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Abstract. In this paper we investigate the fine properties of functions under suitable geo-

metric conditions on the jump set. Precisely, given an open set Ω ⊂ Rn and given p > 1 we

study the blow-up of functions u ∈ GSBV (Ω), whose jump sets belong to an appropriate
class Jp and whose approximate gradients are p-th power summable. In analogy with the

theory of p-capacity in the context of Sobolev spaces, we prove that the blow-up of u con-
verges up to a set of Hausdorff dimension less than or equal to n− p. Moreover, we are able

to prove the following result which in the case of W 1,p(Ω) functions can be stated as follows:

whenever uk strongly converges to u, then up to subsequences, uk pointwise converges to u
except on a set whose Hausdorff dimension is at most n− p.
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Introduction

The following result concerning the Lebesgue points of a Sobolev function is well known (see
[9, 7, 20, 23, 11]): given 1 < p < n, if u ∈ L1

loc(Rn) and its first order distributional derivatives
are p-th power locally summable, then there exists a set A with dimH(A) ≤ n − p, namely
with Hausdorff dimension at most n− p, such that every x ∈ Rn \A is a Lebesgue point for u.
More precisely, for every x ∈ Rn \A there exists a real number a such that:

lim
r→0+

1

rn

∫
Br(x)

|u(y)− a| dy = 0. (0.1)

By a change of variables, if we call ux the function constantly equal to a, the convergence
in (0.1) can be rephrased by saying that ur,x(y) := u(x + ry), namely the blow-up of u at x,
converges in L1(B1(0)) to ux, i.e.

lim
r→0+

∫
B1(0)

|u(x+ ry)− ux(y)| dy = 0. (0.2)

Roughly speaking, (0.2) says in a precise way that the values of u near x are close to a
single constant. The aim of this paper is to investigate the local behavior of functions when
we introduce also a jump discontinuity set.

Given Ω ⊂ Rn an open set, for every function u which belongs to the space GSBV (Ω) and
whose approximate gradient ∇u belongs to L1(Ω;Rn), by using the general theory developed
in [1] one can deduce that at every point x it holds

ur,x → ux in measure in B1(0), as r → 0+,

except on a set A with Hn−1(A) = 0. Furthermore, if x is a Lebesgue point then ux is a
constant function, while if x ∈ Ju then ux assumes two different values on two disjoint subsets
of B1(0) separated by an (n − 1)-dimensional hyperplane passing through the origin. In this
situation ux may assume from one or two values.

In this work we focus our attention on the space GSBV p(Ω) when 1 < p ≤ n. Precisely,
we investigate under which hypothesis on the jump set, the p-th power summability of the
approximate gradient guarantees dimH(A) ≤ n− p.
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To illustrate the result we are going to prove, let us consider the following example. Consider
Γ0 ⊂ R2 the union of three half lines starting from the origin. Let Γ ⊂ R3 be defined by Γ0×R
and let l be the straight line {(0, 0, t) | t ∈ R}. The set Γ disconnects R3\Γ into three connected
components Ω1,Ω2,Ω3. Whenever u is a locally integrable function in GSBV (Ω) with Ju ⊂ Γ,
thanks to a well known property of locally integrable GSBV -functions ∇u coincides with
the distributional gradient in each open sets Ωi; then by using Poincaré-Wirtinger inequality
on balls, it is easy to prove that every u ∈ GSBV p(R3) ∩ L1

loc(R3) with Ju ⊂ Γ satisfies

u
¬
Ωi ∈W 1,p

loc (Ωi) for i = 1, 2, 3. Using a reflection argument, through an obvious modification
of the result in [9], there exists a set A with dimH(A) ≤ 3− p such that if x ∈ R3 \A then the
blow-up of u at x converges. In addition, on the points x ∈ l \A the limit ux can assume three
different values αi each on the set Ωi ∩ B1(0), i = 1, 2, 3. Therefore, the family of all possible
limits ux is richer than the previous cases.

Nevertheless, the p-th power summability of the approximate gradient is in general not
enough to guarantee the convergence of the blow-up at every point except on a set of Hausdorff
dimension (n − p). Consider for example u := 1E , the characteristic function of a set with
finite perimeter. Clearly ∇u is p-summable for every p ≥ 1, but from the theory of sets of finite
perimeter, we know that the blow-up of u in general converges only up to an Hn−1-negligible
set. Precisely, it is possible to construct a set E ⊂ R2 with finite perimeter and such that,
by setting u = 1E , the set of points x where ur,x does not converge has Hausdorff dimension
exactly equal to 1 (see Section 7). Therefore, it is reasonable to think that the geometry of
the jump set affects the local behavior of the functions.

In Definition 3.6, for every 1 < p ≤ n we introduce the class Jp of all admissible jump sets,
for which the following two main results hold true.

Theorem 1. Let Ω ⊂ Rn be open, and let Γ ∈ Jp (1 < p ≤ n). If u ∈ GSBV p(Ω; Γ), then
there exists a set Au with Hausdorff dimension at most n− p, such that for every x ∈ Ω \ Au
there exists a function ux(·) : B1(0)→ R

ur,x → ux, in measure in B1(0), (0.3)

as r → 0+.

Theorem 2. Let Ω ⊂ Rn be open and let Γ ∈ Jp with (1 < p ≤ n). Suppose (uk)∞k=1 ⊂
GSBV p(Ω; Γ) ∩ Lp(Ω) is such that

‖uk − u‖Lp + ‖∇uk −∇u‖Lp → 0, as k →∞.
Then there exists a subsequence (kj)j, such that for every x ∈ Ω except on a set with Hausdorff
dimension at most n− p we have

(ukj )x → ux in measure in B1(0), as j →∞, (0.4)

where in (0.4) (uk)x is the one given by (0.3) where u is replaced by uk.

Theorem 1 can be seen as the analogous of the result (0.2) mentioned above. In the context
of Sobolev spaces this is obtained through the theory of capacity, by exploiting the well known
fact that smooth functions are dense in W 1,p(Ω). However, at the best of our knowlegde, it
is not known whether there exist dense subspaces of GSBV p(Ω; Γ) made of regular functions
u with the additional constraint Ju ⊂ Γ (see Remark 5.22). For this reason, we decide to
perform a different analysis based on Geometric Measure Theory techniques. In particular we
prove a weak version of Poincaré’s inequality on balls, which guarantees that the L0-distance
of u from a particular piecewise constant function can be controlled in terms of the Lp-norm
of its approximate gradient plus a small volume error (see Theorem 4.4). This tool, together
with a fine analysis of the blow-up of u permits us to obtain the conclusion of Theorem 1. The
dimension n − p is optimal, since in the W 1,p(Ω) setting, i.e. when Γ = ∅, we already know
that it is sharp (see Remark 4.10).

Theorem 2 is reminiscent of the following result in the context of Sobolev space: if a sequence
uk in W 1,p(Ω) strongly converges to u, then, up to subsequences, the precise value of uk(x)
defined by (0.2) converges to the precise value of u(x), except on a set of zero p-capacity (see for
example [11, Lemma 4.8]). In order to prove Theorem 2, we use a suitable notion of capacity
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(see Definition (5.7)), which allows us to deduce the convergence (0.4) for every x except on
a set of capacity zero. The relation between this novel notion of capacity and the Hausdorff
measure (see Theorem 5.16) enables us to deduce Theorem 2.

The class Jp is composed of all (Hn−1, n − 1)-rectifiable sets (see [8, Subsection 3.2.14])
with finite Hn−1-measure, which satisfy a suitable geometric condition at every point except
on a set with Hausdorff dimension n − p (see Definition 3.6). For example, finite union of
(n− 1)-dimensional manifolds of class C1 belong to Jp for every 1 < p ≤ n. More in general,
finite unions of graphs of Sobolev functions in W 2,p belong to Jp (see Example 6.3). As pointed
out in Remark 6.2, whenever n > 2p+ 1, the graph of a W 2,p-function might have topological
closure with arbitrarily large n-dimensional Lebesgue measure. This shows that a generic set in
Jp does not need to be essentially closed. In addition, in Example 6.5 we are able to construct
a set in R2 which cannot be written as a finite union of graphs, but nevertheless it belongs to
Jp for every 1 < p ≤ 2.

In order to define the property which characterizes the sets in Jp, we make use of the theory
of indecomposable sets, for which we introduce a geometric quantity called upper isoperimetric
profile (see (2.12)). This quantity plays a similar role to that of the Cheeger’s constant in the
context of Riemannian manifolds. Roughly speaking, if Γ ∈ Jp then for every x up to a set of
Hausdorff dimension n−p, the set B1(0)\ (Γ−x)/r can be overrun by Nx indecomposable sets

(possibly depending on x), say (Fr,i)
Nx
i=1, in such a way that the upper isoperimetric profile of

the sets Fr,i does not vanish as r → 0+. We call this property non vanishing upper isoperimetric
profile (see Definition 3.2). This property is optimal in view of Theorem 1. More precisely,
we construct a counterexample to Theorem 1 which shows that, essentially, the notion of non
vanishing upper isoperimetric profile cannot be weakened (see Example 6.7).

1. Preliminary results

In this first section we recall some properties about sets of finite perimeter. In particular
we focus our attention on the concept of indecomposable set, which will play an important role
for the rest of the paper. We end this section by recalling some fundamental tools and results
about the space GSBV (Ω) which will be useful in the sequel.

1.1. Sets of finite perimeter. Given Ω an open set of Rn we recall that a Ln-measurable
set E ⊂ Rn has finite perimeter in Ω if

P (E; Ω) := sup
ϕ∈C1

c (Ω;Rn)
‖ϕ‖∞≤1

∫
E

divϕdx <∞,

where div denotes the divergence operator defined as usual, i.e. divϕ :=
∑n
i=1

∂ϕi

∂xi
. If Ω = Rn

we simply write P (E) to denote P (E;Rn). Whenever E has finite perimeter, by means of
Riesz’s representation Theorem, we know that the distributional gradient of the characteristic
function of E, i.e. D1E , can be represented as a measure in Mb(Ω;Rn) (the space of all
Rn-valued bounded Radon measures on Ω). In particular, by denoting the total variation of
D1E as |D1E |, then for every Borel set B ⊂ Ω the relative perimeter of E in B is defined as

P (E;B) := |D1E |(B).

We denote by ∂∗E the reduced boundary of E, defined as those x ∈ Ω for which there exists
νE(x) ∈ Sn−1 such that

lim
r→0+

D1E(Br(x))

|D1E |(Br(x))
= νE(x). (1.1)

The unitary vector νE(x) is the measure-theoretic inner normal of E at x.

1.2. Structure properties. Following the notation in [8, Subsection 2.10.19], given x ∈ Ω,
whenever 0 ≤ α ≤ n, we denote the α-dimensional upper and lower densities of µ at x,
respectively, as

Θ∗α(µ, x) := lim sup
r→0+

µ(Br(x))

ωαrα
,
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Θα
∗ (µ, x) := lim inf

r→0+

µ(Br(x))

ωαrα
.

If the upper and lower density coincide, the α-dimensional density of µ at x is defined as

Θα(µ, x) := lim
r→0+

µ(Br(x))

ωαrα
.

Given 0 ≤ δ ≤ 1 and given a set A ⊂ Ω we denote the point of density δ of A as

A(δ) := {x ∈ Ω | Θn(Ln ¬A, x) = δ},
where Ln is the n-dimensional Lebesgue outer measure.

De Giorgi’s structure Theorem holds true (see for example [1, Theorem 3.59]).

Theorem 1.1. Let Ω be an open set of Rn and let E ⊂ Rn with P (E; Ω) <∞. Then ∂∗E is
countably (Hn−1, n− 1)-rectifiable and

|D1E | = Hn−1 ¬ ∂∗E.
In addition, for every x ∈ ∂∗E the following properties hold

(a) the sets (E−x)/r locally converge in measure in Rn as r → 0+ to the halfspace H orthogonal
to νE(x) and containing νE(x);

(b) Θ(n−1)(Hn−1 ¬ ∂∗E, x) = 1.

We shall make use of the following two results. The first is due to Federer and concerns the
structure of sets having finite perimeter. The second can be seen as a sort of Leibniz’s formula
for the intersection of two sets of finite perimeter.

Theorem 1.2. Let Ω be an open set of Rn and let E ⊂ Rn with P (E; Ω) <∞. Then

• Hn−1(E(1/2)∆∂∗E) = 0;
• Hn−1(Ω \ [E(1) ∪ E(1/2) ∪ E(0)]) = 0.

Proof. See for example [1, Theorem, 3.61]. �

Proposition 1.3 (Leibniz’s formula). Let Ω be an open set of Rn and let E,F ⊂ Rn with
P (E; Ω), P (F ; Ω) <∞. Then P (E ∩ F ; Ω) <∞ and moreover

Hn−1 ¬ ∂∗(E ∩ F ) = Hn−1 ¬ ∂∗E ∩ F (1) +Hn−1 ¬ ∂∗F ∩ E(1)

+Hn−1 ¬ {νE = νF }.
(1.2)

Proof. See [18, Theorem 16.3] �

1.3. Caccioppoli’s partition and indecomposable sets. First of all let us recall the defi-
nition of Caccioppoli’s partition (see [1] for a reference).

Definition 1.4 (Caccioppoli’s partition). Let Ω be an open set of Rn. We say that a Ln-
measurable partition (Ei)

∞
i=1 of Ω is a Caccioppoli’s partition if

∞∑
i=1

P (Ei; Ω) <∞.

Moreover we say that a Caccioppoli’s partition is ordered if |Ei| ≥ |Ej | whenever i ≤ j.

Definition 1.5 (Indecomposability). Let Ω be an open set of Rn and let F ⊂ Ω with P (F ; Ω) <
∞. We say that F is indecomposable if for every set E satisfying

E ⊂ F, P (F ; Ω) = P (E; Ω) + P (F \ E; Ω), (1.3)

then |E| = 0 or |E∆F | = 0.

Remark 1.6. The notion of indecomposability can be found for example in [14] and it is in per-
fect agreement with the following fact (see [6, Proposition 2.12]): the set F is indecomposable
if and only if any u ∈ BV (Ω) with |Du|(F ) = 0 is necessarily constant on F .

In particular this tells us that every connected open set U ⊂ Ω with finite perimeter is
indecomposable.
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Remark 1.7. For every set E ⊂ F it holds P (F ; Ω) ≤ P (E; Ω) +P (F \E; Ω). This means that
condition (1.3) is equivalent to

E ⊂ F, P (F ; Ω) ≥ P (E; Ω) + P (F \ E; Ω).

Moreover, condition (1.3) can be equivalently stated for a countable family (Ei)
∞
i=1. This

means that F is indecomposable if and only if the following conditions
∞⋃
i=1

Ei = F, |Ei ∩ Ej | = 0 (i 6= j),

∞∑
i=1

P (Ei; Ω) = P (F ; Ω), (1.4)

imply that there exists i0 such that |Ei0∆F | = 0 and |Ei| = 0 for i 6= i0.
Indeed condition (1.4) clearly implies (1.3). While if F is indecomposable, by setting E :=

E1, (1.4) tells us

P (E; Ω) + P (F \ E; Ω) ≤ P (F ; Ω),

which implies

P (E; Ω) + P (F \ E; Ω) = P (F ; Ω).

By the indecomposability of F we deduce that one between E or F∆E has zero Lebesgue
measure. If |F∆E| = 0 we are done. Otherwise |E| = 0 and we can proceed as before by
defining E := E2. Clearly, if this procedure does not stop, then |F | = 0 and we are done.
Otherwise if it stops at i0 ∈ N this means that |F∆Ei0 | = 0 and we are done.

We conclude this subsection with two technical propositions.

Proposition 1.8. Let Ω be an open set of Rn and let F ⊂ Ω be indecomposable. Suppose
E ⊂ Ω is a set having finite perimeter in Ω and such that

|E ∩ F | > 0 and |F \ E| > 0. (1.5)

Then it holds Hn−1(∂∗E ∩ F (1)) > 0.

Proof. We can consider the measurable partition of F given by F = (E ∩ F ) ∪ (F \ E). By
hypothesis |E ∩ F |, |F \ E| > 0. Using Leibniz’s formula (1.2) we can write

∂∗(E ∩ F ) = [∂∗E ∩ F (1)] ∪ [∂∗F ∩ E(1)] ∪ [{νE = νF }],

and

∂∗(F \ E) = [∂∗E ∩ F (1)] ∪ [∂∗F ∩ E(0)] ∪ [{νE = −νF }].
Since ∂∗F ∩ E(1), {νE = νF }, ∂∗F ∩ E(0) and {νE = −νF } are pairwise disjoint subsets of
∂∗F , if Hn−1(∂∗E ∩ F (1)) = 0 then

P (E ∩ F ; Ω) + P (F \ E; Ω) = Hn−1(∂∗F ∩ E(1)) +Hn−1(∂∗F ∩ E(0))

+Hn−1({νE = νF }) +Hn−1({νE = −νF })
≤ P (F ; Ω),

which by Remark 1.7 implies (1.3) and this together with (1.5) is in contradiction with the
indecomposability of F . �

Proposition 1.9. Let Ω be an open set of Rn and let E,E′ ⊂ Ω with P (E; Ω), P (E′; Ω) <∞
and such that ∂∗E′ ⊆ ∂∗E. Let F ⊂ E be an indecomposable set. Then one and only one of
the following holds

(1) F ⊆ E′
(2) F ⊆ E \ E′.

Proof. It is enough to show that |F ∩ E′| 6= 0 implies F ⊆ E′.
Suppose not. Then |F ∩ E′| > 0 and also |F \ E′| > 0. By Leibniz’s formula both F ∩ E′

and F \ E′ are sets having finite perimeter in Ω. Moreover, by Proposition 1.8 we would
have also Hn−1(∂∗E′ ∩ F (1)) > 0. But since F ⊂ E then F (1) ⊂ E(1), and this implies
Hn−1(∂∗E′∩E(1)) > 0 which is in contradiction with the hypothesis ∂∗E′ ⊂ ∂∗E. This proves
the proposition. �
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1.4. Indecomposable components. The following result is a well known fact about the
decomposability property of sets of finite perimeter. Precisely, every set with finite perimeter
E can be decomposed into a countable family of indecomposable sets (Fi) such that

1E =

∞∑
i=1

1Fi , and P (E) =

∞∑
i=1

P (Fi).

This result was first announced (with a sketch of the proof) in [8, Subsection 4.2.25] in the
more general setting of integral currents of Rn. A complete proof in the context of sets of finite
perimeter in Rn can be found in [14]. We are interested in the same result when Rn is replaced
by a generic Lipschitz-regular open set Ω. Namely, whenever E ⊂ Ω is such that P (E; Ω) <∞,
then there exists a countable family of indecomposable subsets of Ω, say (Fi), such that

1E =

∞∑
i=1

1Fi , and P (E; Ω) =

∞∑
i=1

P (Fi; Ω).

This fact can be deduced by using [14, Lemma 3.1, Corollary 3.2, Proposition 3.3], and we
decide to give a complete proof in the next proposition.

Proposition 1.10. Let Ω ⊂ Rn be a bounded Lipschitz-regular domain, and let E ⊂ Ω be such
that P (E; Ω) < ∞. Then there exists a Caccioppoli’s indecomposable partition of E, which
means a countable family (Fi)

∞
i=1 of indecomposable sets such that

(1) E ∩ F (1)
i = Fi, for every i ∈ N;

(2) Hn−1(E ∩ E(1) \
⋃∞
i=1 Fi) = 0;

(3) Fi ∩ Fj ∩ E = ∅, for i 6= j;
(4)

∑∞
i=1 P (Fi; Ω) = P (E; Ω);

(5) Hn−1((Ω ∩ ∂∗E) \
⋃∞
i=1 ∂

∗Fi) = 0;
(6) Hn−1((Ω ∩ ∂∗Fi) \ ∂∗E) = 0 for every i ∈ N;
(7) Hn−1(Ω ∩ ∂∗Fi ∩ ∂∗Fj) = 0 for i 6= j.

Moreover the family (Fi)
∞
i=1 is unique up to permutation of indices in the sense that given any

family of indecomposable sets (F ′i )
∞
i=1 satisfying 1-4 then there exists a bijection π : N → N

such that

|Fi∆F ′π(i)| = 0 for every i ∈ N.

Remark 1.11. Conditions 2 and 3 say in a more precise way that 1E =
∑∞
i=1 1Fi .

Proof. We first prove that conditions 1-3 hold true. Since Ω is Lipschitz-regular, we know that
E is a set of finite perimeter in Rn, i.e. P (E) < ∞ (see [20, Subsection 6.5.1 Lemma 1]).
By applying [14, Proposition 3.3] to the set E ⊂ Rn, we deduce that there exists a countable

family (F̃i)i∈I satisfying 1 and 2 with the additional property F̃i 6= ∅ for every i ∈ I, and∑
i∈I

P (F̃i) = P (E). (1.6)

Now if the cardinality of I is a natural number N , we define Fi := F̃π(i) where π is any
bijection of {1, . . . , N} onto I, and Fi = ∅ for every i > N . While if the cardinality of I is

equal to the cardinality of N, we define Fi := F̃π(i) where π is any bijection of N onto I. Clearly
the family (Fi)

∞
i=1 satisfies 1 and 2. We show that it satisfies also 3. Indeed, we can use [14,

Lemma 3.1] which says that

Hn−1

(
[Ω ∩ (∂∗E ∪ E(1))] \

∞⋃
i=1

∂∗Fi ∪ F (1)
i

)
= 0,

where now ∂∗E has to be intended as the reduced boundary of E as a subset of Rn. Since

F
(1)
i ∩ ∂∗E = ∅ for every i, the only possibility is that

Hn−1

(
∂∗E \

∞⋃
i=1

∂∗Fi

)
= 0, (1.7)
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which by (1.6) implies
∞⋃
i=1

∂∗Fi = ∂∗E and Hn−1(∂∗Fi ∩ ∂∗Fj) = 0, for i 6= j,

and in particular that
Hn−1(∂∗Fi \ ∂∗E) = 0, for every i ∈ N. (1.8)

If |Fi∩Fj | > 0 for some i 6= j then by using Proposition 1.8, we deduce thatHn−1(∂∗Fi∩F (1)
j ) >

0 which is in contradiction with (1.8). Finally, since by (1) every Fi coincides with its measure
theoretic interior on the points of E, this shows condition 3.

We claim that
∞∑
i=1

P (Fi; Ω) = P (E; Ω).

To show this, notice that by applying Leibniz’s formula (1.2) to the couple of sets Ω and E
(both seen as sets with finite perimeter in Rn), since E ⊂ Ω we can write

Hn−1 ¬ ∂∗E = Hn−1 ¬ (∂∗(E ∩ Ω)) = Hn−1 ¬ (∂∗E ∩ Ω(1)) +Hn−1 ¬ ({νE = νΩ}), (1.9)

and since by 1 we have Fi ⊂ Ω for every i ∈ N, then we have also

Hn−1 ¬ ∂∗Fi = Hn−1 ¬ (∂∗(Fi ∩ Ω)) = Hn−1 ¬ (∂∗Fi ∩ Ω(1)) +Hn−1 ¬ ({νFi = νΩ}). (1.10)

By using [14, Corollary 3.2] together with (1.9) and (1.10) we deduce that

Hn−1

(
{νE = νΩ} \

∞⋃
i=1

{νFi = νΩ}
)

= 0. (1.11)

We can write

P (E) = Hn−1(∂∗E) = Hn−1(∂∗E ∩ Ω(1)) +Hn−1({νE = νΩ}) = P (E; Ω) +Hn−1({νE = νΩ})
By using the lower semicontinuity of the perimeter and (1.11) we can continue the previous
inequality

P (E) = P (E; Ω) +Hn−1({νE = νΩ}) ≤
∞∑
i=1

P (Fi; Ω) +Hn−1({νFi = νΩ})

=

∞∑
i=1

Hn−1(∂∗Fi ∩ Ω(1)) +Hn−1({νFi = νΩ})

=

∞∑
i=1

Hn−1(∂∗Fi) =

∞∑
i=1

P (Fi) = P (E),

where we have also used that, since Ω is Lipschitz-regular, then Hn−1(∂∗Fi∩Ω(1)) = P (Fi; Ω).
By using again the lower semicontinuity of the perimeter and (1.11), we deduce that the only
possibility for which (1.4) is actually an equality is that

P (E; Ω) =

∞∑
i=1

P (Fi; Ω) and Hn−1({νE = νΩ}) =

∞∑
i=1

Hn−1({νFi = νΩ}),

which in particular implies our claim.
Properties 5-7 simply follow by [14, Corollary 3.2].
It remains to prove that a family of indecomposable sets (Fi)

∞
i=1 satisfying 1-4 is unique.

As before, since Ω is Lipschitz-regular, then the (Fi) are actually sets having finite perimeter
in Rn. Then, in view of [14, Proposition 3.3] it is enough to prove that

∞∑
i=1

P (Fi) = P (E). (1.12)

In this case, suppose that (Fi)i and (F ′i )i are two sequences of sets satisfying 1-4. By removing
the sets in (Fi)i and in (F ′i )i equal to the emptyset we end up with two families (Fi)i∈I and
(F ′i )i∈I′ , both satisfying 1-4 with the additional condition Fi, F

′
i 6= ∅ for every i ∈ I and i ∈ I ′.
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Therefore, we are in position to apply the uniqueness result [14, Proposition 3.3] which says
that there exists a bijection π : I → I ′ such that

|Fi∆F ′π(i)| = 0, for every i ∈ I,

and this would be enough to obtain uniqueness.
Now we show (1.12). Since by hypothesis

∞∑
i=1

P (Fi; Ω) = P (E; Ω),

by (1.9) and by (1.10) together with the fact Hn−1(∂∗Fi ∩ Ω(1)) = P (Fi; Ω), it is enough to
show

∞∑
i=1

Hn−1({νFi = νΩ}) = Hn−1({νE = νΩ}).

First of all since |Fi ∩ Fj | = 0 it is easy to see that

Hn−1({νFi = νΩ} ∩ {νFj = νΩ}) = 0 for i 6= j. (1.13)

In particular this implies that

∞∑
i=1

P (Fi) =

∞∑
i=1

P (Fi; Ω) +Hn−1({νFi = νΩ}) <∞. (1.14)

We claim that

Hn−1

(
{νE = νΩ}∆

∞⋃
i=1

{νFi = νΩ}
)

= 0.

By using (1.14) we can apply [14, Lemma 3.1] and arguing as before this implies (1.11). To
prove

Hn−1

( ∞⋃
i=1

{νFi = νΩ} \ {νE = νΩ}
)

= 0,

we show that Hn−1-a.e. x ∈ {νFi = νΩ} belongs to ∂∗E for every i ∈ N. For this purpose,
define Γ :=

⋃∞
i=1 ∂

∗Fi. Thanks to (1.14) Γ is a countably (Hn−1, n − 1)-rectifiable set with
Hn−1(Γ) <∞. By properties 1-4, we can apply [14, Corollary 3.2] to deduce that

Hn−1(Ω ∩ ∂∗Fi ∩ ∂∗Fj) = 0 for i 6= j.

This together with (1.13) tells us that

Hn−1(∂∗Fi ∩ ∂∗Fj) = 0 for i 6= j. (1.15)

This last condition allows us to define an orientation of Γ, namely a measurable map ν : Γ→
Sn−1, in the following way

ν(x) := νFi(x), for x ∈ ∂∗Fi. (1.16)

If we set ui := 1∪ij=1Fj
, then we have ui ∈ SBV pp (Ω; Γ) for every p ≥ 1. Since for every i

∇ui = ∇u = 0 and

ui → u strongly in L1,

then we can apply [21, Remark 4.9] to deduce

u±i → u± in Hn−1-measure on Γ. (1.17)

Now fix i0 ∈ N. By (1.15) and the definition of u± (see Definition 1.16), for Hn−1-a.e. x ∈
{νFi0 = νΩ} u+

i (x) = 1 and u−i (x) = 0 for every i ≥ i0. Hence, by (1.17) this means also that

u+(x) = 1 and u−(x) = 0 for Hn−1-a.e. x ∈ {νFi0 = νΩ}. By definition of u± (see Definition

1.16) we deduce that Hn−1-a.e. x ∈ {νFi0 = νΩ} is a point of density 1/2 for E, and by

Theorem 1.2 also that Hn−1-a.e. x ∈ {νFi0 = νΩ} belongs to ∂∗E. Thanks to the arbitrariness
of i0 we conclude the proof.

�
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Definition 1.12 (Indecomposable components). Let Ω be an open set of Rn and let E ⊂ Ω
with P (E; Ω) < ∞. Let (Fi)

∞
i=1 be the unique (up to permutation of indices) indecompos-

able partition of E given by Proposition 1.10. Then, for every i ∈ N we say that Fi is an
indecomposable component of E.

The following proposition says that if E0 is an indecomposable set, then whenever |Er∆E0| →
0 and P (Er; Ω)→ P (E0; Ω) as r → 0+, then for every r it is possible to select an indecompos-
able component Fr of Er, such that |Fr∆E| → 0 and P (Fr; Ω)→ P (E; Ω) as r → 0+.

Proposition 1.13. Let Ω be a bounded Lipschitz regular domain of Rn, and let (Er)r∈(0,1)

be a family of sets contained in Ω with P (Er; Ω) < ∞. For each r ∈ (0, 1) let (Fr,i)
∞
i=1 be

the Caccioppoli’s indecomposable partition of Er given by Proposition 1.10. Let E0 ⊂ Ω be an
indecomposable set. Suppose that

(1) limr→0+ |Er∆E0| = 0
(2) limr→0+ P (Er; Ω) = P (E0; Ω).

Then, for each r ∈ (0, 1) there exists σr ∈ N such that

lim
r→0+

|Fr,σr∆E0| = 0, (1.18)

and

lim
r→0+

P (Fr,σr ; Ω) = P (E0; Ω). (1.19)

Proof. Suppose that our proposition does not hold. Then there exists a δ > 0 such that

lim sup
r→0+

(
inf
i∈N
|Fr,i∆E0|

)
≥ δ.

This implies the existence of a subsequence (rm)∞m=1 such that

|Frm,i∆E0| > δ, (1.20)

for every m ∈ N and for every i ∈ N.
Consider the Caccioppoli’s partition of Ω made of (Frm,i)

∞
i=1 ∪ Ω \ Erm . Since Ω has finite

Lebesgue measure, this partition can be ordered. Thus we can apply the compactness theorem
for Caccioppoli’s ordered partitions (see [1, Theorem, 4.19] and [1, Remark, 4.20]), to find a
Caccioppoli’s (ordered) partition of Ω, say (F0,i)

∞
i=1 where one of the F0,i must be equal to

Ω \ E0, such that up to subsequences we have

lim
m→∞

|Frm,i∆F0,i| = 0 for every i ∈ N. (1.21)

By removing the set (Ω \E0) from the partition, we obtain an ordered measurable partition of
E0, which we still call (F0,i)

∞
i=1.

By (1.20), there exists a family I ⊂ N with cardinality strictly greater than 1, such that
F0,i 6= ∅ for every i ∈ I.

Using the lower semicontinuity of the perimeter and property (4) of Proposition 1.10, we
can write ∑

i∈I
P (F0,i; Ω) ≤

∞∑
i=0

lim inf
m→∞

P (Fkm,i; Ω) ≤ lim inf
m→∞

∞∑
i=1

P (Fkm,i; Ω)

≤ lim inf
m→∞

P (Ekm ; Ω)

= P (E0; Ω),

(1.22)

since (F0,i)i∈I is a (measurable) partition of E0, (1.22) implies∑
i∈I

P (F0,i; Ω) = P (E0; Ω), (1.23)

and by Remark 1.7 this is in contradiction with the indecomposability of E0. Hence this proves
(1.18).
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Finally we notice that

P (E0; Ω) ≤ lim inf
r→0+

P (Fr,σr ; Ω) ≤ lim sup
r→0+

P (Fr,σr ; Ω)

≤ lim sup
r→0+

∞∑
i=0

P (Fr,i; Ω)

= lim sup
r→0+

P (Er; Ω)

= P (E0; Ω),

and this gives (1.19). �

1.5. GSBV functions. For the general theory concerning the space of generalised functions
of special bounded variation GSBV (Ω), we refer to [1]. In order to give a precise meaning of
jump set and of approximate gradient in the context of GSBV functions, we need to recall the
notion of approximate limit ([1, Section 4.5]).

Definition 1.14 (Upper and lower approximate limit). Given an Ln-measurable function
u : Ω→ R the upper approximate limit of u at x ∈ Ω is defined as

u+(x) := ap- lim sup
y→x

u(y) := inf{t ∈ R | Θn(Ln ¬ {u > t}, x) = 0}

while the lower approximate limit of u at x is defined as

u−(x) := ap- lim inf
y→x

u(y) := sup{t ∈ R | Θn(Ln ¬ {u < t}, x) = 0}.

In addition, we say that u admits an approximate limit equal to a ∈ R at x, and we write

ap- lim
y→x

u(y) = a,

if u+(x) = u−(x) = a (the case a = ±∞ are not excluded).

Definition 1.15 (Approximate continuity). Let Ω be an open set of Rn. For every Ln-
measurable function u : Ω → R we define the approximate continuity set as the set of points
x ∈ Ω for which there exists a ∈ R such that

ap- lim
y→x

u(y) = a.

The approximate discontinuity set Su is defined as the complement in Ω of the approximate
continuity set, i.e.

Su := {x ∈ Ω | u−(x) < u+(x)}.
When x ∈ Ω \ Su we denote the approximate limit of u at x as ũ(x)

We are now in position to remind the definitions of jump set and of approximate gradient
for GSBV -functions.

Definition 1.16 (Jump set). Let Ω be an open set of Rn. For every Ln-measurable function
u : Ω → R we define the approximate jump set Ju, as the set of points x ∈ Ω for which there
exist a, b ∈ R with a < b and ν ∈ Sn−1 such that

ap- lim
(y−x)·ν>0

y→x

v(y) = a and ap- lim
(y−x)·ν<0

y→x

v(y) = b. (1.24)

If x ∈ Ju then we write a = u+(x) and b = u−(x). The vector ν, uniquely determined by
this condition, is denoted by νu(x). The jump of u is the function [u] : Ju → R defined by
[u](x) := u+(x)− u−(x) for every x ∈ Ju.

Definition 1.17 (Approximate differentiability). Let u : Ω→ R be a Ln-measurable function
and x ∈ Ω \ Su. Then u is approximately differentiable at x if ũ(x) ∈ R and there exists a
linear map L : Rn → R such that

ap- lim
y→x

|u(y)− ũ(x)− L(y − x)|
|y − x|

= 0.
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In this case the approximate gradient of u at x is defined as ∇u(x) := L.

Definition 1.18 (GSBV functions). Let Ω be an open set of Rn. We say that a function
u : Ω→ R belongs to GSBV (Ω), if for every M ∈ N the truncated function uM := (u∨M)∧−M
belongs to SBVloc(Ω).

Now we recall the main result about the fine properties of GSBV functions (see [1, Theorem
4.34]).

Theorem 1.19 (Fine properties). Let u ∈ GSBV (Ω), let M ∈ N. Then

(1) Su =
⋃
M∈N SuM and

u+(x) = lim
M→+∞

(uM )+(x), u−(x) = lim
M→+∞

(uM )−(x);

(2) Su is countably Hn−1-rectifiable, Hn−1(Su \ Ju) = 0 and

Tan(Su, x) = (νu(x))⊥, for Hn−1-a.e. x ∈ Su;

(3) u is weakly approximate differentiable Ln-a.e. in Ω and

∇u(x) = ∇uM (x), for Ln-a.e. x ∈ {|u| ≤M}.

The following compactness result holds true.

Theorem 1.20. Let Ω be an open set of Rn and let (uk)∞k=1 be a sequence of functions in
GSBV (Ω). Suppose that there exists p > 1 such that

sup
k∈N

(
‖u‖Lp + ‖∇u‖Lp +Hn−1(Ju)

)
<∞. (1.25)

Then there exists u ∈ GSBV (Ω) such that, up to passing through a subsequence, we have

lim
k→∞

uk(x) = u(x), Ln-a.e. and ∇uk ⇀ ∇u, weakly in L1(Ω), as k →∞,

and
lim inf
k→∞

Hn−1(Juk) ≥ Hn−1(Ju).

Proof. It is a particular case of [1, Theorem 4.36]. �

Finally, we introduce suitable subspaces of GSBV (Ω).

Definition 1.21. Given Γ ⊂ Ω a countably (Hn−1, n− 1)-rectifiable set with Hn−1(Γ) <∞,
we define for every p ≥ 1

• GSBV p(Ω) := {u ∈ GSBV (Ω) | ∇u ∈ Lp(Ω;Rn)};
• GSBV pp (Ω) := {u ∈ GSBV (Ω) | u ∈ Lp(Ω), ∇u ∈ Lp(Ω;Rn)};
• GSBV (Ω; Γ) := {u ∈ GSBV (Ω) | Ju ⊆ Γ};
• GSBV p(Ω; Γ) := {u ∈ GSBV p(Ω) | Ju ⊂ Γ};
• GSBV pp (Ω; Γ) := {u ∈ GSBV pp (Ω) | Ju ⊂ Γ}.

Remark 1.22. Using [4, Proposition 2.3] and Theorem 1.20, it is possible to prove thatGSBV pp (Ω; Γ)
endowed with the norm

‖u‖p := ‖u‖Lp + ‖∇u‖Lp ,
is a Banach space.

2. Weak Poincaré’s inequality for indecomposable sets

This section is devoted to the proof of a weak version of the Poincaré’s inequality for in-
decomposable sets. We recall that given a connected Lipschitz-regular bounded open set Ω,
Poincaré’s inequality allows to control the Lp-distance of a function u from its average in term
of the Lp-norm of its gradient. Namely, for every u ∈W 1,p(Ω) it holds(∫

Ω

∣∣∣∣u−−∫ u

∣∣∣∣p dx) 1
p

≤ C(Ω, p)

(∫
Ω

|∇u|p dx
) 1
p

. (2.1)

In our case we want to derive a similar inequality in the context of GSBV p-functions, when
Ω is replaced by a generic indecomposable set of finite measure. Since in general a function
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u ∈ GSBV p(Ω) is not even integrable, the Lp-distance on the left hand side of (2.1) will be
substituted by the L0-distance, which is the one that induces the convergence in measure (see
Definition 5.4). Precisely, we prove the following inequality(∫

F

|u−m|p ∧ 1 dx

) 1
p

≤ C(F, p, λ)

(∫
F

|∇u|p dx
) 1
p

+ (2λ|F |)
1
p , (2.2)

for every indecomposable set F ⊂ Ω with |F | < ∞ and for every u ∈ GSBV p(Ω) such that
Hn−1(Ju ∩ F (1)) = 0. The real number m is the median of u on F (see Definition 2.8), ∇u is
the approximate gradient of u (see Section 1.5), and λ is any positive real number in (0, 1/2].
The integral on the left hand side of (2.2) is equivalent to the L0-distance on F (see (5.3))
between u and m. The function C(F, p, ·) is decreasing and in general may blow up as λ→ 0+.
Inequality (2.2) tells us that if

∫
F
|∇u|p dx is sufficiently small, then u is close to a single

constant on F . This information will play a crucial role in order to derive the first main result
of this paper, namely Theorem 1.

2.1. The upper isoperimetric profile. Given F ⊂ Ω an indecomposable set with finite
measure, we want to introduce an isoperimetric quantity hF , which is a function hF : (0, 1

2 ]→
(0,∞), and which plays a similar role to the so called Cheeger’s constant. We recall that when
Ω is a bounded open set of Rn, (n ≥ 2) the Cheeger’s constant is defined as (see [16],[17])

h(Ω) := inf

{
P (E)

|E|
| E ⊂ Ω, |E| > 0

}
. (2.3)

Let us remind that the Cheeger’s constant was introduced in [3] to study lower bounds for
the smallest eigenvalue of the Laplace operator on compact Riemannian manifolds without
boundary. As a consequence, one obtains the validity of a Poincaré’s inequality with optimal
constant uniformly bounded from below by a geometric constant. Precisely, for the case of
Ω bounded open set of Rn, let λp(Ω) be the smallest “eigenvalue” of the p-laplacian with
Dirichlet boundary condition (1 ≤ p <∞), i.e.

λp(Ω) := inf
u∈W 1,p

0 (Ω)

‖∇u‖pLp
‖u‖pLp

.

Then arguing as in [3] (see [15] [13]) one can easily show that

λp(Ω) ≥ h(Ω)p

pp
.

In our case, since we are interested in a weaker version of Poincaré’s inequality for inde-
composable sets without the assumption of Dirichlet boundary conditions, we need to work
with a different notion of Cheeger’s constant. Before starting with the definition, we need
to prove a lower-semicontinuity property, which can be seen as a generalisation of the well
known result of lower semicontinuity of the perimeter: given a sequence of sets (Ek) such that
limk→∞ |Ek∆E| = 0, then for every open set Ω

lim inf
k→∞

P (Ek; Ω) ≥ P (E; Ω).

Proposition 2.1 (Lower semicontinuity). Let Ω be an open set of Rn. Let (Ek)∞k=1,(E′k)∞k=1

and E,E′ be subsets of Ω with finite perimeter in Ω such that E′k ⊂ Ek and

(1) limk→∞ |Ek∆E| = 0;
(2) limk→∞ P (Ek; Ω) = P (E; Ω);
(3) limk→∞ |E′k∆E′| = 0.

Then it holds the following lower semicontinuity property

lim inf
k→∞

Hn−1(∂∗E′k ∩ E
(1)
k ) ≥ Hn−1(∂∗E′ ∩ E(1)). (2.4)

Proof. Using the Leibniz’s formula (1.2) we can write

P (E′k; Ω) = P (E′k ∩ Ek; Ω) = Hn−1(∂∗E′k ∩ E
(1)
k ) +Hn−1(∂∗Ek ∩ E′(1)

k )

+Hn−1({νE′k = νEk}).
(2.5)
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Since E′k ⊂ Ek then E
′(1)
k ⊂ E(1)

k , hence E
′(1)
k ∩E

(1/2)
k = ∅. This impliesHn−1(∂∗Ek∩E′(1)

k ) = 0.
Moreover, since E′k ⊂ Ek then Hn−1({νE′k 6= νEk}) = 0. Therefore (2.5) can be rewritten as

P (E′k; Ω) = Hn−1(∂∗E′k ∩ E
(1)
k ) +Hn−1(∂∗E′k ∩ ∂∗Ek). (2.6)

Analogously we have

P (Ek \ E′k; Ω) = Hn−1(∂∗(Ek \ E′k) ∩ E(1)
k ) +Hn−1(∂∗(Ek \ E′k) ∩ ∂∗Ek).

SinceHn−1(∂∗(Ek\E′k)∩E(1)
k ) = Hn−1(∂∗E′k∩E

(1)
k ), then we can rewrite the previous equality

as

P (Ek \ E′k; Ω) = Hn−1(∂∗E′k ∩ E
(1)
k ) +Hn−1(∂∗(Ek \ E′k) ∩ ∂∗Ek). (2.7)

We claim that

Hn−1(∂∗Ek \ (∂∗E′k ∪ ∂∗(Ek \ E′k))) = 0 (2.8)

and

Hn−1((∂∗Ek ∩ ∂∗E′k) ∩ (∂∗Ek ∩ ∂∗(Ek \ E′k)) = 0. (2.9)

To show this, notice that by Theorem 1.2 for Hn−1-a.e. x ∈ Ω, if x ∈ E(1/2)
k , then{

x ∈ (E′k)(0) or x ∈ (E′k)(1/2)
}

and
{
x ∈ (Ek \ E′k)(0) or x ∈ (Ek \ E′k)(1/2)

}
.

But if x ∈ E(1/2)
k it cannot happen x ∈ (E′k)(0) and x ∈ (Ek \E′k)(0), otherwise x ∈ E(0)

k which

is a contradiction. This proves (2.8). Also, if x ∈ E(1/2)
k then it cannot happen x ∈ (E′k)(1/2)

and x ∈ (Ek \ E′k)(1/2), otherwise x ∈ E(1)
k which is again a contradiction. This proves (2.9).

By (2.8) and (2.9), summing (2.6) with (2.7) we obtain for every k ∈ N

P (E′k; Ω) + P (Ek \ E′k; Ω) = 2Hn−1(∂∗E′k ∩ E
(1)
k ) + P (Ek; Ω). (2.10)

Since E′ ⊂ E, repeating the same argument we have also in this case

P (E′; Ω) + P (E \ E′; Ω) = 2Hn−1(∂∗E′ ∩ E(1)) + P (E; Ω). (2.11)

Finally if we call l := lim infk→∞Hn−1(∂∗E′k ∩E
(1)
k ) (without loss of generality we can assume

l ∈ R), using (2.10) and the lower semicontinuity of the perimeter on Ω, we can write

2Hn−1(∂∗E′ ∩ E(1)) + P (E; Ω) = P (E′; Ω) + P (E \ E′; Ω)

≤ lim inf
k→∞

(P (E′k; Ω) + P (Ek \ E′k; Ω))

= lim inf
k→∞

(2Hn−1(∂∗E′k ∩ E
(1)
k ) + P (Ek; Ω))

= 2l + lim
k→∞

P (Ek; Ω)

= 2l + P (E; Ω),

which is our desired result. �

Remark 2.2. If the sets (Ek)k of the previous proposition are open, say for example (Uk)k, and

such that Hn−1(U
(1)
k ∆Uk) = 0, then P (E′k;Uk) = Hn−1(∂∗E′k ∩ U

(1)
k ) for every k and by the

previous lower semi-continuity result we have

lim inf
k→∞

P (E′k;Uk) ≥ P (E′;U),

where we have also used Hn−1(∂∗E′ ∩ U (1)) ≥ P (E′;U).

With the next definition we introduce the upper isoperimetric profile.

Definition 2.3 (Upper isoperimetric profile). Let Ω be an open set of Rn (n ≥ 2) and let F
be an indecomposable set of Ω with |F | <∞. For every λ ∈ (0, 1/2] we define

hF (λ) := inf

{
Hn−1(∂∗E ∩ F (1))

|E|

∣∣∣∣ E ⊂ F, λ|F | ≤ |E| ≤ |F |/2, P (E; Ω) <∞
}
. (2.12)

We call the function hF : (0, 1/2]→ R+ the upper isoperimetric profile of F .
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Remark 2.4. The upper isoperimetric profile is a non decreasing function. Moreover, if we take
an indecomposable open set U ⊂ Ω such that |U | < ∞ and Hn−1(U (1)∆U) = 0, then (2.12)
reduces to

hU (λ) := inf

{
P (E;U)

|E|

∣∣∣∣ E ⊂ U, λ|U | ≤ |E| ≤ |U |/2, P (E; Ω) <∞
}
.

Notice that infλ>0 hU (λ) is not the Cheeger’s constant in (2.3), since we look only at the
relative perimeter of E inside U , while in (2.3) one is interested in the whole perimeter of E.

Notice also that in literature (in particular in the context of Riemannian manifolds) the
isoperimetric profile at λ is defined by considering the infimum among all sets E with fixed
volume |E| = λ|F |. Since we ask for |E| ≥ λ|F | we decide to call it upper isoperimetric profile.

Finally, the next proposition is the core result of this subsection.

Proposition 2.5. Let Ω be an open set of Rn (n ≥ 2) and let F be an indecomposable set of
Ω with |F | <∞. Then hF (λ) > 0 for every λ ∈ (0, 1/2].

In particular, it holds the following relative isoperimetric inequality

|E| ≤ 1

hF (λ)
Hn−1(∂∗E ∩ F (1)), (2.13)

for every E ⊂ F with λ|F | ≤ |E| ≤ |F |/2 and P (E; Ω) <∞.

Proof. Let λ ∈ (0, 1/2] and consider

hF (λ) = inf
λ|F |≤|E|≤|F |/2

E⊂F

Hn−1(∂∗E ∩ F (1))

|E|
. (2.14)

Clearly hF (λ) is finite. We want to show that it is strictly positive. Consider a minimizing
sequence (Ek)k∈N i.e.

hF (λ) = lim
k→∞

Hn−1(∂∗Ek ∩ F (1))

|Ek|
;

since

P (Ek; Ω) = Hn−1(∂∗Ek ∩ F (1)) +Hn−1({νF = νEk})
≤ P (F ; Ω) + (hF (λ) + ε)|Ek|
≤ P (F ; Ω) + (hF (λ) + ε)(|F |/2),

then by using [1, Theorem 3.39], up to subsequences there exists a set E∞ ⊂ F having finite
perimeter with λ|F | ≤ |E∞| ≤ |F |/2 and such that limk→∞ |Ek∆E∞| = 0. Moreover thanks
to Proposition 2.5 we have

hF (λ) = lim
k→∞

Hn−1(∂∗Ek ∩ F (1))

|Ek|
≥ H

n−1(∂∗E∞ ∩ F (1))

|E∞|
,

which means

hF (λ) =
Hn−1(∂∗E∞ ∩ F (1))

|E∞|
.

Finally, since λ|F | ≤ |E∞| ≤ |F |/2 and F = E∞ ∪ (F \E∞), by Proposition 1.8, the indecom-
posability of F forces Hn−1(∂∗E∞ ∩ F (1)) > 0. This concludes the proof. �

Remark 2.6. Notice that infλ>0 hF (λ) might be equal to zero. Indeed consider two sequences
of positive real numbers (ln)∞n=1 and (δn)∞n=1 such that

∑∞
n=1 l

2
n <∞ and limn→∞ δn/l

2
n = 0.

Define an open set U ⊂ R2 made of an union of disjoint open squares Qn of side ln, each
connected to an open big rectangle through small bridges of size δn as in figure (1).

By our choice of ln, U is a connected open set with finite perimeter, hence by Remark 1.6
it is indecomposable.

For every n ∈ N we define En ⊂ U to be the square of side ln union half of the n-th bridge
as in figure (1). By our choice of ln and δn we have

inf
λ>0

hU (λ) ≤ inf
n∈N

H1(∂∗En ∩ U (1))

|En|
= 0.
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δ1

l1 E1

ln
δn

l2 l3

δ2 δ3

En

U

Figure 1. Indecomposable set U with infλ>0 hU (λ) = 0.

However, Proposition 2.5 tells us that this can happen only for sequences (En) such that
|En| → 0.

Moreover, by using the Coarea Formula, it can be proved that infλ>0 hF (λ) > 0 if and only
if for every u ∈ BV (Ω) the following Poincaré’s inequality holds true∫

F

|u−m| dx ≤ c |Du|(F (1)),

where m is the median of u on F (see Definition 2.8). In this case the best constant c which
satisfies the previous inequality is exactly infλ>0 hF (λ).

Remark 2.7. Given F an indecomposable set of Rn, then simply by definition, we have the
following scaling property of the relative upper isoperimetric profile:

hF (·) = r hF−x
r

(·),

for every r > 0, x ∈ Rn.

2.2. Weak Poincaré’s inequality. We are now in position to prove the weak version of
Poincaré’s inequality (2.2). Before we need the following definition.

Definition 2.8. Let u : Ω → R be a measurable function. Given a measurable set F ⊂ Ω we
define the median of u on F as

m(u, F ) := inf

{
t ∈ R | |{u > t} ∩ F | ≤ |F |

2

}
.

Remark 2.9. It holds

|{u > t} ∩ F | ≤ |F |
2

for t ≥ m(u, F ) and |{u > t} ∩ F | > |F |
2

for t < m(u, F ). (2.15)

Theorem 2.10. Let Ω be an open set of Rn and let Γ ⊂ Ω be a countably (Hn−1, n − 1)-
rectifiable set with Hn−1(Γ) < ∞. Given an indecomposable set F ⊂ Ω with |F | < ∞ and
Hn−1(Γ∩F (1)) = 0, then for every u ∈ GSBV p(Ω; Γ) (p ≥ 1) and for every λ ∈ (0, 1/2], there
exists a measurable set Fλ ⊂ F such that

|F \ Fλ| ≤ 2λ|F |, (2.16)

and the following inequality holds true(∫
Fλ
|u−m|p dx

) 1
p

≤ p

hF (λ)

(∫
Fλ
|∇u|p dx

) 1
p

, (2.17)

where m := m(u, F ).

Proof. Let v ∈ GSBV p(Ω; Γ) be a positive function such that

|{v > t} ∩ F | ≤ |F |
2

for every t > 0. (2.18)

Define

s := inf{t : |{v > t} ∩ F | ≤ λ|F |}, (2.19)
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and notice that

|{v > t} ∩ F | ≤ λ|F | for t ≥ s, |{v > t} ∩ F | > λ|F | for t < s. (2.20)

If we set vs := v ∧ s we can write∫
F∩{v≤s}

v dx ≤
∫
F

vs dx =

∫ s

0

|F ∩ {vs > t}| dt. (2.21)

Since {v > t} = {vs > t} for every t ∈ (0, s) and vs ∈ SBV (Ω), then by (2.18), (2.20), and
the definition of hF (·) we have

Hn−1(∂∗{vs > t}∩F (1)) = Hn−1(∂∗{v > t}∩F (1)) ≥ hF (λ)|F∩{v > t}| = hF (λ)|F∩{vs > t}|.
Then by (2.21) we can use the Coarea Formula for BV functions (see [1, Theorem 3.40]) to
obtain ∫

F (1)∩{v≤s}
v dx ≤ 1

hF (λ)

∫ s

0

Hn−1(∂∗{vs > t} ∩ F (1)) dt

=
1

hF (λ)
|Dvs|

(
F (1)

)
=

1

hF (λ)

∫
F (1)∩{v≤s}

|∇v| dx,

(2.22)

where for the last equality we used Hn−1(Γ∩F (1)) = 0 together with the decomposition of the
variation measure in BV .

Now define (u−m)p+ := [(u−m) ∨ 0]p. Since by (2.15)

|{(u−m)p+ > t} ∩ F | ≤ |F |
2

for t > 0,

we can apply (2.22) to the function (u−m)p+ instead of v to deduce that there exists s+ ≥ 0
satisfying (2.20) (where v is replaced by (u−m)p+ and s by s+) and such that, thanks to the
chain rule in BV (see [1, Theorem 3.99]), we can write∫

F∩{0<(u−m)p+≤s+}
(u−m)p+ dx ≤

p

hF (λ)

∫
F∩{0<(u−m)p+≤s+}

(u−m)p−1
+ |∇u| dx (2.23)

where we used that both integrals vanish on the set {(u −m)p+ = 0} and that |F∆F (1)| = 0.
Analogously, if we set (u−m)p− := |(u−m) ∧ 0|p by (2.15)

|{(u−m)p− > t} ∩ F | ≤ |F |
2
, for t > 0.

Arguing as before there exists s− > 0 such that∫
F∩{0<(u−m)p−≤s−}

(u−m)p− dx ≤
p

hF (λ)

∫
F∩{0<(u−m)p−≤s−}

(u−m)p−1
− |∇u| dx. (2.24)

If we set Fλ := {m− (s−)1/p ≤ u ≤ m+ (s+)1/p} ∩F by (2.20) we have |F \Fλ| ≤ 2λ|F |. By
summing the previous two inequalities and by using Hölder inequality we deduce(∫

Fλ
|u−m|p dx

) 1
p

≤ p

hF (λ)

(∫
Fλ
|∇u|p dx

) 1
p

, (2.25)

which immediately implies (2.17).
�

Corollary 2.11 (Weak Poincaré’s inequality). Under the same hypothesis of Theorem 2.10
we have for every λ ∈ (0, 1/2] and for every u ∈ GSBV p(Ω; Γ) with Hn−1(Γ ∩ F (1)) = 0(∫

F

|u−m|p ∧ 1 dx

) 1
p

≤ p

hF (λ)

(∫
F

|∇u|p dx
) 1
p

+ (2λ|F |)
1
p , (2.26)

where m := m(u, F ).
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Proof. Given u ∈ GSBV p(Ω; Γ), we can consider Fλ and m as in Theorem 2.10. Then we can
write (∫

F

|u−m|p ∧ 1 dx

) 1
p

≤
(∫

Fλ
|u−m|p dx

) 1
p

+ |F \ Fλ|
1
p

≤ p

hF (λ)

(∫
F

|∇u|p dx
) 1
p

+ (2λ|F |)
1
p ,

(2.27)

which is exactly (2.26). �

3. The class Jp
In this section we define the class of admissible jump sets Jp for which Theorems 1 and 2

hold true. We start with the notion of non vanishing upper isoperimetric profile, but before
we need the following definitions.

Definition 3.1. We say that a set A ⊂ B1(0) is conical, if

|(A ∩ λA)∆λA| = 0 for every λ ∈ (0, 1).

Moreover, given an open set Ω ⊂ Rn, given a set A ⊂ Ω, and given a ball Br(x) ⊂ Ω we will
use the following notation

Ar,x :=
A− x
r
∩B1(0),

and we will always make use of the following identity

Aλr,x =
Ar,x ∩Bλ(0)

λ
,

for every λ ∈ (0, 1].

Definition 3.2 (Non vanishing upper isoperimetric profile). Let Ω be an open set of Rn and
let Γ ⊂ Ω. Given x ∈ Ω we say that Γ has a non vanishing upper isoperimetric profile at x if
there exists Nx ∈ N such that

(1) for every 1 ≤ j ≤ Nx there exists (Fr,j)0<r≤rx (rx > 0) a family of indecomposable subsets
of B1(0), with the following properties

(1.1) Hn−1(Γr,x ∩ F (1)
r,j ) = 0, r ∈ (0, rx);

(1.2) lim infr→0+ hFr,j (λ) > 0, λ ∈ (0, 1/2];

(2) there exists a measurable partition of B1(0) made of (nonempty) conical sets (E0,j)
Nx
j=1

with the following property
(2.1) limr→0+ |Fr,j∆E0,j | = 0.

Remark 3.3. In order to prevent misunderstandings, we want to emphasize that since Fr,j are
subsets of the unitary ball, then in the definition of hFr,j the infimum in (2.12) has to be taken
among all sets with finite perimeter in B1. Moreover, for a given Γ neither the family (Fr,j)
nor (E0,j) are unique. Nevertheless, if Γ has a non vanishing upper isoperimetric profile at x,
then there exists the minimum number Nx(≥ 1) for which (1) and (2) hold, and this number
clearly depends on the geometry of Γ.

Remark 3.4. The property of non vanishing upper isoperimetric profile is stable under inclusion,
in the sense that whenever Γ′ ⊂ Γ and Γ has a non vanishing upper isoperimetric profile at x,
then also Γ′ satisfies the same property at x.

We give a basic example which clarifies the concept of non vanishing upper isoperimetric
profile.

Example 3.5. Let M ⊂ Ω be an (n− 1)-dimensional manifold of class C1. Then M has a non
vanishing upper isoperimetric profile for every x ∈ Ω. To show this, let us first suppose x ∈M .
Then if we call ν(x) a unit normal to M at x, we know that there exists a sufficiently small
value rx > 0 and a C1 function f : ν(x)⊥ → R such that

Br(x) ∩M = Br(x) ∩ graph(f), r ∈ (0, rx).
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By writing the generic point y ∈ Rn as y = (z, t) where y ∈ ν(x)⊥ and t ∈ R, we define

F1 := {y ∈ Brx(x) | t < f(z)} F2 := {y ∈ Brx(x) | t > f(z)},
and

Nx = 2, Fr,1 := (F1)r,x, Fr,2 := (F2)r,x, r ∈ (0, rx);

E0,1 := {y ∈ B1(0) | ν(x) · y < 0}, E0,2 := {y ∈ B1(0) | ν(x) · y > 0}.
To prove condition (1.2), one can use the C1 regularity of f and an argument similar to the

one in Example 6.5, to deduce that the open sets Fr,j (j = 1, 2) admit a Poincaré’s inequality
of the form ∫

Fr,j

∣∣∣∣u−−∫
Fr,j

u

∣∣∣∣ dx ≤ c |Du|(Fr,j), u ∈ BV (B1) (3.1)

where c > 0 is a constant independent on r ∈ (0, rx). So given E ⊂ Fr,j a set of finite perimeter
in B1, we can use 1E instead of u in (3.1) to deduce that

min{|E|, |Fr,j \ E|} ≤ c |D1E |(Fr,j) = cHn−1(∂∗E ∩ Fr,j) = cHn−1(∂∗E ∩ F (1)
r,j ),

where the right-most equality follows from the fact Fr,j = F
(1)
r,j . This implies

lim inf
r→0+

hFr,j (λ) ≥ 1

c
,

for every λ ∈ (0, 1/2].
Another possibility to prove that M has a non-vanishing upper isoperimetric profile at

x ∈ M , is to notice that since M is an (n − 1)-manifold of class C1, we can always find a set
of finite perimeter E ⊂ Ω such that M ⊂ ∂∗E. In this case we can make use of Proposition
3.7, which says that ∂∗E admits a non-vanishing upper isoperimetric profile at every point
x ∈ ∂∗E. Since the property of non-vanishing upper isoperimetric profile is stable under
inclusion (Remark 3.4), this means that also M satisfies this property for every x ∈M .

Finally, the case x ∈ Ω\M is much easier. Indeed, by the closeness of M there exists rx > 0
small enough such that Br(x) ∩M = ∅ for every r ∈ (0, rx). Then it is enough to set

Nx = 1, Fr1 := B1(0), r ∈ (0, rx);

E0,1 := B1(0).

Now we are in position to introduce the space of all the admissible jump sets Γ.

Definition 3.6 (Admissible jump sets). Let Γ ⊂ Ω be a countably (Hn−1, n−1)-rectifiable set
withHn−1(Γ) <∞ and let 1 < p ≤ n. We say that Γ belongs to Jp if for every x ∈ Ω\SΓ, where
SΓ is a set of Hausdorff dimension at most n − p, Γ has a non vanishing upper isoperimetric
profile at x.

We will use the next two proposition to construct examples of sets living in Jp (see Section
6).

Proposition 3.7. Let Ω be an open set of Rn and let E ⊂ Ω with P (E; Ω) < ∞. Then
the reduced boundary ∂∗E has a non vanishing upper isoperimetric profile at every point x
belonging to the following set

{x ∈ Ω | Θ∗(n−1)(Hn−1 ¬ ∂∗E, x) = 0} ∪ ∂∗E.

Proof. First we deal with the case x ∈ ∂∗E.
We denote as H the half space given by Theorem 1.1 such that

lim
r→0+

|(Er,x∆H) ∩B1(0)| = 0, lim
r→0+

P (Er,x;B1(0)) = P (H;B1(0)). (3.2)

Clearly H ∩ B1(0) and B1(0) \ H are conical and indecomposable sets. Thus, we can apply
Proposition 1.13 to find two families Fr,1 and Fr,2 made of indecomposable components of Er,x
and B1(0) \ Er,x, respectively, such that

lim
r→0+

|(Fr,1∆H) ∩B1(0)| = 0, lim
r→0+

P (Fr,1;B1(0)) = P (E0,1;B1(0)), (3.3)

lim
r→0+

|Fr,2∆(B1(0) \H)| = 0, lim
r→0+

P (Fr,2;B1(0)) = P (E0,2;B1(0)). (3.4)
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Given rx > 0 such that Brx(x) ⊂ Ω, we set

E1 := E ∩Brx(x), E2 := Brx(x) \ E,

and

E0,1 = H ∩B1(0), E0,2 = B1(0) \H.
This choice guarantees also (1.1) and (2.1) of Definition 3.2.

Finally, in order to show (1.2) of Definition 3.2, we claim that

lim inf
r→0+

hFr,1(λ) ≥ hH(λ), λ ∈ (0, 1/2], (3.5)

and

lim inf
r→0+

hFr,2(λ) ≥ hB1\H(λ), λ ∈ (0, 1/2]. (3.6)

We prove for example (3.5). To this purpose fix λ ∈
(
0, 1

2

]
and for every r ∈ (0, rx) consider

Er ⊂ Fr,1 with P (Er;B1) <∞, such that

Hn−1(∂∗Er ∩ F (1)
r,1 )

|Er|
≤ hFr,1(λ) + r, λ|Fr,1| ≤ |Er| ≤ |Fr,1|/2. (3.7)

We show that for every subsequence (rm) such that rm → 0+ as m→∞ then

lim inf
m→∞

hFrm,1(λ) ≥ hH(λ).

Without loss of generality we assume

lim inf
m→∞

hFrm,1(λ) = lim
m→∞

hFrm,1(λ) = l <∞.

Since Erm ⊂ Frm,1, by using Leibniz’s formula 1.3 the inequalities (3.7) say to us

sup
m
P (Erm ;B1) ≤ sup

m
[ |Erm |hFrm,1(λ) + P (Frm,1;B1)] <∞.

This means that thanks to the compactness result [1, Theorem 3.39], eventually passing through
another subsequence, we have limm→∞ |Erm∆E0| = 0 for some set E0 ⊂ H with finite perime-
ter in B1(0) and with λ|H| ≤ |E0| ≤ |H|/2. Hence, thanks to (3.3) we are in position to apply
the lower semicontinuity result of Proposition 2.1 to obtain

lim inf
m→∞

hFrm,1(λ) ≥ lim inf
m→∞

Hn−1(Erm ∩ F
(1)
rm,1

)

|Erm |
− rm ≥

Hn−1(E0 ∩H(1))

|E0|
≥ hH(λ).

The same argument shows the validity of (3.6). Since hH(λ) > 0, this says that ∂∗E admits a
non-vanishing upper isoperimetric profile at x with Nx = 2.

In the case x ∈ Ω is such that Θ∗(n−1)(Hn−1 ¬ ∂∗E, x) = 0, we claim that we have two
different sub-cases:

lim
r→0+

|B1(0) \ Er,x| = 0, (3.8)

or

lim
r→0+

|Er,x| = 0. (3.9)

Indeed by a simple application of the relative isoperimetric inequality in the unitary ball we
can write

min{|Ex,r|, |B1(0) \ Ex,r|}
n−1
n ≤ C(n)

P (E;B1(0))

rn−1
= C(n)

Hn−1(∂∗E ∩B1(0))

rn−1
,

and by the fact that r 7→ |Ex,r| is a continuous map on (0, rx) we deduce that one between (3.8)
and (3.9) must occur. Suppose for example (3.8) holds. Given rx > 0 such that Brx(x) ⊂ Ω,
we set

E1 := E ∩Brx(x), E0,1 = B1(0).

Arguing in the very same way as before, we can make use of Proposition 1.13 to find for every
r ∈ (0, rx) an indecomposable component of (E1)r,x, say Fr,1, such that

lim
r→0+

|Fr,1∆B1(0)| = 0, lim
r→0+

P (Fr,1;B1) = 0.
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Finally, by using again Proposition 2.1 we can prove in the very same way as before that

lim inf
r→0+

hFr,1(λ) ≥ hB1(λ), λ ∈ (0, 1/2].

Case (3.9) can be treated in the same way. �

Remark 3.8. By Proposition 3.7, the reduced boundary ∂∗E of a set E ⊂ Ω with finite perime-
ter such that dimH(Ω \ ∂∗E ∪ {x | Θ(Hn−1 ¬ ∂∗E;x) = 0}) = n− p, belongs to Jp.

4. Properties of the blow-up in GSBV p(Ω)

This section contains the proof of Theorem 1. We proceed following two main steps: first
we show that there exist suitable subsequences of radii (ri) with ri → 0+ as i → ∞, such
that if Γ ∈ Jp, then for every x ∈ Ω, up to a set of Hausdorff dimension n − p, the limit
limi→∞mj(u, ri, x) exists and it is finite; by combining this result with the weak Poincaré’s
inequality on balls we are able to deduce our first main result.

4.1. Weak Poincaré’s inequality on balls. We start this section by proving a weak version
of Poincare’s inequality on balls. First, we need the following definitions.

Definition 4.1. For a given function u : Ω→ R, we define ur,x : B1(0)→ R as

ur,x(y) := u(x+ ry),

for every y ∈ B1(0).

Definition 4.2. Let Γ ∈ Jp (1 < p ≤ n) and let x ∈ Ω \ SΓ. Let rx > 0 and Nx ∈ N be given
by Definition 3.2. We define for every r ∈ (0, rx), ur,x : Brx(x)→ R as

ur,x(y) :=

{
mj(u, r, x) on x+ rFr,j

0 otherwise.

where mj(u, r, x) := m(u, x+ rFr,j) (see Definition 2.8) and (Fr,j)
Nx
j=1 are the indecomposable

sets given by Definition 3.2.

Remark 4.3. The median of u in F is invariant under rescaling and translations in the sense
that

m(u, F ) = m(ur,x, (F − x)/r),

for every x ∈ Ω and for every 0 < r < rx. This means that the number mj(u, r, x) of the
previous definition is also equal to m(ur,x, Fr,j).

Theorem 4.4 (Weak Poincare’s inequality on balls). Let Ω be an open set of Rn and let
Γ ⊂ Ω be a countably (Hn−1, n− 1)-rectifiable set with Hn−1(Γ) <∞. Suppose that Γ ⊂ Ω has
a non vanishing upper isoperimetric profile at x, then for every λ ∈ (0, 1/2] there exists rλ > 0
(depending also on x) such that(∫

Br(x)

|u− ur,x|p ∧ 1 dy

) 1
p

≤ C(p, n)

Hx(λ)r

(∫
Br(x)

|∇u|p dy

) 1
p

+ (rnλ)
1
p

 , (4.1)

for every r ≤ rλ and for every u ∈ GSBV p(Ω; Γ), where

Hx(λ) := lim sup
r→0+

[
max

j=1,...,Nx

{
2

hFr,j (λ)

}]
<∞. (4.2)

Proof. Fix λ > 0 and let x ∈ Ω \ SΓ. By property (2.1) of Definition 3.2 we know that there
exists 0 < r′λ < rx such that for every r < r′λ

sup
r<r′λ

|B1(0) \
Nx⋃
j=1

Fr,j | ≤ λ,

which means

sup
r<r′λ

|Br(x) \
Nx⋃
j=1

(x+ rFr,j)| ≤ rnλ. (4.3)
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Moreover by the definition of lim sup we can consider r′′λ small enough such that

sup
r<r′′λ

[
max

j=1,...,Nx

{
1

hFr,j (λ)

}]
≤Hx(λ) <∞.

Since ur,x ∈ GSBV p(B1(0); Γr,x) (r < rx) and thanks to the fact Hn−1(Γr,x ∩F (1)
r,j ) = 0 for

every 1 ≤ j ≤ Nx, by applying Theorem 2.10 we know that there exists Fλr,j ⊂ Fr,j with

|Fr,j \ Fλr,j | ≤ λ|Fr,j |, (4.4)

such that ∫
Fλr,j

|u(x+ ry)−mr,j |p dy ≤
(

pr

hFr,j (λ)

)p ∫
Fλr,j

|∇u(x+ ry)|p dy,

where mr,j := mj(u, r, x).

If we define Fλr :=
⋃Nx
j=1 F

λ
r,j , then by summing on j = 1, . . . , Nx both sides of the previous

inequality, if r ≤ min{r′λ, r′′λ} we obtain∫
Fλr

|u(x+ ry)− ur,x(x+ ry)|p dy ≤ (pHx(λ)r)
p
∫
Fλr

|∇u(x+ ry)|p dy,

or equivalently ∫
x+rFλr

|u(y)− ur,x|p dy ≤ (pHx(λ)r)
p
∫
x+rFλr

|∇u(y)|p dy.

Finally, by defining Fr :=
⋃Nx
j=1 Fr,j and by using also (4.3) and (4.4), we can write∫

Br(x)

|u(y)− ur,x|p ∧ 1 dy ≤
∫
x+rFλr

|u(y)− ur,x|p dy + |Br(x) \ (x+ rFλr )|

≤ (pHx(λ)r)
p
∫
x+rFλr

|∇u(y)|p dy + rn|Fr \ Fλr |+ |Br(x) \ (x+ rFr)|

≤ (pHx(λ)r)
p
∫
Br(x)

|∇u(y)|p dy + (ωn + 1)rnλ

≤ C(n, p)

[
(Hx(λ)r)p

∫
Br(x)

|∇u(y)|p dy + rnλ

]
.

which is exactly (4.1). �

Remark 4.5. Under the hypothesis of the previous theorem, in the case the set Γ satisfies the
stronger conditions at x

•
⋃Nx
j=1 Fr,j = B1(0), r ≤ rx;

• lim infr→0+ infλ>0 hFr,j (λ) > 0, j = 1, . . . , Nx.

then it is not difficult to show that inequality (4.1) can be improved to(∫
Br(x)

|u− ur,x|p dx
) 1
p

≤ C(p, n)r

(∫
Br(x)

|∇u|p dx
) 1
p

.

4.2. Convergence of the blow-up. The following theorem, which is the core result of this
section, tells us that when the integrals

∫
Br(x)

|∇u|p decays properly as r → 0+, then the medi-

ans mj(u, r, x) are convergent for suitable subsequences of radii ri → 0+. In the proof we will
use the following inequality which is true for each quadruple of measurable sets A,B,C,D ⊂ Ω

|A∆B| ≤ |C∆D|+ |A∆C|+ |B∆D|. (4.5)

Inequality (4.5) simply follows by noticing that |A∆B| = ‖1A − 1B‖L1 and by applying the
triangular inequality.



22 E. TASSO

Theorem 4.6. Let Ω ⊂ Rn be an open set, let Γ ∈ Jp (1 < p ≤ n) and let x ∈ Ω\SΓ. Suppose
that there exists some δ ∈ (0, p] with the following property

lim sup
r→0+

1

rn−p+δ

∫
Br(x)

|∇u|p dx = 0. (4.6)

Then for every sequence of radii (ri)
∞
i=1 such that

(1)
(

1
2

) 1
2n < ri+1

ri
≤ 1, i ∈ N;

(2)
∑∞
i=1(ri)

δ
p <∞;

the sequence of medians
(
mj(u, ri, x)

)∞
i=1

is Cauchy for every j = 1, . . . , Nx.

Proof. Choose j ∈ {1, . . . , Nx}. In order to simplify the notation we write

tri := mj(u, ri, x) Fr := Fr,j E0 := E0,j ai :=
ri
ri−1

.

Fix ε > 0 such that for every n ∈ N it holds ε ≤ 2ani −1
4ani +4 (this is possible since by condition (1)

it is enough to chose 0 < ε ≤
√

2−1
2
√

2+4
), and consider i ∈ N so big that for every i ≥ i

hFri (ε) ≥
1

c(ε)
:=

1

2
lim inf
i→∞

hFri (ε) > 0.

This is possible by the definition of lim inf.
By using Theorem 2.10 with the function u(x + r(·)) ∈ GSBV p(B1(0); Γr,x) and the in-

decomposable set Fri , we deduce that for every i ≥ i and for every ε > 0, there exists
F εri ⊂ Fri ⊂ B1(0) such that

|F εri | ≥ (1− 2ε)|Fri |, (4.7)

and (∫
F εri

|uri,x − tri |p dy
) 1
p

≤ 2c(ε)p

(∫
F εri

|∇uri,x|p dy
) 1
p

. (4.8)

Now for each i ≥ i define

Fi := aiF
ε
ri ∩ F

ε
ri−1
⊂ Bai(0).

Since Fi ⊂ aiFri , we can give the following estimate

|Fi| = |aiF εri ∩ F
ε
ri−1
| = |aiFri \ (aiFri \ aiF εri ∪ aiFri \ F

ε
ri−1

)|
≥ |aiFri | − |aiFri \ aiF εri | − |aiFri \ F

ε
ri−1
|.

By (4.7) and the fact |Fri∆E0| → 0 we can write

|aiFri \ aiF εri | = ani |Fri \ F εri | ≤ a
n
i 2ε|Fri | = ani 2ε[|E0|+ o(1)],

and by using also inequality (4.5) with A = Fri−1 ∩ aiFri , B = aiFri , C = E0 ∩ aiE0 and
D = aiE0, we can write

|aiFri \ F εri−1
| ≤ |(Fri−1

∩ aiFri) \ F εri−1
|+ |[(Fri−1

∩ aiFri)∆aiFri ] \ F εri−1
|

≤ |Fri−1 \ F εri−1
|+ |(Fri−1 ∩ aiFri)∆aiFri |

= 2ε|E0|+ |(E0 ∩ aiE0)∆aiE0|+ o(1),

and since E0 is conical, then |(E0 ∩ aiE0)∆aiE0| = 0 for every i ∈ N; as a consequence we can
write

|aiFri \ F εri−1
| ≤ 2ε|E0|+ o(1).

Putting together our previous estimates we obtain

|Fi| ≥ ani |E0| − ani 2ε|E0| − 2ε|E0|+ o(1)

= |E0|(ani − ani ε− 2ε) + o(1).

By our choice of ε, we have ani − ε(2ani + 2) ≥ 1
2 , hence

|Fi| ≥
1

2
|E0|+ o(1), i ∈ N. (4.9)
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Therefore, for every i ≥ i, we can write

|tri − tri−1 |p = −
∫
Fi
|tri − tri−1 |p dy ≤ 2p−1−

∫
Fi
|uri−1,x − tri |p dy + 2p−1−

∫
Fi
|uri−1,x − tri−1 |p dy

=
2p−1ani
|Fi|

∫
F εri

|uri,x − tri |p dy +
2p−1

|Fi|

∫
F εri−1

|uri−1,x − tri−1 |p dy,

hence by using (4.8) and ai ≤ 1 there exists C = C(p, n, ε) > 0 such that

|tri − tri−1
|p ≤ C

|Fi|

[ ∫
F εri

|∇uri,x|p dy +

∫
F εri−1

|∇uri−1,x|p dy
]

=
C

|Fi|

[
rpi

∫
F εri

|∇u(x+ riy)|p dy + rpi−1

∫
F εri−1

|∇u(x+ ri−1y)|p dy
]
,

and finally by using (4.9) we have

|tri − tri−1 |p =
C

1/2|E0|+ o(1)

[
1

rn−pi

∫
x+riF εri

|∇u|p dx+
1

rn−pi−1

∫
x+ri−1F εri−1

|∇u|p dx
]

≤ Crδi
1/2|E0|+ o(1)

[
1

rn−p+δi

∫
Bri (x)

|∇u|p dx+
( 1

2 )−δ/2n

rn−p+δi−1

∫
Bri−1

(x)

|∇u|p dx
]

≤ C ′rδi ,

where, thanks also to (4.6), C ′ > 0 is a constant which depends only on x, j, p, n, ε.
These last inequality means

∞∑
i≥i

|tri − tri−1
| ≤ C ′

1
p

∞∑
i=1

(ri)
δ
p ,

and this last series is convergent thanks to our choice of ri. This implies that the sequence
(tri)

∞
i=1 is Cauchy. Since 1 ≤ j ≤ Nx was arbitrary, we prove the theorem.

�

Now we are in position to prove our first main result.

Theorem 4.7. Let Ω be an open set of Rn, let Γ ∈ Jp (1 < p ≤ n) and let u ∈ GSBV p(Ω; Γ).
Then for every x ∈ Ω except on a set of Hausdorff dimension at most n − p, there exists a
piecewise constant function ux(·) : B1(0)→ R such that

lim
r→0+

∫
B1(0)

|ur,x − ux| ∧ 1 dy = 0. (4.10)

Moreover using the notation of Definitions 3.2 and 2.8 we have that

ux(y) = mj(u, x) if y ∈ E0,j , (4.11)

where mj(u, x) := limr→∞mj(u, r, x) for 1 ≤ j ≤ Nx.

Proof. For every δ > 0, consider Aδ ⊂ Ω \ SΓ the set of points x such that

lim sup
r→0+

1

rn−p+δ

∫
Br(x)

|∇u|p dx > 0. (4.12)

By applying for example [7, Theorem 3, Section 2.4.3] we have Hn−p+δ(Aδ) = 0. Moreover,
since Aδ1 ⊂ Aδ2 for δ1 ≤ δ2, we have that if we fix δ0 > 0 then by setting A :=

⋂
δ>0Aδ we

have
Hn−p+δ0(A) = 0.

Since δ0 > 0 is arbitrary we deduce

dimH(A) ≤ n− p, (4.13)

and hence also
dimH(A ∪ SΓ) ≤ n− p. (4.14)
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We claim that every x ∈ Ω \ (SΓ ∪A) satisfies (4.10) and (4.11). To show this, let (ri)
∞
i=1 be a

sequence of radii satisfying (1) and (2) of Theorem 4.6 and define ux : B1(0)→ R as

ux(y) := lim
i→∞

mj(u, ri, x), for y ∈ E0,j and 1 ≤ j ≤ Nx.

First of all we prove that

lim
i→∞

∫
B1(0)

|uri,x(y)− ux(y)| ∧ 1 dy = 0. (4.15)

Recalling condition (2.1) of Definition 3.2 and the definition of uri,x : Br(x)→ R (see Definition
4.2), we immediately deduce

lim
i→∞

∫
B1(0)

|uri,x(x+ riy)− ux(y)| ∧ 1 dy = 0. (4.16)

which together with the weak Poincaré’s inequality on balls (4.4) gives for every λ ∈ (0, 1/2]

lim sup
i→∞

∫
B1(0)

|uri,x(y)− ux(y)| ∧ 1 dy ≤ lim sup
i→∞

∫
B1(0)

|uri,x(y)− uri,x(x+ riy)| ∧ 1 dy

= lim sup
i→∞

−
∫
Bri (x)

|u− uri,x| ∧ 1 dy ≤ C(p, n) lim sup
i→∞

[
Hx(λ)

(
1

rn−pi

∫
Bri (x)

|∇u|p dx
) 1
p

+ λ
1
p

]
≤ C(p, n)λ

1
p .

By letting λ→ 0+ we deduce (4.15). Now in order to prove (4.10), it is equivalent to prove

lim
r→0+

−
∫
Br(x)

|u(y)− ux((y − x)/r)| ∧ 1 dy = 0, (4.17)

but since the sets E0,j are conical, then ux(y) = ux((y − x)/r) for every y ∈ Br(x), and
therefore we can rewrite (4.17) as

lim
r→0+

−
∫
Br(x)

|u(y)− ux(y)| ∧ 1 dy = 0. (4.18)

To show (4.18), simply notice that given any r ∈ (0, 1) then there exists i ∈ N such that
ri+1 ≤ r ≤ ri, and therefore by using the lower-bound (1) in Theorem 4.6 on the ratio ri+1/ri
we easily deduce

−
∫
Br(x)

|u− ux| ∧ 1 dy ≤ |Bri |
|Bri+1

|
−
∫
Bri(x)

|u− ux| ∧ 1 dy ≤
√

2−
∫
Bri(x)

|u− ux| ∧ 1 dy,

which together with (4.15) clearly implies (4.18) and hence (4.10).
Finally, to conclude we need to show that if we set for every j ∈ 1, . . . , Nx mj(u, x) :=

limi→∞mj(u, ri, x), then

lim
r→0+

mj(u, r, x) = mj(u, x). (4.19)

In order to show this, notice that the convergence (4.10) implies that for every t except on a
countable set A, we have

|{ur,x > t}∆{ux > t}| → 0, (r → 0+).

Moreover since |Fr,j∆E0,j | → 0 as r → 0+, we have also that for t ∈ R \A

|{ur,x > t} ∩ Fr,j | → |{ux > t} ∩ E0,j |, (r → 0+). (4.20)

By definition of medians (see Definition 2.8), in order to prove (4.19), we need to show that

inf{t ∈ R | |{ur,x > t} ∩ Fr,j | ≤ |Fr,j |/2}

converges as r → 0+ to

inf{t ∈ R | |{ux > t} ∩ E0,j | ≤ |E0,j |/2}.
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The convergence (4.20) together with |Fr,j∆E0,j | → 0 as r → 0+ imply that if t ∈ R \ A is

such that |{ux > t} ∩ E0,j | < |E0,j |
2 , then for every r close enough to 0+ we have

|{ur,x > t} ∩ Fr,j | <
|Fr,j |

2
,

analogously if t ∈ R \ A is such that |{ux > t} ∩ E0,j | > |E0,j |
2 , then for every r close enough

to 0+ we have

|{ur,x > t} ∩ Fr,j | >
|Fr,j |

2
.

Therefore (4.19) is established once we know that

|{ux > t}∩E0,j | <
|E0,j |

2
, for t > mj(u, x) and |{ux > t}∩E0,j | >

|E0,j |
2

, for t < mj(u, x).

But this last condition is obviously verified since ur,x is constantly equal tomj(u, x) on E0,j . �

Remark 4.8. Since the result of Theorem 4.7 is local, then it still holds for the spaceGSBV ploc(Ω; Γ).

Remark 4.9. It is not difficult to show that if we substitute condition (1.2) in the definition of
non vanishing upper isoperimetric profile with the stronger conditions

Nx⋃
j=1

Fr,j = B1(0), (r ≤ rx) and lim inf
r→0+

inf
λ>0

hFr,j (λ) > 0, (j = 1, . . . , Nx), (4.21)

then, by using Remark 4.5 it is possible to show that the convergence (4.10) actually holds
with respect to the Lp-convergence (in Example 6.5 we construct a non trivial admissible jump
set, such that it admits a non vanishing upper isoperimetric profile with the stronger condition
(4.21) at every point x ).

Remark 4.10. When we deal with Sobolev spaces, namely Γ = ∅, Theorem 1 implies the well
known result that given u ∈ W 1,p

loc (Ω) then every point x, up to a set of Hausdorff dimension
at most n− p, is a Lebesgue point of u. The function

u(x) = log log |x|−1,

which belongs to W 1,2(B1(0)), B1(0) ⊂ R2, shows that the dimension n − p is optimal in
Theorem 1.

5. A notion of capacity for functions with prescribed jump

This section is devoted to the proof of Theorem 2. For this purpose we need to introduce
a suitable notion of capacity for functions in GSBV p(Ω; Γ). Let us recall that given A ⊂ Rn,
the classical p-capacity in the context of Sobolev functions is defined as (see for example [9] or
[7])

Capp(A) := inf

{∫
Rn
|∇u|p dx | u ∈ Kp, u ≥ 1 a.e. in an open neighborhood of A

}
, (5.1)

where Kp := {u : Rn → R | u ≥ 0, u ∈ Lp∗(Rn), ∇u ∈ Lp(Rn)}. Moreover, the following
result can be interpreted as a capacitary version of Chebyshev’s inequality (see for example [9,
Section 7] or [7, Lemma 1, Section 4.8]).

Proposition 5.1. Assume u ∈ Kp and ε > 0. Let

A := {x ∈ Rn | m(u, r, x) > ε for some r > 0} ,

where m(u, r, x) denotes the median of u on Br(x) (see Definition 2.8). Then

Capp(A) ≤ c

εp

∫
Rn
|∇u|p dx,

where c = c(n, p).
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The previous proposition suggests us that given A ⊂ Rn, if we define a variant of the
p-capacity in the following way

Cap′p(A) := inf

{∫
Rn
|∇u|p dx | u ∈ Kp, lim sup

r→0+

m(u, r, x) ≥ 1 for every x ∈ A
}
, (5.2)

then

Cap′p(A) ≤ Capp(A) ≤ c2p Cap′p(A),

for some constant c > 0 and for every A ⊂ Rn. Indeed, if u ∈ Kp is such that u ≥ 1 a.e. in an
open neighborhood of A, clearly u satisfies lim supr→0+ m(u, r, x) ≥ 1 for every x ∈ A and we
obtain

Cap′p(A) ≤ Capp(A).

On the other hand, given δ > 0, let u ∈ Kp be such that lim supr→0+ m(u, r, x) ≥ 1 for every
x ∈ A and ∫

Rn
|∇u|p dx < Cap′p(A)− δ.

By definition of lim sup for every x ∈ A there exists rx such that m(u, rx, x) > 1/2. Therefore

A ⊂ {x ∈ Rn | m(u, r, x) > 1/2 for some r > 0} ,
and by the capacitary Chebyshev’s inequality the previous inclusion together with the mono-
tonicity of the p-capacity immediately imply

Capp(A) ≤ c2p
∫
Rn
|∇u|p dx ≤ c2p(Cap′p(A)− δ).

Thanks to the arbitrariness of δ > 0, we deduce

Capp(A) ≤ cCap′p(A).

Hence, it is possible to define an equivalent notion of capacity by looking at the medians of
u for every x ∈ A. Since for technical reason we prefer to define a notion of capacity where
the infimum (5.1) does not depend on a a.e.-condition, the variant introduced in (5.2) seems
to fit better our purpose. However, if we want to mimic definition in (5.2), we should take

into account different medians, i.e. (mj(u, r, x))Nxj=1, depending on Γ and x (see Definition 4.2).
Since we prefer to define a capacity which is a priori independent on Γ, we decide to give a
slightly different definition which is based on the notion of approximate limit (see Definition
(5.7)).

5.1. Convergence with respect to an outer measure. In this subsection we want to fix
the notion of convergence with respect to an outer measure and to define a suitable function
space which will be useful in view of Theorem 2.

For convenience of the reader we recall the definition of outer measure.

Definition 5.2 (Outer measure). An outer measure on Ω is any set function µ : P(Ω) →
[0,+∞] satisfying the following properties

(a) µ(∅) = 0;
(b) µ(A1) ≤ µ(A2), whenever A1 ⊂ A2 (monotonicity);
(c) µ (

⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai) (countable sub-additivity).

Definition 5.3. Let µ : P(Ω) → [0,∞] be an outer measure. Given A ⊂ Ω, we say that
a property P(x), defined for x ∈ A, holds µ-quasi everywhere, and we use the abbreviation
µ-q.e., if there exists a set N ⊂ A, with µ(N) = 0, such that P(x) holds for every x ∈ A \N .

We recall that the convergence in measure can be metrized.

Definition 5.4. We denote by L0(B1) (see [12]) the Fréchet space of all (equivalence classes
of) Lebesgue measurable real-functions on B1 equipped with the topology of convergence in
measure. This topology can be defined for example by the Lévy-metric

‖u− v‖L0(B1) :=

∫
B1

|u− v| ∧ 1 dx, u, v ∈ L0(B1). (5.3)
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By means of Theorem 1, whenever Γ ∈ Jp, we can associate to each function u ∈ GSBV p(Ω; Γ)
a map u(·) : Ω → L0(B1) defined everywhere except on a set of Hausdorff dimension n − p.
Given an outer measure µ on Ω, we want to define a space which contains functions defined
µ-q.e. from Ω to L0(B1), and to endow such a space with a notion of convergence in µ-measure.

Definition 5.5. Let µ be an outer measure on Ω. Let X be the real vector space of all
functions u : Ω→ L0(B1), and consider the equivalence relation

u ∼ v iff µ({x ∈ Ω | u(x) 6= v(x)}) = 0. (5.4)

We define

Uµ(Ω;L0(B1)) := X/ ∼,
i.e. the space consisting of all equivalence classes obtained as the quotient of X with respect
to ∼.

Remark 5.6. Notice that, since µ is an outer measure, (5.4) makes sense even without any
measurability conditions on the functions u and v.

Definition 5.7. Let µ be an outer measure on Ω, let (uk)∞k=1 and u be functions in Uµ(Ω;L0(B1)).
We say that (uk) converges to u in µ-measure if

lim
k→∞

µ({x ∈ Ω | ‖uk − u‖L0(B1) > ε}) = 0, (5.5)

for every ε > 0.

Convergence in µ-measure implies up to subsequences pointwise convergence µ-q.e.. This is
the content of the next proposition.

Proposition 5.8. Let µ be an outer measure on Ω, let (uk)∞k=1 and u be functions in Uµ(Ω;L0(B1)).
Suppose uk → u in µ-measure, then there exists a subsequence (kj) such that for µ-q.e. x ∈ Ω

lim
j→∞

‖ukj (x)− u(x)‖L0(B1) = 0,

Proof. For every j ∈ N choose kj ∈ N such that

µ

({
x ∈ Ω | ‖ukj − u‖L0(B1) >

1

j

})
≤ 1

2j
.

Set Aj :=
{
x ∈ Ω | ‖ukj − u‖L0(B1) ≤ 1

j

}
, define Bi :=

⋂
j≥iAj and finally B :=

⋃∞
i=1Bi.

Suppose x ∈ B, then x ∈ Bi for some i and hence x ∈ Aj for every j ≥ i. Therefore

‖ukj (x)− u(x)‖L0(B1) ≤
1

j
, for j ≥ i,

which means

lim
j→∞

‖ukj (x)− u(x)‖L0(B1) = 0.

Finally, we can use the monotonicity and the countable sub-additivity of µ to estimate

µ(Ω \B) ≤ µ(Ω \Bi) ≤
∑
j≥i

µ(Aj) ≤
1

2i−1
,

and by the arbitrariness of i we deduce µ(Ω \B) = 0. �

The convergence in µ-measure can be metrized in the following way.

Proposition 5.9. Let µ be an outer measure on Ω such that µ(Ω) < +∞, and let u, v ∈
Uµ(Ω;L0(B1)). The metric d(u, v) defined by

d(u, v) := inf
δ>0

µ({‖u− v‖L0(B1) > δ}) + δ,

induces the convergence in measure (5.5), and it gives to Uµ(Ω;L0(B1)) the structure of a
complete metric space.
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Proof. We start by proving that d(·, ·) is a metric.
First of all suppose that d(u, v) = 0, then we want to prove that µ({‖u−v‖L0(B1) > 0}) = 0.

Indeed, if d(u, v) = 0, then for every δ > 0 µ({‖u−v‖L0(B1) > δ}) = 0. Since {‖u−v‖L0(B1) >

0} =
⋃∞
k=1{‖u− v‖L0(B1) > 1/k}, we can conclude µ({‖u− v‖L0(B1) > 0}) = 0 simply by the

sub-additivity of µ.
The equality d(u, v) = d(v, u) is obvious.
Finally we need to prove the triangular inequality. For this purpose notice that for every

triple of functions u, v, g : Ω→ L0(B1) it holds

{‖u− v‖L0(B1) > δ1 + δ2} ⊂ {‖u− g‖L0(B1) > δ1} ∪ {‖g − v‖L0(B1) > δ2}.

Given ε > 0, let δ1 and δ2 be positive real numbers such that

d(u, g) + ε ≥ µ({‖u− g‖L0(B1) > δ1}) + δ1, d(g, v) + ε ≥ µ({‖g − v‖L0(B1) > δ2}) + δ2.

Then

d(u, v) = inf
δ>0

µ({‖u− v‖L0(B1) > δ}) + δ

≤ µ({‖u− v‖L0(B1) > δ1 + δ2}) + δ1 + δ2

≤ [µ({‖u− g‖L0(B1) > δ1}) + δ1] + [µ({‖g − v‖L0(B1) > δ2}) + δ2]

≤ d(u, g) + d(g, v) + 2ε,

and letting ε→ 0+ this implies the triangular inequality.
Given (uk)∞k=1 ⊂ Uµ(Ω;L0(B1)) and u ∈ Uµ(Ω;L0(B1)), we claim that limk→∞ d(uk, u) = 0

if and only if uk converge to u in µ-measure. Let us first suppose limk→∞ d(uk, u) = 0. Then
by definition of d(·, ·), it turns out that for every k there exist δk ↘ 0 such that

lim
k→∞

µ({‖uk − u‖L0(B1) > δk}) = 0.

Hence, given ε > 0 we can find k big enough such that for every k ≥ k {‖uk − u‖L0(B1) > ε} ⊂
{‖uk − u‖L0(B1) > δk}, which implies

lim
k→∞

µ({‖uk − u‖L0(B1) > ε}) ≤ lim
k→∞

µ({‖uk − u‖L0(B1) > δk}) = 0.

This gives the convergence in µ-measure.
Now suppose that uk converge to u in µ-measure. Then we can write for every ε > 0

lim
k→∞

inf
δ>0

µ({‖uk − u‖L0(B1) > δ}) + δ ≤ lim
k→∞

µ({‖uk − u‖L0(B1) > ε}) + ε = ε,

which immediately implies limk→∞ d(uk, u) = 0.
Finally, we have to prove that Uµ(Ω;L0(B1)) endowed with the metric d(·, ·) is complete.

For this purpose, suppose that the sequence (uk)∞k=1 is Cauchy. Given a sequence (λj)j of
positive real numbers such that

∑∞
j=1 λj <∞, there exists a subsequence (kj)j such that

d(ukj1 , ukj2 ) ≤ λj , for every j1, j2 ≥ j,

which means that or every j there exists 0 < δj ≤ λj such that (without loss of generality we
may also suppose δj ↘ 0)

µ({‖ukj − ukj+1‖L0(B1) > δj}) + δj ≤ λj . (5.6)

Define Aj := {‖ukj − ukj+1
‖L0(B1) > δj} and set Bj :=

⋃
m≥j+1Am. We claim that ukj

converge pointwise for every x ∈ Ω \
⋂∞
j=1Bj . Indeed, if x ∈ Ω \

⋂∞
j=1Bj then there exists j

such that x /∈ Bj , hence by the definition of Bj this implies x /∈ Aj for every j ≥ j + 1. For
this reason we have

‖ukj (x)− ukj+1
(x)‖L0(B1) ≤ δj , for every j ≥ j + 1,

and this immediately implies that (ukj (x))j is a Cauchy sequence in L0(B1). By the com-

pleteness of L0(B1) we deduce that there exists a function u : Ω \
⋂∞
j=1Bj → L0(B1) such

that

lim
j→∞

‖ukj (x)− u(x)‖L0(B1) = 0.
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Since by the monotonicity of µ we have

µ

( ∞⋂
j=1

Bj

)
≤ lim
j→∞

∑
m≥j

µ(Am) ≤ lim
j→∞

∑
m≥j

λm = 0,

we deduce that the function u is a well defined element of Uµ(Ω;L0(B1)).
We claim that the subsequence (ukj )j converges in µ-measure to u. Indeed given any ε > 0

we have

{‖ukj − u‖L0(B1) > ε} ⊂ {‖ukj − u‖L0(B1) > δj}
for every j big enough such that δj ≤ ε. This means that

lim
j→∞

µ({‖ukj − u‖L0(B1) > ε}) ≤ lim
j→∞

µ({‖ukj − u‖L0(B1) > δj}).

By using (5.6) we can deduce

µ({‖ukj − u‖L0(B1) > δj}) ≤
∞∑
m=j

µ({‖ukm − ukm+1
‖L0(B1) > δj})

≤
∞∑
m=j

µ({‖ukm − ukm+1
‖L0(B1) > δm})

≤
∞∑
m=j

λm,

which by the fact
∑∞
j=1 λj <∞ implies our claim. Since we already know that the convergence

in µ-measure implies the convergence in the metric d(·, ·), we can write

lim
j→∞

d(ukj , u) = 0.

This together with the fact that the sequence (uk)k is Cauchy in the metric d(·, ·), easily implies
that the full sequence satisfies

lim
k→∞

d(uk, u) = 0,

and we are done.
�

Remark 5.10. The space Uµ(Ω;L0(B1)) equipped with the distance defined in the previous
proposition is actually a Fréchet space.

5.2. The outer measure Cp. Let us start with the definition of capacity.

Definition 5.11 (p-Capacity). Let Ω be an open set of Rn and let Γ ⊂ Ω be a countably
(Hn−1, n − 1)-rectifiable set with Hn−1(Γ) < ∞. We define the p-Capacity (1 < p ≤ n) of a
set A ⊂ Ω as

Cp(A) := inf

{∫
Ω

(|∇u|p + |u|p) dx | u ∈ GSBV (Ω; Γ), u+(x) ≥ 1 on A

}
, (5.7)

where u+(x) is the upper approximate limit defined in 1.14.

Remark 5.12. In (5.7) we consider also the Lp-norm of the function, while in (5.1) only the
Lp-norm of the gradient is present. This is simply because we want to avoid that functions
u belonging to the kernel of ∇ could trivialise the infimum in (5.7). We remember that
the kernel of the approximate gradient of GSBV (Ω; Γ) functions is made up of piecewise
constant functions whose jump sets are contained in a Caccioppoli’s partition subordinated
to Γ. This result can be found for example in [2] for SBV functions; the case GSBV can be
easily recoverd by a truncation argument. For example, with this choice the scaling property
Cp(λA) = λn−pCp(A) (see [7, Section 4.7.1]) is lost. Anyway, we do not need this property to
develop our theory.
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Proposition 5.13. For every set A ⊂ Ω we have

Cp(A) = inf

{∫
Ω

(|∇u|p + |u|p) dx | u ∈ GSBV (Ω; Γ), u+(x) ≥ 1 on A, 0 ≤ u ≤ 1

}
.

Proof. Let u1
0 := (u ∧ 1) ∨ 0. Since u+(x) ≥ 1 if and only u1+

0 (x) ≥ 1, it is enough to notice
that if u ∈ GSBV p(Ω; Γ) then∫

Ω

|∇u1
0|p + |u1

0|p dx ≤
∫

Ω

|∇u|p + |u|p dx,

and this concludes the proof. �

Proposition 5.14. Cp(·) is an outer measure on Ω.

Proof. Clearly Cp(·) is monotone and Cp(∅) = 0. Hence we need only to prove the countable
sub-additivity.

Let (Ak)∞k=1 be a countable family of subsets of Ω and define A :=
⋃∞
k=1Ak. Without loss

of generality we can assume
∑
k Cp(Ak) < ∞. For each k we can find uk ∈ GSBV p(Ω; Γ),

0 ≤ uk ≤ 1, and u+
k (x) ≥ 1 on Ak such that∫

Ω

|∇uk|p + |uk|p dx ≤ Cp(Ak) +
ε

2k
.

We define u := supk∈N uk, and we claim that u ∈ GSBV p(Ω; Γ) and u+(x) ≥ 1 on A. Indeed,
since the uk are bounded functions in GSBV pp (Ω; Γ), we have uk ∈ SBV (Ω). Therefore by
using the chain rule in BV [1, Theorem 3.99], if we set um := sup1≤k≤m uk, we have∫

Ω

|∇um|p dx ≤
m∑
k=1

∫
Ω

|∇uk|p dx,

hence

sup
m

∫
Ω

|∇um|p + |um|p dx ≤
∞∑
k=1

Cp(Ak) +
ε

2k
. (5.8)

Thanks to (5.8) we can use the compactness result [1, Theorem 4.36] for GSBV (Ω) together
with [4, Remark 2.9] to deduce that u ∈ GSBV pp (Ω; Γ) and moreover

um → u strongly in L1(Ω) ∇um ⇀ ∇u weakly in L1(Ω). (5.9)

Moreover, if x ∈ A then x ∈ Ak for some k, therefore u+
k (x) ≥ 1, and since u ≥ uk for every k,

we deduce u+(x) ≥ u+
k (x). Therefore

A ⊂ {x ∈ Ω | u+(x) ≥ 1}.

By using the lower semicontinuity of the Lp-norm with respect to the convergence (5.9), we
have

Cp(A) ≤
∫

Ω

|∇u|p + |u|p dx ≤ lim inf
m→∞

∫
Ω

|∇um|p + |um|p dx ≤
∞∑
k=1

Cp(Ak) + ε,

which implies the countable sub-additivity of Cp(·) thanks to the arbitrariness of ε. �

5.3. Relations between Cp and Hn−p. In this subsection we derive the relation between Cp
and Hn−p. Let us notice that Proposition 5.15 and property 2 of Theorem 5.16 are obtained
mainly as in the Sobolev case, and do not depend on the fact Γ ∈ Jp, while property 1 of
Theorem 5.16 strongly relies on the validity of Theorem 1, i.e. on Γ ∈ Jp.

Proposition 5.15. Let Ω be an open set of Rn and let Γ ⊂ Ω be a countably (Hn−1, n − 1)-
rectifiable set with Hn−1(Γ) <∞. For every 1 < p ≤ n there exists a constant c = c(n, p) > 0
such that for every A ⊂ Ω

Cp(A) ≤ cHn−p(A).
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Proof. First of all if Br(x) ⊂ Ω, then Cp(Br(x)) can be rewritten as

inf

{∫
Ω

(|∇v|p + |v|p) dy | v(y) = u

(
x− y
r

)
, u ∈ GSBV (Ω′; Γ′), u+(x) ≥ 1 on B1(0)

}
,

where Ω′ = (Ω− x)/r and Γ′ = (Γ− x)/r.
Notice that for r ≤ 1 we have∫

Ω

(|∇v|p + |v|p) dy = rn
∫

Ω′
(r−p|∇u|p + |u|p) dy ≤ rn−p

∫
Ω′

(|∇u|p + |u|p) dy.

Hence, by choosing u(x) := dist(x,Rn \B2(0)) ∧ 1 whenever x ∈ Ω′, it follows

Cp(Br(x)) ≤ 2n+1ωnr
n−p (r ≤ 1).

Let (Ci)
∞
i=1 be a family of sets contained in Ω which is a cover of A and diamCi ≤ 1. For

each i there exists a ball Bri(xi) such that Ci ⊂ Bri(xi) and ri = diam(Ci). Therefore

Cp(A) ≤
∞∑
i=1

Cp(Ci) ≤
∞∑
i=1

Cp(Bri(xi)) ≤ 2n+1ωn

∞∑
i=1

rn−pi ≤ 22n+1−pωn

∞∑
i=1

(
diamCi

2

)n−p
.

Hence, if we set c := 22n+1−pωn then

Cp(A) ≤ cHn−p(A).

�

Whenever u : Ω→ R is such that ux is a piecewise constant function of the form of Theorem
4.7, then by definition of upper approximate limit (Definition 1.14), it is easy to see that

u+(x) = max
1≤j≤Nx

mj(u, x). (5.10)

We shall use this simple observation to deduce more precise relations between p-capacity and
Hausdorff measure.

Theorem 5.16. Let Ω be an open set of Rn and let Γ ⊂ Ω be a countably (Hn−1, n − 1)-
rectifiable set with Hn−1(Γ) <∞. Then for every A ⊂ Ω and for every 1 < p ≤ n we have

(1) Cp(A) = 0 and Γ ∈ Jp imply dimH(A) ≤ n− p;
(2) Hn−p(A) <∞ implies Cp(A) = 0.

Proof. Suppose Cp(A) = 0 and Γ ∈ Jp. By hypothesis we can find a sequence (uk)∞k=1 ⊂
GSBV p(Ω; Γ), 0 ≤ uk ≤ 1, such that

(i) u+
k (x) ≥ 1, for every x ∈ A;

(ii)
∫

Ω
(|∇uk|p + |uk|p) dx ≤ 1

k2 , for every k ∈ N.

Define u :=
∑∞
k=1 uk. Since by Remark 1.22 GSBV pp (Ω; Γ) is a Banach space, by (ii) we

deduce that u ∈ GSBV pp (Ω; Γ). Thanks to Theorem 4.7, if we call Sk the set of x ∈ Ω where

the blow-up of uk does not exist, then dimH(Sk) ≤ n− p. By setting S :=
⋃∞
k=1 Sk clearly

dimH(S) ≤ n− p. (5.11)

Property (i) above together with (5.10) imply that for every k and for every x ∈ A \ S the
blow up of uk at x is of the form

(uk)x =

Nx∑
j=1

mj(uk, x)1E0,j
, and max

1≤j≤Nx
mj(uk, x) ≥ 1. (5.12)

Since uk ≥ 0 for every k, we have u(y) ≥
∑M
k=1 uk(y) for every M ∈ N and every y ∈ B1(0).

For this reason, by using the linearity of the blow-up and again (5.10), we have

u+(x) ≥
( M∑
k=1

uk(x)

)+

= max
1≤j≤Nx

[ M∑
k=1

mj(uk, x)

]
.

By letting M → ∞, thanks to (5.12), we deduce that A \ S is contained in the set of point x
where u+(x) = +∞. By Theorem 4.7 together with observation (5.10) we deduce that

dimH(A \ S) ≤ n− p,
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which together with (5.11) is exactly (1).
To prove 2 we follow the proof given in [9, Section 3]. Suppose Hn−p(A) < 2p−nγ <∞ for

some γ > 0. By denoting Sn−p the (n − p)-dimensional spherical measure (see [8, Paragraph
2.10.2]), we have

Sn−p(A) ≤ 2n−pHn−p(A) < γ.

We claim that for every m ∈ N we can find an open set Vm and a function um ∈W 1,p(Ω) such
that

(a) A ⊂ Vm =
⋃∞
i=1Bri(xi), supi r

p
i ≤ (m+ 1)−p

(∑m+1
k=1 k−1

)−p
;

(b) B2ri(xi) ⊂ Vm−1 (Vm ⊂ Vm−1);
(c) u+

m(x) = 1 on Vm, spt (Dum) ⊂ Vm−1 \ Vm,
∫

Ω
|Dum|p dx ≤ c γ,

where c := c(n, p) > 0.

We start by setting V0 := Ω and u0 := 1. Set δm+1 := (m+ 1)−1
(∑m+1

k=1 k−1
)−1

. To define
Vm and um, by using

∞∑
i=1

Sn−p(A ∩ {x | 2i < dist(x, Vm−1) ≤ 2i−1}) < γ,

we can find a sequence of balls (Bri(xi))
∞
i=1 such that B2ri(xi) ⊂ Vm−1, supi ri ≤ δm, and

A ⊂ Vm :=
∞⋃
i=1

Bri(x) and
∞∑
i=1

ωn−pr
n−p
i ≤ γ.

Define hi ∈W 1,p(Ω) as

hi(x) = 1 if |x− xi| ≤ ri, hi(x) = 0, if |x− xi| ≥ 2ri,

hi(x) = 2− |x− xi|/ri if ri < |x− xi| < 2ri.

Since
∫

Ω
|Dhi|p dx = r−pi ωn[(2ri)

n − rni ] = c ωn−pr
n−p
i , if we define um := sup∞i=1 hi, then∫

Ω

|Dum|p dx ≤
∫

Ω

∞∑
i=1

|Dhi|p dx ≤ c γ.

In this way (a),(b) and (c) are satisfied.
Define u :=

∑∞
k=1 k

−1uk. Since by construction spt (Dum) ⊂ Vm−1\Vm we have |spt (Dum)∩
spt (Dum+1)| = 0 for every m ∈ N. Therefore we can write∫

Ω

|Du|p dx =

∫
Ω

∞∑
k=1

k−p|Duk|p dx ≤ c γ λ,

where λ :=
∑∞
k=1 k

−p. By using

u(x) ≤
m∑
k=1

k−1 if x ∈ Vm−1 \ Vm,

we can estimate∫
Ω

|u|p dx =

∫
Ω

∣∣∣∣ ∞∑
k=1

k−1uk

∣∣∣∣p dx ≤ ∞∑
m=1

∫
Vm−1\Vm

( m∑
k=1

k−1

)p
dx ≤

∞∑
m=1

( m∑
k=1

k−1

)p
|Vm−1|.

(5.13)
If we call (Bri(x)) the balls relative to Vm−1, i.e. Vm−1 =

⋃∞
i=1Bri(x), then( m∑

k=1

k−1

)p
|Vm−1| ≤

( m∑
k=1

k−1

)p ∞∑
i=1

ωnr
n
i ≤

ωn
ωn−p

∞∑
i=1

m−pωn−pr
n−p
i .

Therefore we can continue inequality (5.13) in the following way∫
Ω

|u|p dx ≤ ωn
ωn−p

∞∑
m,i=1

m−p ωn−pr
n−p
i ≤ ωn

ωn−p

∞∑
m=1

m−pγ =
ωn
ωn−p

γ λ.
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We claim that

u+(x) ≥
m∑
k=1

k−1, x ∈ Vm. (5.14)

To prove (5.14) it is sufficient to show that for every t <
∑m
k=1 k

−1 the superlevel {u > t} has
strictly positive density at every x ∈ Vm.

Using the fact that Vm ⊂ Vm−1 together with property (c), we have that

u+
k (x) ≥ 1, 1 ≤ k ≤ m, x ∈ Vm. (5.15)

Hence, by choosing any t <
∑m
k=1 k

−1, since

m⋂
k=1

{uk > (1− δ)} ⊂ {u > t},

for any 0 < δ < 1 such that
∑m
k=1(1− δ)k−1 = t, and since by (5.15) each set {uk > (1− δ)}

has density greater or equal than one at x ∈ Vm, we deduce that {u > t} has strictly positive
density at every x ∈ Vm.

For this reason, by definition of p-capacity it immediately follows

Cp(Vm) ≤
( m∑
k=1

k−1

)−p ∫
Ω

(|∇u|p + |u|p) dx ≤
( m∑
k=1

k−1

)−p
c′ (γ λ).

Sending m→∞ in the previous inequality we deduce Cp(A) = 0.
�

5.4. The main result. Let 1 < p ≤ n and Γ ∈ Jp. Given u ∈ GSBV p(Ω; Γ), by Theorem
4.7 we know that ux ∈ L0(B1) is well defined for every x ∈ Ω up to a singular set of Hausdorff
dimension at most n− p. If we call S such a singular set, this means that for every 1 < q < p
we have Hn−q(S) = 0, and by Proposition 5.15 also Cq(S) = 0. Therefore, for every 1 <
q < p, ux is a well defined element in the Fréchet space UCq (Ω;L0(B1)) (see Definition 5.5).
Unfortunately, we can not conclude the same for q = p. For this reason we need to introduce
a further outer measure.

Definition 5.17 (Lower p-capacity). Let Ω ⊂ Rn be open, and let Γ ∈ Jp (1 < p ≤ n). Given
any set A ⊂ Ω we define the lower p-capacity as

C−p (A) := sup
1<q<p

Cq(A). (5.16)

Proposition 5.18. C−p (·) is an outer measure. In addition,

C−p (A) = 0 iff Cq(A) = 0 for every 1 < q < p. (5.17)

Proof. C−p (·) is an outer measure simply because it is obtained as supremum of a family of
outer measures. Property (5.17) follows by construction. �

Proposition 5.19. Let Γ ∈ Jp (1 < p ≤ n), then for every u ∈ GSBV p(Ω; Γ) we have that
ux is a well defined element in UC−p (Ω;L0(B1)).

Proof. By Theorem 4.7 we know that ux exists everywhere except on a singular set S of
Hausdorff dimension at most n − p. This means that if we call S the set of points where the
blow-up ur,x does not converge, then for every δ > 0 Hn−p+δ(S) = 0. As a consequence by
Proposition 5.15 this means also Cp−δ(S) = 0. Finally, relation (5.17) gives the conclusion of
the theorem. �

Proposition 5.20 (Capacitary Chebyshev’s inequality). Let Ω be a bounded open set of Rn
and let Γ ∈ Jp with 1 < p ≤ n. Then for every ε > 0 and for every 1 < q < p it holds

Cq
(
{x ∈ Ω | ‖ux‖L0(B1) > ωnε}

)
≤ 1

εq

∫
Ω

(|∇u|q + |u|q) dx, (5.18)

for every u ∈ GSBV p(Ω; Γ).
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Proof. Renormalizing by ε, in order to prove (5.18) it is enough to show the following inclusion

{x ∈ Ω | ‖ux‖L0(B1) > ωn} ⊂ {x ∈ Ω | |u|+(x) ≥ 1}, (5.19)

up to a set of zero Cq-capacity.
By Theorem 4.7 together with Theorem 5.15, we know that except on a Cq-negligible set

we have

|u|x(y) =

Nx∑
j=1

mj(|u|, x)1E0,j (y), y ∈ B1(0).

Using (5.10) we know that |u|+(x) ≥ 1 if and only if at least one of the (mj(|u|, x))Nxj=1 is
greater or equal than one.

Now suppose by contradiction that max1≤j≤Nx mj(|u|, x) < 1 and ‖ux‖L0(B1) > ωn. Then

‖ux‖L0(B1) =

∥∥∥∥ Nx∑
j=1

mj(|u|, x)1Fr,j

∥∥∥∥
L0(B1)

=

Nx∑
j=1

∫
Fr,j

|mj(|u|, x)| ∧ 1 dy

≤ ωn,

which immediately implies (5.19) and hence the proposition. �

Theorem 5.21. Let Ω be a bounded open set of Rn and let Γ ∈ Jp with 1 < p ≤ n. Suppose
that (uk)∞k=1 ⊂ GSBV pp (Ω; Γ) is such that

‖uk − u‖Lp + ‖∇uk −∇u‖Lp → 0, as k →∞.

Then (uk)x converge to ux in the Fréchet space UC−p (Ω;L0(B1)).

Proof. We shall prove that given ε, δ > 0, then there exists k such that for every k ≥ k

C−p
(
{x ∈ Ω | ‖(uk)x − ux‖L0(B1) > ωnε}

)
≤ δ.

Thanks to Theorem 4.7 there exists a set S with dimH(S) ≤ n − p such that (uk)x and ux
exist for every x ∈ Ω \ S and for every k ∈ N. Moreover by Theorem 5.16 we know that
Cq(S) = 0 for every 1 < q < p, which by Proposition 5.18 implies C−p (S) = 0. Therefore, since
by linearity we have for every x ∈ Ω \ S the relation (uk)x − ux = (uk − u)x, by using the
capacitary Chebyshev’s inequality for every 1 < q < p we get

Cq
(
{x ∈ Ω | ‖(uk)x − ux‖L0(B1) > ωnε}

)
≤ 1

εq

∫
Ω

(|∇uk −∇u|q + |uk − u|q) dx.

Finally, by the definition of C−p it is enough to choose k big enough such that for every k ≥ k

sup
1<q<p

1

εq

∫
Ω

(|∇uk −∇u|q + |uk − u|q) dx ≤ δ,

which is possible since Ω is bounded. �

Putting together Theorems 5.16, Theorem 5.21, and relation (5.17) we are able to prove the
second main result of this paper.

Proof of Theorem 2. Let us first suppose Ω bounded. Putting together the previous result
with Theorem 5.8 we have that there exists a subsequence (kj)j such that

lim
j→∞

‖(ukj )x − ux‖L0(B1) = 0,

for every x ∈ Ω except on a C−p -negligible set S. Putting together Theorem 5.16 with relation
(5.17) it easily follows dimH(S) ≤ n− p.
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For general Ω, we set Ωi := Ω∩Bi(0) (i ∈ N). For every i we can apply the previous result on
the bounded open set Ωi to obtain a sequence (kij)

∞
j=1 and a set Si ⊂ Ωi with dimH(Si) ≤ n−p,

such that

lim
j→∞

‖(ukij )x − ux‖L0(B1) = 0, for every x ∈ Ωi \ Si.

We can also suppose that (ki+1
j )∞j=1 is a subsequence of (kij)

∞
j=1 for every i. By a diagonal

argument we define for every j ∈ N kj := kjj , and we obtain that

lim
j→∞

‖(ukj )x − ux‖L0(B1) = 0, for every x ∈ Ω \
∞⋃
i=1

Si.

Finally, since every Si has Hausdorff dimension which does not exceed n−p, then also
⋃∞
i=1 Si

has Hausdorff dimension which does not exceed n− p. This proves the theorem. �

Remark 5.22. In [5] the authors are able to prove a density result for the space SBV p(Ω).
More precisely, if Ω is an open set with Lipschitz boundary and u ∈ SBV p(Ω), then there
exists a sequence of functions uj ∈ SBV p(Ω) and of compact C1 manifolds with C1 boundary
Mj ⊂⊂ Ω such that Juj ⊆Mj but Hn−1(Mj \ Juj ) = 0 and

uj ∈ C∞(Ω \ Juj ), ‖uj − u‖L1 → 0, ‖∇uj −∇u‖Lp → 0, Hn−1(Juj∆Ju)→ 0.

It is natural to ask whether the hypothesis Hn−1(Juj∆Ju)→ 0 can be improved to

Juj ⊂ Ju for every j ∈ N.
In other words we can rephrase this question in the following way: given Γ ⊂ Ω a countably
(Hn−1, n− 1)-rectifiable set, then is it true that the closure in SBV p with respect to the norm
given by ‖∇u‖Lp + ‖u‖L1 of all functions v such that

v ∈ C∞(Ω \ Ju), Ju ⊂M ∩ Γ, M is any C1 manifolds with C1 boundary, (5.20)

is the whole of SBV p(Ω; Γ) ∩ L1(Ω)?
The answer is in general no. Consider Γ0 ⊂ R2 the union of three half lines starting from the

origin. Let Γ ⊂ R3 be defined by Γ0×R and let l be the straight line {(0, 0, t) | t ∈ R}. The set Γ
disconnects R3 \Γ into three connected components Ω1,Ω2,Ω3. Let v : R3 → R be the function
which assumes three different constant values on each of the connected components, say α1 6=
α2 6= α3 6= α1. Clearly v ∈ SBV p(Ω; Γ) for every p ∈ [1, 3). We claim that for p ∈ (2, 3),
the function v cannot be approximated in SBV p by functions satisfying (5.20). Indeed, any
function u ∈ SBV p(Ω) satisfying (5.20) has the property that vx is defined everywhere, except
on a (3−p)-dimensional Hausdorff set, and it is a function taking at most two values. By using
a slightly modified version of Theorem 2 (where we have to substitute the Lp convergence of
the functions with the L1 convergence), we deduce that any limit u in SBV p(Ω; Γ) of functions
satisfying (5.20), inherits the property that its blow-up converges to a function ux which takes
at most two values for every x except on a set of Hausdorff dimension 3 − p. However for
every point x ∈ l, vx assumes three different values, namely α1, α2, α3. Since dimH(l) = 1, this
implies that for every p ∈ (2, 3), v cannot be approximated by functions satisfying (5.20).

6. More on the class Jp
We dedicate this section to construct sets living in Jp. In the second part we present a

counterexample to Theorem 1.

6.1. Some examples. Let n ≥ 3 and 1 < p ≤ n − 1. We write the generic point x ∈ Rn
as x = (y, t) ∈ Rn−1 × R. We define W1,p(Rn−1) as the space of all Sobolev functions
f ∈W 1,p(Rn−1) such that for every y ∈ Rn−1 except on a set of Hausdorff dimension n−1−p,
y is a Lebesgue point for the distributional gradient Df 1.

Now let f ∈ W1,p(Rn−1) and consider its sub-graph

S−f :=
{
x ∈ Rn | t < f(y), y ∈ Rn−1

}
.

1By using the theory of capacity it is easy to see that W 2,p(Rn−1) ⊂ W1,p(Rn−1)
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It is well known that S−f is a set having locally finite perimeter in Rn.
Consider the following sets

A :=

{
y ∈ Rn−1 | ∃ f̃(y) ∈ R, lim

r→0
−
∫
Bn−1
r (y)

|f(z)− f̃(y)| dz → 0

}
,

and

B :=

{
y ∈ Rn−1 | ∃ D̃f(y) ∈ Rn, lim

r→0
−
∫
Bn−1
r (y)

|Df(z)− D̃f(y)| dz → 0

}
,

where Bn−1
r (y) is the (n− 1)-dimensional ball of radius r centered at y. To be precise we will

call the graph of f the set of points of the form

graph(f) := {(y, t) ∈ Rn−1 × R | y ∈ A ∩B, t = f̃(y)}.

Proposition 6.1. Let f ∈ W1,p(Rn−1) with 1 < p ≤ n− 1 and n ≥ 3. Then graph(f) belongs
to Jp.

Proof. By using the theory of capacity developed in [9] (see also [7, Section 4.7]), and the
definition of W1,p, we know that

dimH(Rn−1 \A ∩B) ≤ n− 1− p.
Therefore, it follows for example by [19, Corollary 8.11] that

dimH([Rn−1 \ (A ∩B)]× R) ≤ n− p.
We claim that for every x = (y, t) ∈ Rn such that y ∈ A ∪ B one and only one of the

following conditions occurs

• x ∈ ∂∗S−f ;

• Θ∗(n−1)(Hn−1 ¬ ∂∗S−f , x) = 0.

By Proposition 3.7, this would imply that ∂∗S−f has a non vanishing upper isoperimetric profile
at x.

We first prove that for every x = (y, t) ∈ (A ∪B)× R such that t < f̃(y), it holds

Θ∗(n−1)(Hn−1 ¬ ∂∗S−f , x) = 0, (6.1)

or equivalently

lim
r→0+

Hn−1
(
(∂∗S−f )r,x

)
= 0. (6.2)

Now, since limr→0 −
∫
Bn−1
r (y)

|f(z)− f̃(y)| dz = 0, then by a change of variable in the integral

we have

lim
r→0+

‖f(y + r(·))→ f̃(y)‖L1(Bn−1
1 (0)) = 0.

In particular, this means that for every ε > 0

lim
r→0+

|{|f(y + r(·))− f̃(y)| > ε} ∩Bn−1
1 (0)| = 0. (6.3)

For every z ∈ Bn−1
1 (0) such that |f(y + rz)− f̃(y)| ≤ ε we have

|f(y + rz)− t|
r

≥ |f̃(y)− t|
r

− |f(y + rz)− f̃(y)|
r

≥ f̃(y)− t
r

− ε

r
,

and if ε < f̃(y)−t
2 , by the previous inequalities we deduce

|f(y + rz)− t|
r

>
f̃(y)− t

2r
.

Hence, for sufficiently small value of r, we have

|f(y + rz)− t|
r

> 1.

Therefore, for sufficiently small value of r, we have

{|f(y + r(·))− t|/r ≤ 1} ∩Bn−1
1 (0) ⊂ {|f(y + r(·))− f̃(y)| > ε} ∩Bn−1

1 (0).
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Notice that

(∂∗S−f )r,x ⊂
{

(z, s) ∈ Bn−1
1 (0)× (−1, 1) | s =

f(y + rz)− t
r

}
.

As a consequence, for sufficiently small value of r, we have the following inequalities

Hn−1
(
(∂∗S−f )r,x

)
≤
∫
{|f(y+r(·))−t|/r≤1}∩Bn−1

1 (0)

√
1 + |Df(z)|2 dz (6.4)

≤
∫
{|f(y+r(·))−f̃(y)|>ε}∩Bn−1

1 (0)

√
1 + |Df(z)|2 dz. (6.5)

Therefore, by using (6.3) and the definition of B, we deduce

lim
r→0+

∫
{|f(y+r(·))−f̃(y)|>ε}∩Bn−1

1 (0)

√
1 + |Df(z)|2 dz = 0,

which proves claim (6.1).

Analogously one can prove that if x = (y, t) ∈ (A ∪B)× R is such that f̃(y) < t then (6.1)
holds.

Finally it remains to prove that if x ∈ graph(u) then x ∈ ∂∗S−f . First of all, since y

is a Lebesgue point for u and a Lebesgue point for Du, by using [1, Theorem 3.83], u is
approximately differentiable at y, i.e.

lim
r→0+

∫
Bn−1

1 (0)

|f(y + rz)− f(y)− D̃u(y) · rz|
r

dz = 0.

Therefore if we set Ly(z) := D̃u(y) · z, then

f(y + r(·))− f̃(y)

r
→ Ly(·), in L1(Bn−1

1 (0)), as r → 0+. (6.6)

This means that if we define C1(0) to be the cylinder given by Bn−1
1 (0)× (−1, 1), we can write

lim
r→0+

P ((S−f − x)/r;C1(0)) = lim
r→0+

∫
Bn−1

1 (0)

√
1 + |Df(y + rz)|2 dz. (6.7)

Moreover, if we call H−x the lower half space relative to the unit vector (−D̃u(y),1)√
1+|D̃u(y)|2

, we can

continue equality (6.7) in the following way

lim
r→0+

P ((S−f − x)/r;C1(0)) = lim
r→0+

∫
Bn−1

1 (0)

√
1 + |Df(y + rz)|2 dz

= P (H−x ;C1(0)),

(6.8)

where we used that y is a Lebesgue point for Du. Putting together (6.6) with (6.8) we deduce

(i) (S−f − x)/r → H−x in measure in C1(0) as r → 0+;

(ii) limr→0+ P ((S−f − x)/r;C1(0)) = P (H−x ;C1(0)).

Since B1(0) ⊂ C1(0), condition (i) implies in particular

(S−f − x)/r → H−x , in measure in B1(0), as r → 0+. (6.9)

Moreover, since P (H−x ; ∂B1(0)) = 0 we have

P (H−x ;C1(0)) = lim
r→0+

P ((S−f − x)/r;C1(0))

≥ lim sup
r→0+

[P ((S−f − x)/r;B1(0)) + P ((S−f − x)/r;C1(0) \B1(0))]

≥ lim sup
r→0+

P ((S−f − x)/r;B1(0)) + lim inf
r→0+

P ((S−f − x)/r;C1(0) \B1(0))

≥ lim inf
r→0+

P ((S−f − x)/r;B1(0)) + lim inf
r→0+

P ((S−f − x)/r;C1(0) \B1(0))

≥ P (H−x ;B1(0)) + P (H−x ;C1(0) \B1(0))

= P (H−x ;C1(0)),
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which implies

lim sup
r→0+

P ((S−f − x)/r;B1(0)) = lim inf
r→0+

P ((S−f − x)/r;B1(0)) = P (H−x ;B1(0)). (6.10)

Putting together (6.9) and (6.10) we can apply [1, Proposition 1.62] to the measuresD1(S−f −x)/r

(0 < r < 1), to deduce that

D1(S−f −x)/r(B1(0))→ D1H−x (B1(0)) = ωn−1 νHx(x), as r → 0+, (6.11)

where νHx is the inner unit vector relative to H−x . Finally, by (6.10) we deduce

lim
r→0+

P (S−f ;Br(x))

rn−1
= ωn−1,

which together with (6.11) implies

lim
r→0+

D1S−f
(Br(x))

|D1S−f |(Br(x))
= lim
r→0+

rn−1 µr(B1(0))

P (S−f ;Br(x))
= lim
r→0+

µr(B1(0))

ωn−1
= νHx(x),

and this is exactly (1.1), hence we can conclude x ∈ ∂∗S−f . �

Remark 6.2. Since for n − 1 − 2p > 0 it is possible to construct functions u ∈ W 2,p(Rn−1)
such that the topological closure of their graphs have arbitrarily large n-dimensional Lebesgue
measure, with the previous example we have shown that a generic set in Jp is not essentially
closed.

Proposition 6.3. Let Ω be an open set of Rn (n ≥ 3), and let (Γi)
M
i=1 (M ∈ N), be sets

such that for every i there exists ξi ∈ Sn−1 and fi ∈ W1,p(ξ⊥i ) (1 < p ≤ n − 1) with Γi :=

graph(fi) ∩ Ω. Then Γ :=
⋃M
i=1 Γi belongs to Jp

Proof. Proposition 6.1 shows that for every x ∈ Ω and for every 1 ≤ i ≤ M , except an
(n− p)-dimensional Hausdorff set, one and only one of the following conditions occurs

• x ∈ ∂∗S−fi ;
• Θ∗(n−1)(Hn−1 ¬ ∂∗Sfi , x) = 0.

Now fix such an x ∈ Ω. By reordering the indices i we may suppose for example that
there exists k ∈ N such that for every 1 ≤ i ≤ k x ∈ ∂∗S−fi and for every k < i ≤ M

Θ∗(n−1)(Sfi , x) = 0. Without loss of generality we may also suppose that if 1 ≤ i1 < i2 ≤ k
and Γi1 Γi2 have the same tangent space at x, then the measure-theoretic normals of S−fi1

and

S−fi2
are the same at x. For the same reason, without loss of generality, we may suppose that

for every k < i ≤M x is a point of density 1 for S−fi .

Given r > 0 such that Br(x) ⊂ Ω, we set for 1 ≤ i ≤ k
E−i := S−fi ∩Br(x) and E+

i := S+
fi
∩Br(x).

and
E−0,i := {y ∈ B1(0) | νΓi(x) · y < 0} and E+

0,i := {y ∈ B1(0) | νΓi(x) · y > 0},
For k < i ≤M we set

Ei,1 := S−fi ∩Br(x),

and
E0,i := B1(0).

By eventually reordering again the first k indices, we may assume that there exist k1, k2, . . . , km
(m ≤ k) such that

νΓi1
= νΓi2

if and only if kj ≤ i1, i2 < kj+1.

Now we want to define the sets Fr,j and E0,j of Definition 3.2. For this purpose let us denote
as ΣM2 the family of maps from {1, . . . ,M} into {−,+}. Given σ ∈ ΣM2 we define

Eσ =

M⋂
i=1

E
σ(i)
i ,
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and

E0,σ =

M⋂
i=1

E
σ(i)
0,i ,

whenever E0,σ 6= ∅.
We have 1 ≤ Nx ≤ 2M (here, instead of j, we have indexed our sets with the parameter σ

running in ΣM2 ). Notice that

lim
r→0+

|(Eσ)r,x∆E0,σ| = 0.

Moreover E0,σ are conical and indecomposable sets, since they are intersection of half spaces.
Also, by our choice of x ∈ Ω, we have that

lim
r→0+

P ((E±i )r,x;B1(0)) = P (E±0,i;B1(0)), i = 1, . . . ,M.

By construction we have also that, since E0,σ 6= ∅, then σ(i1) = σ(i2) for every kj ≤ i1, i2 <

kj+1 and for every j = 1, . . . ,m. This means that the family (E
σ(i)
0,i )Mi=1 satisfies also point (3)

of Lemma 6.4. Therefore we can deduce that

lim
r→0+

P ((Eσ)r,x;B1(0)) = P (E0,σ;B1(0)).

Hence, we are in position to apply Proposition 1.13 and to deduce that for every σ ∈ ΣM2 such
that E0,σ 6= ∅, there exist indecomposable components of (Eσ)r,x, say Fr,σ such that

lim
r→0+

|Fr,σ∆E0,σ| = 0, (6.12)

and

lim
r→0+

P (Fr,σ;B1(0)) = P (E0,σ;B1(0)). (6.13)

This gives immediately condition (1.1) and (2.1) of Definition 3.2.
Finally, by (6.13) we can use the same argument as in the proof of Proposition 3.7 to deduce

lim inf
r→0+

hFr,σ (λ) ≥ hE0,σ
(λ), λ ∈ (0, 1/2],

which implies condition (1.2) of Definition 3.2 since hE0,σ (λ) > 0 for every λ ∈ (0, 1/2]. �

Lemma 6.4. Let Ω ⊂ Rn be an open set. Let (Er,i)
M
i=1 (M ∈ N) be sets having finite perimeter

in Ω. Suppose that there exist sets (E0,i)
M
i=1 having finite perimeter in Ω such that

(1) limr→0+ |Er,i∆E0,i| = 0, 1 ≤ i ≤M ;
(2) limr→0+ P (Er,i; Ω) = P (E0,i; Ω), 1 ≤ i ≤M ;
(3) Hn−1(∂∗E0,i1 ∩ ∂∗E0,i2 ∩ {νE0,i1

6= νE0,i2
}) = 0, 1 ≤ i1 < i2 ≤M .

Then we have

lim
r→0+

P

( M⋂
i=1

Er,i;B1(0)

)
= P

( M⋂
i=1

E0,i;B1(0)

)
.

Proof. We proceed by induction on M . For M = 1 there is nothing to prove. By induction
suppose that our statement holds for M − 1, then we want to show that it still holds for M .
For this purpose, suppose to have (Er,i)

M
i=1 satisying (1)-(3). If we consider the first M − 1

sets (Er,i)
M−1
i=1 , then clearly they still satisfy (1)-(3), hence by inductive hypothesis we have

lim
r→0+

P

(M−1⋂
i=1

Er,i;B1(0)

)
= P

(M−1⋂
i=1

E0,i;B1(0)

)
. (6.14)

If we define E′r :=
⋂M−1
i=1 Er,i, E

′
0 :=

⋂M−1
i=1 E0,i and Er := Er,M , E0 := E0,M , then we have

that the couple Er, E
′
r still satisfies (1)-(3): the first is clearly satisfied; the second follows from

(6.14); for the third just notice that if x ∈ ∂∗E′0 ∩ ∂∗E0 then there must exists 1 ≤ i ≤M − 1
such that x ∈ ∂∗E0,i ∩ ∂∗E0,M , therefore if νE′0(x) = −νE0

(x) also νE0,i
(x) = −νE0,M

(x). This

immediately implies Hn−1(∂∗E′0 ∩ ∂∗E0 ∩ {νE′0 6= νE0
(x)}) = 0. Hence, we are reduced to

prove our statement for M = 2.
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In order to do that, we notice that by Theorem 1.2 the following identities hold

P (E′r;B1(0)) = Hn−1(∂∗E′r ∩ E(1)
r ) +Hn−1(∂∗E′r ∩ E(0)

r )

+Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r = νEr}) +Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}),
(6.15)

and analogously

P (Er;B1(0)) = Hn−1(∂∗Er ∩ E′(1)
r ) +Hn−1(∂∗Er ∩ E′(0)

r )

+Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r = νEr}) +Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}).
(6.16)

Summing both sides of (6.15) and (6.16), and using Leibniz formulas (1.2) for the reduced
boundary of an intersection of sets with finite perimeter we get

P (E′r;B1(0)) + P (Er;B1(0)) = P (E′r ∩ Er;B1(0)) + P (E′cr ∩ Ecr ;B1(0))

+ 2Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}).
(6.17)

Taking the lim sup on both sides we get

P (E′0;B1(0)) + P (E0;B1(0)) = lim sup
r→0+

[P (E′r ∩ Er;B1(0)) + P (E′cr ∩ Ecr ;B1(0))

+ 2Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr})]
≥ lim inf

r→0+
[P (E′r ∩ Er;B1(0)) + P (E′cr ∩ Ecr ;B1(0))

+ 2Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr})]
≥ P (E′0 ∩ E0;B1(0)) + P (E′c0 ∩ Ec0;B1(0))

+ 2 lim inf
r→0+

Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr})

= P (E′0;B1(0)) + P (E0;B1(0))

+ 2 lim inf
r→0+

Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}),

(6.18)

where in the last equality we use again identity (6.17) for E′0 E0, and the fact thatHn−1(∂∗E′0∩
∂∗E0 ∩ {νE′0 6= νE0(x)}) = 0.

By (6.18) we immediately deduce

lim inf
r→0+

Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}) = 0.

Moreover since (6.18) is true for every subsequence rj → 0+ we can choose rj such that

lim sup
r→0+

Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}) = lim
j→∞

Hn−1(∂∗E′rj ∩ ∂
∗Erj ∩ {νE′rj 6= νErj }),

and we immediately deduce that

lim
r→0+

Hn−1(∂∗E′r ∩ ∂∗Er ∩ {νE′r 6= νEr}) = 0.

Using this last information again in (6.18), we obtain

lim
r→0+

[P (E′r ∩ Er;B1(0)) + P (E′cr ∩ Ecr ;B1(0))] = P (E′0 ∩ E0;B1(0)) + P (E′c0 ∩ Ec0;B1(0)),

which by the lower semicontinuity of the perimeter implies separately

lim
r→0+

P (E′r ∩ Er;B1(0)) = P (E′0 ∩ E0;B1(0)),

and

lim
r→0+

P (E′cr ∩ Ecr ;B1(0)) = P (E′c0 ∩ Ec0;B1(0)).

This is exactly our desired result. �

The purpose of the previous propositions was to show that the class Jp is much richer than
the class of C1-manifolds. Nevertheless, we were able to cover condition (1.2) of Definition 3.2,
by using the convergence of the perimeter

lim
r→0+

P (Fr,j ;B1(0)) = P (E0,j ;B1(0)), 1 ≤ j ≤ Nx. (6.19)
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However, we want to show that (6.19) is not necessary in order to have a non-vanishing upper
isoperimetric profile at x. In the next example we exhibit a rectifiable set Γ in R2 such that
there exists a set of Hausdorff dimension α (0 < α < 1) on which Γ admits an asymptotic
upper isoperimetric profile but the limit (6.19) diverges to +∞.

Example 6.5 (Cantor’s home). We work in R2. We define a sequence of closed sets, say (Jn)∞n=1,
following the usual way to construct the Cantor’s middle third set (see [19, Subsection 4.10]):

let J1 := [0, 1] and define Jn := Jn−1

3 ∪
(

2
3 + Jn−1

3

)
. Set Cn :=

⋂n
k=1 Jn.

Now fix 2 < s < 3 and consider by induction the following sets:

C1 := J1 ×
[
0,

1

s− 1

]
,

and

Cn := Cn−1 \ (Cn−1 \ Cn × (−∞, sn)) , (n ≥ 2)

where

sn :=
s1−n

(s− 1)
=

∞∑
i=n

1

si
and

1

s− 1
=

∞∑
i=1

1

si
.

We define the Cantor’s home C ⊂ R2 as

C :=

∞⋂
n=1

Cn.

1

s

1

s
2

1

s
3

1

s
4

1

s
5

1

3

1

32

1

33

1

34

Figure 2. Cantor’s home

By construction C is a closed set and P (C ) <∞. Indeed it can be easily verified that

P (Cn+1) = P (Cn) +
2n

(s− 1)sn
, n = 1, 2, . . . ,

which means

P (C ) ≤ lim inf
n→∞

P (Cn) = P (C1) + lim
n→∞

n∑
i=1

2n

(s− 1)sn
<∞,

where in the last inequality we have used s > 2.
We claim that ∂∗C admits a non vanishing upper isoperimetric profile at every x ∈ R2. As

a consequence ∂∗C ∈ Jp for every p > 1.
To prove our claim, notice that if we call C ⊂ [0, 1] the Cantor’s set, i.e.

C =

∞⋂
n=1

Jn, (6.20)

then it is easy to see that for every x ∈ R2 \ (C × {0}) our claim is satisfied. Therefore, we
need only to prove that for x ∈ C × {0} our claim holds.
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If x ∈ C × {0}, by using the fact that the number of connected components of Jn ∩ (x1 −
r
2 , x1 + r

2 ) can be asymptotically estimated by 2n−log1/3 r as n → ∞, together with the fact
that s < 3, it is possible to check that

Θ2(L2 ¬C , x) = 0, (6.21)

while

Θ1(H1 ¬ ∂∗C , x) = +∞. (6.22)

Now we denote the generic point x ∈ R2 as x = (x1, x2) for x1, x2 ∈ R, and we prove that
conditions (1) and (2) of Definition 3.2 are satisfied with Nx = 1. Instead of the balls Br(x)
we prefer to work with the squares Qr(x). It is clear that everything will be true also for balls.

Pick x ∈ C × {0}. Set

• E0,1 := Q1(0);

• Fr,1 := Q1(0) \ C−x
r for every r > 0.

First of all, since for each r the sets Fr,1 are connected open sets with finite perimeter, then
they are indecomposable (see Remark 1.6). Moreover, conditions (1.1) and (2.1) immediately
follow from construction and from (6.21), respectively.

In order to show that also condition (1.2) is satisfied, first of all notice that for each r > 0
the sets Fr,1 are open connected and of finite perimeter, hence in particular they are indecom-
posable. We claim that for every r > 0 and every λ ∈ (0, 1/2] we have

hFr,1(λ) ≥ 1

3
. (6.23)

In order to show (6.23) we shall prove that for every r > 0

min{|E|, |Fr,1 \ E|} ≤ 3H1(∂∗E ∩ F (1)
r,1 ), E ⊂ Fr,1. (6.24)

This can be achieved by proving that for every r ∈ (0, 1) it holds the following Poincaré’s
inequality ∫

Fr,1

|u− u| dx ≤ 3|Du|(Fr,1), u ∈ BV (Q1(0)), (6.25)

where u := −
∫
Fr,1

u. Then (6.24) follows by choosing u = 1E in (6.25), since in this case∫
Fr,1

|u− u| dx ≥ min{|E|, |Fr,1 \ E|},

and

Hn−1(∂∗E ∩ F (1)
r,1 ) ≥ Hn−1(∂∗E ∩ Fr,1) = |Du|(Fr,1).

Given t ∈ R we write

Ft := {x2 ∈ R | (t, x2) ∈ F}, and F t := {x1 ∈ R | (x1, t) ∈ F}.

Notice that for each r > 0 the sets Fr,1 have the following two properties

(1) (x1, x2) ∈ Fr,1 and (x1, y2) ∈ Fr,1 implies (x1, λx2+(1−λ)y2) ∈ Fr,1 for every λ ∈ [0, 1];
(2) (x1, x2) ∈ Fr,1, (y1, x2) ∈ Fr,1 and x2 ∈ (−1/2, 0) implies (λx1 + (1 − λ)y1, x2) ∈ Fr,1

for every λ ∈ [0, 1].

We show that any set F ⊂ Q1(0) satisfying (1) and (2) admits a Poincaré’s inequality like
(6.25).

Indeed we have∫
F

|u− u| dx = 2

∫ 0

−1/2

[
−
∫
F

∣∣∣∣u(x1, x2)−
(
−
∫
F

u(y1, y2) dy1d y2

)∣∣∣∣ dx1 dx2

]
dt

≤ 2

∫ 0

−1/2

[ ∫
F

(
−
∫
F

|u(x1, x2)− u(y1, y2)| dy1d y2

)
dx1 dx2

]
dt.

If t ∈ (−1/2, 0), by using the triangle inequality, we can write

|u(x1, x2)− u(y1, y2)| ≤ |u(x1, x2)− u(x1, t)|+ |u(x1, t)− u(y1, t)|+ |u(y1, t)− u(y1, y2)|,
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hence by using the Fundamental Theorem of Calculus we have∫
F

|u− u| dx ≤ 2

∫ 0

−1/2

[ ∫
F

(
−
∫
F

|D2u|(Fx1
) dy1d y2

)
dx1 dx2

]
dt

+ 2

∫ 0

−1/2

[ ∫
F

(
−
∫
F

|D1u|(F t)| dy1d y2

)
dx1 dx2

]
dt

+ 2

∫ 0

−1/2

[ ∫
F

(
−
∫
F

|D2u|(Fy1) dy1d y2

)
dx1 dx2

]
dt,

and finally by using Fubini’s Theorem∫
F

|u− u| dx ≤
∫ 1/2

−1/2

|D2u|(Fx1
)|L1(Fx1

) dx1 + 2|F |
∫ 0

−1/2

|D1u|(F t) dt

+

∫ 1/2

−1/2

|D2u|(Fy1)|L1(Fy1) dy1

≤ |D2u|(F ) + 2|F ||D1u|(F ) + |D2u|(F )

≤ (1 + 2|F |)|Du|(F ).

Since |F | ≤ 1, this shows exactly (6.25).

Remark 6.6. In the previous example, the set C has a non vanishing upper isoperimetric profile
for every x ∈ R2 but with the stronger condition

lim inf
r→0+

inf
λ>0

hFr,1(λ) > 0.

Therefore by Remark 4.9 if we set Γ = C in Theorem 1, then (0.3) actually holds with respect
to the strong Lp-convergence.

6.2. A counterexample. Now we want to exploit the idea of the previous example to show
that, the indecomposability condition together with condition (1.2) of Definition 3.2 are crucial
in order to get the validity of Theorem 1.

Example 6.7 (Optimality for the class Jp). We start by showing that the indecomposability
assumption on the sets (Fr,j) in Definition 3.2, cannot be removed in order to get the validity
of Theorem 1. For this purpose we shall construct a countably (Hn−1, n− 1)-rectifiable set Γ
in R2 with Hn−1(Γ) < ∞, such that there exists Γ0 ⊂ R2 with dimH(Γ0) = log3(2), with the
following properties

(a) for every x ∈ Γ0 there exists a family of sets Fr ⊂ B1(0) (r > 0) satisfying limr→0+ |Fr∆B1(0)| =
0;

(b) there exists a function u ∈ SBV 2(R2; Γ) such that for every x ∈ Γ0 the blow-up ur,x does
not converge.

To construct such a Γ, we start by considering C̃ ⊂ R2 the reflection of the Cantor’s home
given in Example 6.5 with respect to the x1 axis, i.e.

C̃ := {(x1, x2) ∈ R2 | (x1,−x2) ∈ C }.
We define E := C ∪ C̃ . The set E can be seen also as the limit in measure of Cn ∪ C n when
n→∞, where Cn is the approximated Cantor’s home at the n-th step (see Example 6.5) and

C̃n is its reflection with respect to the x1-axis (see Figure 3). Clearly E has a non vanishing
upper isoperimetric profile for every x ∈ R2 \ (C ×{0}), where C denotes the Cantor’s set (see
(6.20)). By arguing as in Example 6.5 we know that E is a set of finite perimeter and

Θn(Ln ¬E, x) = 0, x ∈ C × {0}.
Now let (Cn) and (sn) be the sequence of sets and the sequence of numbers defined in

Example 6.5, respectively. Define the following function

u(x) :=


1 if x ∈ C2n−1 \ C2n × (−s2n, s2n)

−1 if x ∈ C2n \ C2n+1 × (−s2n+1, s2n+1)

0 otherwise.

(6.26)
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Figure 3. Approximation of E at the fifth step.

By Remark 1.22 we know that u ∈ SBV 2(R2; ∂∗E). Call f : R→ R the restriction of u to the
x1 axis, i.e.

f(·) := u(·, 0).

Notice that given x ∈ C×{0}, then if the blow-up of u at x = (x1, x2) converges as r → 0+ then
also the blow-up of f at x1 must converge. To see this, by using the fact that the parameter s
of Example 6.5 has been chosen strictly less than 3, it is not difficult to show that

lim
r→0+

L1({y1 ∈ (−1,+1) | ur,x(y1, y2) = fr,x1
(y1) for every y2 }) = 2.

This means that any limit ux in L1(B1) of (ur,x) must be constant along the segments orthog-
onal to the x1-axis and contained in B1, and moreover it must satisfy

lim
r→0+

‖fr,x1(·)− ux(·, 0)‖L1 = 0.

Therefore, given x = (x1, x2), if we want to prove that (ur,x) does not converge, we can
reduce ourselves to prove that fr,x1

does not converge.
In view of the previous observation, we claim that for every x1 ∈ C × {0}, except on a

countable set A, fr,x1 does not converge as r → 0+. For this purpose, we show that given
x1 ∈ C \A, then for every ε > 0 there exists a couple of radii r, r′ ≤ ε such that

‖fr,x1
− fr′,x1

‖L0(B1) ≥
1

2
. (6.27)

To see this it is convenient to write every point in the Cantor’s set in base 3. This means
that given x1 ∈ C, then there exists a map σ defined on every positive integer number with
values in {0, 2}, such that

x1 =

∞∑
i=1

σ(i)

3i
.

Define the set A to be the set of points x1 in the Cantor’s set such that there exists i0 ∈ N
(depending on x1) such that for every i ≥ i0 the function σ alternates consecutively the values
0 and 2. Clearly the set A is countable. We want to prove our claim on every point x1 ∈ C \A.

Let x1 ∈ C \A, then by definition of A there exists a sufficiently large value of n such that
1/3n ≤ ε/2 and σ(n) = σ(n+ 1) = 0 or σ(n) = σ(n+ 1) = 2. Let us suppose to be in the case
σ(n) = 2 (the case σ(n) = 0 can be treated in the same way). Since x1 ∈ C, then x1 belongs
to a connected component (an interval) of Jn−1, say I (Jn are those defined in Example 6.5).
We can consider a partition of I made of three closed intervals I1, I2, I3 (with overlapping

end-points) each of length |I|3 where I1 is the most-left one, I3 is the most right one, and I2 is
in between. By construction of the sets (Jn), we know that Jn∩I = I1∪I3, and since σ(n) = 2
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then x1 ∈ I3. By (6.26), we know that f takes value 1 or −1 on I2. Let us suppose for example
1. As before we can consider a partition of I3 made of three closed intervals I3,1, I3,2, I3,3 (with
overlapping end-points) each of length |I3|/3 where I3,1 is the most-left one, I3,3 is the most
right one, and I3,2 is in between. In addition, by (6.26), we know that f assumes the value −1
on I3,2. As before, since σ(n+ 1) = 2, then x1 ∈ I3,3.

Now call a the left end-point of I2 and b the left end-point of I3,2. Clearly we have the
following estimates

(x1 − a) ≤ 2

3n
and (x1 − b) ≤

2

3n+1
. (6.28)

Moreover, if we set r = x1 − a and r′ = x1 − b, then we can write

‖fr,x1 − fr′,x1‖L0(B1) = −
∫
B1

|f(x1 + (x1 − a)y1)− f(x1 + (x1 − b)y1)| ∧ 1 dy1

= −
∫
B(x1−a)

|f(x1 + y1)− f(x1 + (x1 − b)/(x1 − a)y1)| ∧ 1 dy1.

Using the fact that, by construction, the dilated interval (x1−a)
(x1−b) (I3,2 − x1) has left end-point

coincident with the left end-point of the interval I2 − x1, and that |f(x1 + y1)− f(x1 + (x1 −
b)/(x1 − a)y1)| = 2 on (I2 − x1) ∩ (x1−a)

(x1−b) (I3,2 − x1), we can continue the previous inequality

by writing

‖fx1,(x1−a) − fx1,(x1−b)‖L0(B1) ≥
1

(x1 − a)

∣∣∣∣(I2 − x1) ∩ (x1 − a)

(x1 − b)
(I3,2 − x1)

∣∣∣∣
≥ 1

(x1 − a)
min

{
|I2|,

(x1 − a)

(x1 − b)
|I3,2|

}
= min

{
3−n

(x1 − a)
,

3−(n+1)

(x1 − b)

}
≥ 1

2
,

where for the last inequality we use (6.28). This proves our claim and shows that at every
x ∈ (C \A)× {0} the blow-up ur,x does not converge as r → 0+.

Finally, by setting Γ := ∂∗E, Γ0 := (C \ A) × {0}, and Fr := B1(0) \ Er,x we obtain (a)
and (b). As a consequence we deduce that Γ /∈ Jp for every p ∈ (2 − log3(2), 2]. In this case
it is clear that what fails in the definition of non vanishing upper isoperimetric profile is the
indecomposability of the sets (Fr,x)r>0 for every x ∈ C × {0}.

Exploiting the previous idea, it is possible to construct sets Γ Γ0, and a function u satisfying
(a) and (b) with the additional property that the sets Fr are indecomposable. This together
with Theorem 1, immediately implies that on every point of Γ0 the set Γ satisfies all the
properties of Definition 3.2 except (1.2). This shows that condition (1.2) is crucial in view of
Theorem 1.

The idea is to connect each white rectangle of E (see Figure 3) by small bridges without
altering the local behavior of the set E on points of the set C×{0}. To do this, define for each
n ≥ 1, δn := 1/7n. We start by connecting the two white rectangles whose horizontal sides
have length 1/32 with the white rectangle whose horizontal sides have length 1/3 (see figure
3) by subtracting from the set E a thin horizontal bridge in the following way

E1 := E \ (1/32, 1− 1/32)× (s3 − δ1, s3).

By induction, if we call the n-th thin bridge Rn := (1/3n+1, 1 − 1/3n+1) × (sn+2 − δn, sn+2)
(sn are defined in Example 6.5), then we define for general n (see Figure 4 for n = 3)

En := En−1 \Rn.
Since by the choice of (δn) the rectangles (Rn) are pairwise disjoint, by subtracting from

En−1 the rectangle Rn, one adds an amount of perimeter which is exactly 2(2n+1 − 2)/3n+1,
i.e.

P (En) = P (En−1) + 2(2n+1 − 2)/3n+1.
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Figure 4. The set E3

This means that by defining

E′ :=

∞⋂
n=1

En,

then E′ is a closed set of finite perimeter in R2.
Since E′ ⊂ E, this means that we still have that for every x ∈ C × {0} it holds

Θn(Ln ¬E′, x) = 0,

but with the additional property that for every r > 0 the open sets B1(0) \E′r,x are connected
and with finite perimeter and hence indecomposable (see Remark 1.6). The connectedness
comes from the fact that if Q1 is a connected components (white rectangle) of the set [Cn−1 \
Cn] × (−sn, sn) for some n (where (Cn) and (sn) are defined in Example 6.5), and Q2 is a
connected components (white rectangle) of the set [Cm−1\Cm]×(−sm, sm) for somem, bothQ1

Q2 with non empty intersection with Br(x) (x ∈ C ×{0}), then there must exist a sufficiently
large M ≥ max{n,m} for which the bridge RM connects Q1 ∩Br(x) with Q2 ∩Br(x).

Now we define the function v ∈ SBV 2(R2; ∂∗E′) in the following way. If x /∈
⋃∞
n=1Rn ∩ E

we define v(x) := u(x) where u is the function defined in (6.26). If x ∈ Rn∩E for some n, then
by construction there exists a connected components of Jn+1 ⊂ [0, 1] (see Example 6.5), say I,
such that x ∈ I × (sn+2 − δn, sn+2). We have two cases: suppose that I × (sn+2 − δn, sn+2)
connects two rectangles where v has the same value, i.e. −1 or +1, then we simply define v(x)
to be exactly −1 or +1, respectively; otherwise suppose that v changes value (for example from
−1 to +1), then if we call p : I → R the linear interpolation between −1 and +1 we define

v(x) := p(π1(x)),

where π1 : R2 → R is the projection onto the first component (we proceed analogously if v
changes value from +1 to −1).

Clearly, since v differs from u on a set which is contained in E, and Θn(Ln ¬E, x) = 0 for
every x ∈ C × {0}, then the blow-up of v has the same behavior of the blow-up of u at each
point in C × {0}. It remains to prove that ∇v ∈ L2(R2). But by our choice of δn, an easy
computation shows that we can estimate from above∫

R2

|∇v|2 dx ≤ 2

∞∑
n=1

6n+1

7n
<∞.
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7. Non convergence of the blow-up

In this last part we construct a set in E ⊂ R2 with the property that its blow-up (E − x)/r
does not converge in measure on every point of a set having Hausdorff dimension equal to 1.
To show this, we need the following theorem which can be deduced from the results obtained
in [22] (see also [10] for a simpler proof). Anyway we decide to present this result with an
alternative proof which is more convenient for our purpose.

Theorem 7.1. Let N ⊂ (0, 1). Then N has zero Lebesgue measure if and only if there exists a
Lipschitz function u : (0, 1)→ R such that u is not differentiable from the right at every point
of N .

Proof. If f is lipschitz then the set of point where it is not right differentiable has Lebesgue
measure zero from Rademacher’s Theorem.

Now let N ⊂ R be such that |N | = 0. We claim that there exists a Borel set F ⊂ R such
that for every x ∈ N we have

0 = lim inf
r→0+

|F ∩ (x, x+ r)|
r

< lim sup
r→0+

|F ∩ (x, x+ r)|
r

= 1. (7.1)

To prove this, notice that for every 0 < ε ≤ 1/6, since |N | = 0, we can find a cover of N
made of open and disjoint subintervals of (0, 1), say (Ii)

∞
i=1, such that

(1)
∑∞
i=1 |Ii| ≤ ε;

(2) N ∩ Ii ⊂
⋃∞
j=1{x ∈ Ii | 1/2s(j+1) < dist(x,R \ Ii) < 1/2sj}, for some s ∈ [1/2, 1]

depending on Ii.

Indeed (1) simply follows by the fact that |N | = 0. Moreover, let a < b be the end points of
the intervals Ii; then since |N | = 0 we have that for every j

|{s ∈ [1/2, 1] | a ∈ N − 1/2sj}| = 0,

therefore also ∣∣∣∣ ∞⋃
j=1

{s ∈ [1/2, 1] | a ∈ N − 1/2sj}
∣∣∣∣ = 0.

For this reason by choosing s ∈
⋃∞
j=1{s ∈ [1/2, 1] | a ∈ N − 1/2sj} we obtain that

a+ 1/2sj /∈ N, j = 1, 2, 3, . . . .

By repeating the same argument for the right end point we can find s ∈ [1/2, 1] satisfying (2).
Define I1 ⊂ (0, 1) to be a cover of N made of open intervals satisfying (1) and (2) with

ε = 1/6. By induction we define Ii in the following way. For every I ∈ Ii−1 we consider the
set

Nj := N ∩ {x ∈ I | 1/2s(j+1) < dist(x,R \ I) < 1/2sj},
where s ∈ [1/2, 1] is relative to I. Since |Nj | = 0 we can use the claim to find a cover of Nj
made of open and disjoint subintervals of {x ∈ I | 1/2s(j+1) < dist(x,R \ I) < 1/2sj}, say
(Ii)
∞
i=1, satisfying (1) and (2) with ε = 1/6j . Finally, we call Ii the family made of all open

intervals obtained as in the previous procedure, by letting I varies in Ii−1 and j varies in N.
We set

F :=

∞⋃
i=1

( ⋃
I∈I2i−1

I \
⋃
I∈I2i

I

)
, (7.2)

and we claim that F does the job. Clearly F is Borel since every Ii is a family made of open
intervals. Moreover, whenever x ∈ N , since for every i the family Ii covers N , then for every
i there exists I ∈ Ii such that x ∈ I. Moreover, by property (2) there exists j such that
x ∈ {x ∈ I | 1/2s(j+1) < dist(x,R \ I) < 1/2sj} for some s ∈ [1/2, 1]. Since(

x, x+
1

2s(j+2)

)
⊂

j+1⋃
k=j−1

{x ∈ I | 1/2s(k+1) < dist(x,R \ I) < 1/2sk},
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and since by construction the intervals I ∈ Ii+1 which are contained in the set {x ∈ I | 1/2s(k+1) <
dist(x,R \ I) < 1/2sk} are such that

∑
|I| ≤ ε with ε = 1/6k, we can write∣∣∣∣∣ ⋃

I∈Ii+1

I ∩
(
x, x+

1

2s(j+2)

)∣∣∣∣∣ ≤
j+1∑

k=j−1

1

6k

If i is odd, by (7.2) we have that I \
⋃
I∈Ii+1

I ⊂ F , and then

|F ∩ (x, x+ 1/2s(j+2))|
1/2s(j+2)

≥ 2s(j+2)

(
1

2s(j+2)
−

j+1∑
k=j−1

1

6k

)
= 1− 2s(j+2)

6j−1

3∑
k=1

1

6k

= 1− 2(s−1)j+3s

3j−1

3∑
k=1

1

6k

≥ 1− 23

3j−1

3∑
k=1

1

6k
,

(7.3)

where for the last inequalty we use s ∈ [1/2, 1]. Therefore for each i odds there exists a
corresponding ji, with ji → ∞ as i → ∞, satisfying (7.3), hence by letting i → ∞ among all
odds numbers, this proves

lim sup
r→0+

|F ∩ (x, x+ r)|
r

= 1.

If i is even, by (7.2) we have that F ∩ I ⊂
⋃
I∈Ii+1

I, and then

|F ∩ (x, x+ 1/2s(j+2))|
1/2s(j+2)

≤ 2s(j+2)

j+1∑
k=j−1

1

6k
=

2s(j+2)

6j−1

3∑
k=1

1

6k

=
2(s−1)j+3s

3j−1

3∑
k=1

1

6k

≤ 23

3j−1

3∑
k=1

1

6k
,

(7.4)

where for the last inequalty we use s ∈ [1/2, 1]. Arguing as before, this proves

lim inf
r→0+

|F ∩ (x, x+ r)|
r

= 0.

Finally, define

u(t) := |F ∩ (0, t)|, t ∈ (0, 1).

Clearly u is 1-Lipschitz and moreover (u(x + r) − u(x))/r = |(F ∩ (x, x + r))|/r for every
0 < r < 1 − x. By (7.1) we immediately deduce that u is not right differentiable at every
x ∈ N . �

Theorem 7.2. There exists a set E ⊂ R2 of finite perimeter, such that the set of points where
its blow-up (E − x)/r does not converge locally in measure has Hausdorff dimension 1.

Proof. Let N ⊂ (0, 1) be a set of Hausdorff dimension equal to 1. It can be easily constructed
as a countable union of sets Nk with positive H1−1/k-measure. Clearly N has zero Lebesgue
measure.

Let u : (0, 1)→ R be the 1-lipschitz function given by the previous proposition, which is not
right differentiable at every point of N . Define E := {x ∈ R2 | 0 < x1 < 1, 0 < x2 < u(x1)}.
We claim that at every point x of the form x1 ∈ N and x2 = u(x1) the blow-up of E at x does
not converge in measure.

Indeed, since u is 1-Lipschitz, then in the square (−1, 1)2 ⊂ R2 the set (E − x)/r can be
described as the subgraph of the function y1 → (ur,x1(y1) − u(x1))/r for y1 ∈ (−1, 1) and for
every r < min{x1, 1 − x1}. Hence the convergence of (E − x)/r locally in measure implies
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in particular the convergence in L1
loc((0, 1)) of the sequence ((ur,x1

(y1) − u(x1))/r) to some
function v(y1). Moreover, since for every λ > 0 we have

v(λy1) = lim
r→0+

(ur,x1
(λy1)− u(x1))/r = λ lim

r→0+
(uλr,x1

(y1)− u(x1))/λr = λv(y1),

then v is positively one-homogeneous. But since u is 1-Lipschitz, then the L1
loc convergence

can be improved to a uniform convergence on the closed interval [0, 1], i.e.

lim
r→0+

sup
y1∈[0,1]

∣∣∣∣u(x1 + ry1)− u(x1)

r
− v(y1)

∣∣∣∣ = 0,

Thanks to the positively one homogeneity of v, this immediately implies the right differentia-
bility of u at x1 with u′(x1) = v(1) which is a contradiction. This proves the theorem. �
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References

[1] Ambrosio, Luigi, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity

problems. Vol. 254. Oxford: Clarendon Press, 2000.

[2] Chambolle, Antonin, Alessandro Giacomini, and Marcello Ponsiglione. Piecewise rigidity. Journal of Func-
tional Analysis 244.1 (2007): 134-153.

[3] Cheeger, Jeff. A lower bound for the smallest eigenvalue of the Laplacian. Proceedings of the Princeton
conference in honor of Professor S. Bochner. 1969.

[4] Dal Maso, Gianni, Gilles A. Francfort, and Rodica Toader. Quasistatic crack growth in nonlinear elasticity.

Archive for Rational Mechanics and Analysis 176.2 (2005): 165-225.
[5] De Philippis, Guido, Nicola Fusco, and Aldo Pratelli. On the approximation of SBV functions. Atti Accad.

Naz. Lincei Rend. Lincei Mat. Appl 28.2 (2017): 369-413.

[6] Dolzmann, Georg, and Stefan Müller. Microstructures with finite surface energy: the two-well problem.
Archive for rational mechanics and analysis 132.2 (1995): 101-141.

[7] Evans, LawrenceCraig. Measure theory and fine properties of functions. Routledge, 2018.

[8] Federer, Herbert. Geometric measure theory. Springer, 1996.
[9] Federer, Herbert, and William P. Ziemer. The Lebesgue set of a function whose distribution derivatives are

p-th power summable. Indiana University Mathematics Journal 22.2 (1972): 139-158.

[10] Fowler, Thomas, and David Preiss. A simple proof of Zahorski’s description of non-differentiability sets
of Lipschitz functions. Real Analysis Exchange 34.1 (2008): 127-138.

[11] Heinonen, Juha, Tero Kipelainen, and Olli Martio. Nonlinear potential theory of degenerate elliptic equa-
tions. Courier Dover Publications, 2018.

[12] Kalton, Nigel John, Newton Tenney Peck, and James W. Roberts. An F-space sampler. Vol. 89. CUP

Archive, 1984.
[13] Kawohl, Bernd, and Vladislav Fridman. Isoperimetric estimates for the first eigenvalue of the p-Laplace

operator and the Cheeger constant. Comment. Math. Univ. Carolin 44.4 (2003): 659-667.

[14] Kirchheim, Bernd. Lipschitz minimizers of the 3-well problem having gradients of bounded variation.
(1998).

[15] Lefton, Lew, and Dongming Wei. Numerical approximation of the first eigenpair of the p-Laplacian using
finite elements and the penalty method. Numerical Functional Analysis and Optimization 18.3-4 (1997):
389-399.

[16] Leonardi, Gian Paolo. An overview on the Cheeger problem. New trends in shape optimization. Birkhäuser,
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