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Abstract. We consider a stochastic transportation problem between two prescribed prob-
ability distributions (a source and a target) over processes with general drift dependence
and with free end times. First, and in order to establish a dual principle, we associate two
equivalent formulations of the primal problem in order to guarantee its convexity and lower
semi-continuity with respect to the source and target distributions. We exhibit an equiv-
alent Eulerian formulation, whose dual variational principle is given by Hamilton-Jacobi-
Bellman type variational inequalities. In the case where the drift is bounded, regularity
results on the minimizers of the Eulerian problem then enable us to prove attainment in
the corresponding dual problem. We also address attainment when the drift component
of the cost defining Lagrangian L is superlinear L ≈ |u|p with 1 < p < 2, in which case
the setting is reminiscent of our approach -in a previous work- on deterministic controlled
transport problems with free end time. We finally address criteria under which the optimal
drift and stopping time are unique, namely strict convexity in the drift component and
monotonicity in time of the Lagrangian.
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1. Introduction

The problem of transporting a distribution from a given source to a prescribed target has
been studied since the pioneering work of Monge in 1781 (see [26]) and has many applications
in analysis, probability theory, and partial differential equations. In this paper, we consider
an optimal transportation problem for stochastic processes with controlled dynamics and
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free end time, where the transport cost is given by a general Lagrangian L on R+×Rd×Rd
as follows: if µ and ν are two probability measures, then the stochastic transport problem
is formally stated as

PL(µ, ν) := inf
β,τ

{
E
[ ∫ τ

0
L
(
t,Xt, βt

)
dt
]
; dXt = βt dt+ dWt, X0 ∼ µ, Xτ ∼ ν

}
.(1.1)

More precise definitions will be given later, but for now we mention that the minimization
is over all suitable drifts β, and all stopping times τ . The notation X0 ∼ µ means that the
initial position of the path has µ as its distribution, and Xτ ∼ ν means that the processed
stopped at the random time τ has ν as its distribution.

In [23, 25, 30], the authors consider Problem (1.1) in the case where the end time is fixed
(τ = 1), i.e. they minimize

inf
β

{
E
[ ∫ 1

0
L
(
t,Xt, βt

)
dt
]
; dXt = βt dt+ dWt, X0 ∼ µ, X1 ∼ ν

}
.(1.2)

Under some assumptions on the Lagrangian L, they establish a weak duality principle for
(1.2), namely that the primal value of (1.2) equals the value of the following dual problem:

sup
ψ

{∫
Rd

ψ(y) ν(dy)−
∫
Rd

J(0, x)µ(dx); J solves (1.4)
}

(1.3)

where

(1.4)

{
∂tJ(t, x) + 1

2∆J(t, x) +H
(
t, x,∇J(t, x)

)
= 0 in (0, 1)× Rd,

J(1, x) = ψ(x) on Rd,

whereH is the Hamiltonian associated to L. A special case that has received recent attention
is when the Lagrangian is of the form L(t, x, u) = 1

2 |u|
2 +V (x), which has connections with

the Schrödinger bridge problem [20, 6, 24]. The existence of optimal ψ has also been
established for the case when L has quadratic growth in u and the target distribution is
smooth with ν > 0 for a version of the problem including a mean field cost posed on the torus
[27, 28], which makes use of the variational structure and energy estimates. On the other
hand, stopping uncontrolled processes with distribution constraints has a vast literature, in
particular pertaining to applications in finance; for some of the approaches related to (1.1)
see [1, 2, 3, 17].

Coming back to Problem (1.1), we shall pose the initial problem in a weaker sense so
that it involves randomized stopping times and weak solutions to the SDE, analogous to
the Kantorovich relaxation of the optimal transport [18] problem. The ultimate goal is to
obtain minimizers involving true stopping times and representing strong solutions to the
SDE. For that, we shall give two formulations of the stochastic transport problem (see
Section 2), which we will ultimately prove equivalent:

• A weak stochastic formulation that poses the optimization problem over (weakly)
controlled processes and randomized stopping times.
• A convex stochastic formulation which poses the optimization over probability mea-

sures on a space of randomly stopped paths for both state and drift.

Under appropriate conditions on L, the latter equivalent formulation renders the problem
l.s.c. and convex in ν. This will allow us to identify a corresponding dual problem, which
can be described as follows:

DL(µ, ν) = sup
ψ

{∫
Rd

ψ(y) ν(dy)−
∫
Rd

Jψ(0, x)µ(dx)
}
,(1.5)
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where Jψ can be viewed as the viscosity solution (equivalently minimal supersolution) of
the following second order Hamilton-Jacobi-Bellman quasivariational inequality,

(1.6)

{
∂tJ(t, x) + 1

2∆J(t, x) +H
(
t, x,∇J(t, x)

)
≤ 0 in R+ × Rd,

ψ(x)− J(t, x) ≤ 0 on R+ × Rd,

where H is again the Hamiltonian associated to L. We then establish the (weak) duality
principle (see Section 3),

(1.7) DL(µ, ν) = PL(µ, ν).

The most crucial part of the analysis is to find an optimal end potential ψ (hence Jψ)
for the dual problem (1.5). In fact, there is no general result in the literature about the
attainment in the dual problem (1.3). However, one of the main advantages of considering
(1.1) instead of (1.2) is that the constraints on the potentials (ψ, Jψ) are now somehow

relaxed, i.e. we have J ≥ ψ on R+ × Rd instead of J(1, ·) = ψ and so, this will allow us to
replace ψ by an end potential ψ̄ ≥ ψ that satisfies

1

2
∆ψ̄(x) + inf

t∈R+
H
(
t, x,∇ψ̄(x)

)
≤ 0,

and we get some Sobolev/Hölder estimates on ψ̄. We note that this attainment, in tandem
with the weak duality (1.7), allows - through a verification type theorem - to characterize
both the optimal process and the stopping time that resolve the primal problem. In our
quest to prove attainment in the dual problem, we will focus on two cases:

(1) When the drift is bounded, the distribution of the process then possesses addi-
tional Sobolev regularity due to the diffusion. However, the dual potential may
be unbounded with singularities similar to the fundamental solution of the Laplace
equation. We find that a sufficient condition to solve the problem is for the target
distribution to lie in the dual to an appropriately weighted L1 space. This case
builds upon the Sobolev space approach for the Skorokhod problem (without drift)
studied in [13].

(2) When the drift is strong (that is if 1 < p < 2), there is no additional regularity on
the density due to the possibility of ‘local controllability’, i.e. the ability to trans-
port to a Dirac-mass with finite-cost. However, this ‘local controllability’ allows for
uniform bounds and Hölder estimates on the end potential, as in [5], and generalizes
the approach for deterministic control problems [11]. In particular, any compactly
supported target measure may be reached with finite cost.

In either case, we shall prove attainment in the dual problem (Section 5). But for that,
we need to introduce two Eulerian formulations (see Section 4) for the weak stochastic
formulation of the primal problem (1.1).

• The strong Eulerian formulation, which poses the problem with a velocity field and
the solution to a Fokker-Planck equation with stopping. More precisely,

PEL(µ, ν) = inf
(m,v,ρ)∈E(µ)

{∫
R+

∫
Rd

L
(
t, x, v(t, x)

)
m(t, x) dxdt;

∫
R+

ρ(dτ, ·) = ν
}
,(1.8)

where a triplet (m, v, ρ) belongs to E(µ) if the following hold: ρ is a probability
measure on R+ × Rd, mt is a nonnegative density in the Sobolev space H1(Rd) for
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each time t ∈ R+, and v is a measurable velocity field, and for all smooth test
functions φ on R+ × Rd, we have the following:∫

R+

∫
Rd

[
∂tφ(t, x)m(t, x) +∇φ(t, x) ·

(
v(t, x)m(t, x)− 1

2
∇m(t, x)

)]
dxdt

=

∫
R+

∫
Rd

φ(τ, y)ρ(dτ, dy)−
∫
Rd

φ(0, x)µ(dx).(1.9)

• The convex Eulerian formulation, which poses the problem over phase-space distri-
butions satisfying a convex set of inequalities. More precisely,

P ẼL(µ, ν) = inf
(η,ρ)∈Ẽ(µ)

{∫
R+

∫
Rd

∫
Rd

L(t, x, u)ηt(dx, du)dt :

∫
R+

ρ(dτ, ·) = ν
}
,(1.10)

where a pair of density process and stopping time (η, ρ) ∈ Ẽ(µ) if η is a measurable
map from R+ to nonnegative measures on Rd × Rd, ρ is a probability measure on
R+ × Rd, and for all smooth test functions φ on R+ × Rd:∫

R+

∫
Rd

∫
Rd

[
∂tφ(t, x) +

1

2
∆φ(t, x) +∇φ(t, x) · u

]
ηt(dx, du)dt

=

∫
R+

∫
Rd

φ(τ, y)ρ(dτ, dy)−
∫
Rd

φ(0, x)µ(dx).(1.11)

We shall prove the latter to be equivalent to the primal problem (1.1) first by embedding
phase-space distributions into the stochastic formulation and then showing the reverse in-
equality by using weak duality. We then prove that, when the drift is bounded, the strong
Eulerian formulation is also equivalent by using suitable Sobolev estimates.

After proving attainment in the dual problem (see Section 5), we proceed to obtain useful
information on the primal problem, and in some special cases (e.g., when t 7→ L(t, x, u) is
monotone), we show (see Section 6) that the unique optimizer is given by the hitting time
to a space-time barrier,

τ∗ = inf
{
t; Jψ(t,Xt) = ψ(Xt)

}
,

which is reminiscent of the graphical structure describing the optimizers in the deterministic
mass transports problems studied by Brenier [4], Gangbo-McCann [10] and others.

2. Stochastic Formulations

2.1. Basic assumptions and notations. We shall assume throughout the paper that
the Lagrangian, (t, x, u) ∈ R+ × Rd × U 7→ L(t, x, u) ∈ R+, where U ⊂ Rd, is a continuous
function of time, position, and drift, uniformly continuous in (t, x) (uniformly with respect to
u) and is convex with respect to the drift, i.e. u 7→ L(t, x, u) is convex for all (t, x) ∈ R+×Rd.

In addition, we assume either that U = Rd and the Lagrangian L is superlinear with
respect to the drift and bounded from below, i.e. there is some c > 0 and p > 1 such that

(2.1) c
(
|u|p + 1

)
≤ L(t, x, u), for all (t, x, u) ∈ R+ × Rd × Rd,

or that U is a bounded convex subset of Rd. Let Ω = C(R+,Rd) be the space of continuous
paths from R+ to Rd, (Xt)t∈R+ be the canonical process, i.e. Xt(ω) = ω(t) for every ω ∈ Ω,
and F = {Ft}t∈R+ be the canonical filtration generated by X. Let µ, ν be two probability
measures on Rd. The two (equivalent) formulations of the stochastic transport problem are
the following:



STOCHASTIC OPTIMAL TRANSPORT WITH FREE END TIME 5

2.2. The weak stochastic formulation. We say that the triplet (P, β, α) belongs to A(µ)
if the following conditions hold:

i) (Ω,F,P) is a filtered probability space.
ii) The initial distribution is given by µ, i.e. X0 ∼P µ which means that X0#P = µ.
iii) The drift, β : R+×Ω→ U , is F-progressively measurable and locally integrable, i.e.

for each τ , the map βτ : Ω → L1([0, τ ], U), which is given by βτ (ω)(t) = βt(ω) for
every t ∈ [0, τ ], satisfies βτ is Fτ−measurable and EP[‖βτ‖L1([0,τ ],U)

]
< +∞.

iv) The process W β given by

W β
t := Xt −X0 −

∫ t

0
βs ds, for every t ∈ R+,

is the standard Brownian motion, i.e. W β
#P is the Wiener measure on Ω with

W0 = 0. In other words, Xt has the following semimartingale decomposition:

Xt = X0 +

∫ t

0
βs ds+W β

t .(2.2)

v) α : Ω → M(R+), where M(R+) is the space of measures on R+, is a randomized
stopping time or equivalently, At(ω) := α(ω)([0, t]) is increasing, right continuous,
adapted to F, with A0 ≥ 0 and limt→∞At(ω) = 1.

Let (αnP)(dτ, dω) = α(ω)(dτ)P(dω) denote the measure on R+×Ω corresponding to the
variable (τ, ω). The constraint Xτ ∼αnP ν is equivalently defined by Xτ#(α n P) = ν, i.e.
we have ∫

Ω

∫
R+

g
(
ω(τ)

)
α(ω)(dτ)P(dω) =

∫
Rd

g(y)ν(dy), for all g ∈ Cb(Rd).(2.3)

Now, we let A(µ, ν) =

{
(P, β, α) ∈ A(µ) : Xτ ∼αnP ν

}
. The cost, defined on A(µ) with

possible value of +∞, is given by the following:

JL(P, β, α) = EαnP
[ ∫ τ

0
L
(
t,Xt, βt

)
dt
]

(2.4)

=

∫
Ω

∫
R+

∫ τ

0
L
(
t,Xt(ω), βt(ω)

)
dt α(ω)(dτ)P(dω).

We can state our primal stochastic transportation problem as the minimization of the
stochastic transport cost JL(P, β, α) among all admissible (P, β, α) ∈ A(µ, ν), i.e.

PL(µ, ν) := inf

{
JL(P, β, α) : (P, β, α) ∈ A(µ, ν)

}
(2.5)

with the convention that PL(µ, ν) = +∞ if A(µ, ν) = ∅ (in fact, we will prove in Section 5
that, under some assumptions on µ and ν, this set A(µ, ν) is non-empty).

2.3. The convex stochastic formulation. With this formulation, we seek to linearize
the functional in (2.4) by considering probability measures P̃ on Ω̃ := Ω × Ω (this idea is
due to Haussmann [14] and, it is used later by Tan & Touzi [30]). In other words, let (X,B)

be the canonical process on Ω̃ (i.e. (Xt, Bt)(ω, b) = (ω(t), b(t)), for every (ω, b) ∈ Ω̃) and

let F̃ be the corresponding canonical filtration. We now have a process

(2.6) W̃t(ω, b) := Xt(ω)−X0(ω)−Bt(b),
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which will play the role of W β in the definition of A(µ). We denote by P̃X the projection

onto the first component of Ω×Ω, and P̃B the projection onto the second component. We
say that (P̃, α̃) ∈ Ã(µ) if the following conditions hold:

i) (Ω̃, F̃, P̃) is a filtered probability space.

ii) We have X0 ∼P̃X
µ which means that X0#P̃X = µ.

iii) For P̃B almost every b, B is differentiable and β̃ = B′ is locally integrable, i.e. for

each τ , the map β̃ τ : Ω→ L1([0, τ ], U) defined by β̃τ (b)(t) = β̃t(b) satisfies

EP̃[‖β̃τ‖L1([0,τ ],Rd)

]
< +∞.

iv) The process W̃ defined in (2.6) is a standard Brownian motion, i.e. W̃#P̃ is the

Wiener measure on Ω with W̃0 = 0.
v) α̃ : Ω̃→M(R+) is a randomized stopping time, equivalently Ãt(ω, b) := α̃(ω, b)([0, t])

is increasing, right continuous, adapted to F̃, with Ã0 ≥ 0 and limt→∞ Ãt(ω, b) = 1.

We also define α̃nP̃ to be the associated probability measure on R+×Ω×Ω and (α̃nP̃)T,X
its projection onto the first two components. The constraint Xτ ∼(α̃nP̃)T,X

ν is similarly

defined by∫
Ω

∫
Ω

∫
R+

g
(
ω(τ)

)
α̃(ω, b)(dτ)P̃(dω, db) =

∫
Rd

g(y)ν(dy), for all g ∈ Cb(Rd).(2.7)

Now, we say that (P̃, α̃) ∈ Ã(µ, ν) if (P̃, α̃) ∈ Ã(µ) and Xτ ∼(α̃nP̃)T,X
ν. The cost is similarly

given by the following:

J̃L(P̃, α̃) = Eα̃nP̃
[ ∫ τ

0
L
(
t,Xt, β̃t

)
dt
]

(2.8)

=

∫
Ω

∫
Ω

∫
R+

∫ τ

0
L
(
t,Xt(ω), β̃t(b)

)
dt α̃(ω, b)(dτ)P̃(dω, db).

Then, we consider the following relaxation of (2.5) (again, we let P̃L(µ, ν) = +∞ if Ã(µ, ν)
is empty):

(2.9) P̃L(µ, ν) := inf
{
J̃L(P̃, α̃) : (P̃, α̃) ∈ Ã(µ, ν)

}
.

We now show that problems (2.9) and (2.5) are equivalent in the sense that the two
problems have the same minimal values. First, we show that the convex stochastic problem
(2.9) is a relaxation of the weak stochastic formulation (2.5), and then show that there is a
projection from the convex stochastic problem back onto the weak stochastic formulation
that does not increase the cost. More precisely, we have the following:

Proposition 2.1. With the above notations, the following hold:

(1) For every (P, β, α) ∈ A(µ), there exists (P̃, α̃) ∈ Ã(µ) with (α̃n P̃)T,X = αn P and

JL(P, β, α) = J̃L(P̃, α̃).

(2) Conversely, for every (P̃, α̃) ∈ Ã(µ), we can find α, β such that (P̃X , β, α) ∈ A(µ)

with (α̃n P̃)T,X = αn P̃X and JL(P̃X , β, α) ≤ J̃L(P̃, α̃).

(3) In particular, we have PL(µ, ν) = P̃L(µ, ν).

Proof. Take (P, β, α) ∈ A(µ) and define Bβ
t (ω) :=

∫ t
0 βs(ω) ds. We set P̃ = (X,Bβ)#P and

α̃(ω, b) = α(ω). We can easily check the five properties defining Ã(µ):
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i) (Ω̃, F̃, P̃) is clearly a filtered probability space.

ii) Since P̃X = P, we are also dealing with the same initial distribution (X0#P̃X =
X0#P = µ).

iii) We have that

EP̃[‖β̃τ‖L1([0,τ ],Rd)

]
= EP[‖βτ‖L1([0,τ ],Rd)

]
< +∞.

iv) Note that W̃ (ω,Bβ(ω)) = W β(ω) and therefore W̃#P̃ = W β
#P is the Wiener

measure on Ω with W̃0 = 0.
v) It is easy to check that α̃ is still a randomized stopping time on the extended space.

On the other hand, we also have (α̃ n P̃)T,X = α n P. From the definitions of JL and J̃L,
we have

J̃L(P̃, α̃) =

∫
Ω

∫
Ω

∫
R+

∫ τ

0
L
(
t,Xt(ω), β̃t(b)

)
dt α(ω)(dτ)(X,Bβ)#P(dω, db)

=

∫
Ω

∫
R+

∫ τ

0
L
(
t,Xt(ω), βt(ω)

)
dt α(ω)(dτ)P(dω)

and so, it follows that JL(P, β, α) = J̃L(P̃, α̃).

For the second claim, take (P̃, α̃) ∈ Ã(µ) and set P = P̃X . We define α by disintegration

in such a way that (α̃ n P̃)T,X = α n P and β by the conditional expectation βt(ω) :=

EP̃[β̃t∣∣F̃Xt ](ω) (here, F̃Xt is the filtration generated by process X). Again, we have the
following five properties:

i) (Ω,F,P) is a filtered probability space.

ii) Since P̃X = P, we still have the same initial distribution.
iii) By Jensen’s inequality, we have that

EP[‖EP̃[β̃τ ∣∣F̃Xt ]‖L1([0,τ ],Rd)

]
≤ EP̃[‖β̃τ‖L1([0,τ ],Rd)

]
< +∞.

iv) From [31, Theorem 4.3], we have that the following process is a standard Brownian
motion:

W β
t :=Xt −X0 −

∫ t

0
EP̃[β̃s∣∣F̃Xs ]ds.

v) Finally, it is straightforward to verify that α is a randomized stopping time.

On the other hand, using the definitions of P, β and α and Jensen’s inequality, we get that

JL(P, β, α) ≤ J̃L(P̃, α̃).

Since we have identity of the distributions αnP = (α̃n P̃)T,X , it follows that the values of
the primal weak stochastic and convex stochastic problems are equal. �

The convex problem (2.9) satisfies a compactness property for a suitable topology on the

measures α̃ n P̃ on R+ × Ω × Ω. We note that a simple truncation of the stopping time
allows us to restrict to a compact domain in time and space. We define the truncation for
(P, β, α) ∈ A(µ) by considering the randomized stopping corresponding to τ ∧ sup{τ ; τ ≤
T, |Xτ | ≤ R}, i.e. αT,R(ω) := ST,Rω ]α where ST,Rω (τ) = τ ∧ sup{t; t ≤ T, |Xt(ω)| ≤ R}. We

set ST,R(τ, w) := (ST,Rw (τ), w).
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Lemma 2.2. For any (P, β, α) ∈ A(µ), the truncation with T,R ∈ R+ satisfies (P, β, αT,R) ∈
A(µ) with αT,R is supported on [0, T ] and |Xt(w)| ≤ R almost surely. Furthermore,

lim
T,R→∞

JL(P, β, αT,R) = JL(P, β, α),

and for all g ∈ Cb(Rd),

lim
T,R→∞

Eα
T,RnP[g(Xτ )

]
= EαnP[g(Xτ )

]
.

Proof. Since the range of ST,R is contained in [0, T ]×Ω, it is clear that αT,R is supported on
[0, T ] and |Xt(w)| ≤ R holds (αT,RnP)-almost surely. We then have that (P, β, αT,R) ∈ A(µ)
since ST,R is continuous and maps [0, τ ] × Ω into [0, τ ] × Ω, for all τ ∈ R+, and leaves P
and β unchanged so that the decomposition (2.2) holds. Furthermore, it follows by the
monotone convergence theorem that the limit of JL(P, β, αT,R) is JL(P, β, α) and that the
end measure is also recovered. �

Before we have compactness we also need a truncation of the measure P̃ so that weak
limits do not lead to measures associated with badly behaved drifts after the end-time.

Proposition 2.3. The set {α̃ n P̃ : (P̃, α̃) ∈ Ã(µ)} is convex. Moreover, given any se-

quence (P̃i, α̃i) ∈ Ã(µ, νi) with νi ⇀ ν, there is a (P̃, α̃) ∈ Ã(µ, ν) such that J̃L(P̃, α̃) ≤
lim infi→∞ J̃L(P̃i, α̃i).

Proof. The convexity follows immediately from [16, Corollary III.2.8]. Now, for each τ ∈ R+,
let us define the map Sτ : Ω× Ω→ Ω× Ω by

Sτ (ω, b) := (ω̂τ , b̂τ ),(2.10)

where

ω̂τ (t) := ω(t)− b(t) + b(τ ∧ t) and b̂τ (t) := b(τ ∧ t).
Notice that, for every τ ∈ R+, the map Sτ is invariant for W̃ in the sense that

W̃t

(
Sτ (ω, b)

)
= ω̂τ (t)− ω̂τ (0)− b̂τ (t) = ω(t)− ω(0)− b(t) = W̃t(ω, b).

We define the pair (Q̃i, γ̃i) by duality such that∫
Ω

∫
Ω

∫
R+

H(τ, ω, b)γ̃i(ω, b)(dτ)Q̃i(dω, db) =

∫
Ω

∫
Ω

∫
R+

H(τ, ω̂τ , b̂τ )α̃i(ω, b)(dτ)P̃i(dω, db),

for all H ∈ Cb(R+ × Ω× Ω). In particular, the truncated measure Q̃i satisfies∫
Ω

∫
Ω
F (ω, b)Q̃i(dω, db) =

∫
Ω

∫
Ω

∫
R+

F (ω̂τ , b̂τ )α̃i(ω, b)(dτ)P̃i(dω, db), for allF ∈ Cb(Ω× Ω).

Now, we will show that (Q̃i, γ̃i) ∈ Ã(µ, ν) with the same cost. First, it is not difficult to

check that the properties (i), (ii), (iii), (iv) and (v) in the definition of Ã(µ) hold. In fact,
for all G ∈ Cb(Ω), we have∫

Ω
G(ω)W̃#Q̃i(dω) =

∫
Ω̃
G
(
W̃ (ω, b)

)
Q̃i(dω, db)

=

∫
Ω

∫
Ω

∫
R+

G
(
W̃ (ω̂τ , b̂τ )

)
α̃i(ω, b)(dτ)P̃i(dω, db)

=

∫
Ω

∫
Ω
G
(
W̃ (ω, b)

)
P̃i(dω, db).
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Thus, W̃#Q̃i = W̃#P̃i. On the other hand, we have∫
Ω

∫
Ω

∫
R+

f(ω(τ))γ̃i(ω, b)(dτ)Q̃i(dω, db) =

∫
Ω

∫
Ω

∫
R+

f(ω̂τ (τ)
)
α̃i(ω, b)(dτ)P̃i(dω, db)

=

∫
Ω

∫
Ω

∫
R+

f(ω(τ))α̃i(ω, b)(dτ)P̃i(dω, db)

=

∫
f dν, for all f ∈ Cb(Rd).

This implies that Xτ ∼(γ̃inQ̃i)T,X
ν. Similarly, we see that the cost does not change since∫

Ω

∫
Ω

∫
R+

∫ τ

0
L(t,Xt(ω), β̃t(b))dt γ̃

i(ω, b)(dτ)Q̃i(dω, db)

=

∫
Ω

∫
Ω

∫
R+

∫ τ

0
L(t,Xt(ω̂

τ ), β̃t(b̂
τ ))dt α̃i(ω, b)(dτ)P̃i(dω, db)

=

∫
Ω

∫
Ω

∫
R+

∫ τ

0
L(t,Xt(ω), β̃t(b))dt α̃

i(ω, b)(dτ)P̃i(dω, db).

The advantage of this truncation is that we now have that∫
Ω

∫
Ω

∫
R+

|β̃t(b)|pdt Q̃i(dω, db) =

∫
Ω

∫
Ω

∫
R+

∫
R+

|β̃t(b̂τ )|pdt α̃i(ω, b)(dτ)P̃i(dω, db)

=

∫
Ω

∫
Ω

∫
R+

∫ τ

0
|β̃t(b)|pdt α̃i(ω, b)(dτ)P̃i(dω, db),

≤ c−1J̃L(P̃i, α̃i),

where the last inequality comes from the fact that the Lagrangian L is superlinear, or in
the case that U is bounded this holds for any p with c = inf(t,x,u)∈R+×Rd×U L(t, x, u)/|u|p.
Furthermore, we have∫

Ω

∫
Ω
γ̃i(ω, b)([R,+∞))Q̃i(dω, db)

≤ 1

cR

∫
Ω̃

∫ ∞
R

∫ τ

0
L
(
t,Xt(ω), β̃t(b)

)
dt γ̃i(ω, b)(dτ)Q̃i(dω, db)

≤ 1

cR
J̃L(Q̃i, γ̃i).

Then, by [22, 32], we infer that the sequence γ̃i n Q̃i is tight and so, there is some (P̃, α̃) ∈
Ã(µ) such that (γ̃ik n Q̃ik) ⇀ (α̃ n P̃). In particular, this implies that (γ̃ik n Q̃ik)T,X ⇀

(α̃n P̃)T,X and Xτ ∼(α̃nP̃)T,X
ν.

Now, we define

Uε,δ,τ (ω) =

{
1 if sups∈[0,τ−ε],|t−s|≤ε |Xs(w)−Xt(w)| < δ,

0 otherwise.

Using the fact that L is uniformly continuous in (t, x) and by Jensen’s inequality, it is not
difficult to check that, when Uε,δ,τ (ω) = 1, we have∫ τ−ε

0
L
(
s,Xs(ω),

1

ε

∫ s+ε

s
β̃t(b) dt

)
ds ≤

∫ τ

0
L
(
t,Xt(ω), β̃t(b)

)
dt+ C(ε+ δ)τ,
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where C is the modulus of uniform continuity of the Lagrangian L with respect to t and x.
Then, we get

J̃L(Q̃i, γ̃i) ≥ Eγ̃
inQ̃i

[
Uε,δ,τ

∫ (τ−ε)∨0

0
L
(
s,Xs,

1

ε
(Bs+ε(b)−Bs(b))

)
ds
]
− C(ε+ δ).

The map (τ, w, b) 7→ Uε,δ,τ (w)
∫ (τ−ε)∨0

0 L(s,Xs(w), 1
ε (Bs+ε(b) − Bs(b)))ds is lower semi-

continuous and γ̃i n Q̃i ⇀ α̃n P̃. So, passing to the limit when i→ +∞, we get

lim inf
i→∞

J̃L(Q̃i, γ̃i) ≥ Eα̃nP̃
[
Uε,δ,τ

∫ (τ−ε)∨0

0
L
(
s,Xs,

1

ε
(Bs+ε(b)−Bs(b))

)
ds
]
− C(ε+ δ).

Letting ε→ 0 and using Fatou’s Lemma as well as the continuity of C, we infer that

lim inf
i→∞

J̃L(Q̃i, γ̃i) ≥ J̃L(P̃, α̃)− C(δ),

which completes the proof since δ > 0 is arbitrary and, thanks to the fact that J̃L(P̃i, α̃i) =

J̃L(Q̃i, γ̃i), for every i ∈ N. �

As a consequence, we get

Corollary 2.4. The problem (2.5) reaches a minimum. Moreover, the map ν 7→ PL(µ, ν)
is convex and lower semi-continuous.

Proof. Let (Pi, αi) be a minimizing sequence in Problem (2.5) and (P̃i, α̃i) be the corre-

sponding measures such that J̃L(P̃i, α̃i) = JL(Pi, αi) (see Proposition 2.1). By Proposition

2.3, there is a (P̃, α̃) such that lim infi→∞ J̃L(P̃i, α̃i) ≥ J̃L(P̃, α̃). This yields that the pro-

jection (P, β, α) of (P̃, α̃) (see again Proposition 2.1) is a minimizer for (2.5). The second
statement can be proved in a similar way using Propositions 2.1 & 2.3. �

3. Duality and dynamic programming

In this section, we verify a duality principle for the stochastic transportation problem
(2.5). More precisely, we consider the following maximization principle:

(3.1) DL(µ, ν) := sup
(φ,ψ)∈ZL

{∫
Rd

ψ(y)ν(dy)−
∫
Rd

φ(x)µ(dx)
}
,

where ZL is the set of functions (φ, ψ) on Rd with ψ ∈ Cb(Rd), continuous and bounded,
and φ ∈ Bµ(Rd), measurable w.r.t. the Borel σ−field on Rd completed by µ, such that the
following holds:

φ(x) ≥ EαnP
[
ψ(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]
,

for all (P, β, α) ∈ A(δx), µ− a.e. x ∈ Rd.
We can characterize the dual problem further using the dynamic programming principle.

We first define a translation map T t,x : Ω→ C([t,+∞),Rd), where

T t,x(ω)(s) = ω(s− t) + x.

Given ψ ∈ Cb(Rd), we introduce the function

Jψ(t, x) := sup
(P,β,α)∈At(δx)

EαnP
[
ψ(Xτ )−

∫ τ

t
L(s,Xs, βs)ds

]
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where
At(δx) := {T t,0# (P, β, α); (P, β, α) ∈ A(δx)}.

Here, the pushforward on P is as a measure and on β and α are given respectively by

β(T t,0
−1

(ω)) and α(T t,0
−1

(ω)) for all ω ∈ C([t,+∞),Rd). Moreover, we note that

Jψ(t, x) := sup
(P̃,α̃)∈Ãt(δx)

Eα̃nP̃
[
ψ(Xτ )−

∫ τ

t
L(s,Xs, β̃s)ds

]
where

Ãt(δx) := {T̃ t,0# (P̃, α̃); (P̃, α̃) ∈ Ã(δx)}
with

T̃ t,0(w, b)(s) = (w(s− t), b(s− t))
and

T̃ t,0# α̃ := α̃(T̃ t,0
−1

(ω, b)) for all (ω, b) ∈ C([t,+∞),Rd × Rd).
For any (φ, ψ) ∈ ZL, we have that Jψ(0, x) ≤ φ(x) for µ−a.e. x ∈ Rd. So, the dual problem
(3.1) becomes

DL(µ, ν) = sup
ψ∈Cb(Rd)

{∫
Rd

ψ(y) ν(dy)−
∫
Rd

Jψ(0, x)µ(dx)
}
.

We first prove a Lemma that verifies a basic level of regularity for Jψ needed in the proof
of Theorem 3.2. Such a result is standard, see [30] for a setting similar to ours.

Lemma 3.1. We suppose that ψ ∈ Cb(Rd). Then, the map (t, x) 7→ Jψ(t, x) is lower
semi-continuous and bounded from below. In addition, we have∫

Rd

Jψ(0, x)µ(dx) = sup
(P,β,α)∈A(µ)

{
EαnP

[
ψ(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]}
.(3.2)

Proof. We first note that we can express Jψ(t, x) as

Jψ(t, x) = sup
(P,β,α)∈A(δ0)

{
ET

t,x
# (αnP)

[
ψ(Xτ )−

∫ τ

t
L(s,Xs, T

t,x
# βs)ds

]}
= sup

(P,β,α)∈A(δ0)

{
EαnP

[
ψ(Xτ + x)−

∫ τ

0
L(s+ t,Xs + x, βs)ds

]}
.

For each (P, β, α) ∈ A(δ0), this defines a continuous function of t and x by the continuity of
the translation maps T t,x, the uniform continuity of L and the bound on ψ, and so Jψ(t, x)
is the supremum over all these functions, making it lower semi-continuous. Clearly, Jψ(t, x)
is bounded below by ψ(x) (we also note that Jψ(t, x) is bounded above by supx ψ).

To prove (3.2), we first note that any (P, β, α) ∈ A(µ) disintegrates w.r.t. µ by the map
S(τ, ω) = ω(0) and yields, using the definition of Jψ, that∫

Rd

Jψ(0, x)µ(dx) ≥ EαnP
[
ψ(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]
.

Furthermore, for each ε > 0, the set{
(x, αn P); (P, β, α) ∈ A(δx), EαnP

[
ψ(Xτ )−

∫ τ

0
L(s,Xs, βs)ds

]
≥ Jψ(0, x)− ε

}
is non-empty for µ−a.e. x and closed by Propositions 2.1 & 2.3 and thanks to the lower
semi-continuity of Jψ. Thus, by the Kuratowski and Ryll-Nardzewski selection theorem,
we may find a µ−Borel measurable map Q(x) = αx n Px with (Px, βx, αx) ∈ A(δx) and
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EαxnPx
[
ψ(Xτ )−

∫ τ
0 L(s,Xs, β

x
s )ds

]
≥ Jψ(0, x)−ε, for µ−a.e. x. Therefore, we may consider

(P, β, α) ∈ A(µ) such that α n P disintegrates w.r.t. µ as Q(x), i.e. α n P = Q n µ. Thus,
we have ∫

Rd

Jψ(0, x)µ(dx)− ε ≤ EαnP
[
ψ(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]
,

which proves the equality (3.2) when ε→ 0. �

The scheme to prove duality is by now standard in convex analysis (we refer, for instance,
to [8]). The idea is that if ν 7→ V (ν) := PL(µ, ν) is l.s.c. and convex, then V ?? = V , where
V ? denotes the Legendre-Fenchel transform of V . The value V (ν) is the minimal value of
our stochastic primal problem (2.5), while V ??(ν) is identified with the maximal value of
the dual problem (3.1). This strategy was already used by many authors to establish dual
principles for various optimal transport problems that do not fit in the Monge-Kantorovich
theory (see [25, 30]).

Theorem 3.2. The following equality holds:

PL(µ, ν) = DL(µ, ν).

Proof. First, it is clear that the maximal value of the dual problem is less than or equal
to the minimal value of the primal one, since, for all admissible (P, β, α) ∈ A(µ, ν) and
(φ, ψ) ∈ ZL, we have∫

Rd

ψ(y) ν(dy)−
∫
Rd

φ(x)µ(dx) = EαnP
[
ψ(Xτ )− φ(X0)

]
≤ EαnP

[ ∫ τ

0
L(t,Xt, βt)dt

]
and so, it follows that DL(µ, ν) ≤ PL(µ, ν).

For the other direction, we have that V (ν) is convex and lower semi-continuous (see
Corollary 2.4). Then, we have

V (ν) = V ??(ν) = sup
ψ∈Cb(Rd)

{∫
Rd

ψ(x)ν(dx)− V ?(ψ)
}

where

V ?(ψ) = sup
ν∈M(Rd)

{∫
Rd

ψ(x)ν(dx)− V (ν)
}

= sup
(P,β,α)∈A(µ)

{
EαnP

[
ψ(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]}
.

Note that we used that if ν is not a probability measure then A(µ, ν) = ∅ and V (ν) = +∞,
which does not affect the supremum in the definition of V ?. We then have by Lemma 3.1
that

V ∗(ψ) =

∫
Rd

Jψ(0, x)µ(dx)

and

PL(µ, ν) = V ∗∗(ν) = sup
ψ∈Cb(Rd)

{∫
Rd

ψ(y)ν(dy)−
∫
Rd

Jψ(0, x)µ(dx)
}
.

By setting φ(x) = Jψ(0, x), we have (φ, ψ) ∈ ZL and we have shown the reverse inequality,
that is

DL(µ, ν) ≥ PL(µ, ν),

which completes the proof. �
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On the other hand, by the standard dynamic programming principle, we get that Jψ is a
viscosity solution of the following dynamic programming equation (see, for instance, [30]):

min
{
Jψ(t, x)− ψ(x),−∂tJψ(t, x)− 1

2
∆Jψ(t, x)−H

(
t, x,∇Jψ(t, x)

)}
= 0,

where the Hamiltonian H is given by the Legendre dual of L, i.e. we have

H(t, x, z) = sup
u∈U

[
z · u− L(t, x, u)

]
, for all (t, x, z) ∈ R+ × Rd × Rd.

This viscosity solution Jψ can be viewed as the minimal supersolution, given by the infimum
of the smooth supersolutions of

(3.3)

{
∂tJ(t, x) + 1

2∆J(t, x) +H
(
t, x,∇J(t, x)

)
≤ 0 in R+ × Rd,

ψ(x) ≤ J(t, x) on R+ × Rd.

Finally, we get the following:

Proposition 3.3. We have

DL(µ, ν) = sup
ψ∈Cb(Rd)

{∫
Rd ψ(y) ν(dy)−

∫
Rd Jψ(0, x)µ(dx)

}
= sup

ψ∈Cb(Rd), J∈C1,2
b (R+×Rd)

{∫
Rd

ψ(y)ν(dy)−
∫
Rd

J(0, x)µ(dx); (ψ, J) satisfies (3.3)
}
.

4. Eulerian formulations

In this section, we express two Eulerian formulations for (2.5); the strong Eulerian formu-
lation poses the problem with a velocity field and the solution to a Fokker-Planck equation
with stopping, while the convex Eulerian formulation poses the problem over phase-space
distributions satisfying a convex set of inequalities. We prove the later to be equivalent to
(2.5) by embedding the stochastic formulation and showing a weak duality inequality. We
then prove that when the drift is uniformly bounded, the strong Eulerian formulation is
also equivalent by Sobolev estimates. We note that these estimates will be used to prove
dual attainment in the next section.

4.1. Strong and convex Eulerian formulations. First consider strong Eulerian formu-
lation. We say that (m, v, ρ) belongs to E(µ) if the following holds:

• m ∈ L1(R+ × Rd) ∩ L2
loc(R+, H1(Rd)) with ||mt||L1(Rd) ≤ 1, v ∈ L∞(R+ × Rd,Rd)

• ρ is a probability measure on R+ × Rd.
• For all smooth φ with compact support in R+ × Rd, we have∫

R+

∫
Rd

[
∂tφ(t, x)m(t, x) +∇φ(t, x) ·

(
v(t, x)m(t, x)− 1

2
∇m(t, x)

)]
dxdt

=

∫
R+

∫
Rd

φ(τ, y)ρ(dτ, dy)−
∫
Rd

φ(0, x)µ(dx).(4.1)

Then, we consider the following problem:

PEL(µ, ν) = inf
(m,v,ρ)∈E(µ)

{∫
R+

∫
Rd

L
(
t, x, v(t, x)

)
m(t, x) dxdt :

∫
R+

ρ(dτ, ·) = ν
}
.(4.2)

Now, let us introduce the following convex Eulerian formulation:

Definition 4.1. We say that (η, ρ) ∈ Ẽ(µ) if the following holds:
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• η is a measurable map from R+ to sub-probability measures on Rd × U ,
• ρ is a probability measure on R+ × Rd,
• The following equation holds for all smooth φ with φ, ∂tφ, ∇φ and ∆φ uniformly

bounded on R+ × Rd:∫
R+

∫
Rd

∫
U

[
∂tφ(t, x) +

1

2
∆φ(t, x) +∇φ(t, x) · u

]
η(dt, dx, du)

=

∫
R+

∫
Rd

φ(τ, y)ρ(dτ, dy)−
∫
Rd

φ(0, x)µ(dx).(4.3)

We let

P ẼL(µ, ν) = inf
(η,ρ)∈Ẽ(µ)

{∫
R+

∫
Rd

∫
U
L(t, x, u)η(dt, dx, du) :

∫
R+

ρ(dτ, ·) = ν
}
.(4.4)

It is clear that P ẼL(µ, ν) ≤ PEL(µ, ν) because if (m, v, ρ) ∈ E(µ) then for η(dt, dx, du) =

δv(t,x)(du)m(t, x)dtdx, we have (η, ρ) ∈ Ẽ(µ) with the same cost and target distribution.
The following proposition shows that from a probability distribution, drift, and stopping
time (P, β, α) ∈ A(µ), we can construct an admissible pair (η, ρ) ∈ Ẽ(µ).

Proposition 4.1. Given (P, β, α) ∈ A(µ), there is a pair (η, ρ) ∈ Ẽ(µ) such that∫
R+

∫
Rd

∫
U
L(t, x, u)η(dt, dx,du) = EαnP

[ ∫ τ

0
L(t,Xt, βt)dt

]
.

In particular, we have

P ẼL(µ, ν) ≤ PL(µ, ν).

Proof. Given (P, β, α) ∈ A(µ), we find the pair (η, ρ) from Riesz representation given by
the formula,∫
R+

∫
Rd

∫
U
φ(t, x, u)η(dt, dx, du) = EαnP

[ ∫ τ

0
φ(t,Xt, βt)dt

]
, for all φ ∈ Cb(R+ × Rd × U),

and ∫
R+

∫
Rd

h(τ, y)ρ(dτ, dy) = EαnP[h(τ,Xτ )
]
, for all h ∈ Cb(R+ × Rd).

Then, one can check easily that the pair (η, ρ) ∈ Ẽ(µ). In fact, if ηt is the disintegration
of η with respect to the Lebesgue measure on R+ then, for every smooth φ with compact
support in R+ × Rd, we have using Ito’s formula the following:∫

R+

∫
Rd

∫
U

[
∂tφ(t, x) +

1

2
∆φ(t, x) + u · ∇φ(t, x)

]
ηt(dx, du)dt

= EαnP
[ ∫ τ

0

(
∂tφ(t,Xt) + βt · ∇φ(t,Xt) +

1

2
∆φ(t,Xt)

)
dt
]

= EαnP
[
φ(τ,Xτ )− φ(0, X0)

]
=

∫
Rd

∫
R+

φ(τ, y)ρ(dτ, dy)−
∫
Rd

φ(0, x)µ(dx).

Clearly, we have that if Xτ ∼αnP ν then
∫
R+ ρ(dτ, ·) = ν. Moreover, we have the following:∫

R+

∫
Rd

∫
U
L(t, x, u)η(dt, dx, du) = EαnP

[ ∫ τ

0
L(t,Xt, βt)dt

]
,

which completes the proof that P ẼL(µ, ν) ≤ PL(µ, ν). �

On the other hand, we have the following duality for the convex Eulerian problem (4.4).
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Theorem 4.2. The following equalities hold:

DL(µ, ν) = P ẼL(µ, ν) = PL(µ, ν).

Proof. Take an admissible pair (η, ρ) ∈ Ẽ(µ) with
∫
R+ ρ(dτ, ·) = ν and let (J, ψ) satisfy

(3.3). Then, we have∫
Rd

ψ(y) ν(dy)−
∫
Rd

J(0, x)µ(dx)

≤
∫
R+

∫
Rd

J(t, x) ρ(dt, dx)−
∫
Rd

J(0, x)µ(dx)

=

∫
R+

∫
Rd

∫
U

[
∂tJ(t, x) +

1

2
∆J(t, x) + u · ∇J(t, x)

]
ηt(dx, du)dt

≤
∫
R+

∫
Rd

∫
U
L(t, x, u)η(dt, dx, du).

This shows that DL(µ, ν) ≤ P ẼL(µ, ν) in view of Proposition 3.3. We have shown that

P ẼL(µ, ν) ≤ PL(µ, ν) in Proposition 4.1, and that PL(µ, ν) = DL(µ, ν) in Theorem 3.2,
which completes the chain of equalities. �

4.2. Regularity. We will now partly complete the equivalence (between the strong and
the convex Eulerian formulations) by addressing the strong Eulerian formulation in the
case where the drift is bounded. We first need a result on the truncation in time and space
of pairs (η, ρ) ∈ E(µ). We make use of the truncation in time and space of Lemma 2.2.

Theorem 4.3. Suppose that µ = µ̂ dx for µ̂ ∈ L2(Rd). Then, for any (η, ρ) ∈ Ẽ(µ) with
compact support in R+ × Rd × U (0 ≤ t < T , |x| < R, |u| < u), there is a (m, v, ρ) ∈ E(µ)
such that ηt(dx,Rd) = m(t, x)dx, and (m, v, ρ) has a cost less than or equal to that of (η, ρ).
Moreover, we have the following uniform estimate∫ T

0

∫
Rd

|∇m(t, x)|2dx dt ≤ 2‖µ‖2L2(Rd) + CT,(4.5)

where the constant C depends only on the bound of the drift u and the dimension d. In
particular,

f 7→
∫
Rd

∫ T

0
f(x)ρ(dτ, dx)

is a continuous linear functional of H1(Rd). Finally, when the drift is bounded, we have

P ẼL(µ, ν) = PEL(µ, ν).

Proof. First, we use convolution to approximate the pair (η, ρ) by smooth densities (ηε, ρε)

and the measure µ by µε with (ηε, ρε) ∈ Ẽ(µε). We define

mε(t, x) =

∫
Rd

ηε(t, x, u)du

and

vε(t, x) =

∫
Rd u η

ε(t, x, u)du

mε(t, x)
,
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with vε(t, x) = 0 if mε(t, x) = 0. We note that (mε, vε, ρε) ∈ E(µε). By Jensen’s inequality,
the cost of (mε, vε, ρε) is less or equal to that of (η, ρ) within a factor of ε. Then, using mε

as a test function in (4.1), we obtain∫
Rd

∫ T

0
mε(τ, y)ρε(dτ, dy)−

∫
Rd

(
µ̂ε(x)

)2
dx

=

∫ T

0

∫
Rd

[1

2
∂t
(
mε(t, x)2

)
− 1

2

∣∣∇mε(t, x)
∣∣2 + vε(t, x) · ∇mε(t, x)mε(t, x)

]
dx dt.

Then,

1

2

∫ T

0

∫
Rd

|∇mε(t, x)|2dx dt ≤ 1

2
‖µ̂ε‖2L2(Rd) + u

∫ T

0

∫
Rd

|∇mε(t, x)|mε(t, x)dx dt.

Yet, we have∫ T

0

∫
Rd

|∇mε(t, x)|mε(t, x)dx dt ≤ 1

2

∫ T

0

∫
Rd

(
δ|∇mε(t, x)|2 +

1

δ
mε(t, x)2

)
dx dt.

For the last term using Gagliardo-Nirenberg-Sobolev embedding and an interpolation of the
L1 and L2∗ norms, we have

‖mε
t‖L2(Rd) ≤ δ‖∇mε

t‖L2(Rd) + C(δ)‖mε
t‖L1(Rd),

which implies that∫ T

0

∫
Rd

mε(t, x)2dx dt ≤ 2δ2

∫ T

0

∫
Rd

|∇mε(t, x)|2dx dt+ 2C(δ)2

∫ T

0

(∫
Rd

mε(t, x)dx

)2

dt.

Yet, ‖mε(t, ·)‖L1(Rd) ≤ 1 + ε, for every t. Then, choosing δ > 0 small enough, we get

(4.5) for mε. In particular, the uniform estimates imply that mε converge weakly to m in
L2
loc(R+, H1(Rd)) such that

m(t, ·) =

∫
Rd ηt(·, du)

dx
.

We then define the field v(t, x) by the vector-valued Radon-Nikodym derivative

v(t, ·) =

∫
Rd u ηt(·, du)

mt dx
.

It is then straightforward to see (m, v, ρ) ∈ E(µ) which by Jensen’s inequality, has lesser or
equal cost than (η, ρ).

For any f ∈ H1(Rd), we have ∫
Rd

∫
R+

f(x)ρ(dτ, dx)

=

∫
Rd

f(x)µ̂(x) dx+

∫ T

0

∫
Rd

[
− 1

2
∇f(x) · ∇m(t, x) + v(t, x) · ∇f(x)m(t, x)

]
dx dt,

and the similar estimates imply that f 7→
∫
R+

∫
Rd f(x)ρ(dτ, dx) is a linear functional of

H1(Rd).
Finally, to conclude equivalence of the convex and strong formulations, we use Proposi-

tion 4.1 and Lemma 2.2 to construct (ηT,R, ρT,R) with compact support in time and space
for any (P, β, α) ∈ A(µ), corresponding to the truncation of Lemma 2.2 with T, R ∈ R+.
We then have corresponding (mT,R, vT,R, ρT,R) ∈ E(µ). When T1 < T2 and R1 < R2, we
have (ηT2,R2 , ρT2,R2) = (ηT1,R1 , ρT1,R1) on [0, T1]×B(0, R1), and thus there exists a density
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(m, v, ρ) ∈ E(µ, ν) taking the limit as T, R → ∞, with the same cost and end distribution
as (P, β, α). Thus, we have shown that

PEL(µ, ν) = PL(µ, ν),

and applying the result of Theorem 4.2 completes the proof of equivalence. �

We will also need the following moment bound.

Proposition 4.4. Suppose that c(|u|p + |x|q + 1) ≤ L(t, x, u) or c(|x|+ 1) ≤ L(t, x, u) and
u is uniformly bounded, for c > 0. We assume that µ satisfies

∫
Rd |x|2µ(dx) < +∞. Then,

for any (η, ρ) ∈ Ẽ(µ) with finite cost, we have∫
Rd

∫
R+

|y|2ρ(dτ, dy) ≤
∫
Rd

|x|2µ(dx) + C

∫
R+

∫
Rd

∫
U
L(t, x, u)ηt(dx, du)dt.

Proof. To prove that, we simply apply (4.3) with the test function w(y) = |y|2:∫
Rd

∫
R+

|y|2ρ(dτ, dy)−
∫
Rd

|x|2µ(dx) =

∫
R+

∫
Rd

∫
U

[
d+ u · 2x

]
ηt(dx, du)dt

≤
∫
R+

∫
Rd

∫
U

[
d+H

(
t, x, 2x

)
+ L(t, x, u)

]
ηt(dx, du)dt

≤ C
∫
R+

∫
Rd

∫
Rd

[
L(t, x, u)

]
ηt(dx, du)dt,

where we have used that

H
(
t, x, 2x

)
≤ C|x|q ≤ C L(t, x, u).

In the case that c|x| ≤ L(t, x, u) and u is uniformly bounded, the proof is simpler, using
that

u · x ≤ u

c
L(t, x, u),

and the result follows. �

5. Dual attainment

In this section, we prove dual attainment in the cases where either the Lagrangian
L ≈ |u|p with 1 < p < 2 or the drift is uniformly bounded (|u| ≤ u). This relies on a
normalization that makes ψ as a supersolution to an HJB equation. First, we define

H̄(x, z) = inf
t∈R+

H(t, x, z), for all (x, z) ∈ Rd × Rd,

and
L̄(x, u) = sup

t∈R+

L(t, x, u), for all (x, u) ∈ Rd × U.

We suppose, strengthening assumption (2.1), that there are constants c, C > 0 such that L
satisfies

c
(
|u|p + |x|q + 1) ≤ L(t, x, u) ≤ C(|u|p + |x|q + 1)(5.1)

for all (t, x, u) ∈ R+ × Rd × U , or equivalently, there are constants λ,Λ, c, C > 0 such that
H satisfies

λ|z|q − C
(
|x|q + 1

)
≤ H(t, x, z) ≤ Λ|z|q − c

(
|x|q + 1), for all (t, x, z) ∈ R+ × Rd × Rd.

In the case where the drift is bounded, this becomes

c(|x|+ 1) ≤ L(t, x, u) ≤ C(|x|+ 1), for all (t, x, u) ∈ R+ × Rd × U,
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and

λ|z| − C
(
|x|+ 1

)
≤ H(t, x, z) ≤ Λ|z| − c

(
|x|+ 1), for all (t, x, z) ∈ R+ × Rd × Rd.

Proposition 5.1. For ψ ∈ Cb(Rd), we define

ψ̄(x) := sup
(P,β,α)∈A(δx)

EαnP
[
ψ(Xτ )−

∫ τ

0
L̄(Xt, βt)dt

]
.

Then, ψ̄ is lower semi-continuous and bounded with Jψ̄ = Jψ and thus greater or equal dual

value. Furthermore, ψ̄ satisfies, in the viscosity sense,

1

2
∆ψ̄(x) +H

(
x,∇ψ̄(x)

)
≤ 0.(5.2)

Proof. From the definition of ψ̄, we have obviously ψ̄ ≥ ψ, and we get as in Lemma 3.1 that
ψ̄ is lower semi-continuous and bounded. The standard viscosity solution theory implies
that ψ̄ is a viscosity supersolution of (5.2).

From the definition of Jψ, we get that Jψ̄ ≥ Jψ. Let us prove the reverse inequality,

that is Jψ̄ ≤ Jψ, so that we get Jψ̄ = Jψ. First, we note that ψ̄(x) ≤ Jψ(t, x), for every

(t, x) ∈ R+ × Rd, which follows from the definitions after noting that L̄ ≥ L.
Now, suppose that (P, β, α) ∈ At(δx) is within ε of optimality for Jψ̄, then we have the

following:

Jψ̄(t, x)− ε ≤ EαnP
[
ψ̄(Xτ )−

∫ τ

t
L(s,Xs, βs)ds

]
≤ EαnP

[
Jψ(τ,Xτ )−

∫ τ

t
L(s,Xs, βs)ds

]
≤ Jψ(t, x),

where the last inequality is a result of dynamic programming principle [19, Theorem 6,
Ch. 3] for Jψ. Taking ε to zero proves the desired inequality. �

The following proposition proves a quadratic lower bound on supersolutions to (5.2) as
well as an Hölder continuity in the case that L ≈ |u|p with 1 < p < 2.

Proposition 5.2. We assume (5.1) holds. Suppose ψ is bounded, lower semi-continuous
and satisfies (5.2). Suppose d > 1 and 1 < p < 2. Fix 0 < δ ≤ 2 − p < 1. Then, for each
x0 ∈ Rd, there are two constants B and E (depending only on δ, p, d, λ, C and |x0|) such
that

ψ(x0)− ψ(x1) ≤ B|x1 − x0|δ + E|x1 − x0|2, for all x1 ∈ Rd.(5.3)

In particular, ψ is uniformly δ-Hölder continuous on compact sets and, under the assump-
tion that ψ(0) = 0, ψ is uniformly globally bounded from below by a quadratic function.

In the case d = 1, the result holds with δ = 1 for all p > 1.

Proof. We will prove that, for each x0, the function

w(x) = A−B|x− x0|δ − E|x− x0|2

with appropriate constants A, B and E, will touch ψ from below at x0. By computing ∇w
at x 6= x0, we see that

λ|∇w(x)|q ≥ b1|x− x0|q(δ−1) + b2|x− x0|q

where
b1 = δqλBq and b2 = λ2qEq.
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Notice that as ψ is l.s.c. and bounded, we can by adjusting the constant A, let the function
w touch ψ from below at some point. Suppose w touches ψ from below at x1 6= x0. Then,
from the equation (5.2) and the assumption (5.1), we have that

C
(
|x1|q + 1

)
≥ 1

2
∆w(x1) + λ|∇w(x1)|q

≥ b1|x1 − x0|q(δ−1) + b2|x1 − x0|q −
δB

2
(d+ δ − 2)|x1 − x0|δ−2 − dE.

To draw a contradiction, we will select two constants B and E such that the following holds

b1|x1 − x0|q(δ−1) + b2|x1 − x0|q

> 3 max

{
δB

2
(d+ δ − 2)|x1 − x0|δ−2, dE + C, C|x1|q

}
.

Now, it is clear that the inequality with the first and the second item in the maximum is
satisfied for large enough B and E such that

min
{
b1, b2

}
> 3 max

{δB
2

(d+ δ − 2), dE + C
}
.

For the third item, note that

|x1|q ≤ 2q max
{
|x1 − x0|, |x0|

}q
.

Thus, we may choose B and E large enough, depending on |x0|, such that b1 > 3C(1+ |x0|)q
and b2 > 3C2q max{1, |x0|q}, and these choices of B and E yield a contradiction. Thus, we
must have that w touches ψ from below at x1 = x0, and it follows that (5.3) holds for all
x0 and x1. We note that in particular, fixing x0, this establishes a global quadratic lower
bound on ψ, which becomes uniform (in ψ) as soon as ψ(0) = 0.

The proof for d = 1 is simpler with δ = 1 since the Laplacian of the second term of w
vanishes. �

Theorem 5.3. Suppose that d ≥ 2, 1 < p < 2,
∫
Rd |x|2µ(dx) < +∞, ν has a compact

support, and L satisfies (5.1). Then, the dual problem DL(µ, ν) is attained at ψ ∈ Cδloc(Rd),
0 < δ < 2− p, and ψ is globally bounded below by a quadratic function.

Furthermore, in this case there exists (P, β, α) ∈ A(µ, ν) with finite cost.

Proof. We take a maximizing sequence {ψi}. We assume that, for each i ∈ N, ψi is l.s.c.,
bounded, ψi(0) = 0 and ψi satisfies (5.2) (this is possible thanks to Proposition 5.1), and we
apply Proposition 5.2. Then, by Arzela-Ascoli, {ψi} converges uniformly on compact sets
to ψ with ψ(0) = 0. Furthermore, these ψi are uniformly bounded below by a quadratic
function. With the target measure ν compactly supported, for such a limit function ψ to
have the maximal dual value, it is enough to show that

(5.4) lim inf
i

∫
Rd

Jψi(0, x)µ(dx) ≥
∫
Rd

Jψ(0, x)µ(dx).

But again, we have∫
Rd

Jψi(0, x)µ(dx) = sup
(η,ρ)∈Ẽ(µ)

[ ∫
R+

∫
Rd

ψi(y)ρ(dt, dy)−
∫
R+

∫
Rd

∫
U
L(t, x, u)η(dt, dx, du)

]
.

For each (η, ρ) ∈ Ẽ(µ) with finite cost, Proposition 4.4 implies that such ρ has finite second
moment. Thus, the uniform quadratic lower bound on ψi implies that

lim inf
i

∫
R+

∫
Rd

ψi(y)ρ(dt, dy) ≥
∫
R+

∫
Rd

ψ(y)ρ(dt, dy).
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This yields (5.4). Finally, the existence of (P, β, α) ∈ A(µ, ν) with finite cost follows from
duality (Theorem 3.2). �

In 1D the result holds for all values of p > 1.

Theorem 5.4. Let d = 1. Assume that
∫
Rd |x|2µ(dx) < +∞, ν has a compact support

and L satisfies (5.1). Then, the dual problem is attained at ψ, which is locally Lipschitz
continuous and bounded below quadratically.

Proof. The proof follows as in Theorem 5.3 using the Lipschitz estimates in 1D from Propo-
sition 5.2. �

In order to better handle the behavior as |x| → +∞ in the case that p is large (for
instance, assume that p = +∞ which means that the drift is bounded; |u| ≤ u), we will
introduce a weighting measure on Rd. We consider now a smooth convex function V such
that

∫
Rd e

−V (x)dx = 1 and 1
2 |∇V | ≤ λ, for instance V (x) = γ|x|+m (we assume that λ > γ

2 )
is easily seen to fit all the criteria we will require. We define the norm

‖f‖Lq
V (Rd) =

(∫
Rd

|f(x)|qe−V (x)dx

) 1
q

.

Set

W 1,q
V (Rd) :=

{
f ; ‖f‖Lq

V (Rd) + ‖∇f‖Lq
V (Rd) < +∞

}
.

We denote

(f)V =

∫
Rd

f(x)e−V (x)dx.

We note that if V is a radially increasing function, then we have, for any q ≥ 1, the following
Poincaré inequality (see, for example, [9, 7]):

‖f − (f)V ‖Lq
V (Rd) ≤ C‖∇f‖Lq

V (Rd).

Then, we define

B :=
{
f ∈ L1

V (Rd), f is l.s.c and quadratically bounded from below
}
.(5.5)

We will say that f ∈ H1
V (Rd) := W 1,2

V (Rd) satisfies (5.2) in a weak sense if for all compactly

supported h ∈ H1
V (Rd) with h ≥ 0, we have∫

Rd

[
− 1

2
∇f(x) · ∇h(x) + H̄

(
x,∇f(x)

)
h(x)

]
dx ≤ 0.

Then, we have the following:

Proposition 5.5. Suppose that H̄ is uniformly continuous in x (uniformly w.r.t. z) and
satisfies (5.1). Let ψ be a supersolution to (5.2), lower semi-continuous and bounded from
below with (ψ)V = 0, then, for any M ≥ 0, the truncation of ψ satisfies ψ ∧M ∈ H1

V (Rd)
and solves (5.2) in a weak sense. More precisely, there exists a uniform constant C (which
does not depend on ψ) such that

‖ψ‖
W 1,1

V (Rd)
≤ C,(5.6)

ψ ≥ −C(1 + |x|2),(5.7)
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and, for every M ≥ 0, there is a constant C(M) (again uniform in ψ) such that the
following holds:

‖ψ ∧M‖H1
V (Rd) ≤ C(M).(5.8)

On the other hand, if the truncation ψ ∧M ∈ H1
V (Rd) solves (5.2) weakly for all M ≥ 0,

then ψ is l.s.c.

Proof. First, we fixM ≥ 0 and show there is a sequence (ψMε )ε such that ψMε is 1/ε−Lipschitz
and semi-concave, ψMε ⇀ ψ ∧M in H1

V (Rd) and ψMε satisfies (in a strong sense)

(5.9)
1

2
∆ψMε (x) +H

(
x,∇ψMε (x)

)
≤ C(M, ε).

Set ψMε (x) = infz∈Rd{ψ(z) ∧ M + 1
2ε2
|x − z|2}, for all x ∈ Rd. We let zx (depending

also on ε,M) be such that ψMε (x) = ψ(zx) ∧M + 1
2ε2
|x − zx|2, which is well defined for

sufficiently small ε by lower semi-continuity and the lower bound on ψ. Fix ε > 0 and
x ∈ Rd and let φ be a smooth function such that φ ≤ ψMε with φ(x) = ψMε (x). We define
w(y) := φ(y + x− zx)− 1

2ε2
|x− zx|2. We have w(zx) = ψ(zx) ∧M and w ≤ ψ ∧M . Hence,

by (5.2) and that H(x, 0) ≤ 0,

1

2
∆w(zx) +H

(
zx,∇w(zx)

)
≤ 0.

Yet, ∇w(zx) = ∇φ(x) and ∆w(zx) = ∆φ(x). Using also the fact that H̄ is uniformly
continuous, we get

1

2
∆φ(x) +H

(
x,∇φ(x)

)
≤ C(|x− zx|).

Moreover, we have

ψ(zx) ∧M +
1

2ε2
|x− zx|2 ≤ ψ(x) ∧M.

Hence, |x− zx| ≤ C(M, ε), and it follows that ψMε is a supersolution in the viscosity sense
with error C(M, ε) where C(M, ε) → 0 as ε → 0, but also in the sense of distributions
thanks to the semi-concavity of ψMε . Using e−V as a test function, we obtain

C(M, ε) ≥
∫
Rd

[1

2
∆ψMε (x) +H

(
x,∇ψMε (x)

)]
e−V (x)dx

≥ − 1

2

∫
Rd

|∇ψMε (x)| |∇V (x)|e−V (x)dx+ λ‖∇ψMε ‖L1
V
− C.

Yet, γ < 2λ. Then, we infer that

‖∇ψMε ‖L1
V (Rd) ≤ C,

which shows the estimate (5.6) after taking ε→ 0. For the uniform quadratic lower bound:
let us consider as in Proposition 5.2 the function w(y) := A − E

2 |y|
2 that touches ψ0

ε from
below at x. We then have that

−d
2
E + λE|x| − C(|x|+ 1) ≤ C(ε),

which implies that, for sufficiently large E, x is in a ball of radius C1 = C1(d, λ, C, E) (we
note that the constant E can be taken independent of x). Then,

ψ0
ε(y) ≥ inf

|x|≤C1

ψ0
ε(x) +

E

2
|x|2 − E

2
|y|2.
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To bound ψ0
ε near the origin we will consider a construction that will be useful for the

remainder of the proof. For any x, we let Qx,R denote the uniform distribution on the ball
of radius R centered at x. Fix 0 < R1 < R2 and assume that the drift equals zero, then we
can find a pair (η, ρ) = (m, 0, ρ) ∈ E(Qx,R1 , Qx,R2) such that m has support in [0, T ]×Qx,R2 .
From (4.3), we have∫

Rd

|y − x|2

d
Qx,R2(dy) =

∫
R+

∫
Rd

∫
Rd

ηt(dy, du)dt+

∫
Rd

|y − x|2

d
Qx,R1(dy),

which implies that ∫
R+

∫
Rd

m(t, y)dy dt = C(R2
2 −R2

1).

Define

ψM,R
ε (x) :=

∫
Rd

ψMε (y)Qx,R(dy).

As m(t, ·) ∈ H1(Rd) (see Theorem 4.3), for each t ∈ [0, T ], with compact support, then
again by (4.3) and thanks to the fact that H̄ is uniformly continuous w.r.t. x, we have

ψM,R2
ε (x) =

∫
Rd

∫
R+

ψMε (y)ρ(dτ, dy)

=

∫
Rd

ψMε (y)Qx,R1(dy)− 1

2

∫
R+

∫
Rd

∇ψMε (y) · ∇m(t, y) dy dt

≤ ψM,R1
ε (x)−

∫
R+

∫
Rd

H̄
(
y,∇ψMε (y)

)
m(t, y) dy dt

≤ ψM,R1
ε (x) + C(x)(R2

2 −R2
1).

Letting R1 → 0+ and R2 = 1, we find a uniform lower bound for ψε with |x| ≤ C1 using
(5.6) and the Poincaré inequality to bound ψε on balls of radius 1. This concludes the proof
of (5.7). We now use M − ψMε as a test function in (5.9), so we get∫

Rd

C(M, ε)
(
M − ψMε (x)

)
e−V (x)dx

≥
∫
Rd

(
M − ψMε (x)

)[1

2
∆ψMε (x) +H

(
x,∇ψMε (x)

)]
e−V (x)dx

=

∫
Rd

[1

2
|∇ψMε (x)|2 +

(
M − ψMε (x)

)(1

2
∇ψMε (x) · ∇V (x) +H

(
x,∇ψMε (x)

))]
e−V (x)dx

≥
∫
Rd

[1

2
|∇ψMε (x)|2 −

(
M − ψMε (x)

)
L
(
x,−1

2
∇V (x)

)]
e−V (x)dx.

Using the uniform quadratic lower bound on ψMε , the bounds on L and the estimate (5.6),
we get

‖∇ψMε ‖2L2
V (Rd) ≤M

(
C + C(M, ε)

)
+ C,

which yields the estimate (5.8). To see that ψ ∧M is a distributional solution to (5.2), we
fix a smooth compactly supported test function h ≥ 0 and consider the limit

0 ≥ lim
ε→0

∫
Rd

[
− 1

2
∇ψMε (x) · ∇h(x) +H

(
x,∇ψMε (x)

)
h(x)

]
dx

≥
∫
Rd

[
− 1

2
∇ψM (x) · ∇h(x) +H

(
x,∇ψM (x)

)
h(x)

]
dx,
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where the second inequality follows from convexity of H and hence weak lower semi-
continuity of the integral.

For the last statement: assume that ψ ∧M solves (5.2) weakly for all M ≥ 0. Recalling
the previous estimates, we have

ψM,R2(x)− C(x)R2
2 ≤ ψM,R1(x)− C(x)R2

1.

It follows that R 7→ ψM,R(x)−C(x)R2 is monotonically decreasing, which implies that ψM

(and so, ψ) is lower semi-continuous (see [29]). �

Remark 5.6. In the case that ψ ∈ H1
V (Rd), bounded above, and ψ satisfies (5.2) in a weak

sense, ψ is lower semi-continuous by Proposition 5.5 and ψ will satisfy (5.2) in the viscosity
sense. Arguments for this can be found in [21] and [15]. To sketch an argument for this,
we note that ψR(x) :=

∫
Rd ψ(y)Qx,R(dy) satisfies

ψR(x) ≥ Eα×P
[
ψ(Xτ )−

∫ τ

0
L̄(Xt, βt)dt

]
for all (P, β, α) ∈ A(Qx,R). Taking the limit as R→ 0 we have ψ(x) = limR→0 ψ

R(x), and

any (P, β, α) ∈ A(δx) can be translated to (PR, βR, αR) ∈ A(Qx,R), showing that

ψ(x) ≥ lim
R→0

Eα
R×PR

[
ψ(Xτ )−

∫ τ

0
L̄(Xt, βt)dt

]
≥ Eα×P

[
ψ(Xτ )−

∫ τ

0
L̄(Xt, βt)dt

]
,

which implies that ψ solves (5.2) in the sense of viscosity.

Lemma 5.7. The map (t, x) 7→ Jψ(t, x) is lower semi-continuous for all ψ ∈ B. More-

over, under the assumptions of Proposition 5.5, we have, for any µ ∈ L2
−V (Rd), ψ 7→∫

Rd Jψ(0, x)µ(dx) is lower semi-continuous with respect to the strong L1
V− convergence on

B ∩ {ψ : ||ψ ∧M ||H1
V
≤ C(M), for any M ≥ 0}.

Proof. The proof that (t, x) 7→ Jψ(t, x) is lower semi-continuous is the same as for Lemma

3.1. For µ ∈ L2
−V (Rd), Lemma 3.1 and Theorem 4.2 imply that∫

Rd

Jψ(0, x)µ(dx) = sup
(η,ρ)∈Ẽ(µ)

{∫
Rd

∫
R+

ψ(x)ρ(dτ, dx)−
∫
R+

∫
Rd

∫
Rd

L(t, x, u)ηt(dx, du)dt
}
.

By Lemma 2.2, using the truncation ψM = ψ ∧M , this becomes

= sup
(mT,R,vT,R,ρT,R)∈E(µ),M≥0

{∫
Rd

∫
R+

ψM (x)ρT,R(dτ, dx)−
∫
R+

∫
Rd

L
(
t, x, vT,R

)
mT,R dxdt

}
,

since we have that

lim inf
T,R,M→∞

∫
Rd

∫
R+

ψM (x)ρT,R(dτ, dx) ≥
∫
Rd

∫
R+

ψ(x)ρ(dτ, dx)

by lower semi-continuity of ψ, the quadratic lower bound (5.7) on ψ and the quadratic
moment bound for ρ (see Proposition 4.4). We will show that for each (mT,R, vT,R, ρT,R) ∈
E(µ) with finite cost and M ≥ 0,

ψ 7→
∫
Rd

∫
R+

ψM (x)ρT,R(dτ, dx)

is lower semi-continuous, which follows from demonstrating that the map (without the
truncation) is a continuous linear functional of H1

V (Rd). We now take (mT,R, vT,R, ρT,R) ∈
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E(µ). Then, for every f ∈ H1
V (Rd), we have∫

Rd

∫
R+

f(x)ρT,R(dτ, dx)

=

∫
Rd

f(x)µ(dx) +

∫ T

0

∫
B(0,R)

∇f(x) ·
(
v(t, x)mT,R(t, x)− 1

2
∇mT,R(t, x)

)
and it follows from the estimates on mT,R (see Theorem 4.3) that this is a continuous linear
functional, completing the proof. �

Now, we are ready to prove attainment in the dual problem (1.5):

Theorem 5.8. We suppose that the Lagrangian L is bounded, µ ∈ L2
−V (Rd), eV ν ∈

L∞(Rd). Then, the dual problem is attained at ψ∗ ∈ B. Furthermore, the set A(µ, ν)
is non-empty and the minimizer (P, β, α) of the stochastic primal problem PL(µ, ν) satisfies

EαnP
[
ψ∗(Xτ )−

∫ τ

0
L(t,Xt, βt)dt

]
=

∫
Rd

Jψ∗(0, x)µ(dx).(5.10)

Proof. Let (ψk)k ⊂ Cb(Rd) be a maximizing sequence in the dual problem (1.5) with
(ψk)V = 0, for all k. By Proposition 5.1, we can assume that, for each k, ψk is lower
semi-continuous and satisfies (5.2) in the sense of viscosity. Thanks to Proposition 5.5, we
also have

||ψk||W 1,1
V (Rd)

≤ C, ψk ≥ −C(1 + |x|2), and ||ψMk ||H1
V (Rd) ≤ C(M).

In particular, this implies that

DL(µ, ν) ≤ sup
ψ∈B

{∫
Rd

ψ(y)ν(dy)−
∫
Rd

Jψ(0, x)µ(dx)
}
≤ PL(µ, ν),

which means that

DL(µ, ν) = sup
ψ∈B

{∫
Rd

ψ(y)ν(dy)−
∫
Rd

Jψ(0, x)µ(dx)
}
.

Moreover, there is a function ψ? ∈ L1
V (Rd) such that, up to a subsequence, ψk → ψ? in L1

V .

As eV ν ∈ L∞(Rd), then we have∫
Rd

ψk(x)ν(dx)→
∫
Rd

ψ?(x)ν(dx).

And, it is easy to see that for each M ≥ 0, ψ∗∧M is in H1
V (Rd) and is a weak supersolution

of (5.2). We then have that ψ∗ ∈ B (thanks again to Proposition 5.5). On the other hand,
by Lemma 5.7, we have that

lim inf
k

∫
Rd

Jψk
(0, x)µ(dx) ≥

∫
Rd

Jψ?(0, x)µ(dx).

Then, the existence of a maximizer for the dual problem (1.5) follows. Finally, notice that∫
Rd

Jψ(0, x)µ(dx) ≥
∫
Rd

[ψ(x) ∧ 0]µ(dx) ≥ −‖ψ ∧ 0‖H1
V (Rd)‖µ‖H−1

−V (Rd).

Then, DL(µ, ν) < +∞. This implies that PL(µ, ν) is finite by Theorem 3.2 and A(µ, ν) is
non-empty. The equation (5.10) follows directly from the duality DL(µ, ν) = PL(µ, ν) and
the existence of optimizers for both problems (1.1) & (1.5). �
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6. Hitting Times and Strong Solutions

In this section we address the additional structure of monotonicity of t 7→ L(t, x, u). In
this case the set

R =
{

(t, x); Jψ(t, x) = ψ(x)
}

has the structure of a barrier. In particular, if t 7→ L(t, x, u) is increasing then for (t, x) ∈ R
and s > t we have (s, x) ∈ R, and if t 7→ L(t, x, u) is decreasing then for (t, x) ∈ R and
s < t we have (s, x) ∈ R. In either of these cases strict monotonicity implies uniqueness of
the optimizer. The monotonicity of R in t follows the same argument in [11].

Proposition 6.1. If t 7→ L(t, x, u) is increasing then t 7→ Jψ(t, x) is nonincreasing, and if
t 7→ L(t, x, u) is decreasing then t 7→ Jψ(t, x) is nondecreasing.

Proof. We suppose t 7→ L(t, x, u) is increasing and select 0 ≤ t < s. We can express the
value function at time s by

Jψ(s, x) = sup
(P,β,α)∈At(δx)

{
EαnP

[
ψ(Xτ )−

∫ τ

t
L
(
r − t+ s,Xr, βr

)
dr
]}

≤ sup
(P,β,α)∈At(δx)

{
EαnP

[
ψ(Xτ )−

∫ τ

t
L
(
r,Xr, βr

)
dr
]}

= Jψ(t, x).

The proof in the case that t 7→ L(t, x, u) is decreasing is the same with the inequality
reversed. �

We require a verification type theorem that will allows us to characterize the optimal
process and stopping time by the dual optimizer.

Theorem 6.2. Suppose the dual problem DL(µ, ν) is attained at (ψ, Jψ) and that (P, β, α) ∈
A(µ, ν) minimizes the primal problem PL(µ, ν). Then,

Jψ(τ,Xτ ) = ψ(Xτ ) αn P almost surely,(6.1)

and

Mt := Jψ(t,Xt)−
∫ t

0
L(s,Xs, βs)ds(6.2)

satisfies for any t > s,

EαnP
[
Mt∧τ

∣∣∣F̃s] = Ms∧τ αn P almost surely.(6.3)

Proof. We first note that Jψ(t, x) ≥ ψ(x) for all (t, x) and Mt is a supermartingale. Then
by the duality of Theorem 3.2 we have

0 = EαnP
[
ψ(Xτ )− Jψ(0, X0)−

∫ τ

0
L(t,Xt, βt)dt

]
(6.4)

= EαnP
[
ψ(Xτ )− Jψ(τ,Xτ ) +Mτ −M0

]
,(6.5)

and (6.1), (6.3) follow. �

We can now state a theorem that consolidates our results to show a structure to opti-
mizers under these monotonicity conditions on L.
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Theorem 6.3. We suppose duality and dual attainment (following from either Theorem 5.8,
5.3, or 5.4), and that u 7→ L(t, x, u) is strictly convex. In addition, assume t 7→ L(t, x, u)
is strictly increasing and ψ, Jψ are continuous, then the optimizer (P, β, α) ∈ A(µ, ν) is
unique and the optimal stopping time is given by

τ∗ = inf{t; Jψ(t,Xt) = ψ(Xt)}.(6.6)

Alternatively, if t 7→ L(t, x, u) is strictly decreasing and µ and ν have disjoint support, then
the optimizer is unique and also give by (6.6).

Proof. We first show that the optimal (P, β, α) for PL(µ, ν) satisfies:

(i) the process stops in R,

EαnP
[
1
{

(τ,Xτ ) ∈ R
}]

= 1,

(ii) and

EαnP
[ ∫ τ

0
1
{

(t,Xt) ∈ R
}
dt
]

= 0.

We then show that there is a unique (P, β, α) that minimizes JL(P, β, α) subject to (i) and
(ii), and the unique optimal randomized stopping time is given by τ∗.

By Theorem 6.2, we immediately have (i) from (6.1). We let (Pt,x, βt,x, αt,x) ∈ At(δx)
be the conditional expectation, i.e. satisfying for each t and G ∈ Cb(R+ × Rd × Rd),

EαnP
[ ∫ τ

t
G(s,Xs, βs)

]
=

∫
Rd

Eα
t,xnPt,x

[ ∫ τ

t
G(s,Xs, β

t,x
s

)]
ηt(dx,Rd).

Then,

0 = EαnP
[
Mτ −Mt∧τ

]
=

∫
Rd

Eα
t,xnPt,x

[
ψ(Xτ )− Jψ(t, x) +

∫ τ

t
L
(
s,Xs, β

t,x
s

)
ds
]
ηt(dx,Rd),

and it follows that

Jψ(t, x) = Eα
t,xnPt,x

[
ψ(Xτ ) +

∫ τ

t
L
(
s,Xs, β

t,x
s

)
ds
]

for all t and ηt-a.e. x. If Jψ(t, x) = ψ(x) and either t 7→ L(t, x, u) is strictly increasing and
s > t+ ε for ε > 0 or t 7→ L(t, x, u) is strictly decreasing and 0 ≤ s < t+ ε for ε < 0, then

T t+ε−s,0# αs,x n Ps,x will satisfy

Jψ(t+ ε, x) ≥ Eα
s,xnPs,x

[
ψ(Xτ ) +

∫ τ

s
L
(
r − s+ t+ ε,Xr, β

s,x
r−s+t+ε

)
dr
]
,

which is only satisfied if τ = s with probability one, and (ii) follows. We now consider
(P′, β′, α′) ∈ A(µ) that satisfies (i) and (ii), and we have

Eα
′nP′
[ ∫ τ

0
L(t,Xt, β

′
t)dt

]
≥ Eα

′nP′
[
ψ(Xτ )− Jψ(0, X0)

]
= EαnP

[ ∫ τ

0
L(t,Xt, βt)dt

]
,

by the definition of Jψ, optimality of (P, β, α) and Theorem 3.2, which implies that (P′, β′, α′)
optimizes the cost over policies in A(µ) that satisfy (i) and (ii).

Given P and β, let α∗ be the randomized stopping time corresponding to τ∗ defined in
(6.6). We then have that (i) and (ii) are satisfied by (P, β, α∗) using continuity of ψ and
Jψ. Furthermore the cost of (P, β, α∗) is less than or equal to the cost of (P, β, α) because
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L is nonnegative. Furthermore, since the cost is equal, this implies that α∗ = α. Finally,
uniqueness of P and β follow from strict convexity of L. �

Remark 6.4. The assumption that ψ and Jψ are continuous in Theorem 6.3 is satisfied if
1 < p < 2 as in Theorem 5.3, and is probably not needed if the drift is bounded (p = +∞)
as in Theorem 5.8 if one pursues further the Sobolev regularity of the stopping distribution
ρ∗ for α∗ as was done in [13, 12].

From the control theory point of view, it is a natural question whether the optimal control
policy β satisfies the Pontryagin maximum principle: namely, βt = −DzH(t,Xt,∇Jψ(t,Xt))
and solves the SDE: dXt = β(Xt)dt + dWt in a strong sense. This seems to require Jψ to
be C1,1. We leave it as an open question.
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