DEGENERATE NONLINEAR PARABOLIC EQUATIONS WITH DISCONTINUOUS

DIFFUSION COEFFICIENTS
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ABSTRACT. This paper is devoted to the study of some nonlinear parabolic equations with discontinuous
diffusion intensities. Such problems appear naturally in physical and biological models. Our analysis is
based on variational techniques and in particular on gradient flows in the space of probability measures
equipped with the distance arising in the Monge-Kantorovich optimal transport problem. The associated
internal energy functionals in general fail to be differentiable, therefore classical results do not apply
directly in our setting. We study the combination of both linear and porous medium type diffusions and
we show the existence and uniqueness of the solutions in the sense of distributions in suitable Sobolev
spaces. Our notion of solution allows us to give a fine characterization of the emerging critical regions,
observed previously in numerical experiments. A link to a three phase free boundary problem is also
pointed out.
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1. INTRODUCTION

In this paper we investigate a class of degenerate nonlinear parabolic equations, with discontinuous
diffusion intensities. These can be written formally as the Cauchy problem for the unknown p : [0, 7] xQ —
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[0, +00)

Ohp— Dplp) = V- (VEp) =0, in (0,T) x O,
(1.1) (Veo(p) +VPp) -n =0, on (0,T) x 09,
P(Oa ) = po; in Q’

where T > 0 is a given time horizon, Q C R? is the closure of a bounded convex open set with smooth
boundary, ® : & — R is a given Lipschitz continuous potential function, py € Z?(£2) is a nonnegative
Borel probability measure and the diffusion intensity function ¢ : [0,4+00) — R is supposed to have a
discontinuity at p = 1. Therefore, ¢ is extended to be a multi-valued function at the discontinuity and in
addition, it is supposed to be monotone in the sense that if n* € ¢(p?), then

(" =n*)(p" = p*) > 0.

Our aim is to identify a large class of potentials ®, nonlinearities ¢ and initial data pg, for which we
show the well-posedness of (1.1) in a suitable distributional sense. Furthermore, we aim to describe some
fine properties of the solutions. Let us remark that our results are expected to be valid also in the case
of © = R?, without running into many technical difficulties, provided we work in the space of measures
having enough uniform moment bounds, just as in the original works [JKO98, Ott01].

Such problems appear naturally in physical and biological models. Let us briefly describe two of these.
In [BJ92], the authors study so-called phenomena of self-organized criticality. These arise typically in
sandpile models, in which the sand particles are subject to a constant diffusion only at regions where their
density is greater than a given threshold, otherwise they remain still. At the macroscopic level, in the cited
reference such models were described by equations similar to (1.1), with ® = 0 and ¢(p) = 0, if p < p. and
» = const if p > p. (where p, is a given threshold value). Via an approximation procedure and numerical
investigations, the authors observe the growth (in time) of the critical region, where p = p.., therefore, they
conclude that particles following this diffusion law ‘self-organize into criticality’. Our main results in this
paper will rigorously confirm such phenomena.

In [CK13] the authors study diffusion models for biological organisms that increase their motility when
food or other resource is insufficient. They refer to such phenomena as starvation driven diffusion. At
the mathematical level, their model consists in a system of reaction-diffusion equations for two species,
where the diffusion rates are discontinuous functions depending on the (food supply)/(food demand) ratio
in the global population. In this model, a Lotka-Volterra type competition is implemented and a particular
example is provided when one species follows the starvation driven diffusion and the other follows the linear
diffusion. The authors conclude, by means of numerical simulations, that in heterogeneous environments
the starvation driven diffusion turns out to be a better survival strategy than the linear one. Therefore, by
this conclusion the authors would like to underline also the fact that in biological models, discontinuous
diffusion rates might appear in a very natural way, resulting many times in a better description of competing
biological systems.

Degenerate nonlinear parabolic problems like (1.1) received a lot of attention in the past couple of
decades. For a non-exhaustive list of classical works on this subject we refer to [BBC75, BC81, BBHS89,
CER83, Car99] and the references therein. In majority of the literature, however, the nonlinearity ¢ is taken
to be a continuous function.

To the best of our knowledge, except in particular cases involving linear type diffusions and/or bounded
initial data (see for instance in [BRR10, BRR11, BR18]), our model problem in its full generality has
not been addressed previously in the literature. The solution obtained in the aforementioned references
heuristically can be written as pairs (p,7,) belonging to well-chosen function spaces, such that

Op —Anp) =V - (Vep) =0
is fulfilled either in the distributional or entropic sense and p(t, ) € 1,(t, z) a.c.

In this paper, we rely on the gradient flow structure of (1.1) in the space of probability measures, when
equipped with the distance W arising in the Monge-Kantorovich optimal transport problem. To (1.1), we
associate an entropy functional £ : #(Q) — RU {+oco}, defined as

(1.2) £(p) = /QS(p(x))dH/ch(a:)dp(x), if S(p) € LY(Q),

400, otherwise,



where S : [0, +00) — R is a given function. At the formal level, the relationship between ¢ and S can be
written as

@(p) = pS'(p) — S(p) +S(1) and ¢'(p) = pS"(p), if p# 1.

We observe that the discontinuity of ¢ at p = 1 corresponds to the non-differentiability of S at p = 1.
Furthermore, as ¢ is monotone, we impose that S is convex and the multiple values of ¢ can be represented
by the subdifferential of S. In this sense, throughout the paper we consider S to be given which satisfies
the following assumption.

Assumption 1.1. S : [0,400) — R is continuous, strictly convexr and superlinear, in the sense that
lim,— 10 S(p)/p = +00. Furthermore, S is twice continuously differentiable in (0,+o00) \ {1}.

Let us notice that in this manuscript the internal energy part of the functional £ in general will satisfy the
well-known condition introduced by McCann ([McC97]), so it will be displacement convex. But this energy
fails to be differentiable on (2(§2), W2). Furthermore, in general we do not impose A-convexity assumptions
on the potential ® (so the potential energy in general fails to be displacement A-convex). Because of these
two deficiencies, the classical results from [AGS08] do not apply directly in our setting. The lack of geodesic
A-convexity in the context of Wasserstein gradient flows typically poses serious obstructions (as we can
see for instance in [DFM14, MMS09, KM18]). Even though the existence of the gradient flow of £ in
(Z(Q),Ws) is expected, the fine characterization of the density curves, their velocities and the critical
region {p = 1}, in as general settings as possible, is a challenging task. Because of the same reasons, an
approach by maximal monotone operators as in [BR18] would not be satisfactory in our setting either. In
this context, ours seems to be the first contribution which gives fine characterization of the gradient flows
of a general class of non-differentiable internal energies in (Z2(2), Wa).

In our analysis, we rely on the classical minimizing movements scheme of De Giorgi (see also [JKO98]
and [Sanl7]). This, for a given py € Z(Q) (and for a small parameter 7 > 0 and N € N such that N7 =T)

iteratively constructs (pk)gzo as
. 1
(1.3 pss = argmin {€(0) + 5 WHpr.p)s p€ PO}, ke 0. N -1}

In order to write down the first order necessary optimality conditions associated to (1.3), in Section
2 as our first contribution in this paper, we give a precise characterization of the subdifferential of £ in
(2(Q),W3) (cf. [AGS08]) in various settings (depending on the growth condition of S and the summability
of pg). Our analysis in this section relies on classical results from convex analysis, carefully adapted to
(1.3). As an intermediate result, we show (see Lemma 2.10) that optimizers of the problem (1.3) enjoy
higher summability estimates than the a priori ones coming from the growth condition of S at +oo.

In order to give a precise description of the optimality conditions associated to (1.3), we introduce a
function p; which encodes the ‘transition’ between the phases {p, < 1} and {pp > 1} through the critical
region {pr = 1}. This is very much inspired by the derivation of the pressure variable in recent models
studying crowd movements under density constraints (see in [MRCS10], [DMMS16], [MS16]). Because of
this similarity, throughout the paper, we sometimes use the abused terminology of pressure to refer to the
variable p. Interestingly, numerical experiments suggest (see Figure 1) that the critical region emerges in
general already after one minimizing movement iteration.

FIGURE 1. One minimizing movement step in 1D, for ®(z) = 2z, Q@ =[0,1] and S in (1.7)

After obtaining the necessary compactness results, we pass to the limit with the time discretization
parameter 7 | 0 and we recover a PDE (which precisely describes the weak distributional solutions of



(1.1)) satisfied by the limit quantities (p,p). This formally reads as

op — A(Ls(p,p)) =V - (V®p) =0, in (0,7) x £,
(1.4) 0(0,) = o, in 0,
(V(Ls(p,p)) + V®p) -n =0, in [0,7] x 0.

Here, the operator Lg is defined pointwisely for functions (p,p) : [0,7] x Q2 — R by
(15) LS(p7p)(t’ $) = [p(tv I)Sl(p(ta I)) - S(p(tv JC)) + S(l)] Il{pgél}(tv SC) =+ p(tv x)]]-{pZI}(t7 1‘)
and the pressure variable p : [0,T] x @ — R satisfies

p=.5(1-) ifo<p<l,
(16) pe[s(1-),8(4)] ifp=1,
p=5(14) if p>1.

Formally, (1.4) and (1.6) correspond to the three phase free boundary problem
Ap=-A® in{p=1}, p=S5(1-)in{p<1}tandp=5(1+)in {p > 1}.

Throughout the paper we distinguish cases depending on the diffusion rates in the two phases {p < 1}
and {p > 1}. We consider the combination of linear and porous medium type diffusions, which correspond
to a behavior as S(p) ~ plog(p) and S(p) ~ p™ (for m > 1), in {p < 1} and {p > 1}. So, typical examples
we have in mind include

log p, if p e [0,1], L2 if p e [0,1],
S(p) := pprongp ) ne 0,1] or S(p) =4 " L ne [0,1] form >r > 1.
m—1 " m—1° if pe (1’+OO)7 r—1 r—1 + m—1" if pEc (17+OO),

Energies of only logarithmic type or power like ones with the same power on both phases will also be
considered (as in (1.7) or (1.8)). The analysis in the case of general energies is quite involved. In the
same time, optimizers in the minimizing movements scheme possess different characteristics in the case
of logarithmic type and porous medium type internal energies (such as fully supported vs. not fully
supported; Lipschitz continuous vs. not Lipschitz continuous, etc.). As a result of this, we have to use
different arguments to obtain the needed estimates. Therefore, to keep the paper as much readable as
possible, we carefully break the cases (depending on the behavior of the internal energies) into specific
sections.

In order to emphasize the main ideas of the paper, we present two toy problems in details. These turn
out to be building blocks of our analysis for more general cases. Section 3 is devoted to the case when the
entropy is of logarithmic type on both phases {p < 1} and {p > 1} and in particular S is given by

logp, if p€[0,1],
5();:{‘) gp p<l0,1]

1.7
(L.7) 2plogp, if pe (1,400).

In this case, it turns out that the solution (p,p) satisfies p=11in {p < 1},p € [1,2]in{p=1},p=21in
{p > 1} and we have the simplified expression Lg(p,p) = pp.
Similarly, Subsection 5.1 presents the analysis in the case when S is given by

p

(18) Sp) = ﬂ%p_’”l L forpe(l,400)
m—l m717 Orp 7CX)’

m

for p € 10, 1],

for some m > 1. For this energy, the first equation of (1.4) can be written as

op—V-(p[V(p"'p) +Ve]) =0, in(0,T) x Q.

Furthermore, p = 2~ in {p < 1}, p € [-2+, 22 ] in {p =1} and p = 22 in {p > 1}.

m—1 m—1> m—1 m
Starting with Section 4, we consider general entropies. Assumptions are made on the growth of S in the
two different phases {p < 1} and {p > 1}. First, we impose

Assumption 1.2.

m—2

(1.9) S :[0,+00) — R satisfies L

< 8" (p) if p € (0,1) for some m > 1 and oy > 0.
o2



The imposed summability assumption on the initial data pg € () plays also a crucial role in our
analysis. If pg € L*(Q), it turns out that the entire iterated sequence (py)4_, obtained in the scheme
(1.3) remains essentially uniformly bounded, provided the potential ® is regular enough. This fact does
not depend on the differentiability of S and it is well-known in the literature (see [Sanl5]). In this case,
imposing only the assumption (1.9) on S is enough to obtain the well-posedness of (1.4)-(1.6).

The other ‘extreme’ case is when we only impose that pg has finite energy, i.e. £(po) < +00. We show that
the iterated sequence will have improved summability estimates for k € {1,..., N} (see in Lemma 2.10),
provided S satisfies the additional growth condition (1.10b)-(1.10a) below. These summability estimates
on the iterated sequence will be enough to obtain the necessary a priori estimates and pass to the limit as
7} 0 to obtain a weak solution to (1.4)-(1.6).

As a consequence of these arguments, we will always distinguish two cases with respect to the previous
two summability assumptions when stating our main results. Our main result in the case of pg € L>(Q)
reads as:

Theorem 1.1 (Theorems 3.1, 4.2, 5.1, 5.6 and Theorem 6.1). Suppose that Assumptions 1.1-1.2 hold
and ® satisfies (2.4). For py € L*(R), there exists p € L>([0,T] x Q), p™ € L*([0,T]; H(Q)) and
p € L2([0,T); HY(Q)) N L>([0,T] x Q) such that (p,p) is a unique solution of (1.4)-(1.6) in the sense of
distributions.

For general initial data such that £(pg) < +00 we shall impose the following additional growth condition
on S.

Assumption 1.3.

T—2
(1.10a) S : [0, +00) — R satisfies L < S"(p) if p € (1,+0c0) and
g1
(1.10b) S"(p) < o1p" "2 if p € (1,+00) for some 7,0y > 1.

Notice that under (1.10) and r > 1, £(po) < 400 is equivalent to pg € L™(2). Similarly to Theorem 1.1,
we can formulate the corresponding well-posedness result.

Theorem 1.2 (Theorems 3.1, 4.2, 5.1, 5.6 and Theorem 6.1). Suppose that Assumptions 1.1, 1.2 and 1.3
are fulfilled and

(1.11) m<r—+ g

hold true for B > 1 (its precise value is given in (2.23)). For pg € Z2(Q) such that E(py) < 400, there exists
p € LP([0,T] x Q) and p € L2([0,T); H(2)) N L>([0,T] x ) such that (p,p) is a solution of (1.4)-(1.6)
in the sense of distributions. Furthermore, we have

P73 € L2([0,T); HY(R)), if m <r and p™~ 3 € LI([0, T); Wh(Q)) if r <m < 1+ g

for some q € (1,2). If in addition 8 > 2r, then the pair (p,p) is unique.

Let us comment on the additional technical assumption (1.11) in the previous theorem. While this
condition has to be required for purely technical reasons and we do not claim anything about its sharpness,
we believe that it could be physically motivated. This would just mean that for unbounded initial data,
the diffusion rate on the region {p < 1} cannot be ‘too much slower’ than the one on the region {p > 1}.
With other words, ‘too fast’ diffusion rate on {p > 1} and ‘too slow’ diffusion on {p < 1} might result in
unphysical phenomena and in non-existence of solutions.

It worth also noticing that the previous phenomenon is not expected for bounded solutions. Also, in
particular from the definition of 8 in (2.23), we see that § < +oo can be arbitrary large if d = 2 and
B8 = 4o0o, if d = 1. Therefore, in such cases the previous theorem holds true without the additional
assumption (1.11). The same is true in the case when 1 < m < r.

Let us make a brief comment also on the proof of the previous theorems. In the case when the diffusion
rates are equal on the two phases {p < 1} and {p > 1}, i.e. m = r, the derivation of the optimality
conditions already gives us enough a priori estimates on gradients of suitable powers of the density variable.
Then, these are enough to obtain the strong compactness of the interpolated curves of the discrete in time
densities and pass to the limit as 7 | 0. The situation is way more challenging in the case when m # r. In
these situations, we actually obtain the required estimates on the gradients of the discrete in time densities



raised on a carefully chosen ‘intermediate’ power (depending on both m and r). This idea seems to be
crucial in our analysis and this is one of the most technical parts of the paper.

It worth to comment also on the fact that in Theorem 1.2 we obtain improved summability estimates of
the density variable, even if one merely imposes L” summability on py and the diffusion rate in {p > 1} is r,
we obtain p € L?([0,T] x Q) (and 8 given in (2.23) satisfies 5 > r; in particular 3 < +oo is arbitrary large
for d = 2 and 8 = +oo for d = 1). This improved summability estimate (with respect to the summability
of the initial data) seems to be well-known in the case of standard porous medium equations (for instance
in the case of ® = 0, this is a consequence of [V4z07, Theorem 8.7]). Our proof, which is based on
purely optimal transport techniques, implies this estimate in particular also in the classical porous medium
equation.

When studying the well-posedness of the system (1.4)-(1.6), one can ask the natural question whether
these PDEs can be represented as continuity equations. Under suitable additional assumptions, this is
always the case, as we can show in Theorem 4.9, Theorem 5.5 and Theorem 5.13 when (1.4) also reads as

0ip =V - (pV (5" (P) L1y +PLgp=1y)) = V- (pVP) =0, in (0,T) x ©,
(1'12) /0(07 ) = o, in Q,

p [V (S"(p)L{pr1y +Plip=1}) + VO] -n =0, in [0, 7] x 99.
We underline that the required additional assumptions are needed to guarantee Sobolev estimates on S’ (p).
We can summarize our results in this direction as follows.

Theorem 1.3 (Theorems 4.9 and 5.13). Let us suppose that we are in the setting of Theorem 1.2 and
(p,p) is the solution of (1.4)-(1.6). If we additionally assume

1
(1.13) m<r+ 3
and
1
(1.14) B>Qandm<§+§,

then (p,p) is a weak solution of (1.12) in the sense of distribution. The uniqueness of the solution holds
under the same assumption as in Theorem 1.2. If in addition py € L>=(Q) and ® satisfies (2.4), we can
drop (1.14) from the statement.

In the same way as in Theorem 1.2 (by the definition of 8 in (2.23)), (1.14) holds for any m,r > 1 if
d =1 or d = 2. Moreover, when r = m, then the second inequality in (1.14) is satisfied for all m > 1 and
B > 2 is equivalent to m > 3%—;4.

The attentive reader could observe that in the statements of Theorem 1.1 and 1.2 we included the
corresponding uniqueness results as well. Indeed, Section 6 is entirely devoted to this issue and in particular
we obtain an L! contraction result for the density variable p (see in Theorem 6.1), implying its uniqueness.
This will then imply the uniqueness of the corresponding p variable as well. Our approach is inspired by
[DMM16, Section 3] and [V4z07, Theorem 6.5], and as expected, the monotonicity of the operator Lg (see
Lemma 6.2) plays a crucial role in our argument. By the ‘double degeneracy’ of our problem, neither of the
previously mentioned two approaches apply directly and a very careful combination of the two is required
to obtain the desired L' contraction. Similarly as in [V4z07, Theorem 6.5], in this analysis an additional
summability assumption is needed on the density variable. Due to the extra L? summability obtained in
Theorem 1.2 or in the case of bounded solutions as in Theorem 1.1, this is automatically fulfilled in many
cases. Let us mention that we expect a Wa-type contraction argument (in the spirit of [CMV03, CMV06])
to hold in our setting as well, provided we impose some convexity assumptions on the potential ®. The
results from [BC14] imply that the Wasserstein contraction is equivalent to the geodesic convexity of the
energy, provided the energy is smooth. Since the internal energies considered in this article, even though
geodesically convex, in general fail to be differentiable, the results from [BC14] do not apply directly in
our setting. These investigations represent the subject of future study. Finally, since in general we do
not impose (A-)convexity assumptions on ®, our energy will in general lack the displacement (\-)convexity
property, which also motivates our search for an L!-contraction instead.

Section 7 is devoted to further discussions on the models studied in this paper. In particular, we discuss
examples where the emergence of the critical region {p = 1} can be observed for positive times, even if that
was not present in the case of the initial data, i.e. Z%¢({po = 1}) = 0. We illustrate this in dimension one
and we describe stationary solutions (minimizers of the free energy) corresponding to suitable potential



functions ®, where the critical region is present. As we mentioned before, our problems can be linked to
three phase free boundary problems, and in this section we also derive these ones formally.

We end our paper with three small appendices, where we collected some well-known facts (or conse-
quences of well-known results) from the theory of optimal transport and convex analysis. Here, we present
also a suitable version of the classical Aubin-Lions lemma, which is repeatedly used throughout the paper
to obtain compactness of families of time dependent functions in Lebesgue spaces.

2. THE MINIMIZING MOVEMENTS SCHEME, OPTIMALITY CONDITIONS AND PROPERTIES OF THE ENERGY

Throughout the paper  C R? is given, as the closure of a bounded, convex open set with smooth
boundary. () denotes the space of Borel probability measures on 2 and .#¢ stands the Lebesgue
measure on R%. We also use the notation 222¢(Q2) := {p € 2(Q): p< L4LQ}. T > 0is a fixed time
horizon and we often use the notations @ := [0,7] x Q and RT := (0, +00).

As 8’ is strictly increasing in R™ \ {1} from Assumption 1.1, S’(0+) and S’(1+) are well-defined in
R U {—o00} and R, respectively, as follows.

/ T / T e 1 / ’ T /
(2.1) S'(0+4) := 61_1>I(I)1+S (e), S'(1-): 61_1)1{1_5 (¢) and S’(1+4) : El_1>r{1+5 (g).
In particular, we have that S'(1—) < S'(1+).
We define the corresponding internal energy J : Z(2) — RU {400} by

(2.2) J(p) =4 Ja S(p(z))dx it p e P(Q),

+00 otherwise.

Furthermore, we suppose that there is given ® : Q — R a potential function in W°°(Q) and the associated
potential energy F : Z(Q2) — R given by

Fp) = [ #(@)dnto).

Let pg € Z() be given and consider a time discretization parameter 7 > 0 and N € N such that
N7 =T. We define the minimizing movements (py)N_, of J + F as follows: for k € {1,..., N} set,

(2.3 %:mym{3w+f@+1WW@%@}
pEP(Q) 2T

Note that the existence and uniqueness of the solutions in the minimization problems (2.3) follow from

standard compactness, lower semicontinuity and convexity arguments (similarly as in [Sanl5, Proposition

8.5], for instance).

In what follows, in our analysis we differentiate two cases with respect to the summability assumption
on pg. Since these need slightly different arguments, we separate them in two different subsections. In
particular, if one assumes L° summability on pg, the presented results will hold true under no additional
assumptions on S (other than in Assumption 1.1). However, in (2.3) we can allow general measure initial
data, in which case an additional growth condition (see (1.10)) has to be imposed on S in order to obtain
the same optimality conditions.

2.1. Optimality conditions for py € L>(Q).

Lemma 2.1. Suppose that Assumption 1.1 takes place and po € L>(Q). If ® is non-constant, let us
assume that ® € C*(Q) and

(2.4) V®(zo) - n(xg) >0, Vag € dQ and V& € BV(Q;R?Y) with [AD], € L=()

where n stands for the outward normal vector to OQ and [A®]; denotes the positive part of the measure
A®. Let (py)_, be constructed via the scheme (2.3). Then we have

okl < llpr-1llo= (14 7l|[A@]4 [[=)" < lpollzee (1+T[[AB]4 ]| )™ < [lpollpoe T IAT e,
Vke{l,...,N}

Remark 2.1. Let us notice that the second part of assumption (2.4) is sharp and it is very much related to
the ones imposed in the work of Ambrosio (see [Amb04]), as an improvement of the classical DiPerna-Lions
theory (IDL89]), on transport equations with BV wvector fields.



Proof of Lemma 2.1. The proof of this result in the case when ® = 0 is essentially the same as the proof
of [San15, Proposition 7.32] (since that proof is not assuming any differentiability on S).

For general ®, we use some ideas from the proof of [CS18, Theorem 1]. Let us approximate S with a
sequence (S )eso of smooth convex functions such that S > ¢, > 0 for any € > 0 with S.(0+) = —oo. Let
®. be a smooth approximation of ® which satisfies (2.4) and such that &, — &, V&, — V&, uniformly as
e} 0and [|[A®.]|1||re < ||[[A®]4| Lo, for € > 0. Let p§, be the unique solution of (2.3), when we replace
S with S¢ and ® by .. Writing down the optimality conditions we obtain
b

SL(py) + @ + = C a.e.,

where ¢ € K(p5, pr—1). Let us suppose that ¢ € C*%(Q2), otherwise we approximate py_1 by strictly pos-
itive C** measures (and p5, is Lipschitz continuous and strictly positive), and we use Caffarelli’s regularity
theory to deduce the desired regularity for the potential.

Now, let 2y a maximum point of pf. From the previous equality, since S, is strictly increasing, we
certainly have that zg is a minimum point of ®. + %Z

We claim that xg ¢ 9. Indeed, if z¢ would belong to 92, we would have that

(Vo5 (x0) + VP (20)) - n(xo) < 0.

However, by the convexity of €2, we have that (z¢o — V5, (20)) -n(zo) < 0, from where V¢§ (zo) - n(zg) > 0.
This fact together with the assumption (2.4) yields a contradiction. Indeed, from the uniform convergence
of VP, — V&, we have that

VO .(xg) n>VP(xp) - n—e >0,
for sufficiently small € > 0.

Therefore, the maximum point z¢ of pj belongs to the interior of 2. This implies that A¢f(xo) +
TAP (z0) > 0. Using the Monge-Ampere equation we find

o7l = pi(z0) = pr—1(z0 — Vi (x0)) det (I — D*¢5(z0)) < llop—1ln= (1 — Ad(20))*
< lpr—tllee (14 7AR(20))* < [lpr—1llzoe (1 + TI[[AD] 4 |2o)? < [|pr—1 L (1 + T [AR] 4 || Lo )
< ol (1 + TI[AD]) 4[| Lo ) ¥4 < [ po]| oo eTMAPI Lo

where in the first inequality we have used the inequality between the arithmetic and geometric means.
Since the last three bounds depend only on the data, these will also remain valid also in the limit € | 0
(since the minimizers of both the approximated and the original problems are unique). Therefore the thesis
of the lemma follows. O

Now, we state the main result of this subsection on the first order necessary optimality conditions for
the problems in (2.3).

Theorem 2.2. Suppose that po € L>(). For all k € {1,...,N}, there exists C = C(k) € R and
o € K(pk, pr—1) such that

C—% %< S50+) in {px =0},
(2.5) C—%—-2e[9(1-),5(14)] in{p =1},
C—% _&=35op, otherwise.

Here, K(pk, pr—1) is given in Definition A.1. Also, S'(0+) and S'(1%) are given in (2.1). Note that if
if S’(04) = —oo, then pr > 0 a.e. (see Lemma A.4), and in this case the first inequality in (2.5) is not
present.

The proof of the previous results relies on the precise derivation of the subdifferential of the corresponding
objective functional in (2.3). Let us point out that the subdifferential of sum is not always the sum of
subdifferentials (see for instance [San15, Example 7.22]). Therefore, we need to carefully choose the domain
of definition of 7. In the spirit of Lemma 2.1, we consider it as a functional on L*(2) instead of £(12).
The additive property of subdifferentials on L°°(€2) holds under suitable conditions (cf. [ET76]).

Remark 2.2. Let us underline that in our analysis we rely on the classical subdifferential calculus in LP
spaces rather than directly computing Wasserstein subdifferentials (cf. [AGS08]). This is mainly because
of the already available powerful classical results on precise representations of subdifferentials of integral



functionals, such as J, on LP spaces (cf. [Roc68, Roc71]). In the same time, this framework is well suited
also for computing the subdifferential of p — W3(-, px_1) (see for instance in [San15]).

It worth mentioning, however, that at the heuristic level there is an intimate link between the two
notions of subdifferentials, namely: if £ € 0T (p) (i.e. & is an element of the classical LP subdifferential)
is sufficiently regular, then V& € 0w, T (p) (that is, V& is an element of the Wasserstein subdifferential).
Newvertheless, this connection at this point remains only formal, because typically we do not have any a
priori information on the reqularity of £ to justify this link.

Proposition 2.3. For all k € {1,..., N} we have

20 0(T0)+F )+ 5 W) =0T(0) 4+ O et

P=pk

Proof. To simplify the writing, we consider only the case k = 1. Let us check that J and W(-, pg) satisfy
the assumptions in Lemma B.2. The convexity of S implies that of J. Also, the continuity of J in L>°(Q)
follows from the continuity of S. From Lemma B.1, we conclude J € T'(L*°(2)). We have the same
conclusion for the functional F (which is actually linear in p).

Let us show that W (-, pg) € T(L>°(Q2)). Define H : L*(2) — RU {+o00} by
(27) 1(0) =~ [ ¢am.
Proposition A.3 implies that H* : L>°(£2) — R U {400} is given (in the sense of (B.1)) by
H* = JW3( po) on L(@)

We conclude W3 (-, po) € T'(L>®(£2)).

Lastly, choose A C € a Borel set such that .Z%(A) # 1 and define
1

2.8 = ———=14.
(2.8) M ZA(A) A
J (@), F(ir) and W2(j, po) are finite. Furthermore, by the continuity of S in R, 7 is continuous at fi. In
the same way F is also continuous at fi. Thus, we conclude (2.6) from Lemma B.2. g

Next, let us find the subdifferential of W3 (-, pp—1). While this subdifferential is expected to be the set
of Kantarovich potentials KC(pg, pr—1), it is not straight forward to conclude about this as we consider the
subdifferential for the functional on L (). We rely on the ideas from [San15, Proposition 7.17], tailored
to our setting.

Lemma 2.4. [Sanl5, Lemma 7.15] Let X be a Banach space and H : X — R U {+o0} be convezr and lower
semicontinuous. Set H*(y) = sup{(z,y)x x- — H(x)}. Then, we have
TzeX

(2.9) OH"(y) = argmax {(z, y)x x- — H(2)}.

Lemma 2.5. H : L'(Q) - RU {+oc} given in (2.7) is convez and L.s.c.

Proof. The proof of convexity of H is the same as in [Sanl5, Proposition 7.17], where one needs to change
only the definition of ¢° using essential infima.

Let us show now that H is Ls.c. For this, let ¢ € L(Q) and (¢,)nen a sequence in L'(Q) such that
o — @ strongly in L'(Q) as n — +oo0.

Notice first that by definition,

—¢°(y) = ¢(y), a.e. in Q,

from where we have that H(p) > —oo. Because of the strong L' convergence, we know that there exists a
subsequence of (o, )nen (that we do not relabel), which is converging pointwise a.e. in Q to ¢. We shall
work with this sequence from now on.

Writing the previous inequality for ¢¢ and ¢,,, we have that

lim inf —¢¢ (y) > lim inf ¢, (y) = ¢(y), a.e. in Q,
n—-+00

n—-+oo

where we used the fact that ¢, (y) — ¢(y) a.e. in Q, as n — +o0.
Let us define g : Q@ — RU {400} as g(y) := lim_&nf —t(y). Notice that this is measurable function.
n—-+00

Indeed, (—¢S )nen is a sequence of measurable functions (infima of measurable functions), and using Fatou’s



lemma for the non-negative sequence of measurable functions (—¢¢ — ¢, )nen, one concludes that g is
measurable and

/ e()ro(y)dy < / 9(y)po(y)dy < lim inf H(pn).
Q Q

Claim. ¢(y) < —¢°(y) < g(y) for a.e. y € Q.

Proof of the claim. Actually the first inequality was shown before, thus we show only the second one.
Thus, by Egorov’s theorem, we have that for any 6 > 0 there exists a measurable set Bs C £ such that
£UBs) < 6 and (¢n)nen converges uniformly to ¢ as n — +oo on Q\ Bs. Let us fix a small § > 0. We
have furthermore that for any € > 0 there exists N. € N such that

p(x) —e < pn(x) < p(z) +e
for a.e. z € Q\ By and n > N.. Because of this, we have the following chain of inequalities for all n > N,

o5 (y) = sup {@n(x) — [z —y[*} > sup {on(x) =z —y[*} > sup {p(z)—c—|z—y|’}.
e z€Q\ Bs T Bs

xe EAS

Taking lim inf of both sides, one obtains
n—-+00

g(y) = sup {o(x) —e— |z —y|’}
€O\ Bs

for a.e. y € Q. By the arbitrariness of £ and § (in this order), one gets that
9(y) 2 sup {p(x) — |z — 4"} = —o° W),

as we claimed.
Notice that we have proved the following: if (¢, )nen is converging to ¢ in L'(Q), then there exists a
subsequence (¢n,)jen of the original sequence such that

H(p) < lim inf H(‘Pm)‘
J—+oo

This statement actually implies the l.s.c. of H on the full sequence. Indeed, observe that by the definition
of lim inf, there exists a subsequence (pn, )ren of the original sequence such that

lim iof H(pn) = i H(pn,)-
We have shown previously that there exists a subsequence (<pnkj )jen of (n, )ken such that
H(p) < lim inf H .
() < lim inf H(en, )
On the other hand
lim inf H(gpnkj) = lim H((pnkj) = lim H(py,)=lim inf H(e,),

j—+oo j—4oo k—+o00 n—-+00

thus the l.s.c. of H follows. O

Proposition 2.6. For all k € {1,..., N} we have

(2.10) %8(%2(/), pr-1))|

Proof. To simplify the notation, we set kK = 1. Recall from Proposition A.3 that

1 *
58(W22(p7 po))|p:p1 = 8H (Pl)

for H given in (2.7). From Lemma 2.4 and Lemma 2.5, it holds that

OH"(p1) = argmaxger1(q) {/Q ¢dp1 +/Q¢Cdp0} .

From Definition A.1, we conclude. ]

P K(prs pr—1)-

Lastly, let us compute the subdifferential of J based on [Roc71]. Before, we need the following prepara-
tory result.
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Lemma 2.7. [Roc71, Corollary 1B] Let ¢ and ¥ be given as in (B.2). Assume that ¢(pu(x)) is majorized
by a summable function of x for at least one pu € L (Q) and that ¥*({(x)) is majorized by a summable
function of x for at least one ¢ € L*(Q)). Then, an element & € L>(Q)* belongs to V() given in (B.3)
if and only if £2°(x) € OY(u(x)) for a.e. x € Q where £2° is the absolutely continuous component of €, and
the singular component £° of € attains its mazimum at p over

{v e L>®(Q) : ¥(v) < 4o0}.
2.3), if £ € 0T (pr) N L1 (), then it holds that
—00,5"(0+)] a.e. in {p, = 0},

Proposition 2.8. For p; is given in

(
[
[

(2.11) £eq[9(1-),5(14)] ae. in {pp =1},
S’ o pg a.e. in {px # 1}.
Proof. Let us show that S and S* satisfies assumptions on Lemma 2.7. Let u = ( = -z 1q, then S(u)

£4(Q)
is finite, and thus in L'(©2). On the other hand, as S is superlinear, S* < +o0 in [0, +o0). Therefore, for
any constant ¢ € R, S*(c) € L(Q).

By Lemma 2.7, £2¢(x) € 9S(pr(x)) a.e., where £2° is the absolutely continuous part of . From the direct
computation of dS(px(z)), we conclude that £2¢ satisfies the right hand side of (2.11). As £ € L'(Q), the
singular part of £ is zero, £2¢ = £ and we conclude (2.11). |

Proof of Theorem 2.2. We only consider the case that k = 1. By the optimality of p; in (2.3), it holds that
1
0ed («7(Pl> + F(p1) + 2TW22(P17/70)> :

From Proposition 2.3 and Proposition 2.6, there exists £ € 7 (p1), ¢; € K(p1,po) and C € R such that

{—‘—g%—‘D—C’:Oa.e. on (2.
-
As ¢y, ® € LY(Q), £ € 0T (p1) N L1(£2), Proposition 2.8 implies (2.5). O

2.2. Optimality conditions for py € Z(Q2) having finite energy. In this subsection we are impos-
ing (1.10). Let us show first that J satisfying the additional assumption in (1.10) defines a continuous
functional on L"(Q). In the previous subsection, the continuity of J in L*®(Q) directly follows from the
continuity of S.

Lemma 2.9. Let J be given in (2.2) satisfying (1.10b). Then J is continuous in L*(Q2) for all
(2.12) s>rifr=1, and s >rif r > 1.

Proof. From (1.10b), there exists ¢ > 0 such that for all p € [0,4+00) (since S is also continuous, hence
uniformly bounded on [0, 1])

(2.13) 1S(p)] < clp® +1).

for all s satisfying (2.12).
Consider a sequence {u;};eny C L*(€) such that

(2.14) wi — pin L¥(Q) as ¢ — oo
These exists a subsequence {1, } jen C {ti }ien such that

(2.15) i, — [ a.e. as j — 0o.

From (2.13), it holds that for all j € N
(2.16) 0 < ellpa,|® +1) = [S(uiy)| < ellpa,|* 4+ 1) £ 5 (hiy)-

Let us apply Fatou’s lemma into (|, |* +1) +S(u;;). From (2.14), (2.15) and the continuity of S, it holds
that

[ @)l + 1)+ S(u(e)do < tim int [ el @)+ 1) + S0, () o
Q Q

J—00

S/c(|,u(x)|s+1)dx+lim inf/S(,uij)dx.
Q I Jq

11



and we have
J(p) < lim inf F (p, ).
j—ro0

Similarly to the argument at the end of the proof of Lemma 2.5, we conclude the lower semicontinuity
along the full sequence, therefore

(2.17) J(p) < lim inf 7 (p;).

1— 00
Applying Fatou’s lemma again into c(|u;|* +1) — S(u;), we get
(2.18) J(p) > lim sup J (i),

J—00

and as before, we deduce the upper semicontinuity along the full sequence. Therefore (2.17) and (2.18)
imply that J(u) = lim J(u;,) and J is continuous in L*(2). O
j—o0

In what follows, we show that the minimizers of the of the minimizing movements scheme (2.3) enjoy
higher order summability estimates (which are independent of py, but depend on 7). These will play a
crucial role later when deriving the optimality conditions.

Lemma 2.10. Suppose that S satisfies Assumption 1.1 and (1.10a). Let pp € P(2) be the minimizer in
(2.3). Then py € LP(Q), where B := (2r — 1)d/(d — 2), if d > 3. If d = 2 then the statement is true for
any B < 400 and B = +oo if d = 1. In particular, there exists C > 0 depending only on Q, ||V®||p~ and
B such that if B < 400, then

C
(2.19) Lo as <o Swion )

Otherwise, for d =1,

lokllL < C.
Remark 2.3. Let us notice that the previous lemma gives an improvement on the summability of px.
Indeed, in case when the internal energy is of logarithmic entropy type, we know a priori that pr € L' (),

while in the case of power like entropies, we have a priori pr, € L"(2). In contrast to these, we clearly
improve the summability exponents in both cases.

Proof of Lemma 2.10. For € > 0 let S; : [0, +00) — R smooth, strictly convex such that S > ¢, > 0 (for

some c¢. > 0), SL(0+) = —oo and S. — S uniformly as ¢ — 0. Let pj be the unique minimizer of the
problem
1
2.20 inf £ — S d 1 B .
(2.20) pe%g(SZ){ =(0) /Q c(p)dz + F(p) + o7 5 (p, o 1)}

By the assumptions on S., classical results imply that pf is Lipschitz continuous.

Without loss of generality, we can assume that S. satisfies the growth (1.10a) if p > 2. We can write
the optimality condition

(>

(2.21) S (p5)Vp + VO + Ve

—= =0 a.e.,
-

where ¢, is a Kantorovich potential in the transport of pj, onto pr_1. From here, there exists a constant
C > 0 (depending only on r and o7) such that

£ £ £ 1 (>
[ stV < ¢ (IV0lE- + 530k o).

And in particular, for any ¢ > 2, we have by setting Q, := {p} > ¢},

—_ 1 £
(2.22) [ 19y < o (|v<1>||ioo n 72W§<pk,pk1>) .
£

We know that the optimizers pj, are Lipschitz continuous on their supports, therefore the super-level sets
), are open.

Moreover, once again using the fact that pf is Lipschitz continuous, we have that there exists 6 > 0 such
that

dist (9, Q) > 20.

12



Indeed, otherwise if one supposes the contrary, then for any n € N; there exist x,, € 9y and y,, € Qg such
that dist(z,,y,) < 1, then one would have that |p(2,) — p%(yn)| < L{IVpillLe(,) — 0, as n — +oo.
However, this would be a contradiction since p},(2,) = ¢ and pj.(y,) > 2¢.

Now, by defining Q.5 := {Xq,, x5 > s} for some s € (0,1/2) to be set later (where 75 : R? — R is a
mollifier obtained from a smooth even kernel 7 : R* — R — such that [, ndz =1, 7 > 0 and spt(n) C B1(0)
— by ns := (1/6%)n(-/8)), we have that Qap C Q5 C Qp, Qs is an open set, and by Sard’s theorem it has
smooth boundary for Z1-a.e. s € (0,1/2). We choose such an s.

We have in particular from (2.22) that
— 1
[ e < ¢ (IV8l~ + 530k o).
2,8

and so the Sobolev embedding theorem implies (since p§ is only uniformly bounded in L7(£2)) that
(p5) "% € L*¥ (Qs) from where p € LP(Qs), where 8 := 2*(r — 1/2), if d > 3 and 3 < +oo arbi-
trary if d = 2 and (8 can be taken 400 if d = 1. He we use the notation 2* = 2d/(d — 2).

From the above construction we can claim that p5 € L?(Q). Indeed, we have

[era=[ e [ Gras [ @l
Q {p5 <t} Q.5 Qe\ Q.5
1
< @+ DO/ +C (IV8IE + W3 h o).

Let us underline that this bound only depends on Wf(pi, pk—1)- Clearly, the previous inequality is valid
only if < 400. In the case of d = 1, i.e. when 8 = +o00, we first perform the computation for § < +oo
finite, and obtain the desired bound after taking S-root of the previous inequality and sending 8 — 4oc0.

Now, it is easy to see that because S, — S uniformly, we have that the objective functional in (2.20)
T'-convergences to the objective functional in the original problem as € | 0, w.r.t. the weak-* convergence
of probability measures. Indeed, take a sequence (p°).so and p in Z2(Q) such that p° = p as € | 0. Notice
that by the construction of the approximation S, if £.(p®) < C (for a constant independent of ¢), then we
have that (p°)eso is uniformly bounded in L" (). By the uniform convergence S. — S, we have that for
any d > 0 there exists € such that

S(p°) < S=(p°) +6, Ve <eo.
Therefore

E(p) < limui)nfé'(pg) < limui)nf E(p°) +0.24(),

so the I'-liminf inequality follows by the lower semicontinuity of the energy £ and the arbitrariness of § > 0.
For the T-limsup inequality, we use a constant sequence p° = p as a recovery sequence such that £ (p) is
finite for all € > 0. Clearly lim. o & (p) = E(p).
Finally, since both p;, and pf, the solutions of the original and the approximated problems, respectively
are unique, when ¢ | 0 we find that pj also has the L?(2) bound. The thesis of the lemma follows.
|

Let us notice that in Lemma 2.10 the L? bounds on pj depends only on T%Wf(pk, pr—1) and the data.
Therefore, when considering the piecewise constant interpolated curves (p”),so (see their precise definition
in (3.8) below), and integrating them in time and space, we find the following very important lemma.

Lemma 2.11. Suppose that pg € P(Q) with J(po) < +oo and (1.10) hold. The curves (p™)r>o are
uniformly bounded in LP(Q) for B given in

2r—1)7%  ifd>3,
(2.23) B =< (0,00) ifd=2
400 ifd=1.

Proof. Let 8 as in the statement of the lemma and let (p”),~¢ stand for the piecewise constant interpolations
as defined in (3.8). Then, Lemma 2.10 and (2.19) imply that

T N N
1
/ /(Pf)ﬁdxdt:TE /(Pk)ﬁdeTNC‘FCE ;Wf(pmpk—l%
0 Ja = Ja po
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where C' > 0 depends only on the data and 2. Since TN = T and Z,If:l L W3 (pk, pr—1) is uniformly

bounded (see Lemma 3.4), we conclude.
(]

Under the above assumption, we show a result parallel to Theorem 2.2.

Theorem 2.12. Suppose that pg € P(Q) such that E(po) < +oo and (1.10) hold. Then, for all k €
{1,..., N} there exists C = C(k) € R and ¢, € K(pk, pr—1) satisfying (2.5). Here, K(pk, px—1) and pi are
given in Definition A.1 and (2.3), respectively.

We recall the following lemma from [Roc68] and [Roc71] and compute the subdifferential of 7 explicitly.
In comparison to the previous subsection, it holds that (L™ (Q))* = L" () for r € (1, +00) where r’ := -
and thus the argument below is simpler than Lemma 2.7.

1

Lemma 2.13. [Roc68, Theorem 2], [Roc71, Equations (1.11) & (1.12)] Let ¢ and ¥ be given as in (B.2).
Assume that ¥ (u(x)) is majorized by a summable function of x for at least one p € L>°(Q) and that v*({(x))
is magjorized by a summable function of x for at least one ¢ € L'(Q). Then, an element & € L"(2)* belongs
to 0W(u) given in (B.3) if and only if £(x) € OY(u(z)) for a.e. x € QL.

Proof of Theorem 2.12. Let us set k = 1. The first part of the proof is parallel to Proposition 2.3 and
Proposition 2.6. Let us show

1
=9J(p1)+ P+ ;’C(m, P0);
P=p1

(2.24) 5, (j(p) + F(p) + %WQQ(p, Po))

where IC is given in Definition A.1 and the subdifferential is defined in Definition B.1. Recall I'(-) from
Definition B.2 and its equivalent property in Lemma B.1. Note that J € I'(L"(Q2)) follows from the
convexity of S and Lemma 2.9. The same is true for F.

Let us underline that it is crucial that we have a priori bounds on the optimizers of (2.3) in L# () for
some 8 > 1. Indeed, Lemma 2.10 yields that even if » = 1 (which corresponds to the logarithmic entropy
type interaction energy), we have that the optimizers satisfy p, € LA(). In this case, without loss of
generality, one considers the continuity of J and F in L?(Q). Otherwise, we gain L"(£2) bounds simply
from the growth condition on S at 400, hence we can also refer to the continuity of 7 in this space.

Furthermore, from Proposition A.3, we have

|
H™ = §W22('7P0) on Lﬁ(Q)

for H : LP(Q) — RU {+o0} given in (2.7) and g’ := % Thus we get W2(-, po) € T(LP(2)). Lastly,

by the parallel argument in Lemma 2.5, H is also in I'(L? (2)). From Lemma B.2 and Lemma 2.4, we
conclude (2.24).

The rest of the proof is parallel to that of Theorem 2.2. From (2.24) and Lemma 2.13, there exists
& € 0J(p1) satistying (2.11), ¢, € K(p1,p0) and C € R such that

§+ﬁ+®—C:Oa.e. on 2.
i
and we conclude (2.5). O

To give a fine characterization of the critical regions {p = 1} arising in our models, we introduce a new
scalar pressure field p defined via the subdifferential of J and its ‘nontrivial’ value on the set {p = 1} is
due to the non-differentiability of S at sg = 1. This construction is inspired by recent works on crowd
motion models with hard congestion effects (see for instance [MRCS10, MS16]).

Definition 2.4. Let (pi)N_, be given by the minimizing movement scheme (2.3) and let ¢, € K(py., pr—1)-
For k€ {1,...,N}, let us define py, : @ — R by

max {€ - & —®,5'(1-) ) in g (0,1),
(2.25) pr=pe(m) =0 % — 0 in p71({1}),

min {C - 87’“ - <I>,S’(1+)} in pi ' ((1,+00)).
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where the constant C € R might be different at each step. We observe that by the convezity of S and (2.5)
shown in Theorem 2.12, pr can be written in compact form as

r _ q),s’(1—)} ,S’(1+)}.

T

(2.26) P = min {max {C —

Lemma 2.14. For k€ {1,...,N}, ¢, € K(pk, pr—1) and py are Lipschitz continuous in (2.

Proof. From [San15, Theorem 1.17] we have that ¢y, shares the modulus of continuity of the cost (z,y) —
|z — y|2. On the one hand, as Q is compact, we conclude that ¢, is Lipschitz continuous. On the other
hand, (2.26) implies that py is Lipschitz continuous. |

Remark 2.5. Let us remark that py is given in the same manner as in (2.25) or equivalently in (2.26)
throughout the manuscript. As the Lipschitz continuity of the Kantorovich potential is independent of the
enerqgy, the above lemma holds true for all the models we consider in this paper.

In the following lemma we deduce more properties of the optimizers of the JKO scheme (2.3).

Lemma 2.15. Suppose that Assumption 1.1 takes place. Let (pk)ffvzl be obtained wvia the minimizing
movement scheme (2.3). For k € {1,...,N}, let ¢;, € K(pr, pr—1) given in Theorem 2.12. Then, we have

(1)
0, in fi7' (=00, 8"(04)),
(2.27) pe =11, in fir '(["(1-), S'(1+)]),
(S")"'o fx, otherwise,

a.e. in Q, where f :=C — gj’? —®, and S’(0+) and S’(1%) are given in (2.1);
(i) pi is continuous in §);
(iii) the formula

IV fxl

(2.28) Vorl = gy

holds true a.e. in py ' (R*\ {1}).
(iv) If in addition we suppose that Assumption 1.2 takes place with some o9 > 0 and m € [1,2], then pg
is Lipschitz continuous in  with a Lipschitz constant that might degenerate when 7 | 0.

Proof. (i) By Assumption 1.1, S’ is strictly increasing function in R* \ {1} and
S'(0+) < S'(a) < S'(1-) < S'(1+) < S'(b)

for all @ € (0,1) and b > 1. Thus, (2.5) shown in Theorem 2.12 implies that pr(z) = 0 for z €
fi (00,8 (04)]) and pg(z) = 1 for @ € f,'([S"(1-),S'(1+)]). Also, S’ is invertible in R* \ {1},
therefore (2.5) implies

pr(@) = (8") 7" o fiu(x) for z € f7' (S'(RF\ {1})),

and we conclude (2.27) a.e. in Q.

(ii) Let us show that py is continuous in 2. Define (S’/)\*1 :R — [0, +00) by

0, in (—o0, §"(0+)],
(2.29) (8 1t:=141, in [S'(1-), 58 (1+)],
(S")~1,  otherwise.
Note that from (2.27), we have
(2.30) pr=(S) 1o fi ae. in Q.

—

From the continuity and invertibility of S” in Rt \ {1}, we conclude that (S’)~! is continuous in R. Fur-
thermore, from Lemma 2.14, we know that ¢, is Lipschitz continuous and @ is Lipschitz continuous by
assumption, therefore fi is Lipschitz continuous. From (2.30), we conclude that pj is continuous in €.
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(iii) As S is strictly convex and twice differentiable in R* \ {1} (by Assumption 1.1), (S")~! is differen-
tiable in S’(R* \ {1}) and on this set we have

—— 1

(2.31) (s~ = ()" = 7o (5T

Therefore, by (2.30) we have (2.28).
(iv) Using Assumption 1.2, from (2.28), we conclude that a.e. in p, ' (R* \ {1}) we can compute

‘ka| 2
2.32 V = < o9p
( ) | pk' S//(pk) — 2 k

7m‘Vf/€|.

As fy is Lipschitz continuous and py is bounded (since it is continuous in ), we conclude that py is
Lipschitz continuous in Q if m € [1,2]. O

Remark 2.6. Let us emphasize that the representation formula (2.27) is independent of the entropy func-
tion S, therefore it remains the same for all energies considered in the manuscript. As a consequence, the
formula (2.28) holds also true for all the models throughout the paper.

3. LINEAR DIFFUSION WITH DISCONTINUITIES — A CORNERSTONE OF OUR ANALYSIS

In this section we show the well-posedness of (1.4) in the most simple case considered in this paper, i.e.
when the associated internal energy is an entropy of logarithmic type. We give a fine characterization of
the ‘critical phase’ {p = 1} via a scalar pressure field. In the next sections we shall see how the results and
ideas from this sections will be important to build solutions for problems with more general nonlinearities.

In this section, we assume that S : [0, +00) — R is defined by

S(p) = {plogp, for p € [0, 1],

(3.1)
2plogp, for p € (1,400).

Let us notice that S defines a continuous superlinear function on R* with $’(1—) =1 and S’(1+) = 2.

Our main theorem from this section can be formulated as follows.

Theorem 3.1. For py € Z(Q) such that J(po) < +oo and S given in (3.1), there exists p € L*(Q) N
AC*([0,T); 2(R)) and p € L*([0,T]; H()) N L®(Q) with \/p € L*([0,T); HX(Q)) such that (p,p) is a
weak solution of

Oip— Alpp) =V - (Vep) =0, in (0,T) x Q,
(32) P(O, ) = po, in Q7
(V(pp) + V®) - n=0, in [0,7] x 09,

in the sense of distribution. Furthermore, (p,p) satisfies

p(t,x) =1 a.e. in {0 < p(t,z) <1},
(3.3) p(t,x) € [1,2] ae. in{p(t,z) =1},
p(t,z) =2 a.e. in {p(t,x) > 1}.

If in addition py € L>=(Q) and ® satisfies (2.4), then p € L*([0,T]; HY(Q)) N L*°(Q).

In the proof of the previous theorem we rely on the minimizing movements scheme associated to the
gradient flow of J, defined in (2.3). As technical tools, we define different interpolations between the
discrete in time densities (px)i_, and pressures (px)2_, and obtain a weak solution of (3.2) by sending
7 0.

By the definition of py in Definition 2.4, the optimality condition (2.5) in Theorem 2.2 applied to the
energy from this section, can be simplified as follows.

Lemma 3.2. For allk € {1,..., N}, there exists C € R such that

(3.4) pr(1l +log pi) + % +®=C a.e.
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Proof. Note that a subdifferential 0S(p) of S : [0,4+00) — R is given by
1+4logp for0 < p<1,
(3.5) 0S(p) =< [1,2] for p=1,
2(1+1logp) for p>1.
Thus, Theorem 2.2 and (2.25) imply

1 in ;" ((0,1)),
(3.6) Pr=C-%2%_dc[l,2] inp;'({1}), a.e.
2 in pi (L, +00)).-
Thus, we simplify (2.5) into (3.4). O

An easy consequence of the above constructions is the following result, which can be seen as a simplified
version of Lemma 2.15.

Lemma 3.3. For k € {1,...,N}, py is Lipschitz continuous in Q2. Here, py, is given in (2.3).

Proof. From (3.4) in Lemma 3.2, we have that
C - (@) _ <I>> — 1} a.e.

(3.7) pr(z) = exp {pktm ( {

As py and ¢, are Lipschitz continuous from Lemma 2.14, ® is Lipschitz continuous by the assumption and
pr has a lower bound +1 from (3.6), (3.7) implies that pj is Lipschitz continuous. O

3.1. Interpolations between the discrete in time densities, velocities, momenta and pressures.
As technical tools, similarly as it is done in the framework of models developed for instance in [MRCS10,
MS16, Sanl15], we introduce two different kinds of interpolations between the objects in the title of the
subsection. These interpolations actually are independent of the considered energies, and we refer back to
them throughout the paper.

Piecewise constant interpolations. Let us define p7,p” : Q — R and v7,E7 : Q — R? as follows

pT(t,x) = pr(z),

p7(t,x) == pr(x),

V(1,2) = T VG,(2),
E"(t,x) :=p"(t,z)v" (t, )

(3.8) for (t,z) € (k—1)1, k7] x Qand k € {1,...,N},

for (px)Y_, obtained in (2.3) and ¢, € K(px, pr—1) given in Theorem 2.2.

By standard arguments on gradient flows (see for instance [San15, Proposition 8.8], [MS16, Lemma 3.5]),
we have the following.

Lemma 3.4. It holds that
1 Y 1 _
5o 2 Wi ok pr1) = o Z/Q V|2 dpr () < T(po) — inf J.
k=1 k=1

Furthermore, there exists a constant C > 0 such that for any 0 < s <t <T
(3.9) Walp™ (1), p7(s)) < Clt — s + 7).
Proposition 3.5. Let (p7)r>0 and (p7)r>0 given (3.8) and (2.25), respectively. We have the followings.
(1) (p7)r>0 is uniformly bounded in L*([0,T]; HY(Q)) N L*°(Q);
(2) (VP )r>0 is uniformly bounded in L?([0,T]; HY(Q));
(3) if in addition py € L°°(2) and ® satisfies (2.4), then (p7)r>o is uniformly bounded in L*([0,T]; H*(£2))N
L(Q).
Proof. Step 1. Clearly, by construction, (p”),~¢ is uniformly bounded. Furthermore, if py € L (), then

Lemma 2.1 implies that (p),>0 is uniformly bounded by a constant depending only on the data for all
te 0,7

_ Step 2. Now, let us show that (Vy/p7);>0 and (Vp7),>¢ are uniformly bounded in L?(Q). Let
¢ € K(pr, pr—1). Lemmas 2.14 and 3.3 implies that ¢, pr and py are Lipschitz continuous functions, and
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therefore by Rademacher’s theorem one can differentiate these function a.e. in 2. Note that {p, # 1} is
an open by the continuity of pi in Lemma 3.3 and thus (3.6) implies

(3.10) Vpr =0 a.e. in {p; # 1}.
Therefore, we get
(3.11) log prVpr =0 and (pr — 1)Vpr, =0  a.e.

Next, we claim that
(3.12) Vpr-Vpr =0 a.e. in .

From (3.6), the above holds in the open set {p; # 1} and in the interior of {p; = 1}, but we point out
that 9{pr = 1} may have positive measure even though p;, is Lipschitz continuous. In order to show (3.12)
in Q, we apply the coarea formula and (3.10). As py is Lipschitz and Vpy is in L'(Q), we could use the
coarea formula in [KP08, Corollary 5.2.6] and conclude that

[ vpdvadde= [ [ ol
Q R J(px)~1(s)

where ##4~1 stands for the (d — 1)-dimensional Hausdorff measure. From (3.10), we conclude (3.12).
Differentiating (3.4) and applying (3.11) and (3.12), we have

va
_Yo V& =V (pp(1+logpr)) = Vpr + i—kVpk a.e.
k

T

(3.13)
From (3.13) and (3.12) again, we have
(3.14) 2pk (| oul’ + |V<I>|2) > |Vpil* + Z%Vka a.e.,
from where we can write
201 ('W’k' +I901) 2 [V 4RIV VA ae
As py, € [1,2] (from (3.6)), we have

¢ 2
[ (om 4 vyae) <2 [ B Vol 4o + 2 va|2.

From Lemma 3.4, we conclude that (y/p7),~0 and (p”),¢ are uniformly bounded in L?([0, T]; H'(Q2)) for
all 7> 0.

Moreover, if pg € L>(£2), we have |[px||z~ < ||poll L (a)e
from (3.14) we get

1
(3.15) / |Vpr|?dz +/ Vor?dz < C,
Q | Q ||p0||LOO(Q)edTH[A‘I’]+HL°° | |

from where we have (p7),¢ is uniformly bounded in L2([0,T]; H*(Q)). O

AT|[A®) > (from Lemma 2.1), and therefore

Corollary 3.6. Let (p”),~o and (p7)+>0 be as in the previous proposition. There existp € L([0,T]; H*())
and p € LY(Q) such that

pT — pin LYQ), as 710,
and
p” —pin L*([0,T]; H'(Q)), as 7 | 0.

along a subsequence. If in addition py € L () and ® satisfies (2.4), then we also have p € L*([0,T]; H*(Q))
and p” — pin L*(Q), as 7 ] 0.

Proof. The weak sequential compactness of (p™),~¢ follows from the uniform boundedness in L?([0, T]; H*(£2))
in the previous proposition. Also, as (p”),>o has the ‘quasi-Holder’ type estimates in Lemma 3.4 and
(V/P")r>0 is uniformly bounded in L?([0,T]; H'(2)), we conclude the strong compactness of (p™),~o in
L'(Q) by a consequence of a modified version of the classical Aubin-Lions lemma in Lemma C.2, ofter used
in similar context (see for instance [DFM14, Proposition 4.8] and [Lab17, Proposition 5.2)). If py € L>°(Q),
the last statement simply follows from the similar arguments. O
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As a consequence of the above results, we have the following.
Lemma 3.7. (p,p) given in Corollary 3.6 satisfies (3.3).
Proof. Step 1. Let (p7,p") be defined in (3.8) and (2.25). First, from (3.6), we have

(3.16) " =2)(p" =13 =0@"-1)(p" -1)-=0in Q.
As it holds that
(3.17) (" =D+ = (p=1)+| < |p" —pland [(p" = 1)— = (p = 1) < [p" = pl,

Proposition 3.5 implies that both (p™ — 1)1 — (p—1); and (p” — 1) — (p—1)_ in L (Q) as 7 L 0 (up
to passing to a subsequence).

Step 2. Let us show that for a.e. ¢t € [0, 7

(3.18) [ 0(t.2) = 2)(p(t,2) = do = 0 and [ (p(t.) = (p(t,2) ~ 1)-do = 0.
Q Q
We only show the first one as the parallel arguments work for the second one. From (3.16), we have
(3.19) 0= / " (t,x) —2)(p" (t,z) — 1); dadt.
Q

Recall that up to passing to a subsequence, (p”),~o convergences weakly—* in L°°(Q) (see Proposition 3.5)
and ((p"(t,7) — 1)1 )r>0 converges strongly (from Step 1) in L1([0,7 x Q]) as 7 | 0. Combining these with
(3.19), we conclude the first equation of (3.18).

As p™ € [1,2] for p” given in (2.25), we have p € [1,2] a.e. in Q. Thus, (3.18) implies that
(-2(p—1)s=(p-1(p—1)_ =0 ae
and we conclude (3.3). O

Proposition 3.8. Let E” be given in (3.8). Then up to passing to a subsequence, (E");~o weakly-x
converges to

E:= —V(pp) —V®p, in 2'(Q;RY),
as 7} 0 where and (p,p) is given in Corollary 3.6.

Proof. For any test function ¢ € C°(Q;R%), we claim that up to passing to a subsequence,
(3.20) I::/(-d(ET—E)—>O7 as 7 J 0.

Q
From (3.11), we have log p”Vp™ = 0 in a.e. in @ and thus it holds that

(3.21) —E"=p"Vp" +p"(1+1logp")Vp" +VOp" =V (p"p") + VPp.

By the weak convergence of (p7)r~o to p, we already have that
/ ¢-Vodp™dt — / ¢-Vodpdt, 710,
Q Q

we only focus on the other term. By integration by parts and and from the fact that ¢ € C°(Q;R?), we
study thus

7, = / (p"p" — pp)V - (dzdt.
Q

By subtracting and adding the same term in the above equation, we get

T, = I + I3 where Iy = / (p7 —p)p"V - (dadt and T3 = / p(p” —p)V - (dxdt.
Q Q

From the Hoélder inequality, we have
Lol < " =l @ P e @IV - Cllze=(q)-

As p” — pin LY(Q) as 7 | 0 and |[p7|| () is uniformly bounded (Proposition 3.5), we conclude Zy — 0

as 7 | 0. On the other hand, as p” = pin L>®(Q) as 7 | 0 (Proposition 3.5), and p € L'(Q) we have
Z3 — 0 as 7 | 0 as well, and thus we conclude (3.20). O
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To arrive to the time continuous PDE satisfied by (p,p) from Corollary 3.6, as technical tools (inspired
from [MRCS10, MS16, San15]), we introduce a geodesic interpolation between (py )i, and we consider the
corresponding velocities and momenta as well.

More precisely, we define p” : [0,T] = Z(Q2), V", E ¢ M (Q; R?) as follows: fort € ((k—1)7,k7] and k €
{1,...,N}

(k ~ty7( ,x)Jrld) 7(t, ),
(3.22) ‘ZTT(’ ) vT(t,x) o (B=bvT (t, ) +id)
E (t,z) :=p"(t,2)v" (¢, z),

where p” and v7 are given in (3.8).

Following the very same steps as in [Sanl5, Lemma 8.9] and [MS16, Step 2 in Theorem 3.1], we have
the following.

Lemma 3.9. We have that
(i) (P7)r>0 is uniformly bounded in AC*([0,T); 2(Q));
T

(ii) there exists C > 0 such that / / 1972 dpr dt < C;
o Ja

(iii) (ET)T>0 is uniformly bounded in . (Q;R?).
As a consequence, we have that along a subsequence
(iv) sup Wa(p;,pt) = 0, as 710,
te[0,T]
(v) EE X E, in #(Q;RY), as 70,

where p is given in Proposition 3.5 and E is given in Propositon 3.8.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us underline that the main reason for introducing the interpolations (p7, ET) is
that by construction, they satisfy the PDE

0" +V-E =0, in(0,T)x9Q,
(3.23) 7(0,7) = po. in Q,
E n=0, on [0,T] x 09,

in the distributional sense. Then, Lemma 3.9 and Proposition 3.8 allow us to conclude that (p, p) satisfies
(3.2) in the distributional sense. Last, from Lemma 3.7, we conclude that (p, p) satisfies (3.3). The thesis
of the theorem follows. O

4. LINEAR DIFFUSION ON {p < 1} AND POROUS MEDIUM TYPE DIFFUSION ON {p > 1}

As we will see below, in this section the diffusion coefficients and the diffusion rates are not necessarily
supposed to be the same in the regions {p < 1} and {p > 1}. Therefore, a technical difficulty arises,
because of the lack of a simple way (as in (3.4)) to derive the first order necessary optimality conditions
for the minimizing movement scheme. To overcome this issue, instead, we use a particular decomposition
for S, which allows us to use the construction from Section 3.

In this section too, we impose Assumption 1.1. If pg ¢ L*°(Q2), we impose additionally (1.10). Further-
more, throughout this section we suppose also the following: S : [0, +00) — R satisfies

(4.1) P < 5"(p)in (0,1)

g2

for some constant oy > o for oy given in (1.10a). This corresponds to (1.9) with m = 1.
A direct consequence of the above assumption is the following result.

Lemma 4.1. S : [0, +00) — R satisfies
(4.2) S"(04) = —oo.
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Proof. Integrating (4.1) from % to p, it holds that

, (1 , 1 1
g > —(log=—1 .
S (2) S’ (p) ; (og2 ogp)

As 09 > 0, we conclude that

1 1 1 1
S’(p)§5’<)10g+logp - —00 as p— 0T,
2 ()] 2 g2
([l
Example 4.1. Form > 1, S:[0,400) = R given by
plog p, for p € 10,1],
Sp)=9" 1", m
——(p™ —1), for p e (1,+00).
Note that Assumption 1.1 follows from the smoothness and strict convezity of S in RT \ {1} and
m
"1-)=1 "1+) = ——.
S-)=1<8(14) = "
(4.1) is obtained by
1, for p € (0,1),
o0 =1" oy
mp >m, for pe (1,+00).

(1.10) 4s also fulfilled with r =m
In this case, Ls(p,p)(x) is given by

p(fﬂ), if 0 < p(z) <
Ls(p.p)(@) = { pla) € [1, #}, it p(x) = 1,
<> ot i) > 1.

Our main theorem from this section reads as:

Theorem 4.2. Suppose that (1.10) and (4.1) hold true. For py € P(Q) such that J(po) < +oo, there
exists p € LP(Q) N AC*([0,T]; 2(Q)) for B given in (2.23) and p € L*([0,T]; H*(Q)) N L>®(Q) with
VP € L*([0,T); H*(2)) such that (p,p) is a weak solution of

Op — A(Ls(p,p)) =V - (VEp) =0, in (0,T)xQ,

(4.3) p(0,-) = po, in Q,
(V(Ls(p,p)) + VO®p) - n=0, in [0, 7] x 09,
in the sense of distribution. Furthermore, (p,p) satisfies for a.e. (t,z) € Q
p(t,z) =S5"(1-) if 0 < p(t,z) <1,
(4.4) p(t,z) € [S7(1-),5'(14)]  if p(t, x) =1,

p(t,x) =S (1+

(
If in addition po € L () and © satisfies (2.4
p € LA([0,T]; H'(Q)) N L=(Q).

) if p(t,z) > 1.
)

, we can drop (1.10) from the statement and we obtain that

Let us briefly explain the outline of the proof. First, we define S, and Sj : [0, +00) — R by

] S8'(1-)plogp, for pe[0,1],
(4.5) Salp) = {S’(H—)plogp, for p € (1, +00),
and
(4.6) Sp(p) == S(p) — Sa(p)-

We show the convexity of S, and twice differentiability of Sy in Lemma 4.4. This particular decomposition
will be useful when deriving optimality conditions in our minimizing movement scheme. Under (4.1), we
are able to apply similar arguments as the ones in Section 3.

We point out that Lemma 4.1 implies that py > 0 a.e. (see Lemma A.4). Theorem 2.2 and (4.1) yield
that py satisfies the following lemma.
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Lemma 4.3. Let (py)i_, be obtained via the minimizing movement scheme (2.3). Fork € {1,...,N} and
br € K(pr, pr—1) given in Theorem 2.2, we have that
Pk = {17 in f([8'(1-), §" (1)),

4.7
(4.7) (S")"Yo fr, otherwise,

in Q, where fr ;= C — E—’“ — &, and S'(1+) is given in (2.1). In particular, py is Lipschitz continuous in
Q with a Lipschitz constant that might degenerate when 7 | 0.

Proof. This result is a direct consequence of Lemma 2.15. Indeed, Lemma A.4 shows that pp > 0 a.e. in
Q, therefore spt(pg) = Q. Also, in Assumption 1.2 we have m = 1. Moreover, since Lemma 4.1 yields that
S5’(04) = —oo, and since we can eventually modify pp on a negligible set, we can use the representation
(4.7) for py everywhere in . O

The following properties hold for S, and Sp.

Lemma 4.4. S, is conver and continuous in RT. Also, Sy is continuously differentiable and Sy’ is locally
Lipschitz continuous in RT. In particular, we have

(4.8) Sy(1) = S(1) and Sy'(1) = 0.

Proof. From convexity of S, it holds that S’'(1—) < S’(1+) and thus S, is convex. It is obviously also
continuous by construction.

On the other hand, by the construction in (4.5), Sy(p) is differentiable on R™ \ {1}. Let us show that
Sp(p) is differentiable at p = 1. By differentiating (4.5) on Rt \ {1}, we have that

S (p) = S'(1-)(1 +1logp), forpe (0,1),
¢ S (1+)(1+1logp), for p e (1,400).

Therefore, we conclude that
Sy (1-) = 8"(1-) = S,/ (1-) =0 and S/ (1+) = S'(1+) — S,/ (1+) =0

and S, is continuously differentiable in R*. As both S’ and S, are locally Lipschitz in R* \ {1}, S’ is
also locally Lipschitz continuous in RT \ {1}. As S}’ is continuous, we conclude that S,” is locally Lipschitz
continuous in RT. Lastly, Sp(1) = S(1) follows from S, (1) = 0.

O

Lemma 4.5. Let (pr)i_, be obtained via the minimizing movement scheme (2.3) and let (py)h_, be
constructed in (2.25). For k € {1,...,N}, we have that

O

(4.9) (1 +log pr) + Sy’ (pr) + - +®=C, a.e. in Q.

Proof. We first note that Lemma 4.1 implies that p; > 0 a.e. in {2 (see also Lemma A.4). From Theorem 2.2,
we have

S’(li ) in PEI((OJ)),
(4.10) Pe=9C—-% o, inpt({1}),
S'(14), in p, (1, 400)).

As Sy'(1) = 0, (4.9) holds in p, '({1}) by (4.10).
Lastly, from (4.10), in p; ' (R* \ {1}) we have that
(4.11) Sa(px) = pr(1 +log py).
As S" =8,/ + S in p ' (R*\ {1}), we conclude (4.9) from Proposition 2.8. O
Remark 4.2. As Sy is differentiable, in the previous proof we also used the fact
S =08, + Sy,
the proof of which can be found for instance in [Kru03, Corollary 1.12.2].

Similarly as in Section 3, we construct piecewise constant and continuous in time interpolations (p™, v7,E")
~T
and (p7,v",E ). Similarly to Proposition 3.5, we can formulate the following result.
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Proposition 4.6. (p7);~0 and (p7)r>0 satisfy the exact same bounds as in Proposition 3.5.

Proof. Let us notice first that the uniform boundedness of (p7),~o in L (Q) follows from the construction
in (4.10).

Let us show the other estimates from Proposition 3.5. Note that both S’ and p; are locally Lipschitz
continuous (as we have shown in Lemma 4.4 and Lemma 4.3). Thus, Lemma 4.5 implies that

-

(4.12) 74 - Vo =Vp + (];k + Sb"(pk)) Vg, ae. in Q.
k

By the parallel computation as in (3.14), we conclude that

V|2 ?
| ¢2k| + 20| VO[* > |Vpr|? + ps (Z: + Sb"(ﬂk)) Vi[>

2pr
-

From Lemma 4.8 below, we have
Pk 2 1
o (25 00) 1P >
Pk 03Pk

|Vor|? a.e. in Q.

The rest of arguments is parallel to Step 3 in Proposition 3.5, thus we conclude the thesis of the
proposition. O

Corollary 4.7. Up to passing to a suitable subsequence, the sequences (p™)r>o and (p7)r>o converge in

the same sense as in Corollary 3.6.

Remark 4.3. From (4.12), we have

V| |V (F(pr, i) [?
2 Pk

Then, if po € L (), this observation together with the uniform L> bounds on p™ imply uniform L*([0,T]; H*())
bounds on F(p™,p7).

20k + 20| VO[ > , where F(p,p) :=pp+ pSy'(p) — Su(p)-

As the proof of Proposition 3.5, we rely on the coarea formula when proving the following result.

Lemma 4.8. For (py)N_, and (px)i_, given in (2.3) and (2.25), it holds that

1 .
(4.13) Ipk + prSy” (o) ||V pr| > U—2|Vpk| a.e. in Q.
Proof. If x € {py # 1}, then (4.11) implies that
T
(414) B+ 81 (pu(0) = 5. ((a)) + 5 (pu(a) = " (pn (o)

From (4.1), we conclude

1 .
(4.15) Ipk + prSy” (pr)| > . a.e. in {pg # 1}.

Recall that py, is Lipschitz continuous (cf. Lemma 4.3) and thus
Vpr =0 ae. in {px =1}

(see for instance [EG92, Theorem 4.(iv), Section 4.2.2]). Therefore, we conclude (4.13).
O

Proof of Theorem 4.2. As and initial observation, let us remark that by similar arguments as in Lemma
~T

3.9, one obtains the same estimates for the continuous in time interpolations (57, v",E ), and by passing

to the limit as 7 | 0, we obtain a continuity equation of the form

Since the limits of (p7, ET) and (p7,E7) are the same, it remains to identify the limit of the latter one to
get the precise form of our limit equation.

Step 1. From direct computation as in (3.21), we obtain that
(4.16) —E7 = p"V(S/(p7) +p (1 +1logp")) + p"V® = V(p" Sy (p7) — Sp(p”) + Sp(1) +p"p") + p" V.
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From Proposition 4.6 and Corollary 4.7 we can claim that
(4.17) V(™S (p7) = Sp(p™) + Sp(1) +p7p") = V(pSy'(p) — Su(p) + Sp(1) + pp),

as 7 | 0 in the sense of distribution. Indeed, using the strong L (Q) compactness of (p7),~¢ and the weak-x
compactness of (p”),>o in L>°(Q), we can pass to the limit p"p”. Recall that (p7),~¢ in uniformly bounded
in L?(Q) for § given in (2.23). As r < 3, Corollary 4.7 yields the convergence of (p™),>¢ in L7 (Q). As the
growth rate of pSy’(p) and Sy(p) is r, we conclude that p7 S} (p™) — Sp(p™) — pSy (p) — Sp(p) in LY(Q) as
71 0.

Step 2. Let us show that

(4.18) pSy'(p) — Su(p) + Sp(1) +pp = Ls(p,p),
By parallel arguments as in Lemma 3.7, we conclude that (p, p) satisfies (4.4). Thus, it holds that
(4.19) pSa'(p) = Salp) = pp, ace. in p~ (R \ {1})

and we conclude (4.18) a.e. in p~}(RT \ {1}). From (4.17) and (4.18), we conclude (4.3).

Furthermore, from Lemma 4.4, we obtain that

Sy (p) = Sb(p) + Sp(1) +pp =pin p~ " ({1}).

and we conclude (4.18) a.e. in p~1({1}). O

In particular, (4.3) can be also represented in the form of a continuity equation, as we show below.
Theorem 4.9. Suppose that (1.10) and (4.1) hold true. Let py and (p,p) be given in Theorem 4.2. If

3d—4

(4.20) > Tod
then (p,p) also satisfies

0ip =V - (pV (S"(P)Lipzry +PLip=1})) = V- (pV®) =0, in (0,T) x 2,
(421) p(ov ) = po, in Qa

p [V (S (p)Lpr1y + plip=1}) + VO] - n =0, in [0, 7] x 09,
in the sense of distribution. If in addition pg € L*°(Q) and @ satisfies (2.4), we can drop (1.10) and (4.20)
from the statement.

Remark 4.4. Note that (4.20) is equivalent to § > 2 for 8 given in (2.23) and the inequality holds for
anyr>1ifd=1ord=2.

Proof. Note that (4.4) and (4.5) imply that S’ (p) = p(1+logp) in p~1(RT \ {1}). Furthermore, from (4.6)
and (4.8), it holds that

(4.22) Iy = 5"(p)Lipz1y + PLip=1} = p(1 +log p) + Sp'(p).
From p € L?([0,T]; H'(2)) and (4.4), we obtain
(4.23) plog pVp =0 a.e.

From (4.22) and (4.23), we have
pVIi = pVp +pVp + pV(Sy'(p))-
Next, we claim that
pVp+pVp+pV(S'(p)) € L'(Q).

Consider the first term pVp. Recall from Theorem 4.2 that Vp € L%(Q). If pg € L>(Q), then p € L>(Q)
from Lemma 2.1 and thus pVp € L*(Q). On the other hand, if (4.20) is fulfilled, then 3 given in (2.23) is
greater than or equal to 2. As p € L#(Q) from Lemma 2.11, we obtain p € L?(Q) and thus pVp € L'(Q).

Furthermore, as V. /p € L*(Q), Vp = 2p%V\/ﬁ € L'(Q) and the second term is in L'(Q). Lastly,
PV (SH (p) = 20 S," () V/p.

As the growth rate of p3 Sy (p) is v — 3 and r — 1 < 2, p € L#(Q) implies p2S,”(p) € L*(Q) and the last
term is in L'(Q).
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Lastly, we have

pVIy = V(pp + pSy'(p) — Su(p) + Sp(1)) = VLs(p, p)
for Lg given in (1.5). By Theorem 4.2, we conclude that (p,p) is a weak solution of (4.21). O

5. POROUS MEDIUM TYPE DIFFUSION ON {p < 1} AND GENERAL DIFFUSION ON {p > 1}

Similarly to the classical porous medium equation, in this section we do not expect solutions to be fully
supported. As in Section 3, let us first study an example with a particular nonlinearity.

5.1. Same diffusion exponent. In this subsection, we suppose that S : [0, +00) — R is defined by

(5.1) S(p) = mi—ml for p € [0,1],

for p € (1,+00).
where m > 1.
Our main theorem in this section can be formulated as follows.

Theorem 5.1. For py € () such that J(po) < +oo and S given in (5.1), there exists p € LP(Q) N
AC2([0,T); (2(Q), W3)) and p € L2([0,T); H*(Q))NL>(Q) with p™~z € L2([0,T); H*()) such that (p,p)
is a weak solution of

Dp— A([(m — 1)p™ + 1]2) — V- (V&p) =0, in (0,T) x Q,

(5.2) p(0,-) = po, in Q,
(V([(m =1)p™ +1]£) + V®p) - n =0, in [0,7] x 99,
in the sense of distribution. Furthermore, (p,p) satisfies
p(t,x) = 5 a.e. in {0 < p(t,z) < 1},
(5.3) p(t,x) € [m”ﬁl, %} a.e. in {p(t,x) = 1},
p(t,z) = 22 a.e. in {p(t,x) > 1}

In addition, if po € L>=(Q) and ® satisfies (2.4), then p € L=(Q) and p™ € L([0,T]; H*(Q)).

Let us recall the definition of (p)_; and (pg)_, from (2.3) and (2.25), respectively. Let us underline
that in the setting of this section due to the structure of the nonlinearity we typically expect spt(pg) to
be a proper subset of 2, unlike in the case of Lemma A.4 which was used in Section 3 and Section 4. For
this reason, we expect the Lipschitz continuity of p}ffl instead of pg. The following result is a simplified
version of Lemma 2.15, tailored to the entropy function (5.1).

Lemma 5.2. For all k € {1,..., N}, there exists C € R such that

T

(5.4) Py = (C — @ — <I>) a.e.
+

In particular, pZ’_l is Lipschitz continuous. Here, ¢y, is given in Theorem 2.2.

Proof. Note that

_m_ m—1
m—1P fOI‘0<,O< 1, %7 in plzl([ovl))’

(55) 950 =1 [;mg2m] forp=1,  and p=qC-% -8 inpl({1),  ae
2mpm! for p > 1. = in p;; " ((1,+00)).

for py, given in (2.25). Then, Theorem 2.12 implies that
O

(5.6) 7y + - + ® = (C a.e. on spt(pg)

for some constant C € R.
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Moreover, if p;, = 0 a.e. on some set A C £, then Theorem 2.12 and S’'(0+) = 0 (from (5.5)) imply that
D :
C——=—-®d<0ae. in A,
T

and we conclude (5.4).

Next, recall that Lemma 2.14 yields that ¢, is Lipschitz continuous and thus (C — 57’“ — @) is Lipschitz

+
continuous as well. As Lemma 2.14 yields the Lipschitz continuity of pg, and since this has a positive lower
bound 5 (from (5.5) and (2.5)), we conclude that py~ ! is also Lipschitz continuous. O

Lemma 5.3. Let (p7)r>0, (D7)r>0 stand for the piecewise constant interpolations given in (3.8) and (2.25),
respectively. Then ((p7)™ 2)r>o and (p),>o are uniformly bounded in L2(0,T); H*(Q)).

Proof. From Lemma 5.2, it holds that

1 1Vo 1 B
(5.7) Iy = —pp V= p; % = V(i pr) ae.

As pi and le_l are Lipschitz continuous from Lemma 5.2, we have

1 mel
(5.8) i = pi V(oY) + p. 2Vpi ae. on spt(py).

Furthermore, since we have the Lipschitz continuity of pz%l and (5.5), we apply a parallel argument as in
the proof of Proposition 3.5 and conclude that

(5.9) (pr' B 1)Vpr, =0 and V(p]"™ ') - Vpr =0 a.e. on Q.
From (5.8) and (5.9), we have that

1 —_
(5.10) T2 =pilp2V (o M) + | Vpkl|® a.e. on spt(py).

As pi, > 2 a.e. in Q as in (5.5), we conclude that

m—1
m 2 1
(5.11) i > <ml) P2V (PP HI? + |Vpi? ae. on spt(py).

m—1

(5.9) yields that Vpr = 0 a.e. on spt(pr)® = {pr = 0}. Furthermore, as p;'~~ is Lipschitz continuous
(see Lemma 5.2), we have

3 — c
pEV(p 1) =0 a.e. on spt(py)°.
Therefore, (5.11) holds a.e. on €.
On the other hand, applying Lemma 3.4, it holds that

T
/ /Ifda:dtg2(j(p0)—infj)+T.$d(Q)HV<I>||Loo.
0 Q

As p%V(pZ%l) = m—f (pzi_%) and since (p”),>¢ is uniformly bounded in L?(Q) (with 3 > m — 1/2,

m—3
see Lemma 2.10) we conclude that ((p7)™ 2,50 and (p7),o are uniformly bounded in L2([0, T]; H(2))
(since (p7),>o is also uniformly bounded) and therefore we conclude. O

As a consequence of Lemma 5.3 and Lemma C.2, we have the following convergence.

Corollary 5.4. Let (p7)r>0 and (p7)r>o be as in the previous lemma. Then, there exists p € L™(Q) and
p € L2([0,T); HY(Q)) with p™ 2 € L2([0,T); H()), such that

pT = pin L™(Q), as 7 10,
and
p” — pin L2([0,T]; H'(Q)), as 7 | 0.

along a subsequence.
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Proof of Theorem 5.1. Note that (5.5) implies (5.3) for (p7,p7). Then, a similar argument as the one in
Lemma 3.7 together with the convergence results from Corollary 5.4 reveals that (p,p) satisfies (5.3).

Furthermore, from Lemma 5.2, we can write that
E"=p'vl = —p"V((p")"p") = Vp" = —{(m —1)p"(p")" " Vp" + (p7)"Vp"} — V&pT.
Note that (5.5) implies
(5.12) ()™ =1)Vp" =0 a.e.
From (5.12), we conclude that

(m—1)p" (p")™'Vp" + (p7)"Vp" = (m —1)p" (p")" 'V + % {(m—1)(p")™ +1} Vp,

(513) = LV ([m — 1)o7 + 11p7)

As described in Proposition 3.8, up to passing to a subsequence and using the weak-x convergence of
(p7)r=0 in L>®(Q) and strong convergence of ((p7)™),>o in L'(Q) from Corollary 5.4, we conclude that
(E™),>0 converges to

1
E:=——V([(m-1)p" +1]p) - V&p
in 2'(Q;R?), as 7 | 0 where (p,p) is given in Corollary 5.4. The rest of argument is parallel to the proof
of Theorem 3.1.
A last remark is that if pg € L>°(Q), then clearly p € L*°(Q) and thus p™ € L2([0,T]; H*(Q)). O

In particular, (5.2) can be also represented in the form of a continuity equation, as we show below. Note
that the condition (5.14) below is equivalent to 8 > 2m.

Theorem 5.5. For S given in (5.1), let pg and (p,p) be given in Theorem 5.1. If
(5.14) d < 4m,
then (p,p) also satisfies

op—V-(p[V(p"'p)+V®])=0, in(0,T)xQ,
(515) p(07 ) = Po; in Q»
plV (p"'p) + V] -n=0, in [0, 7] x 9,

in the sense of distribution. If in addition pg € L>®(2) and ® satisfies (2.4), we can drop (5.14) from the
statement.

Proof. As p e L2([0,T); H'(Q)) and (p, p) satisfies (5.3) from Theorem 5.1, we have

(5.16) Vp=0 ae. in {p # 1}
and thus
(5.17) (" =1)Vp=0 a.e.

From the direct computation using (5.17), it holds that

m—1

L= pV (p"'p) = (p™) "V ((pm)Tp) =p"Vp+ mT_lpv(Pm)'

We claim that Z; € L'(Q), which is enough for the representation (5.15). Recall from Theorem 5.1 and
Lemma 2.11, Vp € L?(Q), p € L>=(Q) and p € L?(Q) for § given in (2.23). Consider the first term p™Vp.
If pg € L>(Q), then p € L°°(Q) and thus p™ € L?(Q). If (5.14) holds (which is automatically the case if
d =1,2), then 8 > 2m for 3 given in (2.23) (r = m in this case) and thus p™ € L*(Q). Furthermore, as
Vpm~ 2 € L2(Q) and

so the last term is also in L'(Q).
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Lastly, it is easy to see that

L:(

m—1)p™ +1 m—1 m
) Vp + pV(p™)
m m
_ _ m £
=V ([m-1)p" +12).
O

5.2. Porous medium type diffusion on {p < 1} and general diffusion on {p > 1}. In this subsection,
we suppose that Assumption 1.1, Assumption 1.2 and Assumption 1.3 hold true for some r > 1, for some
m > 1 and a constants 01,09 > 0. Note that S can be any function satisfying the assumptions, and in
particular in the case of r =1, S behaves as the logarithmic entropy when p > 1.

Our main theorem from this section reads as:

Theorem 5.6. Suppose that Assumption 1.1, Assumption 1.2 and Assumption 1.8 hold true for m > 1
and r > 1 such that

(5.18) m <+ g

is fulfilled for B given in (2.23). For py € P(Q) such that J(py) < +oo, there exists p € L?(Q) and
p € L2([0,T); HY(Q)) N L*°(Q) such that (p,p) is a weak solution of

9ip— A(Ls(p,p) = V- (Vp) =0, in (0,T) x 2,

(519) ,0(0, ) = Po; in Qa
(V(Ls(p,p)) + V®p) - n =0, in [0,7] x 09,

in the sense of distribution. Furthermore, (p,p) satisfies

p(t,z) =S5"(1-) it 0 < p(t,z) <1,
(5.20) pt,x) € [S'(1-),8'(A+)] if p(t, z) =1,

p(t,xr) = S"(1+) if p(t,z) > 1.
Here, Lg is gwen in (1.5). In particular,
(5.21) P73 € L2([0,T); HY(Q)) if m <1 and p™ 2 € LY([0, T); WH9(Q)) ifr <m <r+ g

for q € (1,2) given in (5.36). If in addition pg € L () and ® satisfies (2.4), we can drop (1.10) and
(5.18) from the statement and we obtain p € L>(Q) and p™ € L?([0,T]; H(2)).

Example 5.1. As a nonlinearity, one can consider for instance the following one. For m > r > 1, let
S :]0,4+00) = R given by

S(p) o 7:;7:7 forp E [07 1}7
7-p_1 +ﬁ_ 7.i13 fO’I“pE (1,+OO)
This clearly satisfies Assumption 1.1 and Assumption 1.2, since
m r
S'(1-) = < = S5'(14).
(1-) m—1 r—1 (1+)
In this case, the operator Lg(p,p) becomes
p(x)m + 5 if0<p(z)<1
Ls(p,p)(@) = { pl@) € [, 7] if pla) = 1,
p(a)" + 25 if p(z) > 1.

First, using similar ideas as in Section 4, we choose a constant [ such that

(5.22) 1<1<p

for 8 given in (2.23) and split the function S into S, and S, : [0, +00) — R defined by
w’ for p < 1,

(5.23) Sulp) =

73/(“—);([)[_1)7 for p > 1,
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and
(5.24) Sy(p) == S(p) = Sal(p)

Note that S’(14+) > S’(1—). Then, as shown in Lemma 4.4, we conclude that S, is convex and continuous
in [0, +00). Also, Sy is continuously differentiable and S}’ is locally Lipschitz continuous in [0, +00).

Let us recall the definition of (px)2_, and (px)d_, from (2.3) and (2.25). Also, recall the definition of
¢, given in Theorem 2.2.

Lemma 5.7. For all k € {1,..., N}, there exists C € R such that

(5.25) P pk 4+ S (k) = <C _ % <I>> a.e.
+

T

In particular, pr and p?‘l are Lipschitz continuous in Q. If in addition m € (1,2], then py is locally
Lipschitz continuous in spt(pg).

Proof. First, (5.25) follows from the parallel argument in the proof of Lemma 5.2.

Notice that ¢, and pj, are Lipschitz continuous (cf. Lemma 2.14) and f; := C — — ® are Lipschitz
continuous. From (2.28) in Lemma 2.15, we have that

V(p0)™ 1 = = D2Vl = (o = D> G i g (7 )

On the one hand, this, together with (1.9) from Assumption 1.2 further implies
V(o)™ Y < oo(m —1)|Vfi| ae in{zreQ:0<p, <1}
On the other hand, (1.10a) from Assumption 1.3 yields
V(o)™ < 01 = DIl ™" < a1m = DIV Sl max{llppl il 1 ae.in fo €9 pr > 1,

Therefore, we conclude that pz%l is Lipschitz continuous in €.

Lastly, the following identity
2—m

|Vor| = (:;k_ 0 IV(pr)™ | a.e. in spt(py)

shows that pj is locally Lipschitz continuous in spt(pg), provided m € (1,2]. This in particular is also a
consequence of Lemma 2.15(iv). O

Proposition 5.8 below contains all the needed estimates and the compactness result on the sequence
(p7,p7)r>0 that are necessary to pass to the limit as 7 | 0 and prove the main theorem of this section, i.e.
Theorem 5.6. The proof of this proposition requires some intermediate results that are provided below in
Lemmas 5.9, 5.10 and 5.11.

Proposition 5.8. Let (p7)r>0, (p7)r>0 stand for the piecewise constant interpolations given in (3.8) and
(2.25), respectively. Then, (p™ >0 is uniformly bounded in L2([0,T]; H*()).
(1) If r > m, then ((p7)™ 2 )r> is umformly bounded in L*([0,T); H(Q)).
2)Ifr <m<r+ g then ((p7)™ 2),s0 is uniformly bounded in L([0,T]; W(Q)) for some
€(1,2).
(3) If in addition py € L>(Q) and ® satisfies (2.4), then ((p7)™)r>0 is also uniformly bounded in
L2([0,T); HYX(Q)) for any m > 1 and r > 1.

Proof. From Lemma 5.7, it holds that

1 Vo _
Tyi=—pi—" - PEVD = p2 V(o p + Sy (p1) ace.

We follow the very same steps and in the proof of Lemma 5.2 (where we also use (5.8) and (5.9)). Therefore,
we have

=1 1-mt} m—1 -3 3 ’
(5.26) Ti=——p, "oV )+ o PV pg V(e (pr)) ace. on spt(py).
Note that
1 5 _m, —
(5.27) pEV(Sy (pr)) = p2 Sy (pp)V (Pt a.e. on spt(px).

-1
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From (5.26) and (5.27), it holds that

1 _ 1 e -1
T = ————5 (1= Dol *p + 55" (0r) P2 V(1) + 1, Vi, ace. on spt(pp).
(m —1)py,
We can apply (5.9) and conclude (since Vpg = 0 a.e. in {pp # 1}) that
1

_ 2 _
17 = (1= 1)ppr + Sy (pr))” PV (1) + |Vpr|? a.e. on spt(py).

(m—1)2ppm "
(1) If » > m, then Lemma 5.9 below implies

o3 m—z\2 2
WW(% )"+ [Vpi|® a.e. on spt(px).
for o3 given in (5.29). By the parallel argument in Lemma 5.3, we conclude the uniform bound in
L*([0,T; H' ().

@) Ifr<m<r+ g, then Lemma 5.10 below yields the uniform bound of (V(p™)™ 2 ), in L4(Q) for
q given in (5.36). On the other hand, as 2r — 1 < 3, it holds that

1 mf% 2m —1
_ — = <
(m 2>q —mﬁ_TJr% ﬂ2m72r+ﬁ_ﬂ’

7

Y

As p7 is uniformly bounded in L?(Q) from Lemma 2.11, (p™)™" % is uniformly bounded in L7(Q).
(3) From Lemma 5.11, we conclude that
of

ﬁW(P?)P + | Vpil* ae. on spt(pr).

72 >
1—(m

The same argument as before yields that ((p7)™),>0 is uniformly bounded in L2([0,T]; H(9)).

Lemma 5.9. Let us suppose that we are in the setting of Proposition 5.8. If r > m, it holds that

1 _ 1 — m—
(5.28) ﬁz«wnd%mﬂw%»@wm;Wzmw%lﬂm
k
where
-1 1 1
(5.29) o3 1= m T min{,}.
mfi o1 02

Proof. We claim that

(5.30)

s (= 06k o+ 53 )| = min { - L 21,

k 1 02
Recall that
S //( ) — (l - 1)5/(17)/)2_2 if Pr < 1;
¢ (1—1)S'(1+)ph 2 if pp > 1,
and thus by the definition of py (see (2.25)) we have
(5.31) (=)o ok + S (pr) = Sa” (px) + S (pr) = 5" (pr) a.e. in {py # 1},
Thus, (1.9) implies that

S 1
(5.32) wg'fl;) > — ae. in{0<pp <1}
Py 02

Furthermore, as r > m, (1.10a) implies

S”(pz;) > o

5.33
(5:33) e 2 P

1
> — ae. in {pg > 1}.
01

and we conclude (5.30).
Recall that pZ’fl is Lipschitz continuous from Lemma 5.7. Thus, we have

(5.34) V(pr') =0 ae. in {p, =1}
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=

(see for instance [EG92, Theorem 4(iv), Section 4.2.2]). As p%V(p’k”_l) = = V(p;nf%), (5.28) follows

m—

from (5.30) and (5.34). O

[N

Lemma 5.10. Let us suppose that we are in the setting of Proposition 5.8. If r <m <r + 5, then

1

> C|V(p, ®
12(0)

1 _ m—1
s (1= D)p %pe + 56" (ox)) IV (0 2)
k

(5.35)

)za(

for some q € (1,2) and a constant C > 0.

Proof. From the relation between r and m, the constant ¢ defined by

1
(5.36) 9= = 1
ER
is in the interval (1,2). As shown in (5.31), it holds that
1 _ m—1i S P m—1 .
630 T i (0= D+ 5 00) 19005 = SNV ) e in o £ 1)
k k

In {0 < pi < 1}, (5.32) implies that

1
I1Z20l L2 (o< pr<1y) = o HV(Pk )

L2({0<pr<1})

for oy given in (1.9). As g € (1,2) and the domain is compact, the Holder inequality yields that

1_1
QFF

(5.38) 12l 22 (fo<pp<ayy = Tuv(pk lzacto<pe<ay)-

Next, we claim that

(5.39) IZ2ll 2 g1y = CIIV (o Hlzagps1)

for some constant C' > 0.
From (1.10a) and (5.37), it holds that

1 1
(5.40) 1Z2l 2 (1) = Hpi_msﬂ(”’“)w’)’“mﬁ) L1y = o1 ‘ oV ) L2({p>1p)
On the other hand, as
Lomor 1
2 B q’
the Holder inequality yields that
(5.41) S IO e TP | PRTS

m—rr

As py is uniformly bounded in L?(Q) from Lemma 2.10, p*~" is uniformly bounded in Lm%(Q) From
(5.40) and (5.41), we conclude (5.39).

Lastly, as (5.34) holds true, (5.35) follows from (5.38) and (5.39).
]

Lemma 5.11. Let us suppose that we are in the setting of Proposition 5.8. If pg € L () and ® satisfies
(2.4), then it holds that

1 _ 1 _
(5.42) P (= D)ol %pe + 5" (or)) | P2 IV (71| = 04V (0],
k
where
-1 1 1 -3 r—m—3
o4 = Lm min {, } min { (||P0||Loo€dTHA¢HL°°) ’ ) (HPOHLooedTHA@HL“) ’ } .
g1 092
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Proof. Recall from Lemma 2.1 that if pg € L>°(£2), then we have
(5.43) lpwllze < llpolleed™IA®I= = C.
On the other hand, from (5.31) and V(p}* ') = ™=2V(p"), it holds that

1 _ , 1 e m—159" m )
54 Tyim iy (= Dok o+ 517 00) V) = Pt )G (pm) ac.in {oy £ 1},
k P

Then, (5.32) and (5.43) yield that

m—1 m—1

_1 1
5.45 Is| > 2 7| > Cc™ 2 i .e. in {0 1}.
(5.45) ol 2 = o IV (i) 2 = O3V (i) ace in {0 < pr < 1}
Furthermore, (1.10b) and (5.43) imply that
m—1 r_m-1 m—1___1 . _ m .
(5.46) sl = <o IV 2 2 O3 min{ G LV ()] e in {py > 1}
Lastly, as (5.34) holds, (5.42) follows from (5.45) and (5.46). O

Corollary 5.12. Let (p7)r>0 and (p™)r>o be as in the previous proposition and (5.18) hold. There exists
p € LP(Q) and p € L*([0,T); H'(2)) such that

p" = pin L*(Q), as 7] 0,
and
p” —pin L([0,T]; H'()), as 710,
along a subsequence for any s € (0,8) and B given in (2.23).

Proof. Recall that Lemma 2.11 yields that (p”),¢ is uniformly bounded in L?(Q). In both cases r > m
andr <m < r+ g, Lemma C.2 and Proposition 5.8 yield (p”),>¢ is precompact in L*(Q) for any s € (0, 3).

Indeed, first, we consider the case r < m < r + g We apply Proposition 5.8(2) and Lemma C.2(1) to
conclude that (p7),;>0 converges to p in (m=3)a (Q) along a subsequence, where ¢* := dq—_dq and ¢ € (1,2)
is given in Proposition 5.8(2). Note that a direct computation shows that

. 2r—1 2d 3
T T om—1d-2 m-1/2°

By a similar argument, we conclude the strong convergence of (p”),~¢ in L*(Q) along a subsequence, also
in the case when r > m. (]

Proof of Theorem 5.6. Note that by the direct computation as in (5.13) and (4.16), we have
—_E™ = _pTVT _ pTv((pT)l—lpT 4 Sb/(pT)) + pTV‘I)
1
=9 (0= D07+ 057 + 7567 = Su(57) + 1)) + 7.

Then, we have —E™ = VLg(p™,p")+p"V® for Lg given in (1.5). Since I,r < S from (5.18), Corollary 5.12
yields that (p7)!, p™Sy(p7) and Sy(p™) converge in L'(Q) as 7 | 0. As p” is uniformly bounded, we conclude
that

1

—ET—>V<Z

(0= 10+ 057 +55(0) = Su(5) + 5u(1) ) + 9T, a7 0

along a subsequence in 2’(Q;R?). Note that we have p € L” from the uniform boundedness in Lemma 2.11
and p € L%([0,T); HY(Q)) N L>=(Q) from Proposition 5.8. As

1
(5.47) Ls(p.0) = 1 (1= 1) + 107 + 08/ (6) — So(p) + S3(1),

for Lg given in (1.5), we conclude that (p, p) satisfies (5.19). The rest of argument is parallel to Theorem 4.2.
O

In particular, (5.2) can be also represented in the form of a continuity equation, as we show below.
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Theorem 5.13. Suppose that (1.10) and (4.1) hold true. Let po and (p,p) be given in Theorem 5.6. If

1
(5.48) m <7+ 3
and
1
(5.49) ,6’>2andm<§—|—§

hold, then (p,p) is a weak solution of

op =V - (pV (5 (p)Lipery + Plip=1y)) = V- (pV®) =0, in (0,T) x €,
(5.50) p(0,-) = po, in Q,
p [V (S (P)Lgpsry + PLip=1y) + Ve|-n=0, in [0,7] x 09,

in the sense of distribution. If in addition py € L>®(2) and ® satisfies (2.4), we can drop (5.49) from the
statement.

Here, note that if d = 1 or 2, (5.49) holds true for any m.

Proof. (5.48) implies (5.18) and thus (5.21) follows from Proposition 5.8. From (5.49), we can choose [
such that

(5.51) max{lm—2}<l g

From (5.20) and the construction in (5.23), we have
S (P)Lipz1y + PLip=1y = pp' "' + Sy(p).
We claim that

(5.52) pV (o'~ + Si(p) € LY(Q).
By the direct computation, we obtain
(5.53) pV (pp' ™t + S4(p)) = Vpp +ppV (') + pV (S (),
-1 el m—1 5 mey m—21
(5.54) = Vpp' + —pp IV (P E) + TS (p)p2 "V (P 2).

As p € LP(Q) and ,B > 21, pt € L*(Q) and thus Vpp'! € L1(Q). Now, let us consider the second term.
From (5.21), V(p™~2) € L%(Q) for q given in (5.36) and m,r satisfying (5.18). Recall that p € L(Q)
and p € LP(Q). Asl < 5 from (5.51), we have

1+l—m+§ :m—r+1+l—m+% _ l—-r+1 +1

q B g 2 B B 2
Thus, from the Hélder inequality, we conclude that the second term in (5.53) is in L'(Q). Similarly, as
r—m+ 1 >0 from (5.48), Sy (p)p2~™ € Lﬁ(Q) and

<1

Loromss i+ <1,
q B 2p
we conclude that the third term is in L}(Q) and (5.52).
Next, we claim that
(5.55) PV (pp' ™" + Sy(p)) = VLs(p,p)
for Lg given in (1.5). As p € L2([0,T]; H*(Q)) and (p,p) satisfies (5.3) from Theorem 5.1, we have
(5.56) Vp=0 ae. in {p #1}.
As p! € L*(Q) from Theorem 5.6 and (5.51), we have
(5.57) (P —=1)Vp=0 ae.
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From the direct computation using (5.57), it holds that

PV (o' 7'p) = (P)TV ((pl)l%p) =p'Vp+ Z_TIPV(/)[)
(I-1)p" + l—

1
- v
I Pt

-V (((l—l)lerl)?).

1pV(pl)

Therefore, we have
(5.58) Vo= + 850 =V (0= D+ DY 408 (6) — Si(0) + Su(1))
From (5.47) and (5.58), we conclude (5.55).

Lastly, note that if pg € L>(Q) and and ® satisfies (2.4), then p € L>(Q) and thus p! € L?(Q) for any

[ > 0. Furthermore, we choose [ = m+1, then from Proposition 5.8.(3), we conclude that ppV (p™) € L1(Q).
Therefore, we show (5.52) without (5.49).

]

6. UNIQUENESS VIA AN L!'-CONTRACTION

We construct an L! contraction result, inspired by [DMM16, Section 3] and [V4z07, Theorem 6.5]. In
particular, this will imply the uniqueness of the solution of (4.3)-(4.4) and (5.19)-(5.20). Let us underline
the fact that because of the generality of the previous two problems, on the one hand, the techniques from
[DMM16, Section 3] do not apply directly. On the other hand, because of the presence of the critical regimes
{p* =1}, i = 1,2, the construction from [V4z07, Theorem 6.5] does not apply directly either. Therefore,
we develop a careful combination of these two approaches to be able to provide an L'-contraction for all
the systems considered previously, with general initial data.

Theorem 6.1. Let (p*,pt), (p?,p?) be solutions to (1.4)-(1.6) with initial conditions p, pz € P(Q) such
that J(p}) < 400, i = 1,2. Suppose that Ls(p’,p') € L?(Q), i = 1,2 (or equivalently p* € L*"(Q),
i1 =1,2). Then we have

loy = pillzre) < llpo — PollLr), £* —ae t€[0,T].

Remark 6.1. It worth noticing that the assumption Ls(p®,p*) € L*(Q), i = 1,2 in the statement of the
previous theorem seems quite natural in the setting of L'-type contractions for porous medium equations
(see [V4z07]). In our setting, because of the LP(Q) estimates on p' (where B is defined in (2.23)) and
because of the L -type growth condition on Lg at +00, this assumption is fulfilled already if 8 > 2r. In the
same time, no such assumption is needed if the initial data is in L>°(Q2), since in that case L™ estimates
hold true for pi for a.e. t € [0,T] (see Lemma 2.1).

Proof of Theorem 6.1. Let (p',p') and (p?, p?) be two solutions to (1.4)-(1.6) with initial data p{ and p3
respectively. Let ¢ € C2((0,T] x ) and using the notation

I(p,t) :=/Q% (pr — p}) da

we compute

d
It = / dp(p' — p*) + 00 (p* — p?)da.
Q

Now, using the equation (4.3) and by integrating the above expression on (0,t), we get
t
(6.1)  Z(p,t) =I(p,0) + /0 /Qaw(pl —0%) + Dp(Ls(p',p") — Ls(p?, %)) — Vi - VO (p' — p?)dzds

t
=TZ(p,0) + / / (Ls(p",p") — Ls(p*,p*)) [Adsp + Ap — AV® - V| dzds,
0o Ja
where we use the notation

pt—p’
(6.2) A= ,
Ls(p',p') — Ls(p*,p)
with the convention A = 0, when Lg(p',p') = Ls(p? p?). Note that Lemma 6.2 below implies that if
Ls(p',p') = Ls(p?,p?) ae., then p! = p? and p! = p? a.e. Furthermore, on this very particular set
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actually there is no contribution in the integral on the right hand side of (6.1), so it is meaningful to set
A = 0 there. Also, because of the monotonicity property of the operator Lg (see Lemma 6.2), we have
that A > 0 a.e. in Q.
Similarly to the arguments from [DMM16, Section 3], for ¢ : @ — R smooth with |¢| < 1, we consider

the dual backward equation as

Ao+ Ap — AVP® -V =0, in (0,T) x £,
(6.3) Ve -n=0, on (0,T) x 99,

(p(T, ) = Ca in Q.
Let us notice that if we are able to construct a suitable (weak) solution ¢ to (6.3), for which the computa-
tions in (6.1) remain valid, we can deduce the L!-contraction result, after optimizing with respect to ¢. In
general one cannot hope for smoothness of A, and so (6.3) is degenerate. Therefore, we introduce suitable
approximations which will allow to construct smooth test function.

Let us define two Borel sets
By ={p'>1/2}u{p® >1/2}
and E, := Q \ E;. We suppose that both sets F; and E, have positive measures w.r.t. Z9*! otherwise

we simply do not consider the negligible one in the consideration below. First, by Lemma 6.3, we have
that AL F; is bounded. Second we have the following

Claim. AL Ey € L*(E»).
Proof of the claim. Let us notice that we can write
By =({p' <1/2}n{p* 2 1/2}) U ({p' 2 1/2} n{p* <1/2}) U ({p* <1/2} N {p* <1/2})
= EyUEZUE;.
We further decompose Ej := ({p* < 1/2} N {1/2 < p? <1})U ({p* <1/2} n{p? > 1}) =: E{* U E}%. For
a.e. ¢ € E}! we have
Ls(p'(9).p'(9) = Ls(p*(2), P*(2))
p'(a) = p*(9)
where p(q) is between p*(g) and p?(q). Since restricted to Ef! both p! and p? are bounded by 1, we have
that A='L Bt € Le°(EBiY).
For a.e. ¢ € E1? we have
A(g) = Ls(p'(2),p"(2)) — Ls(p*(a), »*(0))
pi(q) = r*(q)
since restricted to this set |p'(q) — p?(q)| > 1/2 a.e. Therefore, by our assumption on Lg(p’,p’) we have

that A= L Ei% € L?*(E3?). Therefore, A~' L E{ € L?(E}).
Similarly, we can draw the same conclusion in the case of F3, and so A1 L E? € L%(E3).

A7 (g) = = p(a)S"(p(q))

<2|Ls(p*(q),p"(9)) — Ls(p*(q), > (),

For a.e. ¢ € E3, we conclude similarly as in the case of E}!, i.e. we have that

A-Y(g) = Ls(p'(a),r'(2)) — Ls(p*(a), »*(q))
pHa) — p*(q)
where p(q) is between p!(q) and p?(q). Since restricted to E3 both p' and p? are bounded by 1/2, we have
that A~'L E3 € L>=(E3).
Therefore, combining all the previous arguments, one obtains that A= L Ey € L?(E3), and the claim
follows.

= p(9)S"(p(q)),

Let ¢ > 0 and let K := ||Alg, ||p~(0). Let Af := max{e, Alg, }. Then, we have ¢ < A7 < K; and
|Af — Alg, ||p~(@) < €. In the same time, for 0 < § < K given, let A5 = A5(d, K') be smooth such that
§< (4571 < K and

(6.4) (A5)™' — [(Alg,) )5k strongly in L(Ey), ase 0,

*

for any ¢ € [1,+00) and in particular, AZ! = [(Alg,) ']sx weakly-x in L>(FEs) as € | 0. Here, for a
nonnegative function f : @ — [0, 4+00) we use the notation fs5 x := min{max{f,d}, K}.
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Now, let us define A, : Q@ — [0, +00) as
s { AS, acin By,
A5, a.e.in Es.
By construction min{e; 1/K} < A. < max{K3,1/d}. For § > 0 let Ay (which depends also on ¢,§ and K)
be a smooth approximation of A, such that
(6.5) min{e;1/K} < Ap < max{K;,1/d}, in Q;
e <Ay < K, ae. in Ey;
1/K < Ay <1/, ae. in Ey;
and Ay — A. strongly in L%(Q) for any ¢ € [1,400) and in particular
(6.6) Ag 2 A, weakly — * in L=(Q), as 6 | 0.

Moreover, we have
(6.7)
Ayt = [(Alg,) Ysx in LY(Ey), ¥ q € [1,+00) and A,' = [(Alg,) sk in L®(Es), as max{f,e} ] 0.

To check this last claim, we argue as follows.
145" = [(ALE,) ol pa(m) < 1451 = (A5) ™ lnagm) + 11(A2) " = [(Alg,) s x|l o)
= [[(Ap — A3)/(ApA5) || La(ma) + 1(AD) ™ — [(ALg,) ™ s,se [l La(mn)
< K?||Ag — A5l agmy) + 1(45) 7" = [(ALg,) okl Lagm) — 0,

as max{6,e} | 0, by the construction of A9 and A5. We conclude similarly about the weak-x convergence
as well.

Since ® € W1°°(£2), we consider a smooth approximation of it, (®9)g~¢ such that V&g — V&, as 6 | 0,
strongly in L (Q).

Let us consider the regularized dual equation which reads as

Orpg + (1/A9)Apg — V@ - Vg =0, in (0,T) x €,
(6.8) Vg -n =0, on (0,7) x 99,
wo(T,-) = ¢, in Q.

Let g be the smooth solution of (6.8), when the coefficient function is Ay and we use this in (6.1) as
Z(9,T) = L0, 0) = /OT /Q dspe(p' — p*) + Apo(Ls(p',p") = Ls(p*,p%)) = Vipo - V(p' — p?)duds
= | seolp’ =) + Dp(Ls(p'p") = Ls(p.0%)) = Vo - V(p' — p*)d.2™!
+ /E Dspo(p" = %) + Apo(Ls(p',p") = Ls(p?,p%)) = Vg - VO(p' = p?)dg""!
= [E (Ls(p',p") = Ls(p?,0%)) [Adspo + Apy — AV - Vipg] A2
+/E (p" = p?) [Ospg + A Ay — VO - Vipy| AL = T, + T

It remains to show that both |Z;| and |Zz| can be made arbitrary small. Because ¢g solves (6.8) with the
coefficient function Ay, we have

7, = / (Ls(p'p") = Ls (0. 1)) [Adug0 + Mgy — AV® - Vipg] A2

S

(Ls(p",p") — Ls(p?,p*)A [0s00 + Ay ' Apg — V®g - Vipg] AL

1

—

(Ls(p'.p") = Ls(p?, %)) (Ag — A) Ay * Ay 2 Appd 2

1

(Ls(p",p") — Ls(p*,p*)) AV - (VOg — V)AL

1

Il
e

+

.
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From here, by (6.5) we have

1
2

Z1] < e 2|4, * Apgllr2(o) (/E [Ls(p",p") — Ls(p®,p*)|*| Ao — Al2d=€”d+1)
1

T
+/ /Ipl—p2\|V<p9||V(I>9—V<I>|dxdt.
0 Q

By Lemma 6.4(1), the summability assumption on p’ € L?"(Q) and the approximation V&, — V@, in
LQ’”,(Q) as 0 | 0, we conclude that the second term in the previous inequality tends to 0 as 68 | 0. By

_1

Lemma 6.4(2), we have that ||A, > Apgl|12(g) < C for some constant independent of 6 and e. Furthermore,
by (6.6), by the summability assumption on Lg(p?,p’) and by the construction of A§, for § small enough
we have

/ ILs(p",p") — Ls (o, p) 2| 4g — AP 2!

E;

<2 [ 1Ls(pp') - Ls(P 0P Plde — ATPALT 42 [ Ls(plp!) - L) PIAT - APAZ
Eq Ey

<e? 4 Ce?,

for some constant independent of ¢, 6, K and therefore by the arbitrariness of €, we conclude that Z; = 0.

In the case of Zo we argue as follows.

I, = / (p' = p?) [0sp0 + A7 Apyg — V& - Vipg| dzH?
E>

e

(p" = p°) [Osp0 + Ay ' Apyg — VP - Vipy| L
(o' = P)(AT! = A7 AF A 2 Agpd LM

2

I
.

(p" = ") Vo - (Vg — V)AL

4
S

e

(0! =P = Ak AT Aoz 4 [ (o = )k - A AT a2
+/ (p' — P*) Vg - (Vg — V) dgt!

Eo
=:To1 + Too + Tos.

In the case of Zy3, we argue exactly as in the case of the second term of Z; to conclude that this term tends
to 0 as 0 | 0. As for the other terms, let us notice that by the definition of A;}( (on Es), we have that

) ae. in {0 < A7t <6} N Ey,
)A—l — A;}(‘ —{0 ae. in {6 < A1 < K} Es,
AL — K ae in {K <A '} NE,,
and thus

(6.9) ‘A‘l - A;}(‘ <6+ (A1 - K)4, ae. in Bo.
1
Therefore, since A; < 6_%, we obtain

I Zor| < 1|4 2 Aollz2(@)072 (3llp" = ol L2y + 10" = P)AT = Kl 2((re<a-1ynmm) = 0,
as K — +oo and 6 | 0 (in this order). This is true indeed, by Lemma 6.4(2) and by the fact that

LK<A . (pl 7p2)2(A71 7K)2d§/pd+1 < LK<A . (pl 7p2)2(A71)2d92pd+1
<A-1}NE, <A-1}NE;

< / (Ls(php") — Ls(p?, p?))2 A2+,
{K<A-1}NE;,
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Since A™' € L?(Es), by Chebyshev’s inequality £ ({K < A~'} N E,) — 0, as K — 400, so by the
summability of L%(pi, p') we deduce that for K large enough last term in the last inequality is smaller than
02. Therefore, by the arbitrariness of §, we conclude that Z»; has to be zero.

1
To show that |Zys| can be made arbitrary small, using again A; < 672 ae. on Ey and Lemma 6.4(2),
we have

Zaf <5700 [ (01 = P - Ay Pagt
E>

By the fact that Ag}(,Agl € L*®(Ey), p',p? € L?*(E2) and by the weak-x convergence of A;' to Ag}(

in L*°(E5), we conclude that for 6 small enough, the r.h.s. of the previous inequality is smaller than §,

therefore by the arbitrariness of § we conclude that Zss = 0. O

The next three lemmas (in an implicite or explicite form) are used in the proof of Theorem 6.1.

Lemma 6.2. Let (pt,p'), (p,p?) : Q — R? satisfy (1.6). Then Lg (defined in (1.5)) defines a monotone
operator in the sense that

(6.10) if p'(z) < p*(x), then Ls(p",p")(z) < Ls(p*,p*)(z).
In particular, for x € Q, if
(6.11) Ls(p',p") () = Ls(p,p")(2),

then p'(x) = p*(z) and p'(x) = p*(2).
Proof. First of all, if we have (6.11) and p*(z) = p?(x), then (1.5) and (1.6) imply p*(z) = p?(x). Thus, it
is enough to show that p'(z) = p?(x).

Let us show now that Lg is a monotone operator in the sense of (6.10). First, note that p — pS’(p)—S(p)
is strictly increasing in R* \ {1}. Indeed, from the strict convexity of S (Assumption 1.1), one has that
(6.12) 3p(pS'(p) — S(p)) = pS"(p) > 0 in RF \ {1}.

Therefore, (6.10) holds if p*(z), p%(z) € (0,1) or p*(x), p*(x) € (1,4+00). Thus, it remains to treat the
remaining cases.

Consider the case that p*(z) = 1 < p?(x). Let us recall that S and S’ are continuous in R* and R*\ {1},
respectively (by Assumption 1.1). As p — pS’(p) — S(p) is strictly increasing in (1,+00), we have that

(6.13) Ls(p*,p*) = p*(2)S'(p*(2)) = S(p*(2)) + S(1) > Jim pS'(p) = 5(p) + S(1) = 5'(14)

> p'(z) = Ls(p',p")(@).
So, from (6.13) and (1.6), we conclude (6.10).

Similar arguments show (6.10) in the case when p!(z) < p?(x) = 1.

Lastly, by combining the inequalities in (6.10) for two previous cases, p!(z) = 1 < p*(z) or pl(z) < 1=
p%(z), we conclude (6.10) for p'(x) < 1 < p*(z). O
Lemma 6.3. We differentiate two cases.

(1) Assume m =1 for m given in (1.9). Let (p*,p') and (p?, p?) satisfy (1.6). Then we have
(6.14) 0 < A <max{oy,02}, a.e. in Q,
where A = A(p',pl, p?,p?) is given in (6.2) and 01,09 are from Assumption (1.9)-(1.10).

(2) Let m > 1. If there exist co > 0 and a Borel set E C Q such that pl,p2 > co a.e. on E, then
o

ALE € L*®°(FE) and A < max {Ul, m2_1} a.e. in E, where A = A(p*, p*, p,p?) is given again in
€

(6.2).

Proof. Let us recall the definition of Lg from (1.5), i.e.
LS(pvp)(tv {E) = [p(tv ‘T)S/(p(ta (E)) - S(p(tv .’E)) + S(l)} ]]-{p;ﬁl} (tv .’E) + p(ta x)]]-{pzl} (tv .’E)
The non-negativity of A follows from the monotonicity of Lg shown in Lemma 6.2. We fix ¢ = (t,z) € Q
a Lebesgue for p', p?, pl, p? and assume that p'(t,z) > p?(t,z). If ¢ € {p' = 1} N{p? = 1} there is nothing
to check, since A(¢q) = 0 in both cases.
Let us show (1).
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Case 1. If g € ({p* > 1} n{p? > 1}) U ({p* <1} N {p? < 1}) we have that

@S (0(9)) — S(0(0)) — @S (@) + S(7(0)) = 55" (7) (6 (a) — 7*(g)) > min {1, 1} (0 (@) - 2(0)),

g1 02
where j is a constant between p!(q) and p?(q). Therefore, we get that A(q) < max {o1,02}.
Case 2. If g € {p* > 1} N {p? = 1} we have from (1.6) that
PH(a)S"(p'(a)) = S(p'(a) + S(1) = p*(a) = p'(0)S"(p' (2)) = S(p'(q)) — (S"(1+) — S(1)).

As p — pS'(p) — S(p) is continuous in [1, p*(g)] and differentiable in (1, p'(q)), the mean value theorem
yields that
1

o (r'(q) — 1),

P ()8 (P (@) = S(p'(9) — p*(@) = pS"(P)(p' (a) — 1) =
where p is between 1 and p'(g). Parallel arguments show (6.14) on the region {p! = 1} N {p? < 1}.

Case 3. If g € {p* > 1} N {p? < 1} from similar arguments as in Case 2, we have that

P (@)S"(p (@) — S(p*(q)) — (S'(1+) — 5(1)) > a(pl(Q) —1)
and
(S'(1=) = S(1)) = [p*(0)S"(p* () — S(p" (9))] > 0%(1 - p%(q)).
As S'(14) > S’(1-), we conclude that
L7 )(a) = L 1)a) = 0106 (@) = 1)+ a1 = 2(0) =min {2 (01 (a) = 70

The proof of (2) follows the very same steps as the one of (1). By the lower bound ¢y > 0 on the densities

o
in F, we conclude that A < max {01, m2_1} .
o .

Lemma 6.4. Let € > 0 and let p. be a smooth solution to (6.8). Then there exists a constant C =
C(T,||V¢|l2) > 0 such that
(1) supiepo, ) [IVeellL2(o) < C;
1
(2) [4s * Ape|lr2q) < C.

Proof. The proof of this results follows the same lines as the one of [DMM16, Lemma 3.1], therefore we
omit it. g

Corollary 6.5. Let pg € Z(Q) satisfy T (po) < +o00. A solution pair to (1.4)-(1.6) such that Lg(p,p) €
L?(Q) is uniquely determined by po.

Proof. From the contraction result in Theorem 6.1 we deduce the uniqueness of p. Now suppose that there
exists to pressure fields p', p? solving (4.3) with the same p. Taking the difference of these two equations
we get

A(Ls(p’pl) - LS(p7p2)) = Ov in @/((07T) X Q)
For a.e. t € [0,T] and for any ¢ € C?(Q) we have that

0/Q(LS(Ptaptl)LS(PtvP?))A‘de/{ }(ptl — p7)Apda,
pt=1

where in the last equality we used the fact that p; = p? a.e. in {p; < 1} U {p; > 1}. By the arbitrariness
of ¢ we conclude that p} = p? a.e. on {p; = 1} and therefore the uniqueness of p follows.
O

39



7. DISCUSSIONS

7.1. The emergence of the ‘critical region’ {p =1} — an example. We consider d = 1 and we show
that the critical region {p;, = 1} is of positive measure, whenever the two regions {p, > 1} and {p; < 1} are
also of positive measure. We will see that this also implies that the critical region is expected to emerge
for positive times, even if Z1({pg = 1}) = 0 (and if L' ({po < 1}) > 0 and L' ({po > 1}) > 0). This
phenomenon corresponds to the growth of the critical region for self-organized criticality in [BJ92].

Proposition 7.1. Let Q C R and (p,p) be given in Theorem 3.1. Ift € (0,T) is a Lebesgue point both for
t — py and t — py with

(7.1) L'{p<1}) >0 and L' ({p; > 1}) >0
then £L*({p: = 1}) > 0.

Proof. Let us show that p(t,-) € C%2(Q) for a.e. t € [0, T]. From Theorem 3.1 we know that 8,p € L2(Q).
As a consequence, we have that

T T b
| o ptarde< [ [ aptta)lde < Jouplie THe - al.
0 0 a

z€[a,b]
Thus, p € L'(0,T;C%2(£2)) and we conclude.

Let t € (0,T) be a Lebesgue point for both ¢t — p; and ¢ + p; such that Z1({p; < 1}) > 0 and
ZL'({p+ > 1}) > 0. Then (7.1) and (3.3) imply that there exists {U;};eq1,2) subsets of © such that
L1U;) > 0 and p; =i a.e. in U; for i € {1,2}. As p; is continuous in Q for a.e. t € [0,T], there exists a
point zo € Q such that p;(zo) = 3/2. Since N := p; * ((5/4,7/4)) is a nonempty open set, N has a positive
measure. From (3.3), we have that N C {p; = 1} and thus we conclude. O

Remark 7.1. A similar result can be stated in higher dimensions as well, based on the fact that Sobolev
functions cannot take finitely many values, except if they are constants.

7.2. Formal derivation of a free boundary problem — an example. Next, we formally derive the
free boundary motion corresponding to the particular problem in (3.2)-(3.3). For the analysis, we assume
that p and p are continuous in @ and smooth in {pp < 1}, {1 < pp < 2} and {pp > 2}, which also have
smooth boundaries. Under this assumption, we deduce the following free boundary problem,

Op—Ap—V - (Vdp) =0, in {pp < 1}, p=1, in {pp < 1},
(7.2) p=1, in {1<pp<2}, and ¢ —Ap = AD, in {1 < pp < 2},
Op —28p =V - (V@p) =0, in {pp > 2}, p=2, in {pp > 2},
with boundary conditions
[D(pp)' | = |D(pp)'~| =0, on{pp=1},
(7.3) 24 2-
[D(pp)*"| = [D(pp)*~| =0, on{pp=2},
where for any f: @ — R and ¢ € R, denotes
Dfet(t,z) = lim Df(s,y).
f= 0 e) (s,y)—= (), fs9)

(s,y)e{£(f—¢)>0}

As the condition (3.3) implies

p<l, p=1 in {pp <1},
(7.4) p=1 1<p<?2 in {1 <pp < 2},
p>1 p=2, in {pp > 2},

the first system of equations in (7.2) is a direct consequence of Theorem 3.1. Next, we consider the second
system of equations in (7.2). For a test function £ € C°(Q) such that & is compactly supported in
{1 < pp <2}, (7.4) implies

(7.5) 0= / —po& + D(pp) - DE+ D® - DEAxdt = / —0¢& + (pDp + pDp + D®) - DEdxdt
Q Q

- / (Dp + D®) - DEdadt.
Q
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Thus, we conclude that —Ap = A® in {1 < pp < 2}. The other cases follow from (7.4).

Lastly, let us find the boundary condition (7.3) on {pp = 1} and {pp = 2}. As [EP04, Theorem 3.1],
we deduce the condition based on integration by parts. Note that the boundary condition (7.3) can be
regarded as Rankine-Hugoniot conditions. For a test function £ € C2°(Q), (3.2) implies that

(7.6) 0= / —p0& + [D(pp) + pD®] - D{dadt = / —pO& + [D(pp) + pD®] - D{dxdt
Q {pp<1}
+ / —pd€ + [Dp + D®] - DEdxdt + / —p0:& + [D(pp) + D] - DEdxdt.
{1<pp<2} {pp>2}
For a set N = {pp < 1},{1 < pp < 2} or {pp > 2}, the smoothness of p and p in N and (7.2) imply that
(7.7) | o0& + (Dwp) + pD?] - Dedadt = [ (=pmi + [D(pp) + pDE] - m, ) d#",
N N

where n; and n, are the outward normal vectors on ON in x and t directions, respectively. From (7.6) and
(7.7), we conclude that

(7.8) 0= / [D(pp)'~ — D(pp)' ] - ny&d st + / [D(pp)*™ — D(pp)*~] - n&dot,
o{pp<1} d{pp>2}

By the arbitrariness of &, (7.8) implies that
[D(pp)'* = D(pp)' "] nz  =0on {pp=1},
[D(pp)** = D(pp)*~] - m, =0on {pp=2}.

As n, is parallel to D(pp) on the level set of pp, we conclude (7.3).

7.3. A nontrivial stationary solution — an example. In this subsection, in one spacial dimension, we
study stationary solutions to our problems. For simplicity, let us consider Q := (0,1) C R for I > 0. Let
(p,p) be a solution to (3.2)-(3.3) with potential ¥(z) = 2z, where we have associated energy functional,

! !
pla)) = [ Stp@)da+ [ apptads,
0
where S is given in (3.1). From Theorem 3.1, there exists a solution (p,p) of

Op — 02(pp) —20,p =0, in (0,T) x (0,1),
(79) p(oa ) = Po; in (07 l)7
az(pp) +2p =0, in [OaT] X 6(0, l)a

and (p,p) satisfies (3.3). A stationary problem associated to (7.9) is as follows: find p,p : [0,]] — R
satisfying (3.3) and

(7.10) 92(pp) +20.p =0, in (0,1),
. du(pp) +2p0=0, atz=0andz=1L

The solution (p,p) can be also characterized as minimizers of the the free energy J. Writing down the
optimality conditions (using Lemma 3.2) we have

exp (A — ) in [0,A4)N[0,1],
(7.11) p=11 in [A,A+ 3] n[o0,1],
exp(24+1—-2z) in (A—l—%,l} no,1],

where A is chosen to satisfy

1
(7.12) / pdz = 1.
0
Depending on the value [, some cases in (7.11) may not be present (see Figure 2).

Lemma 7.2. If I >1In(3) + 3, then all three sets {p < 1}, {p =1} and {p > 1} have positive measure.
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(A)l=1 (B)1=0.8 (c)1=0.6

FIGURE 2. Stationary solutions

Proof. We consider the continuous function f : R — R defined by
1
f(z) :==exp(z) — 3 exp(2z +1—20) — 1.

We claim that there exists a solution of f(z) =0 in (0,1 — ). First, f(0) = —3 exp(1 — 2I) < 0. Also, as

I >1n(3) + 3, it holds that
1 1 3
f(l—2>—exp<l—2>—2>0.

Therefore, by the continuity of f and by the intermediate value theorem, we can find A € (0,1 — %) such
that f(A) = 0. For given A, we recall p from (7.11). Since we have

1
(7.13) A, A+ 50D,

all three sets {p < 1}, {p = 1} and {p > 1} have positive measure.

It remains to show that with this choice of A, p given in (7.11) satisfies (7.12). From (7.11) and (7.13),
it holds that

l A A+3 l
/p(x)dx:/ exp (A — ) dx—|—/ 1d5r:—|—/ exp (2441 —2x) dx

0 0 A A+3

= (exp(A)—l)—i—%—F (;—;exp(2A+1—21)> =fA)+1=1.

and we conclude. O

Remark 7.2. By a parallel argument as above, one can check that a set {p > 1} will have zero measure if
le (O,ln (%) + %} To see this, let us differentiate two cases.
Case 1. If 1 € (0,1n2], then we have

_exp(—=x) .
p(z) = = exp(—]) in [0,1].
Case 2. Ifl € (ln 2,1n (%) + %}, then it holds that

_ Jexp(A—=x) in [0,A4),
”(x)_{1 in [A4,1].

where A € [l — 1,1) is a solution of exp(A) — A =2—1.
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APPENDIX A. OPTIMAL TRANSPORT TOOLBOX

Let us recall now some basic definitions and results from the theory of optimal transport. Let II(u, v)
be the set of all Borel probability measure 7 on €2 x € such that

(A x Q) =u(Ad), =n(Qx B)=r(B) for all measurable subsets A, B C Q.
For p,v € P75(Q) we define the 2-Wasserstein or Monge-Kantorovich distance as

1
2

(A1) Walpo) = min{ [ oyl sy € )}

For ¢ : Q — R measurable, we use the notations

() i= max{9(e),0). () = max{ o). 0} and 6°(a) = ess iut { 5o = o2~ 0l0)}
where = € Q.

A.1. Basic facts from optimal transport. Let us recall the definition and properties of Kantorovich
potentials and optimal transport maps. There results are well-known in the literature, we refer for instance
to [Sanl5] for the proofs of the statements.

Definition A.1. Let p,v € Z(Q) be given.

(1) We say that ¢ : Q — R is a Kantorovich potential from p to v if (4,3 ) is a mazimizer of the
Kantorovich problem:

sup{ [ odut [ vaw: (0,0) € @) x LLR).6(0) + 6(0) < o v, wv —ae. (@) €@ x O}

We denote the set of Kantorovich potential from u to v by K(u,v).
(2) We say that a Borel map T : Q — Q is a optimal transport map from p to v if T is a minimizer

of the following problem:
inf {/ lo — T(2)|?dp : Tup = l/} .
Q

Here, (Typ)(A) := u(T~(A)) for any Borel set A C Q.

Lemma A.1 ([Sanl5]). For u € 2°¢(Q) and v € P(N), there exists a Lipschitz continuous Kantorovich
potential ¢ and an optimal transport map T from p to v. Also, it holds that

(A.2) x —T(z) = Vo(z) for a.e. x € spt(p) and Wa(u,v) = ||V$||Lﬁ

Lemma A.2. [Vil03, Theorem 1.3],[Sanl5, Proposition 1.11] Let pu,v € Z(Q). Define L : L, () x
LL(Q) = R as

A. L = d dv.
(A3) @0) = [ odnt [ waw
Then, it holds that

%Wf(u,u) = max{ﬁ(qﬁ,w) S, ) € Cp(Q) x Cp(Q), d(x) +¥(y) < %|x — y|2 for all z,y € Q} ,

1
- sup{aw,w) (6,) € LL() x LY(Q), 6(x) +9(y) < gl —yl? for p@ v —ac. (r,y) €2 x ﬂ} .
Proposition A.3. Forr € [1,4+o00], let p € L™ ()N P(Q) and v € P(Q). Then, it holds that

1
(A.4) sup  L(¢, ) = S W3 (u,v)
el ()

where r' = L5 (r' =1 if r = 400 and r’" = o0 if r = 1) and L is given in (A.3).

Proof. Step 1. Let us show that

1
(A.5) SWE () =T,
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where

(A.6)

/ 1
T, == sup {c(w) (00) € L7 (@) x LYQ), 6(x) +(y) < gle—yf for po v —ae. (z,y) €D x ﬂ} .
By Holder’s inequality, it holds that

(A7) 16lls () = /Q |o(@) (@) < [B]] o ()l ell L (-
As p e L™(Q) N £(9), we conclude that

L™ () € L},() and thus Cy(Q) x Cy(2) € L (Q) x LL(Q) C LL(Q) x L(%).
From Lemma A.2, we conclude (A.5).

Step 2. It remains to show that

(A.8) sup  L(¢,¢°) =T,
L ()

for Z; given in (A.6). Indeed, let us notice that by density we have
sup  L(¢,¢°) = sup L(§,¢°) = max L(,¢°),

peL™ () PECH() ECH(Q)
and the latter two quantities are finite by [San15, Proposition 1.11]. Therefore the thesis of the proposition
follows. "

A.2. Some properties of minimizers in the minimizing movements scheme and optimality
conditions.

Lemma A.4. For py given in (2.3) and S satisfying (4.2), it holds that px, > 0 a.e.

Proof. The proof is inspired by [Sanl5, Lemma 8.6]. The difference is that we consider the sub-differential
of S instead of its derivative.

Step 1. For simplicity, let us use the notation u := pj and consider a competitor
1
A9 ==
( ) H1 pd (Q)

Define p. := (1 —e)u + epy for e € (0,1). From convexity of Wasserstein distance, we have

1 1 1 1
Ty =T () = T () < 5=W5 (pes pr1) = 5=W3 (1, pr—1) < €9 5=W5 (i1, pe—1) = 5=Ws (1, pr—1) ¢ -
27 27 27 2T
The compactness of £ implies
(A.10) T, < Cie for some Cq > 0.

Step 2. Set A:={r € Q:p>0}and B := {z € Q: u = 0}. Let us show that £4(B) = 0. For
sufficiently small € > 0, it holds that euq < 1 and thus

71 = [ (@) = S(0c(2)) + Bln(a) = (o)l + (S(0) = S(e)) 2 (B) — & gy [ @l
By convexity of S, it holds that
1
71> ¢ | fea) + B)(uta) = p)de + (S(0) = Sem) L (B) s [ o

where & (z) € 0S(ue(x)).
From (A.10), we conclude that for all &, (x) € 95 (ue(z))

(A.11) Iy = /A[ég(x) + ) (u(z) — ) de + %(5(0) — S(en))L4B) < Cy + C.

Note that by the convexity of S, its subdifferential is monotone, therefore for all € € [0, 1],

(€=(x) = &1) (pe(2) — p1) = 0,
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and thus

(A12) (@) (@) = 1) = &1 (ule) — ),
for a.e. x € Q where & € 05(p1). Therefore,

L2 [ [+ 8l(u(o) - jn)do + 2(S(0) = S(e) 2B).

Since S’(0+) = —oo from (4.2), the right hand side blows up as & goes to zero unless .Z%(B) = 0. As I,
is bounded by C; + C from (A.11), we conclude that .#%(B) = 0, and thus u > 0 a.e. O

APPENDIX B. SOME RESULTS FROM CONVEX ANALYSIS

For a Banach space X and F : X — RU {+o0}, we say that F* : ¥* — RU {+oo} is a Legendre
transform of F if
(B.1) F*(y) = sug (x,y)x,x~ — F(x)} for y € X*.

TrE

Here, X* stands for the topological dual space of X. We will denote by Cy(£2) the space of bounded
continuous functions in 2. In the derivation of optimality conditions associated to the minimizing movement
schemes, in Section B, we use subdifferential calculus in L™(Q2) (r € [1,+o0]) spaces. Let us recall some
basic results on this.

Let us recall the definition of subdifferentials on L"(Q)* for r € [1, +00].

Definition B.1. [Roc71, (1.9), (1.10) & (1.13)] For ¢ : R — RU{+o0}, r € [1,400] and ¥ : L"(Q) —
R U {400} defined by

(B.2) wm:lywmmm
we say that & € L"(Q)* belongs to the subdifferential of U at p € L™ () if
(B.3) W(v) = U(p) + &V — e @x 179

for every v € L™ (Q). We denote by 0V (u) the set of subdifferentials of ¥ at the point p € L"(Q).
Definition B.2. [ET76, Definition 1.3.1] Let X be a Banach space. The set of functions F : £ — R U {£o0}

which are pointwise supremum of a family of continuous affine function is denoted by T'(X).
Lemma B.1. [ET76, Proposition 1.3.1] The following properties are equivalent to each other:
(1) Fel(X%).
(2) F is a convex lower semicontinuous function from X into R U {£oo} and if F takes the value —oo,
then F is identically equal to —oo.

Lemma B.2. [ET76, Proposition 1.5.6] If Fy, F5 € T'(X) and if there exists i € X such that Fy (i), Fa(ji) <
400 and either Fy or Fy is continuous at fi, then it holds that

8F1(u) + 6‘F2(u) = 8(F1 + FQ)(M) forall p e X.

APPENDIX C. AN AUBIN-LIONS LEMMA AND SOME OF ITS CONSEQUENCES
In [RS03] the authors presented the following version of the classical Aubin-Lions lemma (see [Aub63]):

Theorem C.1. [RS03, Theorem 2] Let B be a Banach space and U be a family of measurable B-valued
function. Let us suppose that there exist a normal coercive integrand § : (0,T) x B — [0, +oc], meaning
that

(1) § is #(0,T) ® B(B)-measurable, where $(0,T) and $B(B) denote the o-algebgras of the Lebesgue
measurable subsets of (0,T) and of the Borel subsets of B respectively;
(2) the maps v — Fi(v) := F(t,v) are L.s.c. for a.e. t € (0,T);
(3) {v e B:F:(v) <c} are compact for any ¢ > 0 and for a.e. t € (0,T),
and a l.s.c. map g: B x B — [0, +00] with the property
[u,v € D(Fe), g(u,v) =0] = u=w, forae.te(0,T).
If

T T—h
Sup/ §(t,u(t))dt < 400 and lim Sup/ g(u(t + h),u(t))dt =0,
ueld Jo hi0weu Jo
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then U is relatively compact in #(0,T; B).

Many recent papers (including [KM18, Labl7]) on gradient flows in the Wasserstein space used the
previous theorem to gain pre-compactness of interpolated curves. In our setting we use the following
result.

Lemma C.2. Let T > 0 and let g € [1,400) and n > 0 be such that ng* > 1, where ¢* := qudq (with the
convention q* € (0,400) is arbitrary if ¢ > d, and therefore, n > 0 and ng* > 1 can also be arbitrary).

Suppose that (p™)rso is a sequence of curves on [0, T] with values in P(2) and suppose that there exists
C > 0 such that

(C.1) WE(pl,p) <Clt—s+71|, V0O<s<t<T

and ((p7)")r>0 is uniformly bounded in L([0,T]); W14(Q2)) by C. We suppose moreover that there exists
B > 1 such that ||p] || sy < C for a.e. t €[0,T].
(1) Then, (p7)r>o is pre-compact in LY(Q), with 1 <~y < B if B <ng* and 1 < v < ng*, if B > ng*.
(2) If in addition, (p™)r=o is uniformly bounded in LP2(Q) for some By >~ (where vy is given in (1)),
then (p™)r>o s pre-compact in L72(Q), for any 1 < v9 < fs.

Proof. Let us use the previously stated Aubin-Lions lemma, i.e. Theorem C.1. Let 1 < a < ¢* be fixed
(that we set up later) and let us set B := L™*(Q), § : L™*(Q) — [0, +oc] defined as
o™ [wragey, if p € WH(Q), p e 2(Q),
3(p) =

400, otherwise
and g : L™(Q) x L™*(Q) — [0, +00] defined as
Wa(p,v), if p,ve 2(Q),
9(p,v) =

+-00, otherwise.

In this setting, (p7)r>0 and § satisfy the assumptions of Theorem C.1. Indeed, from the assumption,
T

one has in particular that / ||(p{)"||%v1,q(9)dt < C. The injection W14(Q) < L*(Q) is compact for
0

any 1 < o < ¢*, the injection i : s — s# is continuous from L*(€2) to L"*(Q) and the sub-level sets of
p = |lp"lwr.a(q) are compact in L"*(€2).

Moreover, by the fact that g defines a distance on D(F) and from (C.1), one has that g also satisfies
the assumptions from Theorem C.1, hence the implication of the theorem holds and one has that (p7), -,
is pre-compact in . (0, T; L™*(9)). Let us notice that (C.1) implies that there exists p € C([0,T]; 2(%))
such that up to passing to a subsequence (p;);>o converges uniformly (w.r.t. Ws) to p as 7 > 0. Up to
passing to another subsequence, p is the limit also in .#(0,T"; L™*(2)).

From our assumption, we know that ||p] |15y < C for a.e. t € [0,T]. Now, if § < ng*, then setting
« such that na = 3, Lebesgue’s dominated convergence theorem implies the strong pre-compactness of
(p7)r>0 in L?(Q). Otherwise, Lebesque’s dominated convergence implies the strong pre-compactness in
LY(Q) for any 1 <+ < ng*. This concludes the proof of (1).

To show (2), we notice that (1) already implies that p™ — p, strongly in L7(Q) as 7 | 0 and in particular
a.e. in Q. Furthermore, by the by the uniform bounds in L?2(Q), with By > «, for any 1 < v, < 3 we
have that

1—-22
/Q (72 dadt < (T299) 7% 171105,

which implies that (p7)72 is uniformly integrable on Q). Therefore, Vitali’s convergence theorem yields the
claim. (]
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