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PERIMETER OVER RCD(K,N) SPACES

ELIA BRUE7 ENRICO PASQUALETTO, AND DANIELE SEMOLA

ABSTRACT. This note is devoted to the study of sets of finite perimeter over RCD(K, N) metric
measure spaces. Its aim is to complete the picture about the generalization of De Giorgi’s
theorem within this framework. Starting from the results of [2] we obtain uniqueness of tangents
and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool,
of independent interest, we develop a Gauss—Green integration-by-parts formula tailored to this

setting. These results are new and non-trivial even in the setting of Ricci limits.
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INTRODUCTION

In the last years the theory of RCD(K, N) metric measure spaces has undergone a fast and
remarkable development. After the introduction of the so-called curvature-dimension condition
CD(K, N) in the seminal and independent works [47, 48] and [39], the notion of RCD(K, N)
space was proposed in [28] after the study of its infinite-dimensional counterpart RCD(K, 00) in
[5] (see also [4] for the case of o-finite reference measure). In the infinite-dimensional case the
equivalence with the Bochner inequality was studied in [6], then [25] established equivalence with
the dimensional Bochner inequality for the so-called class RCD* (K, N) (see also [10]). Equivalence
between RCD*(K, N) and RCD(K, N) has been eventually achieved in [11].
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We do know nowadays that, apart from smooth weighted Riemannian manifolds (with gen-
eralized Ricci tensor bounded from below), this class includes Ricci limits (see [16, 17, 18]) and
Alexandrov spaces [413].

One of the main research lines within this theory in recent times has been aimed at understand-
ing the structure of RCD(K, N) spaces. After [12, 38, 21, 32] we know that they are rectifiable as
metric measure spaces. Moreover in [12] the first and the third named authors proved that they
have constant dimension, in the almost everywhere sense.

This being the state of the art, we have reached a good understanding of the structure of
RCD(K, N) spaces up to measure zero. It sounds therefore quite natural to try to push the study
further, investigating their structure, both from the analytic and from the geometric points of
view, up to sets of positive codimension.

In this perspective in the last two years there have been some independent and remarkable de-
velopments. We wish to mention a few of them below, without the aim of being complete in this
list.

e In the setting of non collapsed Ricci limit spaces, Cheeger-Jiang-Naber have obtained
in [19] rectifiability for the singular sets of any codimension. Let us also mention [20],
where some of the ideas developed in [19] where already present, and [I1], where some
estimates (actually much weaker than those in [19]) are proved for the singular strata of
non collapsed RCD spaces.

e There have been some efforts aimed at defining a notion of boundary for metric measure
spaces and relating it with the singular set of codimension 1. See [36] and the very recent
[37].

e One of the main contributions of [27] was the development of the language of tensor fields
defined almost everywhere (with respect to the reference measure) on RCD spaces. In
[22] the notion of tensor field defined “2-capacity-almost everywhere” is defined and it is
proved that Sobolev vector fields on RCD spaces have a representative in this class.

e In [2], the first and third named authors together with Ambrosio initiated a fine study
of sets of finite perimeter over RCD(K, N) spaces, with the project of generalizing the
Euclidean De Giorgi theorem to this framework.

One of the main results in [2] was the existence of a Euclidean half-space as tangent space

to a set of finite perimeter at almost every point (with respect to the perimeter measure). This
conclusion could be improved to a uniqueness statement (up to negligible sets) only in the case of
a non collapsed ambient space. The state of the theory of sets of finite perimeter was at that stage
comparable to that of the structure theory after [31], where existence of Euclidean tangent spaces
almost everywhere with respect to the reference measure was proved. Uniqueness of tangents in
the possibly collapsed case and rectifiability for the boundary were conjectured by analogy with
the Euclidean theory, but left as open questions in [2]. Let us point out that, up to our knowledge,
no general rectifiability criterion is known at this stage for (subsets of) metric measure spaces.
Aim of this note is to provide a positive answer to these questions, providing a counterpart in
codimension 1 of [12] and of De Giorgi’s theorem in this setting.
Together with uniqueness of tangents (cf. Theorem 3.2) and rectifiability (cf. Theorem 4.1) we
also establish a representation formula for the perimeter measure in terms of the codimension 1
Hausdorff measure (cf. Corollary 3.15). As an intermediate tool which, however, we find to have
independent interest we prove in Theorem 2.2 a Gauss—Green integration-by-parts formula for
Sobolev vector fields.
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The proof of uniqueness for blow-ups of sets of finite perimeter follows a strategy quite similar
to that of the uniqueness theorem for tangents to RCD(K, N) spaces adopted in [12]. As in that
case, closeness to a rigid configuration (half-space in Euclidean space) at a certain location and
along a certain scale, which is what we learn from [2], can be turned into closeness to the same
configuration at almost any location and at any scale, yielding uniqueness.

To encode the “closeness information” in analytic terms we rely on the use of harmonic d-splitting
maps, which were introduced in [15] and turned to be an extremely powerful tool in the study of
Ricei limits (see [16, 17, 18] and the more recent [20, 19]). To the best of our knowledge this is
the first time they are explicitly used in the RCD-theory, even though their use is implicit in [9],
and we establish some of their properties within this framework.

Propagation of regularity almost at every location and at any scale, which was a consequence of a
maximal function argument in [42], this time follows from a weighted maximal function argument
suitably adapted to the codimension 1 framework. This argument heavily relies on the interplay
between the fact that the perimeter measure is a codimension 1 measure (which was proved in a
fairly more general context in [1]) and the fact that harmonic functions satisfy L? Hessian bounds
on RCD(K, N) spaces.

In order to explain the strategy and the difficulties in the proof of rectifiability for the reduced
boundary, let us recall how things work on R™. Therein a crucial role is played by the exterior
normal to the set of finite perimeter, which is an almost everywhere unit valued vector field
providing the representation DXg = vg |DXg| for the distributional derivative of the set of finite
perimeter E. Relying on the properties of the exterior normal one can obtain a characterization
of blow-ups in a much simpler way than in [2] and even get rectifiability of the boundary, proving
that sets where the unit normal is not oscillating too much are bi-Lipschitz to subsets of R"~1.
When trying to reproduce the Euclidean approach in the non smooth and non flat realm of RCD
spaces, one faces two main difficulties. The first one due to the fact that the theory of tangent
modules, as developed in [27], allows to talk about vector fields only up to negligible sets with
respect to the reference measure (as the reduced boundary of a set of finite perimeter is not). The
second one is that controlling the behaviour of the normal vector cannot be enough to control the
behaviour of the set in this framework, since the space itself might “oscillate”. This is a common
feature of geometry on metric measure spaces (see also the introduction of [19]), which can be
understood looking at the following example: let (X,d,m) be any RCD(K, N) m.m.s. and take
its product with the Euclidean line. Then consider the “generalized half-space” {t < 0}, where ¢
denotes the coordinate along the line: it is easily seen that it is a set of locally finite perimeter
and one can identify its reduced boundary with X. Moreover, whatever notion of unit normal we
have in mind, this will be non oscillating in this case. Still, rectifiability of (X, d, m) is highly non
trivial and requires [42] to be achieved.

To handle the first difficulty we mentioned above, we rely on the very recent [22], where a
notion of cotangent module with respect to the 2-capacity is introduced and studied. Building
upon the fact that the 2-capacity controls the perimeter measure in great generality, we introduce
the notion of tangent module over the boundary of a set of finite perimeter (cf. Theorem 2.1).
Furthermore we prove that there is a well-defined unit normal to a set of finite perimeter as an
element of this module, that it satisfies the Gauss—Green integration-by-parts formula and, relying
on functional analysis tools, that it can be approximated by regular vector fields (cf. Theorem 2.2
for a rigorous statement).

The results obtained in the study of the unit normal are then combined in a new way with
the theory of §-splitting maps to prove rectifiability of the reduced boundary for sets of finite

perimeter.
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We introduce a notion of §-orthogonality to the unit normal for d-splitting maps. Then we prove on
the one hand that §-splitting maps d-orthogonal to the unit normal control both the geometry of the
space and that of the boundary of the set of finite perimeter (and vice-versa). On the other hand
the combination of d-orthogonality and J-splitting is seen to be suitable for propagation at many
locations and any scale with maximal function arguments (cf. Proposition 4.5 and Proposition 4.7).

We wish to emphasize the fact that, on the one hand the coarea formula (which holds in the
great generality of metric measure spaces) provides plenty of sets of finite perimeter even in the
non-smooth context, on the other one there is no hope to have a notion of smooth hypersurface
within this setting. Therefore we expect the range of applications to be large in the development
of the theory of spaces satisfying lower curvature bounds, both for the techniques we develop in
the paper and for our main results that, to the best of our knowledge, are new also for Ricci limits.

A number of open questions remains open and suitable for future investigation after the study
pursued in this paper. In particular, we wish to point out that neither the constancy of the
dimension result of [12], nor the absolute continuity of the reference measure with respect to the
Hausdorff measure ([38, 32, 21]), play a role in the proofs of our results. It might be interesting
to investigate whether one can prove constancy of the dimension for tangents also in the case of
sets of finite perimeter and sharpen the representation formula for the perimeter measure (maybe
relying on the good understanding we have of the top dimensional case). In this regard let us
point out that, in none of these cases, the techniques adopted to solve the analogous problems in
codimension 0 seem to work when dealing with sets of finite perimeter.

This note is organised as follows: in Section 1 we collect all the preliminary material to be
used in the paper. We dedicate Section 2 to the construction of the tangent module over the
boundary of a set of finite perimeter and to establishing a Gauss—Green integration-by-parts
formula. Uniqueness of blow-ups is the main outcome of Section 3, while rectifiability for the
reduced boundary is obtained in Section 4.

Acknowledgements. The authors wish to thank Luigi Ambrosio and Nicola Gigli for several
useful comments on an earlier version of this note and Aaron Naber for an enlightening discussion
about propagation of regularity in codimension 1.

The second named author was partially supported by the Academy of Finland, projects no.
274372, 307333, 312488, and 314789.

1. PRELIMINARIES AND NOTATIONS

1.1. Calculus tools. Throughout this paper a metric measure space is a triple (X, d, m), where
(X,d) is a complete and separable metric space and m is a nonnegative Borel measure on X finite
on bounded sets. From now on when we write m.m.s. we mean metric measure space(s).

In order to simplify the notation, numerical constants depending only on the parameters entering
into play, will be denoted with the same letter C' even if they do vary. Often we will make explicit
their dependence on the parameters writing for instance Cn, Cn k.

We will denote by B,.(z) = {d(-,z) < r} and B,(z) = {d(-,z) < r} the open and closed
balls respectively, by Lip(X,d) (resp. Lipy(X,d), Lip.(X,d), Lip,(X,d), Lip;,.(X,d)) the space
of Lipschitz (resp. bounded Lipschitz, compactly supported Lipschitz, Lipschitz with bounded
support, Lipschitz on bounded sets) functions and for any f € Lip(X,d) we shall denote its slope
by

lipf(x) := lim sup
= IP  )
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We shall use the standard notation LP(X,m) = LP(m), for the LP spaces and L™ for the n-
dimensional Lebesgue measure on R™. We shall denote by w, the Lebesgue measure of the unit
ball in R"™. If f € L{, (X, m) and U C X is such that 0 < m(U) < 400, then f,; fdm denotes the
average of f over U.

The Cheeger energy Ch : L?(X, m) — [0, +00] is the convex and lower semicontinuous functional

defined through

n— oo

Ch(f) := inf{liminf/x(lipfn)Qdm: fn € Lipp(X) N LA2(X,m), ||fn — fll, — o} (1.1)

and its finiteness domain will be denoted by H*?(X,d, m), sometimes we write H?(X) omitting
the dependence on d and m when it is clear from the context. Looking at the optimal approximating
sequence in (1.1), it is possible to identify a canonical object |V f|, called minimal relaxed slope,
providing the integral representation

Ch(f) ::/X|Vf|2dm ¥f € HY2(X,d,m).

Any metric measure space such that Ch is a quadratic form is said to be infinitesimally Hilber-
tian. Let us recall from [5, 28] that, under this assumption, the function

(h+efo) = VAP
2e
defines a symmetric bilinear form on H2(X,d,m) x H'2(X,d, m) with values into L!(X, m).
It is possible to define a Laplacian operator A : D(A) C L?(X,m) — L?(X,m) in the following
way. We let D(A) be the set of those f € H?(X,d, m) such that, for some h € L?(X, m), one has

/Vf-ngm:—/ hgdm Vg€ H“?(X,d,m) (1.2)
X X

Vf -V = lim v
e—0

and, in that case, we put Af = h. It is easy to check that the definition is well-posed and that
the Laplacian is linear (because Ch is a quadratic form).

The heat flow P, is defined as the L?(X, m)-gradient flow of $Ch. Its existence and uniqueness
follow from the Komura-Brezis theory. It can be equivalently characterized by saying that for
any u € L?(X, m) the curve t — P € L?(X,m) is locally absolutely continuous in (0, +occ) and
satisfies

d
= AP for L'-ae. t € (0,+00), 1&3 Pu=u in L*(X,m).

Under the infinitesimal Hilbertianity assumption the heat flow provides a linear, continuous and
self-adjoint contraction semigroup in L?(X, m). Moreover P; extends to a linear, continuous and
mass preserving operator, still denoted by Py, in all the LP spaces for 1 < p < 4o0.

Definition 1.1 (Function of bounded variation). We say that f € L*(X,m) belongs to the space
BV(X,d, m) of functions of bounded variation if there exist locally Lipschitz functions f; converging
to f in LY(X,m) such that
limsup/ |V fi| dm < 4o0.
71— 00 X

If f € BV(X,d,m) one can define
IDf|(A) := inf {liminf/ |V fildm: f; € Lip,..(4), fi — fin L*(A, m)}
11— 00 A

for any open A C X. In [3] (see also [11] for the case of locally compact spaces) it is proven that
this set function is the restriction to open sets of a finite Borel measure that we call total variation
of f and still denote by |Df|.
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Dropping the global integrability condition on f = Xg, let us recall now the analogous definition
of set of finite perimeter in a metric measure space (see again [1, 11, 3]).

Definition 1.2 (Perimeter and sets of finite perimeter). Given a Borel set E C X and an open
set A the perimeter Per(E, A) is defined in the following way:
Per(E, A) := inf {hm inf/ |[Vu,|dm : u, € Lip,.(4), w, —Xgp in Llloc(A,m)} .
A

n—oo
We say that E has finite perimeter if Per(E, X) < 400. In that case it can be proved that the set
function A — Per(E, A) is the restriction to open sets of a finite Borel measure Per(E,-) defined
by

Per(E, B) := inf {Per(F,A) : BC A, A open}.

Let us remark for the sake of clarity that £ C X with finite m-measure is a set of finite perimeter
if and only if Xg € BV(X,d, m) and that Per(E,-) = |DXg|(-). In the following we will say that
E C X is a set of locally finite perimeter if X is a function of locally bounded variation, that is
to say nXg € BV(X,d, m) for any 7 € Lip, (X, d).

1.1.1. Total variation of BV functions via integration by parts. Let us present an equivalent ap-
proach to the study of BV functions in m.m.s. introduced by Di Marino in [23]. Before stating
Theorem 1.7 we need to recall the notion of derivation.

Definition 1.3 (Derivation). Let (X,d, m) be a metric measure space. Then a derivation on X
is a linear map b : Lip, (X) — L°(m) such that the following properties are satisfied:

i) LEIBNIZ RULE. b(fg) = b(f)g + fb(g) for every f,g € Lip,4(X).
ii) WEAK LOCALITY. There exists G € L°(m) such that

|b(f)| < Glip,(f)' m-a.e. for every f € Lip.,(X).
The least function G (in the m-a.e. sense) with this property is denoted by |b).
The space of all derivations on X is denoted by Der(X). Given any derivation b € Der(X), we
define its support supp(b) C X as the essential closure of {|b| # 0}. For any open set U C X, we

write supp(b) € U if supp(b) is bounded and dist(supp(b), X \ U) > 0. Given any b € Der(X)
with |b] € L] (X), we say that div(b) € LP(m) — for some exponent p € [1,00] — provided there

loc
exists a function h € LP(m) such that

- /b(f) dm = /fhdm for every f € Lip,4(X). (1.3)
The function h is uniquely determined, thus it can be unambiguously denoted by div(b). We set
Der?(X) := {b € Der(X) | [b| € LP(m)},
Der??(X) := {b € Der”(X) | div(b) € LP(m)}
for any p € [1, 00]. The set Der”(X) is a Banach space if endowed with the norm ||b||, := ||b][| Lo (m)-
Remark 1.4. We claim that for every b € Der??(X) — where p € [1,00] — it holds that
supp(div(b)) C supp(b). (1.4)

In order to prove it, fix any open bounded subset U of X \ supp(b). Then formula (1.3) guarantees

that [ fdiv(b)dm = — [b(f)dm =0 for every f € Lipy,(U), whence accordingly div(b) = 0 holds

m-a.e. on U. By arbitrariness of U, we conclude that the claim (1.4) is verified.

[f (=)= f ()l
d(=,y)

Lwhere lip, (f)(x) := lim, 0 SUPY(g,y) <r is the so-called asymptotic Lipschitz constant.
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In the next proposition the notions of tangent module L?(7'X) and, more generally, of Hilbert
L?(m)-normed L (m)-module, play a role. We will denote by V: H'2(X) — L?(TX) the gradient
map. We refer to Section 1.3 below for the definition of these objects.

Proposition 1.5. Let (X,d, m) an infinitesimally Hilbertian metric measure space. Let us denote
by D the closure in Der?(X) of the pre-Hilbert space D := (DerQ’Q(X)7 [-ll2). Then D has a natural
structure of Hilbert L?(m)-normed L>(m)-module and the map A: L*(TX) — D, defined as

AW)(f) =v-Vf for every v € L*(TX) and f € Lip,,(X).

is a normed module isomorphism between L?(TX) and D. Moreover, it holds A(D(div)) = D
and

div(A(v)) =div(v)  for every v € D(div).
Proof. Cf. the proof of [24, Proposition 6.5]. O

Remark 1.6. Given an infinitesimally Hilbertian space (X,d,m) and any f € BV(X,d,m), it
holds

/fdiv(v) dm < |Df|(X)  for every v € D(div) with |v] <1 m-a.e. and div(v) € L (m).
Such inequality readily follows from [23, Theorem 3.3] and Proposition 1.5.

Theorem 1.7 (Representation formula for |Df]). Let (X,d,m) be an infinitesimally Hilbertian
metric measure space. Let f € BV(X,d, m) be given. Then for every open set U C X it holds that

DFIU) = sup{ [ s am

v € D(div), |v] <1 m-a.e., div(v) € L*®(m), supp(v) € U}.

Proof. Combine [23, Theorem 3.4] with Proposition 1.5 (recall that we have b € Der®?(X) for
every b € Der®™ (X)) such that supp(b) is bounded, thanks to Remark 1.4). O

1.1.2. PI spaces. Let us recall that (X, d, m) satisfies a weak local (1,2)-Poincaré inequality with
constants Cp > 0 and A > 1 if it holds

1/2
][ If = (f)as|dm < Cpr ][ |Df|? dm for all f € H**(X), z € X, r >0, (1.5)
BT(w) B)ﬂ"(x)

where
f T, = fd . 1.6
(Der =, | (1.6)

Before giving the definition of PI space we need to recall the notion of locally doubling m.m.s.:
we say that (X,d, m) is locally doubling if for any R > 0 there exists Cp > 0 depending only on
R such that

m(Bay,(2)) < Cpm(B,(z)) VO<r<R, xe€X. (1.7)

Definition 1.8. A PI space is a locally doubling metric measure space supporting a weak local

(1,2)-Poincaré inequality.
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1.1.3. Capacity and Hausdorff measures. We briefly recall the notion of capacity and its main
properties in this setting, referring to [22] for a detailed discussion on the topic. The capacity of
a given set £ C X is defined as

Cap(F) := inf {||f||%11‘2(x) ‘ f e HY*(X,d,m), f>1m-a.e. on some neighbourhood of E}

It turns out that Cap is a submodular outer measure on X, finite on all bounded sets, such that
the inequality m(E) < Cap(E) holds for any Borel set E C X. Any function f : X — [0, +o0]
can be integrated with respect to the capacity via Cavalieri’s formula:

/deap = /0+<>0 Cap({f > t}) dt.

(The function ¢ +— Cap({ f> t}) is non-increasing, thus in particular it is Lebesgue measurable.)
The integral operator f — [ f dCap is subadditive as a consequence of the submodularity of Cap.
Given any set £ C X, we shall use the shorthand notation fE fdCap := [ xgfdCap.

Let us now introduce the codimension-a Hausdorff measure. We refer to [1] for a more detailed

introduction to this topic.

Definition 1.9. Given a locally doubling metric measure space (X,d,m), for any o > 0 we set
m(B,(z))
T(X

ha(Br(z)) =

The codimension-a Hausdorff measure " is the Borel reqular outer measure built from hy, with

forany x € X, r € (0,00).

the Carathéodory construction. We will denote by %‘gh“ the pre-measure with parameter 0.

The codimension-1 measure plays a crucial role in the theory of sets of finite perimeter over PI
spaces, since Per(FE,-) < J#™ for any set of finite perimeter E. This result has been proved by
Ambrosio in [I, Lemma 5.2].

Lemma 1.10. Let (X,d,m) be a PI space. For any set of locally finite perimeter E C X it holds
#"M(B) =0 = Per(E,B) =0 for any Borel set B C X.

Let us now prove two results connecting the codimension-a Hausdorff measure and the capacity.
Their proofs are inspired by those given for the analogous results in the Euclidean setting in [26].

Lemma 1.11. Let (X,d,m) be a locally doubling m.m.s.. Let f € L*(X,m), f > 0 be given. Then
for any exponent o > 0 it holds that
AN (Ny) =0,  where we set Ay := {x € X | limsupr®(f)q,r > 0}.
N0
Proof. By Lebesgue differentiation theorem we know that the limit lim,~ o(f)sr exists and is
finite for m-a.e. x € X, thus for any a > 0 we have that limsup,\ o 7%(f)z = 0 holds for m-a.e.
2 € X. This means that m(A,) = 0. Calling
Ak = {:1: € X | limsupr®(f)p,r > 1/k3} for every k € N,
N0

we see that A, = |J;, AF, thus in particular m(A%) = 0 for every k € N. Given that f € L'(X,m),
for any ¢ > 0 there exists § > 0 such that fAfdm < ¢ for any Borel set A C X satisfying
m(A) < §. Fix k € N and pick an open set U C X such that A¥ C U and m(U) < 4. Let us define

i {Bw Fam > m(B,(2)/(°8) |

xe Ak re(0,¢), B.(z) CU, /
Br(m)

Therefore by applying the Vitali covering theorem we can find a sequence (B;);en C F of pairwise
disjoint balls B; = B, (z;) such that A* C J, Bs,,(z;). Being m locally doubling, there exists
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a constant Cp > 1 such that m(B5r(x)) < Cp m(Br(x)) holds for every x € X and r < e.
Consequently, one has that

1 o m(Bs, (2 — m(B;)
st < o5 M) G 5t _CD‘“Z/ pam< S22 [ fam

i=1 g i=1

By letting £ \, 0 we conclude that s#"«(A¥) = 0, whence J#"=(A,) = limy, s« (A¥) = 0. O
Theorem 1.12. Let (X,d,m) be a PI space. Then it holds that 7"~ < Cap for every o € (0,2).

Proof. Fix o € (0,2) and a set A C X with Cap(A4) = 0. We aim to prove that J#"=(A) = 0.
By definition of capacity, we can find a sequence (f;); C H?(X) such that f; > 1 on some
neighbourhood of A and || fi[[ g1.2(x) < 1/2% for every i € N. Since > .2, I fill 12 (x) < +oo, one
has that g := > .=, f; is a well-defined element of the Banach space H'?(X). For any k € N it
clearly holds that g > k on some neighbourhood of A, whence for any z € A we have (¢),, > k
for every r < dist(z, {g < k}) and accordingly

h{g( 9oy = +oo  for every x € A. (1.8)
Furthermore, we claim that
lim sup ro‘][ |Dg|? dm = +o0o  for every x € A. (1.9)
™\0 B, (z)

In order to prove it, we argue by contradiction: suppose that lim sup,. o {5 (@) |Dg|*dm < +o0
for some x € A, so that there exists a constant M > 0 such that

ro‘][ |Dg|?dm < M for every r € (0,1). (1.10)
B, (93)
Call Cp the doubling constant of m (for » < 1/2). Therefore, for every r < 1/(2X) we have that

‘(g)x,r - (g)r,2r| = m(Bt(:v))‘ /B‘(m)g— (9)z.2r dm’

< CD][ |9 = (9)z,20] dm
BQT‘("L.)

(1.5) 1z
< 20p opr<][ |Dgzdm)
Baxr(z)

e (2172 Cp Cp A2 M2 1m0,
Let us set O := 2'=*2Cp Cp A= M*/?> and 6 := 1—a/2 € (0,1). Then the previous computation
gives 3200, [(9)ao-i — (9)z2-41| £ CY525(2%) 7% < +o0, contradicting (1.8). This proves (1.9).
Finally, it immediately follows from (1.9) that A is contained in the set of all points € X that
satisfy lim sup,. o 7 fBT(z) |Dg|? dm > 0, which is .7#"=-negligible by Lemma 1.11. Therefore, we
conclude that 7" (A) = 0, thus completing the proof of the statement. O

1.2. RCD metric measure spaces. The main object of our investigation in this note are RCD(K, N)
metric measure spaces, that is infinitesimally Hilbertian spaces satisfying a lower Ricci curvature
bound and an upper dimension bound in synthetic sense according to [17, 48, 39]. Before passing

to the description of the main properties of RCD(K, N) spaces that will be relevant for the sake

of this note, let us briefly focus on the adimensional case.
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The class of RCD(K, 00) spaces was introduced in [6] (see also [1] for the extension to the
case of o-finite reference measures) adding to the CD(K, c0) condition, formulated in terms of
K-convexity properties of the logarithmic entropy over the Wasserstein space (Pg, W3), the infin-
itesimal Hilbertianity assumption.

Under the RCD(K, c0) condition it was proved that the dual heat semigroup P; : Po(X) —
Po(X), defined by

[ gapu= [ Pidu vnePu(x). ¥F€Lip(X.d)
X X

is K-contractive w.r.t. the Ws-distance and, for ¢t > 0, maps probability measures into probability
measures absolutely continuous w.r.t. m. Then, for any ¢ > 0, it is possible to define the heat
kernel p; : X x X — [0, +00) by
pe(x,)m = P 0,. (1.11)
We go on stating a few regularization properties of RCD(K, 00) spaces, referring again to [6, 4]
for a more detailed discussion and for the proofs of these results.
First we have the Bakry—Emery contraction estimate:

IVPf? < e 25P VI m-ae., (1.12)

for any ¢ > 0 and for any f € H%?(X,d,m). This contraction estimate can be generalized to the
whole range of exponents 1 < p < 4o00. Furthermore in [30] it has been proved that on any proper
RCD(K, 00) m.m.s. it holds
|DP,f| < e X'Pr|Df|, (1.13)

for any ¢ > 0 and for any f € BV(X,d, m).

Next we have the so-called Sobolev-to-Lipschitz property, stating that any f € H»?(X,d, m)
such that |V f| € L°(X, m) admits a representative f € Lip(X,d) with Lipschitz constant bounded
from above by |||V £l ;-

Let us introduce the space of test functions Test(X, d, m) following [27]:

Test(X,d,m) := {f € D(A)NL>®(X,m): |[Vf| € L®(X,m) and Af € H"?(X,d,m)}. (1.14)

The notion of RCD(K, N) m.m.s. was proposed and extensively studied in [28, 10, 25] (see
also [14] for the equivalence between the RCD and the RCD* condition?), as a finite dimensional
counterpart to RCD(K, co) m.m.s. which were introduced and firstly studied in [6]. Here we just

recall that they can be characterized asking for the quadraticity of Ch, the volume growth condition
m(B,(z)) < ¢1 exp(car?) for some (and thus for all) z € X, the validity of the Sobolev-to-Lipschitz
property and of a weak form of Bochner’s inequality

1 Af)?
§A|Vf|2 —Vf-VAf> ( ]\J;) + K|Vf]* for any f € Test(X,d, m).
We refer to [10, 25] for a more detailed discussion and equivalent characterizations of the RCD(K, N)

condition.

Note that, if (X,d, m) is an RCD(K, N) m.m.s., then so is (suppm,d, m), hence in the following
we will always tacitly assume suppm = X.

We recall that any RCD(K, N) m.m.s. (X, d, m) satisfies the Bishop-Gromov inequality:

m(Ba@) _ m(B,(x)
v, N(R) T vrn(r)

forany 0 <r < Rand z € X, (1.15)

’In [14] the case of finite measure is considered but, due to the local nature of their arguments, it is thought
that the identification result extends to the general case.
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where v n(r) is the volume of the ball with radius = in the model space with dimension N and
Ricei curvature K. We refer to [19, Theorem 30.11] for the proof of (1.15). In particular (X,d, m)
is locally uniformly doubling. Furthermore, it was proved in [15] that it satisfies a local Poincaré
inequality. Therefore RCD(K, N) spaces fit in the framework of PI spaces that we introduced
above.

We assume the reader to be familiar with the notion of pointed measured Gromov-Hausdorff
convergence (pmGH-convergence for short), referring to [419, Chapter 27] for an overview on the
subject.

Remark 1.13. A fundamental property of RCD(K, N) spaces, that will be used several times in
this paper, is the stability w.r.t. pmGH-convergence, meaning that a pmGH-limit of a sequence of
(pointed) RCD(K,,, N,,) spaces for some K, — K and N, = N is an RCD(K, N) m.m.s..

Let us finally recall the construction of good cut-off functions over RCD(K, N) metric measure
spaces, see [42, Lemma 3.1] for a proof.

Lemma 1.14. Let (X,d, m) be an RCD(K, N) m.m. space. For any 0 < 2r < R and x € X there
exists a test function n: X — R satisfying

(i) 0<n<lonX,n=1o0nB.(x) andn =0 on X \ Ba(z);

(i) r?|An| +7|Vn| < Cn.k.Rr-

1.2.1. Structure theory. Let us briefly review the main results concerning the state of the art about
the so-called structure theory of RCD(K, N) spaces.

Given am.m.s. (X,d,m), z € X and r € (0,1), we consider the rescaled and normalized pointed
m.m.s. (X,r~'d, m? ), where

my = (/BT(z) (1 - W) dm(y)) h m=C(z,r) 'm.

Definition 1.15. We say that a pointed m.m.s. (Y,dy,n,y) is tangent to (X,d,m) at x if there
exists a sequence 1; | 0 such that (X, r;ld,mfi,x) — (Y,dy,n,y) in the pmGH-topology. The
collection of all the tangent spaces of (X,d,m) at x is denoted by Tan,(X,d, m).

A compactness argument, which is due to Gromov, together with the rescaling and stability
properties of the RCD(K, N) condition (see Remark 1.13), yields that Tan, (X, d, m) is non-empty
for every € X and its elements are all RCD(0, N') pointed m.m. spaces.

Let us recall below the notion of k-regular point and k-regular set.

Definition 1.16. Given any natural 1 < k < N, we say that x € X is a k-reqular point if
Tan, (X, d, m) = {(R", deyer, e L5, 0)}
We shall denote by Ry, the set of k-regular points in X.

Wi

Observe that, by explicit computation, in Definition 1.16 the constant ¢y equals £ e

Remark 1.17. Observe that, if © € Ry, then one has

d(z,
e (1245 dmy)
r50 m(B,(z)) ES
Moreover it can be easily checked that x € Ry, if and only if

m 1
li m X, r M, ——— RF eucly — k ok =0.
rlj)r%)dp GH (( ,T d’m(Br(x))7x)’< 7d l7wk£ 70 0

(1.16)
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After the works [31, 42, 32, 21, 38] and [12] we have the following structure theorem for
RCD(K, N) spaces.

Theorem 1.18. Let (X,d,m) be an RCD(K,N) m.m.s. with K € R and N > 1. Then there
exists a natural number 1 < n < N, called essential dimension of X, such that m(X \ R,) =
0. Moreover R,, is (m,n)-rectifiable and m is representable as 0™ |_R,, for some nonnegative
density 0 € L (X, #"LR,).

loc

Recall that X is said to be (m,n)-rectifiable if there exists a family {4;},. of Borel subsets of
X such that each A; is bi-Lipschitz to a Borel subset of R™ and m(X \ U;en4;) = 0.

1.2.2. Sobolev functions and Laplacian on balls. Following a standard approach let us give a notion
of Sobolev functions and Laplacian on balls, we refer to [3] for more detailed presentation.

We define the space Hy?(B,(z),d, m) considering the closure of Lip.(B,(x),d) in HY?(X,d, m).
Let us also define H\?(B,(z),d,m) as the space of those f : B,(z) — R such that nf €
H'2(X,d,m) for any 1 € Lip,(B,(z),d). Exploiting the locality of the minimal relaxed slope one
can easily define |V f| for any f € H>?(B,(z),d, m). This allows us to introduce H?(B,(x),d, m)

as the space of f € H?(B,(z),d,m) such that f,|Vf] € L*(X,m).

Definition 1.19. A function f € HY?(B,(z),d,m) belongs to D(A, B.(z)) if there exists g €
L?(B,(x),m) satisfying

/ Vf-Vhdm = f/ fgdm  for any h € Hy*(B,(x),d, m).
B () B ()

With a slight abuse of notation we write Af = g in B.(x).

It is easily seen that, if f € D(A, B.(z)) and n € Lip.(B,(z),d) N D(A), An € L*°(X, m) then
nf € D(A).

1.2.3. Stability and convergence results. Let us fix a pointed measured Gromov-Hausdorff conver-
gent sequence
(Xi, di,my, i) = (Y, 0, 11,9)

of RCD(K, N) m.m. spaces. Recall that, in the setting of uniformly locally doubling spaces, the
pointed measured Gromov-Hausdorff convergence can be equivalently characterized asking for the
existence of a proper metric space (Z,dz) where (X;,d;) and (Y, g) are isometrically embedded,
x; — y and m; — p in duality with Cps(Z) (the space of continuous functions with bounded
supports in Z). This is the so-called extrinsic approach and it is convenient to formulate various

notions of convergence.

Definition 1.20. Let (X;,d;,m;, z;), (Y, 0,1,7y), (Z,dz) be as above and f; : X; = R, f: Y = R.
We say that f; — f pointwise if fi(z;) — f(2) for every sequence of points z; € X; such that
zi — z in Z. If for every e > 0 there exists 6 > 0 such that |fi(z;) — f(2)| < e for everyi > 61
and z; € X;, z € Y with dz(z;,2) < 0§, then we say that f; — f uniformly.

The next proposition is a version of the Ascoli-Arzela compactness theorem for sequences of
functions defined on varying spaces. We omit the proof, that can be obtained arguing as in the
case of a fixed space.

Proposition 1.21. Let (X;,d;, m;,x;) and (Y, p, u,y) be as above and R >0, L > 0 fized. Then
for any sequence of L-Lipschitz functions f; : Br(x;) — R such that sup; ‘fz(acl)| < 400 there

exists a subsequence that converges uniformly to some L-Lipschitz function f : Br(y) — R.
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We recall below the notions of convergence in LP and Sobolev spaces for functions defined over
converging sequences of metric measure spaces. We will be concerned only with the cases p = 2
and p = 1 in the rest of the note. We refer again to [7, 8] for a more general treatment and the
proofs of the results we state below.

Definition 1.22. We say that f; € L*(X;,m;) converge in L?-weak to f € L*>(Y, ) if fim; — fu
in duality with Cps(Z) and sup; ||fi||L2(Xi7mi) < +o00.

We say that f; € L?(X;,m;) converge in L?-strong to f € L2(Y, u) if fim; — fu in duality with
Cus(Z) and lim; Hfi”L?(Xi,mi) = Hf”Lz(Y,;L)'
Definition 1.23. We say that a sequence (f;) C L*(X;, m;) converges L*-strongly to f € L*(Y, 1)
if

cofim;— oo fu and / |fi|dn‘¢i—>/|f|d,u7
X; Y

where o(z) := sign(z)+/|z| and the weak convergence is understood in duality with Cyvs(Z). Equiv-
alently, if o o f; L%-strongly converge to o o f.

Dealing with characteristic functions one has the following equivalent notion of L!-convergence.

Definition 1.24. We say that a sequence of Borel sets E; C X; such that m;(E;) < oo for any
i € N converges in L'-strong to a Borel set F C'Y with u(F) < oo if Xg,m; — Xpp in duality
with Cps(Z) and my(E;) — u(F).

We also say that a sequence of Borel sets E; C X; converges in L . to a Borel set F C Y if
E;N Br(z;) — F N Bg(y) in L'-strong for any R > 0.

Remark 1.25. It follows from the very definition of L'-convergence that, if a sequence of sets
E; = F in L', then Xg, = XF in L2-strong.

Definition 1.26. We say that a sequence of sets with locally finite perimeter E; C X; converges
locally strongly in BV to a set of locally finite perimeter F C'Y if E; — F in L . and |DXg,| —
|DXp| in duality with Cps(Z).

A proof of the technical result below can be found in [7].

Proposition 1.27. Let us fir p=1,2.
1) For any fi,g; € i, ;) such that f; — | € , and g; — g € , [t) strongly in
i) F LP(X h th LP(Y, i d LP(Y, i ly i
LP one has f; + g; — f + g strongly in LP.
(i) If f; — f and g; — g in L?-strong then fig; — fg in L*-strong.
(it) If fs — f in L'-strong and sup;ex || fill oo (x; mp) < 00 then | fill p2(x, miy = 1fll L2y 10
particular f; — f in L?-strong.

Let us present a compactness result for sets with finite perimeter that is partially taken from
[2].

Proposition 1.28. Let FE; C X; be sets of finite perimeter satisfying

sup Per(F;, By (z;)) < 0.
ieN

Then there exists F C'Y of finite perimeter such that, up to extract a subsequence, E; N Bi(x;) —
F N By(y) in L'-strong and

li_minf/gd|DXEi| > /gd\DXF|, Jor any g € C(Z), nonnegative with supp(g) C By 2(y).
11— 00
(1.17)
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If we further assume that

leglo |DXE,| (B1/2(7:)) = |DXF| (B1/2(y)), (1.18)
then (1.17) improves to
i [ gdDxe| = [gdIDXel, for any g € C(2) with supp(9) € Bry). (119)

Proof. The convergence F; N By (z;) — F N Bi(y) in L'-strong up to subsequence can be obtained
arguing as in the proof of [2, Corollary 3.4].

Inequality (1.17) follows from [2, Proposition 3.6] along with a localization argument that we
sketch briefly. For any i € N, using Lemma 1.14 we build a good cut-off function »; € Lip(X;, d;)
satisfying n; = 1 in Byjo(z;) and n; = 0 in X; \ Bs4(z;). By Proposition 1.21, up to extract a
subsequence, we can assume that 7; — 7., € Lip(Y, p) uniformly and in L2-strong. It is easily
seen that 7. = 1 in By 3(y) and 7. = 0 in Y\ Bi(y). The sequence (1;Xg, ); satisfies

NiXE, — NeoXr in L'-strong and sup|D(n:Xg,)|(X;) < oo,
ieN

thanks to Proposition 1.27(ii) and standard calculus rules. Applying [2, Proposition 3.6] to the
sequence (17;Xg,); we get (1.17).

Inequality (1.19)) is a weak convergence result in the ball By /5(y) C Z, which can be proved
arguing as in the proof of [2, Corollary 3.7] taking into account (1.17) and (1.18). O

Let us now introduce a notion of H!2-convergence along with its local counterpart.

Definition 1.29. We say that f; € H»?(X;,d;, m;) are weakly convergent to f € HY2(Y, o, 1) if
they converge in L?-weak and sup; Chi(fi) < +o00. Strong HY2-convergence is defined asking that
fi conwerge to f in L?-strong and lim; Ch'(f;) = Ch(f).
Definition 1.30. We say that f; € HY?(Bgr(x;),d;,m;) are weakly convergent in H? to f €
HY2(Bgr(y), 0,1t) on Br(y) if f; are L*-weakly (or L*-strongly, equivalently) to f on Br(y) with
sup;en || fill i < 0o. Strong convergence in H? on Br(y) is defined by requiring

fm [ wiPam= [ osPan

170 ) Br(wi) Br(y)

Let us now collect results from [3] that will play a role in this note.

Lemma 1.31 ([8, Lemma 2.10]). For any f € Lip.(Br(y),0) there exist f; € Lip.(Br(z;),d;)

satisfying

sup [[[V filll oo (x, my) < 00
1€EN
and strongly convergent to f in HV2.

Theorem 1.32 ([8, Theorem 4.4]). Let f; € D(A, Br(z;)) with
sup [ (AP 4 IVAR + (A dms < o,
i€N J Br(zs)
and let f be an L?-strong limit function of f; on Br(y). Then:
(i) f € D(A,Br(y)):
(ii) Af; — Af on Br(y) weakly in L?;
(iii) |V fi]> = |[Vf|? on Br(y) strongly in L'.

Proposition 1.33 ([3, Corollary 4.12]). Let f € HY2(Br(y), 0,1t) be a harmonic function (i.e.,
f € D(A, Br(y)) with Af = 0). Then, for any 0 < r < R there exist f; € H"?(B,.(x;),d;, m;)
harmonic such that f; — f on B,.(y) strongly in H2.
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1.3. Normed modules. Let (X,d, m) be a metric measure space. We begin by briefly recalling
the definitions of normed module over (X,d, m), which have been introduced in [27] and are in
turn inspired by the theory developed in [50].

Let R be either L>(m) or L°(m). Let .# be a module over the commutative ring R. Then an
LP-pointwise norm on A , for some p € {0} U1, 00), is any mapping |- | : .# — LP(m) such that
|[v| >0 for every v € .4, with equality if and only if v = 0,
v+ w| < |v|+ |w| for every v,w € A, (1.20)
|fv] = |fllv] forevery f € Randv e .,

where all (in)equalities are in the m-a.e. sense. We shall consider two classes of normed modules:
e LP(m)-NORMED L°°(m)-MODULES, WITH p € [1,00). A module .#Z? over L>°(m) endowed
with an LP-pointwise norm |- | such that ||v]|_z» := || [v] HLP(m) is a complete norm on .Z7?.
e L%(m)-NorRMED L°(m)-MODULES. A module .#° over L°(m) endowed with an L°-pointwise
norm |-| such that d_go (v, w) := [‘min {|[v—wl|,1} dm’ (where m’ is any probability measure
that is mutually absolutely continuous with m) is a complete distance on .#°.
We refer to [29] for an account of the abstract normed modules theory on metric measure spaces.
Assume (X,d, m) is infinitesimally Hilbertian, i.e., its Sobolev space H?(X,d,m) is Hilbert.
Then a key example of normed module on X is represented by the tangent module L°(TX),
which is characterized as follows: there is a unique couple (L°(T'X),V), where L%(TX) is an
L%(m)-normed L°(m)-module and V : H%2(X) — L°(TX) is a linear gradient map, such that the
following hold:

|V f| coincides with the minimal relaxed slope of f for every f € H'?(X),

{ > Xg Vi
i=1

For any exponent p € [1,00], we set LP(TX) := {v € L°(TX) : |[v| € LP(m)}. It can be readily
checked that the space LP(TX) has a natural LP(m)-normed L* (m)-module structure (for p < 00).

(E;)i—; Borel partition of X, (f;)i=, C HI’Q(X)} is dense in L(TX).

1.3.1. Second order calculus over RCD spaces. Gigli in [27] has developed a second order calculus

for RCD(K, 00) metric measure spaces. The notions of Hessian and covariant derivative have been

introduced as bilinear forms on L?(TX), along with the spaces H*2(X,d,m) C H"?(X,d,m) and

HE*(TX) C L*(TX), see [27, Definition 3.3.1, Definition 3.4.1, Definition 3.3.17, Definition 3.4.3].
Let us recall that, as proved in [27, Proposition 3.3.18], we have the inclusion

D(A) € H*?*(X,d, m). (1.21)

Moreover, assuming (X, d, m) to be RCD(K, N) m.m.s., one has the local estimate

/ | Hess f[2 dm < Ciy x / ASP dm + inf/ V2 —m|dm | —K [ [Vdm,
By (x) Bao(x) meR J B, () Bs(x)

(1.22)
that can be checked integrating the improved Bochner inequality proved in [34] against a good
cut-off function (see Lemma 1.14 above).

Let us recall that the Hessian enjoys the following locality property that has been proved in
[27, Proposition 3.3.24].

Proposition 1.34. Given f1, fo» € H>%(X,d, m) it holds
| Hess f1| = |Hess fa| m-a.e. in {f1 = fa}.
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In addition we shall use the following inequality that has been proved in [27, Proposition 3.3.22]:
|V(Vf-Vg)| < |Hess f| [Vg| + |Hess g| |[Vf| for any f,g € H**(X,d,m). (1.23)

1.3.2. Module with respect to the capacity measure. We recall a variant of the notion of L°-normed
L%-module — where the Borel measure m is replaced by the capacity — which has been proposed in
[22]. Fix a metric measure space (X, d, m). The space of all Borel functions on X — considered up to
Cap-a.e. equality — is denoted by L°(Cap). If continuous functions are strongly dense in H?(X)
(this condition is met, for instance, if the space is infinitesimally Hilbertian), then there exists a
unique “quasi-continuous representative” map QCR : H'2?(X) — L°(Cap) that is characterized
as follows: QCR is a continuous map, and for any f € H%?(X) it holds that QCR(f) is (the
equivalence class of) a quasi-continuous function that is m-a.e. coinciding with f itself. Let us
recall that a function f : X — R is said to be quasi-continuous if for any ¢ > 0 there exists a set
E C X with Cap(F) < e such that f: X \ F — R is continuous. We refer to [22, Theorem 1.20]
for a proof of this result.

Given a module .#c,p over the ring L°(Cap), we say that a mapping | - | : .#cap — L°(Cap)
is a pointwise norm provided it satisfies the (in)equalities in (1.20) in the Cap-a.e. sense for any
choice of v,w € Mcap and f € L°(Cap). Then the space #cap is said to be an LY(Cap)-normed
L°(Cap)-module if it is complete when endowed with the distance

dtten (0,0) = 3 !

= 2k max {Cap(Ax), 1} J 4,

min {|v — w|, 1} dCap,

where (Ay)g is any increasing sequence of open subsets of X having finite capacity that is chosen
in such a way that any bounded set B C X is contained in Ay for some k € N sufficiently big.

Let us recall, since this fact plays a crucial role in the discussion below, that |Vf|2 € HY?(X)
for any f € Test(X) (see [10]), and thus |V f| € HY?(X) as well (see [22]). In particular, for any
f € Test(X), |V f] admits a quasi-continuous representative.

Theorem 1.35 (Tangent LY(Cap)-module [22]). Let (X,d,m) be an RCD(K,o00) space. Then
there exists a unique couple (L%ap(TX),@), where LY, (TX) is an L°(Cap)-normed L°(Cap)-

” Cap
module and V : Test(X) — LY

Cap(T'X) is a linear operator, such that the following hold:

IVf| = QCR(|Vf|) in the Cap-a.e. sense  for every f € Test(X),

{ZXEn@fn

neN

(En)n Borel partition of X, (fn)n C Test(X)} is dense in L%ap(TX).

The space L%ap (T'X) is called capacitary tangent module on X, while V is the capacitary gradient.

Fix any Radon measure p on a m.m.s. (X,d, m) and suppose that y < Cap. Then there is a
natural projection m, : L°(Cap) — L°(u). Given an L°(Cap)-normed L°(Cap)-module ¢y, we
define an equivalence relation ~, on .#c.p as follows: given any v, w € #cap, we declare that

v~y w <= |v—w| =0 holds p-a.e. on X.

Then the quotient .#)) := Mcap/ ~, inherits a natural structure of L°()-normed L°(u)-module.
Call 7, : Mcap — ///S the canonical projection. Moreover, for any exponent p € [1,00) we define

M= {ve ‘//l;? | v] € LP(u)}. (1.24)

It turns out that .Z} is an LP(pu)-normed L*(u)-module. Notice that |7, (v)| = m,(|v[) holds in
the p-a.e. sense for every v € Mcap.
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Lemma 1.36. Let (X,d,m) be a m.m.s., Mcap an L°(Cap)-normed L°(Cap)-module. Fiz a finite
Borel measure > 0 on X such that p < Cap. Let V' be a linear subspace of Mcap such that |v]
admits a bounded Cap-a.e. representative for every v € V. and

V= { Z XE, Un

neN

(En)nen Borel partition of X, (vn)nen C V} is dense in Mcap.

Then for any p € [1,00) it holds that

W= { iinﬁﬂ(vi)

i=1

n €N, (E;)j=; Borel partition of X, (v;)j—; C V} is dense in M.

Proof. Fix v € .4F and € > 0. Since [v[? € L'(u), there is § > 0 such that ( [}, [v[? du)l/p <e/3
holds for any Borel set E C X with pu(E) < 6. Choose any 0 € .#cap such that 7,(7) = v. We
can find (%) C V so that |0, — 8| — 0 in L°(Cap). Hence |7, (0) — 7,(0)| = mu(|ox — 0]) = 0
in LY(pn). Thanks to Egorov theorem, there exists a compact set K C X with u(X \ K) < ¢ such
that (possibly taking a not relabeled subsequence) it holds that ’7?”(17;@) — v{ — 0 uniformly on K.
Consequently, by dominated convergence theorem we see that Xk, (0r) — Xxv in .Z}. Then we
can pick k € N so that the element w := vy, satisfies HXKﬁ'M(u’)) - XKUH//(ﬁ <¢e/3. If w is written
as ., cn XE, Wn, then we have Xg@,(w) = >, cyXknE, Tu(Wy,). By dominated convergence
theorem we know that for N € N sufficiently big the element z := 25:1 XKnE, Tu(W,) € W
satisfies ||z — XKﬁM(w)H.//zﬁ < ¢/3. Therefore, we conclude that

Iz = vllgzr < ||z - XKﬁu(w)\fﬂﬁ + || Xx 7 (@) — XKUH//{E +IXx\&vll.ap <e,
thus proving the statement. O

1.4. Hodge Laplacian of vector fields on RCD spaces. Let (X,d, m) be an RCD(XK, co) space.
Consider the space Hy*(TX) and the Hodge Laplacian Ay : D(Ag) € Hy*(TX) — L*(TX),
which have been defined in [27, Definition 3.5.13] and [27, Definition 3.5.15], respectively (cf. the
first paragraph of [29, Section 2.6] for the identification between vector and covector fields).

It follows from its definition that the Hodge Laplacian is self-adjoint, namely that
/(Am},u}) dm = /(u Apw)dm  for every v,w € D(Ap). (1.25)

Let us consider the augmented Hodge energy functional & : L?>(TX) — [0, 400], which is defined
in [27, eq. (3.5.16)] (up to identifying L?(T*X) with L?(TX) via the musical isomorphism). Then
we denote by (hp ¢)¢>0 the gradient flow in L?(T'X) of the functional En. This means that for any
vector field v € L?*(TX) it holds that ¢ — hy ,(v) € L*(TX) is the unique continuous curve on
[0, +00) with hgo(v) = v, which is locally absolutely continuous on (0, +00) and satisfies

d
hy:(v) € D(Ap) and &tht(v) = —Ayhpu,(v) for every t > 0.
Cf. the discussion that precedes [27, Proposition 3.6.10]. It also holds that
hu(Vf) = VP f forevery f € H**(X) and t > 0. (1.26)

Finally, we recall that vector fields satisfy the following Bakry—Emery contraction estimate (see
[27, Proposition 3.6.10]):

lhie () < e 251 P,(ju]?) m-a.e. for every v € L*(TX) and t > 0. (1.27)

Lemma 1.37 (hy, is self-adjoint). Let (X,d, m) be an RCD(K, c0) space. Then it holds that

/<hH7t(’U),w> dm = /(v, he(w))dm  for every v,w € L*(TX) and t > 0. (1.28)
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Proof. Fix v,w € L?(TX) and t > 0. We define the function ¢ : [0,t] — R as

o(s) = /(hH,S(v), hii—s(w))dm  for every s € [0,¢].

Therefore, the function ¢ is absolutely continuous and satisfies

o(s) = — / (Anthirs (0), hir.p_s(w)) dm + / (hit.o(0), Arthir oy (w)) dm

(125) 0 forae.t>0.

Then ¢ is constant, thus in particular [(hy(v), w)dm = ¢(t) = ¢(0) = [(v, hu,¢(w)) dm. O
Proposition 1.38. Let (X,d, m) be an RCD(K, 00) space. Then for any v € D(div) it holds that
hu(v) € H3*(TX) N D(div) and div(hg(v)) = P,(div(v))  for everyt > 0.

Proof. First of all, observe that hy,(v) € Hy*(TX) C H5*(TX) by [27, Corollary 3.6.4]. More-
over, let f € H"2(X) be given. Then it holds that

/(Vf, hie(v)) dm (27 /(hmt(Vf),v) dm 129 /(VPJ,U) dm = f/Ptfdiv(v) dm
- / £P,(div(v)) dm.

By arbitrariness of f, we conclude that hy . (v) € D(div) and div(hg :(v)) = Pi(div(v)). O

2. A GAUSS-GREEN FORMULA ON RCD SPACES

Let (X,d,m) be an RCD(K, N) m.m. space and E C X a set of finite perimeter. We recall
that, by Lemma 1.10, one has |DXg| < 2", so accordingly |DXg| < Cap by Theorem 1.12.
It thus makes sense to consider the projection mpy, : L°(Cap) — L°(|DXg|). Recall also that
QCR : H'2(X) — L°(Cap) stands for the “quasi-continuous representative” operator. Then let
us define

trg : HY*(X) = L°(|DXgl), trp:=mpy, o QCR,

the trace operator over the boundary of E. Observe that trg(f) € L*(|DXg|) holds for every test
function f € Test(X).

This being said, let us state the two main results of this section. The first one gives existence
and uniqueness of the tangent module over the boundary of a set of finite perimeter. The second
theorem provides a Gauss—Green formula tailored for finite-dimensional RCD spaces along with
a strong approximation result for the exterior normal of sets with finite perimeter. This approx-
imation result, whose proof heavily relies on the abstract machinery of normed modules and on
functional-analytic tools, plays a key role in the study of rectifiability properties for boundaries of
sets with finite perimeter that we are going to perform in the last section of this note.

Let us point out that in the very recent [13] the problem of obtaining a Gauss—Green formula on
RCD(K, o0) spaces has been treated. A comparison between our stronger result, heavily relying
on finite dimensionality, and those in [13] is outside the scope of this note.

Theorem 2.1 (Tangent module over OF). Let (X,d, m) be an RCD(K, N) space. Let E C X be
a set of finite perimeter. Then there exists a unique couple (LQE(TX), v) ~ where L%(TX) is an
L%(|DXxgl|)-normed L°°(|DXg|)-module and V : Test(X) — L% (T X) is linear — such that:

i) The equality |V f| = trg(|Vf|) holds |DXg|-a.e. for every f € Test(X).

i) { >0 Xe, Vi | (Ei)iy Borel partition of X, (fi)i—y C Test(X)} is dense in L%(TX).
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Uniqueness is intended up to unique isomorphism: given another couple (.4 ,N') satisfying i), ii)
above, there exists a unique normed module isomorphism ® : L% (T X) — .# such that doV =V'.
The space L%(TX) is called tangent module over the boundary of E and V is the gradient.

We denote by QCR : H, é’Q (TX) — L¢,,(TX) the “quasi-continuous representative” map for
Sobolev vector fields, whose existence has been proven in [22, Theorem 2.14] (see [22, Definition
2.12] for a notion of “quasi-continuous vector field” suitable for this context). Moreover, with a
slight abuse of notation we define

trp . Hy (TX)NL®(TX) = Ly(TX), tre = px, © QCR.
Notice that |trg(v)| = trg(|v|) holds in the |DXgl|-a.e. sense for every v € HG*(TX) N L>®(TX).

Theorem 2.2 (Gauss—Green formula on RCD spaces). Let (X,d, m) be an RCD(K, N) space and
E C X be a set of finite perimeter such that m(E) < +oo. Then there exists a unique vector field
vp € L4(TX) such that |vg| =1 holds |DXg|-a.e. and

/ div(v)dm = — / (trg(v),vg)d|Dxg| forallve H5*(TX) N D(div) with [v| € L=(m).
E

(2.1)
Moreover, there exists a sequence (v,)n, C TestVg(X) of test vector fields over the boundary of

E (see Lemma 2.7 below for the precise definition of this class) such that v, — vg in the strong
topology of L%(TX).

Remark 2.3. In the case in which X is a Riemannian manifold and E C X is a domain with
smooth boundary, it holds that L% (T X) is the space of all Borel vector fields over X which are
concentrated on the boundary of E and 2-integrable with respect to the surface measure and, in
this case, V is the classical gradient for smooth functions.

Remark 2.4. The tangent L°(Cap)-module L, (TX) is a Hilbert module; cf. [22, Proposition
2.8]. Therefore, it is immediate to see by passing to the quotient that L% (T X) is a Hilbert module

as well.
The remaining part of this section is dedicated to the proofs of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. UNIQUENESS. Call W the family of elements of L% (T X) considered in item
ii). Givenany w =1 | Xg,Vf; € W, we are forced to set ®(w) := 31" | X, V' fi. Well-posedness
of such definition stems from the | DX gl|-a.e. identity

Z XE; v/fi = Z XE;
=1

i=1
which also shows that ® preserves the pointwise norm. Then ® is linear continuous, thus it can
be uniquely extended to a linear continuous map ® : L%(TX) — .# by density of W in L%(TX).
By an approximation argument, it is easy to see that the extended ® preserves the pointwise norm

Vil = |,

V'fil = Xetre(VEl) = Xg,
i=1 i=1

and is an L°°(|DXgl|)-module morphism. Finally, the map ® is surjective, because its image is
dense (as . satisfies ii)) and closed (as ® is an isometry). Consequently, we have proved that
there exists a unique normed module isomorphism ® : L% (TX) — .# such that ® oV = V'.

EXISTENCE. Let us consider the tangent L%(Cap)-module L, (TX) and the relative capaci-
tary gradient operator V : Test(X) — L2, (TX) associated to the space (X,d,m); cf. Theo-
rem 1.35. We define LY (TX) as LOCap(TX)/ ~pX| and the L?(|DXp|)-normed L*(|DXg|)-

module L2,(TX) as in (1.24). Moreover, we define the differential V : Test(X) — L%(TX) as
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V =T pxy| © V. Clearly, the map V is linear by construction. Given any function f € Test(X),
it |DXgl-a.e. holds
IV f1 = 170X (VO = Tox e IV ) = 7ox, (RCR(VA))) = tre(IV f]),

which shows that i) is satisfied. We also set V := Test(X) and the associated space V C L, (T X)
as in the statement of Lemma 1.36. By the defining property of the cotangent Cap-module we
know that V is dense in L%ap(TX ), whence Lemma 1.36 ensures that W is dense in L%(TX).
This means that property ii) holds. Therefore, the existence part of the statement is proven. [

To prove Theorem 2.2 we need some auxiliary results. Let us begin with the following one,
which was obtained as an intermediate step in the proof of [2, Theorem 4.2].

Lemma 2.5. Let (X,d,m) be an RCD(K, N) space. Let E C X be a set of finite perimeter. Then

, VPXg|
1 1— xe [V PXE| P*|DXg|dm = 0. 2.2
tl\l;%/‘ e Pt*lDXE| t‘ E‘ ( )

Lemma 2.6. Let (X,d,m) be an RCD(K, N) space. Let E C X be a set of finite perimeter. Then

/fPt*|DXE| dm = /trE(Ptf) d|DXg| for every f € H**(X)NL>®(m) and t > 0. (2.3)
Moreover, it holds that

tli\rr(l)/trE(Ptf)d|DXE| = /trE(f)d|DXE| for every f € HY*(X) N L>®(m). (2.4)

Proof. First of all, let us prove (2.3). Fix any f € H»?(X) N L*(m) and t > 0. We claim that

3 (fn)n C Lipyy(X,d) bounded in L>®(m) :  f,, — f strongly in H"?(X), weakly™ in L°°(m).
(2.5)
To prove it, we argue as follows. Given any s > 0, the function P, f has a Lipschitz representative
(still denoted by Psf) thanks to the L°°-Lip regularisation of the heat flow. Since {Psf}s>0 is
bounded in L*(m) by the weak maximum principle and Ps|V f|> — |V f|? strongly in L!(m), we
can find a function G € L*(m) and a sequence s, \, 0 such that P |V f|? < G holds m-a.e. for all
n and P, f — f weakly* in L*°(m). Fix Z € X and for any n € N choose a compactly-supported

1-Lipschitz function 7, : X — [0, 1] such that 7, = 1 on B, (Z). Therefore, standard computations
(based on the Leibniz rule V (1, Ps, ) = 1,V Ps,, f+Ps,, f V1, the dominated convergence theorem,
and the Bakry-Emery contraction estimate) show that f, := n,Ps, f € Lip..(X,d) satisfy (2.5).
Now observe that P, : HY?(X) — HY2?(X) is continuous, as a consequence of the Bakry-Emery
contraction estimate and the continuity of P, : L?(m) — L?(m). This ensures that P, f, — P.f
strongly in H12(X) as n — oo, whence we know from [22, Propositions 1.12, 1.17 and 1.19] that
(possibly passing to a not relabeled subsequence) QCR(P.f,,) — QCR(P;f) holds Cap-a.e., and
accordingly trg(P; f,) — tre(P;f) holds [DXg|-a.e.. Moreover, since |P; fn| < supy, || fll Lo (m) =:
C in the m-a.e. sense for all n € N, we deduce that ‘QCR(Ptfn)’ < C holds Cap-a.e. for all n € N,
and thus trg (P f,) < C holds |DXg|-a.e. for all n € N. All in all, we obtain (2.3) by letting n — oo
in [ f, Pf|Dxg|dm = [trg(P,f,)d|DXg|, which is satisfied thanks to the defining property of
P¥|DXgl; here we use the dominated convergence theorem and the L>°-weak* convergence f,, — f.

Let us now pass to the proof of (2.4). Fix f € H»?(X) N L>(m). By arguing as above, we see
that [trg(Pf)| < |||z (m) holds |[DXgl|-a.e. for all ¢ > 0, and that any given sequence &, N\, 0
admits a subsequence t,, \, 0 such that trg(P;, f) — tre(f) holds |[DXg|-a.e.. Therefore, by
dominated convergence theorem we conclude that lim, [tre(P:, f)d|Dxg| = [tre(f)d/DXs,
which yields (2.4). O
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Lemma 2.7 (Test vector fields over OF). Let (X,d, m) be an RCD(K, N) space. Let E C X be a
set of finite perimeter and finite mass. We define the class TestVg(X) C L%4(TX) of test vector
fields over the boundary of E as

n

TestVg(X) :=trg (TestV(X)) = {ZtrE(gi)?fi

i=1

n N, (F), (900 C Test<X>}.

Then TestV g(X) is dense in L%(TX).

Proof. By item ii) of Theorem 2.1, it suffices to show that each v € L%(TX) of the form v = XV f
— where E C X is a Borel set and f € Test(X) — can be approximated by elements of TestV g (X)
with respect to the strong topology of L% (TX). Fix € > 0 and choose a function h € Lip,(X)
such that ||h — XgllL2(px,|) < €/(2Lip(f)). Moreover, by exploiting [27, eq. (3.2.3)] we can find
a sequence (gn)n C Test(X) such that sup,, [|gn | feo@m) < +00 and g, — h in H"?(X). Hence, by
using the results in [22] we see that (up to a not relabeled subsequence) it holds trg (g, )(x) — h(z)
for |DXgl-a.e. € X. Accordingly, by applying the dominated convergence theorem we conclude
that |(trg(g.) — R)Vf| — 0 in L?(]DXg|). Now choose n € N so big that g := g, satisfies
| (tre(g) — h)?fHLQE(TX) < &/2. Hence, one has that

[tre(g)Vf — UHL%(TX) < || (tre(g) — h)?fHL%(TX) +|(h - XE)?fHL%(TX)
€ .
< 3 +1Ih = XellL2pxs) Lip(f) <e.
Given that trg(g)Vf € TestVg(X), the statement is achieved. O

The last ingredient we need is an improvement of Theorem 1.7 in the special case of RCD(K, o)
spaces. As we are going to see in the ensuing result, to obtain the total variation of a BV function it
is sufficient to restrict the attention only to those competitors that are Sobolev regular. The proof
is based on a parabolic approximation argument that builds upon the technical results developed
in Section 1.4.

Theorem 2.8 (Representation formula for |D f| on RCD spaces). Let (X,d, m) be an RCD(K, c0)
space and f € BV(X). Then it holds that

IDFI(X) = sup { [ #aiv(oyam

Proof. Call S the right hand side of the above formula. We know by Remark 1.6 that |Df|(X) > S.
In order to prove the converse inequality, fix any € > 0. Theorem 1.7 guarantees the existence
of a vector field v € D(div) — with |v|] < 1 in the m-a.e. sense and div(v) € L*°(m) — such
that [ fdiv(v)dm > |[Df|(X) — &/2. Now define v; := X" hy ((v) for every ¢ > 0. Notice that
v € Hé’2(TX) N D(div) by Proposition 1.38. Since div(v) € L>(m) and div(v;) = eXt P,(div(v)),
we deduce from the weak maximum principle that div(v,) € L>(m) as well. More precisely, one

ve HF(TX)N D(div), [v] <1 m-a.e., div(v) € Loo(m)}.

has [|div(ve)|| e (m) < €| div(v)|| poe (m) for all ¢ > 0. Moreover, the weak maximum principle
also guarantees that

(1.27)
lve] = e h s (v)] < VPi(Jv2) <1 in the m-a.e. sense.

Given that lim o div(v;) = div(v) in L?(m), we can find ¢,, \, 0 such that div (v, )(2) — div(v)(z)
holds for m-a.e. x € X. Being (div(vtn))n a bounded sequence in L (m), we can finally conclude
that lim,, [ fdiv(v,)dm = [ fdiv(v) dm by dominated convergence theorem. Therefore, there
exists n € N such that w := v, satisfies

/fdiv(w)dm>/fdiv(v)dm—%> IDf|(X) —e.
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This shows that |Df|(X) < S + ¢, whence |Df|(X) < S by arbitrariness of €, as desired. O

Proof of Theorem 2.2. First of all, let us define p; := P;|DXg|m for every t > 0. Recall that
e — |DXg| in duality with Cp(X) as t N\, 0. Let us also set

VP XEg
vy = X{P:IDXE|>0}m € LY(TX) for every t > 0.

It follows from the 1-Bakry-Emery estimate (1.13) that |DP,xg| < e X*PF|Dxg| holds m-a.e.,
thus accordingly v; € L>(TX) and |1;| < e~ & is satisfied in the m-a.e. sense. Call

V= {ve H*(TX)N D(div) | |v| € L*(m)}

and fix v € V. The Leibniz rule for the divergence ensures that ¢v € D(div) for any ¢ € Lip,(X),
so the usual integration-by-parts formula yields

/PtXE div(pv)dm = —/<p (VP Xg,v)dm = —/(p (v,vy)dpy  for all ¢ € Lipy(X). (2.6)

Moreover, observe that (v, ) € L™ (u:) and H<U’V’5>HLOO(M) < e K| |v]|| oo (m) for every ¢ > 0.
Let us call oy := (v, 14)us for all ¢ > 0. Fix any sequence t,, \, 0. Since p;, — |DXg| in duality
with Cy(X), we know that (i, ), is tight by Prohkorov theorem. Given that sup,, ||[(v, v, )| Lo, )
is finite, we deduce that (o}, ), is tight as well. By using Prohkorov theorem again, we can thus
take a subsequence (t,,); such that oy, — o in duality with Cy,(X) for some finite (signed) Borel

measure o on X. Since Lip,(X) is dense in Cy(X) and the identity in (2.6) gives

/goda = lim /gpdatnv = —/ div(epv)dm  for every ¢ € Lip,(X),
11— 00 N E

we see that o is independent of the chosen sequence (t,,);. Hence, o; — o in duality with Cp(X)
as t \, 0. Given any non-negative function ¢ € Cy(X), it thus holds that

fo

whence 0 < |DXg| and its Radon-Nikodym derivative L(v) := % belongs to L*(|DXg|).
Consequently, taking into account (2.6) we deduce that

<ty [ 1o, v0)|dpe < eV 1l vy Jiy [ e = <V ol [ olDXE,

/ div(pv) dm = —/<pL(v) d|Dxg| for every v € V and ¢ € Lip,(X). (2.7)
E
Furthermore, one also has that

}i\r‘% o {v,v)dps = /@L(v) d|Dxg| for every v € V and ¢ € Lip,(X). (2.8)

Observe that for any v € V and ¢ € Lip,(X), ¢ > 0 it holds that

\ [ 1wy [t

(2.8) ..

=" lim
t\0

. _ N 1 _ oKt d 2t yq

< tl\né(nsouL el [ 1= o o+ [ o )

(2.2)

. (2.3) .
<ty [ ololdu =ty [ e (Piele)) DX

2.4
(24 /cptrE(|v|)d\DXE\.
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In the last two equalities we used the fact that [v| € H%?(X). By arbitrariness of ¢, we obtain
that |L(v)| < trg(|Jv]) holds |[DXg|-a.e. for all v € V. Let us now define w : trgp(V) — L'(|DXxg|)
as

w(trg(v)) := L(v) for every v € V. (2.9)
The operator L : V — L*°(|DXg|) is linear by its very construction, whence by exploiting the
inequality |L(v)| < trg(|v]) we can conclude that w is well-posed, linear and satisfying

lw(v)| < |v| |Dxgl-ae. forevery v € trp(V).

Since TestV(X) C V and TestV g (X) is dense in L% (TX), we infer from Lemma 2.7 that trg()) is
a dense linear subspace of L% (T X). Therefore, we know from [27, Proposition 1.4.8] that w can be
uniquely extended to an element w € L% (T*X) := L%(TX)* satisfying |w| < 1 in the |[DXg/|-a.e.
sense. We denote by v € L% (TX) the vector field corresponding to w via the Riesz isomorphism.
By combining (2.7) (with ¢ = 1) and (2.9), we conclude that (2.1) is satisfied. It only remains to
show that |vg| > 1 holds |DXxgl-a.e.. In order to do it, just observe that Theorem 2.8 yields

2.1
|Dxg|(X) < sug /div(v)dm(:) su‘I)) —/<trE(v),VE>d|DXE| S/\VE|d|DXE|
\v|§1)1emia.e. P |v\§1}1€mla.e.
S |DXE|(X)a

whence each inequality must be an equality. This clearly forces the |[DXgl|-a.e. equality |vg| = 1.
The element v is uniquely determined by (2.1) as the space trg(V) is dense in L% (T X). Finally,
the last part of the statement is an immediate consequence of Lemma 2.7. O

3. UNIQUENESS OF TANGENTS FOR SETS OF FINITE PERIMETER

In this section we prove a uniqueness theorem (up to negligible sets) for blow-ups of sets with
finite perimeter over RCD(K, N) metric measure spaces. This has to be considered as a further
step in the direction of generalizing De Giorgi’s theorem to the framework of RCD spaces.

Let us recall the notion of tangent to a set of finite perimeter that has been introduced in [2].

Definition 3.1 (Tangents to a set of finite perimeter). Let (X,d,m) be an RCD(K,N) m.m.s.,
x € X and let E C X be a set of locally finite perimeter. We denote by Tan,(X,d,m, E) the
collection of quintuples (Y, o, u,y, F') satisfying the following two properties:
(a) (Y,o0,u,y) € Tan,(X,d,m) and r; | 0 are such that the rescaled spaces (X, r;1d7m;i,x)
converge to (Y, o, 1, y) in the pointed measured Gromov-Hausdorff topology;
(b) F is a set of locally finite perimeter in' Y with u(F) > 0 and, if r; are as in (a), then the

sequence f; = X converges in Li  to Xp according to Definition 1.24.

Let us point out that, up to a |DXg|-negligible set, one also has that the perimeter measures
on the rescaled spaces |DiXE| weakly converge to |DXp| in duality w.r.t. Cps. This statement,
which is part of [2, Corollary 4.10], plays a role in the rest of the note.

We are ready to state the main theorem of this section.

Theorem 3.2. Let (X,d,m) be an RCD(K,N) m.m.s. with essential dimension 1 < n < N,
E C X be a set of finite perimeter. Then, for |DXgl|-a.e. x € X, there exists k = 1,...,n such
that

Tan, (X,d, m, E) = {(R¥, deyer, e L7, 0%, {zx > 0})} .

Let us explain the strategy of its proof. The starting point of our analysis is [2, Theorem 4.3]
that we state below.
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Theorem 3.3. Let (X,d,m) be an RCD(K,N) m.m.s. and E C X be a set of locally finite
perimeter. Then E admits a Euclidean half-space as tangent at x for |DXg|-a.e. x € X, that is to
say

(Rk,deucl,ckﬁk,ok, {z) > 0}) € Tan,(X,d,m, E), for some k € [1, N].

After establishing Theorem 3.3 the state of the art in the theory of sets of finite perimeter
was similar to that of the structure theory of RCD spaces after [31], where the authors proved
existence of a Euclidean tangent space up to negligible sets. The content of this and of the next
section instead can be seen as a counterpart in codimension 1 of the main results obtained by
Mondino—Naber in [42].

Also the main ideas underlying the proofs of the uniqueness of tangents and the rectifiability
result are quite similar to those implemented in [12]. As in that case, the existence of a Euclidean
tangent along a fixed scale is a regularity information which can be propagated at any location
and scale up to a set which is small w.r.t. the relevant measure, yielding uniqueness of tangents.

From a technical point of view, our construction heavily relies on the use of the so-called
harmonic 0-splitting maps, a kind of good replacement for coordinate functions within the theory
of lower Ricci bounds, that played a crucial role in the development of the theory of Ricci limits
(see [16, 17, 18] and the more recent [20, 19]). Since, up to our knowledge, this is the first time they
are explicitly used in the RCD framework, we dedicate Section 3.1 below to establish some of their
properties. With this tool at our disposal, the propagation of reqularity step is a consequence of a
weighted maximal argument which was suggested in [20]. Let us point out that, in order for the
whole procedure to work, the fact that perimeter measures have codimension 1 (see Lemma 1.10)
and the fact that harmonic functions satisfy L? Hessian bounds play a key role. The strategy
would completely fail if perimeter measures had codimension bigger or equal than 2.

3.1. Splitting maps and propagation of regularity. This subsection is devoted to the study
of J-splitting maps. Let us recall that their introduction in the study of spaces with lower Ricci
curvature bounds dates back to [15].

Definition 3.4. Let (X,d,m) be an RCD(—1, N) metric measure space, x € X and é > 0 be fized.
We say that u := (u1,...,uy) : B.(z) — RF is a §-splitting map provided it is harmonic (meaning
that u, € D(A, B(2)) with Au, =0 for any a =1,...,k) and satisfies:

(i) uq is Cn-Lipschitz for any a =1,... k;
(i) r2 fBT(m) | Hess ug|?dm < § for any a=1,... k;
(iii) fBT(:z:) |Vug - Vup — dgpldm < § for any a,b=1,... k.

Remark 3.5. Let us clarify the meaning of |Hessu| when uw : B,.(x) — R is harmonic and
not necessarily globally defined. For any ball Bas(y) C B,(x) we take a good cut-off function n
according to Lemma 1.1/ that satisfies n = 1 in Bg(y) and n =0 in X \ Bas(y). As we already
remarked in Section 1.2.2, one has nu € D(A), therefore nu € H*>*(X,d,m) as a consequence of
(1.21). We can now set |Hessu| := |Hess(nu)| in Bs(y). Observe that this is a good definition
thanks to the locality of the Hessian (see Proposition 1.3/).

Remark 3.6. With respect to the definition of §-splitting map which is nowadays adopted within
the theory of Ricci limits (see for instance [20, Definition 1.20]) the main difference is condition
(i). Therein the sharper bound |Vu| < 1+ 4§ is imposed in the definition though, as they observe,
it can be obtained as a consequence of the bound |Vu| < Cn and of the other defining properties

(when working in the smooth framework).
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3.1.1. d-splitting maps and e-closeness. The power of §-splitting maps in the theory of lower Ricci
bounds is that, roughly speaking, they allow to pass from analysis to geometry and vice-versa.
Namely, the existence of a J-splitting map with & components on a Riemannian manifold with
Ricci bounded below by —d can be turned into e-GH closeness (in the scale invariant sense) to a
space which splits a factor R¥ and vice-versa (see [15] and [20, Lemma 1.21]).

Below we wish to provide rigorous statements of the above-mentioned results in the framework
of RCD spaces. The convergence and stability results of [7, 8] allow us to argue by compactness
avoiding the explicit constructions of [15]. The price we have to pay is that the results become
less local in nature w.r.t. [20, Lemma 1.21]. Still they are sufficient for our purposes.

The first result presented below, Proposition 3.7, corresponds to the rough statement “the
existence of a d-splitting map with k£ components implies that the m.m.s. is e-close to a product
R* x Z”. The second one, Proposition 3.9, ensures that, over an RCD(—¢, N) space e-close to a
product R* x Z, one can build a §-splitting map with k& components.

In order to shorten the notation for the rest of the paper we write (R* x Z, (0%, 2)) to denote
the p.m.m.s. (R¥ x Z,deyer X dz, L8 x mz, (0%, 2)).

Proposition 3.7. Let N > 1 be fized. Then, for any € > 0, there exists 0 = oy, > 0 such that,
for any RCD(—6, N) m.m.s. (X,d, m) and for any x € X, if there exists a map u : By—1(x) — R¥
such that u is a &-splitting map over Bs(z) for any 0 < s < 571, then

dpman (X,d,m,z), (R x Z,(0%,2))) < ¢
for some pointed RCD(0, N — k) metric measure space (Z,dz,mz, z).

Proof. We wish to prove the sought conclusion arguing by contradiction. To this aim let us suppose
that, for any n > 1, there exist an RCD(—1/n, N) m.m.s. (X,,d,, m,), a point z,, € X,, and a map
Up : Bn(r,) — R¥ which is a 1/n-splitting map when restricted to Bs(x,) for any 0 < s < n. Up
to extracting a subsequence, that we do not relabel, we can assume that (X,,,d,, m,, z,) converge
in the pmGH-topology to an RCD(0, N) p.m.m.s. (X, doo, Mo, Too). Here we have used the
stability and compactness property of RCD(K, N) spaces, cf. Remark 1.13. We claim that X
splits off a factor R*. Observe that, if this is the case, then we reach the sought contradiction.
The rest of this proof is dedicated to establishing the claim.

We wish to prove that there exists a function v : X, — R¥ such that, letting v := (v?, ... v¥),
it holds that v’ is Lipschitz, harmonic and with vanishing Hessian for any ¢ = 1,...,%k and
Vo' - Vvl = §;; moc-a.e. for any 4,5 = 1,..., k. The function v will be obtained as a limit function

of the 1/n-splitting maps u,, : Bn(r,) — R*. Indeed, since by the assumption in the defining
condition of a §-splitting map the wu,, are Cy-Lipschitz for any n € N and we can assume without
loss of generality that u,(z,) = 0% for any n € N, by a generalized version of the Ascoli-Arzela
theorem (Proposition 1.21) we can infer the existence of v : X, — R¥ such that u,, converge to v
locally uniformly on Bg(z,) for any R > 0. As a consequence, it is easy to check that u,, converge
strongly in L? (see Definition 1.22) to v on Bg(z,) for any R > 0. Since the functions u,, are
harmonic on Bsog(x,), at least for n sufficiently large, by Theorem 1.32 and Proposition 1.27 it
follows that v is harmonic and that, for any R > 0 and i,5 = 1,...,k,
][ |Vo' - Vol — 6| dmy, = lim |Vul, - Vul, — 65| dm,, = 0.
Br(#oo) "% JBr(zn)

Hence Vo' - VoI = dij Moo-a.e. on Xo.

Since (Xoo,doo; Meo) is an RCD(0, N) m.m.s., from Av’ = 0 and |Vvi’2 =1 we infer by (1.22)
that Hessv® = 0, for any ¢ = 1,...,k. All in all we get by a standard argument (cf. the proof of
[11, Lemma 1.21]) that X, splits a factor R¥, as we claimed. O
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Corollary 3.8. Let N > 1 and K € R be fized. For any e > 0 there exists § > 0 such that, for any
r >0, for any RCD(K, N) m.m.s. (X,d,m) and for any x € X, if there exists u : B.(z) — R* such
that u : Bs(x) — R¥ is a §-splitting map for any 0 < s < r, then for any (Y, 0, 1, y) € Tan,(X,d, m)
there exists an RCD(0, N — k) p.m.m.s. (Z,dz,mz, z) such that

dpman (Y, 0,1,9), (Z x RF, (2,0))) < e.

Proof. Choose 6 = §(K, N,e/2) given by Proposition 3.7. If (Y, g, , y) € Tan, (X, d, m) then there
exists t > 0 such that t~1r > §71, 2 |K| < § and

dpmGH ((th_1d7m;tmx)7(1/7 Qvl’éay)) < 8/2 (31)

Thanks to Proposition 3.7, applied to (X,¢~'d,mj, z), there exists an RCD(0, N — k) p.m.m.s.
(Z,dz,mz, z) such that

dpmer (X, t71d,ml, 2), (Z x R, (2,0%))) <e/2. (3.2)
The conclusion follows from (3.1) and (3.2) by the triangle inequality. O

Proposition 3.9. Let N > 1 be fized. For any é > 0 there exists € = ens > 0 such that, if
(X,d,m) is an RCD(—¢, N) m.m.s., x € X and

dpmGH ((X,d,m, J,‘) s (Rk X 7, (Ok,z))) <e€

for some pointed RCD(0, N — k) metric measure space (Z,dz, myz,z), then there exists a §-splitting
map u : Bs(x) — RF.

Proof. We are going to build upon the local convergence and stability results that we recalled in
Section 1.2.3, arguing by contradiction.

Suppose the conclusion to be false, then we could find a sequence of pointed RCD(—1/n, N)
m.m. spaces (X, d,, M,, z,) such that, for some RCD(0, N — k) pointed m.m.s. (Z,dz, mz, z) it
holds that

dpmar (Xn, dn, My, 2,), (R x Z,(0%,2))) < 1/n

for any n > 1. Furthermore there should be dg > 0 such that there is no §o-splitting map over
Bs(zy,) for any n > 1.

Let v : Z x R*¥ — RF be defined by v(p,z) = x and denote by v!,...,v* its components (they
are the coordinate functions of the split factor). Observe that Av® = 0 for any i = 1,...,k and
Vot Vol = §;; for any i,j = 1,..., k. In particular, v’ is harmonic on Big((z,0%)). Hence we can
apply Proposition 1.33 to get harmonic functions v?, : Bg(x,) — R that converge strongly in H %2
to v’ on By((z,0%)).

Observe that, thanks to [35, Theorem 1.1], we can assume that v?, is Cy-Lipschitz for any n € N
and for any i = 1,..., k. We wish to prove that v, = (v},...,vF) is a dg-splitting map on Bs(z,,)

for n sufficiently big.

To this aim let us recall that Theorem 1.32 yields strong L'-convergence of Vvl - Vvl to di; on
By((2,0%)) and on Bs((z,0%)) for any i,j = 1,...,k (as a consequence of the L! convergence of
Vol - Vol and of V(vi, 4+ vi) - V(v +v)). In particular, due to the uniform boundedness of the
gradients we obtained above, we get

lim |V, - Vvl — 65| dm,, =0,

n—oo Br(zn)
for any 4,7 = 1,...,k and for any R = 5,9. The choice R = 5 gives that the second defining
condition of d-splitting map is satisfied for n sufficiently large and we are left with the verification



RECTIFIABILITY OF THE REDUCED BOUNDARY OVER RCD SPACES 27

of the third one. We wish to prove that

lim |Hess vl ’2 dm,, =0

n—oo Bs(z,)
for any ¢ = 1,...,k. To this aim we choose cut-off functions 7,, for the pairs Bs(x,) C Bg(x,) as
in Lemma 1.14 and, taking into account (1.22)

. m, (B .
/ An,, (’v%f _ 1) dm,, + C’NM > / |Hessv;|2 dm,, (3.3)
Bo(zn) n Bs(zn)

for any ¢ = 1,...,k and for any n > 1. Since, |An,| < Cn by construction and as we already

observed, |Vfqu | ?

— 1 converge to 0 in L'(By) and they are uniformly bounded, we get that the
left-hand side in (3.3) converges to 0 as n — co. Hence

lim |Hess vk |2 dm,, =0,

n—o00 B5(mn)

as we claimed. O

Arguing by scaling starting from Proposition 3.9, it is possible to obtain the following statement.
Corollary 3.10. If (X,d,m) is an RCD(K, N) m.m.s., r? |K| < ¢ and
dpman ((X,r7d,ml,z), (RF x Z,(0%,2))) <e

for some pointed RCD(0, N —k) metric measure space (Z,dz,mz, z), then there exists a §-splitting
map u : Bs,.(x) — RF.

3.1.2. Propagation of the §-splitting property. In the next result we are concerned with the propa-
gation of the property of being a d-splitting map. We are going to prove that, if o € (0, 2), outside
a set of small codimension-a content any J-splitting map at a given scale is a CNyaél/ 4 splitting
map at any scale. The proof is based on a weighted maximal function argument.

Proposition 3.11. Let « € (0,2) and N > 1. There exist constants Cy > 0 and Cn,o > 0 such
that, for any 0 < § < 1, any RCD(—1,N) m.m.s. (X,d,m), any p € X and for any d-splitting
map u := (u1,...,us) : Ba(p) — R¥, there exists a Borel set G C By(p) with 7 (B1(p) \ G) <
CnVom(Bsy(p)) such that for any x € G it holds

sup r“][ |Hess ug)?dm < V6 forany a=1,...,k, (3.4)
0<r<1 B, (x)
and
u: B, (z) — RF is a CN,Q51/4—splittmg map for any 0 < r < 1/2. (3.5)

Proof. Let us start proving (3.4). To this aim fix any a = 1, ...,k and denote by Cp and Cp the
Poincaré and the doubling constants over balls of radius 10 of (X, d, m). To be more precise Cp is
a constant in the (1, 2)-Poincaré inequality with A = 2 as in (1.5). This inequality is available on
RCD(K, N) m.m.s. (see for instance [19, Theorem 30.26]) with constant depending only on K and
N. In particular, since (X,d, m) is an RCD(—1, N), Cp depends only on N. The same conclusion
holds for Cp thanks to the Bishop-Gromov inequality (1.15).

Set

G:= {xeBl(p): sup ro‘][ |Hessua2dm<\[5}.
B, (x)

0<r<1
We claim that " (B, (p) \ G) < Cyvém(Ba(p)). For any z € Bi(p) \ G we choose p, € (0,1)
satisfying
pg][ | Hess | *dm > V0. (3.6)
By, (%)
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Observe that the family {B,, (z)}zeB, (p)\a covers Bi(p) \ G. Using Vitali’s covering lemma we
can find a subfamily of disjoint balls { B, (%)}, such that Bi(p) \ G C UjenBs,, (z;). This gives
the sought conclusion

m(Bsy, (2i))

AL (Bi0)\ §) <3 halBay,w) = 3 2o

ieN i€N

SCNZM < CNZ% | Hess 1, |>dm
A Bpi(ilii)

(07
Pi i€EN

1
<COn—= | Hess uq |2dm < CnVom(Ba(p)),
V6 JBap)

where we used the definition of Jfgh“, the Bishop-Gromov inequality, (3.6) and the fact that w is
a d-splitting map.
In order to verify (3.5) we just need to check that, for a,b=1,... k,
][ Vg - Vup — dgpldm < CN,a51/4 foranyz € G, 0<r<1.
B, (x)

To this aim let us set fyp := |Vug - Vup — 04| and note that |V fy 5| < Cn (| Hessug| + | Hess ug|)
as a consequence of Definition 3.4(i) and (1.23). Whence, the Poincaré inequality and (3.4) yield

1/2
][ fapdm — ][ fapdm| <Cpr <][ |V fab|? dm)
B (x) B2 () By, (x)

1/2
<CnCp 7“2][ \Hessua|2dm+r2][ | Hess up|* dm
Bar () B (z)

SCNCP51/4T1—0¢/2

for any 0 < r < 1/2. Applying a telescopic argument it is simple to see that

][ fa,b dm—][ fa,bdm
By (a) B,k (x)

Therefore, for any 0 < r < 1/2 we take k& € N such that 271 < » < 27% and using that
u: By(p) — RF is a §-splitting map we get

][ fapdm <Cp2N ][ fa,pdm
B..(z) B2,k(w)

][ fa,bdm - ][ fa,b dm
31/2(1) B (z)

SQNCDCQCNOP(SlM —|—8NC2D][ fa,b dm
B2 (p)

< C,CnCpét/4, for any k£ > 1.

<Ccp2V + CDQN][ fapdm
Bl/2(m)

SCN,Q61/4'

O

For the purposes of this paper we just need to consider the case & = 1 in Proposition 3.11. This
is related to the fact that boundaries of sets with finite perimeter are codimension one objects. In
order to shorten the notation in the sequel we will write h in place of hy.

We are going to use several times the following scale invariant version of Proposition 3.11.
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Corollary 3.12. Let (X,d, m,p) be an RCD(K, N) p.m.m.s. and u : By,.(p) — R¥ a §-splitting
map for some r > 0 such that |K|r? < 4 and r < 1/2. Then there exists G C Ba,(p) with

A (Barlp) \ G) < A, (Bor(p)\ O) < O3 ™ 22D

such that u : By(z) — RF is a Cn6Y4-splitting map for any x € G and any 0 < s < r.
Proof. Apply Proposition 3.11 to the rescaled space (X, (2r)~'d, m(Ba,(p)) " tm,p). O

3.2. Uniqueness of tangents and consequences. Let (X,d, m) be an RCD(K, N) metric mea-
sure space with essential dimension n < N (see Theorem 1.18) and let E C X be a set of locally
finite perimeter. For any kK =1,...,n we set

Ay = {ac eX : (Rk,deucl,ckﬂk,ok,{mk > O}) € Tan,(X,d,m, E), but for no (Y, o, i, y) with
diam(Y") > 0 it holds (Y x R¥, 0 X deyer, t x £, (y,0%), {z), > 0}) € Tan,(X,d, m, E)}.
Let us point out that, with arguments analogous to those in [42, Lemma 6.1] one can show that
Ay is a | DX g|-measurable set for any k =1,...,n.

Aiming at proving that the family {Ax},_, , covers X up to a |[DXg|-negligible set we need
to use the following result that has been proven in the appendix of [2].

Theorem 3.13. Let (X,d,m) be an RCD(K, N) m.m.s. and let E C X be a set of locally finite
perimeter. Then for |DXgl|-a.e. © € X the following property holds true: for every (Y, o, u,y, F) €
Tan, (X,d, m, E) one has

Tan, (Y, 0, p, F) C Tan,(X,d, m, E) for every y' € supp|DXF|.

Lemma 3.14. Under the assumptions above

|DX | <X\ LnJ Ak> = 0.

k=1

Proof. As a consequence of Theorem 3.3 we have

DX (X\ U A;) _o,

k=1

where
wi={re X (RF deyer, cx ¥, 0%, {z), > 0}) € Tan,(X,d, m, E) but
(R™, dewet, cm L™, 0™, {y, > 0}) ¢ Tan,(X,d, m, E) for any m > k}.

The measurability of the A} ’s can be verified as in the case of the A’s.

It is clear that A, C A}, let us prove |DXg|(A} \ Ax) = 0. We argue by contradiction. If the
claim is false we can find € A} \ Ay such that the iterated tangent property of Theorem 3.13
holds true. Since z € A} \ Ax we can find (Y, 0,1, y) € RCD(0, N — k) with diam(Y") > 0 such
that

(Y x R*, 0 X deyer, it X L£F, (y,0%), {zx > 0}) € Tan,(X,d, m, E).
Moreover Tan, , 0y (Y x R* 0 x deyer, p x L, {z), > 0}) C Tan(E, z) for any (y/,z) € Y x RF-1
thanks to Theorem 3.13. Thus, choosing (', z,0) € Y x R* such that Theorem 3.3 holds and 3’ is
regular in Y we get the sought contradiction, since the essential dimension of Y is bigger or equal
than one (otherwise diam(Y) = 0). O

We are now in a position to conclude the proof of Theorem 3.2.
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Proof of Theorem 3.2. In light of Lemma 3.14 it is enough to prove that Aj coincides up to a
| DX g|-negligible set with

{r e X: Tan,(X.d,m, E) = {(RF,deyer, cu £F, 0%, {z), > 0})} }..

Let us assume without loss of generality that Ay C Ba(p) for some p € X. We claim that, for any
n > 0, there exists G" C Ay with

A (Ax \ G") < CynPer(E, By(p)) (3.7)

such that, for any € G" and for any (Y,0,u,y) € Tan,(X,d,m), there exists a pointed
RCD(0, N — k) mm.s. (Z,dz, mgz, z) satisfying

dpmGH((}/a O, y)’ (Rk X Zv (O’ Z)) < UE (38)

Observe that the claim implies our conclusion. Indeed if we fix n > 0 and set 1; := n2~* then
G, = U;enG™ satisfies 2" (Ax \ G,)) = 0 and thus Per(E, A;, \ G,)) = 0 thanks to Lemma 1.10.
Moreover, for any = € Gy, (3.8) holds. We conclude observing that G := NgenGa-» still satisfies
Per(E, Ay \ G) = 0 and any tangent cone at x € G splits off a factor R¥. By definition of A we
deduce that the only tangent at = € G is the Euclidean space of dimension k.

Let us pass to the verification of the claim. Fix § € (0,1/2) and take € > 0 as in Proposition 3.9.
Of course we can assume € < §. We wish to prove that there exists a disjoint family of balls
{Br,(%i)};cn such that r2|K| < e for any i € N and

(i) Ak N Bi(p) C UienBsy, (2:);
(i) dpmem (X,r;7 d,mli, 2;), (RF, deyer, cx £F,0F)) <
(i) 22 (1 — &) Bl < per(B, B, (2:)) < 21(1+ E)M

Wk

Indeed, for any x € Ay there exists a sequence of radu r; — 0 such that

. 1 i & koakyy . riPer(E, By (x))  wr_1
il_lf(r)lodeGH((Xari dvmm 737)’(R adeuclv‘c ;0 )) =0 and lllglo m(Br7(a:)) - Wi ’

as a consequence of Theorem 3.3, see also (1.16). Therefore, for any « € A, we can choose
72| K| < e such that the pair (z,r,) satisfies (ii) and (iii). In order to get a disjoint family of balls
satisfying (i) we have just to apply Vitali’s Lemma to {Br, (2)},c 4,05, (-
Let us now focus the attention on a single ball Bay,, (x;) C X. Corollary 3.10 yields the existence
of a J-splitting map
ui : B5T1. (l‘l) — Rk.
Thanks to Corollary 3.12 we can find G; C Bs,., (z;) with
B i \ L1
A (Bor, 2\ G1) < O /g 2P (2) (3.9)
i
and such that u’ : By(z) — RF is a Cn6'/*-splitting map for any = € G; and any 0 < s < 5r;.
Applying Corollary 3.8, up to assuming ¢ small enough, we deduce that at any = € G; (3.8) holds
true.
To conclude let us verify that G := U;enG; satisfies (3.7). Using (iii), (3.9) and the Bishop-Gromov
inequality (1.15) we get

AN G) <3 (B )\ Go) < 3 Oy 5 B3]

ppr i€N "
<CN\/EZ 7‘1 xl)) < CN\/EZPGI'(EaBW(xi))
i€N i e

<CnV6Per(E, By(p)).
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Since we can assume § < n? we get the sought estimate. O

Let (X,d,m) be an RCD(K, N) metric measure space and E C X a set of locally finite perime-
ter. For any k = 1,...,n, where n is the essential dimension of (X, d, m), we set

FuE = {z € X : Tan,(X,d,m, E) = {(R¥,deyer, cx ¥, 0%, {z1, > 0})} }..

We know thanks to Theorem 3.2 that Per(E,-) is concentrated on FE := U}_, i E and, from
now on, we shall call FE the reduced boundary of E.

The result about uniqueness of tangents that we just proved allows to obtain a representation
formula for the perimeter measure in terms of the codimension-1 Hausdorff measure.

Corollary 3.15. Let (X,d,m) be an RCD(K, N) m.m.s. with essential dimension n. Let E C X
be a set of locally finite perimeter. Then
= Wk—1 h
D = e : .
DXp| =) = = AL FE (3.10)
k=1
Proof. The proof can be obtained as in the case of the representation formula for the perimeter
on non-collapsed spaces obtained in [2, Corollary 4.7] relying on [40, Theorem 3] in place of [40,
Theorem 5]. We just report here the key computation.
If z € Fi, E, then we can compute

lim 7|DXg| (Br(x) _ lim - |DXg| (Br(z)) C(x,r) lim |ID"Xg| (B1(x))

r—=0  m(B,(z)) r—=0  C(z,r) m(B,(z)) =0 mi(Bi(z))
_H(BI(0)  wra

- ANBI0)  w

where the regularity of the point and the weak convergence of the rescaled perimeter measures to

the perimeter measure of a half-space play a role.
This computation, together with the rigid structure of the tangent, allows then to infer, arguing
as in the non-collapsed case, that

s|DXe| (Bs(y)) _ wk-1

lim sup = )
r—0 z€B(y), s<r m(BS(y)) Wk
which is the needed density estimate in order to obtain the representation formula (3.10). g

4. RECTIFIABILITY OF THE REDUCED BOUNDARY

The main achievement of this section is a rectifiability result for the reduced boundary of sets
with finite perimeter. With this theorem we complete the picture about the generalization of De
Giorgi’s theorem to the framework of RCD(K, N) spaces.

Theorem 4.1. Let (X,d,m) be an RCD(K,N) m.m.s. and E C X be a set of locally finite
perimeter. Then, for any k=1,...,n, F E is ( |DXgl, (k— 1))-Tectzﬁable.

Let us recall that a set is (|[DXp|, £)-rectifiable if up to a | DX g|-negligible set it can be covered
by UsenA; where any A; is bi-Lipschitz equivalent to a Borel subset of R.

When specialized to the non-collapsed case (see [14]), where the only non-empty regular set is
the top dimensional one, Theorem 4.1 turns into:

Corollary 4.2. Let (X,d,m) be a ncRCD(K, N) m.m.s. and E C X a set of locally finite perime-
ter. Then FE = FnE is (|Dxg|,N — 1)-rectifiable (equivalently, (’HNfl,Nf 1)—rectiﬁable,
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where H denotes the (N — 1)-dimensional Hausdorff measure). Furthermore
|Dxg| =HN'LFES (4.1)

Remark 4.3. We point out that, given any € > 0, the maps providing rectifiability of the reduced
boundary in Theorem J.1 and Corollary /.2 can be taken (1 + €)-bi-Lipschitz (compare with the
analogous statement in the case of [12]).

In particular, when (X,d,m) is non-collapsed, (X,d,|DXgl|) is a strongly |DXg|-rectifiable

m.m.s. according to [33].

Remark 4.4. It is worth mentioning that Theorem 4.1 is stronger than [42, Theorem 1.1]. Indeed,
given an RCD(K, N) m.m.s. (Z,dz,mz) we can consider X := Z x R endowed with the product
structure, and the set of finite perimeter E := {(z,t) € Z xR : t > 0}. Applying Theorem j.1 to
E C X we get the rectifiability result for Z.

Let us outline the strategy of the proof of Theorem 4.1.
First of all, up to intersecting with a ball and thanks to the locality of perimeter and tangents, we
can assume that F has finite measure and perimeter.
The bi-Lipschitz maps from subsets of F, E to R*~! providing rectifiability are going to be suitable
approzimations of the (k — 1) coordinate maps over the hyperplane where the perimeter concen-
trates after the blow-up. Better said, they will be the first (kK — 1) components of a (k, §)-splitting
map “d-orthogonal to the exterior normal vg to the boundary of E”.
Proving existence of these maps requires some technical work which builds upon the Gauss—Green
formula Theorem 2.2. The rigorous statement is as follows.

Proposition 4.5. Let (X,d,m) be an RCD(K, N) m.m. space and E C X a set of finite perimeter
and measure. For any § > 0, ro > 0 and |DXg|-a.e. © € FLE there exist r = rp 5 < 1o and a
§-splitting map v = (uy,...,up_1) : Br(z) — RF such that

r

_— v-Vue|d|DXg| <9, fora=1,....k—1.
B J Tl

The second step in the proof of Theorem 4.1 is showing that the map built in Proposition 4.5
is indeed bi-Lipschitz with its image if restricted to suitable subsets of FFE (see Proposition 4.7
below for the rigorous statement). These subsets are obtained collecting points © € FrE such
that Bs(z) N E is e-close, in a suitable sense, to Bs(0%) N {x;, > 0} for any s < rq, where rg > 0 is
a fixed radius.

Definition 4.6. Given € > 0 and ro > 0, we define (FyE),, . as the set of points v € FrE
satisfying
(1) dpmGH <<X7 871d7 mvx) ) (Rka deucla ﬁﬁk, Ok>) <eg fOT’ any s < Tos
(ii)
1| [sIDXE (Bulw)  wies
m(B;(z)) 2 m(B;(z)) Wk
Observe that, as a consequence of Theorem 3.2 and Remark 1.17, for any € > 0 we have
FiE= |J (FiE)re and (FhE)pe C (FxE)w o for v/ <.
0<r<1

‘m(Bs(x)ﬂE) 1’ <e for any s <ro. (4.2)

Hence for any 7 > 0 there exists = r(n) > 0 such that
|DXg| (FRE\ (FrE)s:) <n, forany 0<s<r. (4.3)

3In [2] it was proved that |[DXp| = SN =1L FE, where S denotes the spherical Hausdorff measure. Coincidence

with the Hausdorff measure H is a consequence of rectifiability.
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Proposition 4.7. Let N > 1, K € R and k € [1,N] be fized. For any n > 0 there exists
e =¢e(n,N) < n such that, if (X,d,m) is an RCD(K, N) m.m.s., E C X is a set of finite perimeter
and finite measure, p € (FyE)as . for some s € (0,|K|~Y/?) and there exists an e-splitting map
u : Bas(p) — R*=1 such that

s
m(Bas(z))

then there exists G C By(p) that satisfies:
(1) G N (FrE)as. is bi-Lipschitz to a Borel subset of RE=1. More precisely,

||u(w) —u(y)| — d(=z, y)‘ < Cnnd(z,y), Vz,y€ (FrE)2seNG; (4.5)
(ii) A (Ba(p) \ G) < Cyn™ B2

/ |v-Vue| d|DXg| <e, foranya=1,...;k—1, (4.4)
Bas(x)

Let us now prove Theorem 4.1 assuming Proposition 4.5 and Proposition 4.7.

Proof of Theorem 4.1. Assume without loss of generality that F has finite perimeter and measure,
and that FxE C Ba(p) for some p € X. We claim that, for any > 0, we can decompose
FrE =G"UB"UR", where G" is (k — 1)-rectifiable and

A (B") + |DXg| (R") < Cn,i |DXE| (Ba2(p))n + 1. (4.6)

Observe that the claim easily gives the sought conclusion. Indeed, setting 1, := n27*, G,, := U;,G™
and R, 1= U;enR", Gy, is still (k — 1)-rectifiable and it holds

A (FeB\ Gy) \ Ry) =0
hence, as a consequence of Lemma 1.10, |DXg| (FrE \ Gy) \ R;) = 0. Therefore
|DXB| (FRE\ Gy) < [DXp|(R,) < Cn [DXp| (B2(p))n + 1.

Setting G := U;enGa-i, we get that G is still (k — 1)-rectifiable and coincides with FxE up to a
| DX g|-negligible set.

Let us now prove the claim. To this aim fix r > 0 and € > 0. We cover (FE), . with balls
of radius smaller than r/5 with center in (FiE), . such that the assumptions of Proposition 4.7
are satisfied. The possibility of building such a covering is a consequence of Theorem 3.2 and of
Proposition 4.5. By Vitali’s lemma, we can extract a disjoint family {Bﬁ'/5(xi)}iel\r such that
(FxE)re C U;iBy, (x;). Applying Proposition 4.7 above, for any ¢ € N we can find G; C By, (z;)
such that G; N (FxE),. is (k — 1)-rectifiable and 2" (B, (z;) \ G;) < CNnm(B+i(mi)). Set G :=
(FuE)re N (U;G;) and observe that

m(By, (7))

7

AL (FE)r e\ G1) <Y A (Bri(2:) \Gi) <Y Cnnp

ieN ieN
r1/5 -Tz
<Oy MEnsez) P < Onaen 3 10X (B ()
IS i€EN
<Cn.xn|DXg| (B2(p)),
where we used the Bishop-Gromov inequality (1.15) and

m(By./5(i))
7’2/5 =

that holds true provided ¢ is small enough.

Setting B! := (FrE),. \ G, the argument above gives the decomposition
(.FkE%,E = GZZ U Bﬂ,
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where G7 is (k — 1)-rectifiable and J£"(B7) < Cn xn|DXg| (B2(p)). Let us now choose r > 0
small enough to have (4.3). This allows us to write

FrE=GlUBJU(FE\ (FrE)re) = GTUBTUR"
and to conclude the proof. O

4.1. Proof of Proposition 4.5. Let us start by recalling that one of the main results of the
previous part of the note was proving that the exterior normal is indeed an element of L%(TX)
(see Theorem 2.2). In the following, to simplify the notation, we shall write v in place of trg(v)
for any v € Hé’Q(TX) N D(div).

Definition 4.8. Let (X,d,m) be an RCD(K,N) m.m.s. and E C X a set of finite perimeter.
Given © € X and a sequence r; | 0 we say that {u" = (u}’,...,u}’ ;) : By, (z) = Rk’l}ieN is a
good approximation of the boundary of E at x if the following conditions hold true:
(i) there ezists a sequence &; — O such that u" : B,,(x) — R*! is a §;-splitting map with
u"i(z) = 0;
(i) there exists (Z,dz) that realizes the convergences

(X, r;ld,m;i,x) — (R¥, deyer, e £F,0%)  and E,., — {x) > 0} locally strongly in BV

“uri — . in HY2-strong on B1(0%) along the sequence

and vy uy

(X, d,mb @) = (R, dyer, e LF, 0F),
foranya=1,...,k—1.

Lemma 4.9. Let (X,d,m) be an RCD(K, N) m.m. space and E C X a set of finite perimeter
and finite measure. Then for any p € X and for any € > 0 there exists V € TestV(X) such that

/ lv — V|>d|Dxg| <e,
Ba(p)

where v is the exterior normal of E.
Moreover, there exists G C By(p) with #"(B1(p) \ G) < Cx .n+/z and such that, for any x € G,
it holds

) T
lim sup

_r v — V]2d|Dxp| < V.
r—0  m(Br(z)) /B,@) I |

Proof. The first conclusion follows from Theorem 2.2, where we proved that the normal is an
element of L%(TX), and Lemma 2.7, yielding density of trp (TestV(X)) in L%(TX).
To prove the second part of the statement we set

G:= {x € Bi(p) : limsup

T 2
_r v — V> d|Dxs| < VE .
o D m(B,(z)) /Br(z)| P

Then, for any rq > 0 and for any « € B1(p) \ G, there exists r, < ry such that

Ty

B — v—VI*d|DXg| > Ve.
n(B,. (@) /me' " diDxe|
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Hence, applying Vitali’s covering theorem we can find a disjoint set of balls {B,,(x;)} such that
{Bs,(x;)} is a covering of Bi(p) \ G. Now we can estimate, for any o > 0,

A B\ 6) < 3 M) o g 5 Br(r)

T T
i=0 v i=0 ¢

c_* s C
XS [ v dDxel < S5 [ v D]
=0 Y Br; (w1) Bz (p)

<
ToVE Ve
< COg.nVeE.
The conclusion follows letting ¢ | 0. O

Proof of Proposition /.5. The proof is divided in 3 steps. Aim of the first one is to prove that
good approximations of the boundary are regular enough to guarantee that the scalar product
between their gradient and the gradient of any given test function leaves a well-defined trace
over the reduced boundary of E. In the second step we combine the outcome of the first one,
the approximation result of Lemma 4.9 and the orthogonality in weak sense between the normal
vector and the coordinates of its orthogonal hyperplane guaranteed by the Gauss—Green formula,
to get that gradients of good approximations of the boundary leave a trace even when coupled
with the normal to the boundary and that this trace is 0. In the last step we prove existence
of good approximations of the boundary and combine it with steps 1 and 2 to get the sought
conclusion.

Step 1. Observe that it suffices to restrict the attention to the ball By (p) C X, for any p € X.

We claim that for any function ¢ € Test(X,d, m) there exists a |DXg|-negligible set N C
FiEN Bi(p) such that, for any € FrEN By (p) \N and any good approximation of the boundary
of E at x with radii ; | 0 and maps {u"* := (u}’,...,up" ) : By, (z) —» RF1} . there exist a

en’
subsequence r;, and c(z) = (¢1(z),...,cx—1(2)) € R*~! such that

T . 2
Vui Vo —ca(e)| dDxp| =0, foranya=1,.. k-1 (47)

fw |
j—oo m(By, () By, (2)
Assume without loss of generality that |V¢| < 1. Let us fix also a € {1...,k — 1} and set
gi = Vuli - V¢. We have
() N9l e (5, () < Cn;
(i) r? fBri(w) |Vgi|? dm < 26; + Cnr? fBri(w) | Hess ¢|? dm, where §; is as in Definition 4.8.
Since Hess ¢ € L?(Bz(p),m), by Lemma 1.11 and Lemma 1.10, we deduce that
lim 7’2][ | Hess ¢|> dm = 0
B, (x)

r—0

for any x € X outside a | DX g|-negligible set depending only on ¢. Therefore we can assume that
x does not belong to this set obtaining
lim rf][ |Vg;|[?dm = 0. (4.8)
71— 00 Bri (CE)
This gives that, up to subsequence, g; — cq(7) in H%2-strong on B;(0*) along the sequence in

Definition 4.8(ii). Here we have used (1.16). Taking into account Proposition 1.27, it follows that
(gi — ca(z)) — 0in H'2-strong on B;(0*) and thus, reading the convergence in the starting space,

][ |9, — ca(@)]* dm + rfj ][ Vgi,Pdm=:e; 0 as j— oco. (4.9)
B, ()

B, (x
J
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We wish to prove that, up to excluding another | DX g|-negligible set depending only on E, (4.9)
gives (4.7). More precisely we are going to prove that (4.9) implies (4.7) at any = € X such that
x € By ¢ for some rg > 0 and C > 1, where

— -1 < MPXBl(Br(y)
ETU,C : {y eX: C < m(BT(y)) <CVr<rgyp, (410)
and

lim 12X (Ero ¢ 0 Br(@)) (4.11)

r—0 |DXg|(B(x))
Observe that (4.10) and (4.11) are satisfied at |[DXg|-a.e. point in FFE thanks to Theorem 3.2, the
asymptotic doubling property of | DX g| and elementary considerations. In order to keep notations
short, from now on we set r; :=r;; and g; := g;,.
We claim that, for any j such that r; < /5, it holds

|DXg|(Ery,c N By, (x) N {lg; — ca(@)” > V&5 }) < CCN,K\/QM, (4.12)

where ¢; is as in (4.9) and 79 and C are as in (4.10).
Notice that (4.12), together with the Chebyshev inequality, (i) and (4.11), give (4.7).
Let us see how to establish (4.12). Fix any j such that r; < ro/5 and let us set

m
(X;,dj,mj,x) := (X,rlld,,m).
R 7 m(By,(2))

With a slight abuse of notation we use the notations E,, ¢ and g; also in X;. Let us observe that,
when read in X, (4.9) turns into

][, |gj—ca(ac)|2dmj+f | VgiPdm; <.
B (x) B (x)
Moreover, a telescopic argument as in the proof of Proposition 3.11 gives

Bi(2) N Ery.c N{lg; — ca(@)]* = Cn /55 }

CB{(CL‘)HETO’CH{Z :sup s][ |ng2dmj>\/57}.
Bi(z)

0<s<1
Using Vitali’s lemma we can find a disjoint family {Bgi(zi)}ieN with s; < 1 and z; € Bl(z) N
E.,cnN {z : SUPg st szj(z) |Vg;|?dm; > \/57} for any ¢ € N such that
B{(x) NEncN<Sz @ sup s][ ‘ |ng\2dmj >\ C U Bgs(zl)
0<s<1 Bi(z) iEN

Taking into account (4.10) and the defining identities

I (5 — 2 - m
Bsi( z) Brjsz'( Z)a m; m(B,«j(x))’
we get
By DX (Broc 0 By (@) {1 = o) 2 VE}) < s 30 DXl (B, (1)

ieN

CCpn, kT Z m(B; s (2:)) m;(B (2))  CCn i
) j _ CCN,K Z i < )

< Vg2 dm;
m(BT](x)) | ]| J

Si € JBi@)
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Step 2. We wish to prove that, for |[DXgl|-a.e. z € FE and any good approximation of the
boundary of F at z with radii r; | 0 and maps {ur = (uf*,...,up ) B (z) - RFE }ieN’ there
exists a subsequence r;; — 0 such that

T T

lim 7’/ |v-Vuo’ |d|DXg| =0 forany a=1,...,k—1. (4.13)
J—roo m(ij (‘T» Bri]_ () “

Let us restrict our attention as above to FiE N By (p).

We claim that, for any e > 0, there exists G. C Bi(p) N FrE with J#"(Bi(p) N FxE \ Ge) <

Cn,kx v/ and such that, for any z € G., and any {u" = (u]’,...,u}’" ;) : By, (z) = Rk’l}ieN

good approximation of the boundary of E at z, there exists a subsequence r;; — 0 satisfying

Ti; T
limsupiJ/ lv-Vue’ |d|DXg| < Cy e/t forany a=1,....k—1. (4.14)
Jj—oo m(B""ij (l‘)) By, (z

""ij

Before then proving the claim let us see how it implies (4.13).

Fix € > 0, set ¢; := 27" and take G° := U;enGe,. Then we have |DXg|(B1(p) N FrE \ G°) = 0,
thanks to Lemma 1.10, and (4.14) holds for any = € G°. Therefore the set N;enG® has full
| DX g|-measure in By(p) N FrE and has the sought property.

The remaining part of this step is devoted to the proof of (4.14). Let € > 0 be fixed, take G
and V as in Lemma 4.9. Recalling that any test vector field can be represented as Y .-, 7;V;
with n;,¢; € Test(X,d,m) for some m € N and using Step 1, we conclude that there exists
G. C GN FLE with |DXg|(GN FLE \ G:) = 0 and the property that, for any € G. and

{u” = (uy’, .., up ) ¢ By (x) > RF! }ieN good approximation of the boundary of E at x, there
exists c(z) := (c1(2),...,cp—1(z)) € R*~! and a subsequence r;, — 0 such that
. Ti; T
hmij/ Vua’ -V —co(z)?d|DXg| =0 fora=1,...,k—1. 4.15
@ L ) () 2 d| DX (4.15)

In order to conclude the proof it suffices to show that
le(z)| < Crenet/t (4.16)

Indeed, in that case, one has

Ti; Ti.
1imsup7]/ |- Vue’ |d|DXg|
j—oo m(ij (z)) By, (z)

. Tij 2 1/2 . CNT'iV
<Cpylimsup | ——1— lv = V|*d|Dxg| + limsup 2
By, (2)

o \w(B,, @) o (B, (@)

/ |Vua’ - V|d|DXg|

ro, |DXE| (B, ()
m(B,, (x))

1/2
T T
—_— Vueg’ -V —co(x 2dDXE) + |ea(x)

J

<Cne'* + lim CN<
j—o0

1/4
< Cg.ne'/t,

where we used (4.15), (4.16) and the fact that © € F,E.

In order to prove (4.16) we simplify the notation setting 7;, =: r;. Choose a smooth function
Yoo : R¥ — R with compact support in B;(0*) and such that f{wkZO} Yoo dLFL =2 C) > 0.
Then we consider a sequence 9; € Lip(X,d) with supp(v;) C By, (%), |1« < 2 and 9 = Yoo
strongly in H? along the sequence in Definition 4.8(ii), whose existence is proved in Lemma 1.31.
Observe now that

]

lim %/VdeVu;jdm:ck/ Voo - adLF =0, fora=1,...,k—1, (4.17
2 B, @) S Y - (.17)
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and

r
lim ——2— V- Vulid|DXg| = Crea(x), f =1,...,k—1, 4.18
Jim B [ 637 - VuzdiDxe| = Cueala), fora (4.18)
where the last equality in (4.17) is obtained integrating by parts and to prove (4.18) we used

(4.15). Building upon (4.17), (4.18), Theorem 2.2 and Lemma 4.9, we get (4.15):
rj

lim ——2 . Ty V- i dlD
S E ) (/Ev% V' dm+/¢Jv Vi d| XE>‘

im 4 [ R vIT V.Vl
jlggo w(B,, (@) ( /z/Jju Vuli d|DXg| —&-/%V Vuy; d|DXE|>’

Cklca(z)| =

CNT‘
glimsupij/ lv = V|d|Dxgl|
Jj—o0 m(BT](x)) Brj(z)

<COp.xe'/*.

Note that in order to apply the Gauss-Green formula in the previous estimate the fact that ug is
locally the restriction of a H?2(X,d, m) function (see Remark 3.5) plays a role.
Step 3. In order to conclude the proof we just observe that, since

dpman (X, r1d,ml, @), (RF, deyer, cu £F,0%)) — 0

as 7 J 0 and the blow-up of the set of finite perimeter is a half-space (in the sense of BV,
convergence, as we pointed out after Definition 3.1), a slight modification of Proposition 3.9%
provides, for any sequence r; | 0, existence of a good approximation of the boundary of F at
x with maps {u™ = (u}’,...,uj" ) : By, (z) — Rk_l}ieN (observe that Proposition 3.9 gives ¢;-
splitting maps defined on the balls of radius 1 of the rescaled spaces for a sequence §; | 0 and
then rescale these functions). The sought conclusion follows now from what we obtained in the

previous step. O

4.2. Proof of Proposition 4.7. The proof is divided in three steps.
Aim of the first one is to provide a bridge between analysis and geometry suitable for this context.
We prove that, whenever at a certain location and scale the set of finite perimeter is quantitatively
close to a half-space in a Euclidean space and there is a (k — 1, d)-splitting map which is also 6-
orthogonal to the normal vector in the sense of (4.4), then the (k — 1,§)-splitting map is an
n-isometry (in the scale invariant sense) when restricted to the support of the perimeter.
The second step is analytic and dedicated to the propagation of the d-orthogonality condition.
In the last one we get the bi-Lipschitz property relying on the observation that a map which is an
n-isometry (in the scale invariant sense) at any location and scale is bi-Lipschitz.

Step 1. Let N > 0, K € R and k € [1, N] be fixed. We claim that, for any n > 0, there exists
d = 6, v < n such that, for any pointed RCD(X, N) m.m.s. (X,d, m,z) and for any set of finite

perimeter and finite measure £ C X such that, for some 0 < r < |K|71/2,

() dpman (X, 2r) 7, gy @) » (RE, dewers 2£4,0%) ) < 6
(i)

m(Bi(z)NE) 1 ‘t |IDXg| (Bi(z)) wik—1
S AR A - <& for any t < 2r; 419
e R T e Vi 19
(iii) there exists u := (uy,...,ux_1) : Ba.(z) — RF~1 a §-splitting map satisfying
r
_— |v-Vue| d|Dxg| <6, foranya=1,...,k—1, (4.20)
m( Bz (1)) /1327,@)

4With the splitting functions defined on balls of radius 1 in place of 5.
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then u : supp |DXg| N By (x) — BX" " (u(x)) is an nr-GH isometry.

By scaling it is enough to prove the claim when r = 1/2 and |K| < 4. Let us argue by
contradiction. Then we could find n > 0, a sequence (X,,d,, m,, Fy,x,), points 2}, 28 €
supp|DXg, | N By/a(xy), and 1/n-splitting maps u” : Bi(z,) — RF! satisfying (i), (i) and
(iii) with 6 = 1/n, u"(z,) = 0 and

Hu"(zf) —u"(zy)| — dn(z?,zgﬂ >n, VneN. (4.21)

Notice that dy, (27, 25) > min{n/(Cny — 1),n} since u™ is Cy-Lipschitz.
Observe that, by (i), (X,,d,, m,, z,) converge in the pmGH topology to (Rk, devet, iﬁk, O"’).
We can assume the existence of a metric space (Z,dz) realizing this convergence (cf. Section 1.2.3).

Since F,, satisfies the bound
my, (Ey, N By(zy,)) 1 ‘ ‘t|DXEn [(Bi(r))  wi—1

my, (B (z,)) 2 my, (B (z,)) Wi
up to extracting a subsequence, E, N By(z,) — F N B1(0F) in L'-strong, where F is of locally

<1/n foranyt <1, (4.22)

finite perimeter in B;(0*) thanks to Proposition 1.28.

Up to extracting again a subsequence we can assume u™ — u® strongly in H'2 on B;(0%),
where u™ : B]Fk (0) — R*~! is the restriction of an orthogonal projection, as a consequence
of Proposition 1.21 and Theorem 1.32. We assume, without loss of generality, that u>(z) =
(z1,...,75_1) for any = € B;(0F).

We claim that £ ((F N B1(0%)) A ({zx > 0} N B1(0%))) = 0 and

/gd|DXEn| — /gd\DX{rk>0}| for any g € C(Z) with supp(g) C By /2(0%). (4.23)

This would imply that 2{°,25° € {x) = 0}, therefore [u>(25°) — u™(25°)| = dewe(25°, 25°) that
contradicts (4.21).

In order to verify the claim we argue as in the proof of the second step of Proposition 4.5. We
choose a smooth function 1., : R¥ — R with compact support in B;(0%). Then we consider a
sequence ¥, € Lip(X,,,d,) with supp(¢n) C Bi(zn), [|[¥nll e + IVl < 4 and 9, — oo
strongly in H? along the sequence (X, d,,m,,,), whose existence is proved in Lemma 1.31.
Observe now that

Moo
Oz,

by Proposition 1.27(i) and Proposition 1.27(iii). This observation, along with Proposition 1.27(ii)

Vi, - Vul, — Voo - €4 = in L?-strong, for any a = 1,...,k — 1,

and Remark 1.25, gives

k
Moo di = lim Vi), - Vul dm,. (4.24)
r O0Tq Wi n—oco |

We can now use (4.24), Theorem 2.2 and (iii) to conclude that

k
Pvee (LF

= lim
F 0r, wg

n—oQ

/ Vi, - Vu' dm,
E,

= lim ‘/djnVuZ -vg, d|DXg,, |

d|DXg,

<t [ fo ][V v, -0,
n—oo
fora=1,...,k— 1. Since 1o, € C°(B;(0F)) is arbitrary we obtain that

LY ((F N Bi(0%) A ({z, > A} N B1(0%))) =0 for some X € R.
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Using again (4.22) we get £*(F N B1(0%)) = wy,/2 that forces A = 0.
Let us finally prove (4.23). To this end we use again (4.22) with ¢ = 1/2 obtaining that

WE—1
(31/2($n>) = F = ’Dx{zpo}’ (31/2(0k))-

We can now apply the third conclusion of Proposition 1.28 and conclude.
Step 2. By assumption there exists an e-splitting map u : Bas(p) — R*~! such that (4.4) holds

lim ‘DXE”
n— 00

true. We wish to propagate now both the e-splitting condition and the orthogonality condition
(4.4) at any scale and point outside a set of small J#Z"-measure. More precisely we are going to
prove that there exists a set G C B,(p) with 2"(Bs(p) \ G) < CN\/EW such that

(i) for any € G, 0 < 7 < s, u: B.(x) — RF 1 is a Cye'/*-splitting map;

(ii) for any z € G, 0 <r < s, it holds

r

_ v-Vug| d|DXg| <+Ve, fora=1,....k—1. 4.25
REGED Jo T 4D (429

We can find a set G’ satisfying the measure estimate and (i) applying Corollary 3.12. Hence it is
enough to find a set G” satisfying the measure estimate and (ii) and to take G := G' N G".
To do so we apply a standard maximal argument. Let us fix a=1,...,k — 1 and set

4 / v Vug| d|DX5|.
B,.(x)

M(z):= sup —————

()= 2 (B, @)

We claim that G” := {x € B4(p) : M(x) < v/} has the sought properties.
Indeed, for any = € Bs(p) \ G”, there exists p, € (0, s) such that

piff V- Vug| d|DXg| > VE. 1.26
(B, () Jo, o el DXL 2 (4.26)

Applying Vitali lemma to the family {B,,, (x)}weBS(p)\G,, we find a disjoint subfamily { B, (z:)},cy
such that Bs(p) \ G” C U;Bs,, (x;). Taking into account the disjointedness of the covering, (4.26),
(4.4) and the Bishop-Gromov inequality, we can compute

m(Bs;, (T
AP BN G < Y (B, () = 3 o)
ieN ieN ¢
SCNZM SCNZE_UZ/ |v - Vue| d|DXg|
i€N " €N Bry (@i

B,
SCNe—l/Q/ v Vug| d|DxXg| < cN\@Ms(p)).
Ba2s(p) s

Step 3. We claim now that for any n > 0 there exists ¢ = ¢, y > 0 small enough such that for
any 0 <r < sand z € GN (FiE)2s, the map

u=(uy,...,up_1) : supp|DXg| N B.(z) — RF! is an rn-GH isometry. (4.27)

The claim is a consequence of Step 1. Indeed, for any © € G N (FiE)2s, and any r € (0, s), the
conditions (i) and (ii) of Step 1 are satisfied by definition of (Fj,E)as.. Moreover u is a Cye'/4-
splitting map on B, (x) satisfying (4.25), hence also the assumption (iii) of Step 1 is satisfied for
¢ small enough.

In order to conclude the proof we have just to check the conclusion (i) in the statement of
Proposition 4.7, since the conclusion (ii) follows from Step 2 choosing e small enough so that
Ve < n. To this aim, take z,y € GN (FiE)2s . and choose 1 := d(x,y). Our claim (4.27) ensures
that

|[u(z) — u(z)| — d(z, 2)| <y for any z € supp|DXg| N B, (),
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therefore we can take z = y and conclude.
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