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Abstract

The purpose of this note is to give an expository survey on the notions of
p-parabolicity and p-hyperbolicity of metric measure spaces of locally bounded
geometry. These notions are extensions of the notions of recurrence and tran-
sience to non-linear operators such as the p-Laplacian (with the standard Lapla-
cian or the 2-Laplacian associated with recurrence and transience behaviors).
We discuss characterizations of these notions in terms of potential theory and
in terms of moduli of families of paths in the metric space.
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1 Introduction

It is now a well-known fact that Brownian motion is recurrent in R and R2

but is transient in Rn for n ≥ 3. In other words, a Brownian motion, start-
ing from a closed ball in Rn, will almost surely return infinitely often to that
ball when n ≤ 2 but almost surely will eventually not return to the ball when
n ≥ 3. This dichotomous behavior of recurrence versus transience can be seen
in more general Riemannian manifolds, leading to a classification of manifolds
as parabolic (Brownian motion is recurrent, returning infinitely often to a ball)
or hyperbolic (where the Brownian motion is transient). The works [29, 11]
demonstrated that the recurrence or transience of the Brownian motion is in-
timately connected with the existence of global singular functions, also known
as Green’s functions. A manifold is transient if and only if it supports a non-
negative singular function.

During the past twenty years the notion of first order calculus has been de-
veloped for more general non-smooth metric measure spaces where the metric
space is complete and the measure is a locally doubling Radon measure support-
ing a local Poincaré type inequality. For such spaces, it is not clear what the
Brownian motion is, but thanks to Kakutani’s theorem, we know that Brown-
ian motion on a Riemannian manifold is a probabilistic approach to harmonic
functions and the Laplace-Beltrami operator on the manifold. Physics and the
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theory of Markovian process as described in [10] also back this up, with the link
provided through the heat equation. Using this as a motivation, we can study
recurrence or transience of a metric measure space in terms of the existence of
a singular function associated with the so-called 2-harmonicity.

Indeed, the recurrence and transience properties of the space seem to be
associated with a “large scale” dimension of the underlying space. To explore
the effect of the geometry of a space on curves in the space, we also move
away from the realm of linear operators (Laplace-Beltrami operators) to non-
linear p-Laplace type operators. In his dissertation [16], Holopainen gave a
definition of p-parabolicity and p-hyperbolicity in Riemannian manifolds and
their connections to p-harmonic functions. In this note we will describe some
of the connections between the geometry of curves in the setting of metric
measure spaces, which should be thought of as a non-linear analog of recurrence
versus transience, and p-harmonic functions in the space. Metric measure spaces
that correspond to transient spaces for p-harmonic functions are said to be p-
hyperbolic while those that are not are said to be p-parabolic.

2 Background notions

The context of this note is that of metric measure spaces that need not be
smooth (Riemannian). Here (X, d, µ) denotes a metric measure space with the
measure µ assumed to be a Radon measure such that balls have positive and
finite measure. In this section we will give a brief account of the basic notions
used in the study of parabolicity versus hyperbolicity of the space in terms of
first order analysis. For details on these notions, we recommend [15] and the
references therein.

To understand p-parabolicity (recurrence) and p-hyperbolicity (transience),
we need to have a concept of a “size” of families of curves in X. To this end,
let Γ be a collection of curves in X, and we set A(Γ) to be the collection of
all non-negative Borel measurable functions ρ on X such that for each locally
rectifiable path γ ∈ Γ we have ∫

γ

ρ ds ≥ 1.

Here a path is locally rectifiable if it maps an interval I ⊂ R continuously into
X and for each compact subinterval J ⊂ I we have that γ|J has finite length.
An excellent introduction to the notion of path integrals in metric setting can
be found in [15, Chapter 5], [1, Chapters 4, 6] and [13, Chapter 7].

Definition 2.1. Given 1 ≤ p < ∞, the p-modulus of the collection Γ is the
number

Modp(Γ) = inf
ρ∈A(Γ)

∫
X

ρp dµ.

Observe that if Γ consists only of paths that are not locally rectifiable,
then by definition Modp(Γ) = 0, whereas if Γ includes a constant curve, then
Modp(Γ) = ∞. It is not too difficult to verify that Modp is an outer mea-
sure on the collection of all paths, and that if Γ has even one constant path
then Modp(Γ) = ∞. It is a result of Fuglede [9] that the only sets that are
Modp-measurable are those of zero p-modulus and their complements. In this
note we only consider Modp to the extent of verifying whether a family Γ sat-
isfies Modp(Γ) > 0 or not. To this end, the following result of Koskela and
MacManus [23] is useful.
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Lemma 2.2. Let Γ be a family of paths in X, and 1 < p <∞. Then Modp(Γ) =
0 if and only if there is a nonnegative Borel function ρ ∈ Lp(X) such that for
each γ ∈ Γ, ∫

γ

ρ ds =∞.

Definition 2.3. Given two sets E,F ⊂ X, by Γ(E,F ) we mean the collection
of all curves in X with one end point in E and the other in F .

The following definition is based on the dissertation [16].

Definition 2.4. We say that X is p-hyperbolic if there is a closed ball B =
B(x0, R) ⊂ X and a strictly monotone increasing sequence of real numbers
Rn > R with limnRn =∞ and

lim
n

Modp(Γ(B(x0, R), X \B(x0, Rn)) > 0.

We say that X is p-parabolic if it is not p-hyperbolic.

There are now at least five available notions of Sobolev spaces in the metric
setting: Poincaré-Sobolev, Korevaar-Schoen, Haj lasz-Sobolev, Newton-Sobolev,
and Dirichlet domain spaces, see for example [15]. In this paper we will focus
on the notion of Newton-Sobolev spaces as they are the closest aligned to the
study of paths in a metric space, though for the case p = 2 one can replace
this with Dirichlet forms and the corresponding Dirichlet domains whenever
they are available, by considering the corresponding heat equation, see [11] for
example.

Given a function f : X → R, we say that a non-negative Borel measurable
function g on X is an upper gradient of f if for each non-constant compact
rectifiable curve γ : [a, b]→ X we have

|f(γ(b))− f(γ(a))| ≤
∫
γ

g ds.

We say that g is a p-weak upper gradient of f if the collection Γ of non-
constant compact rectifiable curves for which the above inequality fails satisfies
Modp(Γ) = 0. With Dp(f) denoting the collection of all p-weak upper gradients
of f that also belong to Lp(X), we say that f ∈ N1,p(X) if f ∈ Lp(X) (that is,
the function f belongs to an equivalence class in Lp(X)) andDp(f) is nonempty.
The set Dp(f) is a convex lattice subset of Lp(X), and by a result in [23], it is
also closed in Lp(X). We set

‖f‖N1,p(X) := ‖f‖Lp(X) + inf
g∈Dp(f)

‖g‖Lp(X).

For 1 < p <∞, by the uniform convexity of Lp(X) and the lattice property of
Dp(f) we know that there is a unique element gf ∈ Dp(f) with the property
that for each g ∈ Dp(f), gf ≤ g almost everywhere. Thus

‖f‖N1,p(X) = ‖f‖Lp(X) + ‖gf‖Lp(X).

Equipped with the norm ‖ · ‖N1,p(X), the space N1,p(X) is a Banach space,
see for example [26] and [15]. Classically, the measure of the set where two
functions disagree determines whether the two functions belong to the same
equivalence class in Lp(X). In the setting of N1,p(X) the notion of p-capacity
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of a set plays this role, and here the value of p determines what sets are of zero
p-capacity. Given a set E ⊂ X, we set

Capp(E) := inf
f

∫
X

[|f |p + gpf ]dµ,

where the infimum is over all functions f ∈ N1,p(X) such that f ≥ 1 on E.
A more pertinent notion related to parabolicity and hyperbolicity is that of
relative p-capacity.

Definition 2.5. Given two closed sets E,F ⊂ X such that E ∩ F is empty,

capp(E,F ) := inf
f

∫
X

gpfdµ,

where the infimum is over all functions f ∈ N1,p(X) such that f ≥ 1 on E and
f ≤ 0 on F .

There is a close connection between capp(E,F ) and Modp(Γ(E,F )). Indeed,
if ρ ∈ A(Γ(E,F )), then the function u defined by

u(y) = inf
γy

∫
γy

ρds

with infimum taken over all locally rectifiable curves in X with one endpoint y
and the other end point in E, is measurable (see for example [20]) and satisfies
u = 0 on E and u ≥ 1 on F . If then X \ E is bounded, we would have
u ∈ N1,p(X) with ρ ∈ Dp(u), and thus we would have

capp(E,F ) ≤ Modp(Γ(E,F )).

Typically in this note E would be X \ B(x0, R) for some x0 ∈ X and R > 0,
and F would be a compact subset of the ball B(x0, R).

Definition 2.6. We say that the measure µ is uniformly locally doubling on
X if there is a constant CD ≥ 1 and a scale 0 < R0 ≤ ∞ such that whenever
x ∈ X and 0 < r < R0, we have

µ(B(x, 2r)) = µ({y ∈ X : d(x, y) < 2r}) ≤ CDµ(B(x, r)).

We say that (X, d, µ) supports a uniformly local p-Poincaré inequality if there
are constants C > 0, λ ≥ 1 and a scale 0 < R1 ≤ ∞ such that whenever x ∈ X,
0 < r < R0, and f ∈ N1,p(B(x, 2λr)), we have

∫
B(x,r)

|f − fB(x,r)| dµ ≤ C r

(∫
B(x,λr)

gpf dµ

)1/p

.

Here

fB :=

∫
B

fdµ :=
1

µ(B)

∫
B

f dµ.

It is known that if X is complete, µ is uniformly locally doubling, and
(X, d, µ) supports a uniformly local p-Poincaré inequality, then for compact
sets E,F ⊂ X,

capp(E,F ) = Modp(Γ(E,F )). (1)

A proof of this can be obtained by adapting the proof found in [21] where it
was assumed that R0 = R1 = ∞. It follows immediately that capp(E,F ) =
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capp(F,E), even though this was not at all obvious merely from considering
the definition of capp(E,F ).

Standing assumptions: We will assume in this note that 1 < p < ∞, X is
complete, µ is uniformly locally doubling, and (X, d, µ) supports a uniformly
local p-Poincaré inequality.

3 Potential theoretic characterization of p-hyper-
bolicity via p-singular functions

In this section we will discuss a Grigor’yan-type characterization of p-hyperbolicity
in terms of existence of global singular functions. A p-singular function is a non-
negative p-superharmonic function u on X such that there is a point x0 ∈ X for
which u is p-harmonic in X \ {x0}, u ∈ N1,p(X \B(x0, r)) for each r > 0, and
satisfies limy→x0 u(y) =∞. As described in [11], a manifold X is transient (that
is, it is 2-hyperbolic) if and only if X supports a 2-singular function. In the
setting of manifolds, the dissertation [16] extends this result to the non-linear
setting of all 1 < p <∞.

Following [27], for a non-empty open set Ω ⊂ X and a function u on Ω, we
say that u is p-harmonic in Ω if u ∈ N1,p

loc (Ω) and for each open set V ⊂ Ω with
V ⊂ Ω compact and each v ∈ N1,p(X) with v = 0 in X \ V we have∫

V

gpudµ ≤
∫
V

gpu+vdµ.

We say that u is p-superharmonic in Ω if whenever V ⊂ Ω with V ⊂ Ω a
compact set and v ∈ N1,p(X) is p-harmonic in a neighborhood of V with v ≤ u
on ∂V , we must have v ≤ u on V .

Definition 3.1. Let Ω be a nonempty open subset of X with X \ Ω nonempty
and x0 ∈ Ω. We say that a non-negative function u on X is a p-singular
function on Ω with singularity at x0 if

1 u is p-harmonic in Ω \ {x0},
2 limΩ\{x0}3y→x0

u(y) = capp({x0}, X \ Ω)1/(1−p),

3 u ∈ N1,p(X \B(x0, r)) for each r > 0, and u = 0 in X \ Ω,

4 and finally,(
p− 1

p

)2(p−1)

(b− a)1−p ≤ capp({u ≥ b}, {u > a}) ≤ p2(b− a)1−p

whenever 0 ≤ a < b such that {u > a} ⊂ B(x0, R0/2).

In the above definition, Condition 2 is equivalent to enforcing the condition
limΩ\{x0}3y→x0

u(y) = ∞ if capp({x0}, X \ Ω) = 0 (which is the case for val-
ues of p that are not larger than the dimension of the space). Thus the first
three properties would be satisfied by positive scalar multiples of a p-singular
function. The fourth condition dictates the the condensers ({u ≥ b}, {u > a})
for b > a, or more specifically the value of Modp(Γ({u ≥ b}, {u ≤ a}), in
terms of (b− a)1−p. Hence this condition narrows the candidates for p-singular
functions. Indeed, from the arguments in [16], this fourth condition guarantees
uniqueness of p-singular functions in the context of Riemannian manifolds and
other spaces where there is an Euler-Lagrange equation corresponding to the
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p-energy minimization property. A combination of the above second and fourth
conditions guarantee then that the p-Laplacian type operator, corresponding
to the Euler-Lagrange equation, acts on the p-singular function to give the unit
atomic measure δx0 supported at x0.

From [22] we know that functions that are p-harmonic on an open set satisfy
local Hölder continuity and (if they are non-negative) a Harnack inequality.
Namely, we know that given a p-harmonic function h on a domain U ⊂ X and
x ∈ U , there are constants α,Ch > 0 such that if r > 0 with B(x, 2r) ⊂ U
and whenever z, w ∈ B(x, r) we have |h(z) − h(w)| ≤ Chd(z, w)αx ; this is
the local Hölder continuity ([22, Theorem 5.2]). Moreover, it is shown in [22,
Corollary 7.3] that there is a constant C > 0 so that if h is p-harmonic and
non-negative on U and B(x, 2r) ⊂ U , then supB(x,r) h ≤ C infB(x,r) h. Using
this Harnack inequality for non-negative p-harmonic functions in Ω \ {x0}, it is
shown in [19] that if Ω is a relatively compact subset of X, then for each x0 ∈ Ω
we always have a p-singular function on Ω with singularity at x0. Therefore the
non-trivial aspect of the existence of singular functions is when Ω is unbounded.

Definition 3.2. A function u on X is said to be a p-singular function on X
with singularity at x0 ∈ X if

1 u is p-harmonic in X \ {x0} with u > 0 there,

2 there is a sequence of bounded open sets Ωj ⊂ X with

3 Ωj ⊂ Ωj+1 and X =
⋃
j Ωj and r0 > 0 such that for 0 < r < r0 and

x ∈ X with d(x, x0) = r,

lim
X\{x0}3y→x0

u(y) ' lim
j

capp(B(x0, r), X \ Ωj)
1/(1−p),

4 u ∈ N1,p
loc (X \ {x0}),

5 and finally,(
p− 1

p

)2(p−1)

(b− a)1−p ≤ capp({u ≥ b}, {u > a}) ≤ p2(b− a)1−p

whenever 0 ≤ a < b ≤ limj capp({x0}, X \ Ωj)
1/(1−p) with b sufficiently

large.

Note that the notation adopted in [19] is slightly different from that here;
there the relative capacity capp(E,F ) is computed with respect to functions
u ∈ N1,p(X) with u = 0 in X \ F and u ≥ 1 on E, with E ⊂ F . Hence to
interpret the notation of [19] here, we should substitute the second component
of capp(E,Ω), namely Ω there, with X \ Ω in this current paper. In the set-
ting of metric measure spaces, the following theorem was established in [19,
Theorem 3.14].

Theorem 3.3. (X, d, µ) is p-hyperbolic if and only if there is a point x0 ∈
X and a p-singular function on X with singularity at x0. If (X, d, µ) is p-
hyperbolic, then for every x0 ∈ X there is a p-singular function with singularity
at x0.

The idea for the proof is simple, though the details are cumbersome; we
refer the interested reader to [19] for the details, and merely give a sketch of
the proof now.
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Sketch. Suppose first that X is p-hyperbolic; then there is some x0 ∈ X, R > 0,
and a strictly monotone increasing sequence of positive real numbers Rn, n ∈ N,
with R1 > R, such that

lim
n

Modp(Γ(B(x0, R), X \B(x0, Rn)) > 0.

Since each curve in Γ(B(x0, R), X \ B(x0, Rn+1) has a subcurve that belongs
to the family Γ(B(x0, R), X \B(x0, Rn), it follows that

Modp(Γ(B(x0, R), X \B(x0, Rn+1)) ≤ Modp(Γ(B(x0, R), X \B(x0, Rn)),

and so the above limit is well-defined. Then by (1) we know that

0 < lim
n

capp(X \B(x0, Rn), B(x0, R)) ≤ capp(X \B(x0, R1), B(x0, R)) <∞.

For each n let un be a p-singular function in B(x0, Rn) with singularity at x0;
Thanks to the uniformly local version of Harnack’s inequality and the definition
of p-singular functions, for each n ∈ N the sequence um, m ≥ n, is locally uni-
formly bounded in B(x0, Rn)\{x0}. A stability result for p-harmonic functions
(see [28]) then gives us a subsequence of um, and a function u∞, such that um
converges locally uniformly in X \ {x0} to u∞ with u∞ a p-harmonic function
on X \ {x0}. A direct argument would show that u∞ is a p-singular function
on X with singularity at x0.

Now suppose that X supports a p-singular function u with singularity at
some x0 ∈ X. Then for sufficiently small r > 0 and a nested sequence of open
sets Ωj with X =

⋃
j Ωj such that

u ' lim
j

capp(X \ Ωj , B(x0, r))
1/(1−p)

on the sphere S(x0, r) = {y ∈ X : d(x0, y) = r}. Thus

lim
j

capp(X \ Ωj , B(x0, r)) > 0.

By passing to a subsequence if necessary, we may assume that Rj := dist(x0, X\
Ωj) is a strictly monotone increasing sequence; as X =

⋃
j Ωj , it follows that

limj Rj =∞, and so

capp(X \B(x0, Rj), B(x0, r)) ≥ capp(X \ Ωj , B(x0, r)).

Hence we now have

lim
j

capp(X \B(x0, Rj), B(x0, r)) > 0,

that is, X is p-hyperbolic. �

Note that here we require the singular functions to be non-negative. Revert-
ing back to the setting of Euclidean spaces Rn, we know that Rn supports p-
singular functions for 1 < p < n, but does not support a p-singular function for
p = n; in the case of p = n we have Green’s functions, which are functions u that
are p-harmonic in Rn\{x0}, limy→x0

u(y) =∞, and ∆nu = δx0
; however, in this

case u is not non-negative, and indeed we have that limy→∞ u(y) = −∞. For
more on singular functions and p-parabolicity, see for example [2, 3, 11, 16, 17].
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4 p-hyperbolicity and p-modulus of a family of
curves connecting a ball to ∞
In the setting of manifolds and with p = 2, we know from [11] that a manifold M
is 2-parabolic if and only if the (Brownian) probability measure of the collection
of all Brownian paths γ in M that eventually never return to a given ball in M
is zero; that is, if B is a ball in M and Γ is the collection of all Brownian paths
γ : [0,∞) → M such that γ(t) = x0 and γ(t) 6∈ B for all t ≥ tB ∈ [0,∞), then
P(Γ) = 0. In the non-linear setting of p 6= 2, and even when p = 2 but in the
setting of metric measure spaces where the upper gradient structure does not
come from an inner product structure on the space, the connection to Brownian
motion is more tenuous. However, there is a connection between p-parabolicity
and p-modulus of families of curves connecting B to∞; the focus of this section
is to explore this idea further.

From Definition 2.4, a metric measure space X is p-hyperbolic if there is a
ball B = B(x0, R0) and a positive number τ > 0 such that whenever R > R0,
the p-modulus of the collection of all paths connecting B to X \B(x0, R) is at
least τ . Let Γ(R) denote this collection of paths. Set Γ :=

⋂
R>0 Γ(R). Then

Γ consists of all paths that have one end point in B and leave each bounded
subset of X. Moreover, for R0 < R < T we have Γ(T ) ⊂ Γ(R), and so the
family (Γ(R))R>R0 is a decreasing sequence of families of paths. However, in
general it is not true that if Γn, n ∈ N, is a decreasing sequence of families
of curves, then limn Modp(Γn) = Modp(

⋂
n Γn). However, we will see in this

section that we can still conclude that Modp(Γ) > 0. As far as I know, this fact
is not proven in currently existing literature on analysis on metric spaces, we
provide a complete proof of this here. Note that this result is new even in the
Euclidean setting. We first need the following lemma.

Lemma 4.1. There is a non-negative Borel measurable function h ∈ Lp(X)
such that for each x0 ∈ X and R > 0,

inf
B(x0,R)

h := βR > 0.

Proof. We fix x0 ∈ X and R0 > 0, and set

h :=
∑
k∈N

1

2k µ(B(x0, (k + 2)R0) \B(x0, kR0))1/p
χB(x0,(k+2)R0)\B(x0,kR0).

Then h is lower semicontinuous, and satisfies the desired requirements. �

Now we are ready to prove the main result of this section.

Theorem 4.2. Let B be a ball in X and let Γ be the collection of all paths
γ : [0,∞) → X such that γ(0) ∈ B and for each R > 0 there is some tγ,R > 0
such that γ(t) 6∈ B(x0, R) whenever t > tγ,R. Then X is p-hyperbolic if and
only if Modp(Γ) > 0.

Proof. Suppose first that X is p-hyperbolic. Then

lim
R→∞

Modp(Γ(R)) =: τ > 0. (2)

Suppose that with Γ =
⋂
R>R0

Γ(R) satisfies Modp(Γ) = 0. Then we know from
Fuglede’s theorem (see the discussion following Definition 2.1) that there is a
non-negative Borel function ρ ∈ Lp(X) such that

∫
γ
ρ ds = ∞ for each locally
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rectifiable path γ ∈ Γ. An application of the Vitali-Carathéodory theorem
allows us to assume that ρ is also lower semicontinuous. Moreover, by replacing
ρ with max{ρ, h} with h as in Lemma 4.1, we may also assume that for each
R > 0,

inf
B(x0,R)

ρ := βR > 0.

Scaling ρ by a positive constant if necessary, we can also assume that∫
X

ρp dµ ≤ τ/2.

Then by (2) and by the fact that R 7→ Modp(Γ(R)) is monotone decreasing, we
know that ρ 6∈ A(Γ(R)) for each R > R0. Thus, for each positive integer n ≥ 2,
there is a rectifiable curve γn ∈ Γ(nR0) such that

∫
γn
ρds < 1.

For each positive integer n ≥ 2 and each positive integer k ≥ n, we now
have that

`(γk ∩B(x0, nR0)) ≤ 1

βnR0

∫
γn

ρ ds <
1

βnR0

<∞.

It follows that the sequence γn, n ∈ N, of paths inX (using arc-length parametriza-
tion) is locally equicontinuous and locally equibounded. Given that the metric
space X is complete and doubling, it follows that X is proper (that is, closed
and bounded subsets of X are compact, see for example [13]). Therefore we
can invoke the Arzelà-Ascoli theorem and a Cantor diagonalization argument to
obtain a subsequence of paths, denoted γnj

, j ∈ N, and and a locally rectifiable
path γ with one end point in B = B(x0, R0), such that γnj

→ γ locally uni-
formly in [0,∞). Recall that ρ is lower semicontinuous. Hence an adaptation
of the argument found in [13, Page 13–14], we have∫

γ

ρ ds ≤ lim inf
k

∫
γk

ρ ds ≤ 1.

On the other hand, as γn ∈ Γ(nR0), it follows that γ ∈ Γ(kR0) for each positive
integer k ≥ 2; whence we have that γ ∈ Γ. This violates our choice of ρ as
a function in Lp(X) such that for each γ̃ ∈ Γ we have

∫
γ̃
ρ ds = ∞. We can

therefore conclude that we must have Modp(Γ) > 0 as desired.
Finally, if Modp(Γ) > 0, then for each R > R0 we must have

Modp(Γ(R)) ≥ Modp(Γ) > 0,

and therefore X is p-hyperbolic. This concludes the proof of the theorem. �

Note that the outer measure Modp, on the family of all paths in X, sees
only locally rectifiable paths. Hence p-hyperbolicity of the metric measure
space X (or a Riemannian manifold M) tells us that there is a plenitude of
locally rectifiable curves γ in X beginning from a given ball B and eventually
leaving every bounded subset of X. The key here is that these curves are locally
rectifiable. In the event that p = 2 and we are in the setting of Riemannian
manifolds M , this perspective is dual to the perspective of Brownian paths
which are almost surely not even locally rectifiable (though they are almost
surely locally Hölder continuous). It would be interesting to know whether
there is an object analogous to Brownian motion for the non-linear setting of
p 6= 2 that sees locally non-recitifable paths. One possible process associated
with the p-Laplacian, called tug-of-war with noise in [25], might shed some light
on this, but this direction of study has so far not focused on properties of paths

9



associated with the tug-of-war with noise process. The paper [24] gives a nice
introduction to the tug-of-war process, and the regularity theory associated
with the rug-of-war with noise is explored in [4].

5 p-parabolicity and a Liouville-type theorem

The classical Liouville theorem states that there is no non-constant bounded
complex-analytic function on the entire complex plane. A version of this the-
orem states that there is no non-constant positive harmonic function on the
Euclidean space Rn. In the non-smooth setting, if µ is globally doubling and
supports a global p-Poincaré inequality, then by the results in [22] we know
that non-negative p-harmonic functions satisfy a Harnack inequality, and hence
there are no non-constant positive p-harmonic functions on such metric mea-
sure spaces. The situation is different when considering metric measure spaces
equipped with a measure that is locally doubling and supports a local p-Poincaré
inequality. The hyperbolic spaces Hn are examples of such spaces, as are infi-
nite trees with bounded degree that are not homeomorphic to R. As we know,
Hn does support a non-constant positive harmonic function. It was shown in [6]
that if the measure is globally doubling and supports a global p-Poincaré in-
equality, and in addition the metric space is annular quasiconvex, then there
are no global non-constant p-harmonic functions (whether non-negative or not)
with finite energy. Here a metric space X is annular quasiconvex if there is
a constant C ≥ 1 such that whenever x0 ∈ X and r > 0, and whenever
x, y ∈ B(x0, r)\B(x0, r/2), there is a rectifiable path γ in B(x0, Cr)\B(x0, r/C)
with end points x and y, and with length `(γ) ≤ Cd(x, y). This version of Liou-
ville theorem (finite energy Liouville theorem) is not equivalent to the standard
Liouville theorem described above. In this section we discuss the effect of
p-hyperbolicity on the existence of global non-constant positive/finite energy
p-harmonic functions.

Note that when 1 < p < n, the Euclidean space Rn is p-hyperbolic, but
does not have a non-constant positive p-harmonic function nor a non-constant
finite energy p-harmonic function; here we say that a function u on a metric
space X has finite energy if it has an upper gradient gu ∈ Lp(X). Hence p-
hyperbolicity of a space does not guarantee existence of non-constant global
p-harmonic functions. The results of [6] indicate that we need the space to fail
to be annular quasiconvex, and strongly so. The following notion of ends of a
metric space is a direct analog of the theory of ends of Riemannian manifolds
as described in [2].

Definition 5.1. A sequence of connected sets {Ek}k is said to be an end (or
end at infinity) of X if there is a sequence of balls Bk ⊂ X with Bk ⊂ Bk+1

such that Ek is a component of X \Bk and Ek+1 ⊂ Ek for each positive integer
k. We say that an end {Ek} is a p-hyperbolic end if

lim inf
k→∞

Modp(Γ(B1, Ek)) > 0.

We say that an end is p-parabolic if it is not p-hyperbolic.

It is possible for a metric measure space to be p-hyperbolic but have only
p-parabolic ends. Indeed, if X is a K-regular tree (that is, each vertex has
exactly K number of edges attached to it) with K ≥ 3, with the edges of unit
length and equipped with the Lebesgue measure L1, then the measure on X is
uniformly locally doubling and supports a uniformly local 1-Poincaré inequality,

10



see for example [5]. Observe that each end of X corresponds to a geodesic ray
starting from a vertex in X. Fix such an end, and we list the vertices that
make up the corresponding geodesic ray by xk, k ∈ N. We fix B = B(x1, 1).
The function ρk given by setting ρk = 0 on all the edges except on the edges
[x2, x3], · · · , [xk−1, xk], where it is set to take on the value of 1/(k − 1). Then
ρk ∈ A(Γ(B,Xk)) with Xk the connected component of X \xk containing xk+1.
Therefore

Modp(Γ(B,Xk)) ≤
∫
X

ρpk dµ =
1

(k − 1)p
k,

and so
lim
k→∞

Modp(Γ(B,Xk)) = 0.

Therefore the end is a p-parabolic end of X. However, X itself is p-hyperbolic
for each p > 1. This is a consequence of the following result from [7, Theo-
rem 1.2] together with the fact that there is a non-constant p-harmonic function
on X with finite energy (see [6]). Indeed, fixing a base vertex v0, we set u = 0
at v0. We will define the value of u at each vertex, with the understanding
that a linear interpolation will extend the function to the edges that make up
X. For ease of computation, we will focus on p = 2 and K = 3. Then with
v1,1, v1,2 and v1,3 denoting the three vertices that are neighbors of v0, we set
u(v1,1) = 0, u(v1,2) = 1/2, and u(v1,3) = −1/2. On the connected component
of X \{v0} containing v1,1 we set u = 0. We can then extend u to vertices in the

connected component of X \ {v0} containing v1,2 by setting u(w) =
∑k
j=1 2−j

where w is a vertex in this component that is a distance k from v1,2. We set

u(w) = −
∑k
j=1 2−j where w is a vertex in the component of X \ {v0} contain-

ing v1,3, with k the distance between w and v1,3. A direct computation shows
that u is 2-harmonic in X with finite energy

∑∞
j=1 2−kp2k with p = 2.

Theorem 5.2. Suppose that in addition to being uniformly locally doubling and
supporting a uniformly local p-Poincaré inequality, we have that X is unbounded
and proper. Then

• if X has a non-constant p-harmonic function with finite energy, then X
is p-hyperbolic.

• If X has at least two p-hyperbolic ends, then it has a non-constant bounded
p-harmonic function with finite energy.

Observe that when n > 1, the hyperbolic space Hn has only one end, and
this end is indeed p-hyperbolic when p < n; the Euclidean space Rn also has
only one end, and this end is p-hyperbolic when p < n. On the other hand, Rn
supports no non-constant positive p-harmonic functions while Hn does.

Unlike the property of supporting a p-singular function, the property of
supporting a non-constant positive or finite energy p-harmonic function does
not characterize p-hyperbolic spaces; however, the above discussion shows that
there is a connection between the existence of non-constant positive/finite en-
ergy p-harmonic functions and p-hyperbolicity. A deeper understanding of the
structures of p-hyperbolic ends and p-parabolic ends of X might lead to a char-
acterization of the property of supporting a non-constant positive or finite en-
ergy p-harmonic functions, and this field of enquiry is still under development.
For other partial characterizations of p-hyperbolicity using volume growth con-
ditions see [17] (Riemannian manifold setting) and [18] (metric setting). It was
shown in [17, Proposition 1.7] that if X is a non-compact complete Riemannian
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manifold and ∫ ∞
1

(
1

µ(B(x0, t))

)1/(p−1)

dt =∞,

then it is p-parabolic. Moreover, it is shown in [17, Corollary 2.29] that if there
is a constant C > 0 and a point x0 ∈ X such that each sequence xk ∈ X with
2 < d(xk, x0)→∞ as k →∞ can be connected to x0 by geodesics γk with the
property that ∫ d(xk,x0)

1

(
1

µ(B(γk(t), t/8))

)1/(p−1)

dt ≤ C,

then X is p-hyperbolic. Versions of these results in the metric setting can be
found in [18], where large-scale dimension conditions are given to guarantee
p-parabolicity and p-hyperbolicity of the space.
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