 3)
————Q(DO) dH?>.
+ [ Qo an
Estimate (3) suggests the form of the I'-limit. Indeed, take (u,v) € K. such that
G:(ue,ve) < c. Correspondingly we have S, M., 0., v. satisfying Theorem 3. If
we assume that some compactness for { S} hold true, say S. — S in some sense,

thanks to 1

52/ (M. —1)?dH* < ¢
S

we expect that functions M. tend to be 1 as € — 0. As a consequence, since

1 1
— ( — 1> MZdH* <c
" Js: O - ve

we can conjecture that 6. tends to be orthogonal to S. Putting all together these
informations, if the estimate (3) was optimal, the limit of G (u., v.) should be

/Q(Du) dH?* = / Y 2l g

which is a functional of Canham-Helfrich-type: choose, in (1), k1 = %, Ko = % and
Hy = 0. This heuristic explanation can be formalized at least for the existence of a
recovery sequence accordingly with the very definition of I'-convergence. Indeed,
the following theorem holds true [8, Thm. 2.5].

Theorem 4. Fix a smooth compact orientable surface S C R? without boundary
such that H*(S) = My. Then there exists a family (u., v:)eo in K. such that

*
w2 S H2L S  as Radon measures on R?

and 1 )
Ge(ue,ve) — / “H? - ZKdM>.
g4 6
The main problem is the compactness and the liminf inequality. The first difficulty
stems in the fact that we are not able to prove rigorously that M. — 1, so that
in order to have some compactness and liminf inequality we need to simplify the
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setting. Precisely, fix 2 C R? open and let M be the set of tuples (S, §), where S
is a compact and orientable surface of class C2 in R3 that is given by the boundary
of an open set A(S) CC €, and #: S — R3 is a Lipschitz vector field such that

0] = 1land@-v > Oon S

where v: S — R3? denotes the outer unit normal field on S. For any p € S denote
by L(p): R? — R3 the extension of DO(p) : T,,S — R3 defined by the properties

L(p)t = DO(p)r forall T € T),S, L(p)d(p) = 0
if DO(p) exists and L(p) = 0 else. We next define Q. : M — [0, 400) as

Q.5.0)= 5 [ o1+ [@uonat. @

The functional Q, is a simplification of the right-hand side of (3) and could rep-
resent a good functional to study in order to understand the general case. The
analysis of Q. in terms of compactness and liminf inequality is contained in [9].
A bound Q.(S¢,0:) < c at a first sight produces only a bound on the area of S.
but we have to produce curvatures in the limit. The idea is to look at the family
of measures H2 LS. and its weak*-limit z in the sense of Radon measures on
R2. Indeed, it is possibile to prove, but the proof is very complicated [9], that
is supported on a sort of weak surface for which curvatures make sense, precisely
an integral curvature varifold. We briefly recall the main definitions, and we refer
to Hutchinson [6] for details. Let G(2,3) denote the Grassmann manifold of all
two-dimensional unoriented planes in R3. An integral curvature varifold V in R3
is a Radon measure on R?® x G/(2, 3) characterized by

V() = /S W2, T,S)B(x) dH2(z),  forally € CORS x G(2,3))

where S C R? is a 2-rectifiable set, 3: S — N is locally H2-integrable, and such
that there exist V-measurable functions A;jj, : R® x G(2,3) - R, 1 <i,j,k <3
such that for any ¢ € C*(R? x R3*3) compactly supported with respect to the first
variable

0= / (PijajSO + AijrOp + Ajijsﬁ) dV(z,P), i=1,2,3 (5)

where we identify P € G(2,3) and the associated orthogonal projection R? — P
with matrix representation (Pz-j) and where 9* denotes the derivatives with respect
to the P variable. We also let iy := SH? L S, which therefore is a Radon mea-
sure on R3. Formula (5) generalizes the integration by parts on smooth manifolds
without boundary, and the idea is that starting from A = (A,;,) it is possibile, as



10 Luca Lussardi

in the smooth differential geometry, to construct mean curvature vector and Gauss
curvature. Precisely, we let

Hi = Ajij’ K = Ztr(cof(Aijk.)ij).
k
As a consequence the mean curvature square is defined as the norm square of
H;, so that for an integral curvature varifolds the quantity H? and K are well
defined. We are ready to go back to compactness and liminf inequality for the
family { Q. }.~0. The main result is the following compactness and lower bound
statements [9, Thm. 2.2].

Theorem 5. Let (¢j)jcn be an infinitesimal sequence of positive numbers and
(8},0;)jen be a sequence in M such that sup; H*(S;) < oo and

USj c Q forsomeQ CC
J
and that for a fixed A > 0
Qc;(Sj,0;) < A forallj € N.
Assume furthermore that in the sense of Radon measures on )
7—[2LSj — u  asj— oo.

Then . = py where V' is an integral curvature varifold and

/ H2—7KdV < hmmea](Sj,O)

j—)OO
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