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Abstract. In this paper, we consider multi-valued graphs with a prescribed real analytic interface
that minimize the Dirichlet energy. Such objects arise as a linearized model of area minimizing
currents with real analytic boundaries and our main result is that their singular set is discrete in 2
dimensions. This confirms (and provides a first step to) a conjecture by B. White [21] that area
minimizing 2-dimensional currents with real analytic boundaries have a finite number of singu-
larities. We also show that, in any dimension, Dirichlet energy-minimizers with a C1 boundary
interface are Hölder continuous at the interface.

1. Introduction and main result

Consider a smooth closed curve Γ in R2+n. The existence of oriented surfaces which bound Γ

and minimize the area can be approached in two different ways. Following the classical work
of Douglas and Rado we can fix an abstract connected smooth surface Σg of genus g whose
boundary ∂Σg consists of a single connected component and look at smooth maps Φ : Σg → R

2+n

with the property that the restriction of Φ to ∂Σg is an homeomorphism onto Γ. We then consider
the infimum Ag(Γ) over all such maps Φ and all smooth Riemannian metrics h on Σ of the energy∫

Σg

|∇Φ|2dvolh .

If Ag(Γ) < Ag−1(Γ), then there is a minimizer, cf. [16, 4], whose image is an immersed surface of
genus g, with possible branch points. A different, more intrisic, approach was pioneered by De
Giorgi, cf. [5], in the codimension 1 case, and by Federer and Fleming in higher codimension,
cf. [17]. The latter looks at integral currents T (a suitable measure-theoretic generalization of
classical oriented submanifolds with boundary) whose boundary is given by JΓK and minimizes
their mass, a suitable measure-theoretic generalization of the volume of classical submanifolds.
The minimizer then always exists via the direct methods of the calculus of variations.

There is a very natural question relating the two approaches: is every minimizer T found by the
Federer-Fleming theory a classical minimal surface with finite topology, namely a parametrized
surface of some genus g? Note that if this were the case, then the sequence {Ag(Γ)}g∈N would
become constant for sufficiently large g. When the codimension n equals 1 and Γ is of class C2,α

for some α > 0, the interior regularity theorem of De Giorgi in [6] and the boundary regularity
theorem of Hardt and Simon in [19] imply that every minimizer T is in fact a C2,α embedded
surface up to the boundary. Thus T has finite genus g0 and any conformal parametrization Φ
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over an abstract Riemann surface Σg0
gives a minimizer in the sense of Douglas and Rado. On

the other hand, Fleming in [18]. showed a closed embedded curve Γ in R3 of finite length for
which {Ag(Γ)}g∈N is not asymptotically constant.

The question is much more subtle in higher codimension, because singularities might arise,
both at the interior and at the boundary. In the work [21] White asks whether the topology of
the minimizer T is finite when Γ is real analytic. If this conjecture were true, then T would have
finitely many singularities by the main theorem of [21]. The aim of this paper is to start a sort
of reverse program to White’s: under the assumption of real analyticity for the boundary Γ we
wish to show first that the set of boundary and interior singular points of T is finite and hence to
analyze the singularities and conclude that the topology of the minimizer is finite.

It has been shown by Chang in [3] that T is smooth in Rn \ Γ up to a discrete set of singu-
lar branch points and in sufficiently small neighborhoods of such singular points the resulting
branched surface is topologically a disk. We in fact refer to [14, 11, 13, 12] for a complete proof,
as Chang needs a suitable modification of the techniques of Almgren’s monumental monograph
[2] to start his argument, and the former has been given in full details in [13]. In order to attack
White’s conjecture it suffices therefore to deal with boundary regularity. In fact, even for Γ of
class C2,α, under the assumption that Γ lies in the boundary of a uniformly convex set, the bound-
ary regularity theorem of Allard [1] implies that any minimizer T is smooth at Γ. The general
problem is however very subtle. So far the best available result is given in [8] and shows that
the set of boundary regular points is dense in Γ when Γ is of class C3,α for α > 0. The work
[8] gives also an example of a smooth curve in R4 for which there is a unique Federer-Fleming
minimizer with a sequence of singularities accumulating to a boundary branch point. This ex-
ample has been modified in [7] to produce C∞ embedded curves in complete C∞ Riemannian
4-dimensional manifolds for which there is a unique Federer-Fleming minimizer with infinite
topology. In particular there is a strong contrast to the codimension 1 case: the real analyticity
assumption in White’s conjecture is, in a certain sense, needed∗.

1.1. Linearized model. The analysis of interior singularities of area minimizing currents was
pioneered by Almgren’s monumental work in [2] in the early eighties and recently revisited from
a modern perspective by the first author and Emanuele Spadaro in [15]. The work [8] gives an
Almgren type theory at the boundary, whereas the works [14, 11, 13, 12, 20, 9, 10] extend the
interior theory to other objects (almost calibrated currents and area minimizing currents modulo
p). The starting point of all these papers, an essential discovery of Almgren, is to analyze the
singularities for a suitable “linearized model”. The main purpose of the present paper is to state
and prove the appropriate linearized counterpart of White’s conjecture.

First of all we recall the notation AQ(Rn) for the set of unordered Q-tuples of Rn, which we
will regard as nonnegative atomic measures with integer coefficients and total mass Q, cf. [15,
Introduction] for the formal definition and for the standard complete metric G which we will use

∗The examples of [7] are curves in smooth almost Kähler manifolds (R4, g), whose smooth metrics can be taken
arbitrarily close to the euclidean one. However it is currently not known whether such examples exist in the Eu-
clidean space.
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on it. For atoms we will use the notation JPK and thus elements in AQ(Rn) will be denoted by∑
i JPiK. In what follows we will often write AQ instead of AQ(Rn). We recall that for Sobolev

functions f ∈ W1,2(Ω,AQ) (cf. again [15, Introduction]) we set

|D f |2 :=
m∑

j=1

|∂ j f |2,

where

(1.1) |∂ j f | = sup
i∈N
|∂ jG( f ,Ti)| almost everywhere in Ω,

and {Ti}i∈N is a countable dense subset of AQ. While such abstract definition is very direct and
useful to work with, the Dirichlet energy turns out to be the sum of the Dirichlet energies of
the different sheets in all cases where the multifunction f can be “nicely decomposed”. In an
appropriate sense this can be justified also for any Sobolev functions, the reader is again referred
to [15] for the relevant details.

We now recall the notion of interior regular points.

Definition 1.2 (Interior regular point, Definition 0.10 of [15]). A function f ∈ W1,2(Ω,AQ) is
regular at a point x ∈ Ω if there exists a neighborhood B of x and Q analytic functions fi : B→ Rn

such that
f (y) =

∑
i

J fi(y)K for almost every y ∈ B,

and either fi(y) , f j(y) for every y ∈ B, or fi ≡ f j. The complement of interior regular points is
called the set of interior singular points.

The following theorem on the interior regularity of Dir-minimizers was proven in [15], refining
a previous fundamental result by Almgren in [2]:

Theorem 1.3 (Theorem 0.12 in [15]). Let f ∈ W1,2(Ω,AQ) be Dir-minimizing and m = 2. Then
the interior singular set of f consists of isolated points.

We now come to the boundary counterpart, following the approach of [8]. Suppose a hypersur-
face γ divides a connected open set Ω ⊂ Rm into two connected components Ω+ and Ω−. For any
set K ⊂ Ω we will use the notation K± for K ∩Ω±. Moreover, in order to avoid confusion, in the
rest of the paper we will use the double integral symbol to indicate integration over subsets of Rm

with respect to the Lebesgue measure, and the single integral symbol to indicate integration over
subsets of the hypersurface γ with respect to the usual Hausdorff (m − 1)-dimensional measure.

Definition 1.4. We say that the pair f = ( f +, f −) is a
(
Q − 1

2

)
-map with interface (γ, ϕ) of class

W1,2 if there is some (classical) function ϕ ∈ H1/2(γ,Rn) such that

(i) f + ∈ W1,2(Ω+,AQ) and f − ∈ W1,2(Ω−,AQ−1);
(ii) f +|γ = f −|γ + JϕK.
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We refer to [15, 8] for the trace theorems which allow to make sense of (ii) under our assump-
tions. For the corresponding set of pairs we will use the shorthand notation W1,2(Ω,A±Q) and for
each f = ( f +, f −) ∈ W1,2(Ω,A±Q) we define its Dirichlet energy as

Dir( f ,Ω) := Dir( f +,Ω+) + Dir( f −,Ω−) =

∫∫
Ω+

|D f +|2 +

∫∫
Ω−
|D f +|2.

Finall, we say that f = ( f +, f −) ∈ W1,2(Ω,A±Q) is Dir-minimizing with interface (γ, ϕ), if
Dir(g,Ω) ≥ Dir( f ,Ω) for any other function g ∈ W1,2(Ω,A±Q) with interface (γ, ϕ) which agrees
with f outside of a compact set K ⊂ Ω.

The goal of the paper is to show that when the interface (γ, ϕ) is real analytic and the domain
is 2-dimensional, Dir-minimizers enjoy a regularity theorem which is analogous to Theorem 1.3.
First of all a point p ∈ Ω \ γ, namely belonging to either Ω+ or Ω−, will be called regular if it is a
regular point for, respectively, f + or f − (cf. Definition 1.2). Its complement in Ω \ γ is the set of
interior singular points, denoted by Σi

f . It remains to define regular points at the interface γ.

Definition 1.5 (Boundary regular point, Definition 2.6 of [8]). Let f = ( f +, f −) be a map in
W1,2(Ω,A±Q) with interface (γ, ϕ). A point p ∈ γ is regular if there are a ball Br(p), (Q − 1)-
functions u1, · · · , uQ−1 : Br(p)→ Rn and a function uQ : B+

r (p)→ Rn such that

• f + =
∑Q

i=1JuiK on B+
r (p) and f − =

∑Q−1
i=1 JuiK on B−r (p);

• For any pair i, j ∈ {1, · · · ,Q − 1} either the graphs of ui and u j are disjoint or they
completely coincide;
• For any i ∈ {1, · · · ,Q−1} either the graphs of ui and uQ are disjoint in B+

r (p) or the graph
of uQ is contained in that of ui.

The complement in γ of the set of regular points is called the set of boundary singular points,
denoted by Σb

f .

We can now state our main theorem:

Theorem 1.6. Let Ω ⊂ R2 and (γ, ϕ) be an interface for which both γ and ϕ are real analytic.
If f ∈ W1,2(Ω,A±Q) is Dir-minimizing with interface (γ, ϕ), then the singular set Σ f = Σi

f ∪ Σb
f is

discrete.

In passing, we need a suitable estimate on the Hölder continuity of minimizers at the interface
γ. The latter result is however not confined to the special dimension m = 2 nor to real analytic
interfaces (γ, ϕ) and, although it is not immediately relevant for our main purposes, we state it in
a more general case in the following

Theorem 1.7. Let m ∈ N\{0, 1} and suppose ( f +, f −) is a Dir-minimizing (Q− 1
2 )-map in Ω ⊂ Rm

with interface (γ, ϕ) of class C1. Then ( f +, f −) is Hölder regular.

In fact it is possible to give a precise estimate on a suitable Hölder seminorm of f ± in terms
of the regularity of the interface (γ, ϕ) and the Dirichlet energy of the minimizer. For the precise
statement we refer to Theorem 3.1.
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1.2. Plan of the paper. The remaining sections are organized as follows. First of all in Section
2 we make some preliminary elementary considerations on planar minimziers which will be
particularly useful in the planar case of Theorem 1.7 and in Theorem 1.6. In Section 3 we
address the general Hölder regularity result and prove therefore Theorem 1.7. In the subsequent
Section 4 we give the fundamental computations leading to the monotonicity of the frequency
function, a celebrated result of Almgren away from interface, extended at general interfaces in
[8]: in our case the computations are simpler than in [8] because we can “straighten the boudary”
using complex analysis. In Section 5 we use the frequency function estimate and the Hölder
regularity to prove the existence of suitable blow-ups, or tangent functions, at singular points. A
suitable modification of the argument given in [15] (which in turn borrowed from key ideas in
[3]) shows then the uniqueness of such objects. In Section 6 we give a list of necessary conditions
that tangent functions must satisfy, which in turn leads to a suitable decomposition of them in
simpler pieces (which we call irreducible maps). Such decomposition is combined together with
the rate of convergence proven in Section 5 in order to decompose general Dir-minimizers at
boundary singular points: the latter fact is then used in the final Section 7 to conclude the proof
of Theorem 1.6.

2. Reduction and preliminaries for the planar case

2.1. Reduction of Theorem 1.6. In this section we use elementary considerations in complex
analysis to reduce Theorem 1.6 to a much simpler case. In order to state our theorem, we recall
the definition of the map η : AQ(Rn)→ Rn which gives the barycenter of the atomic measure T :

η

(
Q∑

i=1

JPiK

)
=

1
Q

Q∑
i=1

Pi .

In particular, if ( f +, f −) ∈ W1,2(Ω,A±Q) we can define two maps (η+, η−) which are, respectively
the center of mass of the maps f + and f −. In particular η± := η ◦ f ±, where we make a slight
abuse of notation because we keep the same symbol η for two different maps, one defined onAQ

and the other onAQ−1. Specifically:

η+(x) =
1
Q

Q∑
i=1

f +
i (x) and η−(x) =

1
Q − 1

Q−1∑
i=1

f −i (x) .

Theorem 1.6 can then be reduced to the following particular case:

Theorem 2.1. Let m = 2 and assume ( f +, f −) is Dir-minimizing in the unit disk D with interface
(γ, 0), where γ is the coordinate axis {(x1, 0) : x1 ∈ R}. Assume further that Qη+ = (Q − 1)η−.
Then the singular set Σ f is discrete.

From now on, we introduce the convention that, if γ = {(x1, 0) : x1 ∈ R}, then the interface
(γ, ϕ) is denoted by (R, ϕ). This is motivated by the fact that we will often identify R2 with the
complex plane C, via (x1, x2) 7→ x1 + ix2. The set {x2 = 0} is then the real axis of C after such
identification. The above theorem will be proved at the end of the paper. In the next paragraph
we show how the general case of Theorem 1.6 follows from it.
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Assume ( f +, f −) is as in Theorem 1.6. First of all observe that, if Σ f is not discrete, then by
Theorem 1.3 Σ f must have an accumulation point p ∈ γ. Modulo translation we may assume
p is the origin. Since γ is analytic, we may choose a coordinate system so that the tangent
to γ satisfies T0γ = {x2 = 0} = R. In particular γ must be (locally) the graph {(t, ζ(t))} of a
function ζ(t) whose Taylor series at the origin is

∑
k≥2 αktk (where αk =

ζ(k)(0)
k! ∈ R). Identify R2

with the complex plane and consider, in a neighborhood of the origin, the holomorphic map Φ

given by Φ(z) = z +
∑

k≥2 iαkzk. By the inverse function theorem the latter map is invertible in
a sufficiently small neighborhood U of the origin (which can be assumed to be a disk) and its
inverse over Φ(U) is also holomorphic. Since Φ is conformal, ( f + ◦ Φ−1, f − ◦ Φ−1) is clearly
a minimizer in V := Φ(U) and the interface is (T0γ, ϕ ◦ Φ−1). Moreover Φ maps the segment
{Im z = 0} ∩ U onto γ. We can thus assume, without loss of generality, that γ = R.

Next, since ϕ is real analytic, by the Cauchy-Kowalevski Theorem ϕ has a harmonic extension
in a neighborhood of the origin, still denoted by ϕ. We then replace f = ( f +, f −) with

f +(x) 7→ g+(x) :=
Q∑

i=1

J f +
i (x) − ϕ(x)K, f −(x) 7→ g−(x) :=

Q−1∑
i=1

J f −i (x) − ϕ(x)K.

Indeed, given a map (ḡ+, ḡ−) with interface (R, 0) and same trace on ∂D as (ḡ+, ḡ−), consider the
corresponding map (h+, h−) where we add ϕ on each side. The latter has interface (R, ϕ) and
coincides with ( f +, f −) on ∂D. Moreover we compute∫∫

D+

|Dh+|2 =

∫∫
D+

|Dḡ+|2 + Q
∫∫
D+

|Dϕ|2 + 2 Q
∫∫
D+

Dη ◦ ḡ+ : Dϕ︸                      ︷︷                      ︸
=:I+

∫∫
D−
|Dh−|2 =

∫∫
D−
|Dḡ−|2 + (Q − 1)

∫∫
D−
|Dϕ|2 + 2 (Q − 1)

∫∫
D−

Dη ◦ ḡ− : Dϕ︸                             ︷︷                             ︸
=:I−

Using that the function ϕ is harmonic we compute

I+ = Q
∫

(∂D)+

η ◦ ḡ+ ·
∂ϕ

∂ν︸                     ︷︷                     ︸
=:J+

−Q
∫
R∩D

η ◦ ḡ+ ·
∂ϕ

∂x2︸                     ︷︷                     ︸
=:K+

I− = (Q − 1)
∫

(∂D)−
η ◦ ḡ− ·

∂ϕ

∂ν︸                             ︷︷                             ︸
=:J−

+ (Q − 1)
∫
R∩D

η ◦ ḡ− ·
∂ϕ

∂x2︸                             ︷︷                             ︸
=:K−

Observe that J+ and J− are both independent of the choice of (ḡ+, ḡ−), because the traces of the
respective maps on (∂D)± equals those of (g+, g−). On the other hand Qη ◦ ḡ+ − (Q− 1)η ◦ ḡ− = 0
on R ∩ D. Therefore K− − K+ = 0. This implies that the difference∫∫

D+

|Dh+|2 +

∫∫
D−
|Dh−|2 −

∫∫
D+

|Dḡ+|2 −

∫∫
D−
|Dḡ−|2
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is actually a constant. In particular, if we could find a competitor for (g+, g−) with lower energy,
then we could transform it into a competitor for ( f +, f −) with lower energy: we conclude that
(g+, g−) must be a Dir minimizer with interface (R, 0).

Observe next that η+ = η ◦ f + and η− = η ◦ f − are harmonic functions in D+ and D−, respec-
tively. For any x = (x1, x2) ∈ R2, we denote x̄ = (x1,−x2) the reflection point of x across R. We
define a function φ : D→ Rn as

(2.2) φ(x) =


Qη+(x) − (Q − 1)η−(x̄)

2Q − 1
, x2 ≥ 0,

(Q − 1)η−(x) − Qη+(x̄)
2Q − 1

, x2 ≤ 0.

Clearly φ is harmonic in D \ R. By the boundary condition f +|γ = f −|γ + J0K, we know

Qη+ = (Q − 1)η− on R.

Hence φ is continuous and odd in the variable x2. In particular φ is harmonic on all of D.
Therefore by modifying ( f +, f −) as follows

f +(x) 7→ f̃ +(x) :=
Q∑

i=1

J f +
i (x) − φ(x)K, x ∈ Rm

+ ,

f −(x) 7→ f̃ −(x) :=
Q−1∑
i=1

J f −i (x) − φ(x)K, x ∈ Rm
−

and repeating the same computations as above we conclude that the new function ( f̃ +, f̃ −) is still
a Dir-minimizer with the same interface (R, 0). Notice also that

Q∑
i=1

f̃ +
i (x) = Qη+(x) − Qφ(x) =

Q(Q − 1)
2Q − 1

(
η+(x) + η−(x̄)

)
,

Q−1∑
i=1

f̃ −i (x) = (Q − 1)η−(x) − (Q − 1)φ(x) =
Q(Q − 1)
2Q − 1

(
η−(x) + η+(x̄)

)
,

and thus
Q∑

j=1

f̃ +
j (x) =

Q−1∑
j=1

f̃ −j (x̄).

For simplicity we still denote the new function as ( f +, f −), except that their center of mass now
enjoy an additional symmetry:

(2.3) Qη+(x) = (Q − 1)η−(x̄).

This symmetry is invariant under translation, scaling and uniform limit.
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2.2. Decomposition into irreducible maps. In this section we extend a suitable decomposi-
tion of Q-valued maps on the circle to the case of (Q − 1

2 )-valued maps. Recall that map
g ∈ W1,p(S1,AQ) is called irreducible if there is no decomposition of g into two simpler W1,p

functions (cf. [15]), namely if there are no integers Q1,Q2 > 0 and maps g1 ∈ W1,p(S1,AQ1), g2 ∈

W1,p(S1,AQ2) such that g = g1 + g2 (in particular Q1 + Q2 = Q).

Definition 2.4 (Irreducible (Q − 1
2 )-maps on S1). A map g = (g+, g−) ∈ W1,p(S1,A±Q) with

interface (R, ϕ) is called irreducible if there is no decomposition of g into the “sum” of a map
g1 ∈ W1,p(S1,AQ1) and a map g2 ∈ W1,p(S1,A±Q2

) with the same interface (γ, ϕ), where the
positive integers Q1,Q2 satisfy Q1 + Q2 = Q. The “sum” is understood in the following sense:

g+ = g1 + g+
2 on (S1)+ = {z ∈ C : |z| = 1,Re z > 0}

g− = g1 + g−2 on (S1)− = {z ∈ C : |z| = 1,Re z < 0}.

Remark 2.5. By the above definition, clearly any function g ∈ W1,p([0, π],Rn) satisfying g(0) =

g(π) = 0 is irreducible with Q = 1 (the interface being (R, 0)).

The decomposition of W1,p (Q− 1
2 )-valued map on the circle is then a corollary of the following

proposition for Q-valued maps, where, for any interval I = [a, b] ⊂ R, we denote by AC(I,AQ)
the space of absolutely continuous functions taking values in the metric space (AQ,G).

Proposition 2.6 (Porposition 1.2 of [15]). Let g ∈ W1,p(I,AQ). Then

(a) g ∈ AC(I,AQ) and moreover, g ∈ C0,1− 1
p (I,AQ) for p > 1;

(b) There are g1, · · · , gQ ∈ W1,p(I,Rn) s.t. f =
∑

i JgiK and |Dgi| ≤ |Dg| a.e.

Proposition 2.7 (Decomposition of W1,p(S1,A±Q) into irreducible maps). A map g ∈ W1,p(S1,A±Q)
with interface (R, ϕ) is either irreducible, or it can be decomposed as g = g0 +

∑J
j=1 g j, where

g0 ∈ W1,p(S1,A±Q0
) is irreducible with interface (R, ϕ), and each g j ∈ W1,p(S1,AQ j) is irre-

ducible. Moreover, a map g ∈ W1,2(S1,A±Q) with interface (R, ϕ) is irreducible if and only if the
following two conditions are satisfied:

(i) card(g+(θ)) = Q for every θ ∈ [0, π], and card(g−(θ)) = Q − 1 for every θ ∈ [π, 2π].
(ii) There exists a W1,p map ζ : S1 → Rn with ζ(0) = ϕ(1) and ζ(2π) = ϕ(−1) such that g

unwinds to ζ, in the following sense: g+ =
∑Q

j=1Jg+
j K and g− =

∑Q−1
j=1 Jg−j K with

(2.8) g+
j (θ) = ζ

(
2θ

2Q − 1
+

4π
2Q − 1

( j − 1)
)
, θ ∈ [0, π], j = 1, · · · ,Q,

(2.9) g−j (θ) = ζ

(
2θ

2Q − 1
+

4π
2Q − 1

( j − 1)
)
, θ ∈ [π, 2π], j = 1, · · · ,Q − 1.

Proof. The existence of an irreducible decomposition in the above sense is an obvious conse-
quence of the definition of irreducible maps. It remains to show the characterization of irre-
ducible maps.
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By Proposition 2.6 a map satisfying (i) and (ii) is clearly irreducible with interface (γ, ϕ).
Suppose g ∈ W1,p(S1,A±Q) with interface (γ, ϕ) is irreducible. Without loss of generality (i.e.
after possible subtracting to all sheets an extension of ϕ) we can assume ϕ ≡ 0. Namely

(2.10) g+|γ = g−|γ + J0K.

Recall Proposition 2.6, we consider g+
1 , · · · , g

+
Q ∈ W1,p([0, π],Rn) a selection of g+ ∈ W1,p([0, π],AQ),

and g−1 , · · · , g
−
Q−1 ∈ W1,p([π, 2π],Rn) a selection of g− ∈ W1,p([π, 2π],AQ−1). We assume without

loss of generality that g+
1 (0) = J0K. By the boundary condition (2.10), there exists an integer Q0,

1 ≤ Q0 ≤ Q, such that after reordering the selections g+
i (π) = g−i (π) , 0 and g−i (2π) = g+

i+1(0) for
all i = 1, · · · ,Q0 − 1, g+

Q0
(π) = 0. Suppose Q0 < Q, then we define

f +
1 =

Q0∑
i=1

Jg+
i K, f −1 =

Q0−1∑
i=1

Jg−i K,

and

f2 =


Q∑

i=Q0+1
Jg+

i K, θ ∈ [0, π]

Q−1∑
i=Q0

Jg−i K, θ ∈ [π, 2π]

By (2.10), the map f1 := ( f +
1 , f −1 ) lies in W1,p(S1,A±Q0

) with interface (γ, ϕ); the map f2 is well-
defined on γ, i.e. f2(π−) = f2(π+) and f2(2π) = f2(0), and moreover f2 ∈ W1,p(S1,AQ−Q0). In
other words, this gives a nontrivial decomposition of the irreducible map g, contradiction. Hence
Q0 = Q, and we define the function ζ by following g+

i , g
−
i , g+

i+1 in order.

Suppose card(g+) , Q, that is, there exist θ0 ∈ [0, π] and i1 < i2 such that g+
i1(θ0) = g+

i2(θ0). Let

g̃+ =

{
g+

i1 , θ ∈ [0, θ0]
g+

i2 , θ ∈ [θ0, π].

Then the following map gives a decomposition of g:

f +
1 =

i1−1∑
i=1

Jg+
i K + Jg̃K +

Q∑
i=i2+1

Jg+
i K, f −1 =

i1−1∑
i=1

Jg−i K +

Q−1∑
i=i2

Jg−i K.

Since ( f +
1 , f −1 ) ∈ W1,p(S1,A±Q+i1−i2) with interface (γ, ϕ), and Q + i1 − i2 < Q, this is a non-

trivial decomposition of the irreducible map g, contradiction. Hence card(g+) = Q. Similarly
card(g−) = Q − 1. �

2.3. Rolling and unrolling. The decomposition of the previous section can be used to construct
efficient competitors to Dirichlet minimizers in the planar case. Again the situation is similar to
that of Q-valued maps. Keeping our identification R2 = C we will denote by [0, 1] the “slit”
{(x1, 0) : 0 ≤ x1 ≤ 1} and on the domain D \ [0, 1] we will consider polar coordinates (r, θ) ∈
]0, 1[×]0, 2π[, via the usual parametrization (r, θ) 7→ reiθ. Given a map ζ ∈ W1,2(D \ [0, 1],Rn)
we can define two maps ζu, ζ l ∈ H1/2([0, 1],Rn) which are, respectively, the “upper” and “lower”
traces of ζ on the slit [0, 1]. In particular in polar coordinates we can naturally extend ζ to
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]0, 1[×[0, 2π] setting ζ(r, 0) = ζu(r) and to ζ(r, 2π) = ζ l(r). In the next lemma and its applications
we will follow the latter convention.

Lemma 2.11 (Unrolling, analogue of Lemma 3.12 [15]). Suppose ζ ∈ W1,2(D \ [0, 1],Rn) and
consider the

(
Q − 1

2

)
-valued function f = ( f +, f −) defined as follows:

f +
j (r, θ) = ζ

(
r

2
2Q−1 ,

2θ
2Q − 1

+
4π

2Q − 1
( j − 1)

)
, θ ∈ [0, π], j = 1, · · · ,Q,(2.12)

f −j (r, θ) = ζ

(
r

2
2Q−1 ,

2θ
2Q − 1

+
4π

2Q − 1
( j − 1)

)
, θ ∈ [π, 2π], j = 1, · · · ,Q − 1.(2.13)

(For Q = 1 we just ignore f −.) Then f ∈ W1,2(D,A±Q) and

(2.14) Dir( f ,D) =

∫∫
D

|Dζ |2.

Moreover, if ζ |S1 ∈ W1,2(S1,Rn), then f |S1 ∈ W1,2(S1,A±Q) and

(2.15) Dir( f |S1 ,S1) =
2

2Q − 1

∫
S1
|∂τζ |

2,

where ∂τ denotes the tangential derivative on S1.

Proof. We define the following subsets of the unit disk,

C =
{

reiθ : 0 < r < 1, θ , 0
}
,

C+ =
{

reiθ : 0 < r < 1, 0 < θ < π
}
, C− =

{
reiθ : 0 < r < 1, π < θ < 2π

}
;

D j =

{
reiθ : 0 < r < 1,

2π
2Q − 1

2( j − 1) < θ <
2π

2Q − 1
2 j
}
, j = 1, · · · ,Q − 1,

D+
j =

{
reiθ : 0 < r < 1,

2π
2Q − 1

2( j − 1) < θ <
2π

2Q − 1
(2 j − 1)

}
, j = 1, · · · ,Q,

D−j =

{
reiθ : 0 < r < 1,

2π
2Q − 1

(2 j − 1) < θ <
2π

2Q − 1
2 j
}
, j = 1, · · · ,Q − 1.

For j = 1, · · · ,Q − 1, we define ϕ j : C → D j as

ϕ j(reiθ) = r
2

2Q−1 ei
(

2θ
2Q−1 + 4π

2Q−1 ( j−1)
)
;

and we define ϕQ : C+ → D+
Q as

ϕQ(reiθ) = r
2

2Q−1 ei
(

2θ
2Q−1 + 4π

2Q−1 (Q−1)
)
.

Then

f + =

Q∑
j=1

Jζ ◦ ϕ|C+K and f − =

Q−1∑
j=1

Jζ ◦ ϕ|C−K.
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Since reiθ 7→ r
2

2Q−1 ei 2θ
2Q−1 is a conformal map, each ϕ j is conformal. So by the invariance of

the Dirichlet energy under conformal mappings, we deduce that f + ∈ W1,2(C+,AQ), f − ∈
W1,2(C−,AQ−1) and

Dir( f ,C) = Dir( f +,C+) + Dir( f −,C−) =

Q∑
j=1

Dir(ζ ◦ ϕ j,C
+) +

Q−1∑
j=1

Dir(ζ ◦ ϕ j,C
−)

=

Q∑
j=1

Dir(ζ,D+
j ) +

Q−1∑
j=1

Dir(ζ,D−j ) = Dir
(
ζ,∪Q−1

j=1D j ∪D
+
Q

)
=

∫∫
D

|Dζ |2.

On the other hand, since

∂τ
(
ζ ◦ ϕ j

)
= ∂θ

(
ζ ◦ ϕ j

)
=

2
2Q − 1

∂τζ ◦ ϕ j,

we have

Dir(ζ ◦ ϕ j|S1 , (S1)+) =

∫
(S1)+

(
2

2Q − 1

)2

|∂τζ ◦ ϕ j|
2 =

2
2Q − 1

∫ 2π
2Q−1 (2 j−1)

2π
2Q−1 2( j−1)

|∂τζ |
2.

An entirely analogous computations on (S1)− makes it straightforward to show that f |S1 ∈ W1,2(S1,A±Q)
and

Dir( f |S1 ,S1) =
2

2Q − 1

∫
S1
|∂τζ |

2. �

3. Hölder continuity at the interface

In this section we prove the Hölder regularity Theorem 1.7, whose conclusion we make more
quantitative in the following statement.

Theorem 3.1 (Boundary Hölder regularity of Dir-minimizer, analogue of Theorem 3.9 [15]).
For every 0 < δ < 1

2 , there exist constant α = α(m,Q) ∈ (0, 1) and C = C(m, n,Q, δ) with the
following property. Assume that γ is a C1 graph of a function ζ over R passing through the origin
with ‖ζ‖C1 ≤ 1 and that ϕ ∈ C1(γ). If f ∈ W1,2(B1,A

±
Q) is Dir-minimizing with interface (γ, ϕ),

then

[ f ]C0,α(Bδ) := max

{
sup

x,y∈B+
δ

G( f +(x), f +(y))
|x − y|α

, sup
x,y∈B−δ

G( f −(x), f −(y))
|x − y|α

}
≤ C Dir( f , B1)

1
2 + C‖Dϕ‖C0 .(3.2)

The proof consists of two main steps. A comparison argument is used to prove a suitable
decay of the Dirichlet energy on balls with vanishing radius. the decay is then combined with a
Campanato-Morrey estimate to show Hölder regularity.
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3.1. Campanato-Morey estimate. We first record the following extension of a classical result
by Morrey. In the case of Q-valued maps we refer to [15]. In our case we need a suitable
additional argument to treat the case of

(
Q − 1

2

)
-valued functions.

Lemma 3.3 (Campanato-Morrey estimate). Suppose ( f +, f −) ∈ W1,2(B1,A
±
Q) is a map with in-

terface (γ, ϕ) as in Theorem 3.1. If there exists β ∈ (0, 1] and A ≥ 0 such that

(3.4)
∫∫

Br(y)
|D f |2 ≤ Arm−2+2β for every y ∈ B1 and almost every r ∈ (0, 1 − |y|),

then for every 0 < δ < 1, there is a constant C = C(m, β, δ, γ) such that

[ f ]C0,β(Bδ) ≤ C
√

A + Cδ1−β‖Dϕ‖C0 .

Proof. We first extend ( f +, f −) to a function g : B1 → AQ(Rn) as follows. We use the C1

regularity of γ and ϕ to extend ϕ to a C1 function φ over B1 satisfying the estimate ‖Dφ‖C0(B1) ≤

C‖Dϕ‖C0(γ), where C depends on m and the C1-norm of γ.

(3.5) g(x) :=
{

f +(x), x ∈ B+
1 ∪ γ,

f −(x) + Jφ(x)K, x ∈ B−1 .

Since f +|γ = f −|γ + JϕK, the function g belongs to W1,2(B1,AQ), by the trace theory of [15].
Moreover, the theory in [15] can be easily used to prove that∫∫

Br

|Dg|2 =

∫∫
Br

|D f |2 +

∫∫
B−r

|Dφ|2 ≤ rm−2+2β
(
A + r2−2β‖Dφ‖2C0

)
.

By the Camapanato-Morrey estimate for Q-valued functions (see Proposition 2.14 in [15]), we
conclude that

sup
x,y∈Bδ

G(g(x), g(y))
|x − y|β

≤ C
(∫∫

B1

|Dg|2
) 1

2

.

Since clearlyG(g(x), g(y)) = G( f +(x), f +(y)) for every x, y ∈ B+
1 , we conclude the desired esimate

on the Hölder continuity of f +. The one for f − is slightly more subtle. Consider indeed two
points x, y ∈ B−1 . It then turns out that there are i, j ∈ {1,Q − 1} and an invertible map σ :
{1, . . . ,Q − 1} \ { j} → {1, . . . ,Q − 1} \ {i} with the property that

G(g(x), g(y))2 = |φ(x) − f −i (y)|2 + | f −j (x) − φ(y)|2 +
∑

k∈{1,...,Q−1}\{ j}

| f −k (x) − f −σ(k)(y)|2 .

Observe therefore that, by the triangle inequality

| f −j (x) − f −i (y)| ≤ |φ(x) − φ(y)| + 2G(g(x), g(y)) .

In particular, using the obervation

G( f −(x), f −(y))2 ≤ | f −j (x) − f −i (y)|2 +
∑

k∈{1,...,Q−1}\{ j}

| f −k (x) − f −σ(k)(y)|2 ,

we achieve

G( f −(x), f −(y))2 ≤ 2|φ(x) − φ(y)|2 + 5G(g(x), g(y))2 ≤ 2‖Dφ‖2C0 |x − y|2 + 5G(g(x), g(y))2 .
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Combinining the latter inequality with the estimate for [g]C0,β we conclude the desired estimate
for the Hölder seminorm of f −. �

3.2. Almgren’s retractions and maximum principle. An important tool in proving the decay
of the Dirichlet energy for Q-valued minimizers is a family of retraction maps which can be used,
for instance, to prove suitable generalizations of the classical maximum principle for harmonic
functions. These maps were introduced by Almgren in his pioneering work and we refer to [15]
for an elementary account of them. In order to deal with

(
Q − 1

2

)
-maps we need an additional

property of such retractions, which is not recorded in [15] (nor in [2]) We start by recalling the
following notation:

Definition 3.6 (Diameter and separation). Let T =
∑

iJPiK ∈ AQ. The diameter and separation
of T are defined, respectively, as

d(T ) := max
i, j
|Pi − P j| and s(T ) := min{|Pi − P j| : Pi , P j},

with the convention that s(T ) = +∞ if T = QJPK.

For Y =
∑

i JPiK we denote by spt (T ) the set of points {P1, . . . , PQ} ⊂ R
n. Clearly

(3.7) dist(spt(T ), q) = min
i
|Pi − q|.

We have a triangle inequality

(3.8) dist(spt(T ), q) ≤ dist(spt(S ), q) + G(T, S ), for every T, S ∈ AQ.

Lemma 3.9. Let T ∈ AQ and r < s(T )/4. Then there exists a retraction ϑ : AQ → Br(T ) such
that

(i) G(ϑ(S 1), ϑ(S 2)) < G(S 1, S 2) if S 1 < Br(T ),
(ii) ϑ(S ) = S for every S ∈ Br(T ),

(iii) If a point q belongs to spt(T ) and to spt(S ), then it belongs to spt(ϑ(S )) too.

Proof. We define ϑ in the same way as Lemma 3.7 of [15]. The properties (i) and (ii) are proved
in [15, Lemma 3.7] whereas (iii) is an obvious definition of the explicit formula given in there.

�

Proposition 3.10 (Maximum principle). Let f ∈ W1,2(Ω,A±Q) be a Dir-minimizer with interface
(γ, 0). Suppose T ∈ AQ, 0 ∈ spt (T ) and 0 < r < s(T )/4. If

G( f (x),T ) ≤ r forHm−1-a.e. x ∈ (∂Ω)+ and(3.11)

G( f (x) + J0K ,T ) ≤ r forHm−1-a.e. x ∈ (∂Ω)−, ,(3.12)

then

G( f ,T ) ≤ r a.e. in Ω+ and(3.13)

G( f + J0K ,T ) ≤ r a.e. in Ω− .(3.14)
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Proof. We argue by contradiction. Suppose f ∈ W1,2(Ω,A±Q) is a Dir-minimizer with interface
(γ, 0) satisfying (3.11) and (3.12) and assume in addition that there exists a set of positive measure
E ⊂ Ω, such that f (x) < Br(T ) for every x ∈ E ∩Ω+ and f (x) + {0} < Br(T ) for every x ∈ E ∩Ω−.

In particular there exist δ > 0 and a set E′ ⊂ E with positive measure such that f (x) < Br+δ(T )
for every x ∈ E′ ∩Ω+ and f (x) + J0K < Br+δ(T ) for every x ∈ E′ ∩Ω−. As in the proof of Lemma
3.3 we consider the Q-valued function on Ω which coincides with f + on Ω+ and with f + J0K in
Ω−. Let ϑ : AQ → Br(T ) be the retraction operator in Lemma 3.9. By (iii) spt(ϑ ◦ g(x)) contains
the origin for every x ∈ Ω−. We can thus consider the (Q − 1)-valued function on Ω− given by
ϑ ◦ g − J0K. If we set h+ = ϑ ◦ g on Ω+ we then get a (Q − 1

2 )-valued map (h+, h−) with interface
(γ, 0). By Lemma 3.9(ii) we also know that h± = f ± on (∂Ω)±. Therefore h = (h+, h−) is a suitable
competitor for f = ( f , f −). On the other hand, by Lemma 3.9 (i) we know |D(ϑ◦ f )| ≤ |D f | a.e. on
Ω and moreover, recalling the definition of ϑ by linear interpolation and that G( f (x),T ) > r + δ,
we get that

(3.15) |D(ϑ ◦ f )| ≤ t0|D f | < |D f | a.e. on E′,

where t0 ≤
r−δ
r+δ

< 1. Here we compute the partial derivatives by the first order approximation, see
the definition and discussions in Definition 1.9 Corollary 2.7 and Proposition 2.17 of [15]. We
conclude that Dir(h,Ω) < Dir( f ,Ω), contradicting the minimality of f . �

3.3. Decomposition. The maximum principle of the previous section triggers a decomposition
lemma for Dir-minimizers with (γ, 0) interface.

Proposition 3.16 (Decomposition of (Q − 1
2 )-valued Dir-minimizers). There exists a positive

constant α(Q) > 0 with the following property. Assume that f ∈ W1,2(Ω,A±Q) is a Dir-minimizer
with interface (γ, 0), and that there exists T ∈ AQ with 0 ∈ spt (T ) such that (3.11) and (3.12)
hold with r = α(Q) f (T ). Then there exists a decomposition f = ( f +, f −) = (g+ + h, g− + h),
where h is a Q1-valued Dir-minimizer, (g+, g−) a (Q2 −

1
2 ) Dir-minimizer with interface (γ, 0),

Q1 + Q2 = Q and 1 ≤ Q1 ≤ Q − 1.

Proof. When d(T ) = 0, our assumption implies G( f (x),T ) = 0, namely f ≡ T , and there is
nothing to prove. So we assume d(T ) > 0. If α(Q)d(T ) < s(T )/4 (for a fixed value of α(Q)),
the proposition follows directly by the maximum principle and the definition of s(T ). Suppose
therefore 4α(Q)d(T ) ≥ s(T ). We fix a positive real number ε so that(√

Q + 2
) ε

1 − ε
=

1
8
.

Recalling Lemma 3.8 of [15], we may collapse some points in the support T and find an element
S =

∑J
j=1 k jJS jK ∈ AQ (with J ≥ 2) satisfying

(3.17) β(ε,Q)d(T ) ≤ s(S ) < +∞,

(3.18) G(S ,T ) ≤ εs(S ).

We set α(Q) = εβ(ε,Q), so that

(3.19) G( f (x),T ) ≤ α(Q)d(T ) ≤ εs(S ) forHm−1-a.e. x ∈ ∂Ω.
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Since 0 ∈ spt(T ), we have, by the triangle inequality (3.8),

dist(spt (S ), 0) ≤ min dist(spt (T ), 0) + G(S ,T ) ≤ εs(S ).

Without loss of generality, we assume |S 1| = dist(spt(S ), 0). Let S̃ = k1J0K+
∑J

j=2 k jJS jK. Clearly

(3.20) G(S , S̃ ) =
√

k1|S 1|
2 ≤

√
Q min S ≤ ε

√
Q s(S ).

On the other hand s(S̃ ) ≥ (1 − ε)s(S ). In fact, either s(S̃ ) = |S i − S j| for some i, j , 1, in which
case s(S̃ ) ≥ s(S ); or s(S̃ ) = |S i| for some i , 1, and then

(3.21) s(S̃ ) = |S i| ≥ |S i − S 1| − |S 1| ≥ s(S ) − εs(S ).

Combining (3.19), (3.18), (3.20), (3.21) and the choice of ε, we conclude

G( f (x), S̃ ) ≤ G( f (x),T ) + G(S ,T ) + G(S , S̃ ) ≤ εs(S ) + εs(S ) + ε
√

Q s(S )

≤

(√
Q + 2

) ε

1 − ε
s(S̃ ) =

1
8

s(S̃ ),

forHm−1-a.e. x ∈ ∂Ω. Again it follows by the maximum principle that G( f , S̃ ) ≤ s(S̃ )/8 almost
everywhere on Ω. We thus have a decomposition of f into simpler multiple-valued functions. �

3.4. Interpolation that preserves the interface value. In this subsection, we construct inter-
polations between pairs of (Q − 1

2 ) maps with a common interface (γ, 0) defined on concentric
spheres and estimate its Dirichlet energy. Later we will use the interpolation to construct com-
petitors for Dir-minimizing maps, so it is crucial that the interpolation has the same interface
(γ, 0). This is also the major difference from the interior case, proved in Lemma 2.15 in [15]. For
our current purpose, namely the proof of the decay of the Dirichlet energy for minimizers, we
actually need the existence of the interpolation only in the case m ≥ 3. However later on Lemma
3.31 will be used on planar maps to show the compactness of minimizers, a crucial point in the
proof of Theorem 1.6. We therefore state and proof also the 2-dimensional case (separately).

Lemma 3.22 (Interpolation when m = 2). Let f , g be maps in W1,2(∂B1,A
±
Q(Rn)) satisfying

(3.23) f +|γ = f −|γ + J0K, g+|γ = g−|γ + J0K,

and supx∈∂B1
G( f (x), g(x)) < +∞. Let δ = 1

N for some N ∈ N \ {0, 1, 2, 3}. Then there exists
h ∈ W1,2(B1 \ B1−δ,A

±
Q(Rn)) satisfying h+|γ = h−|γ + J0K and

h(x) = f (x) for x ∈ ∂B1, h(x) = g
(

1
1 − δ

x
)

for x ∈ ∂B1−δ.

Moreover

(3.24) Dir(h, B1 \ B1−δ) ≤ CδDir( f , ∂B1) + CδDir(g, ∂B1) +
C
δ

sup
x∈∂B1

G( f (x), g(x)).

Proof. By applying a diffeomorphism, we can assume that γ = R. We first interpolate f + and
g+ in the upper half annulus B+

1 \ B+
1−δ. After parametrizing a biLipschitz diffeomorphism φ :

[0, 1]→ ∂B+
1 to the functions f + and g+, we may assume f +, g+ are W1,2 maps defined on [0, 1].

We will interpolate f + and g+ and get a W1,2 map on [0, 1] × [0, δ].
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We define a cubical decomposition Di = [iδ, (i + 1)δ] × [0, δ] with i = 0, 1, · · · ,N − 1, and
vertical lines `i = {iδ} × [0, δ] with i = 0, 1, · · · ,N. For i = 1, 2, · · · ,N − 1, we define

h(x, t) = ξ−1 ◦ ρ
((

1 −
t
δ

)
ξ ◦ g+(x) +

t
δ
ξ ◦ f +(x)

)
, (x, t) ∈ `i,

where ξ : AQ(Rn)→ RN is the embedding of Q-valued metric space, and ρ : RN → ξ(AQ) is the
retraction, see Theorem 2.1 [15]. It is clear that

(3.25) |Dh(x, t)| ≤
C
δ
G(g+(x), f +(x)),

where the constant depends on the Lipschitz constants of ξ and ρ. For i = 0 or N, x = iδ, recall
(3.32) we denote

g+(x) =

Q∑
j=1

Ja jK = J0K + g−(x), f +(x) =

Q∑
j=1

Jb jK = J0K + f −(x)

and f +(x) =
∑Q

j=1Jb jK. Here we assume a1 = b1 = 0 without loss of generality. Suppose τ is a
permutation of {2, · · · ,Q} such that

G(g−(x), f −(x)) =

√√√√ Q∑
j=2

|a j − bτ( j)|
2.

We define

(3.26) h(x, t) = J0K +

Q∑
j=2

r(
1 −

t
δ

)
a j +

t
δ

bτ( j)

z
.

(3.32) implies that

(3.27) G(g+(x), f +(x)) ≤ G(g−(x), f −(x)) ≤
√

2G(g+(x), f +(x)).

Hence

(3.28) |Dh(x, t)| =
1
δ

√√√√ Q∑
j=2

|a j − bτ( j)|
2 =

1
δ
G(g−(x), f −(x)) ≤

√
2
δ
G(g+(x), f +(x)).

In this way h is well-defined for each ∂Di. We now wish to use (3.39) (and a biLipschitz
homeomorphism of squares to disks) and claim the existence of an extension h on Di satisfying

(3.29) Dir(h,Di) ≤ CδDir(h, ∂Di).

Note that this can be done because the proof of (3.39) given later in the planar case is not using
the current proposition (it uses interpolation, however, if the domain is at least 3-dimensional).
Summing up we get

Dir(h, [0, 1] × [0, δ]) =

N−1∑
i=0

Dir(h,Di)
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≤ Cδ

(
Dir(h, [0, 1] × {0}) + Dir(h, [0, 1] × {δ}) +

N∑
i=0

Dir(h, `i)

)

≤ CδDir(g, [0, 1]) + CδDir( f , [0, 1]) + C
N∑

i=0

G(g+(iδ), f +(iδ))

≤ CδDir(g, [0, 1]) + CδDir( f , [0, 1]) +
C
δ

sup
x∈[0,1]

G(g+(x), f +(x)).

Applying the biLipschitz homeomorphism φ : [0, 1] → ∂B+
1 , we get an interpolation h+ ∈

W1,2(B+
1 \ B+

1−δ,AQ).

Similarly, we define an interpolation h− ∈ W1,2(B−1 \B+
1−δ,AQ−1) between g− and f −. By (3.32)

and the construction (3.26), we know h+|γ = h−|γ + J0K, h ∈ W1,2(B1 \ B1−δ,A
±
Q) and moreover

(3.30) Dir(h, B1 \ B1−δ) ≤ CδDir(g, B1) + CδDir( f , B1) +
C
δ

sup
x∈∂B1

G(g(x), f (x)).

�

Lemma 3.31 (Interpolation when m ≥ 3). Let f , g be maps in W1,2(∂B1,A
±
Q(Rn)) satisfying

(3.32) f +|γ = f −|γ + J0K, g+|γ = g−|γ + J0K,

and
∫
∂B1
G( f , g) < +∞. Let δ = 1

N for some N ∈ N \ {0, 1, 2, 3}. Then there exists h ∈ W1,2(B1 \

B1−δ,A
±
Q(Rn)) satisfying h+|γ = h−|γ + J0K and

h(x) = f (x) for x ∈ ∂B1, h(x) = g
(

1
1 − δ

x
)

for x ∈ ∂B1−δ.

Moreover

(3.33) Dir(h, B1 \ B1−δ) ≤ CδDir( f , ∂B1) + CδDir(g, ∂B1) +
C
δ

∫
∂B1

G( f , g).

Proof. By applying a diffeomorphism, we can assume that γ = {xm = 0}. Let C be the boundary
of the cube [−1, 1]m. Notice that C is tangent to the sphere ∂B1. We define the functions f̂ and ĝ
on C by radial projection:

f̂ (z) := f
(

z
|z|

)
, ĝ(z) := g

(
z
|z|

)
, for every z ∈ C.

After the radial projection, the tangential derivative on C at z is just a multiple of the tangential
derivative on ∂B1 at z/|z|, where the factor is uniformly bounded above and below by dimensional
constants. In particular f̂ , ĝ ∈ W1,2(C,A±Q), that is,

f̂ +, ĝ+ ∈ W1,2(C+,AQ), f̂ −, ĝ− ∈ W1,2(C−,AQ−1),

and
f̂ +|γ = f̂ −|γ + J0K, ĝ+|γ = ĝ−|γ + J0K,
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where C+ = C ∩ {xm > 0}, C− = C ∩ {xm < 0} and γ = {xm = 0}. We want to construct a function
ĥ : C × [0, δ]→ A±Q which satisfies ĥ(·, 0) = ĝ, ĥ(·, δ) = f̂ , ĥ ∈ W1,2 and

ĥ+|γ×[0,δ] = ĥ−|γ×[0,δ] + J0K;

and in turn, we define a function h : B1 \ B1−δ → A
±
Q by

h
(

t
z
|z|

)
:= ĥ (z, t − (1 − δ)) , for each z ∈ C and 1 − δ < t < 1,

such that h ∈ W1,2(B1 \ B1−δ,A
±
Q) with the desired boundary data.

Let F be any of the 2m faces of C, then it is an (m − 1)-dimensional solid cube (i.e. including
the interior) with side length 2. Take for example

F =
{

(−1, x2, · · · , xm) : −1 ≤ x j ≤ 1 for every j = 2, · · · ,m
}
.

We will first define ĥ on F × [0, δ] using the similar construction as in the interior case, see Step
1 of Lemma 4.12 in [15] and the erratum therein. To that end we first need to extend f̂ and ĝ to
a fatter region

Fδ :=
{

(−1, x2, · · · , xm) : −1 − δ ≤ x j ≤ 1 + δ for every j = 2, · · · ,m
}
,

by using their respective values on neighboring faces of F and scaling appropriately on the cor-
ners. For example, for any x2 ∈ [−1− δ,−1) fixed (the other possibility being x2 ∈ (1, 1 + δ]), we
consider the slice

S x2 :=
{

(−1, x2, x3, · · · , xm) : −|x2| ≤ x j ≤ |x2| for every j = 3, · · · ,m
}
⊂ Fδ,

and define f̂ , ĝ by their values on a neighboring face of F:

(3.34) F′ :=
{

(x1,−1, x3, · · · , xm) : −1 ≤ x j ≤ 1 for every j = 1, 3, · · · ,m
}
.

To be precise on S x2 we define

(3.35) f̂ (−1, x2, x3, · · · , xm) := f̂ (|x2| − 2, −1, ϕδ(x3), · · · , ϕδ(xm))

where ϕδ : [−|x2|, |x2|]→ [−1, 1] is a piecewise linear function as follows

(3.36) ϕδ(t) =


−1 +

δ

−1 + δ + |x2|
(t + |x2|) , −|x2| ≤ t ≤ −1 + δ

t, −1 + δ ≤ t ≤ 1 − δ

1 +
δ

−1 + δ + |x2|
(t − |x2|) , 1 − δ ≤ t ≤ |x2|.

That is, in the inner region of S x2 , f̂ (and ĝ) take the value on F′ faithfully; in the outer region
f̂ (and ĝ) is a scaled version of its value on F′, with a scaling factor at most 2. The former is to
guarantee that the construction of ĥ remains faithful to f̂ , ĝ near the boundary γ × [0, δ].

For any vector v ∈ [−1 − δ,−1]m−1, consider the cubical decomposition of Fδ induced by the
lattice points {−1}×

(
v + δZm−1

)
. For k ∈ {0, · · · ,m−1} we define accordingly the k-dimensional

skeleta contained in Fδ, which are the families Sk(v) of all closed k-dimensional faces of the
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cubes. By Fubini, for almost every v and face E ∈ Sk(v), we have that f̂ |E, ĝ|E ∈ W1,2, and
moreover∫

v∈[−1−δ,−1]m−1

 ∑
E∈Sk(v)

∫
E

(
|D f̂ |2 + |Dĝ|2 + G( f̂ , ĝ)2

) dv ≤ C(k,m)δk
∫

Fδ

(
|D f̂ |2 + |Dĝ|2 + G( f̂ , ĝ)2

)
.

By standard arguments we can choose a vector v such that

• For every k ≥ 1, for each E ∈ Sk(v) and each G ∈ Sk−1(v) with G ⊂ E, the restrictions
f̂ |E, f̂ |G, ĝ|E, ĝ|G are all W1,2 and moreover the traces of f̂ |E and ĝ|E on G are precisely f̂ |G
and ĝ|G;
• For every k ≥ 1,∑

E∈Sk(v)

∫
E

(
|D f̂ |2 + |Dĝ|2

)
≤ Cδk−(m−1)

∫
Fδ

(
|D f̂ |2 + |Dĝ|2

)
;

• For k = 0, ∑
p∈S0(v)

G( f̂ (p), ĝ(p))2 ≤ Cδ−(m−1)
∫

Fδ
G( f̂ , ĝ)2;

• Whenever E ∈ Sk(v) intersects γ, the center of E, denoted by xE, lies in C+, tin other
words xE lies above the boundary γ.

For any k = 0, · · · ,m− 1 and any E ∈ Sk(v) not intersecting γ, we follows the same construction
as in the interior case (for Q-valued or (Q − 1)-valued functions) and define ĥ on E × [0, δ] by
interpolation f̂ + and ĝ+, or f̂ − and ĝ− respectively. Across the boundary γ, we temporarily extend
the functions trivially by zero, that is, we set

f̂0 =

{
f̂ +, on C+

f̂ − + J0K, on C−,
ĝ0 =

{
ĝ+, on C+

ĝ− + J0K, on C−,

so that f̂0, ĝ0 are Q-valued functions. Notice that the values of |D f̂ |, |Dĝ|, G( f̂ +, ĝ+) stay the
same, and on C−

1
√

2
G( f̂ −, ĝ−) ≤ G( f̂0, ĝ0) ≤ G( f̂ −, ĝ−),

see (3.27). Recall that for any p ∈ S0(v) contained in C−, we define ĥ on p × [0, δ] as a linear
interpolation between f̂ and ĝ, and that

(3.37) Dir(ĥ, p × [0, δ]) ≤
C
δ
G( f̂ −(p), ĝ−(p))2 ≤

C′

δ
G( f̂0(p), ĝ0(p))2.

Now we construct ĥ by an induction on the dimension k. Suppose E ∈ Sk(v) intersects γ,
where k = 1, · · · ,m − 1. Either by the inductive hypothesis or by the base case k = 0 (see (3.37)
and assume ĥ0(p) = ĥ(p) + J0K), we assume that for all lower skeleta G ∈ Sk−1(v) with G ⊂ E,
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we have defined a Q-valued function ĥ0 on G × [0, δ] with the desired properties. Since

∂ (E × [0, δ]) =
⋃

G∈Sk−1(v)
G⊂E

G × [0, δ]
⋃

E × {0}
⋃

E × {δ},

we can define ĥ0 on E × [0, δ] as the 0-homogeneous extension of ĥ0|∂(E×[0,δ]). Simple computa-
tions show that

Dir(ĥ0, E × [0, δ]) ≤ CδDir
(
ĥ0, ∂ (E × [0, δ])

)
.

More importantly, notice that every point on (E ∩ C−) × (0, δ) lies in a line segment between the
center xE × {δ/2} and some point in (E ∩ C−) × {0}, (E ∩ C−) × {δ} or (G ∩ C−) × [0, δ] for some
G ∈ Sk−1(v) and G ⊂ E, this construction guarantees that on C− × [0, δ], the Q-valued function
ĥ0 always has an element J0K; in particular we may define ĥ ∈ A±Q accordingly and it satisfies the
desired boundary condition. To sum up, we construct a function ĥF defined on F̃δ × [0, δ], where
F ⊂ F̃δ ⊂ Fδ, and it satisfies

ĥF(·, 0) = ĝ, ĥF(·, δ) = f̂ on F;

ĥ+
F(·, t)

∣∣
γ

= ĥ−F(·, t)
∣∣
γ

+ J0K for every t ∈ [0, δ];

Dir(ĥF , F × [0, δ]) ≤ CδDir( f̂ , Fδ) + CδDir(ĝ, Fδ) +
C
δ

∫
Fδ
G( f̂ , ĝ)2.

We would like to repeat the same argument for any neighboring face of F, take for example
F′ as in (3.34); but we need to be careful and make sure the new function ĥF′ is consistent with
ĥF on their domains of overlap, since ĥF is defined on a small neighborhood near F ∩ F′ by
projecting the fatterned region F̃δ onto F′:

Ng(F) := F′ ∩ {−1 ≤ x1 ≤ −1 + δ′} ,

where δ′ ∈ [0, δ) is determined by the choice of v.

We sketch the necessary technical modifications below. As before, we consider a fattened
region F′δ of F′; and we then choose a cubical decomposition of F′δ to satisfy, in addition to the
requirements stated above, that all skeleta (orthogonal to x1-axis) ought to be at least δ/2-distance
away from Ng(F). On the interior region

Ngi(F) := Ng(F) ∩
{
−1 + δ ≤ x j ≤ 1 − δ for every j = 3, · · · ,m

}
,

we use ĥF as the boundary condition to construct ĥF′ to make sure they agree; outside, on each
(m − 1)-dimensional δ-cube E contained in Ng(F) \ Ngi(F), we replace and reconstruct ĥF on
E× [0, δ] as above. This way ĥF = ĥF′ on their domains of overlap Ng(F); moreover, since we do
not redefine ĥF near the boundary γ × [0, δ], it still satisfies the desired boundary condition. �
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3.5. Decay estimate. The key point in the proof of Theorem 3.1 is a suitable decay estimate for
the Dirichlet energy, which is essentially the content of the following proposition.

Proposition 3.38. Suppose f is a (Q − 1
2 ) Dir-minimizing map on B1 with interface (γ, ϕ) and

assume that γ is the graph of a function ζ with ‖ζ‖C1 ≤ 1. Let 0 < r < 1 and assume that
f |∂Br ∈ W1,2(∂Br,A

±
Q). Then we have

(3.39) Dir( f , Br) ≤ C(m)r Dir( f , ∂Br) + Crm‖Dϕ‖2C0 ,

where C(m) < (m − 2)−1.

Remark 3.40. By translation, the same estimate holds for any ball Br(y) ⊂ B1 with y ∈ γ. If
Br(y) ∩ γ = Ø, the analogous interior estimate was proven in Proposition 3.10 of [15].

Proof. We will prove (3.39) for r = 1, because the general case follows from a scaling argument.
Moreover we will assume, without loss of generality, that ϕ ≡ 0. Indeed, for a general ϕ, we let
φ be an extension to B1 with the property that ‖Dφ‖C0(B1) ≤ C‖Dϕ‖C0(γ), since the interface γ is
given by the graph of ζ satisfying ‖ζ‖C1 ≤ 1. Define then (h+, h−) as

h±(x) =
∑

i

J f ±(x) − φ(x)K .

Moreover, let k± be a Dir-minimizer with boundary values h± and interface (γ, 0) and construct a
corresponding competitor for f by setting

ḡ±(x) =
∑

i

Jk± + φ(x)K .

Observe that for every ε there is a constant C(ε) such that

|Dτh±(x)|2 ≤ (1 + ε)|Dτ f ±(x)|2 + C(ε)|Dτφ(x)|2,

|Dḡ±(x)|2 ≤ (1 + ε)|Dk±(x)|2 + C(ε)|Dφ(x)|2.

Here Dτ denotes the tangential derivative on the boundary ∂B1. After proving the Proposition for
interfaces (γ, 0) we will know that there is a constant C′(m) < 1

m−2 such that

Dir(k, B1) ≤ C′(m) Dir(k, ∂B1) = C′(m) Dir(h, ∂B1) ≤ C′(m)(1 + ε) Dir( f , ∂B1) + C(m, ε)‖Dφ‖2C0

Hence we could estimate

Dir( f , B1) ≤ Dir(ḡ, B1) ≤ (1 + ε) Dir(k, B1) + C(ε)‖Dφ‖2C0

≤ C′(m)(1 + ε)2 Dir( f , ∂B1) + C′(m, ε)‖Dφ‖2C0 .

Since C′(m) < 1
m−2 it suffices to choose ε so that C(m) := C′(m)(1 + ε)2 < 1

m−2 . From now on we
restrict therefore our attention to the case ϕ ≡ 0.

The planar case. Set g := f |∂B1 and let g = g0 +
∑J

j=1 g j be a decomposition into irreducible
maps as in Proposition 2.7. Suppose g0 unwinds to ζ0 : S1 → Rn as in Proposition 2.7 (ii); and
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each g j unwinds to a W1,2 function ζ j : S1 → Rn as in Proposition 1.5 (ii) of [15]:

g j(x) =
∑
zQ j =x

Jζ j(z)K.

Now we construct an admissible competitor for f as follows. Recall that ζ0(0) = ζ0(2π) = 0,
we consider its Fourier expansion

ζ0(θ) =

∞∑
l=1

cl sin
(

lθ
2

)
.

We then extend ζ0 to be a W1,2 function defined on all of B1 as:

ζ0(r, θ) =

∞∑
l=1

r
l
2 cl sin

(
lθ
2

)
.

Note that ζ0 is not harmonic, but it vanishes on all of the positive real axis. We also consider the
harmonic extension of each ζ j, denoted by ζ j. Simple computations show that

(3.41)
∫∫
D

|Dζ0|
2 ≤ 2

∫
S1
|∂τζ0|

2,

∫∫
D

|Dζ j|
2 ≤

1
2

∫
S1
|∂τζ j|

2.

We then unroll ζ0 to a (Q0 −
1
2 )-valued function h0 = (h+

0 , h
−
0 ) as in Lemma 2.11. By definition, it

follows that h0 satisfies the boundary condition

h+
0 |γ = h−0 |γ + J0K.

We also unroll each ζ j to Q j-valued function h j by

h j(x) =
∑
zQ j =x

Jζ j(z)K.

The function h = (h+
0 , h

−
0 ) +

∑J
j=1 h j has interface (γ, ϕ), agrees with f on S1, and thus is an

admissible competitor for f in B1. Therefore by Lemma 2.11, Lemma 3.12 of [15] and (3.41),
we get

Dir( f , B1) ≤ Dir(h, B1) =

J∑
j=0

Dir(h j, B1) =

J∑
j=0

∫∫
D

|Dζ j|
2 ≤ 2

J∑
j=0

∫
S1
|∂τζ j|

2

= (2Q0 − 1) Dir(g0,S
1) +

J∑
j=1

2Q j Dir(g j,S
1) ≤ 2Q Dir(g, ∂B1).

In particular, the above inequality says that the constant in (3.39) satisfies C(2) = 2Q(1+ ε)2, and
we may assume that C(2) = 3Q for example.

The non-planar case. We define Q-valued functions g̃ and f̃ by adding a “0 sheet” to g−

and f −, as in (3.5). Observe that |Dg̃(x)| = |Dg±(x)| and |Dτ f̃ (x)| = |Dτ f (x)|. So, rather than
exhibiting a competitor for g we wish to exhibit a competitor, say h, for g̃: we just have to
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respect the property that spt h(x) 3 0 for every x ∈ B−1 . With a slight abuse of notation we thus
keep the notation g and f for g̃ and f̃ .

Step 1. Radial competitors. Let ḡ =
∑

iJḡiK ∈ AQ be a mean for g so that the Poincaré
inequality of Proposition 2.12 in [15] holds, i.e.

(3.42)
(∫

∂B1

G(g, ḡ)p

)1/p

≤ C(p)
(∫

∂B1

|Dg|2
)1/2

,

where the exponent p can be taken to be any finite real p ≥ 1 if m = 3 and any real 1 ≤ p ≤ 2∗

(with 1
2∗ = 1

2 −
1

m−1 ) when m ≥ 4. Assume the diameter of ḡ is smaller than a constant M > 0
(whose value is to be determined later),

d(ḡ) ≤ M.

Recall next (3.7) and define the function m(x) := dist(spt g(x), 0). Observe that T 7→ dist(spt (T ), 0)
is a Lipschitz map with constant less or equal than 1 by (3.8): thus |Dm| ≤ |Dg| and |Dτm| ≤ Dτg|.
Moreover m obviously vanishes on ∂B−1 (whose surface measure is larger than a geometric con-
stant). By the relative Poincaré inequality, we know

(3.43)
∫
∂B1

m(x)2 ≤ C
∫
∂B1

|Dm(x)|2 ≤ C
∫
∂B1

|Dg(x)|2.

Hence

(3.44) m̄2 := dist(spt(ḡ), 0)2 =

?
∂B1

m2 .

∫
∂B1

m2 +

∫
∂B1

G(g(x), ḡ)2 ≤ C
∫
∂B1

|Dg(x)|2.

Combined with the assumption d(ḡ) ≤ M, it follows that

|ḡ|2 =
∑

i

|ḡi|
2 ≤ Q(C + M2).

Thus ∫
∂B1

|g|2 ≤ 2
∫
∂B1

G(g, ḡ)2 + 2
∫
∂B1

|ḡ|2 ≤ CQ,M,

where CQ,M is a constant depending on Q and M with positive correlation. Let ϕ be a real-valued
function in W1,2([0, 1]) with ϕ(1) = 1. Then

f̂ (x) := ϕ(|x|)g
(

x
|x|

)
is a suitable competitor for f . Simple computation shows that∫∫

B1

|D f̂ |2 =

(∫
∂B1

|g|2
)∫ 1

0
ϕ′(r)2rm−1dr +

(∫
∂B1

|Dg|2
)∫ 1

0
ϕ(r)2rm−3dr

≤

∫ 1

0

(
ϕ(r)2rm−3 + CQ,Mϕ

′(r)2rm−1
)

dr =: I(ϕ).
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By minimality we deduce that

Dir( f , B1) ≤ inf
ϕ∈W1,2([0,1])

ϕ(1)=1

I(ϕ).

We notice that I(1) = 1
m−2 (ϕ ≡ 1 corresponds to the trivial radial competitor for f ). On the

other hand ϕ ≡ 1 can not be a minimum for I because it does not satisfy the corresponding
Euler-Lagrange equation. So there exists a constant γ = γ(Q,M) > 0 such that

Dir( f , B1) ≤ inf
ϕ∈W1,2([0,1])

ϕ(1)=1

I(ϕ) =
1

m − 2
− γ.

In particular, when Q = 1, the diameter d(ḡ) = 0 and we are done. We will prove the proposi-
tion by an induction on Q.

Step 2. Splitting procedure: the inductive step. Let Q ≥ 2 be fixed and assume that the
proposition holds for every Q∗ < Q. Assume moreover that d(ḡ) > M. The strategy of the proof
is to decompose f into several pieces in order to apply the inductive hypothesis. To that end, we
first collapse the mean ḡ, by applying Lemma 3.8 of [15] to T = ḡ. For any ε ∈ (0, 1), we obtain
S =

∑J
j=1 k jJS jK ∈ AQ which satisfies

(3.45) βM ≤ βd(ḡ) ≤ s(S ) < +∞,

(3.46) G(S , ḡ) ≤ εs(S ).

Here β = β(ε,Q) is the constant in Lemma 3.8. The fact that s(S ) < +∞ means J ≥ 2. Recall
(3.44) (this estimate is independent of the assumption on d(ḡ)), we get

(3.47) min S ≤ min ḡ + G(S , ḡ) ≤ C + εs(S ).

Assume without loss of generality that |S 1| = min S . We let

S̃ := k1J0K +

J∑
j=2

k jJS jK.

By (3.47),

(3.48) G(S , S̃ ) ≤
√

k1|S 1|
2 <

√
Q dist(spt (S ), 0) ≤ C

√
Q + ε

√
Qs(S ).

We fix ε with ε
√

Q = 1
64 ; we may also choose M = M(Q, β(ε,Q)) sufficiently large

(3.49) C ≤ εβM ≤ εs(S ).

Thus it follows from (3.45) that

G(S , S̃ ) < 2ε
√

Qs(S ) =
1
32

s(S ).

Combined with (3.46), we have

(3.50) G(ḡ, S̃ ) ≤
√

2G(S , ḡ)2 + 2G(S , S̃ )2 <
1
16

s(S ).
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On the other hand, we also have

(3.51) s(S̃ ) ≥ (1 − 2ε)s(S ).

In fact, either s(S̃ ) = |S i − S j| for i, j , 1, in which case s(S̃ ) ≥ s(S ) by definition; or s(S̃ ) = |S i

for some i , 1, then by (3.47) and (3.49)

s(S̃ ) = |S i| ≥ |S i − S 1| − |S 1| ≥ s(S ) −min S ≥ (1 − 2ε)s(S ).

Let
ϑ : AQ → Bs(S̃ )/8(S̃ )

be the retraction given by Lemma 3.9. We define h ∈ W1,2(B1−η) by

h(x) := ϑ

(
f
(

x
1 − η

))
,

where η is a small parameter to be determined later. By Lemma 3.9 (iii), h(x) contains a zero ele-
ment for every x ∈ B−1−η. By removing one zero element in the lower half space we may consider
h as a function in W1,2(B1−η,A

±
Q). Therefore by Theorem 4.2 in [8] there exists a Dir-minimizer

ĥ ∈ W1,2(B1−η,A
±
Q) with interface (γ, ϕ), such that ĥ = h on ∂B1−η \ γ. Almost everywhere on

∂B1−η, ĥ takes value in Bs(S̃ )/8(S̃ ). Therefore by Proposition 3.16 ĥ can be decomposed into the
sum of h1 and h2, where h1 is a K-valued function and Dir-minimizer, h2 is an L-valued function
and Dir-minimizer with interface (γ, ϕ), and K, L ≤ Q − 1. By Proposition 3.10 of [15] and the
inductive hypothesis, we have

Dir(h1, B1−η) ≤
(

1
m − 2

− γi

)
(1 − η) Dir(h1, ∂B1−η),

Dir(h2, B1−η) ≤
(

1
m − 2

− γb

)
(1 − η) Dir(h2, ∂B1−η).

Hence

Dir(ĥ, B1−η) ≤
(

1
m − 2

− γ

)
(1 − η) Dir(h, ∂B1−η)

=

(
1

m − 2
− γ

)
(1 − η)m−2 Dir(g, ∂B1)

<

(
1

m − 2
− γ

)
.

Here γ0 = min{γi, γb} > 0 is a constant depending on m and Q. We consider the following
competitor

f̂ =

{
ĥ, in B1−η

interpolation between ĥ and g as in Lemma 3.31, in B1 \ B1−η.

By the estimate (3.33),

Dir( f̂ , B1) ≤ Dir(ĥ, B1−η) + Cη
(
Dir(ĥ, ∂B1−η) + Dir(g, ∂B1)

)
+

C
η

∫
∂B1

G(g, ϑ(g))2
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<
1

m − 2
− γ0 + 2Cη +

C
η

∫
∂B1

G(g, ϑ(g))2.(3.52)

Now we estimate the last term in the right hand side of (3.52). By the definition of the retrac-
tion ϑ, g and ϑ(g) only differ on the set

E :=
{

x ∈ ∂B1 : g(x) < Bs(S̃ )/8(S̃ )
}
.

For every x ∈ E, by (3.50) and the properties of ϑ,

G(ϑ ◦ g(x), ḡ) = G(ϑ ◦ g(x), ϑ(ḡ)) < G(g(x), ḡ),

and

G(g(x), ḡ) ≥ G(g(x), S̃ ) − G(ḡ, S̃ ) >
1
16

s(S̃ ).

Hence

(3.53)
∫
∂B1

G(g, ϑ(g))2 ≤ 2
∫

E
G(g(x), ḡ)2 + G (ϑ ◦ g(x), ḡ)2

≤ 4
∫

E
G(g(x), ḡ)2 ≤ C|E|

2
m−1 .

Recall (3.51) and (3.49),
s(S̃ ) ≥ (1 − 2ε)s(S ) ≥ (1 − 2ε)βM.

We may estimate the measure of E by Chebyshev inequality

|E| ≤
∫

B1

(
G(g(x), ḡ)
s(S̃ )/16

)2

≤
C
M2 .

Combined with (3.52) and (3.53), we conclude that

Dir( f̂ , B1) ≤
1

m − 2
− γ0 + C′η +

C′

ηM2 ,

where the constants γ0,C′ only depend on Q and m. We first choose η so that C′η =
γ0
3 , then we

choose M so that C′
ηM2 =

γ0
3 . Therefore by the minimality of f

Dir( f , B1) ≤ Dir( f̂ , B1) ≤
1

m − 2
−
γ0

3
.

Step 3. Conclusion. With the value of M fixed, Step 1 shows that if d(ḡ) ≤ M, there exists
γ = γ(Q) > 0 such that

Dir( f , B1) ≤
1

m − 2
− γ.

Assuming the inductive hypothesis, Step 2 shows that if d(ḡ) > M,

Dir( f , B1) ≤
1

m − 2
−
γ0

3
.

This concludes the proof. �
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3.6. Proof of Theorem 3.1. We want to prove the following decay of Dirichlet energy

(3.54) Dir( f , Br) ≤ Crm−2+2β(Dir( f , B1) + ‖Dϕ‖2C0)

for every y ∈ B 1
2

and almost every 0 < r ≤ 1
2 .

First of all observe that the estimate follows from Proposition 3.38 for y ∈ γ. Indeed in that
case, if we let h(r) =

∫∫
Br(y)|D f |2, then h is absolutely continuous and

h′(r) =

∫
∂Br(y)

|D f |2 ≥
∫
∂Br(y)

|Dτ f |2 =: Dir( f , ∂Br(y)) for almost every r.

Combined with (3.39) we have

h(r) ≤ C(m)rh′(r) + Crm‖Dϕ‖2C2 ≤
rh′(r)

m − 2 + 2β
+ Crm‖Dϕ‖2C0 ,

(where β is assumed to be smaller than 1). We next define k(r) := h(r) + Arm and compute

k(r) = h(r) + Arm ≤
r

m − 2 + 2β
h′(r) + C‖Dϕ‖2C0rm + Arm

≤
r

m − 2 + 2β
k′(r) + C‖Dϕ‖2C0rm − A

(
m

m − 2 + 2β
− 1
)

rm .

Since m
m − 2 + 2β

− 1 > 0 ,

for A = C′‖Dϕ‖2C0
with C′ sufficiently large we conclude

k(r) ≤
r

m − 2 + 2β
k′(r)

and integrating the latter inequality in the interval [r, 1/2] we get the desired estimate

Dir( f , Br(y)) ≤ k(r) ≤ rm−2+2βk
(

1
2

)
≤ rm−2+2β

(
Dir( f , B1/2(y)) + C′‖Dϕ‖2C0

)
≤ Crm−2+2β

(
Dir( f , B1) + ‖Dϕ‖2C0

)
.

Consider now a point y ∈ B1/2 \ γ. If r ≥ 1
4 the estimate (3.54) is then obvious. Hence we

assume r < 1
4 . Let next ρ := dist(y, γ). If r ≥ ρ, consider x ∈ γ such that |x − y| = dist(y, γ)

and observe that B2r(x) ⊃ Br(y). The estimate follows then from the one for y ∈ γ. Otherwise,
we have two possibilities. If ρ ≥ 1

4 > r, we then can use the decay estimate for Q-valued
Dir-minimizers to infer

Dir( f , Br(y)) ≤ Crm−2+2β Dir( f , B1/4(y)) ≤ Crm−2+2β Dir( f , B1) .

If r < ρ < 1
4 we can then proceed in two steps to prove

Dir( f , Br(y)) ≤
(

r
ρ

)m−2+2β

Dir( f , Bρ(y)) ≤ Crm−2+2β
(
Dir( f , B1) + ‖Dϕ‖2C0

)
.

Having finally proved the decay (3.54), the Hölder continuity follows from the Campanato-
Morrey estimate.
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4. First variations and monotonicity of the frequency function

In this section we address a main tool to prove Theorem 1.6, the monotonicity of the frequency
function. The original frequency function was introduced by Almgren in [2] for Dir-minimizing
Q-valued map, cf. also [15]. The one for (Q − 1

2 )-valued maps with interface (γ, 0) in Rm was
introduced in [8] and requires a subtle argument. Since our Theorem 1.6 is 2-dimensional, we
can take advantage of the reduction to Theorem 2.1 and restrict our attention the model situation
in which the interface is (R, 0). Under such assumption the statement and proof of the relevant
formulae is just a straightforward adaptation of the arguments in [15], which we give below for
the reader’s convenience (the issue in [8] is that in dimension m ≥ 3 it is not possible to “rectify”
a general γ with a conformal change of coordinates).

Definition 4.1 (The frequency function). Assume f = ( f +, f −) is a (Q − 1
2 )-valued map on

Ω ⊂ Rm with interface (γ, ϕ) and consider a ball Br(x) ⊂ Ω with x ∈ γ. We define

(4.2) Dx, f (r) = Dir ( f , Br(x)), Hx, f (r) =

∫
∂Br(x)

| f |2 :=
∫
∂B+

r (x)
| f +|2 +

∫
∂B−r (x)

| f −|2.

When Hx, f (r) > 0, we define the frequency function

(4.3) Ix, f (r) =
rDx, f (r)
Hx, f (r)

.

When x and f are clear from the context, we often use the shorthand notation D(r),H(r) and
I(r).

Proposition 4.4 (First variations). Assume f = ( f +, f −) ∈ W1,2(Ω,A±Q) is Dir-minimizing on
Ω ⊂ R2 with interface (R, 0) and let Br ⊂ Ω. Then

(4.5)
∫
∂Br(x)

|D f |2 = 2

(∫
∂B+

r (x)

Q∑
j=1

|∂ν f +
j |

2 +

∫
∂B−r (x)

Q−1∑
j=1

|∂ν f −j |
2

)
and

(4.6)
∫∫

Br(x)
|D f |2 =

∫
∂B+

r (x)

Q∑
j=1

〈∂ν f +
j , f +

j 〉 +

∫
∂B−r (x)

Q−1∑
j=1

〈∂ν f −j , f −j 〉 .

Here ∂ν denotes the outer unit normal on the boundary of the given ball, and f + =
∑Q

j=1J f +
j K

and f − =
∑Q−1

j=1 J f −j K are measurable selections of f + and f −, given by Proposition 0.4 of [15].

Remark 4.7. Identity (4.5) implies that the integral of the square of the tangential derivative on
the circle ∂Br equals the integral of the square of the normal derivative.

Proof. The proof follows the same computations of [15, Proof of Proposition 3.2]. It just suffices
to observe the following two facts:
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• (4.5) is derived by comparing the Dirichlet energy of f with competitors of the form
f ◦ Φε, where {Φε} are some specific one-parameter families of diffeomorphisms. It
easy to check that the ones used in [15, Proof of Proposition 3.2] map R, Ω+ and Ω−

onto themselves and hence give an addmissible family of competitors for our variational
problem as well.
• Similarly, (4.6) is derived by comparing the Dirichlet energy of f with competitors of the

form
f ε,±(x) :=

∑
j

q
f ±j (x) + εψ(x, f ±j (x))

y

where ψ(x, u) = φ(|x|)u satisfies ψ(x, 0) = 0. Therefore the functions f ε,± have also
interface (R, 0) and they are in the class of admissible competitors. �

The above first variation formulae impliy:

Theorem 4.8 (Monotonicity of the frequency, analogue of Theorem 3.15 [15]). Let f be a (Q− 1
2 )-

valued Dir-minimizing map with interface (R, 0) in an open set Ω ⊂ R2 containing the origin and
assume that f +(0) = Q J0K. Either there exists δ > 0 such that

f +|B+
δ (0) ≡ QJ0K, f −|B−δ (0) ≡ (Q − 1)J0K;

or I0, f (r) is an absolutely continuous nondecreasing positive function on (0, dist(0, ∂Ω)).

Proof. If H(r) = 0 for some r > 0, then f + = Q J0K a.e. on ∂B+
r (0) and f − = (Q − 1) J0K a.e. on

∂B−r (0). For such boundary data the only minimizer is the pair which is constant on the respective
B±r (0). From now on we assume therefore that H(r) > 0 for every r ∈ (0, 1).

D is absolutely continuous and

(4.9) D′(r) =

∫
∂Br

|D f |2 for almost every r.

Since f +, f − ∈ W1,2 are approximate differentiable almost everywhere, we can apply the chain-
rule formulas (see Propositions 1.12 and 2.8 [15]) and justify the following computations:

H′(r) =
d
dr

∫
∂B+

1

r| f +(ry)|2dy +
d
dr

∫
∂B−1

r| f −(ry)|2dy

=

∫
∂B1

| f (ry)|2dy +

∫
∂B+

1

r
∂

∂r
| f +(ry)|2dy +

∫
∂B−1

r
∂

∂r
| f −(ry)|2dy

=
1
r

∫
∂Br

| f |2 + 2
∫
∂B+

r

Q∑
j=1

〈∂ν f +
j , f +

j 〉 + 2
∫
∂B−r

Q−1∑
j=1

〈∂ν f −j , f −j 〉 =
1
r

H(r) + 2D(r),(4.10)

by the outer variation formula (4.6). In fact, since both H(r) and D(r) are continuous, we have
H ∈ C1 and the above inequality holds pointwise. Therefore

I′(r) =
D(r)
H(r)

+
rD′(r)
H(r)

− rD(r)
H′(r)
H(r)2
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=
D(r)
H(r)

+
rD′(r)
H(r)

−
D(r)
H(r)

− 2r
D(r)2

H(r)2

=
rD′(r)
H(r)

− 2r
D(r)2

H(r)2 .

Again by the inner and outer variations formula (4.5), (4.6), we conclude, it follows that

I′(r) =
2r

H(r)2

[(∫
∂B+

r

Q∑
j=1

|∂ν f +
j |

2 +

∫
B−r

Q−1∑
j=1

|∂ν f −j |
2

)
·

(∫
∂B+

r

Q∑
j=1

| f +
j |

2 +

∫
B−r

Q−1∑
j=1

| f −j |
2

)

−

(∫
∂B+

r

Q∑
j=1

〈∂ν f +
j , f +

j 〉 +

∫
B−r

Q−1∑
j=1

〈∂ν f −j , f −j 〉

)2
 .(4.11)

We can now choose a measurable selection of the various multifuctions involved and extend such
selections f ±j , ∂ν f ±j to 0 respectively on B∓r . The Cauchy-Schwartz inequality will then imply:

I′(r) =
2r

H(r)2

[∫
∂Br

(
Q∑

j=1

|∂ν f +
j |

2 +

Q−1∑
j=1

|∂ν f −j |
2

)
·

∫
∂Br

(
Q∑

j=1

| f +
j |

2 +

Q−1∑
j=1

| f −j |
2

)

−

(∫
∂Br

Q∑
j=1

〈∂ν f +
j , f +

j 〉 +

Q−1∑
j=1

〈∂ν f −j , f −j 〉

)2
 ≥ 0 .(4.12)

�

Corollary 4.13. Let f be as in Theorem 4.8. I0, f (r) ≡ α if and only if ( f +, f −) is α-homogeneous,
i.e.

f ±(x) =
∑

i

s
|x|α f ±i

(
x
|x|

){
.

In the rest of the note, when dealing with a Q-valued funcion f =
∑

i J fiK, we will use the
notation λ f for the multifunction

∑
i Jλ fiK. Similarly, for a (Q− 1

2 )-valued function f = ( f +, f −),
λ f will denote (λ f +, λ f −). In particular, the homogeneity of f in the corollary above will be
expressed by the formula

f (x) = |x|α f
(

x
|x|

)
.

Proof. Suppose α = 0. I0, f (r) ≡ 0 if and only if each f ±j is constant, so clearly ( f +, f −) is 0-
homogeneous. If ( f +, f −) is 0-homogeneous, then each f ±j is constant on the ray starting from
the origin. Thus by the continuity of f near the origin, each f ±j is constant on its domain and
I0, f (r) ≡ 0.

Suppose α > 0. Then by the proof of the above theorem, I(r) is a constant if and only if
equality occurs in (4.12), i.e. if and only if there exists constants λr ∈ R such that

∂ν f ±j (x) = λr f ±j (x) for almost every r and almost every x with |x| = r.
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Moreover,

α = I(r) =
rD(r)
H(r)

=
r
∫
∂Br

∑
〈∂ν f ±j , f ±j 〉∫

∂Br

∑
| f ±j |2

= rλr.

Therefore I(r) ≡ α if and only if

(4.14) ∂ν f ±j (x) =
α

|x|
f ±j (x) for almost every x.

If f is α-homogeneous, clearly (4.14) holds. On the other hand, suppose (4.14) holds, we want
to show that f is α-homogeneous. To that end we let x ∈ ∂B1 and σx = {rx : 0 < r ≤ 1} be the
ray from the origin through x. Note that f |σx ∈ W1,2 for almost every x ∈ ∂B1. For those x (4.14)
implies

d
dr

f ±j (rx)
rα

≡ 0.

Thus f ±j (rx) = rα f ±j (x) for all 0 < r ≤ 1 and almost every x ∈ ∂B1. �

Corollary 4.15 (analogue of Corollary 3.18 [15]). Let f be as in Theorem 4.8. Suppose H(r) , 0
for every r ∈ (0, dist(∂Ω, 0)). Then

(i) for almost every r < 1,

(4.16)
d
dr

log
(

H(r)
rm−1

)
=

2I(r)
r

,

and thus for almost every s ≤ t < 1,

(4.17)
( s

t

)2I(t) H(t)
tm−1 ≤

H(s)
sm−1 ≤

( s
t

)2I(s) H(t)
tm−1 ;

(ii) for almost every s ≤ t < 1, if I(t) > 0, then

(4.18)
I(s)
I(t)

( s
t

)2I(t) D(t)
tm−2 ≤

D(s)
sm−2 ≤

( s
t

)2I(s) D(t)
tm−2 .

Proof. (4.16) follows from (4.10). (4.17) follows from (4.16) and the monotonicity of the fre-
quency function. Finally, (4.18) follows from (4.17) and the definition of the frequency func-
tion. �

5. Compactness and tangent functions in planar domains

The monotonicity of the frequency function provides a way of studying the asymptotic be-
haviour of a minimizer at small scales around a given point with highest multiplicity.

Definition 5.1. Let f be a Dir-minimizing (Q − 1
2 )-valued map on a planar domain Ω with

interface (R, 0). Let y be a point at the inteface R and assume that Dir( f , Bρ(y)) > 0 for every ρ.
We define the following rescalings of f at y:

(5.2) fy,ρ(x) =
f (ρx + y)√
Dir( f , Bρ(y))

.
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The key point is that, up to subsequences, the latter rescalings converge locally strongly to
nontrivial Dir-minimizers.

Theorem 5.3 (Compactness, analogue of Theorem 3.19 in [15]). Let f ∈ W1,2(Ω,A±Q) be a
Dir-minimizing map on a planar domain Ω with interface (R, 0). Assume f +(0) = QJ0K and
Dir( f , Bρ) > 0 for every ρ ∈ (0, dist(0, ∂Ω)). Then for any sequence { fρk} with ρk ↘ 0, a
subsequence, not relabelled, converges locally uniformly to a function g : R2 → A±Q satisfying
the following properties:

(a) Dir(g, B1) = 1 and g|U is Dir-minimizing with interface (R, 0) for any bounded set U ⊂ R2;
(b) g(x) = |x|αg

(
x
|x|

)
, where α = I0, f (0) > 0 is the frequency of f at 0.

From now, any limit of a sequence of rescalings { fρk}k with ρk ↓ 0 will be called a tangent
function. A feature of the 2-dimensional setting is that the compactness theorem above can be
considerably strengthened: analogously to the “interior case”, cf. [15, Theorem 5.3], we can
prove that the tangent function at a given point is unique and that the rescaling converge at a
suitable rate to it. The key is to first show a suitable rate of convergence for the frequency
function.

Proposition 5.4 (Rate of convergence, analogue of Proposition 5.2 in [15]). Let f be as in The-
orem 5.3 and set α = I0, f (0). Then there exist constants r0, β,C,H0,D0 > 0 such that for every
0 < r ≤ r0,

(5.5) 0 ≤ I(r) − α ≤ Crβ,

(5.6) 0 ≤
H(r)
r2α+1 − H0 ≤ Crβ, 0 ≤

D(r)
r2α − D0 ≤ Crβ.

Theorem 5.7 (Unique tangent map, analogue of Theorem 5.3 [15]). Let f ∈ W1,2(D,A±Q) be
as in Theorem 5.3 and denote by β the exponent of the decay estimate (5.5). Then the tangent
function f0 to f at 0 is unique and, moreover,

(5.8) ‖G( f0,ρ, f0)‖2L2(S1) ≤ Cρβ .

5.1. Compactness and tangent functions: Proof of Theorem 5.3. Let BR denote a ball of
sufficiently large radius R � 1. By the definition (5.2),

Dir( fρ, BR) =
D(ρR)
D(ρ)

≤ Rm−2+2I(ρR) I(ρ)
I(ρR)

≤ Rm−2+2(α+1),

where we use the estimate (4.18) for the first inequality, and the properties of the frequency
function for the second. Since fρ’s are all Dir-minimizing with interface (R, 0), by Theorem 3.1
they are locally equi-Hölder continuous. The assumption f +(0) = QJ0K implies f +

ρ (0) = QJ0K
and f −ρ (0) = (Q − 1)J0K for all ρ. Thus fρ’s are locally uniformly bounded, and by Azelà-Ascoli
Theorem a subsequence (not relabelled) converges uniformly on compact sets to a continuous
function g = (g+, g−). (To use Azelà-Ascoli Theorem, we may add to f −ρ a zero sheet to get
functions valued in the metric spaceAQ.) In particular g+|γ = g−|γ + J0K; moreover f +

ρk
converges
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weakly in W1,2
loc (R2

+,AQ) to g+, and f −ρk
converges weakly in W1,2

loc (R2
−,AQ−1) to g− (see Definition

2.9 in [15]). By (1.1) it follows then that Dir(g, Br) ≤ lim infk→∞Dir( fρk , Br) for all r > 0.

Proof of (a). Let R > 0 be fixed. We will show that for any 0 < r ≤ R,

(5.9) Dir(g, Br) = lim inf
k→∞

Dir( fρk , Br) and g|Br is Dir-minimizing with interface (R, 0).

For any R > 0, we will show (5.9) holds for all r ≤ R.

By Fatou’s Lemma,∫ R

0
lim inf

k→∞
Dir( fρk , ∂Br) dr ≤ lim inf

k→∞

∫ R

0
Dir( fρk , ∂Br) dr ≤ lim inf

k→∞
Dir( fρk , BR) ≤ C < +∞.

Hence for almost every r ∈ (0,R), the integrand of the first term is finite, and moreover by weak
convergence

(5.10) Dir(g, ∂Br) ≤ lim inf
k→∞

Dir( fρk , ∂Br) ≤ M < +∞.

For the sake of contradiction, assume that either one of the statement in (5.9) fails for such r,
then there exists a function h ∈ W1,2(Br,A

±
Q) with interface (R, 0) such that

(5.11) h|∂Br = g|∂Br and Dir(h, Br) < lim inf
k→∞

Dir( fρk , Br).

Let δ = 1/N < 1/2 to be fixed later, and consider the functions f̃k on Br defined by

f̃k =

{ (
1

1−δ

)m−2
2 h
(

x
1−δ

)
, for x ∈ B(1−δ)r,

hk(x), for x ∈ Br \ B(1−δ)r,

where the hk’s are the interpolation functions provided by Lemma 3.31 between fρk ∈ W1,2(∂Br,A
±
Q)

and h
(

x
1−δ

)
∈ W1,2(∂B(1−δ)r,A

±
Q). Notice that hk’s satisfy the boundary condition h+

k |γ = h−k |γ+J0K.
By the minimality of fρk , (3.33) and changes of variables, we have

Dir( fρk , Br) ≤ Dir( f̃k, Br)

≤ Dir

((
1

1 − δ

)m−2
2

h
( x

1 − δ

)
, B(1−δ)r

)
+ Dir(hk, Br \ B(1−δ)r)

≤ Dir(h, Br) + Cδr Dir( fρk , ∂Br) + Cδr Dir(h, ∂Br) +
C
δ

sup
x∈∂Br

G(h(x), fρk(x))

≤ Dir(h, Br) + CδR Dir( fρk , ∂Br) + CδR Dir(g, ∂Br) +
C
δ

sup
x∈∂Br

G(g(x), fρk(x)).

Passing k → ∞, by the uniform convergence of fρk to g, (5.10) and the assumption (5.11), we get

(5.12) lim sup
k→∞

Dir( fρk , Br) ≤ Dir(h, Br) + 2CδRM < lim inf
k→∞

Dir( fρk , Br) + 2CδRM.

We get a contradiction by choosing δ arbitrarily small. Therefore (5.9) holds for almost every
r ∈ (0,R). By the upper semi-continuity of Dir(g, Br) in r, it follows that (5.9) holds for all r ≤ R.
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Proof of (b). We observe that for every r > 0,

Ig(r) =
r Dir(g, Br)∫

∂Br
|g|2

= lim inf
k→∞

r Dir( fρk , Br)∫
∂Br
| fρk |

2
= lim inf

k→∞

rρk Dir( f , Brρk)∫
∂Brρk
| f |2

= I f (0).

Since g is Dir-minimizing, by Corollary 4.13 it is a homogeneous function with homogenity
α = I f (0). If α = 0, a continuous 0-homogeneous function with g(0) = QJ0K is necessarily
g ≡ QJ0K. This is in contradiction with Dir(g, B1) = limk Dir( fρk , B1) = 1, and thus α > 0.

5.2. Rate of convergence: Proof of Proposition 5.4. Step 1. We claim the following estimate
holds for some β > 0:

(5.13) I′(r) ≥
2
r

(α + β − I(r)) (I(r) − α).

Recall (4.10), we have

(5.14) I′(r) =
rD′(r)
H(r)

−
2I2(r)

r
.

Thus (5.13) is reduced to prove

(5.15) (2α + β)D(r) ≤
rD′(r)

2
+
α(α + β)H(r)

r
.

Let r be fixed, and let g(θ) := f (reiθ). Consider the decomposition of g(θ) as in Proposition
g = g0 +

∑J
j=1 g j, where g0 ∈ W1,2(S1,A±Q0

) and g j ∈ W1,2(S1,AQ j) are irreducible maps. Recall
that for each irreducible g j, we can find ζ j ∈ W1,2(S1,Rn) such that

(5.16) g j(θ) =

Q j∑
i=1

s
ζ j

(
θ + 2πi

Q j

){
.

We write the Fourier expansions of ζ j’s as

(5.17) ζ j(θ) =
a j,0

2
+

∞∑
l=1

(
a j,l cos(lθ) + b j,l sin(lθ)

)
, θ ∈ [0, 2π].

Suppose g0 unrolls to a function ζ0 : S1 → Rn, as in Lemma 2.11. The boundary condition
g+

0 |γ = g−0 |γ + J0K implies ζ0(0) = ζ0(2π) = 0. Hence we write the Fourier expansion of ζ0 as

ζ0(θ) =

∞∑
l=1

cl sin
(

lθ
2

)
, θ ∈ [0, 2π].

Recall (4.5) and Lemma 2.11, we get

D′(r) = 2 Dir( f , ∂Br) =
2
r

Dir(g,S1) =
2
r

J∑
j=0

Dir(g j,S
1)
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=
2
r

(
2

2Q0 − 1
Dir(ζ0,S

1) +

J∑
j=1

1
Q j

Dir(ζ j,S
1)

)

=
2π
r

(
1

2(2Q0 − 1)

∑
l

c2
l l2 +

J∑
j=1

∑
l

(
a2

j,l + b2
j,l

)
l2

Q j

)
,(5.18)

and

H(r) =

∫
∂Br

| f |2 = r
∫
S1
|g|2 = r

(
2Q0 − 1

2

∫
S1
|ζ0|

2 +

J∑
j=1

Q j

∫
S1
|ζ j|

2

)

= πr

[
2Q0 − 1

2

∑
l

c2
l +

J∑
j=1

Q j

(
a2

j,0

2
+
∑

l

(
a2

j,l + b2
j,l

))]
.(5.19)

On the other hand, consider a W1,2-extension of ζ0 on B1

(5.20) ζ0(ρ, θ) =

∞∑
l=1

ρ
l
2 cl sin

(
lθ
2

)
,

(note that ζ0 is not harmonic at the origin), and the harmonic extension of each ζ j:

ζ j(ρ, θ) =
a j,0

2
+

∞∑
l=1

ρl
(
a j,l cos(lθ) + b j,l sin(lθ)

)
, j = 1, · · · , J,

where ρ ≤ 1 and θ ∈ [0, 2π]. We then construct a competitor h of f in Br as follows: h(ρeiθ) =

ĥ(ρeiθ/r), where ĥ, a function defined on B1, is given by

ĥ(ρeiθ) :=
(
h+

0 (ρeiθ), h−0 (ρeiθ)
)

+

J∑
j=1

Q j∑
i=0

s
ζ j

(
ρ

1
Q j ,

θ + 2πi
Q j

){
,

and

h+
0 (ρeiθ) = ζ0

(
ρ

2
2Q0−1 ,

2θ
2Q0 − 1

+
4π

2Q0 − 1
(i − 1)

)
, θ ∈ [0, π], i = 1, · · · ,Q0,

h−0 (ρeiθ) = ζ0

(
ρ

2
2Q0−1 ,

2θ
2Q0 − 1

+
4π

2Q0 − 1
(i − 1)

)
, θ ∈ [π, 2π], i = 1, · · · ,Q0 − 1.

Notice that by definition (5.20),
h+

0 |γ = h−0 |γ + J0K,

hence ĥ has interface (γ, ϕ). A simple computation, combined with Lemma 2.11 and Lemma
3.12 of [15], shows

Dir(h, Br) = Dir(ĥ, B1) =

J∑
j=0

∫∫
B1

|Dζ j|
2 =

π

2

∑
l

c2
l l + π

J∑
j=1

∑
l

(a2
j,l + b2

j,l)l.
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Thus by the minimality of f , we know

(5.21) D(r) ≤ Dir(h, Br) =
π

2

∑
l

c2
l l + π

J∑
j=1

∑
l

(a2
j,l + b2

j,l)l.

We combine (5.18), (5.19) and (5.21) and plug into the left and right hand sides of (5.15).
After simplifications, we show that it is enough to find β > 0 satisfying

(5.22) [l − α(2Q0 − 1)]
[
l − (α + β)(2Q0 − 1)

]
≥ 0,

(5.23)
(
l − αQ j

) [
l − (α + β)Q j

]
≥ 0, j = 1, · · · , J,

for every l ∈ N. This is equivalent to say the intervals (α(2Q0 − 1), (α + β)(2Q0 − 1)) and
(αQ j, (α + β)Q j) do not contain integer points. This is verified, if we choose

β = min
1≤k≤Q

{
bαkc + 1 − αk

k
,
bα(2k − 1)c + 1 − α(2k − 1)

2k − 1

}
> 0.

Step 2. Since I(r) is monotone decreasing, there exists r0 > 0 such that I(r) ≤ α +
β
2 for all

r ≤ r0. Hence (5.13) implies that

(5.24) I′(r) ≥
β

r
(I(r) − α) for almost every r ≤ r0.

Integrating the differential inequality, we get the desired estimate

(5.25) I(r) − α ≤
(

r
r0

)β

(I(r0) − α) ≤ Crβ.

Recall that the derivative of H satisfies (4.10). In particular when m = 2 we have(
H(r)

r

)′
=

2D(r)
r

.

This implies

(5.26)
(

log
H(r)
r2α+1

)′
=

(
log

H(r)
r
− log r2α

)′
=

(
log

H(r)
r

)′
−

2α
r

=
2
r

(I(r) − α) ≥ 0.

Hence H(r)
r2α+1 is monotone increasing. In particular, its limit exists as r → 0+:

(5.27)
H(r)
r2α+1 ≥ lim

r→0

H(r)
r2α+1 =: H0 ≥ 0.

On the other hand combining (5.26) and (5.25) we get(
log

H(r)
r2α+1

)′
≤ 2Crβ−1, thus

(
log

H(r)e−Cβrβ

r2α+1

)′
≤ 0.
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Hence H(r)e−Cβrβ

r2α+1 is monotone decreasing, and

H(r)e−Cβrβ

r2α+1 ≤ lim
r→0

H(r)e−Cβrβ

r2α+1 = lim
r→0

H(r)
r2α+1 = H0.

In particular H0 > 0. Moreover

H(r)
r2α+1

(
1 −Cβrβ

)
≤

H(r)e−Cβrβ

r2α+1 ≤ H0,

and we conclude that
H(r)
r2α+1 − H0 ≤ Cβ

H(r)
r2α+1 rβ ≤ Cβ

H(r0)
r2α+1

0
rβ ≤ Crβ.

The last inequality of (5.6) follows from:

D(r)
r2α − D0 = (I(r) − I0)

H(r)
r2α+1 + I0

(
H(r)
r2α+1 − H0

)
,

where I0 = α and D0 = I0H0.

5.3. Uniqueness of the tangent map: Proof of Theorem 5.7. Without loss of generality, we
assume D0 = 1. By the estimate (5.6) and the definition of blow-up, it follows that

(5.28) fρ(r, θ) = ρ−α f (rρ, θ)
(
1 + O

(
ρβ/2
))
.

It suffices to show the existence of a uniform limit for the dominant function hρ(r, θ) = ρ−α f (rρ, θ).
Note that the function hρ is homogeneous:

hρ(r, θ) = ρ−α f (rρ, θ) = rαhrρ(1, θ),

it is enough to prove the existence of a uniform limit for hρ|S1 . Each function

hρ|S1 = hρ(1, θ) = ρ−α f (ρ, θ)

is Dir-minimizing, so by Theorem 3.1 it is Hölder continuous with a uniform constant. We first
show that hρ|S1 has an L2 limit.

Let {Ti} and {T ′i } be countable dense subsets of AQ(Rn) and AQ−1(Rn) respectively. We con-
sider r/2 ≤ s ≤ r and estimate∫ 2π

0
G(hr, hs)2dθ =

∫ 2π

0
G

(
f (r, θ)

rα
,

f (s, θ)
sα

)2

dθ

=

∫ π

0
sup

i

∣∣∣∣G( f +(r, θ)
rα

,Ti

)
− G

(
f +(s, θ)

sα
,Ti

)∣∣∣∣2 dθ+∫ 2π

π

sup
i

∣∣∣∣G( f −(r, θ)
rα

,T ′i

)
− G

(
f −(s, θ)

sα
,T ′i

)∣∣∣∣2 dθ

≤ (r − s)
∫ π

0
sup

i

∫ r

s

∣∣∣∣ ∂∂t
G

(
f +(t, θ)

tα
,Ti

)∣∣∣∣2 dt dθ+
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(r − s)
∫ 2π

π

sup
i

∫ r

s

∣∣∣∣ ∂∂t
G

(
f −(t, θ)

tα
,T ′i

)∣∣∣∣2 dt dθ

≤ (r − s)
∫ π

0

∫ r

s

∣∣∣∣ ∂∂t

(
f +(t, θ)

tα

)∣∣∣∣2 dt dθ+

(r − s)
∫ π

0

∫ r

s

∣∣∣∣ ∂∂t

(
f −(t, θ)

tα

)∣∣∣∣2 dt dθ

= (r − s)
∫ π

0

∫ r

s

∑
j

{
α2 | f

+
j |

2

t2α+2 +
|∂ν f +

j |
2

t2α − 2α
〈∂ν f +

j , f +
j 〉

t2α+1

}
dt dθ+

(r − s)
∫ π

0

∫ r

s

∑
j

{
α2 | f

−
j |

2

t2α+2 +
|∂ν f −j |

2

t2α − 2α
〈∂ν f −j , f −j 〉

t2α+1

}
dt dθ

= (r − s)
∫ r

s

{
α2 H(t)

t2α+3 +
D′(t)
2t2α+1 − 2α

D(t)
t2α+2

}
dt

= (r − s)
∫ t

s

{
1
2t

(
D(t)
t2α

)′
+ α

H(t)
2t2α+3

(
α − I0, f (t)

)}
dt

≤ (r − s)
∫ t

s

1
2t

(
D(t)
t2α − D0

)′
dt

= (r − s)
[

1
2r

(
D(r)
r2α − D0

)
−

1
2s

(
D(s)
s2α − D0

)]
+

(r − s)
∫ t

s

1
2t2

(
D(t)
t2α − D0

)
dt

≤ Crβ.

Let s ≤ r be arbitrary, and let l be a positive integer such that r/2l+1 < s ≤ r/2l. Iterating the
above estimate we get

‖G(hr, hs)‖L2(S1) ≤

l∑
k=0

‖G
(
hr/2k , hr/2k+1

)
‖L2(S1) + ‖G(hr/2l , hs)‖L2(S1) ≤

l∑
k=0

C
( r

2k

) β
2
≤ C′r

β
2 .

This shows that hρ|S1 is a Cauchy sequence in L2, and thus converges to a limit function h ∈
L2(S1). Moreover, since hρ is equi-Hölder continuous on S1, it follows that hρ converges uni-
formly to h on S1. In other words, fρ converges locally uniformly to an α-homogeneous function

g, with g(z) = |z|αh
(

z
|z|

)
.

6. Homogeneous Dir-minimizers

In this section we study homogeneous Dir-minimizers in planar domains. We do not really give
a complete characterization, but rather a set of necessary conditions that they have to satisfy.



DIRICHLET ENERGY-MINIMIZERS WITH ANALYTIC BOUNDARY 39

Proposition 6.1 (Characterization of tangent maps). Let α > 0 and let f ∈ W1,2
loc (R2,A±Q) be a

nontrivial α-homogeneous Dir-minimizer with interface (R, 0). If Q > 1 and f satisfies (2.3),
then the following alternative holds:

(a) either

f + =
q

rl~c sin(lθ)
y

+

J∑
j=1

k j

r
rl
(
~a j cos(lθ) + ~b j sin(lθ)

)z
=: f +

0 +

J∑
j=1

k j f j,

f − =

J∑
j=1

k j

r
rl
(
~a j cos(lθ) + ~b j sin(lθ)

)z
=:

J∑
j=1

k j f j, J ≥ 1;

for some l ∈ N;
(b) or

f + =
r

r
2
3~c sin

(
2
3θ
)z

+
r

r
2
3~c sin

(
2
3 (θ + 2π)

)z
+

J∑
j=1

k j

∑
z3=x

z=(r,θ)

r
r2
(
~a j cos(2θ) + ~b j sin(2θ)

)z

=: f +
0 +

J∑
j=1

k j f j,

f − =
r

r
2
3~c sin

(
2
3θ
)z

+

J∑
j=1

k j

∑
z3=x

z=(r,θ)

r
r2
(
~a j cos(2θ) + ~b j sin(2θ)

)z

=: f −0 +

J∑
j=1

k j f j, J ≥ 0.

In both cases k j ≥ 1 and ~c, ~a j, ~b j are constants in Rn for all j. Moreover, in both cases the
supports of fi(x) and f j(x) are disjoint for any i , j ∈ {0, 1, · · · , J} and any x not at the origin.

Remark 6.2. It would be interesting to know whether the second case does indeed occur, namely
whether the map ( f +

0 , f −0 ) of case (b) is a 3
2 -valued minimizer.

Proof. We decompose g ∈ W1,2(S1,A±Q) into irreducible pieces as described in Proposition 2.7:

g = g0 + g̃ = g0 +

J∑
j=1

g j,

where g0 = (g+
0 , g

−
0 ) ∈ W1,2(S1,A±Q0

) is a irreducible map with interface (γ, ϕ). In other words f
decompose as follows:

f = f0 + f̃ := rαg0 + rαg̃.
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(If the map g is irreducible itself, we just have f = f0.) By Proposition 2.7 there exists a function
ζ : S1 → Rn satisfying ζ(0) = 0 such that g0 unwinds to ζ. Let

ζ(ρ, θ) = ρα
2Q0−1

2 ζ(θ)

be an extension of ζ to the diskD. By (2.12) and (2.13) f unwinds to ζ(ρ, θ), and thus Dir( f ,D) =∫∫
D
|Dζ |2 by Lemma 2.11. We consider the function ζ(z) := ζ(z2) : D+ → Rn. By definition ζ |γ ≡ 0.

Since conformal maps do not change Dirichlet energy, we have

(6.3)
∫∫
D+

|Dζ |2 =

∫∫
D

|Dζ |2 = Dir( f ,D).

For any function η : D+ → Rn satisfying η|∂D+ = ζ |∂D+ , we can wind the function η(
√

z) : D→ Rn

by the formula (2.12), (2.13) and find a corresponding function h : D→ A±Q such that h|∂D = f |∂D
and h+|γ = h−|γ + J0K. By the minimality of f with interface (γ, ϕ), we have

Dir( f ,D) ≤ Dir(h,D) =

∫∫
D+

|Dη|2.

This combined with (6.3) shows that ζ is a Dir-minimizer in D+ with fixed boundary value on
γ. Thus ζ is a harmonic function in D+. On the other hand ζ is α(2Q0 − 1)-homogeneous. By
spherical harmonics we know α(2Q0 − 1) = l ∈ N and ζ(r, θ) = ~crl sin(lθ) with some constant
~c ∈ Rn. Therefore ζ(θ) = ~c sin

(
lθ
2

)
on S1.

Claim: Suppose a
(
Q0 −

1
2

)
-valued map g0 unwinds to ζ(θ) = ~c sin

(
lθ
2

)
on S1, then g0 is

irreducible if and only if either Q0 = 1 or l = Q0 = 2. In the first case g+
0 = ~c sin(lθ) for any

integer l ∈ N; in the second case

(6.4) g+
0 =

s
~c sin

(
2
3
θ

){
+

s
~c sin

(
2
3

(θ + 2π)
){

, θ ∈ [0, π],

(6.5) g−0 =

s
~c sin

(
2
3
θ

){
, θ ∈ [π, 2π].

Proof of the claim. When Q0 = 1, the condition (i) in Proposition 2.7 holds trivially, thus g0 is
irreducible. Now assume Q0 > 1. The condition (i) fails if we can find θ ∈ [0, 2π] and k ∈ N
such that

(6.6) ζ(θ) = ζ

(
θ +

4π
2Q0 − 1

k
)
, 0 ≤ θ, θ +

4π
2Q0 − 1

k < 2π.

We denote β = lθ/2, then (6.6) becomes

(6.7) sin (β) = sin
(
β +

2πlk
2Q0 − 1

)
, 0 ≤ β, β +

2πlk
2Q0 − 1

< lπ.

To rephrase it slightly different, (6.7) is equivalent to find β1, β2 ∈ [0, lπ) such that sin(β1) =

sin(β2) and they are 2k
2Q0−1 lπ distance apart for some k ∈ N\{0}. For all odd integers l ∈ N, we can

always find β1, β2 ∈ [0, lπ) with arbitrary distance in the range [0, lπ) satisfying sin(β1) = sin(β2);
for all even integers l ∈ N, we can always find β1, β2 ∈ [0, lπ) having the same sinus and with
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arbitrary distance in the range [0, (l − 1)π]. In the latter case, the only way (i) could be satisfied
is that there is an even integer l ≥ 2 so that

2
2Q0 − 1

lπ > (l − 1)π for some Q0 > 1.

Namely we are looking for an even l ≥ 2 and a natural Q0 > 1 such that 2
2Q0−1 >

l−1
l . Clearly,

l−1
l ≥

1
2 . On the other hand 2

2Q0−1 ≤
2
5 <

1
2 when Q0 ≥ 3. The only possibility is thus l = Q0 = 2.

Now we analyze the two cases separately. Case I: Q0 = 1 and l ∈ N is arbitrary. In this
case α = l. We consider the (Q − 1)-valued map f̃ . (Note that Q − 1 > 0 by our assumption.)
Its center of mass φ := η ◦ f̃ is an l-homogeneous harmonic function on D, and thus φ(r, θ) =

rl
(
~a1 cos(lθ) + ~b1 sin(lθ)

)
. The function

∑Q−1
j=1 J f̃ (x) − φ(x)K has center of mass zero. Either it is

trivial, i.e. f̃ = (Q − 1)JφK; or it satisfies the assumption of Proposition 5.1 in [15].

In the first case f̃ = (Q − 1)JφK, for contradiction we assume

spt f̃ (r, θ0) ∩ spt f +
0 (r, θ0) , Ø for some θ0 ∈ [0, π].

If θ0 ∈ (0, π), then either the entire ray {(r, θ0) : 0 < r < 1} is contained in the interior singular set
of the Dir-minimizer (without boundary)

∑Q−1
j=0 f +

j on D+, or φ and f +
0 agree on all of D+. The

former is impossible due to the isolation of interior singular set (c.f. Theorem 0.12 of [15]). If
the latter holds, then

f +(r, θ) = QJ f +
0 (r, θ)K = QJrl~c sin(lθ)K,

f −(r, θ) = (Q − 1)Jrl~c sin(lθ)K.
The symmetric assumption (2.3) then implies that

Q rl~c sin(lθ) = (Q − 1) rl~c sin (l(2π − θ)) for all θ ∈ [0, π].

Hence ~c = 0 and f is trivial, contradiction. If θ0 = 0 (the case when θ0 = π is similar), then
φ(·, 0) = 0. Thus ~a0 = 0 and φ = rl ~b0 sin(lθ). In particular φ(·, π) = 0 as well, and f = f +

0 + f̃
collapses at the interface. Theorem 4.5 of [8] implies 0 is a boundary regular point. We again
deduce from the symmetry (2.3) that f is trivial, contradiction.

For the second case we apply Proposition 5.1 of [15] and get n∗ = l, Q∗ = 1, and

(6.8) f̃ − (Q − 1)JφK = k1J0K +

J∑
j=2

k j

r
rl
(
~a′j cos(lθ) + ~b′j sin(lθ)

)z
.

In other words

(6.9) f̃ =

J∑
j=1

k j

r
rl
(
~a j cos(lθ) + ~b j sin(lθ)

)z
=:

J∑
j=1

k j f j.

Moreover J ≥ 2, and the supports of fi(x) and f j(x) are disjoint for any i , j and z , 0. Similar as
argued in the previous case, the support of any f j can not intersect spt f +

0 unless they completely
agree, in which scenario f is trivial.
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Case II: l = Q0 = 2 and g0 is of the form (6.4), (6.5). Either f = f0 = r
2
3 g0 is irreducible (that

is, Q = 2), or f can be decomposed as the sum of f0 and f̃ . In the first case we have shown that
card spt f +

0 = 2 and we are done. Hence we may assume f = f0 + f̃ . Since α = 2
3 , the center of

mass φ := η ◦ f̃ ought to be a 2
3 -homogeneous harmonic function in D. This is only possible if

φ ≡ 0. Thus either f̃ is trivial, or we may apply Proposition 5.1 of [15]. When f̃ is trivial, again
we get f = f0 + f̃ has a ray or interior singular points in D−, or ~c = 0 and f is trivial. This is
impossible. Alternatively we deduce n∗ = 2,Q∗ = 3 and

(6.10) f̃ (x) = k1J0K +

J∑
j=2

k j

∑
z3=x

z=(r,θ)

r
r2
(
~a j cos(2θ) + ~b j sin(2θ)

)z
=:

J∑
j=1

k j f j.

Moreover, the supports of fi(x) and f j(x) are disjoint for any i , j and any x , 0. Again by
homogeneity and the isolation of interior singular point, the support of any f j does not intersect
that of f0 at θ0 ∈ (0, π)∪(π, 2π). We also note that since f −0

(
·, 3π

2

)
= 0, by the same reason k1 = 0.

Suppose spt f j and spt f0 intersect at θ0 = 0, then the point of intersection spt f j(·, 0) ∩ spt f0(·, 0)
is either (i) r

2
3~c sin(0) = 0 or (ii) r

2
3~c sin

(
4π
3

)
= −r

2
3~c
√

3
2 . Consider a selection of f j

f j =

3∑
k=1

J f j,kK,

and without loss of generality we assume the first sheet satisfies f j,1(·, 0) is the point of intersec-
tion, that is, f j,1(·, 0) ∈ spt f j(·, 0) ∩ spt f0(·, 0). By the formula of f j in (6.10), we remark that f j,k

and the sheets of f0 have the same profile, with possibly different phases and amplitude. For both
scenarios (i) and (ii) we have that from this point on, f j,1 either has the same profile, but possibly
different magnitude (that is, f j,1 = ~c′r

2
3 sin

(
3θ
2

)
or ~c′r

2
3 sin

(
2θ
3 + 4π

3

)
), as f0, or is symmetric with

f0. In the first scenario, it then follows that spt f j,1 and spt f −0 would also intersect at θ0 = 3π
2 with

value 0. We again argue by the isolation of interior singular set. In the second scenario and when
f j,1 has the same profile, by tracing f j,1 and f −0 backwards we find that spt f j,3 and spt f −0 also
intersect at θ0 = 3π

2 with value 0. In the second scenario and when the profile of f j,1 is symmetric
with respect to f0, by symmetry we may trace f j,1 and f0 backwards and find that spt f j,3 and
spt f +

0 intersect at θ0 = π
2 with value r

2
3~c
√

3
2 . We conclude that spt f j and spt f0 do not intersect,

other than at the origin. �

7. Proof of Theorem 1.6: Discreteness of the singular set

The proof of the main theorem is by induction on the number of values Q. The basic step
Q = 1 is clearly trivial, because f − does not exist in that case and f + is a classical harmonic
function. . Now we assume Q > 1 and, as induction hypotheses, that the theorem holds for every
Q′ < Q.

We argue by contradiction and assume the existence of a Dir-minimizing
(
Q − 1

2

)
-valued pla-

nar function with real analytic interface (γ, ϕ) whose singular set is not discrete. As shown in
Section 2 we can assume, without loss of generality that f is in Theorem 2.1, namely Qη+ =
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(Q − 1)η− and the interface is (R, 0). Under our assumptions the singular set must have an accu-
mulation point x0. The latter cannot be in the interior, and thus belongs to the interface. Without
loss of generality we can assume that x0 = 0.

Next, we must have f +(0) = Q J0K. Otherwise we have f +(0) = Q1 J0K + T with T ∈ AQ2(R
n),

where Q1 + Q2 = Q, 1 ≤ Q1 ≤ Q − 1 and spt(T ) does not contain the origin. By the Hölder
continuity theorem, in a neighborhood U of the origin there would be a Q2-valued map h ∈
W1,2(U) and a (Q1 −

1
2 )-valued map g = (g+, g−) ∈ W1,2(U), with disjoint supports and such that

f ± = g± + h. Then the singular set of f in U would be the union of the singular set of h and
of the singular set of f . Moreover, both must be Dir-minimizing. Hence the singular set of h is
discrete by the interior regularity theory, whereas the singular set of g is discrete by the inductive
assumption. This is however not possible because we know that 0 is an accumulation point of
the singular set of f .

Note next that it must be D(r) > 0 for every r in a positive interval, otherwise we would have
f + ≡ Q J0K and f − ≡ (Q − 1) J0K in some neighborhood of 0. Thus I f (r) is well-defined for
every r > 0 sufficiently small. Let g be the (homogeneous) tangent function to f at 0, given by
Theorem 5.7. By the characterization in Proposition 6.1 g has the following decomposition:

g+ = g+
0 +

J∑
j=1

k jg j, g− = g−0 +

J∑
j=1

k jg j

where:

• In the alternative (a) of Proposition 6.1 (g+
0 , g

−
0 ) is 1

2 -valued, namely g+
0 is a classical

harmonic function which vanishes at R and g−0 does not exist.
• In the alternative (b) (g+

0 , g
−
0 ) ∈ W1,2(R2,A±2 ).

In the alternative (b) g+
0 is 2-valued, namely g+

0 = J(g+
0 )1K + J(g+

0 )2K and we define

d0 := min
x∈S1

+

sep(g+
0 (x)) = min

x∈S+
1

∣∣(g+
0 )1(x) − (g+

0 )2(x)
∣∣ .

Note that d0 is positive. In the alternative (a) we set d0 = +∞.

For each j ∈ {1, · · · , J} we define

d0, j := min
{

min
x∈S1

+

dist
(
spt(g+

0 (x)), spt(g j(x))
)
, min

x∈S1
−

dist
(
spt(g−0 (x)), spt(g j(x))

)}
,

and define for each pair i , j ∈ {1, · · · , J}

di, j := min
x∈S1

dist
(
spt(gi(x)), spt(g j(x)

)
.

By Proposition 6.1 we know d0, d0, j, di, j > 0 for all i, j. Let

ε =
1
4

min
{

d0,min
j

d0, j, min
i, j

di, j

}
> 0.

We claim that there exists r0 > 0 such that

(7.1) G( f (x), g(x)) ≤ ε |x|α for every |x| ≤ r0,
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where α = I0, f (0) > 0. In fact, recall the uniform convergence of the blow-ups fr to g:

G( fr(θ), g(θ))→ 0 uniformly in θ ∈ S1 as r → 0.

Recall (5.28), the blow-ups satisfy

f (x)
|x|α

= f|x|

(
x
|x|

)(
1 + O

(
|x|

β
2

))
.

Hence

G

(
f (r, θ)

rα
, g(θ)

)
→ 0 uniformly in θ ∈ S1 as r → 0.

Recall that g is as α-homogeneous map, i.e. g(x) = |x|αg( x
|x| ). We have thus showed (7.1).

The choice of ε implies the existence of functions h j with j ∈ {0, 1, · · · , J}, such that:

• h0 = (h+
0 , h

−
0 ) ∈ W1,2(Br0 ,A

±
Q0

) with interface (γ, ϕ) and Q0 = 1 or 2, depending on
whether alternative (a) or (b) in Proposition 6.1 holds, and in particular card spt(h+

0 (x)) =

Q0 for all x ∈ B+
r0
\ {0};

• each h j is in W1,2(Br0 ,Ak jQ j), and

(7.2) f |Br0
= (h+

0 , h
−
0 ) +

J∑
j=1

h j;

• For every x ∈ Br0 \ {0} and every i > j > 0 we have spt(h j(x)) ∩ spt(hi(x)) = Ø;
• For every x ∈ B+

r0
\ {0} and every i > 0 we have spt(hi(x)) ∩ spt(h+

0 (x)) = Ø;
• For every x ∈ B−r0

\ {} and every i > 0 we have spt(hi(x)) ∩ spt(h−0 (x)) = Ø.

In particular:

• h0 is a Dir-minimizer with interface (R, 0), and each h j is a Dir-minimizer;
• The singular set of f in Br0 is given by 0 and the union of the singular sets of h+

0 , h
−
0 and

the h j’s.

Suppose J = 0. Recall Proposition 6.1, this may only occur in the alternative (b), i.e. when
f |Br0

= (h+
0 , h

−
0 ) is a 3

2 -valued map. By the separation of sheets of h+
0 , the singular set of f in Br0 is

just the origin and we get a contradiction. Suppose J ≥ 1, in other words the sum (7.2) contains
at least two terms, so h+

0 takes strictly less than Q values and we can use our inductive hypothesis
to conclude that the singular set of h0 is discrete. On the other hand, the singular set of each h j

with j > 0 is discrete by Theorem 0.12 of [15]. We conclude that the singular set of f in Br0 is
discrete as well, contradicting the assumption that the origin was an accumulation point for it.
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