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1 Introduction

While classification of domains via conformal mappings gives a rich theory in the setting
of planar domains, domains in higher dimensional Euclidean spaces support no non-Möbius
conformal maps. The most suitable geometric classification in that setting is given by qua-
siconformal mappings. A homeomorphism f : Ω → Ω′ between two domains Ω,Ω′ ⊂ Rn is
quasiconformal if f ∈ W 1,n

loc (Ω; Ω′) and there is a constant K ≥ 1 such that whenever x ∈ Ω,

lim sup
r→0+

supy∈B(x,r) |f(y)− f(x)|
infy∈Ω\B(x,r) |f(y)− f(x)|

≤ K.

∗The first and third authors’ research was partially supported by the grants DMS #1500440 and
DMS #1800161 of NSF (U.S.A.). Part of this research was conducted during the visit of the three au-
thors to Linköping University in Spring 2017 and Spring 2018; the authors wish to thank that institution
for its kind hospitality.
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The theory of quasiconformal mappings was extended by Heinonen and Koskela in [13] to the
setting of metric measure spaces, and in this non-smooth setting properties of quasiconformal
mappings have been studied extensively, see for example [12, 13, 14, 23, 6, 18]. In this paper
we continue this study by considering relationships between sets of finite perimeter and
quasiconformal mappings in the spirit of [17].

The traditional perspective on quasiconformal mappings between Euclidean domains is
that such a map is characterized by its ability to quasi-preserve the conformal modulus of
families of rectifiable curves in the respective domains. Thus a homeomorphism f : Ω→ Ω′

for two domains Ω,Ω′ ⊂ Rn is quasiconformal if there is a constant C ≥ 1 such that whenever
Γ is a family of non-constant compact rectifiable curves in Ω,

1

C
Modn(Γ) ≤ Modn(fΓ) ≤ C Modn(Γ).

Here fΓ is the family of curves obtained as images of curves in Γ under f . An excellent
discussion about Euclidean quasiconformal mappings can be found in [22], see also [17,
Theorem 2.6.1]. A less well-known fact is that quasiconformal mappings between two do-
mains Ω,Ω′ ⊂ Rn quasi-preserve the n

n−1
-modulus of certain families of surfaces obtained

as “essential boundaries” of sets of finite perimeter. This result is due to Kelly [17, The-
orem 6.6]. In [17] the families considered were the classes of sets E ⊂ Ω ⊂ Rn of finite
perimeter such that Hn−1(∂E) is finite and satisfies a double-sided cone condition at every
point in ∂E, see [17, Definition 6.1]. Kelly calls the boundary of such a set E a surface.
Building upon the Federer theory of differential forms for sets of finite perimeter and the
associated Gauss-Green theorem (see [8]), in [17] it is shown that if f is a quasiconformal
mapping, then for Modn/(n−1)-almost every surface, there is a change of variables formula,
see [17, Theorem 4.7.1]. Moreover, there is a family Σ0 of sets of finite perimeter in Ω with
Modn/(n−1)(Σ0) = 0 such that whenever ∂E ⊂ Ω is a surface with E 6∈ Σ0, then f(E) is
of finite perimeter in Ω′ ([17, Theorem 6.3]). However, there is a gap in the proof of [17,
Theorem 6.3], where the actual object studied is the reduced boundary of E, denoted β(E)
in [17, page 372], and this part of the boundary could be strictly smaller than the measure-
theoretic boundary of E. According to Federer’s characterization, a Euclicean set is of finite
perimeter if and only if the (n− 1)-dimensional Hausdorff measure of the measure-theoretic
boundary of E is finite. In [17] it is shown that for almost every E, β(f(E)) has finite
(n− 1)-dimensional Hausdorff measure, and this is not sufficient to conclude that f(E) is of
finite perimeter.

The link between quasiconformal mappings and families of surfaces is natural also in
light of the link between quasiconformal mappings and moduli of families of curves, for in
the Euclidean setting it is known that there is a natural reciprocal connection between fami-
lies of surfaces separating two compacta and families of curves connecting the two compacta,
see [2]. This link was already portended in [1, Lemma 5] (in planar geometry, the separating
“surfaces” are also curves). Motivated by the results in [17, 2], the goal of this paper is to
prove a result similar to that of [17, Theorem 6.6] for quasiconformal mappings between two
complete metric measure spaces equipped with an Ahlfors Q-regular (with Q > 1) measure
and supporting a 1-Poincaré inequality in the sense of Heinonen and Koskela [13], and indeed,
we consider families of sets from the collection of all sets of finite perimeter without the addi-
tional geometric constraints considered in [17] (see Theorem 1.1). To do so, we use the tools
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developed in [13, 14] regarding first-order calculus on non-smooth spaces and the theory of
BV functions first constructed in [21], together with the result from [18] that quasiconformal
maps are characterized by quasi-preserving the measure density of measurable subsets of Ω.
This latter result is itself a generalization of the work of Gehring and Kelly [10]. Unlike in
the work of Kelly [17], the notions of the Gauss-Green theorem and differential forms are not
available in the metric setting, and instead, we adapt the geometric measure theory tools
developed in [6] in the metric setting to verify an analog of the change of variables formula
for sets of finite perimeter in the non-smooth setting. The results of [6] are not directly
applicable to our setting as neither the measure-theoretic boundary ∂∗E (see Definition 2.8)
nor the essential boundary ΣE of a set E of finite perimeter is a (Q − 1)-set (that is, it is
not Ahlfors (Q− 1)-regular). Here ΣE is the subset of the boundary of E made up of points
that see both E and its complement as having positive lower density, see Definition 2.12
below. Therefore in this paper we combine some of the techniques of [6] with the current
technology on sets of finite perimeter to conduct a careful analysis of the images of ΣE.
Note that for Euclidean sets of finite perimeter E where the reduced boundary β(E) makes
sense, we have β(E) ⊂ ΣE ⊂ ∂∗E. The recent paper [19] indicates that in the Euclidean
setting as well as in more general metric measure space settings, the more useful boundary
of a set is its essential boundary. In the setting of Ahlfors Q-regular metric measure spaces
supporting a 1-Poincaré inequality, the result of [19] tells us that HQ−1(∂∗E) is finite if and
only if HQ−1(ΣE) is finite. Even in the Euclidean setting this improvement is new; we will
take advantage of this new tool here and so focus on ΣE for measurable sets E.

In what follows, both X and Y are complete metric spaces equipped with an Ahlfors Q-
regular measure for some Q > 1, f : X → Y a quasiconformal homeomorphism, L denotes
the collection of measures HQ−1

ΣE corresponding to sets E ⊂ X that are of finite perimeter
in X, and fL is the corresponding collection of measures HQ−1

Σf(E).
The quantities Lf and lf represent the following:

Lf (x) = lim sup
r→0+

supy∈B(x,r) dY (f(x), f(y))

r
, lf (x) = lim inf

r→0+

infy∈X\B(x,r) dY (f(x), f(y))

r
,

(1.1)
with dY denoting the metric on the space Y , see Definition 3.1 below. Here, for 1 ≤ p <∞,

Modp(L) = inf

{∫
X

ρp dµ : ρ non-negative Borel with

∫
ΣE

ρ dHQ−1 ≥ 1 for each E ∈ L
}
,

with µ ≈ HQ denoting the measure on the space X, see Definition 2.4 below. Here L has
a dual identity, one as a collection of sets E ⊂ X of finite perimeter, and the other as the
collection of measures HQ−1

ΣE. In considering the quasiconformal images fL, the family fL
stands for both the collection f(E), E ∈ L, and also for the measures HQ−1

Σf(E). Thanks
to the result of [19] (see Theorem 4.2 below), we know that for each measurable set F ⊂ Y ,
HQ−1

ΣF = HQ−1
∂∗F , and so the above definition is tailor-made for sets of finite perimeter.

Whenever F is not of finite perimeter, HQ−1
∂∗F (Y ) =∞.

The following is the main result of this paper.

Theorem 1.1. Let X, Y be two complete Ahlfors Q-regular metric spaces, Q > 1, that
support a 1-Poincaré inequality, and let f : X → Y be a quasiconformal map. Then there
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exists C > 0 depending only on the quasiconformality constant of f and the Ahlfors regularity
constants of X and Y such that for every collection L of bounded sets of finite perimeter
measure in X we have that

1

C
ModQ/(Q−1)(fL) ≤ ModQ/(Q−1)(L) ≤ C ModQ/(Q−1)(fL). (1.2)

The above theorem gives new results even in the Euclidean setting, addressing the wider
class of all sets of finite perimeter rather than just those that satisfy a cone property at
each point of the topological boundary, with the topological boundary of finite Hausdorff
(n− 1)-dimensional measure as considered in [17, Definition 6.1].

In proving Theorem 1.1 we also show that for ModQ/(Q−1)-almost every set E ⊂ X of finite
perimeter the pull-back measure under f of HQ−1

Σf(E) is absolutely continuous with respect

to HQ−1
ΣE, with its Radon-Nikodym derivative estimated by J

(Q−1)/Q
f , see Lemma 5.4 and

Proposition 5.2. We also address the question of whether images of sets of finite perimeter
are of finite perimeter. There are examples of planar quasiconformal mappings that map the
unit disk to the von Koch snowflake domain, and so map a set of finite perimeter to a set
that is not of finite perimeter. Hence we cannot expect images of all sets of finite perimeter
to be of finite perimeter, see also [6]. Recall from there also that both f and f−1 satisfy
Lusin’s condition N , that is, for sets K ⊂ X, HQ(f(K)) = 0 if and only if HQ(K) = 0, or
equivalently, f#HQ

Y � H
Q
X � f#HQ

Y (see [14, Theorem 8.12]). Following [14], the Radon-

Nikodym derivative of f#HQ
Y with respect to HQ

X is denoted by Jf . The quantities Jf , L
Q
f ,

and lQf are comparable to each other almost everywhere in X, see Lemma 4.6 below.

Theorem 1.2. Let X, Y be complete Ahlfors Q-regular metric spaces, Q > 1, that support a
1-Poincaré inequality, and let f : X → Y be a quasiconformal map. Then for ModQ/(Q−1)-
almost every bounded set E ⊂ X of positive and finite perimeter in X, the set f(E) is of
finite perimeter in Y and the pull-back measure satisfies

f#(HQ−1
∂∗f(E))� HQ−1

∂∗E � f#(HQ−1
∂∗f(E)) (1.3)

with Radon-Nikodym derivative Jf,E ∼= J
(Q−1)/Q
f where the comparison constant depends only

on the quasiconformality constant of f and the Ahlfors regularity constants of X and Y .

It is well-established that quasiconformal maps are characterized by their quasipreser-
vation of Q-modulus of families of curves. The above results indicate that quasiconformal
maps also quasipreserve the Q/(Q − 1)-modulus of families of sets of finite perimeter, and
are not as discordant with the established theory of quasiconformal mappings as it might
seem. The characterization of quasiconformal mappings by quasi-preservation of Q-modulus
of families of curves is too strong; one only needs the quasi-preservation of Q-modulus of
families of rectifiable curves that connect pairs of disjoint compact sets K,F . Such classes
of curves are associated with the relative capacity capQ(K,F ), and the super-level sets of
the potential associated with this capacity give sets of finite perimeter whose perimeter sets
separate K from F , and it is the families of such sets that connect quasiconformal maps to
the BV theory. The converse of Theorem 1.1, characterizing quasiconformal maps as those
homeomorphisms that satisfy (1.2), is proven in [16].
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We now consider the implications of the above Theorem 1.2 for the Euclidean setting
Rn. An analog of the above theorem found in [17] is Theorem 6.3, but the proof of [17,
Theorem 6.3] has a gap as explained above. However, in light of the restrictions placed on
the sets E considered in [17], we know that those sets E satisfy ∂E = ΣE, and for such
E it follows from Proposition 5.1(3) that except for a Modn/(n−1)-null family, we know that
Hn−1(f(∂E)) < ∞, and therefore [17, Theorem 6.3] follows from Theorem 1.2, that is, the
gap in the proof found in [17] is filled by the above theorem.

The structure of the paper is as follows. In Section 2 we give the notations and definitions
related to function spaces and measure-theoretic aspects of sets used in this paper. In
Section 3 we give a brief background related to quasiconformal mappings between metric
measure spaces, and in Section 4 we list the needed background results related to the concepts
described in the previous two sections. Here we also give proofs and/or references to papers
where the interested reader can find proofs of these results. We give a proof of Theorem 1.1
in Section 5, and the last section deals with the proof of Theorem 1.2. In the last section
we also show that there are large families of sets of finite perimeter whose images under
quasiconformal mappings are also of finite perimeter.

2 Notations and definitions

In this section we gather together the basic definitions we need in this paper. The definitions
used here are extensions to the non-smooth setting of the natural notions in Euclidean setting
discussed in the introduction. In this section, (X, d, µ) is a complete metric measure space
with µ a Radon measure.

Given x ∈ X and r > 0, we denote an open ball by B(x, r) = {y ∈ X : d(y, x) < r}.
Given that in a metric space a ball, as a set, could have more than one radius and more than
one center, we will consider a ball to be also equipped with a radius and center; thus two
different balls might correspond to the same set. We then denote rad(B) := r as the pre-
assigned radius of the ball B, and aB := B(x, ar). If X is connected (as it must be in order
to support a Poincaré inequality), and if X \ B is non-empty, then rad(B) ≤ diam(B) ≤
2 rad(B).

Definition 2.1. Let A ⊂ X. Then for d ≥ 0, the d-dimensional Hausdorff measure of A is
given by

Hd(A) = lim
r→0+

inf

{∑
k∈I

rad(Bk)
d

∣∣∣∣∣A ⊂⋃
k∈I

Bk where rad(Bk) ≤ r and I ⊂ N

}
.

Definition 2.2. We say that (X, d, µ) is Ahlfors Q-regular if X has at least two points and
there is a constant CA ≥ 1 such that whenever x ∈ X and 0 < r < 2diam(X), we have

rQ

CA
≤ µ(B(x, r)) ≤ CA r

Q.

As a consequence, we get
µ(A)

CA
≤ HQ(A) ≤ CA µ(A).
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Given an open set U ⊂ X, we write u ∈ L1
loc(U) if u ∈ L1(V ) for every open V b U ;

this expression means that V is a compact subset of U . Other local spaces are defined
analogously.

A curve is a continuous mapping from an interval into X, and a rectifiable curve is a
curve with finite length.

Definition 2.3. Let Y be a metric space with metric dY . Given a function u : X → Y ,
a Borel function gu : X → [0,∞] is said to be an upper gradient of u if for every compact
rectifiable curve γ

dY (u(x), u(y)) ≤
∫
γ

gu ds

where x and y are the endpoints of γ. Let 1 ≤ p <∞. A function f : X → Y is said to be
in N1,p

loc (X;Y ) if f ∈ Lploc(X;Y ) and there is an upper gradient g of f such that g ∈ Lploc(X).
If Y = R and f, g ∈ Lp(X) then we say that f ∈ N1,p(X).

We refer the reader to [14, 15] for the details regarding mappings in N1,p
loc (X;Y ).

Definition 2.4. LetM be a collection of measures on X. Then the admissible class ofM,
denoted A(M), is the set of all positive Borel functions ρ : X → [0,∞] such that∫

X

ρ dλ ≥ 1

for all λ ∈M. Then the p-modulus of the family M is given by

Modp(M) = inf
ρ∈A(M)

∫
X

ρp dµ.

Modp is an outer measure on the class of all measures, see [9]. There are two types of
collections of measures associated with quasiconformal maps. Given a collection Γ of curves
in X, we set Γ to also denote the arc length measures restricted to each curve in Γ; for this
collection of measures, the above notion of Modp(Γ) agrees with the standard notion of the
p-modulus of the family Γ of curves from [22, 13, 15]. For a collection L of sets of finite
perimeter in X, we consider the measure HQ−1

ΣE for each E ∈ L; it is known that this
measure is comparable to the perimeter measure associated with E as in Definition 2.10, see
Theorem 4.1.

Definition 2.5. The relative p-capacity of two sets E,F ⊂ X is given by

capp(E,F ) = inf

∫
X

gpu dµ

where the infimum is over all upper gradients gu of all functions u ∈ N1,Q
loc (X) such that

u|E ≤ 0 and u|F ≥ 1.

Definition 2.6. We say that the space X supports a p-Poincaré inequality if there exist
constants CP > 0 and λ ≥ 1 such that for all open balls B in X, all measurable functions u
on λB and all upper gradients gu of u,

−
∫
B

|u− uB| dµ ≤ CP rad(B)

(
−
∫
λB

gpu dµ

)1/p

.
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Here we denote the integral average of u over B by

uB := −
∫
B

u dµ :=
1

µ(B)

∫
B

u dµ.

One of the consequences of a space being complete and Ahlfors regular and supporting
a Poincaré inequality is that such a metric space must necessarily be quasiconvex, that is,
there is some constant Cq ≥ 1 such that for every x, y ∈ X there is a rectifiable curve γ
with end points x, y and length `(γ) ≤ Cq d(x, y), see [11, Proposition 4.4] or [7, Theorem
4.32]. Thus a bi-Lipschitz change in the metric results in X being a geodesic space, that
is, a quasiconvex space with the quasiconvexity constant Cq = 1. Notions such as Poincaré
inequality, quasiconformality, upper gradients and functions of bounded variation (see be-
low), and Hausdorff measure are quasi-invariant under a bi-Lipschitz change in the metric,
hence we do not lose generality by assuming that X is a geodesic space. Geodesic spaces
that support a Poincaré inequality do so even with λ = 1, see [11] or [7, Theorem 4.39].

Definition 2.7. For a measurable set E ⊂ X and x ∈ X, we define the upper density of E
at x by

D(E, x) = lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))

and the lower density of E at x by

D(E, x) = lim inf
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
.

Definition 2.8. For a set E, the measure-theoretic boundary is the set

∂∗E = {x ∈ X : D(E, x) > 0 and D(X \ E, x) > 0}.

Definition 2.9. For u ∈ L1
loc(X), the total variation of u on an open set U ⊂ X is given by

‖Du‖(U) = inf

{
lim inf
n→∞

∫
U

gun dµ

∣∣∣∣ (un)n∈N ⊂ Liploc(U), un → u in L1
loc(U)

}
.

In the above, gun stands for an upper gradient of un in U (here we consider U to be the
metric measure space with metric and measure inherited from X). We say u is of bounded
variation on X (denoted u ∈ BV (X)) if ‖Du‖(X) < ∞. We say that u ∈ BVloc(X) if
u ∈ BV (U) for each open set U b X.

It is shown in [21] that ‖Du‖ is a Radon measure for any u ∈ BVloc(X). We call ‖Du‖
the variation measure of u.

Definition 2.10. A measurable set E ⊂ X has finite perimeter if χE is of bounded variation
on X. We call ‖DχE‖ the perimeter measure of E and we will denote it P (E, ·).

Definition 2.11. We say that X supports a relative isoperimetric inequality if there exist
constants CI > 0 and λ ≥ 1 such that for all balls B(x, r) and for all measurable sets E, we
have

min{µ(B(x, r) ∩ E), µ(B(x, r) \ E)} ≤ CIrP (E,B(x, λr)).
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Again, with X a geodesic space, we can choose λ = 1. We know that if X is Ahlfors regu-
lar and supports a 1-Poincaré inequality, then it supports a relative isoperimetric inequality,
see for example [3, Theorem 4.3].

Definition 2.12. For β > 0, let

ΣβE =
{
x ∈ ∂∗E

∣∣ D(E, x) ≥ β and D(X \ E, x) ≥ β
}
,

and set
ΣE =

⋃
β∈(0,1)

ΣβE.

See [3], [19] or Theorem 4.1 below for connections between ΣβE, ∂∗E, and the perimeter
measure P (E, ·).
Standing assumptions on the metric spaces: Throughout this paper we will assume
that both (X, dX , µX) and (Y, dY , µY ) are complete metric spaces that are Ahlfors Q-regular
for some Q > 1 and support a 1-Poincaré inequality. Often we will denote µX = µ. We
will also, without loss of generality, assume that X and Y are geodesic spaces. We will use
the letter C to denote various constants that depend, unless otherwise specified, only on the
Ahlfors regularity constants and the Poincaré inequality constants of X, and the value of C
could differ at each occurrence.

3 Quasiconformal mappings

In this section we gather together definitions related to the notion of quasiconformal map-
pings between two metric spaces. Here, (X, dX , µY ) and (Y, dY , µY ) are complete metric
measure spaces with µX , µY Radon measures and Q > 1 such that µX ≈ HQ = HQ

X and
µY ≈ HQ = HQ

Y as in the standing assumptions from Section 2. Recall also the definitions
of Lf and lf from (1.1):

Definition 3.1. Define Lf : X → R by

Lf (x) = lim sup
r→0+

Lf (x, r)

r
where Lf (x, r) = sup

y∈B(x,r)

dY (f(x), f(y)).

Similarly, define lf : X → R by

lf (x) = lim inf
r→0+

lf (x, r)

r
where lf (x, r) = inf

y∈X\B(x,r)
dY (f(x), f(y)).

When f is a homeomorphism, we always have lf (x, r) ≤ Lf (x, r). When f is a quasi-
conformal homeomorphism, there is a constant KD such that Lf (x, r) ≤ KD lf (x, r), see for
example [13] or (4.2) below.

There are different geometric notions of quasiconformal maps on metric spaces.
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Definition 3.2. The homeomorphism f is metric quasiconformal if there is a constant
KD ≥ 1 such that for all x ∈ X we have

lim sup
r→0+

Lf (x, r)

lf (x, r)
≤ KD.

When we need to emphasize the constant KD we say that f is KD-quasiconformal.
The map f is geometric quasiconformal if there is a constant K ≥ 1 such that whenever

Γ is a family of non-constant compact rectifiable curves in X, we have

1

K
ModQ(fΓ) ≤ ModQ(Γ) ≤ K ModQ(fΓ).

Definition 3.3. A homeomorphism f : X → Y is quasisymmetric if there is a homeo-
morphism η : [0,∞) → [0,∞) such that for every distinct triple of points x, y, z ∈ X and
t > 0,

dX(x, y)

dX(x, z)
≤ t =⇒ dY (f(x), f(y))

dY (f(x), f(z))
≤ η(t).

The notions of quasisymmetry, metric quasiconformality, and geometric quasiconformal-
ity are connected, see [13, 23] and Theorem 4.3 below.

Definition 3.4. A homeomorphism f : X → Y between Ahlfors Q-regular metric spaces
satisfies Lusin’s condition (N) if whenever A ⊂ X is such that HQ(A) = 0 then HQ(f(A)) =
0. We say that f satisfies condition (N−1) if its inverse satisfies condition (N).

Quasiconformal maps satisfy both Lusin’s condition (N) and (N−1), see Theorem 4.3
below.

Definition 3.5. If νY is a Radon measure on Y and f : X → Y is a homeomorphism, then
the pull-back of the measure νY is the measure on X given by

f#νY (D) := νY (f(D))

whenever D is a Borel subset of X. Note that since f is a homeomorphism, f#νY defines a
Borel measure.

Definition 3.6. We define the (generalized) Jacobian of f at the point x ∈ X as follows:

Jf (x) = lim sup
r→0+

HQ(f(B(x, r)))

HQ(B(x, r))
.

Note that Jf is the Radon-Nikodym derivative of the pull-back measure f#(HQ
Y ) with

respect to HQ
X and HQ is a doubling measure, and so the limit supremum in the definition

of Jf is actually a limit at HQ-almost every x.

Definition 3.7. For a set E ⊂ X of finite perimeter, should f#(HQ−1
Σf(E)) � HQ−1

ΣE,
we define the (Q− 1)-Jacobian of f with respect to ΣE by

Jf,E(x) = lim
r→0+

HQ−1
Σf(E) (f(B(x, r)))

HQ−1
ΣE (B(x, r))

.
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Given that HQ−1(∂∗E \ΣE) = 0 (see Theorem 4.1), we can equivalently consider Jf,E to
be the Radon-Nikodym derivative on ∂∗E.

Further standing assumptions: In this paper, in addition to the standing assumptions
listed at the end of Section 2, we will also assume that f : X → Y is a quasiconformal
mapping.

4 Background results

In this section we will gather together some of the background results needed in the paper.
Recall that we assume the 1-Poincaré inequality to hold with the scaling constant λ = 1.

Theorem 4.1 ([3, Theorem 5.3, Theorem 5.4], [5, Theorem 4.6]). There exists γ > 0
(depending only on the Ahlfors regularity constant CA of µ and the Poincaré inequality
constant CP ) such that for any set of finite perimeter E, the perimeter measure P (E, ·) is
concentrated on ΣγE. Furthermore, HQ−1(∂∗E \ ΣγE) = 0 and there exist constants α̃ > 0
and C > 0 (again depending only on CA and CP ) and a Borel function ΘE : X → [α̃, C]
such that

P (E,B(x, r)) =

∫
B(x,r)∩∂∗E

ΘE dHQ−1 =

∫
B(x,r)∩ΣγE

ΘE dHQ−1,

for any x ∈ X and r > 0. Consequently we have that

α̃HQ−1(B(x, r) ∩ ∂∗E) ≤ P (E,B(x, r)) ≤ CHQ−1(B(x, r) ∩ ∂∗E) (4.1)

and
HQ−1(∂∗E \ ΣE) = 0.

The results of [3] did not need the measure to be Ahlfors regular, only that the measure
be doubling, but as Ahlfors regularity is a stronger condition, the results of [3] hold here
as well. The next theorem is a strengthening of Federer’s characterization of sets of finite
perimeter as those sets E with HQ−1(∂∗E) <∞. The Federer characterization in the metric
setting can be found in [20].

Theorem 4.2 ([19, Theorem 1.1]). There is some 0 < β ≤ 1/2, depending only on CA and
CP , such that whenever E ⊂ X is measurable, we have that E is of finite perimeter if and
only if HQ−1(ΣβE) <∞.

Now we turn to preliminary results related to quasiconformal mappings needed in the
paper.

Theorem 4.3 ([14, Theorem 9.8]). Let f : X → Y be a homeomorphism between met-
ric spaces of locally Q-bounded geometry. Then the following conditions are quantitatively
equivalent:

1. f is H-quasiconformal for some H ≥ 1,

2. There is a homeomorphism η such that f is locally η-quasisymmetric,

10



3. f ∈ N1,Q
loc (X : Y ) and Lf (x)Q ≤ KJf (x) for almost every x ∈ X and a constant K > 0,

4. There is some L > 0 such that for all curve families Γ in X,

L−1ModQ(Γ) ≤ ModQ(fΓ) ≤ LModQ(Γ).

Furthermore, if any one of these conditions holds, then both f and f−1 are quasiconformal
and satisfy Lusin’s condition (N).

Remark 4.4. A metric space is said to be of locally Q-bounded geometry if X is separa-
ble, path connected, locally compact, locally uniformly Ahlfors Q-regular and satisfies the
Loewner condition locally uniformly. Since the support of 1-Poincaré inequality implies the
support of a Q-Poincaré inequality whenever Q > 1, and since for Ahlfors Q-regular spaces
the Loewner condition is equivalent to the support of a Q-Poincaré inequality (as shown
in [13]), we know that under our assumptions, X is locally (even globally) of Q-bounded
geometry.

In fact, under our assumptions the quasiconformal mapping f is necessarily quasisym-
metric.

Proposition 4.5. The quasiconformal mapping f is quasisymmetric.

Proof. Whenever A ⊂ X is bounded, A is compact, and then since f is continuous, f(A) is
compact and thus bounded, that is, f maps bounded sets to bounded sets. Since f : X → Y
is a homeomorphism, f−1 also maps bounded sets to bounded sets, and so X is bounded if
and only if Y is bounded. Now if X is unbounded, by [13, Corollary 4.8, Theorem 5.7] we
know that f is quasisymmetric; if X is bounded, we know this by [13, Theorem 4.9].

The next lemma follows also from Theorem 4.3(3) together with the chain rule applied
to f and to f−1, but as the proof is simple we provide it here for the convenience of the
reader.

Lemma 4.6. If η is the homeomorphism of quasisymmetry for f , then there exists C > 0,
depending only on the Ahlfors regularity constant of the measures on X and Y and on η(1),
such that at every x ∈ X,

Lf (x)Q

C
≤ Jf (x) ≤ C Lf (x)Q.

Proof. Fix x ∈ X, and choose r > 0 small enough so that X \ B(x, r) is non-empty. Let
w ∈ B(x, r) and z ∈ X \B(x, r). Then

dY (f(x), f(w))

dY (f(x), f(z))
≤ η

(
dX(x,w)

dX(x, z)

)
≤ η(1)

because d(x,w) ≤ d(x, z). This holds for all w ∈ B(x, r) and z ∈ X \B(x, r), and so

Lf (x, r)

lf (x, r)
≤ η(1). (4.2)

11



Now for y ∈ Y \ f(B(x, r)) we have dX(f−1(y), x) ≥ r, and so

dY (y, f(x)) ≥ lf (x, r) ≥
Lf (x, r)

η(1)
.

It follows that y /∈ B(f(x), Lf (x, r)/η(1)). Hence, B(f(x), Lf (x, r)/η(1)) ⊂ f(B(x, r)). Now
at every x ∈ X, Jf (x) is given by

Jf (x) = lim sup
r→0+

HQ(f(B(x, r)))

HQ(B(x, r))
≥ lim sup

r→0+

HQ
(
B
(
f(x),

Lf (x,r)

η(1)

))
HQ(B(x, r))

≥ lim sup
r→0+

1
CA

(
Lf (x,r)

η(1)

)Q
CArQ

= lim sup
r→0+

1

C2
A η(1)Q

(
Lf (x, r)

r

)Q
=

1

C2
A η(1)Q

Lf (x)Q,

and

Jf (x) ≤ lim sup
r→0+

HQ(B(f(x), Lf (x, r)))

HQ(B(x, r))
≤ C2

A Lf (x)Q.

Letting C = C2
A max{η(1)Q, 1}, the conclusion follows.

Lemma 4.7 ([6, Lemma 2.7]). For every ball B(f(x), s) ⊂ Y there exists r > 0 such that

B(f(x), s) ⊂ f(B(x, r)) ⊂ f(B(x, 10r)) ⊂ B(f(x), η(10)s).

Furthermore, if f−1 is uniformly continuous with modulus of continuity ω(·), then we can
choose r ≤ ω(s).

Proof. Since Y is proper and f−1 is continuous, there exists r > 0 such that the first
inclusion holds. Let r = inf{r′ | f(B(x, r′)) ⊃ B(f(x), s)}; since f is a homeomorphism,
B(f(x), s) ⊂ f(B(x, r)). Then for any 0 < c < 1, there exists a point zc ∈ f−1(B(f(x), s)) \
B(x, cr). Then f(zc) ∈ B(f(x), s) \ f(B(x, cr)) which implies that dY (f(x), f(zc) ≤ s and
dX(x, zc) ≥ cr. Let w ∈ B(x, 10r). Now f is quasisymmetric by Proposition 4.5, with an
associated homeomorphism η, and so

dY (f(x), f(w)) ≤ η

(
dX(x,w)

dX(x, zc)

)
dY (f(x), f(zc)) ≤ η

(
10

c

)
s.

Letting c tend to 1, we get that dY (f(x), f(w)) ≤ η(10)s. Thus the last inclusion holds.
Now if ω(t) is a modulus of continuity of f−1, then r ≤ ω(s) since we chose r minimally.

Recall that ΣE =
⋃
β∈(0,1) ΣβE, see Definition 2.12.

Lemma 4.8. Let E ⊂ X be measurable. For each β ∈ (0, 1) there exists β0 ∈ (0, 1) such
that Σβf(E) ⊂ f(Σβ0E). Consequently, Σf(E) = f(ΣE). Also, ∂∗f(E) = f(∂∗E).
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Proof. Let x ∈ X. By [18, Theorem 6.2] we know that for all sufficiently small balls B1

centered at x, we have for some a, b > 0

µY (f(E) ∩B2)

µY (B2)
≤ b

(
µX(E ∩B1)

µX(B1)

)a
, (4.3)

where B2 denotes the largest open ball in f(B1) with center f(x).
Suppose β ∈ (0, 1) and f(x) ∈ Σβf(E), that is, bothD(f(E), f(x)) andD(Y \f(E), f(x))

are at least as large as β. As the radius of B1 converges to 0, so does the radius of B2, and
so it follows from (4.3) that

β0 :=

(
β

b

)1/a

≤ D(E, x).

By using the fact that D(Y \ f(E), f(x)) ≥ β, and (4.3) with E replaced by X \ E, we get
also β0 ≤ D(X \ E, x). Thus x ∈ Σβ0E, and so we have proved that Σβf(E) ⊂ f(Σβ0E). It
follows that Σf(E) ⊂ f(ΣE). Since f−1 is also quasiconformal, we also get

Σf−1(f(E)) ⊂ f−1(Σf(E))

and so f(ΣE) ⊂ Σf(E). We therefore have f(ΣE) = Σf(E).
Next suppose that f(x) ∈ ∂∗f(E). It follows from (4.3) that

0 <

(
D(f(E), f(x))

b

)1/a

≤ D(E, x).

From the fact that D(Y \ f(E), f(x)) > 0, and (4.3) with E replaced by X \E, we get also
0 < D(X \ E, x). Thus x ∈ ∂∗E, and so we have proved that ∂∗f(E) ⊂ f(∂∗E). Since f−1

is also quasiconformal, we also get

∂∗f−1(f(E)) ⊂ f−1(∂∗f(E))

and so f(∂∗E) ⊂ ∂∗f(E), whence we conclude that f(∂∗E) = ∂∗f(E).

Lemma 4.9. There exists α > 0 such that for every E ⊂ X of finite perimeter and for
HQ−1-almost every x ∈ ∂∗E,

lim inf
r→0+

P (E,B(x, r))

rQ−1
> α.

Moreover, if 0 < β < 1, then there is some α(β) > 0 such that whenever E ⊂ X is a
measurable set and x ∈ ΣβE, we have

lim inf
r→0+

P (E,B(x, r))

rQ−1
> α(β).

Proof. By Ahlfors Q-regularity we know that r−1µ(B(x, r)) is comparable to rQ−1. Recall
that CI is the constant from the isoperimetric inequality and CA is the Ahlfors regularity
constant. By Theorem 4.1, there exists γ > 0 such that for HQ−1-almost every x ∈ ∂∗E,

γ ≤ lim inf
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
and γ ≤ lim inf

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
.
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Then by the relative isoperimetric inequality,

γ ≤ lim inf
r→0+

min{µ(B(x, r) ∩ E), µ(B(x, r) \ E)}
µ(B(x, r))

≤ lim inf
r→0+

rCIP (E,B(x, r))

µ(B(x, r))

≤ lim inf
r→0+

CICAP (E,B(x, r))

rQ−1
.

Letting α = γ
2CICA

concludes the proof of the first part of the lemma. The second part of
the lemma is proved in the same way as the first part, with

α(β) :=
β

2CICA
.

Definition 4.10. For α > 0, define

∂αE :=
{
x ∈ ∂∗E

∣∣∣ lim inf
r→0+

P (E,B(x, r))

rQ−1
> α

}
.

Remark 4.11. By Lemma 4.9 above, we have that for each 0 < β < 1,

ΣβE ⊂ ∂α(β)E.

We need the following “continuity from below” for families of measures, with the families
not necessarily measurable with respect to the outer measure Modp.

Lemma 4.12 (Ziemer’s lemma [6, Lemma 3.1(3)]). Let {Li}i∈N be a sequence of families of
measures in X such that for each i, Li ⊂ Li+1. Then for 1 < p <∞,

Modp

(⋃
i∈N

Li
)

= lim
i→∞

Modp(Li).

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. To do so, we adapt the tools given in [6] to study
boundaries of sets of finite perimeter, which are not Ahlfors regular in general. The adapta-
tion of the tools to this setting is given in Proposition 5.1.

We remind the reader of the standard assumptions set forth at the end of Sections 2
and 3. Recall also the definition of ∂αE from Definition 4.10. As noted in the introduction,
with a slight abuse in notation, we will use L to denote both the family of sets E of finite
perimeter and the family of measures HQ−1

ΣE.
If L contains a set E with P (E,X) = 0, i.e. HQ−1(∂∗E) = 0, then ModQ/(Q−1)(L) = ∞

as there can be no admissible test function ρ for the class L. In addition, by the fact that X
supports a 1-Poincaré inequality we will also have thatHQ(E) = 0 orHQ(X\E) = 0. It then
follows that HQ(f(E)) = 0 or HQ(f(X \ E)) = HQ(Y \ f(E)) = 0, whence it follows that
f(E) is of finite perimeter with P (f(E), Y ) = 0. We conclude that ModQ/(Q−1)(fL) = ∞.
In this case Theorem 1.1 trivially holds true. So in the proof of the next proposition (and
in the next section) we will assume that every E ∈ L satisfies 0 < P (E,X) <∞.
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Proposition 5.1. Let L denote the given collection of bounded sets E ⊂ X of finite perimeter
measure. Then the following hold true:

1. for each α > 0 and ModQ/(Q−1)-almost every E ∈ L we have HQ−1(f(∂αE)) <∞,

2. if U0 ⊂ X with HQ(f(U0)) = 0 and α > 0, then we have that HQ−1(f(∂αE ∩U0)) = 0
for ModQ/(Q−1)-almost every E ∈ L,

3. if U0 ⊂ X with HQ(f(U0)) = 0, then with Lbad the collection of all E ∈ L with
HQ−1(Σf(E) ∩ f(U0)) > 0, we have ModQ/(Q−1)(Lbad) = 0 = ModQ/(Q−1)(fLbad).

Proof. Recall from Lemma 4.8 that f(∂∗E) = ∂∗f(E) and f(ΣE) = Σf(E).
Let U ⊂ X be a bounded measurable set. Then since f is a homeomorphism and closed

and bounded subsets of X are compact, f(U) is also bounded and f and f−1 are uniformly
continuous on the sets U and f(U), respectively. Let ω(·) be a modulus of continuity for
f−1 on f(U). Let ε > 0. By the definition of Hausdorff measure, there exist yi ∈ f(U)
and 0 < si < ε such that {B(yi, si)}i∈N covers f(U) and

∑
i∈N s

Q
i ≤ (HQ(f(U)) + ε). By

Lemma 4.7, for every xi := f−1(yi), there exists 0 < ri ≤ ω(ε) such that

B(yi, si) ⊂ f(B(xi, ri)) ⊂ f(B(xi, 10ri)) ⊂ B(yi, η(10)si).

Set Bi = B(xi, ri) and B′i = B(yi, si) and define g : X → R by

g(x) = sup
i∈N

(
si
ri

)Q−1

χ2Bi(x).

Fix α > 0 and define

∂αδ E =

{
x ∈ ∂∗E

∣∣∣∣ P (E,B(x, r))

rQ−1
> α for all 0 < r ≤ δ

}
and note that ∂αE =

⋃
k∈N ∂

α
1/kE . For each M > 0, define

LMU,ε =
{
E ∈ L

∣∣∣HQ−1
εη(10)(f(∂αω(ε)E ∩ U)) > M

}
. (5.1)

We want to show that Cη(10)Q−1[αM ]−1 g is admissible for LMU,ε. Let E ∈ LMU,ε and

set IE = {i ∈ N
∣∣Bi ∩ (∂αω(ε)E ∩ U) 6= ∅}. Note that ∂αω(ε)E ∩ U ⊂

⋃
i∈IE 2Bi. Then

by the 5-Covering Lemma, there exists JE ⊂ IE such that {2Bj}j∈JE is pairwise disjoint
and ∂αω(ε)E ∩ U ⊂

⋃
j∈JE 10Bj. Since Bj ∩ ∂αω(ε)E ∩ U 6= ∅ for each j ∈ JE, there exists

zj ∈ Bj ∩ ∂αω(ε)E ∩ U . So B(zj, rj) ⊂ 2Bj. Moreover, zj ∈ ∂αω(ε)E and rj ≤ ω(ε) imply that

r
−(Q−1)
j P (E,B(zj, rj)) > α, and hence P (E, 2Bj) ≥ P (E,B(zj, rj)) > αrQ−1

j . Then by the
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pairwise disjointness property of {2Bj}j∈JE ,∫
ΣE

g dHQ−1 ≥
∫

ΣE

(
sup
j∈JE

(
sj
rj

)Q−1

χ2Bj

)
dHQ−1 =

∫
ΣE

(∑
j∈JE

(
sj
rj

)Q−1

χ2Bj

)
dHQ−1

≥ 1

C

∑
j∈JE

(
sj
rj

)Q−1

P (E, 2Bj) by (4.1)

≥ 1

C

∑
j∈JE

(
sj
rj

)Q−1

α rQ−1
j

=
α

C

∑
j∈JE

sQ−1
j .

Thus we have that ∫
ΣE

g dHQ−1 ≥ α

C

∑
j∈JE

sQ−1
j . (5.2)

Because U ∩ ∂αω(ε)E ⊂
⋃
j∈JE

10Bj,

f(∂αω(ε)E ∩ U) ⊂ f
( ⋃
j∈JE

10Bj

)
⊂
⋃
j∈JE

B(yj, η(10)sj).

Since E ∈ LMU,ε, we have that HQ−1
εη(10)(f(∂αω(ε)E ∩ U)) > M . As sj < ε,

⋃
j∈JE η(10)B′j is an

admissible cover for computing HQ−1
εη(10)(f(∂αω(ε)E ∩ U)), and hence

M < HQ−1
εη(10)(f(∂αω(ε)E ∩ U)) ≤

∑
j∈JE

(η(10)sj)
Q−1 = η(10)Q−1

∑
j∈JE

sQ−1
j .

So
M

η(10)Q−1
<
∑
j∈JE

sQ−1
j . (5.3)

Combining (5.2) and (5.3), we get∫
ΣE

g dHQ−1 ≥ α

C

(
M

η(10)Q−1

)
.

Therefore
C η(10)Q−1

αM
g

is admissible for LMU,ε. Setting

CM =
C η(10)Q−1

αM
,
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where C is the constant from (4.1), we obtain

ModQ/(Q−1)(LMU,ε) ≤ CA

∫
X

(CMg)Q/(Q−1) dHQ

= C
Q/(Q−1)
M CA

∫
X

sup
i∈N

((
si
ri

)Q−1

χ2Bi

)Q/(Q−1)

dHQ

≤ C
Q/(Q−1)
M CA

∫
X

(∑
i∈N

(
si
ri

)Q
χ2Bi

)
dHQ

≤ C
Q/(Q−1)
M CA

∑
i∈N

(
si
ri

)Q
HQ(2Bi)

≤ C
Q/(Q−1)
M CA

∑
i∈N

(
si
ri

)Q
CA (2ri)

Q

= C
Q/(Q−1)
M C2

A2Q
∑
i∈N

sQi

≤ C
Q/(Q−1)
M C2

A2Q(HQ(f(U)) + ε).

Recalling the definition of LMU,ε from (5.1), set LMU =
⋃
k∈N LMU, 1/k. Then

LMU = {E ∈ L |HQ−1(f(∂αE ∩ U)) > M}. (5.4)

Note that if m < k then LMU, 1/m ⊂ LMU, 1/k. Applying Lemma 4.12, we get that

ModQ/(Q−1)(LMU ) = lim
k→∞

ModQ/(Q−1)(LMU,1/k) ≤ lim
k→∞

C
Q/(Q−1)
M C2

A2Q
(
HQ(f(U)) +

1

k

)
= C

Q/(Q−1)
M C2

A2QHQ(f(U)).

To summarize, we have

ModQ/(Q−1)(LMU ) ≤ C∗
HQ(f(U))

MQ/(Q−1)
, where C∗ = 2QC2

A

(
Cη(10)Q−1

α

)Q/(Q−1)

. (5.5)

Recall that ModQ/(Q−1) is an outer measure on the family of all curves in X, see [9, The-
orem 1]. We will make use of the corresponding monotonicity and subadditivity properties
in the following.

Proof of Claim 1 : Set L∞U = {E ∈ L |HQ−1(f(∂αE ∩ U)) = ∞}. By the monotonicity
property of ModQ/(Q−1), when M1 > M2 we have ModQ/(Q−1)(LM1

U ) ≤ ModQ/(Q−1)(LM2
U ), and

so limM→∞ModQ/(Q−1)(LMU ) exists. Note that for each M > 0 we have LMU ⊃ L∞U , and so

ModQ/(Q−1)(L∞U ) ≤ lim
M→∞

ModQ/(Q−1)(LMU ) ≤ lim
M→∞

C∗
HQ/(Q−1)(f(U))

MQ/(Q−1)
= 0.
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Fixing x0 ∈ X and considering Ui = B(x0, i) for each i ∈ N, we set L∞ =
⋃
i∈N L∞Ui . Then

as the sets in L are bounded, L∞ = {E ∈ L |HQ−1(f(∂αE)) =∞} and

ModQ/(Q−1)(L∞) = ModQ/(Q−1)

(⋃
i∈N

L∞Ui
)
≤
∑
i∈N

ModQ/(Q−1)(L∞Ui) = 0.

Therefore the set for which HQ−1(f(∂αE)) is not finite has Q/(Q − 1)-modulus zero. This
proves Claim 1.

Proof of Claim 2 : Let U0 ⊂ X such that HQ(f(U0)) = 0. Then for any bounded U ⊂ U0,

HQ(f(U)) = 0. Recall LMU from (5.4) for M > 0, and let L+
U =

⋃
m∈N L

1/m
U . Then

L+
U = {E ∈ L |HQ−1(f(∂αE ∩ U)) > 0},

and by (5.5) and by the subadditivity property of modulus,

ModQ/(Q−1)

(
L+
U

)
= ModQ/(Q−1)(

⋃
m∈N

L1/m
U ) ≤

∑
m∈N

ModQ/(Q−1)(L1/m
U ) = 0.

Define Vi = B(x0, i) ∩ U0 and set L+ =
⋃
i∈N L

+
Vi

. Then

L+ = {E ∈ L |HQ−1(f(∂αE ∩ U0)) > 0},

and
ModQ/(Q−1)(L+) ≤

∑
i∈N

ModQ/(Q−1)(L+
Vi

) = 0.

Proof of Claim 3 : Again, suppose HQ(f(U0)) = 0. By Lemma 4.9, for any 0 < β < 1
there exists α(β) > 0 such that ΣβE ⊂ ∂α(β)E. Then by Claim 2, for ModQ/(Q−1)-almost
every E

HQ−1(f(ΣE ∩ U0)) = HQ−1

 ⋃
β∈(0,1)

f(ΣβE ∩ U0)

 ≤ HQ−1

 ⋃
β∈(0,1)∩Q

f(∂α(β)E ∩ U0)


≤

∑
β∈(0,1)∩Q

HQ−1(f(∂α(β)E ∩ U0))

= 0.

Finally, by considering the function ∞χf(U0), we see that ModQ/(Q−1)(fLbad) = 0.

Proposition 5.2. Let L denote the given collection of bounded sets of finite perimeter in
X. For ModQ/(Q−1)-almost every E ∈ L we have

f#(HQ−1
Σf(E))� HQ−1

∂∗E = HQ−1
ΣE .

Proof. The last equality follows from Theorem 4.1. To prove the absolute continuity, first
we set

P = {x ∈ X |Lf (x) ∈ {0,∞}}.
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For n,m ∈ N, set

An,m =

{
x ∈ X

∣∣∣∣ Lf (x, r)r
≤ m for 0 < r <

1

n

}
. (5.6)

Then
⋃
n∈N

⋃
m∈NAn,m ⊃ X \ P . If x, y ∈ An,m such that dX(x, y) < 1/n, then

dY (f(x), f(y)) ≤ mdX(x, y), (5.7)

that is, f is locally m-Lipschitz on An,m. Note from Lemma 4.6 that Jf (x) = 0 for every x for
which Lf (x) = 0. So by the fact that f and f−1 satisfy condition (N) (from Theorem 4.3),
we know that the zero set of Jf and hence the zero set of Lf is a null set. As Jf ∈ L1

loc(X), we
know that HQ(P ) = 0 and thus HQ(f(P )) = 0. So by Proposition 5.1(3), for ModQ/(Q−1)-
almost every E ∈ L we have HQ−1(f(ΣE ∩P )) = 0. For such E ∈ L, fix N ⊂ ΣE such that
HQ−1(N) = 0. Then for each m,n ∈ N, by the local m-Lipschitz property of f on An,m, we
have

HQ−1
(
f
(
N ∩ An,m

))
≤ mQ−1HQ−1 (N ∩ An,m) = 0.

Thus

HQ−1(f(N \ P )) ≤ HQ−1

(
f
(
N ∩

⋃
n,m∈N

An,m
))
≤
∑
n,m∈N

mQ−1HQ−1 (N ∩ An,m) = 0,

and therefore as N ⊂ ΣE, we have

HQ−1(f(N)) ≤ HQ−1(f(N \ P )) +HQ−1(f(ΣE ∩ P )) = 0.

Combining this with the fact that Σf(E) = f(ΣE) (see Lemma 4.8) completes the proof.

Recall the definition of Jf,E from Definition 3.7, and note that it is a function on ΣE.

Proposition 5.3. For ModQ/(Q−1)-almost every E ∈ L we have HQ−1(Σf(E)) < ∞ and
f(E) is of finite perimeter.

Proof. By Lemma 4.9 there exists α0 > 0 such that HQ−1(ΣE \ ∂α0E) = 0 for every E ∈ L.
Then by Proposition 5.2 we know that HQ−1(Σf(E) \ f(∂α0E)) = 0 for ModQ/(Q−1)-almost
every E ∈ L. Finally, by Proposition 5.1(1) we have HQ−1(f(∂α0E)) <∞ after eliminating
a further family of ModQ/(Q−1)-zero from L.

The last claim now follows from Theorem 4.2.

Lemma 5.4. There exists C > 0 such that for ModQ/(Q−1)-almost every E ∈ L,

Jf,E(x) ≤ CJf (x)(Q−1)/Q

for HQ−1
ΣE-almost every x.

Proof. From Proposition 5.2 we know that for ModQ/(Q−1)-almost every E, f#HQ−1
Σf(E)

is absolutely continuous with respect to HQ−1
∂∗E = HQ−1

ΣE. Furthermore, from Proposi-
tion 5.3 we know that HQ−1(Σf(E)) < ∞ for ModQ/(Q−1)-almost every E. We focus only
on such E ∈ L now.
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Note that Lf is a locally integrable function on X, so by Lusin’s Theorem, for each
k ∈ N there is some open set Uk ⊂ X such that µ(Uk) ≤ 2−k and Lf |X\Uk is continuous. By
enlarging Uk if necessary, we can also assume that for each k ∈ N, P ⊂ Uk. Let U =

⋂
k∈N Uk.

Then µ(U) = 0. Let L0 = {E ∈ L : HQ−1(U ∩ ΣE) > 0}. Then ∞χU is admissible for
computing ModQ/(Q−1)(L0), and so ModQ/(Q−1)(L0) ≤

∫
X
∞χU dµ = 0. We ignore such E

as well.
Observe that for every x ∈ X \ U we have Lf (x) > 0. For n ∈ N we set

An = {x ∈ ΣE : Lf (x, r)/r ≤ 2Lf (x) for 0 < r < 1/n}.

It is not difficult to show that An is a Borel set by writing it as an intersection of Borel
sets, one for each rational r ∈ (0, 1/n). Now by Proposition 5.2 and the Radon-Nikodym
Theorem, ∫

ΣE

Jf,E dHQ−1 = HQ−1(f(ΣE)).

Since HQ−1(f(ΣE)) = HQ−1(Σf(E)) is finite, Jf,E ∈ L1(ΣE,HQ−1). For k, n ∈ N let Ek
n

denote the collection of all x ∈ ΣE that are not Lebesgue points of χAn\UkJf,E. Then for
each k ∈ N we have HQ−1(

⋃
n∈NE

k
n) = 0. For x ∈ ΣE \

⋂
k∈N
(
Uk ∪

⋃
n∈NE

k
n

)
, there is some

k ∈ N and n ∈ N such that x ∈ An but x /∈ Ek
n ∪ Uk. Therefore

Jf,E(x) = lim
r→0+

−
∫
B(x,r)∩ΣE

χAn\Uk Jf,E dHQ−1

= lim
r→0+

∫
B(x,r)∩An\Uk

Jf,E dHQ−1

HQ−1(B(x, r) ∩ ΣE)

= lim
r→0+

f#HQ−1(B(x, r) ∩ An \ Uk)
HQ−1(B(x, r) ∩ ΣE)

. (5.8)

From an argument similar to (5.7) we know that f is 2 supB(x,r)\Uk Lf–Lipschitz continuous
on B(x, r) ∩ An \ Uk when 0 < r < 1/2n, and so

f#HQ−1(B(x, r) ∩ An \ Uk) = HQ−1(f(B(x, r) ∩ An \ Uk))

≤

[
2 sup
B(x,r)\Uk

Lf

]Q−1

HQ−1(B(x, r) ∩ An \ Uk)

≤

[
2 sup
B(x,r)\Uk

Lf

]Q−1

HQ−1(B(x, r) ∩ ΣE),

and so by (5.8) and the continuity of Lf in X \ Uk,

Jf,E(x) ≤ lim sup
r→0+

[
2 sup
B(x,r)\Uk

Lf

]Q−1

= 2Q−1 Lf (x)Q−1.

Now by applying Lemma 4.6, we obtain

Jf,E(x) ≤ CJf (x)(Q−1)/Q.
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This holds for all x ∈ ΣE \(
⋂
k∈N(Uk∪

⋃
n∈NE

k
n)). As E /∈ L0 and HQ−1(

⋂
k∈N
⋃
n∈NE

k
n) = 0,

we have

HQ−1

(
ΣE ∩

⋂
k∈N

(
Uk ∪

⋃
n∈N

Ek
n

))
= 0,

and so the claim holds.

Proof of Theorem 1.1. Let L0 be the set of E ∈ L for which the conclusion of either Propo-
sition 5.2 or Lemma 5.4 fails. Then by those results, we know that ModQ/(Q−1)(L0) = 0. Let
E ∈ L \ L0.

From Proposition 5.2 and Lemma 4.8 we know that the pull-back measure f#(HQ−1
Σf(E)) =

f#(HQ−1
f(ΣE)) is absolutely continuous with respect to HQ−1

ΣE. Therefore, whenever ϕ is
a nonnegative Borel function on Y , we have∫

f(ΣE)

ϕdHQ−1 =

∫
ΣE

ϕ ◦ f Jf,E dHQ−1.

From Lemma 5.4 we know that the corresponding Radon-Nikodym derivative is dominated
by C0 J

(Q−1)/Q
f . Suppose ρ : Y → [0,∞] is admissible for fL. Define ρ̃ : X → [0,∞] by

ρ̃ = C0 (ρ ◦ f)Jf
(Q−1)/Q.

Then ρ̃ is admissible for calculating ModQ/(Q−1)(L \ L0) since by Proposition 5.2 and the
change of variables formula,∫

ΣE

ρ̃ dHQ−1 =

∫
ΣE

C0 (ρ ◦ f)Jf
(Q−1)/Q dHQ−1 ≥

∫
ΣE

(ρ ◦ f)Jf,E dHQ−1

=

∫
f(ΣE)

ρ dHQ−1

=

∫
Σf(E)

ρ dHQ−1 ≥ 1.

It follows that

ModQ/(Q−1)(L) = ModQ/(Q−1)(L \ L0) ≤ CA

∫
X

ρ̃Q/(Q−1) dHQ

= CA

∫
X

(
C0 (ρ ◦ f)Jf

(Q−1)/Q
)Q/(Q−1)

dHQ

≤ C

∫
X

(ρ ◦ f)Q/(Q−1)Jf dHQ

= C

∫
Y

ρQ/(Q−1) dHQ.

Taking the infimum over admissible ρ, we obtain

1

C
ModQ/(Q−1)(L) ≤ ModQ/(Q−1)(fL).
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We cannot directly apply the argument to f−1 to obtain a similar inequality for fL as we do
not know that that family consists solely of sets of finite perimeter. However, note that if L∗
is the set of all E ∈ L such that f(E) is not of finite perimeter, then from Theorem 4.2 we
know that HQ−1(Σf(E)) =∞. Thus fixing y0 ∈ Y and setting the function h : Y → [0,∞)
to be

h(y) :=
∑
i∈N

2−i

HQ(B(y0, i))(Q−1)/Q
χB(y0,i),

we see that for all E ∈ L∗ there is iE ∈ N such that∫
Σf(E)

h dHQ−1 ≥ 2−iE

HQ(B(y0, iE))(Q−1)/Q
HQ−1(Σf(E)) =∞,

and so h is admissible for f(L∗). Moreover,(∫
Y

hQ/(Q−1) dHQ

)(Q−1)/Q

≤
∑
i∈N

2−i <∞,

and so ModQ/(Q−1)(f(L∗)) = 0. We also know from Proposition 5.3 that ModQ/(Q−1)(L∗) = 0.
We can now apply the argument given for the first inequality to f−1 to obtain a similar
inequality for f(L \ L∗), and then the above argument with h shows that we obtain the
second inequality stated in the theorem.

6 Proof of Theorem 1.2

In this section we focus on the proof of Theorem 1.2. The proof uses the tools developed in
the previous section.

Proof of Theorem 1.2. Let L be the collection of all bounded sets E ⊂ X of finite perimeter.
From Proposition 5.2, we know that for ModQ/(Q−1)-almost every E ∈ L,

f#(HQ−1
Σf(E))� HQ−1

∂∗E .

Furthermore, by Proposition 5.3, we know that for ModQ/(Q−1)-almost every such E, f(E)
is of finite perimeter, and hence HQ−1(∂∗f(E) \ Σf(E)) = 0. It follows that

f#(HQ−1
∂∗f(E)) = f#(HQ−1

Σf(E))� HQ−1
∂∗E .

Let L∗ be the collection of all E ∈ L for which f(E) is not of finite perimeter; then we know
from Theorem 1.1 that

ModQ/(Q−1)(L∗) = 0 = ModQ/(Q−1)(f(L∗)).

Applying the above argument to the family f(L \ L∗), we also obtain that for ModQ/(Q−1)-
almost every f(E) ∈ f(L \ L∗),

HQ−1
∂∗E = HQ−1

ΣE � f#(HQ−1
∂∗f(E)).
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Finally, note that the collection of all E for which f(E) ∈ f(L∗) is the collection L∗,
which also satisfies ModQ/(Q−1)(L∗) = 0. Moreover, the collection L∗∗ of all E ∈ L \ L∗
for which the above absolute continuity fails satisfies ModQ/(Q−1)(f(L∗∗)) = 0 and hence
ModQ/(Q−1)(L∗∗) = 0 by Theorem 1.1.

An application of Lemma 5.4 tells us that Jf,E ≤ CJ
(Q−1)/Q
f HQ−1

ΣE-almost everywhere
for ModQ/(Q−1)-almost every E ∈ L. Applying this lemma to f−1 also gives

J−1
f,E = Jf−1,f(E) ◦ f ≤ C[Jf−1 ◦ f ](Q−1)/Q = CJ

(1−Q)/Q
f

HQ−1
Σf(E)-almost everywhere for ModQ/(Q−1)-almost every such f(E). An application of

Theorem 1.1 concludes the proof.

Remark 6.1. We now complete the discussion in this paper by considering the reasonableness
of the two main theorems of this paper. The results would not be useful if the collection of all
sets of finite perimeter was ModQ/(Q−1)-null. However, there is a large family of sets of finite
perimeter whose quasiconformal images are also sets of finite perimeter. Indeed, thanks to
the BV co-area formula (see [21, Proposition 4.2]) and the fact that N1,Q(X) ⊂ BVloc(X),
we know that if u ∈ N1,Q(X) is compactly supported, then for H1-almost every t ∈ R we
have that the super-level set Et := {u > t} is of finite perimeter in X. Here, by N1,Q(X) we
mean the function class N1,Q(X;R) from Definition 2.3. By [14, Theorem 9.10] we know that
u ◦ f−1 ∈ N1,Q(Y ) since f is quasiconformal. Therefore for H1-almost every t ∈ R we have
that f(Et) = {u ◦ f−1 > t} is also of finite perimeter, and so the collection of all t ∈ R for
which either Et is not of finite perimeter or f(Et) is not of finite perimeter is of H1-measure
zero. Hence there are plenty of sets of finite perimeter in X whose image under f is of finite
perimeter in Y . The remaining part of this section is devoted to making concrete the notion
of “plenty”, see Remark 6.4.

Proposition 6.2. Let u ∈ N1,Q(X) be compactly supported such that
∫
X
gQu dµ > 0, where

gu is the minimal Q-weak upper gradient of u (see e.g. [14, Section 6]), and let L be the
collection of all sets Et = {x ∈ X : u(x) > t}, t ∈ R, for which 0 < P (Et, X) < ∞. Then
ModQ/(Q−1)(L) > 0.

Proof. Since u ∈ N1,Q(X) has compact support, as explained above we have that for almost
every t ∈ R the set Et is of finite perimeter. By employing truncation of u and by adding
a constant to u if necessary, we may assume without loss of generality that 0 ≤ u ≤ 1 on
X, and by the monotonicity of ModQ/(Q−1) we may replace L with the collection of all Et
with 0 < P (Et, X) <∞, 0 < t < 1. If P (Et, X) = 0 for almost every t ∈ [0, 1], then by the
1-Poincaré inequality we know that Et is either almost all of X or is of measure zero, whence
we would have u is constant, violating that

∫
X
gQu dµ > 0. Therefore L has many sets, one

for each t in a positive H1-measure subset of [0, 1].
Let ρ be admissible for L. Then for every t ∈ [0, 1] for which Et ∈ L,∫

ΣEt

ρ dP (Et, ·) ≥ 1.
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Integrating over [0, 1] and applying the co-area formula and Hölder’s inequality, we obtain

H1({t ∈ [0, 1] |Et ∈ L}) ≤
∫ 1

0

∫
ΣEt

ρ dP (Et, ·) dt

=

∫
X

ρ d‖Du‖

≤ C

∫
X

ρ gu dHQ

≤ C

(∫
X

ρQ/(Q−1) dHQ

)1− 1
Q
(∫

X

gQu dHQ

) 1
Q

.

Taking the infimum over all such ρ gives

0 <
H1({t ∈ [0, 1] |Et ∈ L})Q/(Q−1)

CACQ/(Q−1)
(∫

X
gQu dHQ

)1/(Q−1)
≤ ModQ/(Q−1)(L). (6.1)

Suppose
∫
X
gQu dµ > 0 and that 0 ≤ u ≤ 1 on X. If there is some 0 < t0 < 1 for

which P (Et0 , X) = 0, then either u > t0 almost everywhere on X, or else u ≤ t0 almost
everywhere on X. In the former case we have P (Et, X) = 0 for all 0 < t ≤ t0, and in the
latter case we have P (Et, X) = 0 for all t0 ≤ t < 1. Thus the set D of all t ∈ (0, 1) for which
0 < P (Et, X) <∞ is a full-measure subset of a subinterval of [0, 1].

Remark 6.3. If t1 < t2 and
∫
{t1<u<t2} g

Q
u dHQ > 0, then for L(t1, t2), which consists of all

Et ∈ L as in the above proposition for t1 ≤ t ≤ t2, we have

0 <
H1({t1 < t < t2 : Et ∈ L})

C
≤ Mod Q

Q−1
(L(t1, t2))

Q−1
Q

(∫
{t1<u<t2}

gQu dHQ

) 1
Q

.

Remark 6.4. As above, we consider the family of super-level sets Et of a given compactly
supported function u ∈ N1,Q(X). Then, with f−1 : Y → X quasiconformal, we must have
u ◦ f−1 ∈ N1,Q(Y ), and so for almost every t ∈ R we have that both Et and f(Et) are of
finite perimeter. Moreover, as noted at the beginning of Section 5, P (Et, X) = 0 if and only
if P (f(Et), Y ) = 0.

Now the proof of the inequality (6.1) tells us that the Q/(Q− 1)-modulus of the family
of all Et for which P (Et, X) < ∞ and P (f(Et), Y ) < ∞ is positive. Indeed, if L0 is the
collection of all Et for which 0 < P (Et, X) < ∞ but P (f(Et), Y ) = ∞, then whenever
ρ0 is admissible for computing ModQ/(Q−1)(L \ L0), we then have 1 ≤

∫
ΣEt

ρ dP (Et, ·) for
almost every t ∈ [0, 1] with Et ∈ L; thus the computation that derives (6.1) also gives the
validity of (6.1) with the role of ρ played by ρ0. That is, ModQ/(Q−1)(L\L0) > 0. Therefore
there are plenty of sets of positive and finite perimeter in X whose image under f is also of
positive and finite perimeter; that is, the collection Lu of all Et for which 0 < P (Et, X) <∞
and P (f(Et), Y ) < ∞ (and hence 0 < P (f(Et), Y ) < ∞) satisfies ModQ/(Q−1)(Lu) > 0 and
ModQ/(Q−1)(f(Lu)) > 0 provided

∫
X
gQu dHQ > 0.
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