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Abstract

We analyze a semidiscrete scheme for the Cahn-Hilliard equation in one space dimen-
sion, when the interface length parameter is equal to zero. We prove convergence of
the scheme for a suitable class of initial data, and we identify the limit equation. We
also characterize the long-time behavior of the limit solutions.

keywords: Nonconvex functionals, forward-backward parabolic equations, finite element
method.

1 Introduction

Motivated by several models in phase transitions, granular media and image processing,
Cahn-Hilliard type equations have been extensively studied in recent years. In one space
dimension, a typical example of such equation is

ut =
1
2
(
W ′(ux)

)
x

in [0, 1]× [0, T ], (1.1)

where ux is the gradient of a continuous, one-periodic function u : [0, 1]→ R and W is the
nonconvex energy density W (p) = 1

2(p2−1)2 (double well potential). Equation (1.1) is the
formal L2-gradient flow of the functional

E[u] :=
1
2

∫ 1

0
W (ux) dx. (1.2)

Notice that, by the change of variables v = ux, equation (1.1) reduces to

vt =
1
2
(
W ′(v)

)
xx

in [0, 1]× [0, T ], (1.3)
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which corresponds to the H−1-gradient flow of (1.2). We point out that, due to the
nonconvexity of W , equations (1.1) and (1.3) are not well-posed.

In this paper, we deal with the semidiscrete problem

duh

dt
= D+W ′(D−uh) in [0, 1]× [0, T ]

uh(·, 0) = uh on [0, 1]× {0}
(1.4)

where h > 0 is the grid size, D+, D− are the difference quotients defined in Definition 2.1,
and uh is the discretization of a piecewise-smooth function with nondifferentiable points
ah

1 , . . . , a
h
m. We consider (1.4) coupled with the periodic boundary conditions

uh(0, t) = uh(1, t) on {0, 1} × [0, T ]

D−uh(0, t) = D−uh(1, t) on {0, 1} × [0, T ]
(1.5)

In Proposition 2.4 we show that if the initial datum satisfies

1√
3
≤
∣∣∣D−h uh

∣∣∣ ≤ α :=
1
2

(√
3 +

1√
3

)
in

m−1⋃
j=1

[
ah

j , a
h
j+1

]
, (1.6)

then this property holds for all times t ≥ 0. This assumption is necessary to prevent the
development of backward-parabolic zones in the stable region, see the discussion at the end
of Section 2.2.

The main result of this paper, proved in Section 3, is the convergence of solutions to
(1.4) and (1.5), as h → 0, for initial data satisfying (1.6). Indeed, in Section 3.1 we show
that the limit function u is a continuous, piecewise-smooth solution to (1.1) satisfying the
boundary conditions W ′(ux(a+

j )) = W ′(ux(a−j )) on the jump points of the derivative. We
also prove existence of a unique asymptotic state of u, as t→∞, whose derivative assumes
exactly two values.

There is no classical theory for solutions of forward-backward parabolic equations like
(1.1) and (1.3), a part from some partial results (see for instance [10]). However, several
notions of weak solution have been considered in the literature: in [5] the author defines
an implicit variational scheme which produces a solution to (1.1) with W replaced by the
convexified potential

W ∗∗ = max{f ≤W : f is convex}.

In [4] the following fourth-order regularization of (1.1) is proposed:

ut = −εuxxxx +W ′(ux)x, (1.7)

and the author conjectures the existence of a pointwise limit as ε → 0. The dynamics of
this regularization for small ε, which is quite involved and has at least three relevant scales,
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was studied in [13, 3], where the asymptotic behavior as t → ∞ is also discussed. In [12]
the author considers instead the regularization

ut = εutxx +W ′(ux)x , (1.8)

proving the convergence, as ε → 0, to a measure valued solution to (1.1). In [8] further
properties of such limit solutions are discussed, with particular emphasis on a hysteresis
phenomenon which also appears in our analysis (see Section 3.1).

Our approach is different from the ones mentioned above: instead of studying con-
tinuous regularizations, we perform a spatial semidiscretisation using the standard finite
element method. In Section 2, we discuss the properties of the Cauchy problem for the
semidiscrete scheme (see (2.5)) and provide suitable assumptions on initial data under
which solutions are stable. One expects convergence of the scheme to classical solutions of
(1.1) at least when the gradient of the initial datum takes values in the forward parabolic
region, and we confirm such expectation with the only restriction that the the gradient is
not too big (see (1.6)). This is an advantage with respect to variational methods like the
implicit scheme discussed in [5], which selects a local minimum of (1.2) and automatically
forces all 1-Lipschitz functions not to move. Convergence of the scheme as the grid size
h goes to zero is proved in Section 3, where we also identify the limit problem. We point
out that our limit problem coincides with the limit of the continuous regularization (1.8),
but not with the regularization (1.7). The reason is that our boundary conditions do not
allow jump points of the gradient to vanish as t → +∞; an aspect that we discuss in the
last section.

In order to keep the focus on the analytical aspects of the problem, we will not discuss
the optimal convergence rate of the scheme, nor provide numerical simulations. We address
the interested reader to [3, 6] for numerical simulations in the one-dimensional case, or to
[9] for higher dimensions. A finite element discretisation of a simplified granular material
model related to (1.1) was performed in [14] (see also [7]), where the authors study the
limit profiles as t→ +∞ of the discrete solutions.

2 Spatial semidiscretisation

Let I := [0, 1] and let {h, . . . , N h} be a uniform grid on I with grid size h = 1/N , where
N ∈ N. Since we will work with 1-periodic functions, we identify the node 0 with the
node N , hence N + i with i. We denote by PL(I) the N -dimensional vector subspace of
W 1,∞(I), consisting of all continuous functions u : I → R, with u(0) = u(1), which are
linear on the intervals ((i − 1)h, ih), for all i ∈ {1, . . . , N}. We also let PC(I) be the N -
dimensional vector subspace of L2(I) of all right-continuous piecewise-constant functions
on the grid. Letting ui := u(ih), we can identify u ∈ PL(I) (resp. u ∈ PC(I)) with the
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vector uh := (u1, u2, . . . , uN ). Both PL(I) and PC(I) are endowed with the norms

‖uh‖L∞(I) := max{|ui| : i = 1, . . . , N} ‖uh‖2L2(I) := h
N∑

i=1

u2
i .

Definition 2.1. We define the map D− : PL(I) → PC(I) and its adjoint D+ : PC(I) →
PL(I) as

(D−uh)i =
ui − ui−1

h
(D+w)i =

wi+1 − w1

h
i ∈ 1, . . . , N. (2.1)

With this notation, the space discretisation of (1.1) can be expressed by the following
system of ODEs on PL(I):

dui

dt
= −1

h

∂F
∂ui

=
1
h

(
W ′
(
ui+1 − ui

h

)
−W ′

(
ui − ui−1

h

))
= (D+W ′(D−u))i, (2.2)

for all i ∈ {1, . . . , N}, with periodic boundary conditions.
We now introduce the class of initial data for (1.1) which we will consider in this paper.

Assumption 2.1. Let {aj}mj=1 ∈ (0, 1), with a1 < a2 < . . . < am. We shall consider initial
u ∈W 1,∞(I) ∩ C1(I \ {a1, . . . , am}) such that u(0) = u(1) and ux(0) = ux(1).

Remark 2.1. Notice that, if u solves

ut = W ′(ux)x in I× [0,+∞)
u(0, t) = u(1, t) on ∂I× [0,+∞)
ux(0, t) = ux(1, t) on ∂I× [0,+∞),

(2.3)

then v = ux solves
vt = W ′(v)xx in I× [0,+∞)

v(0) = v(1) on ∂I× [0,+∞)
vx(0, t) = vx(1, t) on ∂I× [0,+∞).

(2.4)

Conversely, if v = ux solves (2.4) and
∫
I v dx = 0, then u solves (2.3). To get the full

equivalence, i.e. for
∫
I v dx = c, it is enough to substitute the second line in (2.3) with

u(0, t) = u(1, t) + c . For simplicity of the presentation, we restrict to the case c = 0.

Assumption 2.2. Let u be as in Assumption 2.1. We denote by ah
1 , . . . , a

h
m be the grid

points corresponding to the nondifferentiable points of u, that is, ai ∈ [ah
i , a

h
i + h) for all

i ∈ {1, . . . , N}. For the discrete initial data uh ∈ PL(I) we require

‖uh − u‖L∞(I) −→
h→0

0 ; ‖D−uh − ux‖L1(I) −→
h→0

0 ; ‖D−uh‖L∞(I) ≤ C,

for some C > 0 independent of h.
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The Cauchy problem corresponding to (2.2) is

duh

dt
= D+W ′(D−uh) in I× [0, T ]

uh(0, t) = uh(1, t) on ∂I× [0, T ]

D−uh(0, t) = D−uh(1, t) on ∂I× [0, T ]

uh(·, 0) = uh on I× {0}.

(2.5)

where uh ∈ PL(I) denotes the discrete initial datum with the properties listed in Assump-
tion 2.2. Note that, due to the smoothness of W , the scheme (2.5) admits a unique solution
uh ∈ C∞ ([0, t0], PL(I)) for a suitable t0 > 0. Moreover, by direct integration we get∫

I
uh(x, t) dx =

∫
I
uh(x) dx. (2.6)

In many cases, it will be useful to work with the system governing the evolution of the
spatial derivative of uh(x, t).

Proposition 2.1. Let uh ∈ PL(I) be a discrete initial datum for (2.5) satisfying Assump-
tion 2.2. If uh(x, t) is a solution to the Cauchy problem (2.5), then vh := D−uh is a
solution to the following system of ODEs:

dvh

dt
= D−D+W ′(vh) , in I× [0, T ]

vh(0, t) = vh(1, t) on ∂I× [0, T ]

D−vh(0, t) = D−vh(1, t) on ∂I× [0, T ]

vh(·, 0) = D−uh on I× {0}.

(2.7)

2.1 A priori estimates

Figure 1: At the left, the graph of the potential W ; at the right, the graph of its derivative.

We denote by α > 1 the real number such that W ′(α) = α3 − α = W ′
(
− 1√

3

)
, see

Figure 2.1. Let us denote by M(t) := maxi=1,...,N vi(t) and m(t) := mini=1,...,N vi(t) the
maximum and minimum of the nodal values of v, respectively.

The following result will be needed in Proposition 2.2; the proof can be found in [1,
Lemma 5.1 and 5.2].
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Lemma 2.1. Let u1, . . . , uN be real continuous right-differentiable functions in an interval
[0, T ). Define M(t) := maxi=1,...,N ui(t). Then M(t) is continuous, right-differentiable in
[0, T ) and

d

dt+
M(t) = max

i=1,...,N

{
d

dt+
ui(t) : ui(t) = M(t)

}
, t ∈ [0, T ).

Proposition 2.2 (L∞ estimate). Let uh(t) be solutions of the discrete Cauchy problem
(2.5) with initial data uh satisfying Assumption 2.2. Then

‖vh(t)‖L∞(I) ≤ c ∀ t ∈ [0,∞) (2.8)

‖uh(t)‖L∞(I) ≤ c ∀ t ∈ [0,∞) (2.9)

where the constant c > 0 is independent of h.

Proof. At time t = 0, the statement follows directly from the assumptions on the initial
data.
Step 1. Let us first prove (2.8). We will show that maxi |vi(t)| is nonincreasing whenever
it is greater than α. We distinguish two cases.
Case 1: maxi |vi(t)| = M(t) ≥ α. As M(t) is a solution to (2.7), by Lemma 2.1 we have

d

dt+
M(t) = max

i=1,...,N

{
d

dt+
vi(t) : vi(t) = M(t)

}
= max

i:vi(t)=M(t)
D−D+W ′(vi)

=
1
h2

max
i:vi(t)=M(t)

(
W ′(vi+1)− 2W ′(M) +W ′(vi−1)

)
.

From M ≥ α and M ≥ vi±1 we then get

W ′(M(t)) ≥ max{W ′(vi−1),W ′(vi+1)}.

Hence
max

i:vi(t)=M(t)

dvi

dt+
≤ 0, (2.10)

which gives the upper bound

max
i=1,...,N

vi(t) ≤ max
i=1,...,N

{α,max
i
vi(0)}. (2.11)

Case 2: maxi |vi(t)| = −m(t) ≥ α. Reasoning as above we obtain

min
i=1,...,N

vi(t) ≥ min
i=1,...,N

{−α,min
i
vi(0)}. (2.12)

Putting together (2.11) and (2.12), we finally get

‖vh(t)‖L∞(I) ≤ max{α, ‖D−uh‖L∞(I)} ∀t ∈ [0,∞)

which is (2.8).
Step 2. Estimate (2.9) now follows directly from (2.6) and (2.8).
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Theorem 2.1 (Global existence of the flow (2.5) ). Let uh(t) be a solution of the Cauchy
problem (2.5). If the initial data u is in PL(I) and one-periodic, then the solution uh(t)
exists for all times t.

Proof. As we noted before, uh ∈ C∞ ([0, t0], PL(I)), for some t0 > 0. Proposition 2.2
established L∞ bounds on both uh(t) and its discrete derivative vh(t), which are uniform
in time. As a consequence, the solution to the Cauchy problem can be extended for all
times t ∈ [0,+∞).

Proposition 2.3 (Energy decreasing property). Let uh(x, t) be the solution of (2.5) with
an initial datum uh satisfying Assumption 2.2. Define the discrete energy

Eh(t) := E[uh(·, t)] := h
N∑

i=1

W (D−ui(t)). (2.13)

Then the following relation holds:

d

dt
E[uh(·, t)] = −‖uh

t ‖2L2(I) ≤ 0. (2.14)

Proof. Keeping in mind the periodic boundary conditions, we compute

d

dt
E[uh(·, t)] =h

N∑
i=1

W ′(D−ui)∂t(D−ui) +W ′(D−uN )∂tuN −W ′(D−u0)∂tu0

= − h
N∑

i=1

D+W
′
(D−uh)i ∂tui = −‖uh

t (·, t)‖2L2(I) ≤ 0.

As a consequence, we have

Eh(t) ≤ Eh(0) ≤ C ∀t ≥ 0, (2.15)

as the discrete initial datum is bounded in W 1,∞(I) uniformly in h, by Assumption 2.2.

Corollary 2.1 (Hölder continuity). Let uh be initial data satisfying Assumption 2.2. Then
the solutions uh of (2.5) are uniformly bounded in C

1
2

(
[0, T );L2(I)

)
.

Proof. Let 0 ≤ t1 < t2 < +∞. We have to show ‖uh(t1) − uh(t2)‖L2 ≤ c |t2 − t1|
1
2 , for

some constant c > 0 independent of h. Using Hölder inequality and (2.15), we get

‖uh(t1)− uh(t2)‖L2(I) ≤ |t2 − t1|
1
2

(
Eh(t1)− Eh(t2)

) 1
2 ≤

√
Eh(0) |t2 − t1|

1
2 .
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The following corollary will be an important ingredient in the convergence proof.

Corollary 2.2. Let uh(x, t) be solutions to the Cauchy problem (2.5) with initial data uh

satisfying Assumption 2.2. Then d
dtu

h ∈ L2
(
[0,∞), L2(I)

)
, i.e.∫ ∞

0

∥∥∥∥ ddtuh(·, t)
∥∥∥∥2

L2(I)

dt ≤ Eh(0) ≤ c, (2.16)

where the constant c is independent of h.

Proof. Recalling (2.14) we have

Eh(0)− Eh(t) =
∫ t

0

∥∥∥uh
t (·, τ)

∥∥∥2

L2(I)
dτ ∀t ≥ 0 .

As Eh(0) ≤ C by Assumption 2.2, the thesis follows letting t→ +∞.

2.2 The stability estimate

We shall make another assumption on initial data uh which guarantees the stability of the
solution to (2.5): we take initial data u ∈ W 1,∞(I) as in Assumption 2.1 which further
satisfy

1√
3
≤ (−1)j+1 ux(x) ≤ α ∀x ∈ (aj−1, aj) , j ∈ {1, . . . ,m} . (2.17)

Note that (2.17) implies in particular that m is even and ux takes values only in the regions
where the potential W is convex.

We point out that a similar assumption was made in [2] for the Perona-Malik equation.
We now formulate the discrete analog of (2.17).

Assumption 2.3. Let α as above and let uh ∈ PL(I) be discrete initial data satisfying
Assumption 2.2, with ah

1 , . . . , a
h
m the grid points corresponding to the nondifferentiability

points of u. We require that uh satisfies

1√
3
≤ (−1)j+1D−ui ≤ α ∀ ih ∈

(
ah

j−1, a
h
j

]
, j ∈ {1, . . . ,m} . (2.18)

Proposition 2.4 (Stability estimate). Let uh be solutions to (2.5) with initial data uh

satisfying Assumptions 2.2 and 2.3. Then uh satisfies

1√
3
≤ (−1)j+1D−ui(t) ≤ α ∀ ih ∈

(
ah

j−1, a
h
j

]
, j ∈ {1, . . . ,m} , t ≥ 0 . (2.19)
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Proof. Fix j ∈ {1, . . . ,m}. Without loss of generality we can assume that uh is monotone
increasing on [ah

j h, a
h
j+1h], that is vi(0) = D−ui ∈ [1/

√
3, α] in [ah

j h, a
h
j+1h]. We let

m(t) := min
i=1,...,N

vi(t) M(t) := max
i=1,...,N

vi(t) ,

and distinguish two cases:
Case 1: M(t) = α for some t ≥ 0. By Lemma 2.1 and (2.7) we have

d

dt+
M(t) = max

i: vi(t)=M(t)

d

dt+
vi(t) = max

i: vi(t)=M(t)
D−D+W ′(vi)

=
1
h2

max
i: vi(t)=M(t)

(
W ′(vi+1)− 2W ′(M) +W ′(vi−1)

)
≤ 0,

(2.20)

where we used the fact that W ′(α) ≥W ′(x) for all x ≤ α.
Case 2: m(t) = 1/

√
3 for some t ≥ 0. As above, we have

d

dt+
m(t) = min

i: vi(t)=m(t)

d

dt+
vi(t) = min

i: vi(t)=m(t)
D−D+W ′(vi)

=
1
h2

min
i: vi(t)=m(t)

(
W ′(vi+1)− 2W ′(M) +W ′(vi−1)

)
≥ 0,

(2.21)

where we used the fact that W ′(1/
√

3) ≤W ′(x) for all x ≥ −α.
The thesis follows from (2.20) and (2.21).

3 Convergence of the scheme

Proposition 3.1. Let the initial data uh satisfy Assumption 2.2. Then the solutions uh

converge, up to a subsequence as h→ 0, to a limit function u ∈ C (I× [0,+∞)), uniformly
on compact subset of I× [0,+∞).

Proof. By Proposition 2.2 and Corollary 2.2 we know that the solutions uh are uniformly
bounded in XT := H1

(
[0, T ], L2(I)

)
∩ L∞

(
[0, T ],W 1,∞(I)

)
, for all T > 0. The thesis

follows form the compact embedding of XT into C (I× [0, T ]) [2].

Recalling Proposition 2.4 and reasoning exaclty as in [11, Proposition 3.3], we obtain
the following estimate.

Lemma 3.1. Let uh(t) be a solution to the Cauchy problem (2.5) with initial data uh

satisfying Assumptions 2.2 and 2.3. Then, for every open set I1 ⊂⊂ I \ {a1, am}, there
exists a constant c = c(I1) such that for h small enough there holds∥∥∥∥ ddtuh(t)

∥∥∥∥2

L2(I1)

≤ Eh(0)
(

1
t

+ c

)
∀t > 0. (3.1)
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Proposition 3.2. Let uh be initial data satisfying Assumptions 2.2 and 2.3, and let uh be
the corresponding solutions to the Cauchy problem (2.5). Then, for any compact subset K
of I \ {a1, . . . , am} and for every t > 0, there exists a function ψ ∈ H1 (K) such that

W ′
(
vh
)
−→ ψ uniformly on K (up to a subsequence).

Proof. As W ′(vh) is uniformly bounded in L∞(I) by Assumption 2.3, up to a suitable
subsequence we have

W ′
(
D−uh

)
−→ ψ weakly∗ in L∞(K).

Moreover, by Lemma 3.1 d
dtu

h = D+W ′
(
D−uh

)
is uniformly bounded in L2(I). The thesis

then follows from the Arzelà-Ascoli Theorem.

Proposition 3.2 allows us to obtain the strong convergence of D−uh, which is needed
to pass to the limit in the nonlinear problem (2.5).

Proposition 3.3. Let uh(t) be solutions to the Cauchy problem (2.5) with initial data uh

satisfying Assumptions 2.2 and 2.3. Then, up to a subsequence as h→ 0,

D−uh −→ ux a.e. on I× [0,+∞) (3.2)

and
W ′
(
D−uh

)
−→W ′ (ux) in L2

loc(I× [0,+∞)). (3.3)

Proof. By Propositions 2.2 and 3.1 we have

D−uh −→ ux weakly∗ in L∞(I) for every t ≥ 0. (3.4)

Let K be as in Proposition 3.2. As W ′ is invertible on [−α,−1/
√

3] and [1/
√

3, α], Propo-
sition 3.2 implies

D−uh(t) = (W ′)−1
(
W ′(D−uh(t))

)
−→ ux(t) uniformly on K

for all t > 0, which gives (3.2). Claim (3.3) then follows from (3.2) and Lebesgue’s Theorem.

3.1 The limit problem

Theorem 3.1. Let u ∈W 1,∞(I) be an initial datum satisfying Assumptions 2.1 and (2.17).
Let uh be finite element discretizations of u satisfying Assumptions 2.2 and 2.3, let uh be
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the corresponding solutions to (2.5), and let u ∈ C(I × [0,+∞)) be the limit of uh, as
h→ 0, given by Proposition 3.1. Then u is the unique solution to the following PDE:

(i) ut = W ′(ux)x in (I \ {a1, . . . , am})× [0,+∞)
(ii) W ′(u−x ) = W ′(u+

x ) on {a1, . . . , am} × [0,+∞)
(iii) u− = u+ on {a1, . . . , am} × [0,+∞)
(iv) u(0) = u at I× {0},

(3.5)

where we set

u± := lim
x→a±j

u(x) u±x := lim
x→a±j

ux(x).

In particular W ′ (ux) ∈ C(I× [0,+∞)) and u ∈ C∞ ((I \ {a1, . . . , am})× (0,+∞)).

Proof. Multiplying by ϕ ∈ C1
0 (I× [0,+∞)) the first equation in (2.5), after an integration

by parts we get ∫ ∞
0

∫
I
uh ϕt dx dt =

∫ ∞
0

∫
I
W ′(D−uh)D−ϕ dx dt. (3.6)

As uh → u locally uniformly on I × [0,+∞) by Proposition 3.1, and W ′(D−uh)D−ϕ →
W ′(ux)ϕx in L2(I× [0,+∞)) by Proposition 3.3, we can pass to the limit in (3.6):∫ ∞

0

∫
I
uϕt dx dt =

∫ ∞
0

∫
I
W ′(ux)ϕx dx dt. (3.7)

Since ut ∈ L2 (I× [0,+∞)), (3.7) imples W ′(ux) ∈ L2
(
[0,+∞), H1(I)

)
, so that we can

integrate by parts and obtain∫ ∞
0

∫
I
utϕ dxdt =

∫ ∞
0

∫
I
W ′(ux)x ϕ dxdt, (3.8)

which proves statement (i).
Equalities (ii) and (iii) follow from the continuity of W ′(ux) and u, respectively.

Remark 3.1. Problem (3.9) is equivalent to the limit problem derived in [12, 8] for the
regularization (1.8). On the other hand, due to the numerical simulations performed in [3],
it is expected to be different form the limit problem corresponding to the Cahn-Hilliard
regularization (1.7) discussed in [4, 13].

Corollary 3.1. If u satisfies (3.5), then v = ux = limh→0 v
h is the unique solution to the

following PDE:

vt = W ′(v)xx in (I \ {a1, . . . , am})× [0,+∞)
W ′(v−) = W ′(v+) on {a1, . . . , am} × [0,+∞)
W ′(v)−x = W ′(v)+x on {a1, . . . , am} × [0,+∞)

v(0) = ux on (I \ {a1, . . . , am})× {0}.

(3.9)

11



Passing to the limit in (2.16) as h→ 0, we obtain an integral estimate on the time derivative
of u.

Proposition 3.4. Let u be as in Theorem 3.1. We have ut ∈ L2
(
I× (0,∞)

)
and∫

I×(0,∞)

(
du

dt
(x, t)

)2

dxdt = E[u].

3.2 Long-time behavior

Theorem 3.2. Let u be a solution of (3.5). Then there exists a unique limit

u∞(x) := lim
t→+∞

u(t, x) x ∈ I,

which is given by the piecewise-linear solution to

(i) W ′ ((u∞)x)x = 0 in I \ {a1, . . . , am}
(ii) W ′

(
(u∞)−x

)
= W ′

(
(u∞)+x

)
on {a1, . . . , am}

(iii) u−∞ = u+
∞ on {a1, . . . , am}.

(3.10)

Proof. We divide the proof into three steps.
Step 1 (Existence of u∞). By Proposition 3.4, there exists a sequence of times tn → +∞
such that ∫ tn+1

tn

‖ut‖2L2(I) dt −→ 0. (3.11)

We now define a sequence wn of solutions to (3.5) in the following way:

wn(x, t) := u(x, tn + t) t ∈ [0, 1].

From (3.11) we have ∫ 1

0
‖wn

t ‖2L2(I)dt −→n→∞
0, (3.12)

whence wn → w ∈ H1
(
[0, 1], L2(I)

)
∩ L∞([0, 1],W 1,∞(I)), with wt ≡ 0, that is the limit

function w = u∞ does not depend on t.
Step 2 (Limit equation). As every wn solves (3.5), from (3.7) we get∫ 1

0

∫
I
W ′(wn

x)ϕx dxdt = 0,

for all test functions ϕ ∈ C1(I) independent of t. Passing to the limit as n → ∞ and
recalling (3.12), we get (i) and (ii), while (iii) follows from the Lipschitz continuity of w.
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We now show that wx is a piecewise-constant function which assumes exactly two
values, p− and p+. Indeed, (3.10) (i) implies that, for all j ∈ {1, . . . ,m}, there exists
pj ∈ [−α,−1/

√
3] ∪ [1/

√
3, α] such that W ′(wx) ≡ pj . Moreover, from condition (ii) we

have that
W ′(pi) = W ′(pj) ∀ i, j ∈ {1, . . . ,m} . (3.13)

Since W ′ is monotone in the intervals [−α,−1/
√

3] and [1/
√

3, α], we get that for all
p ∈ [1/

√
3, α] there exists only one value p̃ ∈ [−α,−1/

√
3] such that

W ′(p) = W ′(p̃). (3.14)

The claim then follows from (3.13) and (3.14).
Step 3 (Uniqueness). Once we know that wx assumes precisely two values p− < p+, with
p− ∈ [−α,−1/

√
3] and p+ ∈ [1/

√
3, α], the uniqueness of such values follows by direct

integration. More precisely, assuming without loss of generality wx = p+ > 0 on [0, a1] and
recalling (3.10) (iii), we have

0 = w(1)− w(0) = σ(p+), (3.15)

where

σ(p) := p

m
2
−1∑

`=0

(a2`+1 − a2`) + p̃

m
2∑

k=1

(a2k − a2k−1) p ∈
[

1√
3
, α

]
.

Since σ is strictly increasing on [1/
√

3, α], equation (3.15) uniquely determines the value
of p+, and consequently of p−.
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