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A SUFFICIENT CRITERION TO DETERMINE

PLANAR SELF-CHEEGER SETS

GIORGIO SARACCO

Abstract. We prove a sufficient criterion to determine if a planar set
Ω minimizes the prescribed curvature functional Fκ[E] := P (E)− κ|E|
amongst E ⊂ Ω. As a special case, we derive a sufficient criterion to
determine if Ω is a self-Cheeger set, i.e. if it minimizes the ratio P (E)/|E|
among all of its subsets. As a side effect we provide a way to build self-
Cheeger sets.

1. Introduction

Given an open, bounded set Ω ⊂ R2 its Cheeger constant, firstly intro-
duced in [5] in a Riemannian setting, is defined as

hΩ := inf

{
P (E)

|E|
: E ⊂ Ω, |E| > 0

}
. (1)

Usually one refers to the task of computing hΩ and/or of finding sets E
attaining the above infimum as to the Cheeger problem. Any set E attaining
the infimum in (1) is called Cheeger set of Ω; if Ω itself is a minimizer, it
is said to be self-Cheeger ; if Ω is the unique minimizer, it is said to be a
minimal Cheeger. Notice that any Cheeger set is a nontrivial minimizer of
the prescribed curvature functional

Fκ[E] = P (E)− κ|E| , (2)

amongst E ⊂ Ω, when the constant κ > 0 is chosen as κ = hΩ. The Cheeger
problem has drawn a lot of attention because it is intimately tied to many
other problems scattered in different fields of mathematics; for instance it
is well known that the functional (2) admits nontrivial minimizers if and
only if κ ≥ hΩ. The interested reader is referred to [14, 21] which are
introductory surveys containing basic results and links to other problems,
and to [2, 3, 4, 22, 25] for further generalizations.

In this short note we provide a sufficient criterion to determine if a set
Ω is self-Cheeger. This follows from a more general criterion to determine
if a set Ω is a minimizer itself of (2). In order to state our main result we
introduce the following definition of (strict) interior rolling disk property of
radius R for a set Ω.
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Ω

Figure 1.1. A bow-tie domain. There is a range of widths
of the bow-tie’s neck such that the set is a minimizer of the
prescribed curvature functional Fκ while it does not satisfy
the hypotheses of Theorem 1.2.

Definition 1.1. We say that a Jordan domain Ω satisfies the interior rolling
disk property of radius R if reach(R2 \Ω) ≥ R. We say that it has the strict
interior rolling disk property if additionally for all z ∈ ∂((R2 \Ω)⊕BR) no
antipodal points of ∂BR(z) lie both on ∂Ω.

We recall that a Jordan domain is the bounded, open set enclosed by an
injective, continuous map Φ: S1 → R2, which is well defined thanks to the
Jordan–Schoenflies Theorem. Furthermore, we recall that a set A has reach
R if for all r < R the points in A⊕Br have unique projection on A, and we
refer the reader to the seminal work [8] and the recent book [23]. Roughly
speaking, a set A has reach R if it is possible to roll on the exterior of its
boundary a ball of radius R.

Theorem 1.2. Let Ω be a Jordan domain. Assume that Ω satisfies the
interior rolling disk property of radius R with R ≤ |Ω|/P (Ω). Then, Ω is a
minimizer of Fκ for the choice κ = R−1. Moreover, if it satisfies the strict
property it is the unique minimizer.

Remark 1.3. The theorem provides a sufficient but not necessary condi-
tion: consider the bow-tie depicted in Figure 1.1. For suitable choices of κ
and of the width of the neck, the bow-tie minimizes Fκ in itself but it does not
satisfy the criterion, as one can see in [16, Example 4.2]. If one additionally
requires the convexity of Ω the condition essentially becomes necessary. If
∂Ω is of class C2 this is trivial: given x ∈ ∂Ω s.t. the classic curvature of ∂Ω
at x is given by κ̄, classic characterization of convexity implies there exists
a ball B of radius κ̄−1 entirely contained in Ω such that x ∈ ∂B. If ∂Ω is
less regular, one can use the one-to-one correspondence between convex sets
and Radon measures, satisfying a particular distributional inequality, to give
a generalized notion of curvature, and the same characterization holds; for
a brief discussion of this fact, see for instance [12, Section 3] and compare
with [12, Theorem 2].

Remark 1.4. It is noteworthy to remark that if a Jordan domain has the
interior rolling disk property of radius R, then it has the strict interior rolling
disk property of radius r for all r < R. Thus, Theorem 1.2 implies that Ω
is the unique minimizer of Fκ with κ = r−1 for all choices of r < R.
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Ω

Figure 1.2. The “Pinocchio” set: a nonconvex self-Cheeger
set that is covered by the criterion. The “face” is a ball of
radius 1, while the “nose” is a “tendril” of suitable width
which can be made as long as one wishes.

Notice that in the statement of Theorem 1.2 one could replace the in-
equality R ≤ |Ω|/P (Ω) with the, a-priori, larger one R ≤ h−1

Ω which is
equivalent to the existence of nontrivial minimizers of FR−1 . Nevertheless,
if R = |Ω|/P (Ω) one ends up proving that R is actually the inverse of the
Cheeger constant and that Ω is a self-Cheeger set, thus producing the fol-
lowing criterion.

Criterion 1.5. Let Ω be a Jordan domain. Assume that it satisfies the
interior rolling disk property of radius R = |Ω|/P (Ω). Then, hΩ = R−1 and
Ω is self-Cheeger. Moreover, if it satisfies the strict property it is a minimal
Cheeger.

A few remarks are in order. The above criterion is sufficient but not
necessary. An example of minimal Cheeger set which does not possess the
interior rolling disk property is given by a bow-tie with suitably small neck,
depicted in Figure 1.1. Computations for a nonsmoothed out bow-tie are
available in [16, Example 4.2].

As noticed in Remark 1.3, if the set Ω is convex the criterion is not just
sufficient but as well necessary. This is essentially proven in [12, Theorem
2], see also [1, 10, 26]. Yet, there are nonconvex sets which are covered by
Criterion 1.5. Aside from the bow-tie with sufficiently large neck previously
discussed, other examples are provided by suitable strips that were shown
to be self-Cheeger in [13, 16], under some technical assumption on their
length, which can now be dropped in view of Criterion 1.5 or the results
in [15]. More in general, taken any convex self-Cheeger set Ω one can add a
“tendril” of suitable width producing a set which is covered by the criterion.
This is exemplified by the Pinocchio example shown in Figure 1.2. One
can in principle add as many tendrils as s/he wishes; for instance taking
two directly opposed to each other rather than Pinocchio’s nose one pro-
duces a “cloud” or a “Dumbo” set which is still covered by the criterion.
Computations for these sets are available in [16, Example 4.6 and 4.7].

A weaker version of the “strict” part of Criterion 1.5 is already present
in the literature by combining two theorems centered around the capillarity
problem; yet up to our knowledge it has never been presented in the termi-
nology of Cheeger sets and such an elegant criterion is missing in the two
widespread surveys [14, 21] on Cheeger sets. Hence, it is of interest making
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it readily available to the “Cheeger community”. More precisely, in [6, The-
orem 4.1] Chen proves that a piecewise smooth set Ω possessing the strict
interior rolling disk property1 of radius |Ω|/P (Ω) is such that the nonlinear
PDE 

div

(
∇u√

1+|∇u|2

)
= P (Ω)
|Ω| cosα , in Ω,

∇u·νΩ√
1+|∇u|2

= cosα , on ∂Ω,
(3)

has solutions for all choices of angles α in the range [0, π/2]. In [17, Theo-
rem 4.7 and 5.1] (see also the seminal paper [11]) it is proved that existence
of solutions of (3) for the choice α = 0 is equivalent to say that (a piecewise
Lipschitz) Ω is a minimal Cheeger set. Hence, the “strict” part of Crite-
rion 1.5 for piecewise smooth sets follows by combining these two results.
As a consequence of Criterion 1.5 one also gets existence of solutions of (3)
in the nonstrict case for all α ∈ (0, π/2] (we refer the interested reader to
the comprehensive treatise [9]).

Thanks to very recent results which we recollect in Section 2 we are able
to give a very short proof of Theorem 1.2 and of Criterion 1.5, which are
contained in Section 3. As a side result of the main theorem and of Steiner’s
formulae, we are able to provide a way to construct Cheeger sets as stated
in the following proposition, whose proof is as well contained in Section 3.

Proposition 1.6. Let ω ⊂ R2 be a closed, simply connected set such that
|ω| = πR2 and reach(ω) > R. Then, the Minkowski sum Ω = ω ⊕ BR is

self-Cheeger. Moreover, if ω = int(ω), then Ω is a minimal Cheeger.

2. Preliminaries

We recall the definition of no necks of radius R for a planar domain Ω.

Definition 2.1 (Definition 1.2 of [15]). A Jordan domain Ω has no necks
of radius R if taken any two balls B0

R and B1
R of radius R entirely contained

in Ω there exists a continuous curve γ : [0, 1] → Ω s.t. BR(γ(0)) = B0
R,

BR(γ(1)) = B1
R and BR(γ(t)) ⊂ Ω for all times t ∈ [0, 1].

Remark 2.2. One can suppose the curve γ to be of class C1,1 with curva-
ture bounded by 1/R thanks to [15, Theorem 1.8], see also [15, Lemma 5.1]
combined with [20, Theorem 1.2, 1.3] or [24, Remark 6.7]. Moreover, asking
a set Ω to have no necks of radius R is equivalent to ask that the inner
parallel set ΩR := {x ∈ Ω : dist(x; ∂Ω) ≥ R } is path-connected.

Whenever a Jordan domain Ω has no necks of radius κ−1 ≤ h−1
Ω , Leonardi

and myself proved a structure theorem for minimizers of the prescribed
curvature functional Fκ[E] := P (E) − κ|E| amongst E ⊂ Ω in [19]. Such
a theorem extends [15, Theorem 1.4] obtained jointly with Neumayer valid
in the limit case κ = hΩ. Since the class of minimizers is closed under
countable unions, one can define a (unique) maximal minimizer, of which
a full geometric characterization is available thanks to the abovementioned

1We warn the interested reader that in [6] Chen defines as interior rolling disk property
what we here call strict interior rolling disk property.
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results. In particular, by defining the interior parallel set of Ω at distance r
as

Ωr := {x ∈ Ω : dist(x; ∂Ω) ≥ r } (4)

one has that the maximal minimizer of Fκ is given by the Minkowski sum
ΩR ⊕BR, where R = κ−1. This result is essentially sharp as can be seen by
the examples contained in [15, 18]. For the sake of completeness we recall
below the full statement.

Theorem 2.3 (Theorem 2.3 of [19]). Let Ω ⊂ R2 be a Jordan domain with
|∂Ω| = 0, and let κ ≥ hΩ be fixed. If Ω has no necks of radius R = κ−1, then
the maximal minimizer of the prescribed curvature functional Fκ is given by
ΩR ⊕BR. Moreover, if ΩR = int(ΩR), it is the unique minimizer.

3. Proofs of the results

In view of the structure theorem of minimizers of Fκ provided by Theo-
rem 2.3, the proofs of Theorem 1.2 and of Criterion 1.5 boil down to show
that Ω satisfying the interior rolling disk property of radius R is equivalent
to say that Ω has no necks of radius R and it agrees with the Minkowski
sum ΩR ⊕BR. This is exactly what we show in the next lemma.

Lemma 3.1. Let Ω be a Jordan domain. Then, it satisfies the interior
rolling disk property of radius R if and only if it has no necks of radius R
and the set equality Ω = ΩR ⊕ BR holds. Moreover, if it satisfies the strict
property of radius R one has the set equality ΩR = int(ΩR).

Proof. By [23, Lemma 4.8] if reach(R2 \ Ω) ≥ R, then R2 \ Ω is (morpho-
logically) closed w.r.t. BR, i.e. R2 \ Ω = ((R2 \ Ω) ⊕ BR) 	 BR. Moreover,
a set A is (morphologically) closed w.r.t. BR if and only if its complement
set is (morphologically) open, i.e. Ω = (Ω 	 BR) ⊕ BR = ΩR ⊕ BR. We
are left with showing that ΩR is path-connected. This is a consequence of
Ω being a Jordan domain. As R2 \ Ω has reach R, for any 0 < r < R its
r-offset (R2 \Ω)⊕Br has C1,1 boundary [23, Corollary 4.22]. Moreover, the
projection

Π∂Ω :
(
(R2 \ Ω)⊕Br

)
\ (R2 \ Ω)→ ∂Ω

is a deformation retract, thus ∂Ω and the C1,1 boundary of (R2 \ Ω) ⊕ Br
are homotopic, see [23, Lemma 4.52]. Hence, this C1,1 boundary has only
one connected component and it is the image of a Jordan curve γr. Taken
now any two points x0, x1 ∈ ΩR, we let w0, w1 be any of their projections on
∂Ω. Denoted by xiwi the segment with endpoints xi, wi, we set zi to be the
point on ∂ΩR ∩ wixi and zri be the point on Im(γr) ∩ wixi. It is now easy
to provide a continuous curve, possibly not simple, from z0 to z1 in ∂ΩR.
Restricting γr to [γ−1

r (zr0), γ−1
r (zr1)], and reparametrizing it, this is given by

γ̃(t) := γr(t) + (R− r) γ̇
⊥
r (t)

|γ̇r(t)|
,

up to changing orientation. A concatenation of the segments xizi and of γ̃
gives the desired curve.
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Ω

ΩR

Figure 3.1. A set Ω with no necks of radius R such that
Ω = ΩR ⊕BR, ΩR = int (ΩR) but for which the strict interior
rolling disk property of radius R does not hold.

We now show the opposite direction. By [15, Lemma 5.1], reach(ΩR) ≥ R,
thus by [23, Lemma 4.8] ΩR is (morphologically) closed w.r.t. BR, and thus
its complement set is (morphologically) open, i.e.

R2 \ ΩR =
(

(R2 \ ΩR)	BR
)
⊕BR . (5)

As Ac 	BR = (A⊕BR)c, from (5) it follows that

R2 \ ΩR =
(

(R2 \ ΩR)	BR
)
⊕BR = (ΩR ⊕BR)c ⊕BR

= Ωc ⊕BR = (R2 \ Ω)⊕BR .

Therefore, we have(
(R2 \ Ω)⊕BR

)
\ (R2 \ Ω) =

(
R2 \ ΩR

)
\
(

(R2 \ Ω)
)

= Ω \ ΩR . (6)

As reach(ΩR) ≥ R, all x ∈ Ω\ΩR have unique projection zx on ∂ΩR. By (6),
our claim consists in showing that any of these x has as well unique projec-
tion on ∂Ω. This is straightforward as |x− zx| > 0, BR(zx) ⊃ Bdist(x;∂Ω)(x)
and thus ∂BR(z) ∩ ∂Bdist(x;∂Ω)(x) contains at most one point. Hence, it
contains exactly one.

We are left to show the last part of the claim; suppose that Ω has the strict
property and let by contradiction ΩR\int(ΩR) 6= ∅. By [19, Proposition 2.1],
this set difference consists of C1,1 curves. By [19, Remark 4.1] any point x on
these curves has two antipodal projections on ∂Ω. This yields a contradiction
with assuming the strict property to hold. �

Remark 3.2. Notice that the second part of Lemma 3.1 is not an “if and
only if”. There exist sets Ω with no necks of radius R such that their inner
parallel set ΩR agrees with the closure of its interior, Ω equals the Minkowski
sum ΩR⊕BR but for which the strict interior rolling disk property of radius
R does not hold. An example is depicted in Figure 3.1. Notice that the ball
with antipodal points on ∂Ω is centered on a point that, if removed, would
disconnect ΩR.

Proof of Theorem 1.2 and of Criterion 1.5. First, notice that the 2 dimen-
sional Lebesgue measure of ∂Ω has zero measure, i.e. |∂Ω| = 0, since one has
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reach(R2 \Ω) > 0, see [7, Theorem 6.1 (v), (vii) and Theorem 6.2 (ii)]. Sec-
ond, notice that as one can use Ω as competitor for estimating the Cheeger
constant, one has the upper bound hΩ ≤ R−1. In virtue of Lemma 3.1 and
of Theorem 2.3 we immediately find that Ω is a minimizer of

Fκ[E] = P (E)− κ|E|,
for κ = R−1. If the strict property given in Definition 1.1 holds, i.e. none of
the interior rolling disks is such that two antipodal points of the boundary
lie on ∂Ω, uniqueness follows as well from Lemma 3.1.

Suppose now that R = |Ω|/P (Ω) and argue by contradiction letting
R−1 > hΩ. Notice that the minimum of FR−1 is strictly negative. Indeed,
taken a Cheeger set E of Ω, which are well known to exist, it is immediate
to check that

P (Ω)−R−1|Ω| = minFR−1 ≤ P (E)−R−1|E| < P (E)− hΩ|E| = 0.

Then,

R <
|Ω|
P (Ω)

.

This immediately produces a contradiction, which concludes the proof. �

Proof of Proposition 1.6. Consider the set Ω = ω ⊕ BR. Since ω has reach
greater than R, one has that ΩR = ω. Thanks to the regularizing effect
of the Minkowski sum of a set with reach strictly greater than R with BR,
see [23, Corollary 4.22], we have that Ω is C1,1. Moreover, through the
projection Π∂ω : Ω \ ω → ω, one can define a deformation retract between
Ω and ω, and thus they are homotopic, see [23, Lemma 4.52]. Hence, Ω is
connected and simply connected, thus a Jordan domain.

In virtue of the validity of Steiner’s formulae (see [15, Section 2.3] or the
more general [23, Section 4.5]), one has

|Ω| = |ω|+RMo(ω) + πR2, P (Ω) =Mo(ω) + 2πR,

where Mo denotes the outer Minkowski content. On the one hand by hy-
pothesis the equality |ω| = πR2 holds, thus the ratio |Ω|/P (Ω) equals R. On
the other hand, the construction itself implies that Ω possesses the interior
rolling disk property of radius R. By Criterion 1.5, the claim immediately
follows. �

Remark 3.3. Note that we need the strict inequality reach(ω) > R in Propo-
sition 1.6. Indeed, a key tool in the proof is Steiner’s formulae which, for
sets of reach ρ, are valid up to ρ but not ρ itself.
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