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Abstract. This note is devoted to the study of sets of finite perimeter over RCD(K,N) metric

measure spaces. Its aim is to complete the picture about the generalization of De Giorgi’s

theorem within this framework. Starting from the results of [2] we obtain uniqueness of tangents

and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool,

of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this

setting. These results are new and non-trivial even in the setting of Ricci limits.
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Introduction

In the last years the theory of RCD(K,N) metric measure spaces has undergone a fast and

remarkable development. After the introduction of the so-called curvature-dimension condition

CD(K,N) in the seminal and independent works [47, 48] and [39], the notion of RCD(K,N)

space was proposed in [28] after the study of its infinite-dimensional counterpart RCD(K,∞) in

[5] (see also [4] for the case of σ-finite reference measure). In the infinite-dimensional case the

equivalence with the Bochner inequality was studied in [6], then [25] established equivalence with

the dimensional Bochner inequality for the so-called class RCD∗(K,N) (see also [10]). Equivalence

between RCD∗(K,N) and RCD(K,N) has been eventually achieved in [14].
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We do know nowadays that, apart from smooth weighted Riemannian manifolds (with gen-

eralized Ricci tensor bounded from below), this class includes Ricci limits (see [16, 17, 18]) and

Alexandrov spaces [43].

One of the main research lines within this theory in recent times has been aimed at understand-

ing the structure of RCD(K,N) spaces. After [42, 38, 21, 32] we know that they are rectifiable as

metric measure spaces. Moreover in [12] the first and the third named authors proved that they

have constant dimension, in the almost everywhere sense.

This being the state of the art, we have reached a good understanding of the structure of

RCD(K,N) spaces up to measure zero. It sounds therefore quite natural to try to push the study

further, investigating their structure, both from the analytic and from the geometric points of

view, up to sets of positive codimension.

In this perspective in the last two years there have been some independent and remarkable de-

velopments. We wish to mention a few of them below, without the aim of being complete in this

list.

• In the setting of non collapsed Ricci limit spaces, Cheeger-Jiang-Naber have obtained

in [19] rectifiability for the singular sets of any codimension. Let us also mention [20],

where some of the ideas developed in [19] where already present, and [11], where some

estimates (actually much weaker than those in [19]) are proved for the singular strata of

non collapsed RCD spaces.

• There have been some efforts aimed at defining a notion of boundary for metric measure

spaces and relating it with the singular set of codimension 1. See [36] and the very recent

[37].

• One of the main contributions of [27] was the development of the language of tensor fields

defined almost everywhere (with respect to the reference measure) on RCD spaces. In

[22] the notion of tensor field defined “2-capacity-almost everywhere” is defined and it is

proved that Sobolev vector fields on RCD spaces have a representative in this class.

• In [2], the first and third named authors together with Ambrosio initiated a fine study

of sets of finite perimeter over RCD(K,N) spaces, with the project of generalizing the

Euclidean De Giorgi theorem to this framework.

One of the main results in [2] was the existence of a Euclidean half-space as tangent space

to a set of finite perimeter at almost every point (with respect to the perimeter measure). This

conclusion could be improved to a uniqueness statement (up to negligible sets) only in the case of

a non collapsed ambient space. The state of the theory of sets of finite perimeter was at that stage

comparable to that of the structure theory after [31], where existence of Euclidean tangent spaces

almost everywhere with respect to the reference measure was proved. Uniqueness of tangents in

the possibly collapsed case and rectifiability for the boundary were conjectured by analogy with

the Euclidean theory, but left as open questions in [2]. Let us point out that, up to our knowledge,

no general rectifiability criterion is known at this stage for (subsets of) metric measure spaces.

Aim of this note is to provide a positive answer to these questions, providing a counterpart in

codimension 1 of [42] and of De Giorgi’s theorem in this setting.

Together with uniqueness of tangents (cf. Theorem 3.2) and rectifiability (cf. Theorem 4.1) we

also establish a representation formula for the perimeter measure in terms of the codimension 1

Hausdorff measure (cf. Corollary 3.15). As an intermediate tool which, however, we find to have

independent interest we prove in Theorem 2.2 a Gauss–Green integration-by-parts formula for

Sobolev vector fields.
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The proof of uniqueness for blow-ups of sets of finite perimeter follows a strategy quite similar

to that of the uniqueness theorem for tangents to RCD(K,N) spaces adopted in [42]. As in that

case, closeness to a rigid configuration (half-space in Euclidean space) at a certain location and

along a certain scale, which is what we learn from [2], can be turned into closeness to the same

configuration at almost any location and at any scale, yielding uniqueness.

To encode the “closeness information” in analytic terms we rely on the use of harmonic δ-splitting

maps, which were introduced in [15] and turned to be an extremely powerful tool in the study of

Ricci limits (see [16, 17, 18] and the more recent [20, 19]). To the best of our knowledge this is

the first time they are explicitly used in the RCD-theory, even though their use is implicit in [9],

and we establish some of their properties within this framework.

Propagation of regularity almost at every location and at any scale, which was a consequence of a

maximal function argument in [42], this time follows from a weighted maximal function argument

suitably adapted to the codimension 1 framework. This argument heavily relies on the interplay

between the fact that the perimeter measure is a codimension 1 measure (which was proved in a

fairly more general context in [1]) and the fact that harmonic functions satisfy L2 Hessian bounds

on RCD(K,N) spaces.

In order to explain the strategy and the difficulties in the proof of rectifiability for the reduced

boundary, let us recall how things work on Rn. Therein a crucial role is played by the exterior

normal to the set of finite perimeter, which is an almost everywhere unit valued vector field

providing the representation DχE = νE |DχE | for the distributional derivative of the set of finite

perimeter E. Relying on the properties of the exterior normal one can obtain a characterization

of blow-ups in a much simpler way than in [2] and even get rectifiability of the boundary, proving

that sets where the unit normal is not oscillating too much are bi-Lipschitz to subsets of Rn−1.

When trying to reproduce the Euclidean approach in the non smooth and non flat realm of RCD

spaces, one faces two main difficulties. The first one due to the fact that the theory of tangent

modules, as developed in [27], allows to talk about vector fields only up to negligible sets with

respect to the reference measure (as the reduced boundary of a set of finite perimeter is not). The

second one is that controlling the behaviour of the normal vector cannot be enough to control the

behaviour of the set in this framework, since the space itself might “oscillate”. This is a common

feature of geometry on metric measure spaces (see also the introduction of [19]), which can be

understood looking at the following example: let (X, d,m) be any RCD(K,N) m.m.s. and take

its product with the Euclidean line. Then consider the “generalized half-space” {t < 0}, where t

denotes the coordinate along the line: it is easily seen that it is a set of locally finite perimeter

and one can identify its reduced boundary with X. Moreover, whatever notion of unit normal we

have in mind, this will be non oscillating in this case. Still, rectifiability of (X, d,m) is highly non

trivial and requires [42] to be achieved.

To handle the first difficulty we mentioned above, we rely on the very recent [22], where a

notion of cotangent module with respect to the 2-capacity is introduced and studied. Building

upon the fact that the 2-capacity controls the perimeter measure in great generality, we introduce

the notion of tangent module over the boundary of a set of finite perimeter (cf. Theorem 2.1).

Furthermore we prove that there is a well-defined unit normal to a set of finite perimeter as an

element of this module, that it satisfies the Gauss–Green integration-by-parts formula and, relying

on functional analysis tools, that it can be approximated by regular vector fields (cf. Theorem 2.2

for a rigorous statement).

The results obtained in the study of the unit normal are then combined in a new way with

the theory of δ-splitting maps to prove rectifiability of the reduced boundary for sets of finite

perimeter.
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We introduce a notion of δ-orthogonality to the unit normal for δ-splitting maps. Then we prove on

the one hand that δ-splitting maps δ-orthogonal to the unit normal control both the geometry of the

space and that of the boundary of the set of finite perimeter (and vice-versa). On the other hand

the combination of δ-orthogonality and δ-splitting is seen to be suitable for propagation at many

locations and any scale with maximal function arguments (cf. Proposition 4.5 and Proposition 4.7).

We wish to emphasize the fact that, on the one hand the coarea formula (which holds in the

great generality of metric measure spaces) provides plenty of sets of finite perimeter even in the

non-smooth context, on the other one there is no hope to have a notion of smooth hypersurface

within this setting. Therefore we expect the range of applications to be large in the development

of the theory of spaces satisfying lower curvature bounds, both for the techniques we develop in

the paper and for our main results that, to the best of our knowledge, are new also for Ricci limits.

A number of open questions remains open and suitable for future investigation after the study

pursued in this paper. In particular, we wish to point out that neither the constancy of the

dimension result of [12], nor the absolute continuity of the reference measure with respect to the

Hausdorff measure ([38, 32, 21]), play a role in the proofs of our results. It might be interesting

to investigate whether one can prove constancy of the dimension for tangents also in the case of

sets of finite perimeter and sharpen the representation formula for the perimeter measure (maybe

relying on the good understanding we have of the top dimensional case). In this regard let us

point out that, in none of these cases, the techniques adopted to solve the analogous problems in

codimension 0 seem to work when dealing with sets of finite perimeter.

This note is organised as follows: in Section 1 we collect all the preliminary material to be

used in the paper. We dedicate Section 2 to the construction of the tangent module over the

boundary of a set of finite perimeter and to establishing a Gauss–Green integration-by-parts

formula. Uniqueness of blow-ups is the main outcome of Section 3, while rectifiability for the

reduced boundary is obtained in Section 4.

Acknowledgements. The authors wish to thank Luigi Ambrosio and Nicola Gigli for several

useful comments on an earlier version of this note and Aaron Naber for an enlightening discussion

about propagation of regularity in codimension 1.

The second named author was partially supported by the Academy of Finland, projects no.

274372, 307333, 312488, and 314789.

1. Preliminaries and notations

1.1. Calculus tools. Throughout this paper a metric measure space is a triple (X, d,m), where

(X, d) is a complete and separable metric space and m is a nonnegative Borel measure on X finite

on bounded sets. From now on when we write m.m.s. we mean metric measure space(s).

In order to simplify the notation, numerical constants depending only on the parameters entering

into play, will be denoted with the same letter C even if they do vary. Often we will make explicit

their dependence on the parameters writing for instance CN , CN,K .

We will denote by Br(x) = {d(·, x) < r} and B̄r(x) = {d(·, x) ≤ r} the open and closed

balls respectively, by Lip(X, d) (resp. Lipb(X, d), Lipc(X, d), Lipbs(X, d), Liploc(X, d)) the space

of Lipschitz (resp. bounded Lipschitz, compactly supported Lipschitz, Lipschitz with bounded

support, Lipschitz on bounded sets) functions and for any f ∈ Lip(X, d) we shall denote its slope

by

lipf(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y)

.
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We shall use the standard notation Lp(X,m) = Lp(m), for the Lp spaces and Ln for the n-

dimensional Lebesgue measure on Rn. We shall denote by ωn the Lebesgue measure of the unit

ball in Rn. If f ∈ L1
loc(X,m) and U ⊂ X is such that 0 < m(U) < +∞, then

ffl
U
fdm denotes the

average of f over U .

The Cheeger energy Ch : L2(X,m)→ [0,+∞] is the convex and lower semicontinuous functional

defined through

Ch(f) := inf

{
lim inf
n→∞

ˆ
X

(lipfn)2dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0

}
(1.1)

and its finiteness domain will be denoted by H1,2(X, d,m), sometimes we write H1,2(X) omitting

the dependence on d and m when it is clear from the context. Looking at the optimal approximating

sequence in (1.1), it is possible to identify a canonical object |∇f |, called minimal relaxed slope,

providing the integral representation

Ch(f) :=

ˆ
X

|∇f |2 dm ∀f ∈ H1,2(X, d,m).

Any metric measure space such that Ch is a quadratic form is said to be infinitesimally Hilber-

tian. Let us recall from [5, 28] that, under this assumption, the function

∇f1 · ∇f2 := lim
ε→0

|∇(f1 + εf2)|2 − |∇f1|2

2ε

defines a symmetric bilinear form on H1,2(X, d,m)×H1,2(X, d,m) with values into L1(X,m).

It is possible to define a Laplacian operator ∆ : D(∆) ⊂ L2(X,m)→ L2(X,m) in the following

way. We let D(∆) be the set of those f ∈ H1,2(X, d,m) such that, for some h ∈ L2(X,m), one hasˆ
X

∇f · ∇g dm = −
ˆ
X

hg dm ∀g ∈ H1,2(X, d,m) (1.2)

and, in that case, we put ∆f = h. It is easy to check that the definition is well-posed and that

the Laplacian is linear (because Ch is a quadratic form).

The heat flow Pt is defined as the L2(X,m)-gradient flow of 1
2Ch. Its existence and uniqueness

follow from the Komura-Brezis theory. It can be equivalently characterized by saying that for

any u ∈ L2(X,m) the curve t 7→ Ptu ∈ L2(X,m) is locally absolutely continuous in (0,+∞) and

satisfies
d

dt
Ptu = ∆Ptu for L1-a.e. t ∈ (0,+∞), lim

t↓0
Ptu = u in L2(X,m).

Under the infinitesimal Hilbertianity assumption the heat flow provides a linear, continuous and

self-adjoint contraction semigroup in L2(X,m). Moreover Pt extends to a linear, continuous and

mass preserving operator, still denoted by Pt, in all the Lp spaces for 1 ≤ p < +∞.

Definition 1.1 (Function of bounded variation). We say that f ∈ L1(X,m) belongs to the space

BV(X, d,m) of functions of bounded variation if there exist locally Lipschitz functions fi converging

to f in L1(X,m) such that

lim sup
i→∞

ˆ
X

|∇fi|dm < +∞.

If f ∈ BV(X, d,m) one can define

|Df | (A) := inf

{
lim inf
i→∞

ˆ
A

|∇fi|dm : fi ∈ Liploc(A), fi → f in L1(A,m)

}
for any open A ⊂ X. In [3] (see also [41] for the case of locally compact spaces) it is proven that

this set function is the restriction to open sets of a finite Borel measure that we call total variation

of f and still denote by |Df |.
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Dropping the global integrability condition on f = χE , let us recall now the analogous definition

of set of finite perimeter in a metric measure space (see again [1, 41, 3]).

Definition 1.2 (Perimeter and sets of finite perimeter). Given a Borel set E ⊂ X and an open

set A the perimeter Per(E,A) is defined in the following way:

Per(E,A) := inf

{
lim inf
n→∞

ˆ
A

|∇un|dm : un ∈ Liploc(A), un → χE in L1
loc(A,m)

}
.

We say that E has finite perimeter if Per(E,X) < +∞. In that case it can be proved that the set

function A 7→ Per(E,A) is the restriction to open sets of a finite Borel measure Per(E, ·) defined

by

Per(E,B) := inf {Per(E,A) : B ⊂ A, A open} .

Let us remark for the sake of clarity that E ⊂ X with finite m-measure is a set of finite perimeter

if and only if χE ∈ BV(X, d,m) and that Per(E, ·) = |DχE | (·). In the following we will say that

E ⊂ X is a set of locally finite perimeter if χE is a function of locally bounded variation, that is

to say ηχE ∈ BV(X, d,m) for any η ∈ Lipbs(X, d).

1.1.1. Total variation of BV functions via integration by parts. Let us present an equivalent ap-

proach to the study of BV functions in m.m.s. introduced by Di Marino in [23]. Before stating

Theorem 1.7 we need to recall the notion of derivation.

Definition 1.3 (Derivation). Let (X, d,m) be a metric measure space. Then a derivation on X

is a linear map b : Lipbs(X)→ L0(m) such that the following properties are satisfied:

i) Leibniz rule. b(fg) = b(f)g + fb(g) for every f, g ∈ Lipbs(X).

ii) Weak locality. There exists G ∈ L0(m) such that

|b(f)| ≤ G lipa(f)1 m-a.e. for every f ∈ Lipbs(X).

The least function G (in the m-a.e. sense) with this property is denoted by |b|.

The space of all derivations on X is denoted by Der(X). Given any derivation b ∈ Der(X), we

define its support supp(b) ⊂ X as the essential closure of {|b| 6= 0}. For any open set U ⊂ X, we

write supp(b) b U if supp(b) is bounded and dist(supp(b), X \ U) > 0. Given any b ∈ Der(X)

with |b| ∈ L1
loc(X), we say that div(b) ∈ Lp(m) – for some exponent p ∈ [1,∞] – provided there

exists a function h ∈ Lp(m) such that

−
ˆ

b(f) dm =

ˆ
fhdm for every f ∈ Lipbs(X). (1.3)

The function h is uniquely determined, thus it can be unambiguously denoted by div(b). We set

Derp(X) :=
{
b ∈ Der(X)

∣∣ |b| ∈ Lp(m)
}
,

Derp,p(X) :=
{
b ∈ Derp(X)

∣∣ div(b) ∈ Lp(m)
}

for any p ∈ [1,∞]. The set Derp(X) is a Banach space if endowed with the norm ‖b‖p := ‖|b|‖Lp(m).

Remark 1.4. We claim that for every b ∈ Derp,p(X) – where p ∈ [1,∞] – it holds that

supp
(
div(b)

)
⊂ supp(b). (1.4)

In order to prove it, fix any open bounded subset U of X \ supp(b). Then formula (1.3) guarantees

that
´
f div(b) dm = −

´
b(f) dm = 0 for every f ∈ Lipbs(U), whence accordingly div(b) = 0 holds

m-a.e. on U . By arbitrariness of U , we conclude that the claim (1.4) is verified.

1where lipa(f)(x) := limr→0 supd(x,y)<r
|f(x)−f(y)|

d(x,y)
is the so-called asymptotic Lipschitz constant.
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In the next proposition the notions of tangent module L2(TX) and, more generally, of Hilbert

L2(m)-normed L∞(m)-module, play a role. We will denote by∇ : H1,2(X)→ L2(TX) the gradient

map. We refer to Section 1.3 below for the definition of these objects.

Proposition 1.5. Let (X, d,m) an infinitesimally Hilbertian metric measure space. Let us denote

by D the closure in Der2(X) of the pre-Hilbert space D :=
(
Der2,2(X), ‖·‖2

)
. Then D has a natural

structure of Hilbert L2(m)-normed L∞(m)-module and the map A : L2(TX)→ D, defined as

A(v)(f) := v · ∇f for every v ∈ L2(TX) and f ∈ Lipbs(X).

is a normed module isomorphism between L2(TX) and D. Moreover, it holds A
(
D(div)

)
= D

and

div(A(v)) = div(v) for every v ∈ D(div).

Proof. Cf. the proof of [24, Proposition 6.5]. �

Remark 1.6. Given an infinitesimally Hilbertian space (X, d,m) and any f ∈ BV(X, d,m), it

holds
ˆ
f div(v) dm ≤ |Df |(X) for every v ∈ D(div) with |v| ≤ 1 m-a.e. and div(v) ∈ L∞(m).

Such inequality readily follows from [23, Theorem 3.3] and Proposition 1.5.

Theorem 1.7 (Representation formula for |Df |). Let (X, d,m) be an infinitesimally Hilbertian

metric measure space. Let f ∈ BV(X, d,m) be given. Then for every open set U ⊂ X it holds that

|Df |(U) = sup

{ ˆ
U

f div(v) dm

∣∣∣∣ v ∈ D(div), |v| ≤ 1 m-a.e., div(v) ∈ L∞(m), supp(v) b U

}
.

Proof. Combine [23, Theorem 3.4] with Proposition 1.5 (recall that we have b ∈ Der2,2(X) for

every b ∈ Der∞,∞(X) such that supp(b) is bounded, thanks to Remark 1.4). �

1.1.2. PI spaces. Let us recall that (X, d,m) satisfies a weak local (1, 2)-Poincaré inequality with

constants CP > 0 and λ ≥ 1 if it holds

 
Br(x)

∣∣f − (f)x,r
∣∣dm ≤ CP r ( 

Bλr(x)

|Df |2 dm

)1/2

for all f ∈ H1,2(X), x ∈ X, r > 0, (1.5)

where

(f)x,r :=

 
Br(x)

f dm. (1.6)

Before giving the definition of PI space we need to recall the notion of locally doubling m.m.s.:

we say that (X, d,m) is locally doubling if for any R > 0 there exists CD > 0 depending only on

R such that

m(B2r(x)) ≤ CDm(Br(x)) ∀ 0 < r < R, x ∈ X. (1.7)

Definition 1.8. A PI space is a locally doubling metric measure space supporting a weak local

(1, 2)-Poincaré inequality.
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1.1.3. Capacity and Hausdorff measures. We briefly recall the notion of capacity and its main

properties in this setting, referring to [22] for a detailed discussion on the topic. The capacity of

a given set E ⊂ X is defined as

Cap(E) := inf
{
‖f‖2H1,2(X)

∣∣∣ f ∈ H1,2(X, d,m), f ≥ 1 m-a.e. on some neighbourhood of E
}
.

It turns out that Cap is a submodular outer measure on X, finite on all bounded sets, such that

the inequality m(E) ≤ Cap(E) holds for any Borel set E ⊂ X. Any function f : X → [0,+∞]

can be integrated with respect to the capacity via Cavalieri’s formula:ˆ
f dCap :=

ˆ +∞

0

Cap
(
{f > t}

)
dt.

(The function t 7→ Cap
(
{f > t}

)
is non-increasing, thus in particular it is Lebesgue measurable.)

The integral operator f 7→
´
f dCap is subadditive as a consequence of the submodularity of Cap.

Given any set E ⊂ X, we shall use the shorthand notation
´
E
f dCap :=

´
χEf dCap.

Let us now introduce the codimension-α Hausdorff measure. We refer to [1] for a more detailed

introduction to this topic.

Definition 1.9. Given a locally doubling metric measure space (X, d,m), for any α > 0 we set

hα(Br(x)) :=
m(Br(x))

rα
for any x ∈ X, r ∈ (0,∞).

The codimension-α Hausdorff measure H hα is the Borel regular outer measure built from hα with

the Carathéodory construction. We will denote by H hα
δ the pre-measure with parameter δ.

The codimension-1 measure plays a crucial role in the theory of sets of finite perimeter over PI

spaces, since Per(E, ·) � H h1 for any set of finite perimeter E. This result has been proved by

Ambrosio in [1, Lemma 5.2].

Lemma 1.10. Let (X, d,m) be a PI space. For any set of locally finite perimeter E ⊂ X it holds

H h1(B) = 0 =⇒ Per(E,B) = 0 for any Borel set B ⊂ X.

Let us now prove two results connecting the codimension-α Hausdorff measure and the capacity.

Their proofs are inspired by those given for the analogous results in the Euclidean setting in [26].

Lemma 1.11. Let (X, d,m) be a locally doubling m.m.s.. Let f ∈ L1(X,m), f ≥ 0 be given. Then

for any exponent α > 0 it holds that

H hα(Λα) = 0, where we set Λα :=
{
x ∈ X

∣∣∣ lim sup
r↘0

rα(f)x,r > 0
}
.

Proof. By Lebesgue differentiation theorem we know that the limit limr↘0(f)x,r exists and is

finite for m-a.e. x ∈ X, thus for any α > 0 we have that lim supr↘0 r
α(f)x,r = 0 holds for m-a.e.

x ∈ X. This means that m(Λα) = 0. Calling

Λkα :=
{
x ∈ X

∣∣∣ lim sup
r↘0

rα(f)x,r ≥ 1/k
}

for every k ∈ N,

we see that Λα =
⋃
k Λkα, thus in particular m(Λkα) = 0 for every k ∈ N. Given that f ∈ L1(X,m),

for any ε > 0 there exists δ > 0 such that
´
A
f dm ≤ ε for any Borel set A ⊂ X satisfying

m(A) < δ. Fix k ∈ N and pick an open set U ⊂ X such that Λkα ⊂ U and m(U) < δ. Let us define

F :=

{
Br(x)

∣∣∣∣ x ∈ Λkα, r ∈ (0, ε), Br(x) ⊂ U,
ˆ
Br(x)

f dm ≥ m
(
Br(x)

)
/(rαk)

}
.

Therefore by applying the Vitali covering theorem we can find a sequence (Bi)i∈N ⊂ F of pairwise

disjoint balls Bi = Bri(xi) such that Λkα ⊂
⋃
iB5ri(xi). Being m locally doubling, there exists



RECTIFIABILITY OF THE REDUCED BOUNDARY OVER RCD SPACES 9

a constant CD ≥ 1 such that m
(
B5r(x)

)
≤ CD m

(
Br(x)

)
holds for every x ∈ X and r < ε.

Consequently, one has that

H hα
10ε (Λkα) ≤ 1

5α

∞∑
i=1

m
(
B5ri(xi)

)
rαi

≤ CD
5α

∞∑
i=1

m(Bi)

rαi
≤ CDk

5α

∞∑
i=1

ˆ
Bi

f dm ≤ CDk

5α

ˆ
U

f dm

≤ CDk

5α
ε.

By letting ε↘ 0 we conclude that H hα(Λkα) = 0, whence H hα(Λα) = limk H hα(Λkα) = 0. �

Theorem 1.12. Let (X, d,m) be a PI space. Then it holds that H hα � Cap for every α ∈ (0, 2).

Proof. Fix α ∈ (0, 2) and a set A ⊂ X with Cap(A) = 0. We aim to prove that H hα(A) = 0.

By definition of capacity, we can find a sequence (fi)i ⊂ H1,2(X) such that fi ≥ 1 on some

neighbourhood of A and ‖fi‖H1,2(X) ≤ 1/2i for every i ∈ N. Since
∑∞
i=1 ‖fi‖H1,2(X) < +∞, one

has that g :=
∑∞
i=1 fi is a well-defined element of the Banach space H1,2(X). For any k ∈ N it

clearly holds that g ≥ k on some neighbourhood of A, whence for any x ∈ A we have (g)x,r ≥ k

for every r < dist
(
x, {g < k}

)
and accordingly

lim
r↘0

(g)x,r = +∞ for every x ∈ A. (1.8)

Furthermore, we claim that

lim sup
r↘0

rα
 
Br(x)

|Dg|2 dm = +∞ for every x ∈ A. (1.9)

In order to prove it, we argue by contradiction: suppose that lim supr↘0 r
α
ffl
Br(x)

|Dg|2 dm < +∞
for some x ∈ A, so that there exists a constant M > 0 such that

rα
 
Br(x)

|Dg|2 dm ≤M for every r ∈ (0, 1). (1.10)

Call CD the doubling constant of m (for r < 1/2). Therefore, for every r < 1/(2λ) we have that∣∣(g)x,r − (g)x,2r
∣∣ =

1

m
(
Br(x)

) ∣∣∣∣ ˆ
Br(x)

g − (g)x,2r dm

∣∣∣∣
≤ CD

 
B2r(x)

∣∣g − (g)x,2r
∣∣dm

(1.5)

≤ 2CD CP r

( 
B2λr(x)

|Dg|2 dm

)1/2

(1.10)

≤ (21−α/2 CD CP λ
−α/2M

1/2) r1−α/2.

Let us set C := 21−α/2 CD CP λ
−α/2M 1/2 and θ := 1−α/2 ∈ (0, 1). Then the previous computation

gives
∑∞
i=2

∣∣(g)x,2−i − (g)x,2−i+1

∣∣ ≤ C∑∞i=2(2θ)−i < +∞, contradicting (1.8). This proves (1.9).

Finally, it immediately follows from (1.9) that A is contained in the set of all points x ∈ X that

satisfy lim supr↘0 r
α
ffl
Br(x)

|Dg|2 dm > 0, which is H hα-negligible by Lemma 1.11. Therefore, we

conclude that H hα(A) = 0, thus completing the proof of the statement. �

1.2. RCD metric measure spaces. The main object of our investigation in this note are RCD(K,N)

metric measure spaces, that is infinitesimally Hilbertian spaces satisfying a lower Ricci curvature

bound and an upper dimension bound in synthetic sense according to [47, 48, 39]. Before passing

to the description of the main properties of RCD(K,N) spaces that will be relevant for the sake

of this note, let us briefly focus on the adimensional case.
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The class of RCD(K,∞) spaces was introduced in [6] (see also [4] for the extension to the

case of σ-finite reference measures) adding to the CD(K,∞) condition, formulated in terms of

K-convexity properties of the logarithmic entropy over the Wasserstein space (P2,W2), the infin-

itesimal Hilbertianity assumption.

Under the RCD(K,∞) condition it was proved that the dual heat semigroup P ∗t : P2(X) →
P2(X), defined by ˆ

X

f dP ∗t µ =

ˆ
X

Ptf dµ ∀µ ∈ P2(X), ∀f ∈ Lipbs(X, d)

is K-contractive w.r.t. the W2-distance and, for t > 0, maps probability measures into probability

measures absolutely continuous w.r.t. m. Then, for any t > 0, it is possible to define the heat

kernel pt : X ×X → [0,+∞) by

pt(x, ·)m = P ∗t δx. (1.11)

We go on stating a few regularization properties of RCD(K,∞) spaces, referring again to [6, 4]

for a more detailed discussion and for the proofs of these results.

First we have the Bakry-Émery contraction estimate:

|∇Ptf |2 ≤ e−2KtPt |∇f |2 m-a.e., (1.12)

for any t > 0 and for any f ∈ H1,2(X, d,m). This contraction estimate can be generalized to the

whole range of exponents 1 < p < +∞. Furthermore in [30] it has been proved that on any proper

RCD(K,∞) m.m.s. it holds

|DPtf | ≤ e−KtP ∗t |Df | , (1.13)

for any t > 0 and for any f ∈ BV(X, d,m).

Next we have the so-called Sobolev-to-Lipschitz property, stating that any f ∈ H1,2(X, d,m)

such that |∇f | ∈ L∞(X,m) admits a representative f̃ ∈ Lip(X, d) with Lipschitz constant bounded

from above by ‖|∇f |‖L∞ .

Let us introduce the space of test functions Test(X, d,m) following [27]:

Test(X, d,m) := {f ∈ D(∆) ∩ L∞(X,m) : |∇f | ∈ L∞(X,m) and ∆f ∈ H1,2(X, d,m)}. (1.14)

The notion of RCD(K,N) m.m.s. was proposed and extensively studied in [28, 10, 25] (see

also [14] for the equivalence between the RCD and the RCD∗ condition2), as a finite dimensional

counterpart to RCD(K,∞) m.m.s. which were introduced and firstly studied in [6]. Here we just

recall that they can be characterized asking for the quadraticity of Ch, the volume growth condition

m(Br(x)) ≤ c1 exp(c2r
2) for some (and thus for all) x ∈ X, the validity of the Sobolev-to-Lipschitz

property and of a weak form of Bochner’s inequality

1

2
∆ |∇f |2 −∇f · ∇∆f ≥ (∆f)

2

N
+K |∇f |2 for any f ∈ Test(X, d,m).

We refer to [10, 25] for a more detailed discussion and equivalent characterizations of the RCD(K,N)

condition.

Note that, if (X, d,m) is an RCD(K,N) m.m.s., then so is (suppm, d,m), hence in the following

we will always tacitly assume suppm = X.

We recall that any RCD(K,N) m.m.s. (X, d,m) satisfies the Bishop-Gromov inequality:

m(BR(x))

vK,N (R)
≤ m(Br(x))

vK,N (r)
for any 0 < r < R and x ∈ X, (1.15)

2In [14] the case of finite measure is considered but, due to the local nature of their arguments, it is thought

that the identification result extends to the general case.
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where vK,N (r) is the volume of the ball with radius r in the model space with dimension N and

Ricci curvature K. We refer to [49, Theorem 30.11] for the proof of (1.15). In particular (X, d,m)

is locally uniformly doubling. Furthermore, it was proved in [45] that it satisfies a local Poincaré

inequality. Therefore RCD(K,N) spaces fit in the framework of PI spaces that we introduced

above.

We assume the reader to be familiar with the notion of pointed measured Gromov-Hausdorff

convergence (pmGH-convergence for short), referring to [49, Chapter 27] for an overview on the

subject.

Remark 1.13. A fundamental property of RCD(K,N) spaces, that will be used several times in

this paper, is the stability w.r.t. pmGH-convergence, meaning that a pmGH-limit of a sequence of

(pointed) RCD(Kn, Nn) spaces for some Kn → K and Nn → N is an RCD(K,N) m.m.s..

Let us finally recall the construction of good cut-off functions over RCD(K,N) metric measure

spaces, see [42, Lemma 3.1] for a proof.

Lemma 1.14. Let (X, d,m) be an RCD(K,N) m.m. space. For any 0 < 2r < R and x ∈ X there

exists a test function η : X → R satisfying

(i) 0 ≤ η ≤ 1 on X, η = 1 on Br(x) and η = 0 on X \B2r(x);

(ii) r2|∆η|+ r|∇η| ≤ CN,K,R.

1.2.1. Structure theory. Let us briefly review the main results concerning the state of the art about

the so-called structure theory of RCD(K,N) spaces.

Given a m.m.s. (X, d,m), x ∈ X and r ∈ (0, 1), we consider the rescaled and normalized pointed

m.m.s. (X, r−1d,mxr , x), where

mxr :=

(ˆ
Br(x)

(
1− d(x, y)

r

)
dm(y)

)−1

m = C(x, r)−1m.

Definition 1.15. We say that a pointed m.m.s. (Y, dY , η, y) is tangent to (X, d,m) at x if there

exists a sequence ri ↓ 0 such that (X, r−1
i d,mxri , x) → (Y, dY , η, y) in the pmGH-topology. The

collection of all the tangent spaces of (X, d,m) at x is denoted by Tanx(X, d,m).

A compactness argument, which is due to Gromov, together with the rescaling and stability

properties of the RCD(K,N) condition (see Remark 1.13), yields that Tanx(X, d,m) is non-empty

for every x ∈ X and its elements are all RCD(0, N) pointed m.m. spaces.

Let us recall below the notion of k-regular point and k-regular set.

Definition 1.16. Given any natural 1 ≤ k ≤ N , we say that x ∈ X is a k-regular point if

Tanx(X, d,m) =
{

(Rk, deucl, ckLk, 0)
}
.

We shall denote by Rk the set of k-regular points in X.

Observe that, by explicit computation, in Definition 1.16 the constant ck equals ωk
k+1 .

Remark 1.17. Observe that, if x ∈ Rk, then one has

lim
r→0

´
Br(x)

(
1− d(x,y)

r

)
dm(y)

m(Br(x))
=

1

k + 1
. (1.16)

Moreover it can be easily checked that x ∈ Rk if and only if

lim
r→0

dpmGH

((
X, r−1d,

m

m(Br(x))
, x

)
,

(
Rk, deucl,

1

ωk
Lk, 0k

))
= 0.
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After the works [31, 42, 32, 21, 38] and [12] we have the following structure theorem for

RCD(K,N) spaces.

Theorem 1.18. Let (X, d,m) be an RCD(K,N) m.m.s. with K ∈ R and N ≥ 1. Then there

exists a natural number 1 ≤ n ≤ N , called essential dimension of X, such that m(X \ Rn) =

0. Moreover Rn is (m, n)-rectifiable and m is representable as θH n Rn for some nonnegative

density θ ∈ L1
loc(X,H n Rn).

Recall that X is said to be (m, n)-rectifiable if there exists a family {Ai}i∈N of Borel subsets of

X such that each Ai is bi-Lipschitz to a Borel subset of Rn and m(X \ ∪i∈NAi) = 0.

1.2.2. Sobolev functions and Laplacian on balls. Following a standard approach let us give a notion

of Sobolev functions and Laplacian on balls, we refer to [8] for more detailed presentation.

We define the space H1,2
0 (Br(x), d,m) considering the closure of Lipc(Br(x), d) in H1,2(X, d,m).

Let us also define H1,2
loc (Br(x), d,m) as the space of those f : Br(x) → R such that ηf ∈

H1,2(X, d,m) for any η ∈ Lipc(Br(x), d). Exploiting the locality of the minimal relaxed slope one

can easily define |∇f | for any f ∈ H1,2
loc (Br(x), d,m). This allows us to introduce H1,2(Br(x), d,m)

as the space of f ∈ H1,2
loc (Br(x), d,m) such that f, |∇f | ∈ L2(X,m).

Definition 1.19. A function f ∈ H1,2(Br(x), d,m) belongs to D(∆, Br(x)) if there exists g ∈
L2(Br(x),m) satisfyingˆ

Br(x)

∇f · ∇hdm = −
ˆ
Br(x)

f g dm for any h ∈ H1,2
0 (Br(x), d,m).

With a slight abuse of notation we write ∆f = g in Br(x).

It is easily seen that, if f ∈ D(∆, Br(x)) and η ∈ Lipc(Br(x), d) ∩D(∆), ∆η ∈ L∞(X,m) then

ηf ∈ D(∆).

1.2.3. Stability and convergence results. Let us fix a pointed measured Gromov-Hausdorff conver-

gent sequence

(Xi, di,mi, xi)→ (Y, %, µ, y)

of RCD(K,N) m.m. spaces. Recall that, in the setting of uniformly locally doubling spaces, the

pointed measured Gromov-Hausdorff convergence can be equivalently characterized asking for the

existence of a proper metric space (Z, dZ) where (Xi, di) and (Y, %) are isometrically embedded,

xi → y and mi → µ in duality with Cbs(Z) (the space of continuous functions with bounded

supports in Z). This is the so-called extrinsic approach and it is convenient to formulate various

notions of convergence.

Definition 1.20. Let (Xi, di,mi, xi), (Y, %, µ, y), (Z, dZ) be as above and fi : Xi → R, f : Y → R.

We say that fi → f pointwise if fi(zi) → f(z) for every sequence of points zi ∈ Xi such that

zi → z in Z. If for every ε > 0 there exists δ > 0 such that |fi(zi)− f(z)| ≤ ε for every i ≥ δ−1

and zi ∈ Xi, z ∈ Y with dZ(zi, z) ≤ δ, then we say that fi → f uniformly.

The next proposition is a version of the Ascoli–Arzelà compactness theorem for sequences of

functions defined on varying spaces. We omit the proof, that can be obtained arguing as in the

case of a fixed space.

Proposition 1.21. Let (Xi, di,mi, xi) and (Y, ρ, µ, y) be as above and R > 0, L > 0 fixed. Then

for any sequence of L-Lipschitz functions fi : BR(xi) → R such that supi
∣∣fi(xi)∣∣ < +∞ there

exists a subsequence that converges uniformly to some L-Lipschitz function f : BR(y)→ R.
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We recall below the notions of convergence in Lp and Sobolev spaces for functions defined over

converging sequences of metric measure spaces. We will be concerned only with the cases p = 2

and p = 1 in the rest of the note. We refer again to [7, 8] for a more general treatment and the

proofs of the results we state below.

Definition 1.22. We say that fi ∈ L2(Xi,mi) converge in L2-weak to f ∈ L2(Y, µ) if fimi → fµ

in duality with Cbs(Z) and supi ‖fi‖L2(Xi,mi)
< +∞.

We say that fi ∈ L2(Xi,mi) converge in L2-strong to f ∈ L2(Y, µ) if fimi → fµ in duality with

Cbs(Z) and limi ‖fi‖L2(Xi,mi)
= ‖f‖L2(Y,µ).

Definition 1.23. We say that a sequence (fi) ⊂ L1(Xi,mi) converges L1-strongly to f ∈ L1(Y, µ)

if

σ ◦ fimi → σ ◦ fµ and

ˆ
Xi

|fi|dmi →
ˆ
Y

|f |dµ,

where σ(z) := sign(z)
√
|z| and the weak convergence is understood in duality with Cbs(Z). Equiv-

alently, if σ ◦ fi L2-strongly converge to σ ◦ f .

Dealing with characteristic functions one has the following equivalent notion of L1-convergence.

Definition 1.24. We say that a sequence of Borel sets Ei ⊂ Xi such that mi(Ei) < ∞ for any

i ∈ N converges in L1-strong to a Borel set F ⊂ Y with µ(F ) < ∞ if χEimi → χFµ in duality

with Cbs(Z) and mi(Ei)→ µ(F ).

We also say that a sequence of Borel sets Ei ⊂ Xi converges in L1
loc to a Borel set F ⊂ Y if

Ei ∩BR(xi)→ F ∩BR(y) in L1-strong for any R > 0.

Remark 1.25. It follows from the very definition of L1-convergence that, if a sequence of sets

Ei → F in L1, then χEi → χF in L2-strong.

Definition 1.26. We say that a sequence of sets with locally finite perimeter Ei ⊂ Xi converges

locally strongly in BV to a set of locally finite perimeter F ⊂ Y if Ei → F in L1
loc and |DχEi | →

|DχF | in duality with Cbs(Z).

A proof of the technical result below can be found in [7].

Proposition 1.27. Let us fix p = 1, 2.

(i) For any fi, gi ∈ Lp(Xi,mi) such that fi → f ∈ Lp(Y, µ) and gi → g ∈ Lp(Y, µ) strongly in

Lp one has fi + gi → f + g strongly in Lp.

(ii) If fi → f and gi → g in L2-strong then figi → fg in L1-strong.

(ii) If fi → f in L1-strong and supi∈N ‖fi‖L∞(Xi,mi)
<∞ then ‖fi‖L2(Xi,mi)

→ ‖f‖L2(Y,µ). In

particular fi → f in L2-strong.

Let us present a compactness result for sets with finite perimeter that is partially taken from

[2].

Proposition 1.28. Let Ei ⊂ Xi be sets of finite perimeter satisfying

sup
i∈N

Per(Ei, B1(xi)) <∞.

Then there exists F ⊂ Y of finite perimeter such that, up to extract a subsequence, Ei ∩B1(xi)→
F ∩B1(y) in L1-strong and

lim inf
i→∞

ˆ
g d|DχEi | ≥

ˆ
g d|DχF |, for any g ∈ C(Z), nonnegative with supp(g) ⊂ B̄1/2(y).

(1.17)
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If we further assume that

lim
i→∞

|DχEi | (B1/2(xi)) = |DχF | (B1/2(y)), (1.18)

then (1.17) improves to

lim
i→∞

ˆ
g d|DχEi | =

ˆ
g d|DχF |, for any g ∈ C(Z) with supp(g) ⊂ B1/2(y). (1.19)

Proof. The convergence Ei ∩B1(xi)→ F ∩B1(y) in L1-strong up to subsequence can be obtained

arguing as in the proof of [2, Corollary 3.4].

Inequality (1.17) follows from [2, Proposition 3.6] along with a localization argument that we

sketch briefly. For any i ∈ N, using Lemma 1.14 we build a good cut-off function ηi ∈ Lip(Xi, di)

satisfying ηi = 1 in B1/2(xi) and ηi = 0 in Xi \ B3/4(xi). By Proposition 1.21, up to extract a

subsequence, we can assume that ηi → η∞ ∈ Lip(Y, ρ) uniformly and in L2-strong. It is easily

seen that η∞ = 1 in B1/2(y) and η∞ = 0 in Y \B1(y). The sequence (ηiχEi)i satisfies

ηiχEi → η∞χF in L1-strong and sup
i∈N
|D(ηiχEi)|(Xi) <∞,

thanks to Proposition 1.27(ii) and standard calculus rules. Applying [2, Proposition 3.6] to the

sequence (ηiχEi)i we get (1.17).

Inequality (1.19)) is a weak convergence result in the ball B1/2(y) ⊂ Z, which can be proved

arguing as in the proof of [2, Corollary 3.7] taking into account (1.17) and (1.18). �

Let us now introduce a notion of H1,2-convergence along with its local counterpart.

Definition 1.29. We say that fi ∈ H1,2(Xi, di,mi) are weakly convergent to f ∈ H1,2(Y, %, µ) if

they converge in L2-weak and supi Chi(fi) < +∞. Strong H1,2-convergence is defined asking that

fi converge to f in L2-strong and limi Chi(fi) = Ch(f).

Definition 1.30. We say that fi ∈ H1,2(BR(xi), di,mi) are weakly convergent in H1,2 to f ∈
H1,2(BR(y), %, µ) on BR(y) if fi are L2-weakly (or L2-strongly, equivalently) to f on BR(y) with

supi∈N ‖fi‖H1,2 <∞. Strong convergence in H1,2 on BR(y) is defined by requiring

lim
i→∞

ˆ
BR(xi)

|∇fi|2 dmi =

ˆ
BR(y)

|∇f |2 dµ.

Let us now collect results from [8] that will play a role in this note.

Lemma 1.31 ([8, Lemma 2.10]). For any f ∈ Lipc(BR(y), %) there exist fi ∈ Lipc(BR(xi), di)

satisfying

sup
i∈N
‖|∇fi|‖L∞(Xi,mi)

<∞

and strongly convergent to f in H1,2.

Theorem 1.32 ([8, Theorem 4.4]). Let fi ∈ D(∆, BR(xi)) with

sup
i∈N

ˆ
BR(xi)

(|fi|2 + |∇fi|2 + (∆fi)
2) dmi <∞,

and let f be an L2-strong limit function of fi on BR(y). Then:

(i) f ∈ D(∆, BR(y));

(ii) ∆fi → ∆f on BR(y) weakly in L2;

(iii) |∇fi|2 → |∇f |2 on BR(y) strongly in L1.

Proposition 1.33 ([8, Corollary 4.12]). Let f ∈ H1,2(BR(y), %, µ) be a harmonic function (i.e.,

f ∈ D(∆, BR(y)) with ∆f = 0). Then, for any 0 < r < R there exist fi ∈ H1,2(Br(xi), di,mi)

harmonic such that fi → f on Br(y) strongly in H1,2.
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1.3. Normed modules. Let (X, d,m) be a metric measure space. We begin by briefly recalling

the definitions of normed module over (X, d,m), which have been introduced in [27] and are in

turn inspired by the theory developed in [50].

Let R be either L∞(m) or L0(m). Let M be a module over the commutative ring R. Then an

Lp-pointwise norm on M , for some p ∈ {0} ∪ [1,∞), is any mapping | · | : M → Lp(m) such that

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v|+ |w| for every v, w ∈M ,

|fv| = |f ||v| for every f ∈ R and v ∈M ,

(1.20)

where all (in)equalities are in the m-a.e. sense. We shall consider two classes of normed modules:

• Lp(m)-normed L∞(m)-modules, with p ∈ [1,∞). A module M p over L∞(m) endowed

with an Lp-pointwise norm | · | such that ‖v‖Mp :=
∥∥|v|∥∥

Lp(m)
is a complete norm on M p.

• L0(m)-normed L0(m)-modules. A module M 0 over L0(m) endowed with an L0-pointwise

norm |·| such that dM0(v, w) :=
´

min
{
|v−w|, 1

}
dm′ (where m′ is any probability measure

that is mutually absolutely continuous with m) is a complete distance on M 0.

We refer to [29] for an account of the abstract normed modules theory on metric measure spaces.

Assume (X, d,m) is infinitesimally Hilbertian, i.e., its Sobolev space H1,2(X, d,m) is Hilbert.

Then a key example of normed module on X is represented by the tangent module L0(TX),

which is characterized as follows: there is a unique couple
(
L0(TX),∇), where L0(TX) is an

L0(m)-normed L0(m)-module and ∇ : H1,2(X)→ L0(TX) is a linear gradient map, such that the

following hold:

|∇f | coincides with the minimal relaxed slope of f for every f ∈ H1,2(X),{ n∑
i=1

χEi∇fi
∣∣∣∣ (Ei)

n
i=1 Borel partition of X, (fi)

n
i=1 ⊂ H1,2(X)

}
is dense in L0(TX).

For any exponent p ∈ [1,∞], we set Lp(TX) :=
{
v ∈ L0(TX) : |v| ∈ Lp(m)

}
. It can be readily

checked that the space Lp(TX) has a natural Lp(m)-normed L∞(m)-module structure (for p <∞).

1.3.1. Second order calculus over RCD spaces. Gigli in [27] has developed a second order calculus

for RCD(K,∞) metric measure spaces. The notions of Hessian and covariant derivative have been

introduced as bilinear forms on L2(TX), along with the spaces H2,2(X, d,m) ⊂ H1,2(X, d,m) and

H1,2
C (TX) ⊂ L2(TX), see [27, Definition 3.3.1, Definition 3.4.1, Definition 3.3.17, Definition 3.4.3].

Let us recall that, as proved in [27, Proposition 3.3.18], we have the inclusion

D(∆) ⊂ H2,2(X, d,m). (1.21)

Moreover, assuming (X, d,m) to be RCD(K,N) m.m.s., one has the local estimate

ˆ
B1(x)

|Hess f |2 dm ≤ CN,K

(ˆ
B2(x)

|∆f |2 dm + inf
m∈R

ˆ
B2(x)

∣∣|∇f |2 −m∣∣dm)−K ˆ
B2(x)

|∇f |2 dm,

(1.22)

that can be checked integrating the improved Bochner inequality proved in [34] against a good

cut-off function (see Lemma 1.14 above).

Let us recall that the Hessian enjoys the following locality property that has been proved in

[27, Proposition 3.3.24].

Proposition 1.34. Given f1, f2 ∈ H2,2(X, d,m) it holds

|Hess f1| = |Hess f2| m-a.e. in {f1 = f2} .
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In addition we shall use the following inequality that has been proved in [27, Proposition 3.3.22]:

|∇(∇f · ∇g)| ≤ |Hess f | |∇g|+ |Hess g| |∇f | for any f, g ∈ H2,2(X, d,m). (1.23)

1.3.2. Module with respect to the capacity measure. We recall a variant of the notion of L0-normed

L0-module – where the Borel measure m is replaced by the capacity – which has been proposed in

[22]. Fix a metric measure space (X, d,m). The space of all Borel functions on X – considered up to

Cap-a.e. equality – is denoted by L0(Cap). If continuous functions are strongly dense in H1,2(X)

(this condition is met, for instance, if the space is infinitesimally Hilbertian), then there exists a

unique “quasi-continuous representative” map QCR : H1,2(X) → L0(Cap) that is characterized

as follows: QCR is a continuous map, and for any f ∈ H1,2(X) it holds that QCR(f) is (the

equivalence class of) a quasi-continuous function that is m-a.e. coinciding with f itself. Let us

recall that a function f : X → R is said to be quasi-continuous if for any ε > 0 there exists a set

E ⊂ X with Cap(E) < ε such that f : X \ E → R is continuous. We refer to [22, Theorem 1.20]

for a proof of this result.

Given a module MCap over the ring L0(Cap), we say that a mapping | · | : MCap → L0(Cap)

is a pointwise norm provided it satisfies the (in)equalities in (1.20) in the Cap-a.e. sense for any

choice of v, w ∈MCap and f ∈ L0(Cap). Then the space MCap is said to be an L0(Cap)-normed

L0(Cap)-module if it is complete when endowed with the distance

dMCap(v, w) :=
∑
k∈N

1

2k max
{

Cap(Ak), 1
} ˆ

Ak

min
{
|v − w|, 1

}
dCap,

where (Ak)k is any increasing sequence of open subsets of X having finite capacity that is chosen

in such a way that any bounded set B ⊂ X is contained in Ak for some k ∈ N sufficiently big.

Let us recall, since this fact plays a crucial role in the discussion below, that |∇f |2 ∈ H1,2(X)

for any f ∈ Test(X) (see [46]), and thus |∇f | ∈ H1,2(X) as well (see [22]). In particular, for any

f ∈ Test(X), |∇f | admits a quasi-continuous representative.

Theorem 1.35 (Tangent L0(Cap)-module [22]). Let (X, d,m) be an RCD(K,∞) space. Then

there exists a unique couple
(
L0

Cap(TX), ∇̃
)
, where L0

Cap(TX) is an L0(Cap)-normed L0(Cap)-

module and ∇̃ : Test(X)→ L0
Cap(TX) is a linear operator, such that the following hold:

|∇̃f | = QCR(|∇f |) in the Cap-a.e. sense for every f ∈ Test(X),{∑
n∈N

χEn∇̃fn
∣∣∣∣ (En)n Borel partition of X, (fn)n ⊂ Test(X)

}
is dense in L0

Cap(TX).

The space L0
Cap(TX) is called capacitary tangent module on X, while ∇̃ is the capacitary gradient.

Fix any Radon measure µ on a m.m.s. (X, d,m) and suppose that µ � Cap. Then there is a

natural projection πµ : L0(Cap)→ L0(µ). Given an L0(Cap)-normed L0(Cap)-module MCap, we

define an equivalence relation ∼µ on MCap as follows: given any v, w ∈MCap, we declare that

v ∼µ w ⇐⇒ |v − w| = 0 holds µ-a.e. on X.

Then the quotient M 0
µ := MCap/ ∼µ inherits a natural structure of L0(µ)-normed L0(µ)-module.

Call π̄µ : MCap →M 0
µ the canonical projection. Moreover, for any exponent p ∈ [1,∞) we define

M p
µ :=

{
v ∈M 0

µ

∣∣ |v| ∈ Lp(µ)
}
. (1.24)

It turns out that M p
µ is an Lp(µ)-normed L∞(µ)-module. Notice that |π̄µ(v)| = πµ(|v|) holds in

the µ-a.e. sense for every v ∈MCap.
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Lemma 1.36. Let (X, d,m) be a m.m.s., MCap an L0(Cap)-normed L0(Cap)-module. Fix a finite

Borel measure µ ≥ 0 on X such that µ� Cap. Let V be a linear subspace of MCap such that |v|
admits a bounded Cap-a.e. representative for every v ∈ V and

V :=

{∑
n∈N

χEnvn

∣∣∣∣ (En)n∈N Borel partition of X, (vn)n∈N ⊂ V
}

is dense in MCap.

Then for any p ∈ [1,∞) it holds that

W :=

{ n∑
i=1

χEi π̄µ(vi)

∣∣∣∣ n ∈ N, (Ei)
n
i=1 Borel partition of X, (vi)

n
i=1 ⊂ V

}
is dense in M p

µ .

Proof. Fix v ∈M p
µ and ε > 0. Since |v|p ∈ L1(µ), there is δ > 0 such that

( ´
E
|v|p dµ

)1/p ≤ ε/3

holds for any Borel set E ⊂ X with µ(E) < δ. Choose any v̄ ∈ MCap such that π̄µ(v̄) = v. We

can find (v̄k)k ⊂ V so that |v̄k − v̄| → 0 in L0(Cap). Hence
∣∣π̄µ(v̄k) − π̄µ(v̄)

∣∣ = πµ
(
|v̄k − v̄|

)
→ 0

in L0(µ). Thanks to Egorov theorem, there exists a compact set K ⊂ X with µ(X \K) < δ such

that (possibly taking a not relabeled subsequence) it holds that
∣∣π̄µ(v̄k)− v

∣∣→ 0 uniformly on K.

Consequently, by dominated convergence theorem we see that χK π̄µ(v̄k)→ χKv in M p
µ . Then we

can pick k ∈ N so that the element w̄ := v̄k satisfies
∥∥χK π̄µ(w̄)− χKv

∥∥
Mp
µ
≤ ε/3. If w̄ is written

as
∑
n∈N χEnw̄n, then we have χK π̄µ(w̄) =

∑
n∈N χK∩En π̄µ(w̄n). By dominated convergence

theorem we know that for N ∈ N sufficiently big the element z :=
∑N
n=1

χK∩En π̄µ(w̄n) ∈ W
satisfies

∥∥z − χK π̄µ(w̄)
∥∥

Mp
µ
≤ ε/3. Therefore, we conclude that

‖z − v‖Mp
µ
≤
∥∥z − χK π̄µ(w̄)

∥∥
Mp
µ

+
∥∥χK π̄µ(w̄)− χKv

∥∥
Mp
µ

+ ‖χX\Kv‖Mp
µ
≤ ε,

thus proving the statement. �

1.4. Hodge Laplacian of vector fields on RCD spaces. Let (X, d,m) be an RCD(K,∞) space.

Consider the space H1,2
H (TX) and the Hodge Laplacian ∆H : D(∆H) ⊂ H1,2

H (TX) → L2(TX),

which have been defined in [27, Definition 3.5.13] and [27, Definition 3.5.15], respectively (cf. the

first paragraph of [29, Section 2.6] for the identification between vector and covector fields).

It follows from its definition that the Hodge Laplacian is self-adjoint, namely thatˆ
〈∆Hv, w〉dm =

ˆ
〈v,∆Hw〉dm for every v, w ∈ D(∆H). (1.25)

Let us consider the augmented Hodge energy functional ẼH : L2(TX)→ [0,+∞], which is defined

in [27, eq. (3.5.16)] (up to identifying L2(T ∗X) with L2(TX) via the musical isomorphism). Then

we denote by (hH,t)t≥0 the gradient flow in L2(TX) of the functional ẼH. This means that for any

vector field v ∈ L2(TX) it holds that t 7→ hH,t(v) ∈ L2(TX) is the unique continuous curve on

[0,+∞) with hH,0(v) = v, which is locally absolutely continuous on (0,+∞) and satisfies

hH,t(v) ∈ D(∆H) and
d

dt
hH,t(v) = −∆HhH,t(v) for every t > 0.

Cf. the discussion that precedes [27, Proposition 3.6.10]. It also holds that

hH,t(∇f) = ∇Ptf for every f ∈ H1,2(X) and t ≥ 0. (1.26)

Finally, we recall that vector fields satisfy the following Bakry-Émery contraction estimate (see

[27, Proposition 3.6.10]):

|hH,t(v)|2 ≤ e−2KtPt(|v|2) m-a.e. for every v ∈ L2(TX) and t ≥ 0. (1.27)

Lemma 1.37 (hH,t is self-adjoint). Let (X, d,m) be an RCD(K,∞) space. Then it holds thatˆ
〈hH,t(v), w〉dm =

ˆ
〈v, hH,t(w)〉dm for every v, w ∈ L2(TX) and t ≥ 0. (1.28)
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Proof. Fix v, w ∈ L2(TX) and t > 0. We define the function ϕ : [0, t]→ R as

ϕ(s) :=

ˆ
〈hH,s(v), hH,t−s(w)〉dm for every s ∈ [0, t].

Therefore, the function ϕ is absolutely continuous and satisfies

ϕ′(s) = −
ˆ
〈∆HhH,s(v), hH,t−s(w)〉dm +

ˆ
〈hH,s(v),∆HhH,t−s(w)〉dm (1.25)

= 0 for a.e. t > 0.

Then ϕ is constant, thus in particular
´
〈hH,t(v), w〉dm = ϕ(t) = ϕ(0) =

´
〈v, hH,t(w)〉dm. �

Proposition 1.38. Let (X, d,m) be an RCD(K,∞) space. Then for any v ∈ D(div) it holds that

hH,t(v) ∈ H1,2
C (TX) ∩D(div) and div(hH,t(v)) = Pt(div(v)) for every t > 0.

Proof. First of all, observe that hH,t(v) ∈ H1,2
H (TX) ⊂ H1,2

C (TX) by [27, Corollary 3.6.4]. More-

over, let f ∈ H1,2(X) be given. Then it holds thatˆ
〈∇f, hH,t(v)〉dm (1.28)

=

ˆ
〈hH,t(∇f), v〉dm (1.26)

=

ˆ
〈∇Ptf, v〉dm = −

ˆ
Ptf div(v) dm

= −
ˆ
fPt(div(v)) dm.

By arbitrariness of f , we conclude that hH,t(v) ∈ D(div) and div(hH,t(v)) = Pt(div(v)). �

2. A Gauss-Green formula on RCD spaces

Let (X, d,m) be an RCD(K,N) m.m. space and E ⊂ X a set of finite perimeter. We recall

that, by Lemma 1.10, one has |DχE | � H h1 , so accordingly |DχE | � Cap by Theorem 1.12.

It thus makes sense to consider the projection π|DχE | : L0(Cap) → L0(|DχE |). Recall also that

QCR : H1,2(X) → L0(Cap) stands for the “quasi-continuous representative” operator. Then let

us define

trE : H1,2(X)→ L0(|DχE |), trE := π|DχE | ◦ QCR,

the trace operator over the boundary of E. Observe that trE(f) ∈ L∞(|DχE |) holds for every test

function f ∈ Test(X).

This being said, let us state the two main results of this section. The first one gives existence

and uniqueness of the tangent module over the boundary of a set of finite perimeter. The second

theorem provides a Gauss–Green formula tailored for finite-dimensional RCD spaces along with

a strong approximation result for the exterior normal of sets with finite perimeter. This approx-

imation result, whose proof heavily relies on the abstract machinery of normed modules and on

functional-analytic tools, plays a key role in the study of rectifiability properties for boundaries of

sets with finite perimeter that we are going to perform in the last section of this note.

Let us point out that in the very recent [13] the problem of obtaining a Gauss–Green formula on

RCD(K,∞) spaces has been treated. A comparison between our stronger result, heavily relying

on finite dimensionality, and those in [13] is outside the scope of this note.

Theorem 2.1 (Tangent module over ∂E). Let (X, d,m) be an RCD(K,N) space. Let E ⊂ X be

a set of finite perimeter. Then there exists a unique couple
(
L2
E(TX), ∇̄

)
– where L2

E(TX) is an

L2(|DχE |)-normed L∞(|DχE |)-module and ∇̄ : Test(X)→ L2
E(TX) is linear – such that:

i) The equality |∇̄f | = trE(|∇f |) holds |DχE |-a.e. for every f ∈ Test(X).

ii)
{∑n

i=1
χEi∇̄fi

∣∣ (Ei)
n
i=1 Borel partition of X, (fi)

n
i=1 ⊂ Test(X)

}
is dense in L2

E(TX).
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Uniqueness is intended up to unique isomorphism: given another couple (M , ∇̄′) satisfying i), ii)

above, there exists a unique normed module isomorphism Φ : L2
E(TX)→M such that Φ◦∇̄ = ∇̄′.

The space L2
E(TX) is called tangent module over the boundary of E and ∇̄ is the gradient.

We denote by ¯QCR : H1,2
C (TX) → L0

Cap(TX) the “quasi-continuous representative” map for

Sobolev vector fields, whose existence has been proven in [22, Theorem 2.14] (see [22, Definition

2.12] for a notion of “quasi-continuous vector field” suitable for this context). Moreover, with a

slight abuse of notation we define

trE : H1,2
C (TX) ∩ L∞(TX)→ L2

E(TX), trE := π̄|DχE | ◦ ¯QCR.

Notice that |trE(v)| = trE(|v|) holds in the |DχE |-a.e. sense for every v ∈ H1,2
C (TX) ∩ L∞(TX).

Theorem 2.2 (Gauss–Green formula on RCD spaces). Let (X, d,m) be an RCD(K,N) space and

E ⊂ X be a set of finite perimeter such that m(E) < +∞. Then there exists a unique vector field

νE ∈ L2
E(TX) such that |νE | = 1 holds |DχE |-a.e. and

ˆ
E

div(v) dm = −
ˆ 〈

trE(v), νE
〉

d|DχE | for all v ∈ H1,2
C (TX) ∩D(div) with |v| ∈ L∞(m).

(2.1)

Moreover, there exists a sequence (vn)n ⊂ TestVE(X) of test vector fields over the boundary of

E (see Lemma 2.7 below for the precise definition of this class) such that vn → νE in the strong

topology of L2
E(TX).

Remark 2.3. In the case in which X is a Riemannian manifold and E ⊂ X is a domain with

smooth boundary, it holds that L2
E(TX) is the space of all Borel vector fields over X which are

concentrated on the boundary of E and 2-integrable with respect to the surface measure and, in

this case, ∇̄ is the classical gradient for smooth functions.

Remark 2.4. The tangent L0(Cap)-module L0
Cap(TX) is a Hilbert module; cf. [22, Proposition

2.8]. Therefore, it is immediate to see by passing to the quotient that L2
E(TX) is a Hilbert module

as well.

The remaining part of this section is dedicated to the proofs of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. Uniqueness. CallW the family of elements of L2
E(TX) considered in item

ii). Given any ω =
∑n
i=1

χEi∇̄fi ∈ W, we are forced to set Φ(ω) :=
∑n
i=1

χEi∇̄′fi. Well-posedness

of such definition stems from the |DχE |-a.e. identity∣∣∣∣ n∑
i=1

χEi∇̄′fi
∣∣∣∣ =

n∑
i=1

χEi |∇̄′fi| =
n∑
i=1

χEitrE(|∇fi|) =

n∑
i=1

χEi |∇̄fi| = |ω|,

which also shows that Φ preserves the pointwise norm. Then Φ is linear continuous, thus it can

be uniquely extended to a linear continuous map Φ : L2
E(TX)→M by density of W in L2

E(TX).

By an approximation argument, it is easy to see that the extended Φ preserves the pointwise norm

and is an L∞(|DχE |)-module morphism. Finally, the map Φ is surjective, because its image is

dense (as M satisfies ii)) and closed (as Φ is an isometry). Consequently, we have proved that

there exists a unique normed module isomorphism Φ : L2
E(TX)→M such that Φ ◦ ∇̄ = ∇̄′.

Existence. Let us consider the tangent L0(Cap)-module L0
Cap(TX) and the relative capaci-

tary gradient operator ∇̃ : Test(X) → L0
Cap(TX) associated to the space (X, d,m); cf. Theo-

rem 1.35. We define L0
E(TX) as L0

Cap(TX)/ ∼|DχE | and the L2(|DχE |)-normed L∞(|DχE |)-
module L2

E(TX) as in (1.24). Moreover, we define the differential ∇̄ : Test(X) → L2
E(TX) as
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∇̄ := π̄|DχE | ◦ ∇̃. Clearly, the map ∇̄ is linear by construction. Given any function f ∈ Test(X),

it |DχE |-a.e. holds

|∇̄f | =
∣∣π̄|DχE |(∇̃f)

∣∣ = π|DχE |(|∇̃f |) = π|DχE |
(
QCR(|∇f |)

)
= trE(|∇f |),

which shows that i) is satisfied. We also set V := Test(X) and the associated space V ⊂ L0
Cap(TX)

as in the statement of Lemma 1.36. By the defining property of the cotangent Cap-module we

know that V is dense in L0
Cap(TX), whence Lemma 1.36 ensures that W is dense in L2

E(TX).

This means that property ii) holds. Therefore, the existence part of the statement is proven. �

To prove Theorem 2.2 we need some auxiliary results. Let us begin with the following one,

which was obtained as an intermediate step in the proof of [2, Theorem 4.2].

Lemma 2.5. Let (X, d,m) be an RCD(K,N) space. Let E ⊂ X be a set of finite perimeter. Then

lim
t↘0

ˆ ∣∣∣∣1− eKt |∇PtχE |P ∗t |DχE |

∣∣∣∣P ∗t |DχE |dm = 0. (2.2)

Lemma 2.6. Let (X, d,m) be an RCD(K,N) space. Let E ⊂ X be a set of finite perimeter. Thenˆ
f P ∗t |DχE |dm =

ˆ
trE(Ptf) d|DχE | for every f ∈ H1,2(X) ∩ L∞(m) and t > 0. (2.3)

Moreover, it holds that

lim
t↘0

ˆ
trE(Ptf) d|DχE | =

ˆ
trE(f) d|DχE | for every f ∈ H1,2(X) ∩ L∞(m). (2.4)

Proof. First of all, let us prove (2.3). Fix any f ∈ H1,2(X) ∩ L∞(m) and t > 0. We claim that

∃ (fn)n ⊂ Lipbs(X, d) bounded in L∞(m) : fn → f strongly in H1,2(X), weakly∗ in L∞(m).

(2.5)

To prove it, we argue as follows. Given any s > 0, the function Psf has a Lipschitz representative

(still denoted by Psf) thanks to the L∞-Lip regularisation of the heat flow. Since {Psf}s>0 is

bounded in L∞(m) by the weak maximum principle and Ps|∇f |2 → |∇f |2 strongly in L1(m), we

can find a function G ∈ L1(m) and a sequence sn ↘ 0 such that Psn |∇f |2 ≤ G holds m-a.e. for all

n and Psnf → f weakly∗ in L∞(m). Fix x̄ ∈ X and for any n ∈ N choose a compactly-supported

1-Lipschitz function ηn : X → [0, 1] such that ηn = 1 on Bn(x̄). Therefore, standard computations

(based on the Leibniz rule∇(ηnPsnf) = ηn∇Psnf+Psnf∇ηn, the dominated convergence theorem,

and the Bakry-Émery contraction estimate) show that fn := ηnPsnf ∈ Lipbs(X, d) satisfy (2.5).

Now observe that Pt : H1,2(X) → H1,2(X) is continuous, as a consequence of the Bakry-Émery

contraction estimate and the continuity of Pt : L2(m) → L2(m). This ensures that Ptfn → Ptf

strongly in H1,2(X) as n→∞, whence we know from [22, Propositions 1.12, 1.17 and 1.19] that

(possibly passing to a not relabeled subsequence) QCR(Ptfn) → QCR(Ptf) holds Cap-a.e., and

accordingly trE(Ptfn)→ trE(Ptf) holds |DχE |-a.e.. Moreover, since |Ptfn| ≤ supk ‖fk‖L∞(m) =:

C in the m-a.e. sense for all n ∈ N, we deduce that
∣∣QCR(Ptfn)

∣∣ ≤ C holds Cap-a.e. for all n ∈ N,

and thus trE(Ptfn) ≤ C holds |DχE |-a.e. for all n ∈ N. All in all, we obtain (2.3) by letting n→∞
in

´
fn P

∗
t |DχE |dm =

´
trE(Ptfn) d|DχE |, which is satisfied thanks to the defining property of

P ∗t |DχE |; here we use the dominated convergence theorem and the L∞-weak∗ convergence fn → f .

Let us now pass to the proof of (2.4). Fix f ∈ H1,2(X) ∩ L∞(m). By arguing as above, we see

that
∣∣trE(Ptf)

∣∣ ≤ ‖f‖L∞(m) holds |DχE |-a.e. for all t > 0, and that any given sequence tn ↘ 0

admits a subsequence tni ↘ 0 such that trE(Ptni f) → trE(f) holds |DχE |-a.e.. Therefore, by

dominated convergence theorem we conclude that limi

´
trE(Ptni f) d|DχE | =

´
trE(f) d|DχE |,

which yields (2.4). �
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Lemma 2.7 (Test vector fields over ∂E). Let (X, d,m) be an RCD(K,N) space. Let E ⊂ X be a

set of finite perimeter and finite mass. We define the class TestVE(X) ⊂ L2
E(TX) of test vector

fields over the boundary of E as

TestVE(X) := trE
(
TestV(X)

)
=

{ n∑
i=1

trE(gi)∇̄fi
∣∣∣∣ n ∈ N, (fi)

n
i=1, (gi)

n
i=1 ⊂ Test(X)

}
.

Then TestVE(X) is dense in L2
E(TX).

Proof. By item ii) of Theorem 2.1, it suffices to show that each v ∈ L2
E(TX) of the form v = χE∇̄f

– where E ⊂ X is a Borel set and f ∈ Test(X) – can be approximated by elements of TestVE(X)

with respect to the strong topology of L2
E(TX). Fix ε > 0 and choose a function h ∈ Lipc(X)

such that ‖h− χE‖L2(|DχE |) ≤ ε/(2 Lip(f)). Moreover, by exploiting [27, eq. (3.2.3)] we can find

a sequence (gn)n ⊂ Test(X) such that supn ‖gn‖L∞(m) < +∞ and gn → h in H1,2(X). Hence, by

using the results in [22] we see that (up to a not relabeled subsequence) it holds trE(gn)(x)→ h(x)

for |DχE |-a.e. x ∈ X. Accordingly, by applying the dominated convergence theorem we conclude

that
∣∣(trE(gn) − h)∇̄f

∣∣ → 0 in L2(|DχE |). Now choose n ∈ N so big that g := gn satisfies∥∥(trE(g)− h)∇̄f
∥∥
L2
E(TX)

< ε/2. Hence, one has that∥∥trE(g)∇̄f − v
∥∥
L2
E(TX)

≤
∥∥(trE(g)− h)∇̄f

∥∥
L2
E(TX)

+
∥∥(h− χE)∇̄f

∥∥
L2
E(TX)

≤ ε

2
+ ‖h− χE‖L2(|DχE |) Lip(f) < ε.

Given that trE(g)∇̄f ∈ TestVE(X), the statement is achieved. �

The last ingredient we need is an improvement of Theorem 1.7 in the special case of RCD(K,∞)

spaces. As we are going to see in the ensuing result, to obtain the total variation of a BV function it

is sufficient to restrict the attention only to those competitors that are Sobolev regular. The proof

is based on a parabolic approximation argument that builds upon the technical results developed

in Section 1.4.

Theorem 2.8 (Representation formula for |Df | on RCD spaces). Let (X, d,m) be an RCD(K,∞)

space and f ∈ BV(X). Then it holds that

|Df |(X) = sup

{ˆ
f div(v) dm

∣∣∣∣ v ∈ H1,2
C (TX) ∩D(div), |v| ≤ 1 m-a.e., div(v) ∈ L∞(m)

}
.

Proof. Call S the right hand side of the above formula. We know by Remark 1.6 that |Df |(X) ≥ S.

In order to prove the converse inequality, fix any ε > 0. Theorem 1.7 guarantees the existence

of a vector field v ∈ D(div) – with |v| ≤ 1 in the m-a.e. sense and div(v) ∈ L∞(m) – such

that
´
f div(v) dm > |Df |(X) − ε/2. Now define vt := eKt hH,t(v) for every t > 0. Notice that

vt ∈ H1,2
C (TX)∩D(div) by Proposition 1.38. Since div(v) ∈ L∞(m) and div(vt) = eKtPt(div(v)),

we deduce from the weak maximum principle that div(vt) ∈ L∞(m) as well. More precisely, one

has ‖div(vt)‖L∞(m) ≤ eKt ‖div(v)‖L∞(m) for all t > 0. Moreover, the weak maximum principle

also guarantees that

|vt| = eKt |hH,t(v)|
(1.27)

≤
√
Pt(|v|2) ≤ 1 in the m-a.e. sense.

Given that limt↘0 div(vt) = div(v) in L2(m), we can find tn ↘ 0 such that div(vtn)(x)→ div(v)(x)

holds for m-a.e. x ∈ X. Being
(
div(vtn)

)
n

a bounded sequence in L∞(m), we can finally conclude

that limn

´
f div(vtn) dm =

´
f div(v) dm by dominated convergence theorem. Therefore, there

exists n ∈ N such that w := vtn satisfiesˆ
f div(w) dm >

ˆ
f div(v) dm− ε

2
> |Df |(X)− ε.
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This shows that |Df |(X) < S + ε, whence |Df |(X) ≤ S by arbitrariness of ε, as desired. �

Proof of Theorem 2.2. First of all, let us define µt := P ∗t |DχE |m for every t > 0. Recall that

µt ⇀ |DχE | in duality with Cb(X) as t↘ 0. Let us also set

νt := χ{P∗t |DχE |>0}
∇PtχE
P ∗t |DχE |

∈ L0(TX) for every t > 0.

It follows from the 1-Bakry-Émery estimate (1.13) that |DPtχE | ≤ e−KtP ∗t |DχE | holds m-a.e.,

thus accordingly νt ∈ L∞(TX) and |νt| ≤ e−Kt is satisfied in the m-a.e. sense. Call

V :=
{
v ∈ H1,2

C (TX) ∩D(div)
∣∣ |v| ∈ L∞(m)

}
and fix v ∈ V. The Leibniz rule for the divergence ensures that ϕv ∈ D(div) for any ϕ ∈ Lipb(X),

so the usual integration-by-parts formula yields
ˆ
PtχE div(ϕv) dm = −

ˆ
ϕ 〈∇PtχE , v〉dm = −

ˆ
ϕ 〈v, νt〉dµt for all ϕ ∈ Lipb(X). (2.6)

Moreover, observe that 〈v, νt〉 ∈ L∞(µt) and
∥∥〈v, νt〉∥∥L∞(µt)

≤ e−Kt ‖|v|‖L∞(m) for every t > 0.

Let us call σt := 〈v, νt〉µt for all t > 0. Fix any sequence tn ↘ 0. Since µtn ⇀ |DχE | in duality

with Cb(X), we know that (µtn)n is tight by Prohkorov theorem. Given that supn ‖〈v, νtn〉‖L∞(µtn )

is finite, we deduce that (σtn)n is tight as well. By using Prohkorov theorem again, we can thus

take a subsequence (tni)i such that σtni ⇀ σ in duality with Cb(X) for some finite (signed) Borel

measure σ on X. Since Lipb(X) is dense in Cb(X) and the identity in (2.6) gives
ˆ
ϕdσ = lim

i→∞

ˆ
ϕdσtni = −

ˆ
E

div(ϕv) dm for every ϕ ∈ Lipb(X),

we see that σ is independent of the chosen sequence (tni)i. Hence, σt ⇀ σ in duality with Cb(X)

as t↘ 0. Given any non-negative function ϕ ∈ Cb(X), it thus holds that∣∣∣∣ˆ ϕdσ

∣∣∣∣ ≤ lim
t↘0

ˆ
ϕ |〈v, νt〉|dµt ≤ e|K| ‖|v|‖L∞(m) lim

t↘0

ˆ
ϕdµt = e|K| ‖|v|‖L∞(m)

ˆ
ϕd|DχE |,

whence σ � |DχE | and its Radon-Nikodým derivative L(v) := dσ
d|DχE | belongs to L∞(|DχE |).

Consequently, taking into account (2.6) we deduce that
ˆ
E

div(ϕv) dm = −
ˆ
ϕL(v) d|DχE | for every v ∈ V and ϕ ∈ Lipb(X). (2.7)

Furthermore, one also has that

lim
t↘0

ˆ
ϕ 〈v, νt〉dµt =

ˆ
ϕL(v) d|DχE | for every v ∈ V and ϕ ∈ Lipb(X). (2.8)

Observe that for any v ∈ V and ϕ ∈ Lipb(X), ϕ ≥ 0 it holds that∣∣∣∣ˆ ϕL(v) d|DχE |
∣∣∣∣ (2.8)

= lim
t↘0

∣∣∣∣eKt ˆ ϕ 〈v, νt〉dµt
∣∣∣∣

≤ lim
t↘0

(
‖ϕ‖L∞(m) ‖|v|‖L∞(m)

ˆ ∣∣1− eKt|νt|∣∣dµt +

ˆ
ϕ
〈
v,

νt
|νt|
〉

dµt

)
(2.2)

≤ lim
t↘0

ˆ
ϕ |v|dµt

(2.3)
= lim

t↘0

ˆ
trE
(
Pt(ϕ|v|)

)
d|DχE |

(2.4)
=

ˆ
ϕ trE(|v|) d|DχE |.
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In the last two equalities we used the fact that |v| ∈ H1,2(X). By arbitrariness of ϕ, we obtain

that |L(v)| ≤ trE(|v|) holds |DχE |-a.e. for all v ∈ V. Let us now define ω : trE(V) → L1(|DχE |)
as

ω
(
trE(v)

)
:= L(v) for every v ∈ V. (2.9)

The operator L : V → L∞(|DχE |) is linear by its very construction, whence by exploiting the

inequality |L(v)| ≤ trE(|v|) we can conclude that ω is well-posed, linear and satisfying∣∣ω(v)
∣∣ ≤ |v| |DχE |-a.e. for every v ∈ trE(V).

Since TestV(X) ⊂ V and TestVE(X) is dense in L2
E(TX), we infer from Lemma 2.7 that t̄rE(V) is

a dense linear subspace of L2
E(TX). Therefore, we know from [27, Proposition 1.4.8] that ω can be

uniquely extended to an element ω ∈ L2
E(T ∗X) := L2

E(TX)∗ satisfying |ω| ≤ 1 in the |DχE |-a.e.

sense. We denote by νE ∈ L2
E(TX) the vector field corresponding to ω via the Riesz isomorphism.

By combining (2.7) (with ϕ ≡ 1) and (2.9), we conclude that (2.1) is satisfied. It only remains to

show that |νE | ≥ 1 holds |DχE |-a.e.. In order to do it, just observe that Theorem 2.8 yields

|DχE |(X) ≤ sup
v∈V,

|v|≤1 m-a.e.

ˆ
E

div(v) dm
(2.1)
= sup

v∈V,
|v|≤1 m-a.e.

−
ˆ 〈

trE(v), νE
〉

d|DχE | ≤
ˆ
|νE |d|DχE |

≤ |DχE |(X),

whence each inequality must be an equality. This clearly forces the |DχE |-a.e. equality |νE | = 1.

The element νE is uniquely determined by (2.1) as the space trE(V) is dense in L2
E(TX). Finally,

the last part of the statement is an immediate consequence of Lemma 2.7. �

3. Uniqueness of tangents for sets of finite perimeter

In this section we prove a uniqueness theorem (up to negligible sets) for blow-ups of sets with

finite perimeter over RCD(K,N) metric measure spaces. This has to be considered as a further

step in the direction of generalizing De Giorgi’s theorem to the framework of RCD spaces.

Let us recall the notion of tangent to a set of finite perimeter that has been introduced in [2].

Definition 3.1 (Tangents to a set of finite perimeter). Let (X, d,m) be an RCD(K,N) m.m.s.,

x ∈ X and let E ⊂ X be a set of locally finite perimeter. We denote by Tanx(X, d,m, E) the

collection of quintuples (Y, %, µ, y, F ) satisfying the following two properties:

(a) (Y, %, µ, y) ∈ Tanx(X, d,m) and ri ↓ 0 are such that the rescaled spaces (X, r−1
i d,mrix , x)

converge to (Y, %, µ, y) in the pointed measured Gromov-Hausdorff topology;

(b) F is a set of locally finite perimeter in Y with µ(F ) > 0 and, if ri are as in (a), then the

sequence fi = χE converges in L1
loc to χF according to Definition 1.24.

Let us point out that, up to a |DχE |-negligible set, one also has that the perimeter measures

on the rescaled spaces
∣∣DiχE

∣∣ weakly converge to |DχF | in duality w.r.t. Cbs. This statement,

which is part of [2, Corollary 4.10], plays a role in the rest of the note.

We are ready to state the main theorem of this section.

Theorem 3.2. Let (X, d,m) be an RCD(K,N) m.m.s. with essential dimension 1 ≤ n ≤ N ,

E ⊂ X be a set of finite perimeter. Then, for |DχE |-a.e. x ∈ X, there exists k = 1, . . . , n such

that

Tanx(X, d,m, E) =
{

(Rk, deucl, ckLk, 0k, {xk > 0})
}
.

Let us explain the strategy of its proof. The starting point of our analysis is [2, Theorem 4.3]

that we state below.
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Theorem 3.3. Let (X, d,m) be an RCD(K,N) m.m.s. and E ⊂ X be a set of locally finite

perimeter. Then E admits a Euclidean half-space as tangent at x for |DχE |-a.e. x ∈ X, that is to

say (
Rk, deucl, ckLk, 0k, {xk > 0}

)
∈ Tanx(X, d,m, E), for some k ∈ [1, N ].

After establishing Theorem 3.3 the state of the art in the theory of sets of finite perimeter

was similar to that of the structure theory of RCD spaces after [31], where the authors proved

existence of a Euclidean tangent space up to negligible sets. The content of this and of the next

section instead can be seen as a counterpart in codimension 1 of the main results obtained by

Mondino–Naber in [42].

Also the main ideas underlying the proofs of the uniqueness of tangents and the rectifiability

result are quite similar to those implemented in [42]. As in that case, the existence of a Euclidean

tangent along a fixed scale is a regularity information which can be propagated at any location

and scale up to a set which is small w.r.t. the relevant measure, yielding uniqueness of tangents.

From a technical point of view, our construction heavily relies on the use of the so-called

harmonic δ-splitting maps, a kind of good replacement for coordinate functions within the theory

of lower Ricci bounds, that played a crucial role in the development of the theory of Ricci limits

(see [16, 17, 18] and the more recent [20, 19]). Since, up to our knowledge, this is the first time they

are explicitly used in the RCD framework, we dedicate Section 3.1 below to establish some of their

properties. With this tool at our disposal, the propagation of regularity step is a consequence of a

weighted maximal argument which was suggested in [20]. Let us point out that, in order for the

whole procedure to work, the fact that perimeter measures have codimension 1 (see Lemma 1.10)

and the fact that harmonic functions satisfy L2 Hessian bounds play a key role. The strategy

would completely fail if perimeter measures had codimension bigger or equal than 2.

3.1. Splitting maps and propagation of regularity. This subsection is devoted to the study

of δ-splitting maps. Let us recall that their introduction in the study of spaces with lower Ricci

curvature bounds dates back to [15].

Definition 3.4. Let (X, d,m) be an RCD(−1, N) metric measure space, x ∈ X and δ > 0 be fixed.

We say that u := (u1, . . . , uk) : Br(x)→ Rk is a δ-splitting map provided it is harmonic (meaning

that ua ∈ D(∆, Br(x)) with ∆ua = 0 for any a = 1, . . . , k) and satisfies:

(i) ua is CN -Lipschitz for any a = 1, . . . , k;

(ii) r2
ffl
Br(x)

|Hessua|2dm < δ for any a = 1, . . . , k;

(iii)
ffl
Br(x)

|∇ua · ∇ub − δa,b|dm < δ for any a, b = 1, . . . , k.

Remark 3.5. Let us clarify the meaning of |Hessu| when u : Br(x) → R is harmonic and

not necessarily globally defined. For any ball B2s(y) ⊂ Br(x) we take a good cut-off function η

according to Lemma 1.14 that satisfies η = 1 in Bs(y) and η = 0 in X \ B2s(y). As we already

remarked in Section 1.2.2, one has ηu ∈ D(∆), therefore ηu ∈ H2,2(X, d,m) as a consequence of

(1.21). We can now set |Hessu| := |Hess(ηu)| in Bs(y). Observe that this is a good definition

thanks to the locality of the Hessian (see Proposition 1.34).

Remark 3.6. With respect to the definition of δ-splitting map which is nowadays adopted within

the theory of Ricci limits (see for instance [20, Definition 1.20]) the main difference is condition

(i). Therein the sharper bound |∇u| ≤ 1 + δ is imposed in the definition though, as they observe,

it can be obtained as a consequence of the bound |∇u| ≤ CN and of the other defining properties

(when working in the smooth framework).
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3.1.1. δ-splitting maps and ε-closeness. The power of δ-splitting maps in the theory of lower Ricci

bounds is that, roughly speaking, they allow to pass from analysis to geometry and vice-versa.

Namely, the existence of a δ-splitting map with k components on a Riemannian manifold with

Ricci bounded below by −δ can be turned into ε-GH closeness (in the scale invariant sense) to a

space which splits a factor Rk and vice-versa (see [15] and [20, Lemma 1.21]).

Below we wish to provide rigorous statements of the above-mentioned results in the framework

of RCD spaces. The convergence and stability results of [7, 8] allow us to argue by compactness

avoiding the explicit constructions of [15]. The price we have to pay is that the results become

less local in nature w.r.t. [20, Lemma 1.21]. Still they are sufficient for our purposes.

The first result presented below, Proposition 3.7, corresponds to the rough statement “the

existence of a δ-splitting map with k components implies that the m.m.s. is ε-close to a product

Rk × Z”. The second one, Proposition 3.9, ensures that, over an RCD(−ε,N) space ε-close to a

product Rk × Z, one can build a δ-splitting map with k components.

In order to shorten the notation for the rest of the paper we write (Rk × Z, (0k, z)) to denote

the p.m.m.s. (Rk × Z, deucl × dZ ,Lk ×mZ , (0
k, z)).

Proposition 3.7. Let N > 1 be fixed. Then, for any ε > 0, there exists δ = δN,ε > 0 such that,

for any RCD(−δ,N) m.m.s. (X, d,m) and for any x ∈ X, if there exists a map u : Bδ−1(x)→ Rk

such that u is a δ-splitting map over Bs(x) for any 0 < s < δ−1, then

dpmGH
(
(X, d,m, x), (Rk × Z, (0k, z))

)
< ε

for some pointed RCD(0, N − k) metric measure space (Z, dZ ,mZ , z).

Proof. We wish to prove the sought conclusion arguing by contradiction. To this aim let us suppose

that, for any n ≥ 1, there exist an RCD(−1/n,N) m.m.s. (Xn, dn,mn), a point xn ∈ Xn and a map

un : Bn(xn)→ Rk which is a 1/n-splitting map when restricted to Bs(xn) for any 0 < s < n. Up

to extracting a subsequence, that we do not relabel, we can assume that (Xn, dn,mn, xn) converge

in the pmGH-topology to an RCD(0, N) p.m.m.s. (X∞, d∞,m∞, x∞). Here we have used the

stability and compactness property of RCD(K,N) spaces, cf. Remark 1.13. We claim that X∞
splits off a factor Rk. Observe that, if this is the case, then we reach the sought contradiction.

The rest of this proof is dedicated to establishing the claim.

We wish to prove that there exists a function v : X∞ → Rk such that, letting v := (v1, . . . , vk),

it holds that vi is Lipschitz, harmonic and with vanishing Hessian for any i = 1, . . . , k and

∇vi ·∇vj = δij m∞-a.e. for any i, j = 1, . . . , k. The function v will be obtained as a limit function

of the 1/n-splitting maps un : Bn(xn) → Rk. Indeed, since by the assumption in the defining

condition of a δ-splitting map the un are CN -Lipschitz for any n ∈ N and we can assume without

loss of generality that un(xn) = 0k for any n ∈ N, by a generalized version of the Ascoli–Arzelà

theorem (Proposition 1.21) we can infer the existence of v : X∞ → Rk such that un converge to v

locally uniformly on BR(xn) for any R > 0. As a consequence, it is easy to check that un converge

strongly in L2 (see Definition 1.22) to v on BR(xn) for any R > 0. Since the functions un are

harmonic on B2R(xn), at least for n sufficiently large, by Theorem 1.32 and Proposition 1.27 it

follows that v is harmonic and that, for any R > 0 and i, j = 1, . . . , k, 
BR(x∞)

∣∣∇vi · ∇vj − δij∣∣dm∞ = lim
n→∞

 
BR(xn)

∣∣∇uin · ∇ujn − δij∣∣dmn = 0.

Hence ∇vi · ∇vj = δij m∞-a.e. on X∞.

Since (X∞, d∞,m∞) is an RCD(0, N) m.m.s., from ∆vi = 0 and
∣∣∇vi∣∣2 = 1 we infer by (1.22)

that Hess vi = 0, for any i = 1, . . . , k. All in all we get by a standard argument (cf. the proof of

[11, Lemma 1.21]) that X∞ splits a factor Rk, as we claimed. �
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Corollary 3.8. Let N > 1 and K ∈ R be fixed. For any ε > 0 there exists δ > 0 such that, for any

r > 0, for any RCD(K,N) m.m.s. (X, d,m) and for any x ∈ X, if there exists u : Br(x)→ Rk such

that u : Bs(x)→ Rk is a δ-splitting map for any 0 < s < r, then for any (Y, %, µ, y) ∈ Tanx(X, d,m)

there exists an RCD(0, N − k) p.m.m.s. (Z, dZ ,mZ , z) such that

dpmGH
(
(Y, %, µ, y), (Z × Rk, (z, 0k))

)
< ε.

Proof. Choose δ = δ(K,N, ε/2) given by Proposition 3.7. If (Y, %, µ, y) ∈ Tanx(X, d,m) then there

exists t > 0 such that t−1r > δ−1, t2 |K| ≤ δ and

dpmGH
(
(X, t−1d,mtx, x), (Y, %, µ, y)

)
< ε/2. (3.1)

Thanks to Proposition 3.7, applied to (X, t−1d,mtx, x), there exists an RCD(0, N − k) p.m.m.s.

(Z, dZ ,mZ , z) such that

dpmGH
(
(X, t−1d,mtx, x), (Z × Rk, (z, 0k))

)
< ε/2. (3.2)

The conclusion follows from (3.1) and (3.2) by the triangle inequality. �

Proposition 3.9. Let N > 1 be fixed. For any δ > 0 there exists ε = εN,δ > 0 such that, if

(X, d,m) is an RCD(−ε,N) m.m.s., x ∈ X and

dpmGH
(
(X, d,m, x) ,

(
Rk × Z, (0k, z)

))
< ε

for some pointed RCD(0, N−k) metric measure space (Z, dZ ,mZ , z), then there exists a δ-splitting

map u : B5(x)→ Rk.

Proof. We are going to build upon the local convergence and stability results that we recalled in

Section 1.2.3, arguing by contradiction.

Suppose the conclusion to be false, then we could find a sequence of pointed RCD(−1/n,N)

m.m. spaces (Xn, dn,mn, xn) such that, for some RCD(0, N − k) pointed m.m.s. (Z, dZ ,mZ , z) it

holds that

dpmGH
(
(Xn, dn,mn, xn) ,

(
Rk × Z, (0k, z)

))
< 1/n

for any n ≥ 1. Furthermore there should be δ0 > 0 such that there is no δ0-splitting map over

B5(xn) for any n ≥ 1.

Let v : Z × Rk → Rk be defined by v(p, x) = x and denote by v1, . . . , vk its components (they

are the coordinate functions of the split factor). Observe that ∆vi = 0 for any i = 1, . . . , k and

∇vi ·∇vj = δij for any i, j = 1, . . . , k. In particular, vi is harmonic on B10((z, 0k)). Hence we can

apply Proposition 1.33 to get harmonic functions vin : B9(xn)→ R that converge strongly in H1,2

to vi on B9((z, 0k)).

Observe that, thanks to [35, Theorem 1.1], we can assume that vin is CN -Lipschitz for any n ∈ N
and for any i = 1, . . . , k. We wish to prove that vn = (v1

n, . . . , v
k
n) is a δ0-splitting map on B5(xn)

for n sufficiently big.

To this aim let us recall that Theorem 1.32 yields strong L1-convergence of ∇vin · ∇vjn to δij on

B9((z, 0k)) and on B5((z, 0k)) for any i, j = 1, . . . , k (as a consequence of the L1 convergence of

∇vin · ∇vin and of ∇(vin + vjn) · ∇(vin + vjn)). In particular, due to the uniform boundedness of the

gradients we obtained above, we get

lim
n→∞

 
BR(xn)

∣∣∇vin · ∇vjn − δij∣∣dmn = 0,

for any i, j = 1, . . . , k and for any R = 5, 9. The choice R = 5 gives that the second defining

condition of δ-splitting map is satisfied for n sufficiently large and we are left with the verification
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of the third one. We wish to prove that

lim
n→∞

ˆ
B5(xn)

∣∣Hess vin
∣∣2 dmn = 0

for any i = 1, . . . , k. To this aim we choose cut-off functions ηn for the pairs B5(xn) ⊂ B9(xn) as

in Lemma 1.14 and, taking into account (1.22)ˆ
B9(xn)

∆ηn

(∣∣∇vin∣∣2 − 1
)

dmn + CN
mn(B9(xn))

n
≥
ˆ
B5(xn)

∣∣Hess vin
∣∣2 dmn (3.3)

for any i = 1, . . . , k and for any n ≥ 1. Since, |∆ηn| ≤ CN by construction and as we already

observed,
∣∣∇vin∣∣2 − 1 converge to 0 in L1(B9) and they are uniformly bounded, we get that the

left-hand side in (3.3) converges to 0 as n→∞. Hence

lim
n→∞

 
B5(xn)

∣∣Hess vin
∣∣2 dmn = 0,

as we claimed. �

Arguing by scaling starting from Proposition 3.9, it is possible to obtain the following statement.

Corollary 3.10. If (X, d,m) is an RCD(K,N) m.m.s., r2 |K| ≤ ε and

dpmGH
((
X, r−1d,mrx, x

)
,
(
Rk × Z, (0k, z)

))
< ε

for some pointed RCD(0, N−k) metric measure space (Z, dZ ,mZ , z), then there exists a δ-splitting

map u : B5r(x)→ Rk.

3.1.2. Propagation of the δ-splitting property. In the next result we are concerned with the propa-

gation of the property of being a δ-splitting map. We are going to prove that, if α ∈ (0, 2), outside

a set of small codimension-α content any δ-splitting map at a given scale is a CN,αδ
1/4 splitting

map at any scale. The proof is based on a weighted maximal function argument.

Proposition 3.11. Let α ∈ (0, 2) and N > 1. There exist constants CN > 0 and CN,α > 0 such

that, for any 0 < δ < 1, any RCD(−1, N) m.m.s. (X, d,m), any p ∈ X and for any δ-splitting

map u := (u1, . . . , uk) : B2(p) → Rk, there exists a Borel set G ⊂ B1(p) with H hα
5 (B1(p) \G) <

CN
√
δm(B2(p)) such that for any x ∈ G it holds

sup
0<r<1

rα
 
Br(x)

|Hessua|2dm ≤
√
δ for any a = 1, . . . , k, (3.4)

and

u : Br(x)→ Rk is a CN,αδ
1/4-splitting map for any 0 < r < 1/2. (3.5)

Proof. Let us start proving (3.4). To this aim fix any a = 1, . . . , k and denote by CP and CD the

Poincaré and the doubling constants over balls of radius 10 of (X, d,m). To be more precise CP is

a constant in the (1, 2)-Poincaré inequality with λ = 2 as in (1.5). This inequality is available on

RCD(K,N) m.m.s. (see for instance [49, Theorem 30.26]) with constant depending only on K and

N . In particular, since (X, d,m) is an RCD(−1, N), CP depends only on N . The same conclusion

holds for CD thanks to the Bishop-Gromov inequality (1.15).

Set

G :=

{
x ∈ B1(p) : sup

0<r<1
rα

 
Br(x)

|Hessua|2dm ≤
√
δ

}
.

We claim that H hα
5 (B1(p) \ G) < CN

√
δm(B2(p)). For any x ∈ B1(p) \ G we choose ρx ∈ (0, 1)

satisfying

ραx

 
Bρx (x)

|Hessua|2dm >
√
δ. (3.6)
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Observe that the family {Bρx(x)}x∈B1(p)\G covers B1(p) \ G. Using Vitali’s covering lemma we

can find a subfamily of disjoint balls {Bρi(xi)}i∈N such that B1(p) \G ⊂ ∪i∈NB5ρi(xi). This gives

the sought conclusion

H hα
5 (B1(p) \G) ≤

∑
i∈N

hα(B5ρi(xi)) =
∑
i∈N

m(B5ρi(xi))

(5ρi)α

≤CN
∑
i∈N

m(Bρi(xi))

ραi
≤ CN

∑
i∈N

1√
δ

ˆ
Bρi (xi)

|Hessua|2dm

≤CN
1√
δ

ˆ
B2(p)

|Hessua|2dm ≤ CN
√
δm(B2(p)),

where we used the definition of H hα
5 , the Bishop-Gromov inequality, (3.6) and the fact that u is

a δ-splitting map.

In order to verify (3.5) we just need to check that, for a, b = 1, . . . , k,
 
Br(x)

|∇ua · ∇ub − δa,b|dm < CN,αδ
1/4 for any x ∈ G, 0 < r < 1.

To this aim let us set fa,b := |∇ua · ∇ub − δa,b| and note that |∇fa,b| ≤ CN (|Hessua|+ |Hessub|)
as a consequence of Definition 3.4(i) and (1.23). Whence, the Poincaré inequality and (3.4) yield∣∣∣∣∣
 
Br(x)

fa,b dm−
 
Br/2(x)

fa,b dm

∣∣∣∣∣ ≤CP r
( 

B2r(x)

|∇fa,b|2 dm

)1/2

≤CNCP

(
r2

 
B2r(x)

|Hessua|2 dm + r2

 
B2r(x)

|Hessub|2 dm

)1/2

≤CNCP δ1/4r1−α/2

for any 0 < r < 1/2. Applying a telescopic argument it is simple to see that∣∣∣∣∣
 
B2−1 (x)

fa,b dm−
 
B

2−k (x)

fa,b dm

∣∣∣∣∣ ≤ CαCNCP δ1/4, for any k > 1.

Therefore, for any 0 < r < 1/2 we take k ∈ N such that 2−k−1 < r ≤ 2−k and using that

u : B2(p)→ Rk is a δ-splitting map we get
 
Br(x)

fa,b dm ≤CD2N
 
B

2−k (x)

fa,b dm

≤CD2N

∣∣∣∣∣
 
B1/2(x)

fa,bdm−
 
Br(x)

fa,b dm

∣∣∣∣∣+ CD2N
 
B1/2(x)

fa,b dm

≤2NCDCαCNCP δ
1/4 + 8NC2

D

 
B2(p)

fa,b dm

≤CN,αδ1/4.

�

For the purposes of this paper we just need to consider the case α = 1 in Proposition 3.11. This

is related to the fact that boundaries of sets with finite perimeter are codimension one objects. In

order to shorten the notation in the sequel we will write h in place of h1.

We are going to use several times the following scale invariant version of Proposition 3.11.
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Corollary 3.12. Let (X, d,m, p) be an RCD(K,N) p.m.m.s. and u : B4r(p) → Rk a δ-splitting

map for some r > 0 such that |K|r2 ≤ 4 and r < 1/2. Then there exists G ⊂ B2r(p) with

H h
5 (B2r(p) \G) ≤H h

10r(B2r(p) \G) ≤ CN
√
δ
m(B2r(p))

2r

such that u : Bs(x)→ Rk is a CNδ
1/4-splitting map for any x ∈ G and any 0 < s < r.

Proof. Apply Proposition 3.11 to the rescaled space (X, (2r)−1d,m(B2r(p))
−1m, p). �

3.2. Uniqueness of tangents and consequences. Let (X, d,m) be an RCD(K,N) metric mea-

sure space with essential dimension n ≤ N (see Theorem 1.18) and let E ⊂ X be a set of locally

finite perimeter. For any k = 1, . . . , n we set

Ak :=
{
x ∈ X :

(
Rk, deucl, ckLk, 0k, {xk > 0}

)
∈ Tanx(X, d,m, E), but for no (Y, %, µ, y) with

diam(Y ) > 0 it holds (Y × Rk, %× deucl, µ× Lk, (y, 0k), {xk > 0}) ∈ Tanx(X, d,m, E)
}
.

Let us point out that, with arguments analogous to those in [42, Lemma 6.1] one can show that

Ak is a |DχE |-measurable set for any k = 1, . . . , n.

Aiming at proving that the family {Ak}k=1,...,n covers X up to a |DχE |-negligible set we need

to use the following result that has been proven in the appendix of [2].

Theorem 3.13. Let (X, d,m) be an RCD(K,N) m.m.s. and let E ⊂ X be a set of locally finite

perimeter. Then for |DχE |-a.e. x ∈ X the following property holds true: for every (Y, %, µ, y, F ) ∈
Tanx(X, d,m, E) one has

Tany′(Y, %, µ, F ) ⊂ Tanx(X, d,m, E) for every y′ ∈ supp|DχF |.

Lemma 3.14. Under the assumptions above

|DχE |

(
X \

n⋃
k=1

Ak

)
= 0.

Proof. As a consequence of Theorem 3.3 we have

|DχE |

(
X \

n⋃
k=1

A′k

)
= 0,

where

A′k :=
{
x ∈ X :

(
Rk, deucl, ckLk, 0k, {xk > 0}

)
∈ Tanx(X, d,m, E) but

(Rm, deucl, cmLm, 0m, {xm > 0}) /∈ Tanx(X, d,m, E) for any m > k
}
.

The measurability of the A′k’s can be verified as in the case of the Ak’s.

It is clear that Ak ⊂ A′k, let us prove |DχE |(A′k \ Ak) = 0. We argue by contradiction. If the

claim is false we can find x ∈ A′k \ Ak such that the iterated tangent property of Theorem 3.13

holds true. Since x ∈ A′k \ Ak we can find (Y, %, µ, y) ∈ RCD(0, N − k) with diam(Y ) > 0 such

that

(Y × Rk, %× deucl, µ× Lk, (y, 0k), {xk > 0}) ∈ Tanx(X, d,m, E).

Moreover Tan(y′,x,0)(Y ×Rk, %× deucl, µ×Lk, {xk > 0}) ⊂ Tan(E, x) for any (y′, x) ∈ Y ×Rk−1,

thanks to Theorem 3.13. Thus, choosing (y′, x, 0) ∈ Y ×Rk such that Theorem 3.3 holds and y′ is

regular in Y we get the sought contradiction, since the essential dimension of Y is bigger or equal

than one (otherwise diam(Y ) = 0). �

We are now in a position to conclude the proof of Theorem 3.2.
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Proof of Theorem 3.2. In light of Lemma 3.14 it is enough to prove that Ak coincides up to a

|DχE |-negligible set with{
x ∈ X : Tanx(X, d,m, E) =

{
(Rk, deucl, ckLk, 0k, {xk > 0})

}}
.

Let us assume without loss of generality that Ak ⊂ B2(p) for some p ∈ X. We claim that, for any

η > 0, there exists Gη ⊂ Ak with

H h
5 (Ak \Gη) ≤ CNηPer(E,B2(p)) (3.7)

such that, for any x ∈ Gη and for any (Y, %, µ, y) ∈ Tanx(X, d,m), there exists a pointed

RCD(0, N − k) m.m.s. (Z, dZ ,mZ , z) satisfying

dpmGH((Y, %, µ, y), (Rk × Z, (0, z)) ≤ η. (3.8)

Observe that the claim implies our conclusion. Indeed if we fix η > 0 and set ηi := η2−i then

Gη := ∪i∈NGηi satisfies H h
5 (Ak \Gη) = 0 and thus Per(E,Ak \Gη) = 0 thanks to Lemma 1.10.

Moreover, for any x ∈ Gη, (3.8) holds. We conclude observing that G := ∩k∈NG2−k still satisfies

Per(E,Ak \G) = 0 and any tangent cone at x ∈ G splits off a factor Rk. By definition of Ak we

deduce that the only tangent at x ∈ G is the Euclidean space of dimension k.

Let us pass to the verification of the claim. Fix δ ∈ (0, 1/2) and take ε > 0 as in Proposition 3.9.

Of course we can assume ε ≤ δ. We wish to prove that there exists a disjoint family of balls

{Bri(xi)}i∈N such that r2
i |K| ≤ ε for any i ∈ N and

(i) Ak ∩B1(p) ⊂ ∪i∈NB5ri(xi);

(ii) dpmGH
(
(X, r−1

i d,mrix , xi), (Rk, deucl, ckLk, 0k)
)
≤ ε;

(iii) ωk−1

ωk
(1− ε)m(Bri (xi))

ri
≤ Per(E,Bri(xi)) ≤

ωk−1

ωk
(1 + ε)

m(Bri (xi))

ri
.

Indeed, for any x ∈ Ak there exists a sequence of radii ri → 0 such that

lim
i→∞

dpmGH
(
(X, r−1

i d,mrix , x), (Rk, deucl,Lk, 0k)
)

= 0 and lim
i→∞

riPer(E,Bri(x))

m(Bri(x))
=
ωk−1

ωk
,

as a consequence of Theorem 3.3, see also (1.16). Therefore, for any x ∈ Ak we can choose

r2
x|K| ≤ ε such that the pair (x, rx) satisfies (ii) and (iii). In order to get a disjoint family of balls

satisfying (i) we have just to apply Vitali’s Lemma to {Brx(x)}x∈Ak∩B1(p).

Let us now focus the attention on a single ball B20ri(xi) ⊂ X. Corollary 3.10 yields the existence

of a δ-splitting map

ui : B5ri(xi)→ Rk.
Thanks to Corollary 3.12 we can find Gi ⊂ B5ri(xi) with

H h
5 (B5ri(xi) \Gi) ≤ CN

√
δ
m(B5ri(xi))

5ri
(3.9)

and such that ui : Bs(x) → Rk is a CNδ
1/4-splitting map for any x ∈ Gi and any 0 < s < 5ri.

Applying Corollary 3.8, up to assuming δ small enough, we deduce that at any x ∈ Gi (3.8) holds

true.

To conclude let us verify that G := ∪i∈NGi satisfies (3.7). Using (iii), (3.9) and the Bishop-Gromov

inequality (1.15) we get

H h
5 (Ak \G) ≤

∑
i∈N

H h1
5 (B5ri(xi) \Gi) ≤

∑
i∈N

CN
√
δ
m(B5ri(xi))

5ri

≤CN
√
δ
∑
i∈N

m(Bri(xi))

ri
≤ CN

√
δ
∑
i∈N

Per(E,Bri(xi))

≤CN
√
δPer(E,B2(p)).
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Since we can assume δ < η2 we get the sought estimate. �

Let (X, d,m) be an RCD(K,N) metric measure space and E ⊂ X a set of locally finite perime-

ter. For any k = 1, . . . , n, where n is the essential dimension of (X, d,m), we set

FkE :=
{
x ∈ X : Tanx(X, d,m, E) =

{
(Rk, deucl, ckLk, 0k, {xk > 0})

}}
.

We know thanks to Theorem 3.2 that Per(E, ·) is concentrated on FE := ∪nk=1FkE and, from

now on, we shall call FE the reduced boundary of E.

The result about uniqueness of tangents that we just proved allows to obtain a representation

formula for the perimeter measure in terms of the codimension-1 Hausdorff measure.

Corollary 3.15. Let (X, d,m) be an RCD(K,N) m.m.s. with essential dimension n. Let E ⊂ X
be a set of locally finite perimeter. Then

|DχE | =
n∑
k=1

ωk−1

ωk
H h FkE. (3.10)

Proof. The proof can be obtained as in the case of the representation formula for the perimeter

on non-collapsed spaces obtained in [2, Corollary 4.7] relying on [40, Theorem 3] in place of [40,

Theorem 5]. We just report here the key computation.

If x ∈ FkE, then we can compute

lim
r→0

r |DχE | (Br(x))

m(Br(x))
= lim
r→0

r |DχE | (Br(x))

C(x, r)
· C(x, r)

m(Br(x))
= lim
r→0

|DrχE | (B1(x))

mrx(B1(x))

=
H k−1(B1(0))

H k(B1(0))
=
ωk−1

ωk
,

where the regularity of the point and the weak convergence of the rescaled perimeter measures to

the perimeter measure of a half-space play a role.

This computation, together with the rigid structure of the tangent, allows then to infer, arguing

as in the non-collapsed case, that

lim
r→0

sup
x∈Bs(y), s≤r

s |DχE | (Bs(y))

m(Bs(y))
=
ωk−1

ωk
,

which is the needed density estimate in order to obtain the representation formula (3.10). �

4. Rectifiability of the reduced boundary

The main achievement of this section is a rectifiability result for the reduced boundary of sets

with finite perimeter. With this theorem we complete the picture about the generalization of De

Giorgi’s theorem to the framework of RCD(K,N) spaces.

Theorem 4.1. Let (X, d,m) be an RCD(K,N) m.m.s. and E ⊂ X be a set of locally finite

perimeter. Then, for any k = 1, . . . , n, FkE is
(
|DχE | , (k − 1)

)
-rectifiable.

Let us recall that a set is
(
|DχE | , `

)
-rectifiable if up to a |DχE |-negligible set it can be covered

by ∪i∈NAi where any Ai is bi-Lipschitz equivalent to a Borel subset of R`.
When specialized to the non-collapsed case (see [44]), where the only non-empty regular set is

the top dimensional one, Theorem 4.1 turns into:

Corollary 4.2. Let (X, d,m) be a ncRCD(K,N) m.m.s. and E ⊂ X a set of locally finite perime-

ter. Then FE = FNE is (|DχE | , N − 1)-rectifiable (equivalently,
(
HN−1, N − 1

)
-rectifiable,
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where H denotes the (N − 1)-dimensional Hausdorff measure). Furthermore

|DχE | = HN−1 FE.3 (4.1)

Remark 4.3. We point out that, given any ε > 0, the maps providing rectifiability of the reduced

boundary in Theorem 4.1 and Corollary 4.2 can be taken (1 + ε)-bi-Lipschitz (compare with the

analogous statement in the case of [42]).

In particular, when (X, d,m) is non-collapsed, (X, d, |DχE |) is a strongly |DχE |-rectifiable

m.m.s. according to [33].

Remark 4.4. It is worth mentioning that Theorem 4.1 is stronger than [42, Theorem 1.1]. Indeed,

given an RCD(K,N) m.m.s. (Z, dZ ,mZ) we can consider X := Z × R endowed with the product

structure, and the set of finite perimeter E := {(z, t) ∈ Z × R : t > 0}. Applying Theorem 4.1 to

E ⊂ X we get the rectifiability result for Z.

Let us outline the strategy of the proof of Theorem 4.1.

First of all, up to intersecting with a ball and thanks to the locality of perimeter and tangents, we

can assume that E has finite measure and perimeter.

The bi-Lipschitz maps from subsets of FkE to Rk−1 providing rectifiability are going to be suitable

approximations of the (k − 1) coordinate maps over the hyperplane where the perimeter concen-

trates after the blow-up. Better said, they will be the first (k− 1) components of a (k, δ)-splitting

map “δ-orthogonal to the exterior normal νE to the boundary of E”.

Proving existence of these maps requires some technical work which builds upon the Gauss–Green

formula Theorem 2.2. The rigorous statement is as follows.

Proposition 4.5. Let (X, d,m) be an RCD(K,N) m.m. space and E ⊂ X a set of finite perimeter

and measure. For any δ > 0, r0 > 0 and |DχE |-a.e. x ∈ FkE there exist r = rx,δ < r0 and a

δ-splitting map u = (u1, . . . , uk−1) : Br(x)→ Rk−1 such that

r

m(Br(x))

ˆ
Br(x)

|ν · ∇uα|d|DχE | < δ, for α = 1, . . . , k − 1.

The second step in the proof of Theorem 4.1 is showing that the map built in Proposition 4.5

is indeed bi-Lipschitz with its image if restricted to suitable subsets of FkE (see Proposition 4.7

below for the rigorous statement). These subsets are obtained collecting points x ∈ FkE such

that Bs(x)∩E is ε-close, in a suitable sense, to Bs(0
k)∩ {xk > 0} for any s ≤ r0, where r0 > 0 is

a fixed radius.

Definition 4.6. Given ε > 0 and r0 > 0, we define (FkE)r0,ε as the set of points x ∈ FkE
satisfying

(i) dpmGH
((
X, s−1d, m

m(Bs(x)) , x
)
,
(
Rk, deucl, 1

ωk
Lk, 0k

))
< ε for any s ≤ r0;

(ii) ∣∣∣∣m(Bs(x) ∩ E)

m(Bs(x))
− 1

2

∣∣∣∣+

∣∣∣∣s |DχE | (Bs(x))

m(Bs(x))
− ωk−1

ωk

∣∣∣∣ < ε for any s ≤ r0. (4.2)

Observe that, as a consequence of Theorem 3.2 and Remark 1.17, for any ε > 0 we have

FkE =
⋃

0<r<1

(FkE)r,ε and (FkE)r,ε ⊂ (FkE)r′,ε for r′ < r.

Hence for any η > 0 there exists r = r(η) > 0 such that

|DχE |
(
FkE \ (FkE)s,ε

)
< η, for any 0 < s < r. (4.3)

3In [2] it was proved that |DχE | = SN−1 FE, where S denotes the spherical Hausdorff measure. Coincidence

with the Hausdorff measure H is a consequence of rectifiability.
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Proposition 4.7. Let N > 1, K ∈ R and k ∈ [1, N ] be fixed. For any η > 0 there exists

ε = ε(η,N) < η such that, if (X, d,m) is an RCD(K,N) m.m.s., E ⊂ X is a set of finite perimeter

and finite measure, p ∈ (FkE)2s,ε for some s ∈ (0, |K|−1/2) and there exists an ε-splitting map

u : B2s(p)→ Rk−1 such that

s

m(B2s(x))

ˆ
B2s(x)

|ν · ∇ua| d|DχE | < ε, for any a = 1, . . . , k − 1, (4.4)

then there exists G ⊂ Bs(p) that satisfies:

(i) G ∩ (FkE)2s,ε is bi-Lipschitz to a Borel subset of Rk−1. More precisely,∣∣|u(x)− u(y)| − d(x, y)
∣∣ ≤ CNη d(x, y), ∀x, y ∈ (FkE)2s,ε ∩G; (4.5)

(ii) H h
5 (Bs(p) \G) < CNη

m(Bs(p))
s .

Let us now prove Theorem 4.1 assuming Proposition 4.5 and Proposition 4.7.

Proof of Theorem 4.1. Assume without loss of generality that E has finite perimeter and measure,

and that FkE ⊂ B2(p) for some p ∈ X. We claim that, for any η > 0, we can decompose

FkE = Gη ∪Bη ∪Rη, where Gη is (k − 1)-rectifiable and

H h
5 (Bη) + |DχE | (Rη) ≤ CN,K |DχE | (B2(p))η + η. (4.6)

Observe that the claim easily gives the sought conclusion. Indeed, setting ηi := η2−i, Gη := ∪iGηi
and Rη := ∪i∈NRηi , Gη is still (k − 1)-rectifiable and it holds

H h
5 ((FkE \Gη) \Rη) = 0,

hence, as a consequence of Lemma 1.10, |DχE | (FkE \Gη) \Rη) = 0. Therefore

|DχE | (FkE \Gη) ≤ |DχE | (Rη) ≤ CN |DχE | (B2(p))η + η.

Setting G := ∪i∈NG2−i , we get that G is still (k − 1)-rectifiable and coincides with FkE up to a

|DχE |-negligible set.

Let us now prove the claim. To this aim fix r > 0 and ε > 0. We cover (FkE)r,ε with balls

of radius smaller than r/5 with center in (FkE)r,ε such that the assumptions of Proposition 4.7

are satisfied. The possibility of building such a covering is a consequence of Theorem 3.2 and of

Proposition 4.5. By Vitali’s lemma, we can extract a disjoint family
{
Bri/5(xi)

}
i∈N such that

(FkE)r,ε ⊂ ∪iBri(xi). Applying Proposition 4.7 above, for any i ∈ N we can find Gi ⊂ Bri(xi)

such that Gi ∩ (FkE)r,ε is (k − 1)-rectifiable and H h
5 (Bri(xi) \Gi) < CNη

m(Bri (xi))

ri
. Set Gηr :=

(FkE)r,ε ∩ (∪iGi) and observe that

H h
5 ((FkE)r,ε \Gηr) ≤

∑
i∈N

H h
5 (Bri(xi) \Gi) ≤

∑
i∈N

CNη
m(Bri(xi))

ri

≤CNη
∑
i∈N

m(Bri/5(xi))

ri/5
≤ CN,Kη

∑
i∈N
|DχE | (Bri/5(xi))

≤CN,Kη |DχE | (B2(p)),

where we used the Bishop-Gromov inequality (1.15) and

m(Bri/5(xi))

ri/5
≤ C(k) |DχE | (Bri/5(xi)),

that holds true provided ε is small enough.

Setting Bηr := (FkE)r,ε \Gηr , the argument above gives the decomposition

(FkE)r,ε = Gηr ∪Bηr ,
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where Gηr is (k − 1)-rectifiable and H h
5 (Bηr ) ≤ CN,Kη |DχE | (B2(p)). Let us now choose r > 0

small enough to have (4.3). This allows us to write

FkE = Gηr ∪Bηr ∪ (FkE \ (FkE)r,ε) =: Gη ∪Bη ∪Rη

and to conclude the proof. �

4.1. Proof of Proposition 4.5. Let us start by recalling that one of the main results of the

previous part of the note was proving that the exterior normal is indeed an element of L2
E(TX)

(see Theorem 2.2). In the following, to simplify the notation, we shall write v in place of trE(v)

for any v ∈ H1,2
C (TX) ∩D(div).

Definition 4.8. Let (X, d,m) be an RCD(K,N) m.m.s. and E ⊂ X a set of finite perimeter.

Given x ∈ X and a sequence ri ↓ 0 we say that
{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N is a

good approximation of the boundary of E at x if the following conditions hold true:

(i) there exists a sequence δi → 0 such that uri : Bri(x) → Rk−1 is a δi-splitting map with

uri(x) = 0;

(ii) there exists (Z, dZ) that realizes the convergences

(X, r−1
i d,mrix , x)→ (Rk, deucl, ckLk, 0k) and Eri → {xk > 0} locally strongly in BV

and r−1
i uriα → xα in H1,2-strong on B1(0k) along the sequence

(X, r−1
i d,mrix , x)→ (Rk, deucl, ckLk, 0k),

for any α = 1, . . . , k − 1.

Lemma 4.9. Let (X, d,m) be an RCD(K,N) m.m. space and E ⊂ X a set of finite perimeter

and finite measure. Then for any p ∈ X and for any ε > 0 there exists V ∈ TestV(X) such that

ˆ
B2(p)

|ν − V |2 d|DχE | ≤ ε,

where ν is the exterior normal of E.

Moreover, there exists G ⊂ B1(p) with H h(B1(p) \G) ≤ CK,N
√
ε and such that, for any x ∈ G,

it holds

lim sup
r→0

r

m(Br(x))

ˆ
Br(x)

|ν − V |2 d|DχE | ≤
√
ε.

Proof. The first conclusion follows from Theorem 2.2, where we proved that the normal is an

element of L2
E(TX), and Lemma 2.7, yielding density of trE (TestV(X)) in L2

E(TX).

To prove the second part of the statement we set

G :=

{
x ∈ B1(p) : lim sup

r↓0

r

m(Br(x))

ˆ
Br(x)

|ν − V |2 d|DχE | ≤
√
ε

}
.

Then, for any r0 > 0 and for any x ∈ B1(p) \G, there exists rx < r0 such that

rx
m(Brx(x))

ˆ
Brx (x)

|ν − V |2 d|DχE | >
√
ε.
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Hence, applying Vitali’s covering theorem we can find a disjoint set of balls {Bri(xi)} such that

{B5ri(xi)} is a covering of B1(p) \G. Now we can estimate, for any r0 > 0,

H h
5r0(B1(p) \G) ≤

∞∑
i=0

m(B5ri(xi))

5ri
≤ CK,N

∞∑
i=0

m(Bri(xi))

ri

≤ CK,N√
ε

∞∑
i=0

ˆ
Bri (xi)

|ν − V |2 d|DχE | ≤
CK,N√

ε

ˆ
B2(p)

|ν − V |2 d|DχE |

≤ CK,N
√
ε.

The conclusion follows letting r0 ↓ 0. �

Proof of Proposition 4.5. The proof is divided in 3 steps. Aim of the first one is to prove that

good approximations of the boundary are regular enough to guarantee that the scalar product

between their gradient and the gradient of any given test function leaves a well-defined trace

over the reduced boundary of E. In the second step we combine the outcome of the first one,

the approximation result of Lemma 4.9 and the orthogonality in weak sense between the normal

vector and the coordinates of its orthogonal hyperplane guaranteed by the Gauss–Green formula,

to get that gradients of good approximations of the boundary leave a trace even when coupled

with the normal to the boundary and that this trace is 0. In the last step we prove existence

of good approximations of the boundary and combine it with steps 1 and 2 to get the sought

conclusion.

Step 1. Observe that it suffices to restrict the attention to the ball B1(p) ⊂ X, for any p ∈ X.

We claim that for any function φ ∈ Test(X, d,m) there exists a |DχE |-negligible set N ⊂
FkE∩B1(p) such that, for any x ∈ FkE∩B1(p)\N and any good approximation of the boundary

of E at x with radii ri ↓ 0 and maps
{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N, there exist a

subsequence rij and c(x) = (c1(x), . . . , ck−1(x)) ∈ Rk−1 such that

lim
j→∞

rij
m(Brij (x))

ˆ
Brij

(x)

∣∣∣∇urijα · ∇φ− cα(x)
∣∣∣2 d|DχE | = 0, for any α = 1, . . . , k − 1. (4.7)

Assume without loss of generality that |∇φ| ≤ 1. Let us fix also α ∈ {1 . . . , k − 1} and set

gi := ∇uriα · ∇φ. We have

(i) ‖gi‖L∞(Bri (x)) ≤ CN ;

(ii) r2
i

ffl
Bri (x)

|∇gi|2 dm ≤ 2δi + CNr
2
i

ffl
Bri (x)

|Hessφ|2 dm, where δi is as in Definition 4.8.

Since Hessφ ∈ L2(B2(p),m), by Lemma 1.11 and Lemma 1.10, we deduce that

lim
r→0

r2

 
Br(x)

|Hessφ|2 dm = 0

for any x ∈ X outside a |DχE |-negligible set depending only on φ. Therefore we can assume that

x does not belong to this set obtaining

lim
i→∞

r2
i

 
Bri (x)

|∇gi|2dm = 0. (4.8)

This gives that, up to subsequence, gi → cα(x) in H1,2-strong on B1(0k) along the sequence in

Definition 4.8(ii). Here we have used (1.16). Taking into account Proposition 1.27, it follows that

(gi−cα(x))→ 0 in H1,2-strong on B1(0k) and thus, reading the convergence in the starting space, 
Brij

(x)

|gij − cα(x)|2 dm + r2
ij

 
Brij

(x)

|∇gij |2 dm =: εj → 0 as j →∞. (4.9)
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We wish to prove that, up to excluding another |DχE |-negligible set depending only on E, (4.9)

gives (4.7). More precisely we are going to prove that (4.9) implies (4.7) at any x ∈ X such that

x ∈ Er0,C for some r0 > 0 and C > 1, where

Er0,C :=

{
y ∈ X : C−1 ≤ r|DχE |(Br(y))

m(Br(y))
≤ C ∀r < r0

}
, (4.10)

and

lim
r→0

|DχE |(Er0,C ∩Br(x))

|DχE |(Br(x))
= 1. (4.11)

Observe that (4.10) and (4.11) are satisfied at |DχE |-a.e. point in FE thanks to Theorem 3.2, the

asymptotic doubling property of |DχE | and elementary considerations. In order to keep notations

short, from now on we set rj := rij and gj := gij .

We claim that, for any j such that rj ≤ r0/5, it holds

|DχE |
(
Er0,C ∩Brj (x) ∩

{
|gj − cα(x)|2 ≥ √εj

} )
≤ CCN,K

√
εj

m(Brj (x))

rj
, (4.12)

where εj is as in (4.9) and r0 and C are as in (4.10).

Notice that (4.12), together with the Chebyshev inequality, (i) and (4.11), give (4.7).

Let us see how to establish (4.12). Fix any j such that rj ≤ r0/5 and let us set

(Xj , dj ,mj , x) :=

(
X, r−1

j d,
m

m(Brj (x))
, x

)
.

With a slight abuse of notation we use the notations Er0,C and gj also in Xj . Let us observe that,

when read in Xj , (4.9) turns into 
Bj1(x)

|gj − cα(x)|2 dmj +

 
Bj1(x)

|∇gj |2 dmj ≤ εj .

Moreover, a telescopic argument as in the proof of Proposition 3.11 gives

Bj1(x) ∩ Er0,C ∩
{
|gj − cα(x)|2 ≥ CN,K

√
εj
}

⊂Bj1(x) ∩ Er0,C ∩

{
z : sup

0<s<1
s

 
Bjs(z)

|∇gj |2 dmj >
√
εj

}
.

Using Vitali’s lemma we can find a disjoint family
{
Bjsi(zi)

}
i∈N with si ≤ 1 and zi ∈ Bj1(x) ∩

Er0,C ∩
{
z : sup0<s<1 s

ffl
Bjs(z)

|∇gj |2 dmj >
√
εj

}
for any i ∈ N such that

Bj1(x) ∩ Er0,C ∩

{
z : sup

0<s<1
s

 
Bjs(z)

|∇gj |2 dmj >
√
εj

}
⊂
⋃
i∈N

Bj5si(zi).

Taking into account (4.10) and the defining identities

Bjsi(zi) = Brjsi(zi), mj =
m

m(Brj (x))
,

we get

rj
m(Brj (x))

|DχE |
(
Er0,C ∩Brj (x) ∩

{
|gj − cα(x)|2 ≥ √εj

} )
≤ rj

m(Brj (x))

∑
i∈N
|DχE |(B5rjsi(zi))

≤ CCN,Krj
m(Brj (x))

∑
i∈N

m(Brjsi(zi))

rjsi
= CCN,K

∑
i∈N

mj(B
j
si(zi))

si
≤ CCN,K√

εj

ˆ
Bj1(x)

|∇gj |2 dmj

≤CCN,K
√
εj .
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Step 2. We wish to prove that, for |DχE |-a.e. x ∈ FkE and any good approximation of the

boundary of E at x with radii ri ↓ 0 and maps
{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N, there

exists a subsequence rij → 0 such that

lim
j→∞

rij
m(Brij (x))

ˆ
Brij

(x)

|ν · ∇u
rij
α |d|DχE | = 0 for any α = 1, . . . , k − 1. (4.13)

Let us restrict our attention as above to FkE ∩B1(p).

We claim that, for any ε > 0, there exists Gε ⊂ B1(p) ∩ FkE with H h(B1(p) ∩ FkE \ Gε) ≤
CN,K

√
ε and such that, for any x ∈ Gε, and any

{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N

good approximation of the boundary of E at x, there exists a subsequence rij → 0 satisfying

lim sup
j→∞

rij
m(Brij (x))

ˆ
Brij

(x)

|ν · ∇u
rij
α |d|DχE | ≤ CN,Kε1/4 for any α = 1, . . . , k − 1. (4.14)

Before then proving the claim let us see how it implies (4.13).

Fix ε > 0, set εi := ε2−i and take Gε := ∪i∈NGεi . Then we have |DχE |(B1(p) ∩ FkE \Gε) = 0,

thanks to Lemma 1.10, and (4.14) holds for any x ∈ Gε. Therefore the set ∩i∈NGεi has full

|DχE |-measure in B1(p) ∩ FkE and has the sought property.

The remaining part of this step is devoted to the proof of (4.14). Let ε > 0 be fixed, take G

and V as in Lemma 4.9. Recalling that any test vector field can be represented as
∑m
i=1 ηi∇φi

with ηi, φi ∈ Test(X, d,m) for some m ∈ N and using Step 1, we conclude that there exists

Gε ⊂ G ∩ FkE with |DχE |(G ∩ FkE \ Gε) = 0 and the property that, for any x ∈ Gε and{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N good approximation of the boundary of E at x, there

exists c(x) := (c1(x), . . . , ck−1(x)) ∈ Rk−1 and a subsequence rij → 0 such that

lim
j→∞

rij
m(Brij (x))

ˆ
Brij

(x)

|∇u
rij
α · V − cα(x)|2 d|DχE | = 0 for α = 1, . . . , k − 1. (4.15)

In order to conclude the proof it suffices to show that

|c(x)| ≤ CK,Nε1/4. (4.16)

Indeed, in that case, one has

lim sup
j→∞

rij
m(Brij (x))

ˆ
Brij

(x)

|ν · ∇u
rij
α |d|DχE |

≤CN lim sup
j→∞

(
rij

m(Brij (x))

ˆ
Brij

(x)

|ν − V |2 d|DχE |
)1/2

+ lim sup
j→∞

CNrij
m(Brij (x))

ˆ
Brij

(x)

|∇u
rij
α · V |d|DχE |

≤CNε1/4 + lim
j→∞

CN

(
rij

m(Brij (x))

ˆ
Brij

(x)

|∇u
rij
α · V − cα(x)|2 d|DχE |

)1/2

+ |cα(x)|
rij |DχE |(Brij (x))

m(Brij (x))

≤CK,Nε1/4,

where we used (4.15), (4.16) and the fact that x ∈ FkE.

In order to prove (4.16) we simplify the notation setting rij =: rj . Choose a smooth function

ψ∞ : Rk → R with compact support in B1(0k) and such that
´
{xk=0} ψ∞ dLk−1 =: Ck > 0.

Then we consider a sequence ψj ∈ Lip(X, d) with supp(ψj) ⊂ Brj (x), ‖ψj‖L∞ ≤ 2 and ψj → ψ∞
strongly in H1,2 along the sequence in Definition 4.8(ii), whose existence is proved in Lemma 1.31.

Observe now that

lim
j→∞

rj
m(Brj (x))

ˆ
E

∇ψj · ∇urjα dm = ck

ˆ
{xk>0}

∇ψ∞ · eα dLk = 0, for α = 1, . . . , k − 1, (4.17)
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and

lim
j→∞

rj
m(Brj (x))

ˆ
ψjV · ∇urjα d|DχE | = Ckcα(x), for α = 1, . . . , k − 1, (4.18)

where the last equality in (4.17) is obtained integrating by parts and to prove (4.18) we used

(4.15). Building upon (4.17), (4.18), Theorem 2.2 and Lemma 4.9, we get (4.15):

Ck|cα(x)| =
∣∣∣∣ lim
j→∞

rj
m(Brj (x))

(ˆ
E

∇ψj · ∇urjα dm +

ˆ
ψjV · ∇urjα d|DχE |

)∣∣∣∣
=

∣∣∣∣ lim
j→∞

rj
m(Brj (x))

(
−
ˆ
ψjν · ∇urjα d|DχE |+

ˆ
ψjV · ∇urjα d|DχE |

)∣∣∣∣
≤ lim sup

j→∞

CNrj
m(Brj (x))

ˆ
Brj (x)

|ν − V |d|DχE |

≤CN,Kε1/4.

Note that in order to apply the Gauss–Green formula in the previous estimate the fact that u
rj
α is

locally the restriction of a H2,2(X, d,m) function (see Remark 3.5) plays a role.

Step 3. In order to conclude the proof we just observe that, since

dpmGH
(
(X, r−1d,mrx, x), (Rk, deucl, ckLk, 0k)

)
→ 0

as r ↓ 0 and the blow-up of the set of finite perimeter is a half-space (in the sense of BVloc

convergence, as we pointed out after Definition 3.1), a slight modification of Proposition 3.94

provides, for any sequence ri ↓ 0, existence of a good approximation of the boundary of E at

x with maps
{
uri := (uri1 , . . . , u

ri
k−1) : Bri(x)→ Rk−1

}
i∈N (observe that Proposition 3.9 gives δi-

splitting maps defined on the balls of radius 1 of the rescaled spaces for a sequence δi ↓ 0 and

then rescale these functions). The sought conclusion follows now from what we obtained in the

previous step. �

4.2. Proof of Proposition 4.7. The proof is divided in three steps.

Aim of the first one is to provide a bridge between analysis and geometry suitable for this context.

We prove that, whenever at a certain location and scale the set of finite perimeter is quantitatively

close to a half-space in a Euclidean space and there is a (k − 1, δ)-splitting map which is also δ-

orthogonal to the normal vector in the sense of (4.4), then the (k − 1, δ)-splitting map is an

η-isometry (in the scale invariant sense) when restricted to the support of the perimeter.

The second step is analytic and dedicated to the propagation of the δ-orthogonality condition.

In the last one we get the bi-Lipschitz property relying on the observation that a map which is an

η-isometry (in the scale invariant sense) at any location and scale is bi-Lipschitz.

Step 1. Let N > 0, K ∈ R and k ∈ [1, N ] be fixed. We claim that, for any η > 0, there exists

δ = δη,N ≤ η such that, for any pointed RCD(K,N) m.m.s. (X, d,m, x) and for any set of finite

perimeter and finite measure E ⊂ X such that, for some 0 < r < |K|−1/2
,

(i) dpmGH
((
X, (2r)−1d, m

m(B2r(x)) , x
)
,
(
Rk, deucl, 1

ωk
Lk, 0k

))
< δ;

(ii) ∣∣∣∣m(Bt(x) ∩ E)

m(Bt(x))
− 1

2

∣∣∣∣+

∣∣∣∣ t |DχE | (Bt(x))

m(Bt(x))
− ωk−1

ωk

∣∣∣∣ < δ for any t ≤ 2r; (4.19)

(iii) there exists u := (u1, . . . , uk−1) : B2r(x)→ Rk−1 a δ-splitting map satisfying

r

m(B2r(x))

ˆ
B2r(x)

|ν · ∇ua| d|DχE | < δ, for any a = 1, . . . , k − 1, (4.20)

4With the splitting functions defined on balls of radius 1 in place of 5.
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then u : supp |DχE | ∩Br(x)→ BRk−1

r (u(x)) is an ηr-GH isometry.

By scaling it is enough to prove the claim when r = 1/2 and |K| ≤ 4. Let us argue by

contradiction. Then we could find η > 0, a sequence (Xn, dn,mn, En, xn), points zn1 , z
n
2 ∈

supp|DχEn | ∩ B1/2(xn), and 1/n-splitting maps un : B1(xn) → Rk−1 satisfying (i), (ii) and

(iii) with δ = 1/n, un(xn) = 0 and∣∣|un(zn1 )− un(zn2 )| − dn(zn1 , z
n
2 )
∣∣ ≥ η, ∀n ∈ N. (4.21)

Notice that dn(zn1 , z
n
2 ) ≥ min{η/(CN − 1), η} since un is CN -Lipschitz.

Observe that, by (i), (Xn, dn,mn, xn) converge in the pmGH topology to
(
Rk, deucl, 1

ωk
Lk, 0k

)
.

We can assume the existence of a metric space (Z, dZ) realizing this convergence (cf. Section 1.2.3).

Since En satisfies the bound∣∣∣∣mn(En ∩Bt(xn))

mn(Bt(xn))
− 1

2

∣∣∣∣+

∣∣∣∣ t|DχEn |(Bt(xn))

mn(Bt(xn))
− ωk−1

ωk

∣∣∣∣ < 1/n for any t ≤ 1, (4.22)

up to extracting a subsequence, En ∩ B1(xn) → F ∩ B1(0k) in L1-strong, where F is of locally

finite perimeter in B1(0k) thanks to Proposition 1.28.

Up to extracting again a subsequence we can assume un → u∞ strongly in H1,2 on B1(0k),

where u∞ : BRk
1 (0) → Rk−1 is the restriction of an orthogonal projection, as a consequence

of Proposition 1.21 and Theorem 1.32. We assume, without loss of generality, that u∞(x) =

(x1, . . . , xk−1) for any x ∈ B1(0k).

We claim that Lk
((
F ∩B1(0k)

)
∆
(
{xk > 0} ∩B1(0k)

))
= 0 andˆ

g d|DχEn | →
ˆ
g d|Dχ{xk>0}| for any g ∈ C(Z) with supp(g) ⊂ B1/2(0k). (4.23)

This would imply that z∞1 , z∞2 ∈ {xk = 0}, therefore |u∞(z∞1 ) − u∞(z∞2 )| = deucl(z
∞
1 , z∞2 ) that

contradicts (4.21).

In order to verify the claim we argue as in the proof of the second step of Proposition 4.5. We

choose a smooth function ψ∞ : Rk → R with compact support in B1(0k). Then we consider a

sequence ψn ∈ Lip(Xn, dn) with supp(ψn) ⊂ B1(xn), ‖ψn‖L∞ + ‖|∇ψn|‖L∞ ≤ 4 and ψn → ψ∞
strongly in H1,2 along the sequence (Xn, dn,mn, xn), whose existence is proved in Lemma 1.31.

Observe now that

∇ψn · ∇una → ∇ψ∞ · ea =
∂ψ∞
∂xa

in L2-strong, for any a = 1, . . . , k − 1,

by Proposition 1.27(i) and Proposition 1.27(iii). This observation, along with Proposition 1.27(ii)

and Remark 1.25, gives ˆ
F

∂ψ∞
∂xa

d
Lk

ωk
= lim
n→∞

ˆ
En

∇ψn · ∇una dmn. (4.24)

We can now use (4.24), Theorem 2.2 and (iii) to conclude that∣∣∣∣ˆ
F

∂ψ∞
∂xa

d
Lk

ωk

∣∣∣∣ = lim
n→∞

∣∣∣∣ˆ
En

∇ψn · ∇una dmn

∣∣∣∣
= lim
n→∞

∣∣∣∣ˆ ψn∇una · νEn d|DχEn |
∣∣∣∣

≤ lim
n→∞

ˆ
|ψn| |∇una · νEn | d|DχEn | = 0,

for a = 1, . . . , k − 1. Since ψ∞ ∈ C∞c (B1(0k)) is arbitrary we obtain that

Lk
((
F ∩B1(0k)

)
∆
(
{xk > λ} ∩B1(0k)

))
= 0 for some λ ∈ R.
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Using again (4.22) we get Lk(F ∩B1(0k)) = ωk/2 that forces λ = 0.

Let us finally prove (4.23). To this end we use again (4.22) with t = 1/2 obtaining that

lim
n→∞

|DχEn | (B1/2(xn)) =
ωk−1

2k−1
=
∣∣Dχ{xk>0}

∣∣ (B1/2(0k)).

We can now apply the third conclusion of Proposition 1.28 and conclude.

Step 2. By assumption there exists an ε-splitting map u : B2s(p)→ Rk−1 such that (4.4) holds

true. We wish to propagate now both the ε-splitting condition and the orthogonality condition

(4.4) at any scale and point outside a set of small H h
5 -measure. More precisely we are going to

prove that there exists a set G ⊂ Bs(p) with H h
5 (Bs(p) \G) ≤ CN

√
εm(Bs(p))

s such that

(i) for any x ∈ G, 0 < r < s, u : Br(x)→ Rk−1 is a CNε
1/4-splitting map;

(ii) for any x ∈ G, 0 < r < s, it holds

r

m(Br(x))

ˆ
Br(x)

|ν · ∇ua| d|DχE | <
√
ε, for a = 1, . . . , k − 1. (4.25)

We can find a set G′ satisfying the measure estimate and (i) applying Corollary 3.12. Hence it is

enough to find a set G′′ satisfying the measure estimate and (ii) and to take G := G′ ∩G′′.
To do so we apply a standard maximal argument. Let us fix a = 1, . . . , k − 1 and set

M(x) := sup
0<r<s

r

m(Br(x))

ˆ
Br(x)

|ν · ∇ua| d|DχE |.

We claim that G′′ := {x ∈ Bs(p) : M(x) <
√
ε} has the sought properties.

Indeed, for any x ∈ Bs(p) \G′′, there exists ρx ∈ (0, s) such that

ρx
m(Bρx(x))

ˆ
Bρx (x)

|ν · ∇ua| d|DχE | ≥
√
ε. (4.26)

Applying Vitali lemma to the family {Bρx(x)}x∈Bs(p)\G′′ we find a disjoint subfamily {Bri(xi)}i∈N
such that Bs(p) \G′′ ⊂ ∪iB5ri(xi). Taking into account the disjointedness of the covering, (4.26),

(4.4) and the Bishop-Gromov inequality, we can compute

H h
5 (Bs(p) \G′′) ≤

∑
i∈N

h(B5ri(xi)) =
∑
i∈N

m(B5ri(xi))

5ri

≤CN
∑
i∈N

m(Bri(xi))

ri
≤ CN

∑
i∈N

ε−1/2

ˆ
Bri (xi)

|ν · ∇ua| d|DχE |

≤CNε−1/2

ˆ
B2s(p)

|ν · ∇ua| d|DχE | ≤ CN
√
ε
m(B2s(p))

s
.

Step 3. We claim now that for any η > 0 there exists ε = εη,N > 0 small enough such that for

any 0 < r < s and x ∈ G ∩ (FkE)2s,ε the map

u = (u1, . . . , uk−1) : supp|DχE | ∩Br(x)→ Rk−1 is an rη-GH isometry. (4.27)

The claim is a consequence of Step 1. Indeed, for any x ∈ G ∩ (FkE)2s,ε and any r ∈ (0, s), the

conditions (i) and (ii) of Step 1 are satisfied by definition of (FkE)2s,ε. Moreover u is a CNε
1/4-

splitting map on Br(x) satisfying (4.25), hence also the assumption (iii) of Step 1 is satisfied for

ε small enough.

In order to conclude the proof we have just to check the conclusion (i) in the statement of

Proposition 4.7, since the conclusion (ii) follows from Step 2 choosing ε small enough so that√
ε < η. To this aim, take x, y ∈ G ∩ (FkE)2s,ε and choose r := d(x, y). Our claim (4.27) ensures

that ∣∣|u(x)− u(z)| − d(x, z)
∣∣ ≤ rη for any z ∈ supp|DχE | ∩Br(x),
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therefore we can take z = y and conclude.
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[10] L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric

measure spaces. Accepted at Memoirs Amer. Math. Soc., arXiv:1509.07273, 2015.
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