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On the extremal points of the ball of the Benamou–Brenier energy

Kristian Bredies, Marcello Carioni, Silvio Fanzon and Francisco Romero

Abstract

In this paper, we characterize the extremal points of the unit ball of the Benamou–Brenier
energy and of a coercive generalization of it, both subjected to the homogeneous continuity
equation constraint. We prove that extremal points consist of pairs of measures concentrated on
absolutely continuous curves which are characteristics of the continuity equation. Then, we apply
this result to provide a representation formula for sparse solutions of dynamic inverse problems
with finite-dimensional data and optimal-transport based regularization.

1. Introduction

The classical theory of Optimal Transport deals with the problem of efficiently transporting
mass from a probability distribution into a target one. In the last 30 years, great advances
in the understanding of the underlying theory have been achieved [3, 45, 48]. However, only
recently these techniques are starting to be applied in order to solve computational problems
in a great variety of fields, with logistic problems [8, 17–19], crowd dynamics [36, 37], image
processing [28, 34, 38, 40, 43, 46, 47], inverse problems [15, 31] and machine learning [5,
26, 27, 39, 44, 51] being a few examples.

In this paper, we focus on the so-called Benamou–Brenier formula, which provides an
equivalent dynamic formulation of the classical Monge–Kantorovich transport problem [30].
Introduced by Benamou and Brenier in [6], such formula allows to compute an optimal
transport between two probability measures ρ0 and ρ1 on a closed bounded domain Ω ⊂ R

d

through the minimization of the kinetic energy

1
2

∫ 1

0

∫
Ω

|vt(x)|2dρt(x) , (1)

among all the pairs (ρt, vt), where t �→ ρt is a curve of probability measures on Ω, vt : Ω → R
d

is a time-dependent vector field and the pair (ρt, vt) satisfies distributionally the continuity
equation

∂tρt + div(ρtvt) = 0 subjected to ρt=0 = ρ0, ρt=1 = ρ1 . (2)

The interest around the Benamou–Brenier formulation is motivated by its remarkable prop-
erties. First, it allows to compute an optimal transport in an efficient way [6] by means
of a convex reformulation of (1), by introducing the momentum mt = ρtvt. More precisely,
denoting by X := (0, 1) × Ω the time-space cylinder, the Benamou–Brenier energy (1) can

Received 30 July 2019; revised 16 October 2020; published online 26 June 2021.

2020 Mathematics Subject Classification 52A05, 49N45, 49J45, 35F05 (primary).

KB and SF gratefully acknowledge support by the Christian Doppler Research Association (CDG) and
Austrian Science Fund (FWF) through the Partnership in Research project PIR-27 ‘Mathematical methods
for motion-aware medical imaging’ and project P 29192 ‘Regularization graphs for variational imaging’. MC
is supported by the Royal Society (Newton International Fellowship NIF�R1�192048 Minimal partitions as a
robustness boost for neural network classifiers).

C�2021 The Authors. Bulletin of the London Mathematical Society is copyright C�London Mathematical
Society. This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12509&domain=pdf&date_stamp=2021-06-26


ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1437

be equivalently defined as a convex functional on the space of bounded Borel measures
M := M(X) ×M(X; Rd) by setting

B(ρ,m) :=
1
2

∫
X

∣∣∣∣dmdρ (t, x)
∣∣∣∣2 dρ(t, x) , (3)

whenever (ρ,m) ∈ M are such that ρ � 0, m � ρ, and B := +∞ otherwise. With this change
of variables, the continuity equation at (2) assumes the form

∂tρ + divm = 0 . (4)

In addition, the dynamic nature of the Benamou–Brenier reformulation of optimal transport is
at the core of many recent developments in the fields of PDEs, optimal transport and inverse
problems. Indeed, the dynamic formulation allows to endow the space of probability measures
with a differentiable structure [3, 48], making possible the characterization of differential
equations as gradient flows in spaces of measures [4, 29, 41] or the derivation of sharp
inequalities [22, 35, 42]. Moreover, it motivated recent developments in unbalanced optimal
transport theory [20, 21, 32, 33], that is, when the marginals are arbitrary positive measures.
Finally, as the Benamou–Brenier energy provides a description of the optimal flow of the
transported mass at each time t, which is a valuable information in applications, it was recently
employed as a regularizer for variational inverse problems [13, 15, 28, 34, 49] (see also a
forthcoming paper by Bredies, Carioni, Fanzon and Walter).

The goal of this paper is to characterize the extremal points of the unit ball of the Benamou–
Brenier energy B at (3), and of a coercive version of it, which is obtained by adding the total
variation of ρ to B. Both functionals are constrained via the continuity equation (2). Precisely,
we introduce the functional

Jα,β(ρ,m) := βB(ρ,m) + α‖ρ‖M(X) subjected to ∂tρ + divm = 0 , (5)

defined for all (ρ,m) ∈ M and α � 0, β > 0. We then characterize the extremal points of the
subset of M defined by

Cα,β := {(ρ,m) ∈ M : Jα,β(ρ,m) � 1} .
We emphasize that we do not enforce initial conditions to the continuity equation in (5). To
be more specific, we prove the following result (see Theorem 6).

Theorem. Let α � 0, β > 0. The extremal points of the set Cα,β are exactly given by the
zero measure (0,0) and the pairs of measures (ρ,m) such that

ρ = aγ dt⊗ δγ(t), m = γ̇(t)aγ dt⊗ δγ(t), aγ =
(
β

2

∫ 1

0

|γ̇(t)|2 dt + α

)−1

,

where γ : [0, 1] → Ω is an absolutely continuous curve with weak derivative γ̇ ∈ L2, and such
that aγ < +∞. If α = 0, the condition aγ < +∞ is satisfied if and only if γ is not constant.

We therefore show that the extremal points of the set Cα,β are pairs of measures (ρ,m), with
ρ concentrated on some absolutely continuous curve γ in Ω, and the density of m with respect
to ρ is given by γ̇ . Note that such conditions are equivalent to the existence of a measurable
field v : X → R

d such that

γ̇(t) = v(t, γ(t)) for a.e. t ∈ (0, 1) , (6)

thus showing that γ is a characteristic associated to the continuity equation at (2) with respect
to the field v. We prove the above theorem in Section 3, with the aid of a probabilistic version
of the superposition principle for positive measure solutions to the continuity equation (2) on
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1438 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

the domain (0, 1) × Ω (see Theorem 7). We mention that the ideas behind such superposition
principle are not new, and they were originally introduced in [1] for positive measures on (0, 1) ×
R

d (see also [3, 7, 50]). The result of Theorem 7 allows to decompose any measure solution
(ρ,m) of the continuity equation (4) with bounded Benamou–Brenier energy, as superposition
of measures concentrated on absolutely continuous characteristics of (4), that is, curves solving
(6) with v = dm/dρ. As a consequence, we show that any pair of measures that is not of such
a form can be written as a proper convex combination of elements of Cα,β and thus it is not
an extremal point. The opposite inclusion follows from the convexity of the energy and the
properties of the continuity equation.

The interest in characterizing extremal points of the Benamou–Brenier energy is not only
theoretical. It has been recently shown in [12] and [11] that in the context of variational
inverse problems with finite-dimensional data, the structure of sparse solutions is linked to the
extremal points of the unit ball of the regularizer. In the classical theory of variational inverse
problems, one aims to solve

min
u∈U

R(u) subjected to Au = y , (7)

where U is the target space, R is a convex regularizer, A is a linear observation operator mapping
to a finite-dimensional space and y is the observation. It has been empirically observed that the
presence of the regularizer R is promoting the existence of sparse solutions, namely minimizers
that can be represented as a finite linear combination of simpler atoms. While this effect has
been well-understood in the case when U is finite dimensional, the infinite-dimensional case has
been only recently addressed [11, 12, 23, 24, 52–54]. In particular, in [11, 12], it has been
shown that, under suitable assumptions on R and A, there exists a minimizer of (7) that can
be represented as a finite linear combination of extremal points of the unit ball of R; namely
the atoms forming a sparse solution are extremal points of the ball of the regularizer.

In view of the above discussion, in Section 4 we apply our characterization of the extremal
points of the energy Jα,β at (5) to understand the structure of sparse solutions for inverse
problems with such transport energy acting as regularizer. We mention that the analysis is
carried out for the case α > 0, as the functional J0,β , corresponding to the rescaled Benamou–
Brenier energy, lacks of compactness properties (see Remark 1). We verify that the assumptions
needed to apply the representation theorems in [12] and [11] are satisfied by Jα,β , and
consequently we deduce the existence of a minimizer that is given by a finite linear combination
of measures concentrated on absolutely continuous curves in Ω (see Theorem 10). As a specific
application of Theorem 10, we consider the setting introduced in [15], where the regularizer
Jα,β is coupled with a fidelity term that penalizes the distance between the unknown measure
ρt computed at t1, . . . , tN ∈ [0, 1], and the observation at such times (see Section 4.2). This
setting is relevant for applications, such as variational reconstruction in undersampled dynamic
MRI. Employing the previous results, we are able to prove the existence of a sparse solution
represented with a finite linear combination of measures concentrated on absolutely continuous
curves in Ω (see Corollary 12).

To conclude, we mention that characterizing the extremal points for a given regularizer has
important consequences in devising algorithms able to compute a sparse solution. Notable
examples have been proposed for the total variation regularizer in the space of measures [10,
16] using so-called generalized conditional gradient methods (or Frank–Wolfe-type algorithms
[25]). Inspired by the previous methods, and building on the theoretical results obtained in
the present paper, we plan to develop numerical algorithms to compute sparse solutions of
dynamic inverse problems with the optimal transport energy Jα,β as a regularizer [13] (see also
a forthcoming paper by Bredies, Carioni, Fanzon and Walter), effectively providing a numerical
counterpart to the theoretical framework established in [15]. Finally, we remark that similar
results to the ones presented in this paper can be obtained for unbalanced optimal transport
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1439

energies. This has been recently achieved in [14], by introducing a novel superposition principle
for measure solutions to the inhomogeneous continuity equation.

2. Mathematical setting and preliminaries

In this section, we give the basic notions about the continuity equation, the Benamou–Brenier
energy, and its coercive version Jα,β anticipated in the introduction. We refer to [3, 6, 15] for
a more detailed overview. For measure theoretical notions, we refer to the definitions in [2].

Given a metric space Y , we will denote by M(Y ) (respectively, M(Y ; Rd)) the space of
bounded Borel measures (respectively, bounded vector Borel measures) on Y . Similarly, M+(Y )
and P(Y ) denote the set of bounded positive Borel measures and Borel probability measures
on Y , respectively. Let Ω ⊂ R

d be an open, bounded domain with d ∈ N, d � 1. Set X :=
(0, 1) × Ω,

M := M(X) ×M(X; Rd) ,

and

D := {(ρ,m) ∈ M : ∂tρ + divm = 0 in X} ,
where the solutions of the continuity equation are intended in a distributional sense, that is,

∫
X

∂tϕdρ +
∫
X

∇ϕ · dm = 0 for all ϕ ∈ C∞
c (X) . (8)

We remark that the above weak formulation includes no-flux boundary conditions for the
momentum m on ∂Ω. Also, no initial and final data are prescribed in (8). Moreover, by standard
approximation arguments, we can consider in (8) test functions in C1

c (X) (see [3, Remark
8.1.1]).

We now introduce the Benamou–Brenier energy. For this purpose, define the convex, lower
semicontinuous and one-homogeneous map Ψ: R × R

d → [0,∞] by setting

Ψ(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
|x|2
2t if t > 0 ,

0 if t = |x| = 0 ,

+∞ otherwise .

The Benamou–Brenier energy B : M → [0,∞] is defined for every pair (ρ,m) ∈ M as

B(ρ,m) :=
∫
X

Ψ
(
dρ

dλ
,
dm

dλ

)
dλ , (9)

λ ∈ M+(X) is such that ρ,m � λ. Since Ψ is one-homogeneous, the above representation of
B does not depend on λ. For some fixed α � 0, β > 0, we consider the following functional

Jα,β(ρ,m) :=

{
βB(ρ,m) + α‖ρ‖M(X) if (ρ,m) ∈ D,

+∞ otherwise,
(10)

where ‖ · ‖M(X) denotes the total variation norm in M(X).

Remark 1. Note that in the definition of Jα,β we add the total variation of ρ to the
Benamou–Brenier energy. If α > 0, this choice enforces the balls of the energy Jα,β to be
compact in the weak∗ topology of M (see Lemma 4). As a consequence, the functional Jα,β
is a natural regularizer for dynamic inverse problems when the initial and final data are not
prescribed [15]. We remark that, although in the case α = 0 the unit ball of the energy J0,β

 14692120, 2021, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12509 by T

est, W
iley O

nline L
ibrary on [21/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1440 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

is not compact, we can still characterize its extremal points. However, in this case, due to the
lack of coercivity, J0,β has limited use as a regularizer for dynamic inverse problems.

For a measure ρ ∈ M(X), we say that ρ disintegrates with respect to time if there exists a
Borel family of measures {ρt}t∈[0,1] in M(Ω) such that∫

X

ϕ(t, x) dρ(t, x) =
∫ 1

0

∫
Ω

ϕ(t, x) dρt(x) dt for all ϕ ∈ L1
ρ(X) .

We denote such disintegration with the symbol ρ = dt⊗ ρt. Further, we say that a curve of
measures t ∈ [0, 1] �→ ρt ∈ M(Ω) is narrowly continuous if the map

t �→
∫

Ω

ϕ(x) dρt(x)

is continuous for each fixed ϕ ∈ C(Ω). The family of narrowly continuous curves will be denoted
by Cw([0, 1];M(Ω)). We also introduce Cw([0, 1];M+(Ω)), as the family of narrowly continuous
curves with values into the positive measures on Ω.

We now recall several results about B, Jα,β and measure solutions of the continuity equation
(8), which will be useful in the following analysis. For proofs of such results, we refer the
interested reader to [15, Propositions 2.2, 2.4, 2.6 and Lemmas 4.5, 4.6].

Lemma 2 (Properties of B). The functional B defined in (9) is convex, positively one-
homogeneous and sequentially lower semicontinuous with respect to the weak∗ topology on
M. Moreover, it satisfies the following properties.

(i) B(ρ,m) � 0 for all (ρ,m) ∈ M.
(ii) If B(ρ,m) < +∞, then ρ � 0 and m � ρ, that is, there exists a measurable map

v : X → R
d such that m = vρ.

(iii) If ρ � 0 and m = vρ for some v : X → R
d measurable, then

B(ρ,m) =
∫
X

Ψ(1, v) dρ =
1
2

∫
X

|v|2 dρ . (11)

Lemma 3 (Properties of the continuity equation). Assume that (ρ,m) ∈ M satisfies (8)
and that ρ ∈ M+(X). Then ρ disintegrates with respect to time into ρ = dt⊗ ρt, where ρt ∈
M+(Ω) for almost every (a.e.) t. Moreover, t �→ ρt(Ω) is constant, with ρt(Ω) = ρ(X) for a.e.
t ∈ (0, 1). If in addition B(ρ,m) < +∞, that is,∫ 1

0

∫
Ω

|v|2 dρt(x) dt < +∞ ,

where m = vρ for some v : X → R
d measurable, then t �→ ρt belongs to Cw([0, 1];M+(Ω)).

Lemma 4 (Properties of Jα,β). Let α � 0, β > 0. The functional Jα,β is non-negative,
convex, positively one-homogeneous and sequentially lower semicontinuous with respect to
weak∗ convergence on M. Assume now α > 0. For (ρ,m) ∈ M such that Jα,β(ρ,m) < +∞, we
have

α‖ρ‖M(X) � Jα,β(ρ,m) , min(2α, β)‖m‖M(X;Rd) � Jα,β(ρ,m) . (12)

Moreover, if {(ρn,mn)}n is a sequence in M such that

sup
n

Jα,β(ρn,mn) < +∞ ,
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1441

then ρn = dt⊗ ρnt for some (t �→ ρnt ) ∈ Cw([0, 1];M+(Ω)) and there exists some (ρ,m) ∈ D
with ρ = dt⊗ ρt, ρt ∈ Cw([0, 1];M+(Ω)) such that, up to subsequences,{

(ρn,mn) ∗
⇀ (ρ,m) weakly* in M ,

ρnt
∗
⇀ ρt weakly* in M(Ω) , for every t ∈ [0, 1] .

(13)

3. Characterization of extremal points

The aim of this section is to characterize the extremal points of the unit ball of the functional
Jα,β at (10) for all α � 0, β > 0, namely, of the convex set

Cα,β := {(ρ,m) ∈ M : Jα,β(ρ,m) � 1} .
To this end, let us first introduce the following set.

Definition 5 (Characteristics). For α � 0, β > 0, define the set Cα,β of all pairs (ρ,m) ∈ M
such that

ρ = aγ dt⊗ δγ(t) , m = γ̇(t) aγ dt⊗ δγ(t) , aγ :=
(
β

2

∫ 1

0

|γ̇(t)|2 dt + α

)−1

,

where γ ∈ AC2([0, 1]; Rd) satisfies γ(t) ∈ Ω for each t ∈ [0, 1] and aγ < +∞.

We remind that AC2([0, 1]; Rd) denotes the space of absolutely continuous curves having a
weak derivative in L2. We point out that by definition aγ > 0 for all choices of α � 0, β > 0.
Moreover the condition aγ < +∞ is always satisfied if α > 0. When α = 0, we instead have
aγ < +∞ if and only if

∫ 1

0
|γ̇(t)|2 dt > 0, that is, the set C0,β does not contain constant curves.

For the extremal points of Cα,β , we have the following characterization.

Theorem 6. Let α � 0, β > 0 be fixed. Then

Ext(Cα,β) = {(0, 0)} ∪ Cα,β .

The proof of Theorem 6 is postponed to Section 3.2. In order to show the inclusion
Ext(Cα,β) ⊂ {(0, 0)} ∪ Cα,β , we will make use of a superposition principle for measure solutions
of the continuity equation (8). This result is not new, and it is proved in [3, Chapter 8.2] for
the case Ω = R

d. In Section 3.1, we show that it also holds for bounded closed domains.

3.1. The superposition principle

Before stating the superposition principle in Ω, we introduce the following notation. Let

Γ :=
{
γ : [0, 1] → R

d : γ continuous
}

be equipped with the supremum norm, that is, ‖γ‖∞ := maxt∈[0,1] |γ(t)|. For every t ∈ [0, 1]
let et : Γ → R

d be the evaluation at t, that is, et(γ) := γ(t). Note that et is continuous. For a
measurable vector field v : (0, 1) × R

d → R
d, we define the following subset of Γ consisting of

AC2 curves solving the ODE (6) in the sense of Carathéodory:

Γv(Rd) :=
{
γ ∈ Γ : γ ∈ AC2([0, 1]; Rd), γ̇(t) = v(t, γ(t)) for a.e. t ∈ (0, 1)

}
.

Moreover define the set of solutions to the ODE which live inside Ω for all times:

Γv(Ω) :=
{
γ ∈ Γv(Rd) : γ(t) ∈ Ω for all t ∈ [0, 1]

}
.

The superposition principle for probability solutions to (8) states as follows.
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1442 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

Theorem 7. Let t ∈ [0, 1] �→ ρt ∈ P(Ω) be a narrowly continuous solution of the continuity
equation in the sense of (8), for some measurable v : (0, 1) × Ω → R

d such that∫ 1

0

∫
Ω

|v(t, x)|2 dρt(x) dt < +∞ . (14)

Then there exists a probability measure σ ∈ P(Γ) concentrated on Γv(Ω) and such that ρt =
(et)#σ for every t ∈ [0, 1], that is,∫

Ω

ϕ(x) dρt(x) =
∫

Γ

ϕ(γ(t)) dσ(γ) for every ϕ ∈ C(Ω), t ∈ [0, 1] . (15)

Proof. Let v̄ : (0, 1) × R
d → R

d be the extension to zero of v to the whole R
d. Similarly, for

each t ∈ [0, 1], let ρ̄t ∈ P(Rd) be the extension to zero of ρt in R
d. Note that the pair (ρ̄, v̄ ρ̄)

is a solution of the continuity equation in (0, 1) × R
d in the sense of (8). Moreover ρ̄ and v̄

satisfy (14) in (0, 1) × R
d. Therefore we can apply [3, Theorem 8.2.1] and obtain a probability

measure σ ∈ P(Γ) concentrated on Γv̄(Rd) and such that ρ̄t = (et)#σ for all t ∈ [0, 1], that is,

∫
Rd

ϕ(x) dρ̄t(x) =
∫

Γ

ϕ(γ(t)) dσ(γ) for every ϕ ∈ Cb(Rd), t ∈ [0, 1] . (16)

We claim that σ is concentrated on Γv(Ω). In order to show that, partition Γv̄(Rd) into

Γv̄(Rd) = Γv̄(Ω) ∪A ,

where

A :=
{
γ ∈ Γv̄(Rd) : there exists t̂ ∈ [0, 1] such that γ(t̂) ∈ Ω

c
}
.

Note that, since Ω
c

is open and v ≡ 0 in Ω
c
, the curves in A are constant, so that we can write

A =
{
γ ∈ Γv̄(Rd) : γ(0) ∈ Ω

c
}
.

From this, it follows that A ⊂ e−1
0 (Ω

c
). Moreover, (16) implies ρ̄0(Ω

c
) = σ(e−1

0 (Ω
c
)). Therefore,

using that ρ̄t is concentrated on Ω, we conclude that σ(A) = 0, showing that σ is concentrated
on Γv̄(Ω). Finally, (16) implies (15) since ρ̄t is supported in Ω and it coincides with ρt in Ω.
Also Γv̄(Ω) = Γv(Ω) by definition of v̄, thus concluding the proof. �

3.2. Proof of Theorem 6

Let α � 0, β > 0. We divide the proof into two parts.

Part 1: {(0, 0)} ∪ Cα,β ⊂ Ext(Cα,β).

We start by showing that {(0, 0)} ∪ Cα,β ⊂ Cα,β . The fact that (0, 0) ∈ Cα,β follows imme-
diately, since (0,0) solves the continuity equation and Jα,β(0, 0) = 0 (by Lemma 2). Consider
now (ρ,m) ∈ Cα,β . Note that (ρ,m) ∈ Cα,β satisfies the continuity equation in the sense of (8):
indeed for every ϕ ∈ C1

c ((0, 1) × Ω), we have∫
(0,1)×Ω

∂tϕdρ + ∇ϕ · dm = aγ

∫ 1

0

∂tϕ(t, γ(t)) + ∇ϕ(t, γ(t)) · γ̇(t) dt

= aγ

∫ 1

0

d

dt
ϕ(t, γ(t)) dt = aγ(ϕ(1, γ(1)) − ϕ(0, γ(0))) = 0

(17)
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1443

since ϕ is compactly supported in (0, 1) × Ω. Moreover, due to the fact that ρ � 0 and m = γ̇ρ,
we can invoke (11) to obtain

Jα,β(ρ,m) = aγ

(
β

2

∫ 1

0

|γ̇(t)|2 dt + α

)
= 1 , (18)

proving that (ρ,m) ∈ Cα,β .
We now want to show that any (ρ,m) ∈ {(0, 0)} ∪ Cα,β is an extremal point for Cα,β . Hence

assume that (ρ1,m1), (ρ2,m2) ∈ Cα,β are such that

(ρ,m) = λ(ρ1,m1) + (1 − λ)(ρ2,m2) (19)

for some λ ∈ (0, 1). We need to show that (ρ,m) = (ρ1,m1) = (ρ2,m2). Let j ∈ {1, 2}. Since
(ρj ,mj) is such that Jα,β(ρj ,mj) � 1, from (ii) in Lemma 2 we have that ρj � 0 and mj = vj ρj

for some Borel field vj : X → R
d. In particular, if (ρ,m) = (0, 0), (19) forces (ρj ,mj) = 0, hence

showing that (0,0) is an extremal point of Cα,β .
Let us now consider the case (ρ,m) ∈ Cα,β . By (18), we have Jα,β(ρ,m) = 1. From (19),

convexity of Jα,β , and the fact that Jα,β(ρj ,mj) � 1, λ ∈ (0, 1), we conclude

Jα,β(ρj ,mj) = 1 . (20)

Since (ρj ,mj) solves the continuity equation, ρj � 0 and Jα,β(ρj ,mj) = 1, from Lemma 3 we
deduce that ρj = dt⊗ ρjt for some narrowly continuous curve t �→ ρjt ∈ M+(Ω), with ρjt (Ω)
constant in time. We define aj := ρj0(Ω) and note that aj > 0: Indeed, aj = 0 would imply
ρj = 0, yielding Jα,β(ρj ,mj) = Jα,β(0, 0) = 0. This would contradict (20). Now, from condition
(19) and uniqueness of the disintegration, we deduce

aγ δγ(t) = λρ1
t + (1 − λ)ρ2

t for every t ∈ [0, 1] . (21)

Since aj > 0 (and hence ρjt �= 0), the above equality implies that supp ρjt = {γ(t)}, that is,

ρjt = aj δγ(t) for every t ∈ [0, 1] . (22)

We now show that vj = γ̇ on supp ρ = graph(γ) := {(t, γ(t)) : t ∈ (0, 1)}, that is

vj(t, γ(t)) = γ̇(t) for a.e. t ∈ (0, 1) . (23)

By assumption, ∂tρj + divmj = 0 in the sense of (8). Therefore, recalling (22) and the fact
that aj > 0, we get that for each ϕ ∈ C1

c ((0, 1) × Ω),

0 =
∫ 1

0

∂tϕ(t, γ(t)) + ∇ϕ(t, γ(t)) · vj(t, γ(t)) dt

=
∫ 1

0

∂tϕ(t, γ(t)) + ∇ϕ(t, γ(t)) · γ̇(t) dt +
∫ 1

0

∇ϕ(t, γ(t)) · (vj(t, γ(t)) − γ̇(t)) dt

=
∫ 1

0

∇ϕ(t, γ(t)) · (vj(t, γ(t)) − γ̇(t)) dt ,

(24)

where the last equality follows from (17), since aγ > 0. Let ψ ∈ C1
c ((0, 1)) and define ϕ(t, x) :=

xiψ(t), where x = (x1, . . . , xd), so that ϕ is a test function for (24). By plugging ϕ into (24),
we obtain ∫ 1

0

ψ(t)(vji (t, γ(t)) − γ̇i(t)) dt = 0 for all i ∈ {1, . . . , d}, j ∈ {1, 2}

where vji and γ̇i are the ith component of vj and γ̇, respectively. This implies that vj(t, γ(t)) =
γ̇(t) for a.e. t ∈ (0, 1), that is, vj = γ̇ a.e. on graph(γ). With this at hand, by means of (11) we
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1444 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

can see that Jα,β(ρj ,mj) = aj/aγ . Since (20) holds, we obtain aj = aγ , thus proving (ρ,m) =
(ρj ,mj) and hence extremality for (ρ,m) in Cα,β .

Part 2: Ext(Cα,β) ⊂ {(0, 0)} ∪ Cα,β .

Let (ρ,m) ∈ Cα,β be an extremal point. In particular, Jα,β(ρ,m) � 1 so that by Lemma 2(ii),
we obtain ρ � 0 and m = vρ for some Borel field v : X → R

d. Note that by extremality of (ρ,m)
and one-homogeneity of Jα,β , we immediately infer that either Jα,β(ρ,m) = 0 or Jα,β(ρ,m) = 1.
If Jα,β(ρ,m) = 0, by decomposing (ρ,m) as

(ρ,m) =
1
2
(2ρ, 2m) +

1
2
(0, 0)

and using the extremality of (ρ,m) together with the one-homogeneity of Jα,β , we deduce that
(ρ,m) = (0, 0). Thus, we consider the case

Jα,β(ρ,m) = 1 . (25)

Since by definition (ρ,m) solves the continuity equation in the sense of (8) and Jα,β(ρ,m) = 1,
we can apply Lemma 3 to obtain that ρ = a dt⊗ ρt for some narrowly continuous curve
t �→ ρt ∈ P(Ω), where a := ρ(X) > 0.

Claim. supp ρt is a singleton for each t ∈ [0, 1].

Proof of Claim. The hypotheses of Theorem 7 are satisfied, therefore there exists a measure
σ ∈ P(Γ) concentrated on Γv(Ω) and such that ρt = (et)#σ for every t ∈ [0, 1]. Assume by
contradiction that there exists a time t̂ ∈ [0, 1] such that supp ρt̂ is not a singleton. Therefore,
we can find a Borel set E ⊂ Ω such that

0 < ρt̂(E) < 1, 0 < ρt̂(Ω \ E) < 1 . (26)

Define the Borel set

A := {γ ∈ Γ : γ(t̂) ∈ E} = e−1
t̂

(E) .

By the relation ρt = (et)#σ and definition of A, we obtain ρt̂(E) = σ(A). Therefore, from (26)

0 < σ(A) < 1, 0 < σ(Γ \A) < 1 . (27)

Define

λ1 := a

(
β

2

∫ 1

0

∫
A

|γ̇(t)|2 dσ(γ) dt + ασ(A)
)
,

λ2 := a

(
β

2

∫ 1

0

∫
Ac

|γ̇(t)|2 dσ(γ) dt + ασ(Ac)
)
,

where Ac := Γ \A. Note that λ1, λ2 are well defined (possibly being equal to +∞) as the map

L(γ) :=
∫ 1

0

|γ̇(t)|2 dt if γ ∈ AC2([0, 1]; Rd) , L(γ) := +∞ otherwise, (28)

is lower semicontinuous on Γ, and hence measurable. Note that

λ1 + λ2 = a

(
β

2

∫ 1

0

∫
Γ

|γ̇(t)|2 dσ(γ) dt + α

)
= a

(
β

2

∫ 1

0

∫
Γ

|v(t, γ(t))|2 dσ(γ) dt + α

)
, (29)
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1445

because σ is concentrated on Γv(Ω). Since v(t, ·) belongs to L2
ρt

(Ω; Rd) for a.e. t ∈ (0, 1), by [9,
Theorem 3.6.1], we obtain that the representation formula (15) holds for ϕ(x) := v(t, x) and
a.e. t ∈ (0, 1), that is,∫

Γ

|v(t, γ(t))|2 dσ(γ) =
∫

Ω

|v(t, x)|2 dρt(x) for a.e. t ∈ (0, 1) . (30)

Therefore, from (11), (25), (29) and (30), we deduce λ1 + λ2 = Jα,β(ρ,m) = 1.
We now proceed with the proof of the claim separately for the cases α > 0 and α = 0. Suppose

first α > 0. Note that λ1, λ2 > 0 due to (27) and the fact that a > 0. Decompose (ρ,m) as

(ρ,m) = λ1(ρ1,m1) + λ2(ρ2,m2) , (31)

where we defined

ρj :=
a

λj
dt⊗ (et)#σj , mj := ρjv , (32)

for j = 1, 2, with σ1 := σ�A and σ2 := σ�Ac. Note that ρj ∈ M+(X), since σ is a positive
measure concentrated on Γv(Ω), and a, λj > 0. We now claim that (ρj ,mj) ∈ Cα,β . First, we
prove that ∂tρ

j + divmj = 0 in the sense of (8). Let j = 1 and fix ϕ ∈ C1
c ((0, 1) × Ω). Since

v(t, ·) belongs to L2
ρt

(Ω; Rd) for a.e. t ∈ (0, 1), by [9, Theorem 3.6.1], (15) and the definition of
σ1, we get∫

X

∂tϕdρ1 + ∇ϕ · dm1 =
a

λ1

∫ 1

0

∫
Ω

∂tϕ(t, x) + ∇ϕ(t, x) · v(t, x) d((et)#σ1)(x) dt

=
a

λ1

∫ 1

0

∫
A

∂tϕ(t, γ(t)) + ∇ϕ(t, γ(t)) · v(t, γ(t)) dσ(γ) dt .

(33)

Now recall that σ is concentrated on Γv(Ω) and that ϕ is compactly supported in time, so that

∫
X

∂tϕdρ1 + ∇ϕ · dm1 =
a

λ1

∫ 1

0

∫
A

∂tϕ(t, γ(t)) + ∇ϕ(t, γ(t)) · γ̇(t) dσ(γ) dt

=
a

λ1

∫
A

(∫ 1

0

d

dt
ϕ(t, γ(t)) dt

)
dσ(γ) = 0 .

(34)

The calculation for j = 2 is similar. Also, by definition of (ρj ,mj) and of λj , one can
perform similar calculations to the ones in (29), (30), and prove that Jα,β(ρj ,mj) = 1.
Hence (ρj ,mj) ∈ Cα,β . We now claim that (ρ1,m1) �= (ρ2,m2). Suppose by contradiction that
(ρ1,m1) = (ρ2,m2). Then in particular ρ1 = ρ2, so that by (32) we get

(et)#σ1

λ1
=

(et)#σ2

λ2
for a.e. t ∈ (0, 1) . (35)

As (ρj ,mj) are solutions of the continuity equation and Jα,β(ρj ,mj) = 1, from Lemma 3 it
follows that the maps t �→ (et)#σj are narrowly continuous. In particular, (35) holds for each
t ∈ [0, 1]. However, by (27) and by definition of A, σ1, σ2, we have

[(et̂)#σ1](E) = σ(A) > 0 , [(et̂)#σ2](E) = σ(∅) = 0 ,

which contradicts (35). Therefore (ρ1,m1) �= (ρ2,m2), which shows that the decomposition
(31) is non-trivial. This is a contradiction, since we are assuming that (ρ,m) is an extremal
point for Cα,β . Thus the claim follows.
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1446 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

Suppose now that α = 0 and define the set

Z :=
{
γ ∈ Γ :

∫ 1

0

|γ̇(t)|2 dt = 0
}
.

Note that Z is measurable, due to the measurability of the map L at (28). We claim that
σ(Z) = 0. In order to prove that, let Zc := Γ \ Z and define the measures σZ := σ�Z, σZc :=
σ�Zc, so that σ = σZ + σZc . Recalling that ρt = (et)#σ for all t ∈ [0, 1], we can decompose

(ρ,m) =
1
2
(ρ1,m1) +

1
2
(ρ2,m2) , (36)

where

ρ1 := a dt⊗ (et)#σZc , m1 := vρ1 ,

ρ2 := a dt⊗ (et)#σZc + 2a dt⊗ (et)#σZ , m2 := vρ2 .

Let j = 1, 2. Note that ρj ∈ M+(X) since σ is a positive measure concentrated on Γv(Ω)
and a > 0. Following similar computation as (33) and (34), we infer that (ρj ,mj) solves the
continuity equation in the sense of (8). Moreover, by definition of Z and the fact that σ is
concentrated on Γv(Ω), we obtain∫ 1

0

∫
Zc

|v(t, γ(t))|2 dσ(γ) dt =
∫ 1

0

∫
Zc

|γ̇(t)|2 dσ(γ) dt

=
∫
Zc

∫ 1

0

|γ̇(t)|2 dt dσ(γ)

=
∫

Γ

∫ 1

0

|γ̇(t)|2 dt dσ(γ) =
∫ 1

0

∫
Γ

|v(t, γ(t))|2 dσ(γ) dt ,

(37)

where we employed Fubini’s Theorem, which holds due to the measurability of the map L
and the identity (30), the latter implying boundedness of the last term in (37). By (37) and
arguing as in (29) and (30), it is immediate to check that J0,β(ρj ,mj) = J0,β(ρ,m). Recalling
(25), we then obtain (ρj ,mj) ∈ C0,β . As (ρ,m) is an extremal point of C0,β , from (36), we
deduce that (ρ1,m1) = (ρ2,m2) and thus dt⊗ (et)#σZ = 0. In particular, there exists t̂ ∈ [0, 1]
such that (et̂)#σZ = 0. Hence for every E ⊂ Γ measurable, by the positivity of σ, we have
σZ(E) � (et̂)#σZ(et̂(E)) = 0, implying that σZ = 0. By (27) and the definition of λ1 and λ2,
we conclude that λ1, λ2 > 0. With this property established, the claim that supp ρt is a singleton
for each t ∈ [0, 1] follows by repeating the same arguments of the case α > 0, employing the
decomposition of (ρ,m) as in (31). �

We have shown that for each t ∈ [0, 1], supp ρt is a singleton. We now conclude the proof of
Theorem 6. Since ρt ∈ P(Ω), the latter implies the existence of a curve γ : [0, 1] → Ω such that
ρt = δγ(t) for each t ∈ [0, 1]. We will now prove that γ ∈ AC2([0, 1]; Rd). By narrow continuity of
t �→ ρt, we have that the map t �→ ϕ(γ(t)) is continuous for all ϕ ∈ C(Ω). By testing against the
coordinate functions ϕ(x) := xi, we obtain continuity for γ. Consider now ϕ(t, x) := ξ(t)η(x)
with ξ ∈ C∞

c ((0, 1)), η ∈ C1(Ω). Note that the scalar map t �→ η(γ(t)) is continuous. Moreover,
by testing the continuity equation ∂tρ + div(vρ) = 0 against ϕ, we get∫ 1

0

ξ′(t) η(γ(t)) dt = −
∫ 1

0

ξ(t)∇η(γ(t)) · v(t, γ(t)) dt ,

which implies that the distributional derivative of the map t �→ η(γ(t)) is given by

t �→ ∇η(γ(t)) · v(t, γ(t)) .
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1447

We now remark that the above map belongs to L2((0, 1)), since∫ 1

0

|∇η(γ(t)) · v(t, γ(t))|2 dt � ‖∇η‖∞
∫ 1

0

|v(t, γ(t))|2 dt � C ‖∇η‖∞Jα,β(ρ,m) < +∞ .

Therefore, t �→ η(γ(t)) belongs to AC2([0, 1]) for every fixed η ∈ C1(Ω). By choosing η(x) := xi,
i = 1, . . . , d, we conclude that γ ∈ AC2([0, 1]; Rd). Since ∂tρ + div(vρ) = 0, we can repeat the
same argument employed to prove (23), and infer

v(t, γ(t)) = γ̇(t) a.e. in (0, 1) . (38)

From (38) and the fact that ρ = a dt⊗ δγ(t), m = vρ, we then conclude m = γ̇ρ. As a > 0, we
can apply (11) to compute

Jα,β(ρ,m) = a

(
β

2

∫ 1

0

|γ̇(t)|2 dt + α

)
. (39)

Recalling that Jα,β(ρ,m) = 1 (see (25)), from (39) we conclude that a = aγ with aγ < +∞.
Therefore (ρ,m) belongs to Cα,β according to Definition 5, and the proof of Theorem 6
is concluded.

4. Application to sparse representation for inverse problems
with optimal transport regularization

In this section, we deal with the problem of reconstructing a family of time-dependent Radon
measures given a finite number of observations. To be more specific, let H be a finite-
dimensional Hilbert space and A : Cw([0, 1];M(Ω)) → H be a linear continuous operator, where
continuity is understood in the following sense: given a sequence (t �→ ρnt ) in Cw([0, 1];M(Ω)),
we require that

ρnt
∗
⇀ ρt weakly* in M(Ω) for all t ∈ [0, 1] implies Aρn → Aρ in H , (40)

where, with a little abuse of notation, we will denote by ρn both the curve t �→ ρnt , as well as
the measure ρn := dt⊗ ρnt .

For some given data y ∈ H, we aim to reconstruct a solution ρ ∈ Cw([0, 1];M(Ω)) to the
dynamic inverse problem

Aρ = y . (41)

For α > 0 and β > 0, we regularize the above inverse problem by means of the energy Jα,β
defined in (10), following the approach in [15]. In practice, upon introducing the space

M̃ := Cw([0, 1];M(Ω)) ×M(X; Rd) ,

we consider the Tikhonov functional G : M̃ → R ∪ {+∞} defined as

G(ρ,m) = Jα,β(ρ,m) + F (Aρ) , (42)

where F : H → R ∪ {+∞} is a given fidelity functional for the data y, which is assumed to
be convex, lower semicontinuous and bounded from below. Additionally, we assume that G is
proper. We then replace (41) by

min
(ρ,m)∈ ˜M

G(ρ,m) . (43)

Remark 8. Two common choices for the fidelity term F in the case H = R
k are, for

example:

(i) F (x) = I{y}(x) for a given y ∈ R
k that forces the constraint Aρ = y;

ii) F (x) = 1
2‖x− y‖2

2 that recovers a classical l2 penalization.
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1448 KRISTIAN BREDIES, MARCELLO CARIONI, SILVIO FANZON AND FRANCISCO ROMERO

Remark 9. Under the above assumptions on A and F , problem (43) admits a solution.
Indeed, since G is proper, any minimizing sequence {(ρn,mn)}n is such that {G(ρn,mn)}n
is bounded. As F is bounded from below and Jα,β � 0, we deduce that {Jα,β(ρn,mn)}n is
bounded. Therefore, Lemma 4 implies that (ρn,mn) converges (up to subsequences) to some
(ρ,m) ∈ M̃, in the sense of (13). By weak∗ lower semicontinuity of Jα,β in M (see Lemma 4)
and by (40) together with the lower-semicontinuity of F , we infer that (ρ,m) solves (43).

It is well known that the presence of a finite-dimensional constraint in an inverse problem,
such as (41), promotes sparsity in the reconstruction. This observation has been recently made
rigorous in [12] and [11], where it has been shown that the atoms of a sparse minimizer are the
extremal points of the ball of the regularizers. In Theorem 6, we provided a characterization
for the extremal points of the ball of Jα,β . Therefore, specializing the above-mentioned
results to our setting yields the following characterization theorem for sparse minimizers
to (43).

Theorem 10. Let α, β > 0. There exists a minimizer (ρ̂, m̂) ∈ M̃ of (43) that can be
represented as

(ρ̂, m̂) =
p∑

i=1

ci (ρi,mi) , (44)

where p � dim(H), ci > 0,
∑p

i=1 ci = Jα,β(ρ̂, m̂), and

ρi = aγi
dt⊗ δγi(t) , mi = γ̇i ρ

i ,

where γi ∈ AC2([0, 1]; Rd) with γ(t) ∈ Ω for each t ∈ [0, 1], and a−1
γi

:= β
2

∫ 1

0
|γ̇i|2 dt + α.

In other words, the above theorem ensures the existence of a minimizer of (43) which is a
finite linear combination of measures concentrated on the graphs of AC2-trajectories contained
in Ω. In Section 4.1, we give a proof of Theorem 10, and we conclude the paper with Section 4.2,
where we apply the sparsity result of Theorem 10 to dynamic inverse problems with optimal
transport regularization, following the approach of [15].

4.1. Proof of Theorem 10

As already mentioned, the proof is an immediate consequence of Theorem 6 and a particular
case of [11, Corollary 2] (see also [11, Theorem 1]). Before proceeding with the proof, for the
reader’s convenience, we recall [11, Corollary 2]. The definitions appearing in the statement
below will be briefly recalled in the proof of Theorem 10.

Theorem 11 [11]. Let U be a locally convex space, H be a finite-dimensional Hilbert space,
R : U → [−∞,+∞], F : H → [−∞,+∞] be convex, and A : U → H be linear. Consider the
variational problem

inf
u∈U

R(u) + F (Au) . (45)

Suppose that the set of minimizers of (45), denoted by S, is non-empty. Additionally, assume
that there exists û ∈ Ext(S) such that the set

C = {u ∈ U : R(u) � R(û)} (46)

is linearly closed, the lineality space of C is {(0, 0)} and infu∈U R(u) < R(û). Then, exactly
one of the following conditions holds.

(i) û is a convex combination of at most dim(H) extremal points of C.
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ON THE EXTREMAL POINTS OF THE BALL OF THE BENAMOU–BRENIER ENERGY 1449

(ii) û is as a convex combination of at most dim(H) − 1 points, which are either extremal
points of C, or belong to an extreme ray of C.

Proof of Theorem 10. We just need to verify that we can apply Theorem 11 to the variational
problem (43). So, we choose U = M̃ , R = Jα,β and F and A satisfying the assumptions stated
above. Let S be the set of solutions to (43).

First, note that in Remark 9 we have already shown that the set of minimizers for (43) is non-
empty, so that S �= ∅. Moreover S is compact with respect to the weak∗ topology. Indeed, given
a sequence (ρn,mn) in S we can use Lemma 4 to extract a subsequence (not relabelled) such
that (ρn,mn) ∗

⇀ (ρ,m) in M and ρnt
∗
⇀ ρt in M(Ω) for every t ∈ [0, 1]. Using the sequential

lower semicontinuity of Jα,β with respect to weak∗ convergence combined with the continuity
of A (according to (40)) and the lower semicontinuity of F , we obtain (ρ,m) ∈ S. We conclude
that S is sequentially weakly∗ compact and hence weakly∗ compact, due to the metrizability
of the weak∗ convergence on bounded sets. Finally note that S is convex due to the convexity
of F and Jα,β (Lemma 4). By Krein–Milman’s Theorem, we then infer the existence of a
(ρ̂, m̂) ∈ Ext(S).

The lineality space of C is defined as lin(C) = rec(C) ∩ (−rec(C)), where rec(C) is the
recession cone of C defined as the set of all (ρ,m) ∈ U such that C + R+(ρ,m) ⊂ C. Hence,
from the coercivity of Jα,β in Lemma 4, it is immediate to conclude that lin(C) = {(0, 0)}.
Moreover, C is linearly closed if the intersection of C with every line is closed. It is easy
to verify that, as C is weakly∗ closed (Remark 9), it is also linearly closed. Finally, the
assumption inf

(ρ,m)∈˜M
Jα,β(ρ,m) < Jα,β(ρ̂, m̂) is satisfied whenever (ρ̂, m̂) �= 0, as in this case

Jα,β(ρ̂, m̂) > 0, while inf
(ρ,m)∈˜M

Jα,β(ρ,m) = 0. Hence, the hypotheses of Theorem 11 for the
functional (42) are verified. Note also that C does not contain extreme rays. In order to prove
that, we first recall that a ray of C is any set of the form rp,v = {p + tv : t > 0} for p, v ∈ C,
v �= 0. An extreme ray of C is a ray rp,v such that for every segment intersecting rp,v, the whole
segment is contained in rp,v. Due to the coercivity of Jα,β in Lemma 4, it is immediate to see
that C contains no rays and thus no extreme rays. Hence, from either of the conclusions (i)
and (ii) in Theorem 11, we deduce that there exists a minimizer (ρ̂, m̂) ∈ M of (43) that can
be represented as

(ρ̂, m̂) =
p∑

i=1

ci(ρi,mi) , (47)

where (ρi,mi) ∈ Ext(Cα,β), p � dim(H), ci > 0 and
∑p

i=1 ci = Jα,β(ρ̂, m̂). We remark that if
(ρ̂, m̂) = 0, the assumption inf

(ρ,m)∈˜M
Jα,β(ρ,m) < Jα,β(ρ̂, m̂) in Theorem 11 is not satisfied,

but the representation (47) holds trivially. Using the characterization of extremal points in
Theorem 6 and (47), we obtain an explicit sparse representation for solutions of (43) and the
proof is achieved. �

4.2. Dynamic inverse problems

Theorem 10 provides a representation formula for sparse solutions of (43) that holds for every
A and F satisfying the above-stated hypotheses. A relevant choice for A and F is proposed in
[15] as a model for dynamic inverse problems: in particular, the authors apply their framework
to variational reconstruction in undersampled dynamic MRI. In what follows we make an
explicit choice of F and A in order to apply Theorem 10 to a special case of the framework in
[15], namely the case of discrete time sampling, and finite-dimensionality of the data for each
sampled time.

To be more specific, consider a discretization of the interval [0,1] in N points t1 < t2 <
. . . < tN and assume that we want to reconstruct an element of Cw([0, 1];M(Ω)), by only
making observations at the time instants t1, . . . , tN . To this aim, let Hti be a family of
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finite-dimensional Hilbert spaces and introduce the product space H :=
ŚN

i=1 Hti , normed
by ‖y‖2

H :=
∑N

i=1 ‖yi‖2
Hti

. Let Ati : M(Ω) → Hti be linear operators, which are assumed to be
weak∗ continuous for each i = 1, . . . , N . For a given observation (yt1 , . . . , ytN ) ∈ H, consider
the problem of finding ρ ∈ Cw([0, 1];M(Ω)) such that

Atiρti = yti for each i = 1, . . . , N .

Following [15], we regularize the above problem by

min
(ρ,m)∈ ˜M

Jα,β(ρ,m) +
1
2

N∑
i=1

‖Atiρti − yti‖2
Hti

. (48)

In order to recast the above problem into the form (43), let A : Cw([0, 1];M(Ω)) → H be the
linear operator defined by

Aρ := (At1ρt1 , . . . , AtN ρtN ) .

Note that A is continuous in the sense of (40), due to the assumptions on Ati . We can then
equivalently rewrite (48) as

min
(ρ,m)∈ ˜M

Jα,β(ρ,m) +
1
2
‖Aρ− y‖2

H . (49)

In this way, we recover a problem of the type of (43), where F (x) := 1
2‖x− y‖2

H. Note that F
is convex, lower semicontinuous and bounded from below. Moreover, the functional in (49) is
proper, since Jα,β(0, 0) = 0. Hence, we can apply Theorem 10 to conclude the following result.

Corollary 12. Let α, β > 0. There exists a minimizer (ρ̂, m̂) ∈ M̃ of (48) that can be
represented as

(ρ̂, m̂) =
p∑

i=1

ci (ρi,mi) , (50)

where p � dim(H) =
∑N

i=1 dim(Hi), ci > 0,
∑p

i=1 ci = Jα,β(ρ̂, m̂), and

ρi = aγi
dt⊗ δγi(t) , mi = γ̇i ρ

i ,

where γi ∈ AC2([0, 1]; Rd) with γ(t) ∈ Ω for each t ∈ [0, 1], and a−1
γi

:= β
2

∫ 1

0
|γ̇i|2 dt + α.

Remark 13. The upper bound p �
∑N

i=1 dim(Hi) in the representation formula (50) might
not be optimal. However, a careful analysis of the faces of the ball of the Benamou–Brenier
energy, possibly under additional assumptions on the operator A and fidelity term F , could be
needed to substantiate such conjecture. We leave this question open for future research.
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