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Abstract. We answer a question left open in [7] and [8], by proving that the blow-up of minimiz-
ers u of the lower dimensional obstacle problem is unique at generic point of the free-boundary.
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1. Introduction

Let s ∈ (0, 1), let B1 be the unit ball in Rd, where d ≥ 2, and let B′1 := B1 ∩ {xd = 0}.
For any point x = (x1, . . . , xd) ∈ Rd we denote by x′ the vector of the first (d − 1) coordinates,
x′ = (x1, . . . , xd−1). We consider the class of admissible functions

A :=
{
u ∈ H1

(
B1, |xd|1−2sLd

)
: u ≥ 0 on B′1 , u(x′, xd) = u(x′,−xd) for every (x′, xd) ∈ B1

}
,

We say that u ∈ A is a solution of the lower dimensional obstacle problem if∫
B1

|xd|1−2s|∇u|2 dx ≤
∫
B1

|xd|1−2s|∇v|2 dx for every v ∈ A such that u− v ∈ H1
0 (B1).

(1)
For a solution u ∈ A of the lower dimensional obstacle problem, we define the coincidence set as

∆(u) :=
{

(x′, 0) ∈ B′1 : u(x′, 0) = 0
}
,

and the free boundary Γu of u as the topological boundary of ∆(u) in B′1.

We say that u has a unique blow-up limit at x0, if the sequence (the family) of functions

ux0,r : Br → R, ux0,r(x) = ‖u(r ·+x0)‖−1L2(∂B1)
u(rx+ x0),

converges weakly in H1(B1, |xd|1−2sLd) to an admissible function ux0 .

Here, building on the rectifiability of the free boundary, recently proved by Focardi and Spadaro
(see Theorem 7 below), and the classification of the two-dimensional homogeneous solutions, we
prove that, at almost-every point of the free boundary, the blow-up is unique and corresponds to
certain two-dimensional profiles with homogeneities 2m, 2m − 1 + s, or 2m + 2s. In particular,
we answer a question left open in a recent paper of Focardi and Spadaro (see [7, 8]).

Our main result is the following.

Theorem 1. Let u be a solution of the lower dimensional obstacle problem (1). Then, for Hd−2-
almost every x0 ∈ Γ(u), the following does hold:

(i) u has a unique blow-up limit ux0 at x0;
(ii) such blow up is either 2m, 2m− 1 + s, or 2m+ 2s homogeneous, for some m ∈ N;

(iii) the blow-up limit ux0 : Rd → R is of the form

ux0(x′, xd) = ū(x′ · e, xd) for some vector e ∈ Sd−2 ⊂ Rd−1,

and ū : R2 → R is a homogeneous solution of the lower dimensional obstacle problem (1) in
dimension two.
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Remark 2 (Lower dimensional obstacle problem VS minimal surfaces/harmonic maps). Our proof
of Theorem 1 is based on a very general dimension-reduction lemma (Lemma 5), which allows to
reduce the question of the uniqueness of the blow-up limit to the analysis of the blow-up limits
with a maximal number of symmetries. In fact, our argument is very general and can be applied
in different contexts, for example, to the singular sets of minimal surfaces and harmonic maps.
On the other hand, we notice that, in the case of the lower-dimensional (thin) obstacle problem,
the blow-up limits with a maximal number of symmetries are completely described (for instance,
in the case of the thin-obstacle problem, the homogeneous two-dimensional solutions are explicit),
while for minimal surfaces and harmonic maps the singular blow-ups of minimal dimension (that
is, with maximal number of symmetries) are not classified. However, combining the analogous
version of Lemma 5 for minimal surfaces and harmonic maps with the work of L. Simon [13], it is
still possible to deduce uniqueness of the blow-up at almost every point of the singular set from
its rectifiability (that is from Naber-Valtorta’s result [12]). This is precisely the content of [13,
Remark 1.14] and we will briefly explain it in Appendix A.

Remark 3. The same technique can be applied to the case when the Dirichlet integral in (1)

is replaced by the area term

∫
B1

√
1 + |∇u|2 dx (we refer to [5] for further discussions on this

problem) and also to the case when the obstacle is nonzero (see [9] and [6]).

Remark 4. We notice that recently in [4] it was shown that the blow-up limit at every point of
frequency 2m+ 1(= 2m+ 2s for s = 1/2) is unique.

2. Main lemma and proof of Theorem 1

For every point x0 ∈ B1, we define the Almgren’s frequency function

N(u, x0, r) :=
r
∫
Br(x0)

|xd|1−2s|∇u|2 dx∫
∂Br(x0)

|xd|1−2su2 dHd−1
.

The function r 7→ N(u, x0, r) is monotone nondecreasing in r (see [1]), so that it is well defined
the limit

N(u, x0, 0) := lim
r→0

N(u, x0, r). (2)

In particular, the free boundary can be decomposed according to the value of the frequency
function at r = 0. We denote the set of points of frequency λ ∈ R by

Sλ(u) :=
{
x0 ∈ Γ(u) : N(u, x0, 0) = λ

}
.

Our main lemma is the following.

Lemma 5 (Splitting lemma). Let u be a solution of the lower dimensional obstacle problem. Let
λ ∈ R and x0 ∈ Sλ(u) be a point of frequency λ for which there exists a linear subspace Tx0 of Rd
satisfying the following property:

(SP) For every y0 ∈ Tx0 and sequence of radii rn converging to 0, there is a sequence of points
yn converging to y0 such that yn ∈ Sλ(ux0,rn), for every n.

Then, any blow-up limit b of u at x0 is invariant in the direction of Tx0, that is,

b(x+ y0) = b(x) for every x ∈ Rd and every y0 ∈ Tx0 . (3)

Remark 6. We notice that in the proof of Lemma 5, we use only the following properties of the
frequency function N :
• Monotonicity. For every x0 ∈ B1, the function r 7→ N(u, x0, r) is non-decreasing.
• Scaling. For y0 ∈ B1, s > 0 and r > 0, such that ux0,r is defined on the ball Bs(y0), we have

N(ux0,r, y0, s) = N(u, x0 + ry0, sr). (4)

• Continuity. For every fixed r > 0, the function (u, x) 7→ N(u, x, r), defined on H1(B1) × Rd
is continuous in the strong H1(B1)× Rd topology.
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• Characterization of the homogeneous functions. Suppose that the point x0 ∈ Rd and
the function u : Rd → R are such that

N(u, x0, r) = λ for every r > 0.

Then u is λ-homogeneous with respect to x0, that is,

u(x0 + rx) = rλu(x0 + x) for every x ∈ Rd and r > 0.

We also notice that the monotonicity property gives the existence of N(u, x0, 0) (see (2)). More-
over, the continuity property implies the following:
• Upper semicontinuity. Suppose that un : B1 → R is a sequence of functions converging
strongly in H1(B1) to a function u∞ ∈ H1(B1). Suppose that xn ∈ B1 be a sequence converging
to some x∞ ∈ B1. Then we have that

N(u∞, x∞, 0) ≥ lim sup
n→∞

N(un, xn, 0). (5)

Indeed, using the monotonicity of the function r 7→ N(u, x, r), we have

N(u∞, x∞, r) = lim
n→∞

N(un, xn, r) ≥ lim sup
n→∞

N(un, xn, 0).

Taking, the limit as r → 0, we get (5).

Proof of Lemma 5. Let b be any blow-up limit of u at x0. Then, there is a sequence rn → 0 such
that urn,x0 converges to b both strongly in H1

loc and in C1
loc({xd ≥ 0}).

We first claim that
N(b, y0, 0) = λ for every y0 ∈ Tx0 . (6)

Indeed let y0 ∈ Tx0 be fixed and let Sλ(ux0,rn) 3 yn → y0 be the sequence of points whose existence
is guaranteed by (SP). In particular, since ux0,rn(yn) = 0 and ux0,rn converges uniformly to b, we
have that b(y0) = 0. By the upper semi-continuity of N we have that N(b, y0, 0) ≥ λ. Indeed,
since yn ∈ Sλ(uxn,rn) and ux0,rn converges to b strongly in H1(B1), we have

N(b, y0, 0) ≥ lim sup
n→∞

N(ux0,rn , yn, 0) = λ.

On the other hand, N(b, y0, 0) ≤ λ. Indeed, by (4) and the fact that b is homogeneous, we have
that

N(b, y0, 0) = lim
s→0

N(b, y0, s) = lim
s→0

N(b0,r, y0, s) = lim
s→0

N(b, ry0, rs) = N(b, ry0, 0),

for every r > 0. In particular, this means that

N(b, y0, 0) = lim
r→0

N(b, ry0, 0) ≤ N(b, 0, 0) = λ,

where the inequality follows by the upper semi-continuity of the frequency function. This con-
cludes the proof of (6).

We next prove that the function b is invariant in any direction y ∈ Tx0 , that is

b(x+ y) = b(x) for every x ∈ Rd. (7)

Using the homogeneity of b and (4), for every r > 0 we have that

N(b, y, R) = N
(
b0,R,

y

R
, 1
)

= N
(
b,
y

R
, 1
)
.

Taking the limit as R→∞, we get that

lim
R→∞

N(b, y, R) = lim
R→∞

N
(
b,
y

R
, 1
)

= N(b, 0, 1) = λ.

In particular, together with (6), this implies that

N(b, y, r) = λ for every r > 0,

and so, b is homogeneous with respect to y:

b(y + rx) = rλb(y + x) for every r > 0.
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Hence, for every x ∈ Rd we can use the homogeneity with respect to 0 and y to obtain

b(x+ y) = 2λb
(x+ y

2

)
= 2λb

(
y +

x− y
2

)
= b(x).

This concludes the proof of (7). �

In the proof of Theorem 1 we will use Lemma 5 and the following recent result by Focardi and
Spadaro, which we report here for the reader’s convenience.

Theorem 7 (Focardi-Spadaro; see Theorem 1.2 and Theorem 1.3 of [7]). Let u be a solution of
the lower dimensional obstacle problem (1) in B1. Then Λ(u) is a set of finite perimeter and
there exists Σ(u) ⊆ Γ(u) with Hausdorff dimension at most n− 2 such that

N(u, x0, 0) ∈ {2m, 2m− 1 + s, 2m+ 2s}m∈N\{0} for every x0 ∈ Γ(u) \ Σ(u).

Proof of Theorem 1. Let

Σ(u) := Γ(u) \

(( ∞⋃
m=1

S2m

)
∪

( ∞⋃
m=1

S2m−1+s

)
∪

( ∞⋃
m=1

S2m+2s

))
.

By [7, Theorem 1.3], we have that Hd−2(Σ(u)) = 0. Thus, it is sufficient to prove the claim for
almost-every x0 ∈ Sλ, where λ = 2m, 2m− 1 + s or 2m+ 2s. Moreover, by [7, Theorem 1.2], we
have that the free boundary Γ(u) is C1-rectifiable and so is each of the sets S2m−1+s, S2m and
S2m+2s (for every m ∈ N). In particular, this means that for almost every point x0 of these sets,
there exists a unique (d− 2)-dimensional approximate tangent plane Tx0 ⊆ Rd−1 × {0}, namely

Hd−1|
(
Sλ(ur) ∩B1

)
⇀ Hd−1|(Tx0 ∩B1) (8)

as locally finite measures. Hence, the splitting property hypothesis (SP) of Lemma 5 is satisfied.
Then Lemma 5 implies that every blow-up limit b of u at x0 is invariant with respect to a (d−2)-
dimensional plane Tx0 . This means, that b depends only on two variables: x · e and the last
coordinate xd, e being (one of) the normal vector to Tx0 in the hyperplane Rd−1. Precisely, b is
of the form

b(x) = b̄(x · e, xd), (9)

where b̄ is a homogeneous solution of the lower dimensional obstacle problem in dimension two.
We now consider the three cases λ = 2m, λ = 2m− 1 + s and λ = 2m+ 2s separately. Indeed,

we first notice that there is only one (up to a multiplicative constant) two-dimensional solution
of the lower-dimensional obstacle problem of homogeneity 2m. In particular, if λ = 2m, then the
blow-up is unique and two-dimensional.

Let now λ = 2m − 1 + s. In this case there are two two-dimensional homogeneous solutions
(see for instance [9]) and so, two possible blow up limits of u at x0. We call them b1 and b2. In
order to prove the uniqueness of the blow-up as in statement (i) we have to exclude that, for two
different sequences rj → 0 and tj → 0, the blow-up is b1 and b2, respectively. Indeed, taking the
scalar product of ux0,r with b1 we see that

lim
j→∞

∫
∂B1

ux0,rjb1 = 1 and lim
j→∞

∫
∂B1

ux0,tjb1 =

∫
∂B1

b1b2 < 1;

hence, for every j, there exists qj ∈ (rj , tj) such that

lim
j→∞

∫
∂B1

ux0,qjb1 =
1

2

(
1 +

∫
∂B1

b1b2

)
.

This gives a contradiction. Indeed, up to a subsequence, ux0,qj converges to a blow-up limit,
which by Lemma 5 should be b1 or b2.

It now remains the case λ = 2m + 2s. Fix x0 ∈ S2m+2s(u) that admits a (d − 2)-dimensional
approximate tangent plane Tx0 ⊂ Rd−1 × {0} and such that, by (9), every blow-up limit b is of
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the form b(x) = b̄(x · e, xd), where b̄ is a (2m+ 2s)-homogeneous solution in dimension two. It is
sufficient to prove that e is a normal vector to Tx0 . Let

Hb :=
{
x′ ∈ Rd−1 : x′ · e = 0

}
,

and suppose that there is a point y0 ∈ Tx0 \ Hb ⊂ Rd−1. Without loss of generality, we may
assume that |y0| = 1/2. Let ux0,rn be a blow-up sequence converging to b. By definition of the
tangent plane, there is a sequence of points yn ∈ B1 ∩ S2m+2s(urn,x0) such that yn → y0. Since,

yn are on the free boundary, there is a sequence of points zn in the non-contact set of ux0,rn

(
that

is, urn,x0(zn, 0) > 0 and, as a consequence,
∂urn,x0
∂xd

(zn, 0) = 0
)

such that zn → y0.

When s = 1/2, we use the classification of the solutions in dimension two (see [9]), which implies
that b̄ : R2 → R can be written (up to a positive multiplicative constant) in polar coordinates as

b̄(r, θ) = r2m+1 sin
(
− (2m+ 1)θ

)
in {x2 ≥ 0}, (10)

and it is reflected in an even way in the half-plane {x2 < 0}. In particular,
∂b

∂xd
(y0, 0) < 0. On

the other hand, the blow-up sequence ux0,rn converges in C1 to the blow-up b (see [1]). Thus,

∂b

∂xd
(y0, 0) = lim

n→∞

∂ux0,rn
∂xd

(zn, 0) = 0,

which is a contradiction. In conclusion, Tx0 = Hb, so the vector e and the blow-up b are uniquely
determined by the tangent plane Tx0 . This concludes the analysis of S2m+2s in the case s = 1/2.

For general s, a nice formula as (10) is not available but the two-dimensional solutions are
described in detail in [7, Appendix A.1] and the uniqueness of the blow-up follows by a similar
argument. Indeed, by [7, equation (A.4)], up to a multiplicative constant, we have that

b̄(x1, x2) = |x2|2s
(
− 1 +O(|x− y0|2)

)
.

This means that, at the point y0, we have

|xd|1−2s
∂b

∂xd
(y0, 0) := lim

xd→0
|xd|1−2s

∂b(y0, xd)

∂xd
< 0.

On the other hand, by [7, Theorem 2.1] we have that

|xd|1−2s
∂b

∂xd
(y0, 0) = lim

n→∞
|xd|1−2s

∂ux0,rn
∂xd

(zn, 0) = 0,

where the last inequality is due to the fact that zn is not on the contact set (see for instance [7,
Corollary 2.4]). This is a contradiction. Thus, also in the case s 6= 1/2 and λ = 2m + 2s, the
blow-up is unique (as it is uniquely determined by Tx0). This concludes the proof. �

Appendix A. About Remark 2

In this section we elaborate a bit more on Remark 2 in the particular case of minimal surfaces
(although the same holds for harmonic maps). Following the notations of [13], we denote with
M a multiplicity one class of n-dimensional minimal surfaces and we denote with SingM , the
singular set of M ∈M. Moreover we let

m := max{dim SingM : M ∈M} .
Thanks to a result of Naber-Valtorta [12], we know that SingM has finite Hm-volume and it
is locally Hm-rectifiable. Next, let us denote with ΘM (x) the density of M ∈ M at a point x,
and recall that a consequence of  Lojasiewicz inequality for minimal surfaces is that the set of
admissible densities is discrete, that is,{

ΘC(0) : C stationary cone with dim(SingC) = m
}

= {α1, . . . , αN},
with α1 < · · · < αN (see [13, 4.3 Lemma]). Consider the sets

Sj :=
{
x ∈ SingM : ΘM (x) = αj

}
j = 1, . . . , N ,
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and notice that, by standard stratification arguments,

Hm
SingM \

( N⋃
j=1

Sj
) = 0 . (11)

As a consequence (of the analogous) of Lemma 5, applied to this case, we know that

(MS) for every point x ∈ Sj for which the approximate tangent space Tx to Sj at x exists, all
the tangent cones C to M at x are such that dim(SingC) = m and moreover Tx ⊂ C.

Thanks to the Naber-Valtorta rectifiability result, this is the case for Hm-a.e. point of Sj , that is

(MS’) for Hm-a.e. x ∈ Sj , all the tangent cones C to M at x are such that

dim(SingC) = m and Tx ⊂ SingC.

It follows from (MS’) and (11), combined with standard arguments that, for Hm-a.e. x ∈ SingM ,
there is an m-dimensional subspace Lx such that, for every ε > 0,

B1(0) ∩ ηx,σ(SingM) ⊂ the ε-neighborhood of Lx (12)

B1(0) ∩ Lx ⊂ the ε-neighborhood of ηx,σ(SingM) , (13)

where ηx,σ(y) := σ−1(y − x). Indeed, if Lx = Tx is as in (MS’), then (13) follows immediately by
the definition of approximate tangent, while (12) follows from (MS’), the upper semicontinuity
of the density and a simple blow-up argument.

Now, the main content of [13] is precisely to show that at Hm-a.e. x ∈ SingM , for which
(12) and (13) do hold, the blow-up is unique (see the second part of [13, Proof of Remark 1.14]).
Indeed, these are the points where no δ-gap nor δ-tilt happens.

Finally, we notice that, for the thin obstacle problem and the minimal surfaces, the set of
points at which the blow-up limit is unique is characterized differently. In the case if the lower-
dimensional (thin) obstacle problem, the blow-up is unique at every point at which the free
boundary admits an approximate tangent plane. On the other hand, for minimal surfaces, the
blow-up is unique at almost-every point satisfying the conditions (12) and (13) (this is due to the
fact that the uniqueness is achieved by an averaging process), which (as we noticed above) turn
out to be fulfilled whenever the singular set admits an approximate tangent plane. In particular,
for minimal surfaces we cannot characterize the points with unique blow-up as the ones at which
the approximate tangent plane to Sj exists. However, this would be the case if we knew a priori
that the (n−m)-dimensional minimal cones are integrable. Precisely, if the (n−m)-dimensional
minimal cones were integrable, then the blow-up would be unique at every point satisfying (12)
and (13) (we refer to [14] for more details on the integrability and its relation with the uniqueness
of the blow-up limits).
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