ON THE BLOW-UP OF GSBV FUNCTIONS UNDER SUITABLE
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ABSTRACT. In this paper we investigate the fine properties of functions under suitable geo-
metric conditions on the jump set. Precisely, given an open set 2 C R™ and given p > 1 we
study the blow-up of functions u € GSBV (), whose jump sets belong to an appropriate
class Jp, and whose approximate gradients are p-th power summable. In analogy with the
theory of p-capacity in the context of Sobolev spaces, we prove that the blow-up of u con-
verges up to a set of Hausdorff dimension less than or equal to n —p. Moreover, we are able
to prove the following result which in the case of W1P(Q) functions can be stated as follows:
whenever uj strongly converges to u, then up to subsequences, uj pointwise converges to u
except on a set whose Hausdorff dimension is at most n — p.
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INTRODUCTION

The following result concerning the Lebesgue points of a Sobolev function is well known (see
[9, 7,20, 23, 11]): given 1 < p < n, ifu € L}, .(R™) and its first order distributional derivatives
are p-th power locally summable, then there exists a set A with dimy(A) < n — p, namely
with Hausdorff dimension at most n — p, such that every € R™\ A is a Lebesgue point for w.

More precisely, for every & € R™ \ A there exists a real number a such that:

1
lim — —al|ldy = 0. 0.1
A e uy) — aldy (0.1)
By a change of variables, if we call u, the function constantly equal to a, the convergence
in (0.1) can be rephrased by saying that u, ,(y) := u(x + ry), namely the blow-up of u at z,
converges in L'(B1(0)) to uy, i.e.

lim lu(x + 1Y) — ue(y)| dy = 0. (0.2)
r—0% Jp, (0)

Roughly speaking, (0.2) says in a precise way that the values of u near x are close to a
single constant. The aim of this paper is to investigate the local behavior of functions when
we introduce also a jump discontinuity set.

Given Q C R™ an open set, for every function u which belongs to the space GSBV(Q) and
whose approximate gradient Vu belongs to L'(£; R™), by using the general theory developed
in [1] one can deduce that at every point x it holds

Ur .z — Uy in measure in By (0), asr — 07,

except on a set A with H""1(A) = 0. Furthermore, if x is a Lebesgue point then u, is a
constant function, while if z € J,, then u, assumes two different values on two disjoint subsets
of B;1(0) separated by an (n — 1)-dimensional hyperplane passing through the origin. In this
situation u, may assume from one or two values.

In this work we focus our attention on the space GSBVP(Q2) when 1 < p < n. Precisely,
we investigate under which hypothesis on the jump set, the p-th power summability of the
approximate gradient guarantees dimy (A4) < n — p.

1
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To illustrate the result we are going to prove, let us consider the following example. Consider
Iy C R? the union of three half lines starting from the origin. Let I' C R? be defined by I'g x R
and let [ be the straight line {(0,0,¢) | t € R}. The set I" disconnects R3\I" into three connected
components 1, Qa, Q3. Whenever u is a locally integrable function in GSBV(Q2) with J,, C T,
thanks to a well known property of locally integrable G.SBV-functions Vu coincides with
the distributional gradient in each open sets §2;; then by using Poincaré-Wirtinger inequality
on balls, it is easy to prove that every u € GSBVP(R?) N L} (R3?) with J, C T satisfies
ul ), € Wllo‘f (Q;) for i = 1,2, 3. Using a reflection argument, through an obvious modification
of the result in [J], there exists a set A with dimg;(A) < 3 — p such that if z € R?\ A then the
blow-up of u at x converges. In addition, on the points « € [\ A the limit u, can assume three
different values «; each on the set Q; N B1(0), ¢ = 1,2,3. Therefore, the family of all possible
limits u, is richer than the previous cases.

Nevertheless, the p-th power summability of the approximate gradient is in general not
enough to guarantee the convergence of the blow-up at every point except on a set of Hausdorff
dimension (n — p). Consider for example u := 1g, the characteristic function of a set with
finite perimeter. Clearly Vu is p-summable for every p > 1, but from the theory of sets of finite
perimeter, we know that the blow-up of u in general converges only up to an H" !-negligible
set. Precisely, it is possible to construct a set £ C R? with finite perimeter and such that,
by setting u = 1g, the set of points x where u, , does not converge has Hausdorff dimension
exactly equal to 1 (see Section 7). Therefore, it is reasonable to think that the geometry of
the jump set affects the local behavior of the functions.

In Definition 3.6, for every 1 < p < n we introduce the class J, of all admissible jump sets,
for which the following two main results hold true.

Theorem 1. Let Q@ C R™ be open, and letT' € J, (1 < p <n). Ifu e GSBVP(;T), then
there exists a set A, with Hausdorff dimension at most n — p, such that for every x € Q\ A,
there exists a function u,(-): B1(0) - R

Upy — Ug, in measure in By1(0), (0.3)
as T — 0T,

Theorem 2. Let Q& C R™ be open and let I' € J, with (1 < p < n). Suppose (up)p>, C
GSBVP(Q;T') N LP(Q) is such that

llur — ullLe + [|[Vugp — Vuljr — 0, as k — oo.

Then there exists a subsequence (k;);, such that for every x € Q except on a set with Hausdorff
dimension at most n — p we have

(uk; )z = Uz in measure in B1(0), as j — oo, (0.4)
where in (0.4) (ug)y is the one given by (0.3) where u is replaced by uy.

Theorem 1 can be seen as the analogous of the result (0.2) mentioned above. In the context
of Sobolev spaces this is obtained through the theory of capacity, by exploiting the well known
fact that smooth functions are dense in W1P(Q). However, at the best of our knowlegde, it
is not known whether there exist dense subspaces of GSBV?({;T) made of regular functions
u with the additional constraint J, C I' (see Remark 5.22). For this reason, we decide to
perform a different analysis based on Geometric Measure Theory techniques. In particular we
prove a weak version of Poincaré’s inequality on balls, which guarantees that the L°-distance
of u from a particular piecewise constant function can be controlled in terms of the LP-norm
of its approximate gradient plus a small volume error (see Theorem 4.4). This tool, together
with a fine analysis of the blow-up of u permits us to obtain the conclusion of Theorem 1. The
dimension n — p is optimal, since in the WP(Q) setting, i.e. when I' = (), we already know
that it is sharp (see Remark 4.10).

Theorem 2 is reminiscent of the following result in the context of Sobolev space: if a sequence
ug, in WHP(Q) strongly converges to u, then, up to subsequences, the precise value of uy(x)
defined by (0.2) converges to the precise value of u(x), except on a set of zero p-capacity (see for
example [11, Lemma 4.8]). In order to prove Theorem 2, we use a suitable notion of capacity



ON THE BLOW-UP OF GSBV FUNCTIONS 3

(see Definition (5.7)), which allows us to deduce the convergence (0.4) for every x except on
a set of capacity zero. The relation between this novel notion of capacity and the Hausdorff
measure (see Theorem 5.16) enables us to deduce Theorem 2.

The class J, is composed of all (H"~!,n — 1)-rectifiable sets (see [, Subsection 3.2.14])
with finite 7"~ '-measure, which satisfy a suitable geometric condition at every point except
on a set with Hausdorff dimension n — p (see Definition 3.6). For example, finite union of
(n — 1)-dimensional manifolds of class C! belong to J, for every 1 < p < n. More in general,
finite unions of graphs of Sobolev functions in W%? belong to J, (see Example 6.3). As pointed
out in Remark 6.2, whenever n > 2p + 1, the graph of a W2P-function might have topological
closure with arbitrarily large n-dimensional Lebesgue measure. This shows that a generic set in
Jp does not need to be essentially closed. In addition, in Example 6.5 we are able to construct
a set in R? which cannot be written as a finite union of graphs, but nevertheless it belongs to
Jp for every 1 < p < 2.

In order to define the property which characterizes the sets in 7, we make use of the theory
of indecomposable sets, for which we introduce a geometric quantity called upper isoperimetric
profile (see (2.12)). This quantity plays a similar role to that of the Cheeger’s constant in the
context of Riemannian manifolds. Roughly speaking, if I' € 7, then for every x up to a set of
Hausdorff dimension n —p, the set B1(0)\ (I' —z)/r can be overrun by N, indecomposable sets
(possibly depending on z), say (F, ;)= , in such a way that the upper isoperimetric profile of
the sets F. ; does not vanish as » — 0*. We call this property non vanishing upper isoperimetric
profile (see Definition 3.2). This property is optimal in view of Theorem 1. More precisely,
we construct a counterexample to Theorem 1 which shows that, essentially, the notion of non
vanishing upper isoperimetric profile cannot be weakened (see Example 6.7).

1. PRELIMINARY RESULTS

In this first section we recall some properties about sets of finite perimeter. In particular
we focus our attention on the concept of indecomposable set, which will play an important role
for the rest of the paper. We end this section by recalling some fundamental tools and results
about the space GSBV () which will be useful in the sequel.

1.1. Sets of finite perimeter. Given 2 an open set of R™ we recall that a L£"-measurable
set £ C R™ has finite perimeter in {2 if

P(E;Q) = sup / divpdr < oo,
peCH(QR™) JE
HS"HOOSl

where div denotes the divergence operator defined as usual, i.e. divg :=> ", g—i:. fQ=R"
we simply write P(F) to denote P(E;R™). Whenever E has finite perimeter, by means of
Riesz’s representation Theorem, we know that the distributional gradient of the characteristic
function of E, i.e. DIlg, can be represented as a measure in M, (Q;R™) (the space of all
R"-valued bounded Radon measures on ). In particular, by denoting the total variation of

D1g as |D1g|, then for every Borel set B C € the relative perimeter of E in B is defined as
P(E; B) := |D14(B).

We denote by 0*FE the reduced boundary of E, defined as those z € Q for which there exists
vp(x) € S*! such that
Dlg(B,(z))
—_— T = . 1.1
A By EW (L.1)
The unitary vector vg(x) is the measure-theoretic inner normal of E at x.

1.2. Structure properties. Following the notation in [3, Subsection 2.10.19], given x € ,
whenever 0 < a < n, we denote the a-dimensional upper and lower densities of u at =x,

respectively, as
B,
0**(u, z) := limsup B, (z))

)
r—0+ Wa T
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O (i, z) := lim inf M

r—0+ W T
If the upper and lower density coincide, the a-dimensional density of u at x is defined as

u(B, ()
0t War®
Given 0 < 4 <1 and given a set A C Q we denote the point of density § of A as
AP = {z Q| O"(L"LA, ) =26},

where £" is the n-dimensional Lebesgue outer measure.
De Giorgi’s structure Theorem holds true (see for example [, Theorem 3.59]).

Theorem 1.1. Let Q be an open set of R™ and let E C R™ with P(E;) < co. Then 0*E is
countably (H"~',n — 1)-rectifiable and

|Dlg|=H""'LO"E.
In addition, for every x € 0*E the following properties hold

(a) the sets (E—x)/r locally converge in measure in R™ asr — 0% to the halfspace H orthogonal
to vg(z) and containing vy (x);

(b) O V(H 1 LIE x) = 1.

We shall make use of the following two results. The first is due to Federer and concerns the
structure of sets having finite perimeter. The second can be seen as a sort of Leibniz’s formula
for the intersection of two sets of finite perimeter.

Theorem 1.2. Let Q be an open set of R™ and let E C R™ with P(E;Q) < co. Then
o H* Y EW/DAIE)=0;
e H' 1 (Q\ [EMWUEN2 yEO]) =0.

Proof. See for example [1, Theorem, 3.61]. O

Proposition 1.3 (Leibniz’s formula). Let Q be an open set of R™ and let E,F C R™ with
P(E;Q),P(F;Q) < oo. Then P(ENF;Q) < oo and moreover

H L O(ENF)=H" WO ENFY 31 9" Fn EW
+H"  {vg = vp}.
Proof. See [18, Theorem 16.3] O

(1.2)

1.3. Caccioppoli’s partition and indecomposable sets. First of all let us recall the defi-
nition of Caccioppoli’s partition (see [1] for a reference).

Definition 1.4 (Caccioppoli’s partition). Let € be an open set of R”. We say that a £™-

measurable partition (F;)$2; of © is a Caccioppoli’s partition if

i=1

Moreover we say that a Caccioppoli’s partition is ordered if |E;| > |E;| whenever i < j.

Definition 1.5 (Indecomposability). Let 2 be an open set of R” and let F' C Q with P(F;Q) <
oo. We say that F' is indecomposable if for every set E satisfying

ECF, P(F;Q) =P(E;Q)+P(F\ E;Q), (1.3)
then |E| =0 or |[EAF| =0.

Remark 1.6. The notion of indecomposability can be found for example in [14] and it is in per-
fect agreement with the following fact (see [6, Proposition 2.12]): the set F' is indecomposable
if and only if any u € BV (Q) with |Du|(F) = 0 is necessarily constant on F'.

In particular this tells us that every connected open set U C ) with finite perimeter is
indecomposable.
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Remark 1.7. For every set E C F it holds P(F;Q) < P(E; Q)+ P(F\ E;). This means that
condition (1.3) is equivalent to
ECF, P(F;Q) > P(E;Q) + P(F\ E; Q).

Moreover, condition (1.3) can be equivalently stated for a countable family (E;)$2,. This
means that F' is indecomposable if and only if the following conditions

UB=F |BnE=064) > PEQ)=PFQ) (14)
=1 =1

imply that there exists i such that |E;)AF| =0 and |E;| = 0 for i # 4.
Indeed condition (1.4) clearly implies (1.3). While if F' is indecomposable, by setting F :=

Eq, (1.4) tells us

P(E;Q) + P(F\ E;Q) < P(F;Q),
which implies

P(E;Q)+ P(F\ E;Q) = P(F;0Q).
By the indecomposability of F' we deduce that one between E or FAFE has zero Lebesgue
measure. If |[FAE| = 0 we are done. Otherwise |E| = 0 and we can proceed as before by
defining F := E,. Clearly, if this procedure does not stop, then |F| = 0 and we are done.
Otherwise if it stops at ig € N this means that |FAE; | = 0 and we are done.

We conclude this subsection with two technical propositions.

Proposition 1.8. Let Q) be an open set of R"™ and let F© C Q) be indecomposable. Suppose
E C Q is a set having finite perimeter in Q0 and such that

|[ENF|>0 and |F\E|>O0. (1.5)
Then it holds H" Y (0* E N FW) > 0.

Proof. We can consider the measurable partition of F' given by FF = (ENF)U(F \ E). By
hypothesis [E N F|,|F'\ E| > 0. Using Leibniz’s formula (1.2) we can write

I(ENF)=[0*EnFM U FNEY U [{vg =vr}l,
and
(F\E)=[0"EnFYU[0*FNEO)U [{ve = —vr}].
Since *F N EW, {vg = vp}, *F N EO® and {vg = —vp} are pairwise disjoint subsets of
O*F, if H* 1 (0*ENFWM) =0 then
P(ENF;Q)+ P(F\ E;Q) =H"" Yo" FNEW) + H" 19" Fn EO)
+H"  {ve =vr}) + H  ({ve = —vr})
< P(F;9),

which by Remark 1.7 implies (1.3) and this together with (1.5) is in contradiction with the
indecomposability of F. O

Proposition 1.9. Let  be an open set of R™ and let E, E' C Q with P(E;Q), P(E’;) < 00
and such that O*E' C 0*E. Let F C E be an indecomposable set. Then one and only one of
the following holds

(1) FCFE

(2) FCE\E.

Proof. Tt is enough to show that |F'N E’| # 0 implies F' C E’.

Suppose not. Then |F N E’| > 0 and also |F \ E’| > 0. By Leibniz’s formula both F N E’
and F \ E’ are sets having finite perimeter in . Moreover, by Proposition 1.8 we would
have also H" 1 (0*E' N F(M)) > 0. But since F' C E then F(Y) ¢ EM and this implies
H*1(9*E'nEWM) > 0 which is in contradiction with the hypothesis 9*E’ C 9*E. This proves
the proposition. O
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1.4. Indecomposable components. The following result is a well known fact about the
decomposability property of sets of finite perimeter. Precisely, every set with finite perimeter
E can be decomposed into a countable family of indecomposable sets (F;) such that

oo o0
lp=)Y 1p, and P(E)=>» P(F
i=1 i=1
This result was first announced (with a sketch of the proof) in [3, Subsection 4.2.25] in the
more general setting of integral currents of R™. A complete proof in the context of sets of finite
perimeter in R™ can be found in [14]. We are interested in the same result when R™ is replaced
by a generic Lipschitz-regular open set ). Namely, whenever E C  is such that P(F; Q) < oo,

then there exists a countable family of indecomposable subsets of Q, say (F;), such that

11E_21F, and P(E;Q) ZP F;; Q).
=1
This fact can be deduced by using [14, Lemma 3.1, Corollary 3.2, Proposition 3.3], and we
decide to give a complete proof in the next proposition.

Proposition 1.10. Let Q2 C R™ be a bounded Lipschitz-reqular domain, and let E C Q2 be such
that P(E;Q) < oo. Then there exists a Caccioppoli’s indecomposable partition of E, which
means a countable family (F;)52, of indecomposable sets such that

(1) EﬂF(l) Fl, for every i € N;

(2) #HENED\UZ, F) = 0;

(3) ENF;,NE =0, fori+#j;

() Y2, P(F:9) = P(E;9);

() W (000 )\ Um0 R =0

(6) H' (AN O*F;) \ 0*E) =0 for every i € N;

(7) H =Y QN O*F,NO*F;) =0 fori#j.
Moreover the family (F3)2, is unique up to permutation of indices in the sense that given any
family of indecomposable sets (F})2, satisfying 1-4 then there exists a bijection m: N — N
such that

|F;AF, ()|7Of0reveryz€N

Remark 1.11. Conditions 2 and 3 say in a more precise way that 1p = .o, 1p,.

Proof. We first prove that conditions 1-3 hold true. Since €2 is Lipschitz-regular, we know that
E is a set of finite perimeter in R”, i.e. P(E) < oo (see [20, Subsection 6.5.1 Lemma 1]).
By applymg [14, Proposition 3.3] to the set E C R™, we deduce that there exists a countable
family (Fz)ze I satlsfymg 1 and 2 with the additional property F, # ) for every i € I, and

> P(F;) = P(E). (1.6)

el

Now if the cardinality of I is a natural number N, we define F; := N,r(i) where 7 is any
bijection of {1,..., N} onto I, and F; = () for every ¢ > N. While if the cardinality of I is
equal to the cardinality of N, we define F; := FW( ;) where 7 is any bijection of N onto /. Clearly
the family (F;)$°, satisfies 1 and 2. We show that it satisfies also 3. Indeed, we can use [14,
Lemma 3.1] which says that

ot ([Q N @ EUEY)\ | Jo F U F}”) =0,
i=1

where now 9*FE has to be intended as the reduced boundary of E as a subset of R™. Since
Fi(l) N O*E = () for every i, the only possibility is that

H ! (a*E\ f:j a*Fi) =0, (1.7)
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which by (1.6) implies

(Jo'Fi=0"E and H" '(0"Find"F;) =0, for i # j,
i=1
and in particular that
H"HO*F;\ 0*E) = 0, for every i € N. (1.8)
If |[F;NF}| > 0 for some ¢ # j then by using Proposition 1.8, we deduce that H’L_l(a*FiﬁFj(l)) >
0 which is in contradiction with (1.8). Finally, since by (1) every F; coincides with its measure

theoretic interior on the points of F, this shows condition 3.
We claim that

iP(Fi; Q) = P(E;Q).

To show this, notice that by applying Leibniz’s formula (1.2) to the couple of sets Q and E
(both seen as sets with finite perimeter in R™), since E C 2 we can write
H LN E=H"1L(O(ENQ)=H""TL@ENQD) + H" 1L ({vg =vq}), (1.9)
and since by 1 we have F; C Q) for every i € N, then we have also
H LG F, =H " L0 (FN Q) =H L@ Fn QD) + 1 ({ve, = va)). (1.10)
By using [14, Corollary 3.2] together with (1.9) and (1.10) we deduce that

H! ({uE =vo}\ Q{uﬂ = m}) =0. (1.11)

We can write
P(E) = H" (0" ) = K"~ (0" E N QW) + 1" ({vp = va}) = P(B; Q) + H" " ({ve = va})

By using the lower semicontinuity of the perimeter and (1.11) we can continue the previous
inequality

P(E) = P(E;Q) + 1" '({vg = va}) < iP(Fi; Q) + H  ({vp, = va})
=1

=Y H O F QD) + 7 ({vr, = va))

i=1
_ ZH”*l(B*Fi) - Z P(F;) = P(E),

where we have also used that, since 2 is Lipschitz-regular, then H"~1(0* F;n QM) = P(F;; Q).
By using again the lower semicontinuity of the perimeter and (1.11), we deduce that the only
possibility for which (1.4) is actually an equality is that
P(E;Q) = Z P(F;;Q) and H" '({vg =va}) = Z’H"_l({l/pi =vq}),
i=1 i=1

which in particular implies our claim.

Properties 5-7 simply follow by [14, Corollary 3.2].

It remains to prove that a family of indecomposable sets (F;)°, satisfying 1-4 is unique.
As before, since ) is Lipschitz-regular, then the (F;) are actually sets having finite perimeter
in R™. Then, in view of [141, Proposition 3.3] it is enough to prove that

iP(Fi) = P(E). (1.12)
i=1

In this case, suppose that (F;); and (F}); are two sequences of sets satisfying 1-4. By removing
the sets in (F;); and in (F}); equal to the emptyset we end up with two families (F;);e; and
(F!)ier, both satisfying 1-4 with the additional condition F;, F} # () for every i € I and i € I'.
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Therefore, we are in position to apply the uniqueness result [14, Proposition 3.3] which says
that there exists a bijection w: I — I’ such that
\FiAF;T(i)| =0, for every i € I,

and this would be enough to obtain uniqueness.
Now we show (1.12). Since by hypothesis

S P(F:0) = P(E:0),

by (1.9) and by (1.10) together with the fact H"~*(9*F; N QW) = P(F};Q), it is enough to
show

DA ({rm =va}) =H" ({ve = va}).
i=1
First of all since |F; N F;| = 0 it is easy to see that
H"  {vp, =va}N {vp, =vq}) = 0fori # j. (1.13)

In particular this implies that
> P(F) =Y P(F;Q)+H""({vr, = va}) < o0. (1.14)
i=1 i=1
We claim that
’Hn71 <{I/E = I/Q}A U{VFi = I/Q}) =0.
i=1

By using (1.14) we can apply [14, Lemma 3.1] and arguing as before this implies (1.11). To
prove

H ! <Q{VF,; =vot\{ve = VQ}> =0,

we show that H" l-a.e. © € {vr, = vq} belongs to O*E for every i € N. For this purpose,
define I' := (J;2, 0*F;. Thanks to (1.14) T is a countably (H"!,n — 1)-rectifiable set with
H" (') < co. By properties 1-4, we can apply [14, Corollary 3.2] to deduce that

H N QNO*F;NO*F;) =0 for i # j.

This together with (1.13) tells us that

H* YO F;NO*F;) =0 for i # j. (1.15)
This last condition allows us to define an orientation of I', namely a measurable map v: I' —
S™~1 in the following way

v(z) :=vpg,(z), for x € O°F;. (1.16)
If we set u; = 1yi_ ;, then we have u; € SBVP(;T) for every p > 1. Since for every i
Vu; = Vu =0 and
u; — u strongly in L*,

then we can apply [21, Remark 4.9] to deduce

ut — ut in H" " l-measure on T, (1.17)
Now fix ip € N. By (1.15) and the definition of u™ (see Definition 1.16), for H" l-ae. z €
{ve, = va} uf (z) = 1 and u; (z) = 0 for every i > ig. Hence, by (1.17) this means also that
ut(z) =1 and u™(x) = 0 for H* '-ae. = € {vp, = vao}. By definition of u® (see Definition
1.16) we deduce that H" t-ae. x € {vr,, = va} is a point of density 1/2 for £, and by

Theorem 1.2 also that H"'-a.e. x € {vr, = vq} belongs to 9*E. Thanks to the arbitrariness

of ig we conclude the proof.
O



ON THE BLOW-UP OF GSBV FUNCTIONS 9

Definition 1.12 (Indecomposable components). Let 2 be an open set of R™ and let E C Q
with P(E;§) < oo. Let (F;)$2, be the unique (up to permutation of indices) indecompos-
able partition of E given by Proposition 1.10. Then, for every ¢ € N we say that F; is an
indecomposable component of E.

The following proposition says that if Fy is an indecomposable set, then whenever |E, AEy| —
0 and P(E,;Q) — P(E;Q) as r — 07, then for every r it is possible to select an indecompos-
able component F, of E,., such that |F,AE| — 0 and P(F,;Q) — P(E;Q) asr — 0T,

Proposition 1.13. Let Q be a bounded Lipschitz reqular domain of R", and let (E,)rc(0,1)
be a family of sets contained in Q with P(E,;Q) < co. For each r € (0,1) let (F, ;)2 be
the Caccioppoli’s indecomposable partition of E, given by Proposition 1.10. Let Ey C € be an
indecomposable set. Suppose that

(1) lim, Lo+ [EAFo| =0

(2) lim,. o+ P(ET‘; Q) = P(EO; Q)
Then, for each r € (0,1) there exists o, € N such that

lim |F,, AEy| =0, (1.18)
r—0+t
and
lim P(F,,, ;) = P(Ep; Q). (1.19)
r—0+

Proof. Suppose that our proposition does not hold. Then there exists a § > 0 such that

lim sup (inf |FT7iAE0|> > 0.
ieN

r—0+ g

This implies the existence of a subsequence (r,,)5°_; such that
‘F""m77;AEO| > 67 (120)

for every m € N and for every i € N.

Consider the Caccioppoli’s partition of Q made of (F,  ;)5°, UQ\ E,, . Since Q has finite
Lebesgue measure, this partition can be ordered. Thus we can apply the compactness theorem
for Caccioppoli’s ordered partitions (see [I, Theorem, 4.19] and [I, Remark, 4.20]), to find a
Caccioppoli’s (ordered) partition of €, say (Fp;)i2; where one of the Fy, must be equal to
0\ Ey, such that up to subsequences we have

lim |F,. ;AFy;| =0 for every i € N. (1.21)
m—r oo

By removing the set (Q\ Ey) from the partition, we obtain an ordered measurable partition of
Ey, which we still call (Fp;)52;.

By (1.20), there exists a family I C N with cardinality strictly greater than 1, such that
Fy; # 0 for every i € I.

Using the lower semicontinuity of the perimeter and property (4) of Proposition 1.10, we
can write

> P(Fy;Q) < liminf P(Fy, Q) < liminf Y~ P(Fy,, :Q)

el =0 m—o0 m—oo 4 7

K3 1= 1=
1.22
< liminf P(Ey, ; Q) (1.22)

m—r0o0
= P(Ep; Q),
since (Fo;)ier is a (measurable) partition of Ey, (1.22) implies

> P(Fy,59Q) = P(E; ), (1.23)

i€l
and by Remark 1.7 this is in contradiction with the indecomposability of Fy. Hence this proves
(1.18).
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Finally we notice that
P(Ey; Q) <liminf P(F, ;) < limsup P(F, ;)

r—0+ r—0+

< lim sup Z P(F, ;)

r—0%t 7,

= limsup P(E,; )

r—0t

= P(EOv Q)a
and this gives (1.19). O

1.5. GSBYV functions. For the general theory concerning the space of generalised functions
of special bounded variation GSBV (), we refer to [1]. In order to give a precise meaning of
jump set and of approximate gradient in the context of GSBV functions, we need to recall the
notion of approximate limit ([1, Section 4.5]).

Definition 1.14 (Upper and lower approximate limit). Given an L™-measurable function
u: {2 — R the upper approximate limit of v at = € €0 is defined as

ut(z) = ap-limsupu(y) :=inf{t € R | ©"(L" L {u > t},x) = 0}
y—x

while the lower approximate limit of u at x is defined as

u” (x) := ap-liminfu(y) :=sup{t e R | ©"(L" L {u < t},x) = 0}.
y—x

In addition, we say that v admits an approximate limit equal to a € R at z, and we write

ap-limu(y) = a,

if ut(2) = u= () = a (the case a = +oo are not excluded).

Definition 1.15 (Approximate continuity). Let £ be an open set of R™. For every L"-
measurable function u: 2 — R we define the approximate continuity set as the set of points
x €  for which there exists a € R such that
ap-limu(y) = a.

y—T
The approximate discontinuity set S, is defined as the complement in 2 of the approximate
continuity set, i.e.

Su={reQ|u (z) <ut(x)}.

When z € Q\ S, we denote the approximate limit of u at x as a(x)

We are now in position to remind the definitions of jump set and of approximate gradient
for GS BV -functions.

Definition 1.16 (Jump set). Let 2 be an open set of R". For every £™-measurable function
u: © — R we define the approximate jump set .J,, as the set of points x € € for which there
exist a,b € R with a < b and v € S"~! such that

ap-lim v(y) =a and ap-lim v(y) =b. (1.24)
(y—x)-v>0 (y—x)-v<0
Yy Yy

If z € J, then we write a = u™(z) and b = u~ (z). The vector v, uniquely determined by
this condition, is denoted by v, (z). The jump of u is the function [u]: J, — R defined by
[u](z) := ut(z) —u™ (z) for every z € J,,.

Definition 1.17 (Approximate differentiability). Let u: @ — R be a £™-measurable function
and z € Q\ S,. Then u is approximately differentiable at z if @4(z) € R and there exists a
linear map L: R™ — R such that

=0.

.t [20) = 82) = L(y — )
y—z ly — |
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In this case the approximate gradient of u at z is defined as Vu(z) := L.

Definition 1.18 (GSBV functions). Let  be an open set of R™. We say that a function
u: 2 — R belongs to GSBV (), if for every M € N the truncated function u* := (uvM)A—M
belongs to SBVj,.(£2).

Now we recall the main result about the fine properties of GSBV functions (see [1, Theorem
4.34]).

Theorem 1.19 (Fine properties). Let u € GSBV (), let M € N. Then
(1) Sy = UMGN Sym and

wta) = Jim (@M)*@), w (@)= lm @) (@)

(2) Sy is countably H" -rectifiable, H" 1 (S, \ Ju) =0 and
Tan(Sy,x) = (vu(x))t, for H' t-a.e. € Sy;
(8) u is weakly approzimate differentiable L™-a.e. in Q and
Vu(z) = VuM (z), for L™-a.e. x € {Ju| < M}.
The following compactness result holds true.

Theorem 1.20. Let Q be an open set of R™ and let (ur)5>, be a sequence of functions in
GSBV(Q). Suppose that there exists p > 1 such that

sup ([[ul|r + [Vl + H" " (Ju)) < oco. (1.25)
€

Then there exists u € GSBV () such that, up to passing through a subsequence, we have
klim ug(z) = u(z), L"-a.e. and Vuy, — Vu, weakly in L*(Q), as k — oo,
— 00

and
liminf " (Jy,) > H" ().
k—o0
Proof. Tt is a particular case of [, Theorem 4.36]. O

Finally, we introduce suitable subspaces of GSBV ().

Definition 1.21. Given I' C Q a countably (H"~!, n — 1)-rectifiable set with H"~1(T") < oo,
we define for every p > 1

GSBVP(Q) :={u € GSBV(Q) | Vu € LP(; R™)};

GSBVP(Q) :={u e GSBV(Q) | u € LP(Q), Vu € LP(Q;R")};

GSBV (1) :={ue GSBV(Q) | J, CT};

GSBVP(Q;T) :={ue GSBVP(Q) | J, C T}

GSBVP(Q;T) :={u e GSBVP(Q) | J, CT}.

Remark 1.22. Using [, Proposition 2.3] and Theorem 1.20, it is possible to prove that GSBV,P(€};T')

endowed with the norm
lullp = llullze + [[Vul| L,
is a Banach space.

2. WEAK POINCARE’S INEQUALITY FOR INDECOMPOSABLE SETS

This section is devoted to the proof of a weak version of the Poincaré’s inequality for in-
decomposable sets. We recall that given a connected Lipschitz-regular bounded open set €,
Poincaré’s inequality allows to control the LP-distance of a function u from its average in term
of the LP-norm of its gradient. Namely, for every u € W1P(Q) it holds

(/Q “—][Updl“); SC(Qap)</Q|Vu|pdas>;. (2.1)

In our case we want to derive a similar inequality in the context of GSBVP-functions, when
Q) is replaced by a generic indecomposable set of finite measure. Since in general a function
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u € GSBVP(Q) is not even integrable, the LP-distance on the left hand side of (2.1) will be
substituted by the L°-distance, which is the one that induces the convergence in measure (see
Definition 5.4). Precisely, we prove the following inequality

(/Flu—mpde); < C(F,p, A)(/prdx); + (2\|F))7, (2.2)

for every indecomposable set F' C Q with |F| < co and for every u € GSBVP(Q) such that
H*1(J, N FMD) = 0. The real number m is the median of u on F (see Definition 2.8), Vu is
the approximate gradient of u (see Section 1.5), and A is any positive real number in (0,1/2].
The integral on the left hand side of (2.2) is equivalent to the L°-distance on F' (see (5.3))
between u and m. The function C'(F, p,-) is decreasing and in general may blow up as A — 0.
Inequality (2.2) tells us that if [ |Vu[Pdz is sufficiently small, then u is close to a single
constant on F. This information will play a crucial role in order to derive the first main result
of this paper, namely Theorem 1.

2.1. The upper isoperimetric profile. Given F' C  an indecomposable set with finite
measure, we want to introduce an isoperimetric quantity hg, which is a function hg: (0, %] —
(0, 00), and which plays a similar role to the so called Cheeger’s constant. We recall that when

) is a bounded open set of R™, (n > 2) the Cheeger’s constant is defined as (see [16],[17])
P(E
h(Q) := inf{|§5|> | ECQ, |E|> 0}. (2.3)
Let us remind that the Cheeger’s constant was introduced in [3] to study lower bounds for

the smallest eigenvalue of the Laplace operator on compact Riemannian manifolds without
boundary. As a consequence, one obtains the validity of a Poincaré’s inequality with optimal
constant uniformly bounded from below by a geometric constant. Precisely, for the case of
) bounded open set of R™, let A,(£2) be the smallest “eigenvalue” of the p-laplacian with
Dirichlet boundary condition (1 < p < c0), i.e.

Vaul?,
A(Q) = inf %
wewir @) [ullz

Then arguing as in [3] (see [15] [13]) one can easily show that
h(€)P

2
In our case, since we are interested in a weaker version of Poincaré’s inequality for inde-
composable sets without the assumption of Dirichlet boundary conditions, we need to work
with a different notion of Cheeger’s constant. Before starting with the definition, we need
to prove a lower-semicontinuity property, which can be seen as a generalisation of the well

known result of lower semicontinuity of the perimeter: given a sequence of sets (Fj) such that
limg_y 00 |[ExAE| = 0, then for every open set {2

liminf P(Ey; Q) > P(E;Q).
k—00

Ap(2) >

Proposition 2.1 (Lower semicontinuity). Let Q be an open set of R". Let (Ey)3,,(E)5,
and E, E' be subsets of Q0 with finite perimeter in  such that E}, C Ej and

(2) hmk%oo P(Ek, Q) = ,P(E’7 Q),

(8) limy_yo0 |ELAE'| = 0.
Then it holds the following lower semicontinuity property

lim inf "~ (9" E}, N EMy > 4o E' n EW). (2.4)
Proof. Using the Leibniz’s formula (1.2) we can write
P(E(; Q) = P(E, N B Q) = H Y0 By nEY) + H L (0" B N EY)
+ Hn_l({VE;'c =vg}).
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Since E}, C Ej, then E,;(l) C Elil), hence El;(l)ﬂElil/z) = (). This implies H”_l(a*EkﬂE,;(l)) =0.
Moreover, since Ej. C Ej, then H"’l({yE; # vg, }) = 0. Therefore (2.5) can be rewritten as

P(E}; Q) = 1" 0" E, N EV) + H* (0" E}, N 0" Ey). (2.6)
Analogously we have
P(E;\ Ej; Q) = H" 10" (Ey \ Ep) N EXM) + H* (0" (Ey, \ E}) N 0" Ey).

Since H" 1 (0* (E, \ E},) ﬂE,gl)) =H""1(0*E}, ﬁE,(Cl))7 then we can rewrite the previous equality
as

P(E,\ Ep; Q) = H" 10" E), N EXY) + H* (0" (B \ E}) N 0" Ey). (2.7)
We claim that
H' O B\ (0" E, UO* (B \ Ey))) =0 (2.8)
and
H N (0*Ey NO*EL) N (0*E, NO*(Ey \ E},)) = 0. (2.9)

To show this, notice that by Theorem 1.2 for " t-a.e. z €, if x € E,(gl/Q), then
{z e (E)® orx e (E)YP ) and {z € (B \ E})© or z € (B, \ Ep) /P ).

But if x € E,il/z) it cannot happen 2 € (E;)(® and z € (Ey \ E})®, otherwise = € E}(€0) which
is a contradiction. This proves (2.8). Also, if x € E,gl/Q) then it cannot happen z € (E})1/?)

and z € (Ey \ E;)(1/?), otherwise 2 € E,il) which is again a contradiction. This proves (2.9).
By (2.8) and (2.9), summing (2.6) with (2.7) we obtain for every k € N

P(B; Q) + P(Ei \ Ej; Q) = 2H" " (0" B, N EY) + P(E; Q). (2.10)
Since E’ C E, repeating the same argument we have also in this case
P(E';Q) + P(E\ E';Q) = 21" "1 (0"E' n EY) + P(E; Q). (2.11)

Finally if we call [ := liminfg_, . H" 1 (0*E} N E,(Cl)) (without loss of generality we can assume
I € R), using (2.10) and the lower semicontinuity of the perimeter on €2, we can write

2H" N O*E'NEW) + P(E;Q) = P(E';Q) + P(E\ E';Q)

< liminf(P(E}; Q) + P(Ex \ Ej; Q)

k—o0
= lim inf (2K~ (9" B, ) EMY 4 P(E; Q)

— 00
=2l+ lim P(Ey;Q)
k—oo
=2l+ P(E;Q),
which is our desired result. (]

Remark 2.2. If the sets (E})y of the previous proposition are open, say for example (U), and
such that H"‘l(Uél)AUk) =0, then P(E};Uy) = H" Y(0*E}, N U,gl)) for every k and by the

previous lower semi-continuity result we have
liminf P(E}; Uy) = P(E'; U),
where we have also used H"~1(9*E' nUM) > P(E';U).
With the next definition we introduce the upper isoperimetric profile.

Definition 2.3 (Upper isoperimetric profile). Let Q be an open set of R™ (n > 2) and let F
be an indecomposable set of 2 with |F| < oo. For every A € (0,1/2] we define

H=1(9*E 0 FO)
|E|
We call the function hp: (0,1/2] — R the upper isoperimetric profile of F.

hp(\) == inf{ E C F, \[F| < |E| < |F|/2, P(E;Q) < oo}. (2.12)
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Remark 2.4. The upper isoperimetric profile is a non decreasing function. Moreover, if we take
an indecomposable open set U C 2 such that |U| < co and H*" (UM AU) = 0, then (2.12)
reduces to

hy(A) := inf {P(|EE’U)

Notice that infy~ohy(A) is not the Cheeger’s constant in (2.3), since we look only at the
relative perimeter of E inside U, while in (2.3) one is interested in the whole perimeter of E.

Notice also that in literature (in particular in the context of Riemannian manifolds) the
isoperimetric profile at A is defined by considering the infimum among all sets E with fixed
volume |E| = A|F|. Since we ask for |E| > A|F| we decide to call it upper isoperimetric profile.

B C U AUI< 18] < [U)/2, PE®) <o ).

Finally, the next proposition is the core result of this subsection.

Proposition 2.5. Let Q be an open set of R™ (n > 2) and let F' be an indecomposable set of
Q with |F| < co. Then hg(X\) > 0 for every A € (0,1/2].
In particular, it holds the following relative isoperimetric inequality
1
E| < ——H" Y 9*EnFWM), 2.13
B < g W ) (213)

for every E C F with \|F| < |E| < |F|/2 and P(E;Q) < c©.
Proof. Let X € (0,1/2] and consider

H (O E A FO)
A) = inf
PO = n<ii ey E]
ECF

. (2.14)

Clearly hp()) is finite. We want to show that it is strictly positive. Consider a minimizing
sequence (FEy)gen i-€.

n—1( g+ 1
hp(A) = lim " (ai’] nr ));
since
P(Eg; Q) =H"" N E, N FY) + H" " ({vp = vp,})
< P(F;Q) 4 (hp(X) + )| Ex|
< P(F;Q) + (hr(N) +€)(|1F|/2),
then by using [1, Theorem 3.39], up to subsequences there exists a set Fo, C F' having finite

perimeter with A|F| < |Ex| < |F|/2 and such that limg_,o |[ExAFEs| = 0. Moreover thanks
to Proposition 2.5 we have

H YO EynFM) _ H (0" By N FW)

hr(N\) = li >
PO) = B = Bl ’
which means . "
H"H(0*Es N FW)
hr(A\) =
) .|
Finally, since M\ F| < |Ex| < |F|/2 and F = E, U (F \ Ew), by Proposition 1.8, the indecom-
posability of F forces H"~1(0* B, N F(M)) > 0. This concludes the proof. O

Remark 2.6. Notice that infy~g hp(X) might be equal to zero. Indeed consider two sequences
of positive real numbers (1,)5; and (6,)52 such that Y- | 12 < oo and lim, o 0, /12 = 0.
Define an open set U C R? made of an union of disjoint open squares @, of side I,,, each
connected to an open big rectangle through small bridges of size ¢, as in figure (1).

By our choice of [,,, U is a connected open set with finite perimeter, hence by Remark 1.6
it is indecomposable.

For every n € N we define E,, C U to be the square of side [,, union half of the n-th bridge
as in figure (1). By our choice of [,, and §,, we have

HY(O*E, NUWD)

. . _
juf hu(A) < Inf B, 0
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FIGURE 1. Indecomposable set U with infyxso hy(A) = 0.

However, Proposition 2.5 tells us that this can happen only for sequences (E,) such that
|En| — 0.

Moreover, by using the Coarea Formula, it can be proved that infyso hp(A) > 0 if and only
if for every u € BV (Q) the following Poincaré’s inequality holds true

/ lu—m|dx < ¢|Du|(FM),

F

where m is the median of v on F' (see Definition 2.8). In this case the best constant ¢ which
satisfies the previous inequality is exactly infyso hp(A).

Remark 2.7. Given F' an indecomposable set of R™, then simply by definition, we have the
following scaling property of the relative upper isoperimetric profile:

hr() = Th%(')v
for every r > 0, z € R™.

2.2. Weak Poincaré’s inequality. We are now in position to prove the weak version of
Poincaré’s inequality (2.2). Before we need the following definition.

Definition 2.8. Let u: Q — R be a measurable function. Given a measurable set F C Q we
define the median of u on F' as

F
m(u, F) ::inf{t€R|{u>t}ﬂF|§2}.

Remark 2.9. It holds
F F
Hu>t}NnF| < % for ¢ > m(u, F) and |{u>t}NF|> |2—| for t <m(u,F). (2.15)

Theorem 2.10. Let 2 be an open set of R™ and let T C Q be a countably (H" 1, n — 1)-
rectifiable set with H" 1(T') < oco. Given an indecomposable set F C Q with |F| < oo and
H YT NFM) =0, then for every u € GSBVP(;T) (p > 1) and for every A € (0,1/2], there
exists a measurable set F» C F such that

|F\ FA| < 2)|F|, (2.16)
and the following inequality holds true

s, :
ol de ) < P g 2.1
([ mmrae)” < ol (19 ae)” @.17)

where m := m(u, F').

Proof. Let v € GSBVP(Q;T) be a positive function such that

F
% for every t > 0. (2.18)

{o>t}nF| <

Define
s:=inf{t: |[{v >t} NF| < A|F|}, (2.19)
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and notice that
{v >t} NF| <AF|fort>s, {v >t} NF| > MF|fort <s. (2.20)

If we set v° := v A s we can write

/ vdr < / v dx :/ |FN{v® >t} dt. (2.21)
Fn{v<s} F 0

Since {v > t} = {v® > t} for every t € (0, s) and v°® € SBV(Q), then by (2.18), (2.20), and
the definition of hr(-) we have

HP O {v® > tyNFW) = 410 {v > t}NFWD) > hp(N)|[Fn{v > t}| = hp(\)|[FN{v® > t}].
Then by (2.21) we can use the Coarea Formula for BV functions (see [I, Theorem 3.40]) to

obtain
1 S
/ vdr < / H Yo {v* >t} n FW) dt
FOA{v<s} hp(X) Jo

|Dv5|( ) (2.22)

1
" he(V)
1

= Vol dz,
hF(A) /F(l)ﬁ{v<s}
where for the last equality we used H"~(T'N F(1)) = 0 together with the decomposition of the
variation measure in BV.

Now define (u —m)* := [(u —m) Vv 0]P. Since by (2.15)
F
{lu=—m)i >tnF| <5 e > 0,

we can apply (2.22) to the function (u —m)%} instead of v to deduce that there exists st > 0
satisfying (2.20) (where v is replaced by (u —m)® and s by sT) and such that, thanks to the
chain rule in BV (see [I, Theorem 3.99]), we can write

4
(u—m)t dx < 7/
* h’F()‘) Fn{0<(u—m)§ <st+}

where we used that both integrals vanish on the set {(u —m)%. = 0} and that |[FAF1| = 0.
Analogously, if we set (u —m)? :=|(u —m) A O by (2.15)

/ (u—m)?" | Vu| dx (2.23)
FN{0<(u—m)f <s+}

F
|{(u—m)p>t}ﬂF|<| | for ¢ > 0.
Arguing as before there exists s~ > 0 such that

p
u—m)P dr < /
( ) hF()‘) Fn{o<(u—m)? <s—}

If we set F* := {m — (s7)Y? <u <m+ (st)/P} N F by (2.20) we have |F\ F*| < 2\|F|. By
summing the previous two inequalities and by using Holder inequality we deduce

(u—m)P HVu|dz.  (2.24)

/Fﬁ{0<(um)€ <s—}

(/FA |um|de>’13 < th(A)</w IVU”dw)p, (2.25)

which immediately implies (2.17).
O

Corollary 2.11 (Weak Poincaré’s inequality). Under the same hypothesis of Theorem 2.10
we have for every A € (0,1/2] and for every u € GSBVP(Q;T) with H* 1 (I'n FM) =0

(/ u—m|p/\1dx> <+ </ |V ul? dm) + (2A|F|)7, (2.26)

where m := m(u, F).
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Proof. Given u € GSBVP(Q;T), we can consider F» and m as in Theorem 2.10. Then we can

write
L :
(/ u—m|p/\1d;v> (/ |u—m|pdm) —|—|F\F/\\%
F FX

#(A) (/F VP dx); +2AF),

which is exactly (2.26). O

IA

(2.27)

3. THE CLASS J,

In this section we define the class of admissible jump sets 7, for which Theorems 1 and 2
hold true. We start with the notion of non vanishing upper isoperimetric profile, but before
we need the following definitions.

Definition 3.1. We say that a set A C B1(0) is conical, if
[(ANAA)ANA| = 0 for every A € (0,1).

Moreover, given an open set 2 C R™, given a set A C €2, and given a ball B,.(z) C  we will
use the following notation

A—
App =20 By(0),
and we will always make use of the following identity
A..NB
A)m,z = : m)\ A(O)a

for every A € (0,1].

Definition 3.2 (Non vanishing upper isoperimetric profile). Let £ be an open set of R™ and
let I' C Q. Given x € € we say that I" has a non vanishing upper isoperimetric profile at z if
there exists N, € N such that

or every 1 < j < N, there exists (F} i)o<r<r, (T2 > a family of indecomposable subsets
1) f 1< j < N, th i F.; <ra 0) a family of ind ble sub:
of B1(0), with the following properties
(11) H YT NED) =0, 7€ (0,7,);
(1.2) liminf, o+ hp,;(A) >0, A€ (0,1/2];
(2) there exists a measurable partition of B;(0) made of (nonempty) conical sets (Eo,j)ﬁvz‘”l
with the following property
(21) limr_)0+ |Fr,jAE07j| =0.

Remark 3.3. In order to prevent misunderstandings, we want to emphasize that since F;. ; are
subsets of the unitary ball, then in the definition of i, ; the infimum in (2.12) has to be taken
among all sets with finite perimeter in By. Moreover, for a given I' neither the family (F, ;)
nor (Ey ;) are unique. Nevertheless, if I' has a non vanishing upper isoperimetric profile at x,
then there exists the minimum number N, (> 1) for which (1) and (2) hold, and this number
clearly depends on the geometry of I

Remark 3.4. The property of non vanishing upper isoperimetric profile is stable under inclusion,
in the sense that whenever IV C T and I" has a non vanishing upper isoperimetric profile at z,
then also I satisfies the same property at x.

We give a basic example which clarifies the concept of non vanishing upper isoperimetric
profile.

Ezample 3.5. Let M C Q be an (n — 1)-dimensional manifold of class C*. Then M has a non
vanishing upper isoperimetric profile for every « € €. To show this, let us first suppose x € M.
Then if we call v(z) a unit normal to M at z, we know that there exists a sufficiently small
value 7, > 0 and a C! function f: v(z)* — R such that

B.(z) "M = B,(x) Ngraph(f), r € (0,74).
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By writing the generic point y € R™ as y = (z,t) where y € v(x)* and ¢t € R, we define
Fy:={yeB, (z)|t< f(2)} Fy:={ye B, (z)|t>f(2)},
and
N, =2, Fr1=(F)rg, Fro:= (F2)ra, r € (0,rg);
Ep1:={y € B1(0) | v(x) -y <0}, Eoo:={y € B1(0) | v(z) -y > 0}.
To prove condition (1.2), one can use the C* regularity of f and an argument similar to the
one in Example 6.5, to deduce that the open sets F, ; (j = 1,2) admit a Poincaré’s inequality

Of lhe fOIm
/ u — % u
F,.’j F

-
where ¢ > 0 is a constant independent on r € (0,7;). So given E C F, ; a set of finite perimeter
in Bi, we can use 1g instead of w in (3.1) to deduce that

. n— * n— * 1
min{|E|, |F,.; \ B[} < ¢|D1g|(F,;) = cH"  (0*EN Fyj) = cH" (0" ENFY),

dx < c¢|Dul(F, ), u € BV(By) (3.1)

where the right-most equality follows from the fact F. ; = Fflj) This implies

liminfhp,  (A) >

)
r—0+

ol

for every A € (0,1/2].

Another possibility to prove that M has a non-vanishing upper isoperimetric profile at
x € M, is to notice that since M is an (n — 1)-manifold of class C'!, we can always find a set
of finite perimeter 2 C  such that M C 0*F. In this case we can make use of Proposition
3.7, which says that 0*E admits a non-vanishing upper isoperimetric profile at every point
x € 0*E. Since the property of non-vanishing upper isoperimetric profile is stable under
inclusion (Remark 3.4), this means that also M satisfies this property for every x € M.

Finally, the case z € Q\ M is much easier. Indeed, by the closeness of M there exists r,, > 0
small enough such that B,(x) N M = () for every r € (0,7,). Then it is enough to set

N, =1, F’r‘l = 31(0)7 TE(O7T«T);
E071 = Bl(O)
Now we are in position to introduce the space of all the admissible jump sets T'.

Definition 3.6 (Admissible jump sets). Let I' C Q be a countably (H"~!,n—1)-rectifiable set
with H"}(TI") < oo and let 1 < p < n. We say that I' belongs to J, if for every z € Q\Sr, where
St is a set of Hausdorfl dimension at most n — p, I' has a non vanishing upper isoperimetric
profile at x.

We will use the next two proposition to construct examples of sets living in 7, (see Section
6).
Proposition 3.7. Let Q be an open set of R™ and let E C Q with P(E;Q) < oo. Then

the reduced boundary 0*E has a mon vanishing upper isoperimetric profile at every point x
belonging to the following set

{reQ |0 DN L E,x) =0} UIE.

Proof. First we deal with the case x € 9*F.
We denote as H the half space given by Theorem 1.1 such that

lim |(E,,AH)NB1(0)] =0, lim P(E, .;B1(0)) = P(H; B1(0)). (3.2)
r—0+ r—0+

Clearly H N B1(0) and By(0) \ H are conical and indecomposable sets. Thus, we can apply
Proposition 1.13 to find two families F.; and F;. 2 made of indecomposable components of E, ,
and Bq(0) \ E, ;, respectively, such that
lim ‘(Fr,lAH) n B1(0)| = 0, lim P(Fr,l§ Bl(O)) = P(EQJ; Bl(O)), (33)
r—0t r—0t

T [FpABO)\H)| =0, lim P(F:Bi(0)) = P(Eozi Bi(0).  (3.4)

r—0+
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Given r, > 0 such that B, (z) C 2, we set
E,:=FENB, (z), Ey:=B, (z)\E,
and
Eoy = HNBy(0), Epo=B1(0)\ H.

This choice guarantees also (1.1) and (2.1) of Definition 3.2.
Finally, in order to show (1.2) of Definition 3.2, we claim that

liminf hg,  (A) > hg(X), A€ (0,1/2], (3.5)
r—0t ’
and
lim(i)rJEf hFTQ()\) > hBl\H()\), A e (0,1/2]. (3.6)
T—>

We prove for example (3.5). To this purpose fix A € (O, %] and for every r € (0,r,) consider
E, C F,, with P(E,; By) < o0, such that

H 10" E, N FY)
; S hFT.l
|Ex| '
We show that for every subsequence (r,,,) such that r,, — 0T as m — oo then

liminfh,  (A) = he ().

()‘) +, /\‘FT,1| < ‘ET| < |Fr,1|/2- (3'7)

Without loss of generality we assume

liminf hp,  (A) = lim hp, (\) =1<oc.

m—o0 m—r o0

Since E, C F,_ 1, by using Leibniz’s formula 1.3 the inequalities (3.7) say to us
sup P(E,, ; B1) <sup[|E,, |hr, ,(A)+ P(F,, 1;B1)] < oo.

Tm ) m,1

This means that thanks to the compactness result [, Theorem 3.39], eventually passing through
another subsequence, we have lim,,_, | Er,,, AEp| = 0 for some set Ey C H with finite perime-
ter in By(0) and with A\|H| < |Ey| < |H|/2. Hence, thanks to (3.3) we are in position to apply
the lower semicontinuity result of Proposition 2.1 to obtain
HYE,, NE ) W (Eyn HD)

liminf h A) > liminf I > hg(N).

iminfhp,, ,(A) > limin B | m 2 ol > ha(N)
The same argument shows the validity of (3.6). Since hg(A) > 0, this says that 0* E admits a
non-vanishing upper isoperimetric profile at = with N, = 2.

In the case z € Q is such that @~ D(H"~1L9*E,z) = 0, we claim that we have two

different sub-cases:

lim |B;(0)\ E,.| =0, (3.8)
r—0t
or
lim |E,,|=0. 3.9
Jlim | g (3.9)

Indeed by a simple application of the relative isoperimetric inequality in the unitary ball we
can write

min| By o], 1By (0) \ B} < 0m) ZEBLD) _ oy

rn—l

H 15" E N B, (0))

rn—l

)

and by the fact that r — |E, .| is a continuous map on (0, ;) we deduce that one between (3.8)
and (3.9) must occur. Suppose for example (3.8) holds. Given r, > 0 such that B, (x) C €,
we set

E1 =FEnN B,-z (.13), E071 = B1 (O)
Arguing in the very same way as before, we can make use of Proposition 1.13 to find for every
r € (0,r,) an indecomposable component of (E1), 4, say Fy 1, such that

lim |F.1AB(0) =0,  lim P(F,;;B;)=0.
Jim |Fr 1 AB(0)] Jim P(F,1; B1)
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Finally, by using again Proposition 2.1 we can prove in the very same way as before that
liminf hp , (A) > hp, (A), A € (0,1/2].
r—0t ’

Case (3.9) can be treated in the same way. O

Remark 3.8. By Proposition 3.7, the reduced boundary 0*F of a set E C ) with finite perime-
ter such that dimpy(Q\ 9*EU{z | O(H""'LI*E;z) = 0}) = n — p, belongs to J,.

4. PROPERTIES OF THE BLOW-UP IN GSBV?(Q)

This section contains the proof of Theorem 1. We proceed following two main steps: first
we show that there exist suitable subsequences of radii (r;) with r; — 07 as i — oo, such
that if I' € J,, then for every z € Q, up to a set of Hausdorff dimension n — p, the limit
lim;_, o mj(u, 75, x) exists and it is finite; by combining this result with the weak Poincaré’s
inequality on balls we are able to deduce our first main result.

4.1. Weak Poincaré’s inequality on balls. We start this section by proving a weak version
of Poincare’s inequality on balls. First, we need the following definitions.

Definition 4.1. For a given function u: Q@ — R, we define u, ,: B1(0) — R as
ura(y) = u(z +ry),
for every y € B1(0).

Definition 4.2. Let I' € J, (1 <p <n) and let x € @\ Sp. Let 7, > 0 and N, € N be given
by Definition 3.2. We define for every r € (0,74), Uy 4: By, () — R as

o (y) mj(u,r,z) onxz+rk,;
Uy x =
oY 0 otherwise.

where m;(u, 7, ) := m(u, x + rF, ;) (see Definition 2.8) and (Fr’j);\g1 are the indecomposable
sets given by Definition 3.2.

Remark 4.3. The median of w in F' is invariant under rescaling and translations in the sense
that

m(u, F) = m(uyz, (F —x)/r),
for every x € 2 and for every 0 < r < ry. This means that the number m;(u,r, «) of the
previous definition is also equal to m(uy 4, Fy. ;).

Theorem 4.4 (Weak Poincare’s inequality on balls). Let Q be an open set of R™ and let
I' C Q be a countably (H" ™1, n — 1)-rectifiable set with H"1(I') < co. Suppose that T' C Q has
a non vanishing upper isoperimetric profile at x, then for every A € (0,1/2] there exists ry > 0
(depending also on x) such that

(/ lu =Tz P A1 dy) < C(p,n) | H(N)r (/ [Vul? dy) +NF L (4)
B () B ()

for every r < ry and for every u € GSBVP(Q;T'), where

o) = s, {2 <o w

r—0t =1,...;Ng

Proof. Fix A > 0 and let z € Q\ Sr. By property (2.1) of Definition 3.2 we know that there
exists 0 < r} < ry such that for every r < r}

N,
sup |B1(0) \ U F,. ;| <A,

r<ry =1

which means

2

x

sup |Br(z) \ | J(x +7F ;)] <rA (4.3)

r<ry 1

J



ON THE BLOW-UP OF GSBV FUNCTIONS 21

Moreover by the definition of limsup we can consider 7} small enough such that

sup{ max { ! Hg%@(A)<oo.

r<ry J=1,.-,Ng hFr,j ()‘)

Since ., € GSBVP(By(0);Ty,) (r < 15) and thanks to the fact #" (I, N E.Y) = 0 for
every 1 < j < N,, by applying Theorem 2.10 we know that there exists Fr):j C F,; with

|F7’7j \ FTA]| S >‘|F7‘7j|a (44)

such that

P
/ |u<m+ry>—mr,j|f’dys( P ) [ IVuta e ay,
F> hFr,j()\) Fﬁ\,j

"
where m, ; := m;(u,r, x).
If we define F := U;V:xl F'r"):j? then by summing on j = 1,..., N, both sides of the previous

inequality, if r < min{r}, Y} we obtain

[ttt ) = ot )l dy < AN [ Vot )l dy,
F) F

T

or equivalently

/ fu(y) — el dy < (p (V) / Vu)l? dy.
z+rF)

z+rF)

Finally, by defining F, := U;V:j F, ; and by using also (4.3) and (4.4), we can write

/ u(y) —Tra|” N dy < / [u(y) = Tl dy + |Br(2) \ (z + rFY)|
B, () z+rF)

< (pta(N)r)” /+ . Vu(y)P dy +r"|F\ B+ [Br(2) \ (z + 1F,)]

< (ALY /B VU dy (o D

< C(n,p) [(%(A)r)p /B TP dy 7).

which is exactly (4.1). d

Remark 4.5. Under the hypothesis of the previous theorem, in the case the set I' satisfies the
stronger conditions at x

L4 U;vil Fr,j = Bl(0)7 7 < Ty
o liminf, o+ infasohr, ;(A) >0, j=1,...,Ng.
then it is not difficult to show that inequality (4.1) can be improved to

(/ u—umc|pdx>p < C’(p,n)r(/ |Vu|pda:>p
BT(I) Br(z)

4.2. Convergence of the blow-up. The following theorem, which is the core result of this
section, tells us that when the integrals | Bo(x) |VulP decays properly as r — 0T, then the medi-

ans m;(u,r,x) are convergent for suitable subsequences of radii ; — 0. In the proof we will
use the following inequality which is true for each quadruple of measurable sets A, B,C, D C
|AAB| < |CAD| + |AAC| + |BAD|. (4.5)

Inequality (4.5) simply follows by noticing that |[AAB| = |14 — 1g]/z: and by applying the
triangular inequality.
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Theorem 4.6. Let Q C R™ be an open set, letT' € J, (1 < p <n) and let x € Q\ Sp. Suppose
that there exists some ¢ € (0,p] with the following property

li:i%lip 7“"—% /B,,,(m) |Vul|P dx = 0. (4.6)
Then for every sequence of radii (1;);2, such that
(1) (%)% <OH <1 ieN
(2) (i) < oo;
the sequence of medians (mj(u,ri,x))zl is Cauchy for every j=1,..., N,.
Proof. Choose j € {1,...,N,}. In order to simplify the notation we write

Ti
t,

K2

= mj(u,ri,x) Fr = Fr,j EO = EO,]' a; ‘= .
Ti—1
2a] —1

Fix € > 0 such that for every n € N it holds € < P

(this is possible since by condition (1)

it is enough to chose 0 < € < 2\/\/%114), and consider i € N so big that for every i > 7
1 1
hFTi(E) > @ = iliirg(i)gfhpri (e) > 0.

This is possible by the definition of lim inf.

By using Theorem 2.10 with the function u(z + r(-)) € GSBVP?(B1(0);T, ;) and the in-
decomposable set F,.., we deduce that for every i > i and for every e > 0, there exists
Ff C F,, C B1(0) such that

|F ] > (1 —=2¢)|F,,|, (4.7

and

(/ [Ur; o — tr, P dy) ’ < 20(6)17(/ |vun,z|p dy) p- (4.8)
Fe Fe

Now for each i > i define
Fi=a;F, NF:L | C Bg,(0).
Since F; C a;F),, we can give the following estimate
|Fil = |a:Fe, N | = |aiFy, \ (aiFy, \ @i B Uai B\ FY )|
> |aiFr,| — |aiFy, \ ai Y| — |ai e\ FY_ L
By (4.7) and the fact |F,, AEy| — 0 we can write
i F, \ i Py | = a | By, \ F| < aif2€| | = ai2€]| Eo| + o(1)],
and by using also inequality (4.5) with A = F,,_, Na;F,,, B = a;F,,, C = EgNa;Ey and
D = a; Ey, we can write
lai B, \ FY_ [ < |(Frooy NaBy )\ FY |+ [(Fr oy NaiEy ) Aai B ]\ FY

<|NFe  \Ef |+ [(Froy NaiFy)AaiF |

= 2¢|Eo| + |(Eo Na;Ey)Aa; Eg| + o(1),
and since Ey is conical, then |(Ep Na;Ey)Aa; Ey| = 0 for every ¢ € N; as a consequence we can
write

laiFr, \ Fy, || < 2€|Eo| + o(1).
Putting together our previous estimates we obtain
|Fi| > al'|Eo| — al'2¢|Eg| — 2€¢|Eq| + o(1)
= |Ep|(al — alle — 2¢) + o(1).

By our choice of €, we have al' — €(2a]' +2) > 1, hence

1
| Fil > §|E0\+0(1)7 i€ N. (4.9)
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Therefore, for every i > 7, we can write

|t7"i - t'f’z‘—l |p :][ |tTi - t""i—l ‘p dy < 2;0—1][ |uTi71,I - tﬁ‘ P dy + 217—1][ |u7"i71,1 - tTi71|p dy
Fi Fi ;

i Fi

2r—1gn 2p—1

= | 7] : / [Uriz — tr, [P dy + e [Ur 10— tr, 1| dy,
4 3 i e

i i1

hence by using (4.8) and a; < 1 there exists C = C(p,n,€) > 0 such that

C
|t""i - t?”z‘—1|p S |]_-7| [/ |Vu?”z‘,r|p dy +\/ |vu7“i—1,$|p dy:|
¢ Ffi F:i—l

C
=1z [rf/ |Vu(z +ry) P dy+ 17, / |[Vu(x +r;i_1y)|” dy] ,
| z| Fy, Fr

and finally by using (4.9) we have

C 1 1
[tr, —tr,_,|P = [ — / [VulP do + —— / |Vul? dm}
! 1/2|E0‘ + 0(1) ri P z+ri Fy, Tiflp ztri 1 FY,

z 1
Crd [ 1 / 3) o
< L — [VulP dz + 2_7/ [Vul|P dx
1/2|Bo| + o(1) L=+ [, (0) i e @)

i—1
/..0
< C'ry,

where, thanks also to (4.6), C’ > 0 is a constant which depends only on z, j, p, n, €.
These last inequality means

= 1 — s
Z |t7"i - t7‘1‘71| <O’ Z(ri);7
i>i i=1

and this last series is convergent thanks to our choice of r;. This implies that the sequence
(tr,)52; is Cauchy. Since 1 < j < N, was arbitrary, we prove the theorem.
O

Now we are in position to prove our first main result.

Theorem 4.7. Let Q2 be an open set of R”, letT' € J, (1 <p <n) and let w € GSBVP({;T).
Then for every x € ) except on a set of Hausdorff dimension at most n — p, there exists a
piecewise constant function uy(-): B1(0) — R such that

lim [tr s — ug| A Ldy = 0. (4.10)
r—0% Jp, (0)
Moreover using the notation of Definitions 3.2 and 2.8 we have that
uw(y) = mj(u?x) ny € EO,j7 (411)
where mj(u, x) := lim, oo m;(u,r,z) for 1 <j < N,.
Proof. For every § > 0, consider A5 C 2\ St the set of points - such that
1
limsup ——— / |[Vul? dz > 0. (4.12)
rso+ TR0 B, (z)

By applying for example [7, Theorem 3, Section 2.4.3] we have H" P*%(As;) = 0. Moreover,
since A5, C As, for ;1 < dy, we have that if we fix dp > 0 then by setting A := ﬂ6>0 As we
have

H PO (A) = 0.
Since §p > 0 is arbitrary we deduce

dimy (A) < n —p, (4.13)

and hence also
dimy (AU ST) <n—p. (4.14)
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We claim that every z € 2\ (Sp U A) satisfies (4.10) and (4.11). To show this, let (r;)5°; be a
sequence of radii satisfying (1) and (2) of Theorem 4.6 and define u,: B1(0) — R as

ug(y) = il_i)IEomj(u,ri,x), fory € Eyj and 1 < j < N,.

First of all we prove that

i—00

lim / [tr; (y) —uz(y)| A 1dy = 0. (4.15)
B1(0)

Recalling condition (2.1) of Definition 3.2 and the definition of @,, ,: B,(x) — R (see Definition
4.2), we immediately deduce

lim [Ty, o(x +7iy) —ug(y)| Aldy = 0. (4.16)
1—> 00 Bl (0)

which together with the weak Poincaré’s inequality on balls (4.4) gives for every A\ € (0,1/2]

lim sup / tpe () — 2 ()] A Ldy < limsup / ftr, 2 (y) — T (@ + i) A Ldy
B1(0) B1(0)

i—00 i—00

. .
= limsup][ |t — T, »| A 1dy < C(p,n)limsup [%’;(A)( PR / [VulP da:) + )\}J}
i—oo J B, () ' i—o00 T B, (z)
< C(p,)Av.

By letting A — 07 we deduce (4.15). Now in order to prove (4.10), it is equivalent to prove

lim u(y) = wa((y — @) /r)| A 1dy =0, (4.17)
=0+ B, (x)
but since the sets Ey ; are conical, then u,(y) = u,((y — x)/r) for every y € B,(z), and
therefore we can rewrite (4.17) as

lim [u(y) — uz(y)| A 1dy = 0. (4.18)
r—0+ B, ()
To show (4.18), simply notice that given any r € (0,1) then there exists i € N such that
riy1 < r <r;, and therefore by using the lower-bound (1) in Theorem 4.6 on the ratio r;11/7;
we easily deduce

' B,
F A T R P Y Y
B, (z) |BTz'+1|v B, () By, ()

which together with (4.15) clearly implies (4.18) and hence (4.10).
Finally, to conclude we need to show that if we set for every j € 1,..., N, m;(u,z) =
lim;_, oo mj(u, 75, ), then

lim mj(u,r, z) = m;(u, ). (4.19)
r—0t

In order to show this, notice that the convergence (4.10) implies that for every t except on a
countable set A, we have

Hure > t}A{ug >t} — 0, (r—0%).
Moreover since |F, ;AEg ;| — 0 as r — 0, we have also that for t € R\ A
Hurz >t} NF | = [{ue >t} N Eo |, (r—0%). (4.20)
By definition of medians (see Definition 2.8), in order to prove (4.19), we need to show that
inf{t e R | [{ur >t} NF ;| <|F.;|/2}
converges as r — 07 to

mf{t cR | ‘{Ux > t} ﬂE07j| < |E07J|/2}
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The convergence (4.20) together with |F, jAEy ;| — 0 as r — 01 imply that if ¢t € R\ A is

such that [{u, >t} N Ey ;| < |E3‘1‘7 then for every r close enough to 0" we have

| Frj
< Zrnal
2

analogously if t € R\ A is such that |[{u, >t} N Ey ;| > ‘E;'jl, then for every r close enough

to 0 we have

|{ur,$ >N F.;

F .
Hurw >t} NE, ;| > %

Therefore (4.19) is established once we know that

| £,

En
Hus > t}NEy ;| < S for ¢ > m;(u,z) and [{u, >t}NEy;| > o]

, for t < mj(u,x).
But this last condition is obviously verified since w,, is constantly equal to m;(u,z) on Ey ;. O

Remark 4.8. Since the result of Theorem 4.7 is local, then it still holds for the space GSBV}?

oc

(;1).

Remark 4.9. Tt is not difficult to show that if we substitute condition (1.2) in the definition of
non vanishing upper isoperimetric profile with the stronger conditions

r—0t A>0

N
U Fj=Bi(0), (r<r,) and liminfinf hp (A) >0, (j=1,...,N,), (4.21)
j=1

then, by using Remark 4.5 it is possible to show that the convergence (4.10) actually holds
with respect to the LP-convergence (in Example 6.5 we construct a non trivial admissible jump
set, such that it admits a non vanishing upper isoperimetric profile with the stronger condition
(4.21) at every point x ).

Remark 4.10. When we deal with Sobolev spaces, namely I = (), Theorem 1 implies the well
known result that given u € Wllo’f (Q) then every point z, up to a set of Hausdorfl dimension
at most n — p, is a Lebesgue point of u. The function

u(a) = loglog |z ™",
which belongs to W12(B1(0)), B1(0) C R?, shows that the dimension n — p is optimal in
Theorem 1.
5. A NOTION OF CAPACITY FOR FUNCTIONS WITH PRESCRIBED JUMP

This section is devoted to the proof of Theorem 2. For this purpose we need to introduce
a suitable notion of capacity for functions in GSBVP?(;T'). Let us recall that given A C R,
the classical p-capacity in the context of Sobolev functions is defined as (see for example [9] or

(D)
Cap,(A) := inf {/ |VulPdx | uw € KP, uw>1 a.e. in an open neighborhood of A} , (5.1)

where K? := {u: R" - R | u > 0,u € LP*(R"), Vu € LP(R™)}. Moreover, the following
result can be interpreted as a capacitary version of Chebyshev’s inequality (see for example [9,
Section 7] or [7, Lemma 1, Section 4.8]).

Proposition 5.1. Assume u € KP and € > 0. Let
A:={z eR" | m(u,r,x) > € for somer > 0},

where m(u,r,x) denotes the median of u on B,.(xz) (see Definition 2.8). Then

c
P
Cap,(4) < > /Rn |VulP dz,

where ¢ = ¢(n, p).
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The previous proposition suggests us that given A C R”™, if we define a variant of the
p-capacity in the following way

Cap,(A) := inf {/ |[Vu|Pdx | w € KP, limsup m(u,r,z) > 1 for every = € A} , (5.2
n r—0t
then
Cap,(4) < Cap,(A4) < ¢2? Cap,(A),
for some constant ¢ > 0 and for every A C R". Indeed, if u € KP is such that « > 1 a.e. in an
open neighborhood of A, clearly u satisfies limsup,._ o+ m(u,r,x) > 1 for every z € A and we
obtain
Cap),(A) < Cap, (A).
On the other hand, given 6 > 0, let u € K? be such that limsup, _,o+ m(u,r,z) > 1 for every
x € A and

/ |VulP dz < Cap),(A) — 6.
By definition of limsup for every = € A there exists r, such that m(u,r,,x) > 1/2. Therefore
AcC{zx eR" | m(u,r,x) > 1/2 for some r > 0},

and by the capacitary Chebyshev’s inequality the previous inclusion together with the mono-
tonicity of the p-capacity immediately imply

Cap,(A) < c2p/ |VulP dx < ¢2P(Cap),(4) —6).

n

Thanks to the arbitrariness of § > 0, we deduce
Cap,(A4) < cCap,(A).

Hence, it is possible to define an equivalent notion of capacity by looking at the medians of
u for every x € A. Since for technical reason we prefer to define a notion of capacity where
the infimum (5.1) does not depend on a a.e.-condition, the variant introduced in (5.2) seems
to fit better our purpose. However, if we want to mimic definition in (5.2), we should take
into account different medians, i.e. (m;(u,r, x))éy:’”l, depending on I" and z (see Definition 4.2).
Since we prefer to define a capacity which is a priori independent on I'; we decide to give a
slightly different definition which is based on the notion of approximate limit (see Definition

(5.7)).

5.1. Convergence with respect to an outer measure. In this subsection we want to fix
the notion of convergence with respect to an outer measure and to define a suitable function
space which will be useful in view of Theorem 2.

For convenience of the reader we recall the definition of outer measure.

Definition 5.2 (Outer measure). An outer measure on {2 is any set function p: P(Q) —
[0, +00] satisfying the following properties

(a) p(0) = 0;

(b) p(A1) < p(Asz), whenever A; C Ay (monotonicity);

(¢) p(Usmy Ai) <502, u(A;) (countable sub-additivity).

Definition 5.3. Let p: P(Q) — [0,00] be an outer measure. Given A C €, we say that
a property P(x), defined for € A, holds p-quasi everywhere, and we use the abbreviation
1-q.e., if there exists a set N C A, with u(N) = 0, such that P(x) holds for every z € A\ N.

We recall that the convergence in measure can be metrized.

Definition 5.4. We denote by L°(B;) (see [12]) the Fréchet space of all (equivalence classes
of) Lebesgue measurable real-functions on By equipped with the topology of convergence in
measure. This topology can be defined for example by the Lévy-metric

|lu —v||LoBy) = / lu —v| A ldz, u,v € L%(By). (5.3)
B

1



ON THE BLOW-UP OF GSBV FUNCTIONS 27

By means of Theorem 1, whenever I' € J,,, we can associate to each function u € GSBVP((;T')
a map u(y: 2 — L°(B;) defined everywhere except on a set of Hausdorff dimension n — p.
Given an outer measure p on ), we want to define a space which contains functions defined
p-q.e. from Q to L°(By), and to endow such a space with a notion of convergence in y-measure.

Definition 5.5. Let p be an outer measure on 2. Let X be the real vector space of all
functions u: Q — L°(By), and consider the equivalence relation

u~v iff p({z € Q| ul@) £ v()}) = 0. (5.4)

We define
Uu(9; L°(By)) := X/ ~,

i.e. the space consisting of all equivalence classes obtained as the quotient of X with respect
to ~.

Remark 5.6. Notice that, since p is an outer measure, (5.4) makes sense even without any
measurability conditions on the functions u and v.

Definition 5.7. Let y be an outer measure on €2, let (u)7° ; and u be functions in U, (€; L°(By)).
We say that (ug) converges to u in p-measure if

Tim u({z € Q| flug — ullzos,) > ) =0, (5.5)
for every € > 0.

Convergence in pu-measure implies up to subsequences pointwise convergence p-q.e.. This is
the content of the next proposition.

Proposition 5.8. Let ju be an outer measure on Q, let (uy)5e, and u be functions in U, (€2; LY(By)).
Suppose u, — u in p-measure, then there exists a subsequence (kj) such that for p-g.e. x € Q

lim ||ukj (x) — U(z)HLO(Bl) =0,
j—o0

Proof. For every j € N choose k; € N such that

1 1
1 ({x € Q| |lug; — ullposy) > J}) < >

Set A; = {a: € Q| |lu, — ullpo(s,) < ;}, define B; := (5, 4; and finally B := (J%°, B;.
Suppose x € B, then « € B; for some ¢ and hence = € A; for every j > i. Therefore

1 o
[uk, () — w(@)|Lom,) < I for j > 1,

which means
lim (Jug, (z) — u(z)| Lo(B,) = 0.
j—o00

Finally, we can use the monotonicity and the countable sub-additivity of u to estimate

W\ B) £ W@\ B) < 3 p(4) < 5

and by the arbitrariness of ¢ we deduce u(2\ B) = 0. O

The convergence in p-measure can be metrized in the following way.

Proposition 5.9. Let u be an outer measure on € such that () < +oo, and let u,v €
U, (Q; L°(By)). The metric d(u,v) defined by

d(u,v) = inf p({llu = vlsogs,) > ) +9,

induces the convergence in measure (5.5), and it gives to U,(€; LY(By)) the structure of a
complete metric space.
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Proof. We start by proving that d(-,-) is a metric.

First of all suppose that d(u,v) = 0, then we want to prove that u({|lu—vl/zo(p,) > 0}) = 0.
Indeed, if d(u,v) = 0, then for every 0 > 0 pu({||lu—vl|Lo(B,) > d}) = 0. Since {||lu—v||o(B,) >
0} = Uz {llu — vl om,) > 1/k}, we can conclude u({|lu — v| ro(p,) > 0}) = 0 simply by the
sub-additivity of pu.

The equality d(u,v) = d(v,u) is obvious.

Finally we need to prove the triangular inequality. For this purpose notice that for every
triple of functions u, v, g: Q — L%(Bj) it holds

{llu —vllLo(m,) > 61 + 02} C {llu—gllrom,) > 01} U{llg — vllro(m,) > da}-

Given € > 0, let ;1 and d5 be positive real numbers such that

d(u, g) +€ = p({llu = gllos,) > 01}) + 61, d(g,v) + € = u({llg — vllLocs,) > 82}) + J2.
Then
d(u,v) = inf p({llu —vlzo,) > 0}) +9
< u({llu = wvllLos,) > 01+ d2}) + d1 + &2
< [u{llv = gllrosy) > 01}) + 0] + [u({llg = vllzos,) > 62}) + 2]
<d(u,g)+ d(g,v) + 2,
and letting e — 0+ this implies the triangular inequality.
Given (ug)?, C U,(Q; L°(By)) and u € U, (92 L°(By)), we claim that limg_, o0 d(ug, u) = 0

if and only if uy converge to u in p-measure. Let us first suppose limy_, o0 d(ug, u) = 0. Then
by definition of d(-,-), it turns out that for every k there exist d; N\, 0 such that

lim p({|lux — ullzo(m,) > d}) = 0.
k—o0

Hence, given € > 0 we can find k big enough such that for every k >k {[juy — ul|o(p,) > €} C
{llux —ullo(B,) > Ok}, which implies

Hm p({{lue — ullpo(s,) > €}) < lim p({llur — ullro(s,) > 0k}) = 0.
k—oc0 k—oco

This gives the convergence in p-measure.
Now suppose that uj converge to u in p-measure. Then we can write for every € > 0

Jim inf (s = ullzos,) > 1)+ 0 < Jim p({llus — ullzo,) > ) +e=e.

which immediately implies limg_, o0 d(ug, u) = 0.
Finally, we have to prove that U,(Q; L°(B;)) endowed with the metric d(-,-) is complete.

For this purpose, suppose that the sequence (uy)72, is Cauchy. Given a sequence (A;); of

positive real numbers such that Z;‘;l Aj < 0o, there exists a subsequence (k;); such that
d(ukjl ) ukh) < Ajv for every ji,j2 > J,
which means that or every j there exists 0 < §; < A; such that (without loss of generality we
may also suppose J; \, 0)
n({lluk; — vk, o) > 053) + 65 < Ay (5.6)

Define A; := {|lur; — uk,;;,[lo(my) > 65} and set B; == U,,5;,1 Am. We claim that uy,
converge pointwise for every z € Q\ (72, B;. Indeed, if 2 € @\ (\;Z, B; then there exists j
such that x ¢ B, hence by the definition of B; this implies = ¢ Aj for every j > j+ 1. For
this reason we have

ur, (x) = ug, ., (2)||Lo(By) < 9;, for every j > j+1,

and this immediately implies that (uy,(z)); is a Cauchy sequence in L°(B;). By the com-
pleteness of L°(B;) we deduce that there exists a function u: €\ ﬂ;’il Bj — L°(B;) such
that

lim [Jug, () — w(z)|[Lo(B,) = 0.
j—o0
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Since by the monotonicity of u we have
u( N Bj) < dim 3 plAn) < lim 37 A =0,
i=1 T ) T mzg

we deduce that the function u is a well defined element of U, (%; L°(By)).
We claim that the subsequence (ug;); converges in u-measure to u. Indeed given any € > 0
we have

{lluk, — ullLocpy) > €} € {lluk, — ullLocsy) > 65}
for every j big enough such that §; < e. This means that

Tim p({llu, — s > €}) < lim p({llu, — ullsogs,) > 6.

By using (5.6) we can deduce

WK

p{llur; —ullpos,) > d65}) < p{lluk,, = Uk, llzoBy) > 05})

3
d

)

p({ vk, — Ukpii Loy > Om})

3
d

)\mu

3
1l

which by the fact Z;’;l A; < oo implies our claim. Since we already know that the convergence
in p-measure implies the convergence in the metric d(-, ), we can write

lim d(ug;,u) = 0.

J]—00

This together with the fact that the sequence (ug ) is Cauchy in the metric d(-, -), easily implies
that the full sequence satisfies

lim d(ug,u) =0,
k—oo

and we are done.
O

Remark 5.10. The space UH(Q;LO(Bl)) equipped with the distance defined in the previous
proposition is actually a Fréchet space.

5.2. The outer measure C),. Let us start with the definition of capacity.

Definition 5.11 (p-Capacity). Let Q be an open set of R” and let I' C Q be a countably
(H" 1, n — 1)-rectifiable set with H"1(I') < co. We define the p-Capacity (1 < p < n) of a
set A C Q as

Cp(A) :=inf {/Q(|Vu|p +|ulP)dz | u € GSBV(;T), u(z) > 1 on A} , (5.7)

where u™ (z) is the upper approximate limit defined in 1.14.

Remark 5.12. In (5.7) we consider also the LP-norm of the function, while in (5.1) only the
LP-norm of the gradient is present. This is simply because we want to avoid that functions
u belonging to the kernel of V could trivialise the infimum in (5.7). We remember that
the kernel of the approximate gradient of GSBV(€;T') functions is made up of piecewise
constant functions whose jump sets are contained in a Caccioppoli’s partition subordinated
to I'. This result can be found for example in [2] for SBV functions; the case GSBV can be
easily recoverd by a truncation argument. For example, with this choice the scaling property
Cp(AA) = A" PCp(A) (see [7, Section 4.7.1]) is lost. Anyway, we do not need this property to
develop our theory.
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Proposition 5.13. For every set A C Q we have
Cp(A) = inf {/(|Vu|p + [uP)dz | we GSBV(Q;T), ut(x) >1 on A, 0 <u < 1} .
Q

Proof. Let u} := (u A1) V0. Since ut(x) > 1 if and only uyt(x) > 1, it is enough to notice
that if u € GSBVP(Q;T') then

/ VP + [udP de < / Val? + [uf? dx,
Q Q
and this concludes the proof. (|

Proposition 5.14. C,(-) is an outer measure on §Q.

Proof. Clearly C,(+) is monotone and C, () = 0. Hence we need only to prove the countable
sub-additivity.

Let (Ay)72, be a countable family of subsets of  and define A := |J;—, Ax. Without loss
of generality we can assume ), C,(Ax) < oo. For each k we can find u, € GSBVP(Q; 1),
0<ur <1, and u:(x) > 1 on A;, such that

27 .

We define u := supy,cy ug, and we claim that v € GSBVP(;T) and ' (z) > 1 on A. Indeed,
since the uy, are bounded functions in GSBV}(Q;T'), we have u, € SBV((2). Therefore by
using the chain rule in BV [1, Theorem 3.99], if we set u,, := sup;<<,, ux, we have

/ [V, |P de < Z/ [Vuyg P dz,
Q /e

/Q Vurl? + JuglP de < Cp(Ar) + —

hence

sup/ (TP + [P < 3 Cp(Ag) + (5.8)
Q

2k
m k=1

Thanks to (5.8) we can use the compactness result [1, Theorem 4.36] for GSBV () together
with [1, Remark 2.9] to deduce that u € GSBVP(%;T') and moreover

Uy, — u strongly in L'(Q) Vi, — Vu weakly in L'(Q). (5.9)

Moreover, if x € A then x € Ay, for some k, therefore uz (z) > 1, and since u > uy, for every k,

we deduce u*t(x) > uf (). Therefore
Ac{zeQ|ut(z)>1}.

By using the lower semicontinuity of the LP-norm with respect to the convergence (5.9), we
have

Cp(A) g/ |VulP + |ufP dz gnmmf/ [Vt [P + [P dz < Cp(Ar) + ¢,
Q m—o0 Q b1

which implies the countable sub-additivity of C)(-) thanks to the arbitrariness of e. O

5.3. Relations between €, and H"~P. In this subsection we derive the relation between C,,
and H"P. Let us notice that Proposition 5.15 and property 2 of Theorem 5.16 are obtained
mainly as in the Sobolev case, and do not depend on the fact I' € J,, while property 1 of
Theorem 5.16 strongly relies on the validity of Theorem 1, i.e. on I' € 7.

Proposition 5.15. Let Q be an open set of R™ and let T' C Q be a countably (H"~*,n —1)-
rectifiable set with H" 1(T') < co. For every 1 < p < n there exists a constant ¢ = c(n,p) > 0
such that for every A C

Co(A) < cH™ P(A).
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Proof. First of all if B,.(x) C €, then C,(B,(z)) can be rewritten as

wt { [ (90 -+ o)y o) = u

Q

where ' = (Q—z)/r and I" = (' — ) /r.

Notice that for r < 1 we have

Javor popydy = [ @origup s fap)dy <o [ (Tul 4 Jup) dy
Q Q Q

Hence, by choosing u(z) := dist(x, R™ \ B2(0)) A 1 whenever = € €', it follows

Cp(B(z)) < 2w, r™ P  (r <1).

Let (C;)$2, be a family of sets contained in © which is a cover of A and diamC; < 1. For
each i there exists a ball B,,(z;) such that C; C By, (z;) and r; = diam(C;). Therefore

A)SZCP <ZO (1)) < 27w, Z n—p < g2ntlopy, Z(dlaI;lC)
i=1

=1 =1

€T —

y), u € GSBV(Q;T), ut(xz) > 1on Bl(O)} ,

Hence, if we set ¢ := 22""‘1 Py, then
C)(A) < cH™ P (A).
[l

Whenever u: £ — R is such that u, is a piecewise constant function of the form of Theorem
4.7, then by definition of upper approximate limit (Definition 1.14), it is easy to see that
!

u"(z) = max m;(u, ). (5.10)

1<j<N,
We shall use this simple observation to deduce more precise relations between p-capacity and
Hausdorff measure.
Theorem 5.16. Let Q be an open set of R™ and let T C Q be a countably (H" " 1,n — 1)-
rectifiable set with H"1(T') < oo. Then for every A C Q and for every 1 < p < n we have
(1) Co(A) =0 and T € J, imply dimp (A) <n —p;
(2) H" P(A) < oo implies Cp(A) = 0.
Proof. Suppose Cp(A) = 0 and I' € J,. By hypothesis we can find a sequence (ux)f>, C
GSBVP(Q;T), 0 < uy <1, such that
(i) uf(z) > 1, for every x € 4;
(i) [o(|[Vug|P + Jugl?) dz < k127 for every k € N.
Define u := Y 7, uj. Since by Remark 1.22 GSBVP(;T) is a Banach space, by (ii) we
deduce that v € GSBVP(Q;T"). Thanks to Theorem 4.7, if we call S, the set of 2 € Q where
the blow-up of uy, does not exist, then dimy (Si) < n — p. By setting S := =, Sk clearly
dimy(S) <n —p. (5.11)
Property (i) above together with (5.10) imply that for every k and for every z € A\ S the
blow up of uy at x is of the form

ko :ij(Uk,m)]lEO,j, and | max mj(ug, ) > 1. (5.12)

Since uy, > 0 for every k, we have u(y) > Zﬁil ug(y) for every M € N and every y € B1(0).
For this reason, by using the linearity of the blow-up and again (5.10), we have

t(z) > <k§_€1uk($)>+ _ 122}}(\[1 {émj(uk,z)].

By letting M — oo, thanks to (5.12), we deduce that A\ S is contained in the set of point z
where u™ (z) = +00. By Theorem 4.7 together with observation (5.10) we deduce that
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which together with (5.11) is exactly (1).

To prove 2 we follow the proof given in [9, Section 3]. Suppose H" P(A) < 2P~ "y < oo for
some v > 0. By denoting S"~P the (n — p)-dimensional spherical measure (see [, Paragraph
2.10.2]), we have

S"TP(A) < 2"TPHMTP(A) < 4.
We claim that for every m € N we can find an open set V,,, and a function u,, € W1?(£2) such
that

(8) AC Vi =UZ, By, (1), sup;rf < (m+1)77 (S5 k)™
(b) BQW (ZL'Z) C Vi1 (Vm C Vm_1);
(¢) ub(x) =1on Vi, spt(Dum)C Vi1 \ Vins [ [Dum|P dz < ¢,
where ¢ := ¢(n,p) > 0.
We start by setting V := Q and ug := 1. Set dpppq = (m+ 1)1 (Thd)! kfl)fl. To define
Vi and u,y,, by using

Y STP(AN{x | 28 < dist(x, Vipo1) <2771 <,
=1

we can find a sequence of balls (B, (z;))$2, such that Ba,, (x;) C Vi1, sup; 7 < 0y, and
ACV,, = U B,.(z) and an,pr?_p <~
Define h; € W1P(Q) as
hi(z) =11 |z —a;| <7y hi(z) =0, if |z —a;] > 2r,

hi(x) =2 — |z —m|/ry I r; <|z—x <2

Since [q, |Dhi[P dx = r; Pwy[(2r:)" — 1] = cwp_pry P, if we define wy, 1= supi2, h;, then

/\Dum|pdx§/Z|Dhi\pdx§c'y.
Q Q=1

In this way (a),(b) and (c) are satisfied.
Define u := Y 7o | k™ 'uy. Since by construction spt (Duy,) C Vin—1\V;, we have [spt (Duy, )N
spt (Dupm+1)| = 0 for every m € N. Therefore we can write

/|Du|pdx—/Zk P|Dug|P dz < cvy A,
Q

k=1
where X :=>"}7 | k7P. By using

<> kThifa € Vinoy \ Vin,

p oo m p
dx < Z/ < 1) de < <Zk1> [Vin—1]-
Vin—1\Vm m=1 k=1

(5.13)

we can estimate
/ |ulP dz = Z k™ uy,
If we call (By,(z)) the balls relative to V,,_1, i.e. Vin—1 = ;o By, (), then

(Zk‘1> [Vin-1] < (Zk‘1> anrf < Zm Poop_pri .
k=1 k=1 i=1 i=1

Therefore we can continue inequality (5.13) in the following way

It

mzl
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We claim that

m

ut(z) > Zk‘l, z € Vi, (5.14)
=1

To prove (5.14) it is sufficient to show that for every t < >°;" , k™! the superlevel {u > t} has
strictly positive density at every x € V,,.
Using the fact that V,,, C V;,,—1 together with property (c), we have that

uf () >1, 1<k<m, z€V, (5.15)

Hence, by choosing any ¢ < >/, k1, since

e > (1= 8)) € fu>1),
k=1
for any 0 < § < 1 such that ;" (1 — §)k~! = ¢, and since by (5.15) each set {uj, > (1 —4)}
has density greater or equal than one at z € V,,,, we deduce that {u > t} has strictly positive
density at every x € V,,.
For this reason, by definition of p-capacity it immediately follows
m —p m —p
G < (L) [avar s upyae < (S5 TG
k=1 Q k=1

Sending m — oo in the previous inequality we deduce C,(A) = 0.
d

5.4. The main result. Let 1 < p <nand I' € J,. Given u € GSBVP?(Q;T"), by Theorem
4.7 we know that u, € L°(Bj) is well defined for every x €  up to a singular set of Hausdorff
dimension at most n — p. If we call S such a singular set, this means that for every 1 < ¢ <p
we have H"~4(S) = 0, and by Proposition 5.15 also C,;(S) = 0. Therefore, for every 1 <
q < p, ug is a well defined element in the Fréchet space Uc, (Q; L°(B1)) (see Definition 5.5).
Unfortunately, we can not conclude the same for ¢ = p. For this reason we need to introduce
a further outer measure.

Definition 5.17 (Lower p-capacity). Let @ C R™ be open, and let I" € 7, (1 < p < n). Given
any set A C ) we define the lower p-capacity as

C (A) = sup Cy(A). (5.16)

P 1<qg<p
Proposition 5.18. C, (:) is an outer measure. In addition,

Co(A)=0 iff C4(A) =0 for every 1 < q<p. (5.17)

p

Proof. C; (1) is an outer measure simply because it is obtained as supremum of a family of
outer measures. Property (5.17) follows by construction. O

Proposition 5.19. LetI' € 7, (1 < p < n), then for every w € GSBVP(;T') we have that
ug is a well defined element in U, (Q; LO(By)).

Proof. By Theorem 4.7 we know that wu, exists everywhere except on a singular set S of
Hausdorff dimension at most n — p. This means that if we call S the set of points where the
blow-up u, ., does not converge, then for every § > 0 H"PT9(S) = 0. As a consequence by
Proposition 5.15 this means also Cj,_5(S) = 0. Finally, relation (5.17) gives the conclusion of
the theorem. O

Proposition 5.20 (Capacitary Chebyshev’s inequality). Let Q be a bounded open set of R™
and let I € J, with 1 < p < n. Then for every e > 0 and for every 1 < g < p it holds

1
Cq({l‘ c N | ”uxHLO(Bl) > wne}) < g /Q(‘Vur] + |u|q) dx, (5.18)

for every u € GSBVP(Q;T).
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Proof. Renormalizing by e, in order to prove (5.18) it is enough to show the following inclusion
{2 € Q| Juelliom) > wa} € {o € Q| ful* (@) > 1, (5.19)

up to a set of zero C;-capacity.
By Theorem 4.7 together with Theorem 5.15, we know that except on a Cy-negligible set

we have
Ny

fuls(y) = > my(ful, @)1z, (1), v € Ba(0).

Using (5.10) we know that |u|*(z) > 1 if and only if at least one of the (m](|u\,x))§vgl is
greater or equal than one.
Now suppose by contradiction that maxi<;<n, m;(Jul,z) <1 and |ug|/zo(p,) > wn. Then

N
Z mj(|u|7 x)]lFr,j
j=1

||uI||L0(Bl) =
LO(By)
N,
=3[ imyuln)in1dy
j=1"Fri
S Wna
which immediately implies (5.19) and hence the proposition. O

Theorem 5.21. Let £ be a bounded open set of R™ and let I' € J, with 1 < p < n. Suppose
that (ur)ie; C GSBVP(;T) is such that

llur — ullLe + [|[Vug — Vuljzr — 0, as k — oo.

Then (uk)g converge to uy in the Fréchet space Ucs (; L(By)).

Proof. We shall prove that given €, > 0, then there exists k such that for every k > %
Cp_ ({x € | ”(Uk)z - ua:”LO(Bl) > wne}) < 4.

Thanks to Theorem 4.7 there exists a set S with dimg(S) < n — p such that (ux), and wu,
exist for every x € Q\ S and for every k € N. Moreover by Theorem 5.16 we know that
Cy(S) = 0 for every 1 < g < p, which by Proposition 5.18 implies C, () = 0. Therefore, since
by linearity we have for every « € Q\ S the relation (ug)z — vy = (up — u),, by using the
capacitary Chebyshev’s inequality for every 1 < g < p we get

1
C’q({x € Q| [[(ur)e — vzl poBy) > wne}) < i / (|Vug — Vul|? + |ug, — u|?) dz.
Q
Finally, by the definition of C} it is enough to choose k big enough such that for every k > k

1
sup — [ (|Vur — Vul|? + |Jug, — u|?) dz < 6,
1<q<p €1 Jo

which is possible since 2 is bounded. O

Putting together Theorems 5.16, Theorem 5.21, and relation (5.17) we are able to prove the
second main result of this paper.

Proof of Theorem 2. Let us first suppose (2 bounded. Putting together the previous result
with Theorem 5.8 we have that there exists a subsequence (k;); such that

Jim Gk, )a = welsogs) =0,

for every x € () except on a C} -negligible set S. Putting together Theorem 5.16 with relation
(5.17) it easily follows dimy(S) < n — p.
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For general Q, we set ,; := QN B;(0) (¢ € N). For every ¢ we can apply the previous result on
the bounded open set §; to obtain a sequence (k%)52, and a set S; C €; with dimy(S;) < n—p,
such that

lim [[(ugi )z — Uzl|Lo(m,) = 0, for every x € Q; \ ;.
J—00 J

oo
J=1

52 for every i. By a diagonal

argument we define for every j € N k; := k§7 and we obtain that

We can also suppose that (k;“) is a subsequence of (k)

oo
JILH;LO | (ur;)e — uellLo(m,) = 0, for every x € Q\ L{Si.
1=
Finally, since every S; has Hausdorff dimension which does not exceed n— p, then also |J;—, S;
has Hausdorff dimension which does not exceed n — p. This proves the theorem. O

Remark 5.22. In [5] the authors are able to prove a density result for the space SBV?().
More precisely, if Q is an open set with Lipschitz boundary and v € SBVP(Q), then there
exists a sequence of functions u; € SBV?(Q2) and of compact C'!' manifolds with C ! boundary
M; cC Q such that J,, € M; but H"~*(M; \ J,,) = 0 and

uj €C®(Q\Jy,),  luj —ullzr =0, |[[Vu; —Vullpr =0, H"'(J,Ady) = 0.
It is natural to ask whether the hypothesis H”_I(JMJ.AJM) — 0 can be improved to
Ju; C Jy for every j € N.

In other words we can rephrase this question in the following way: given I' C €2 a countably
(H"~1, n —1)-rectifiable set, then is it true that the closure in SBV? with respect to the norm
given by ||[Vul|Le + |Jull: of all functions v such that

veC®(Q\J,), J,CMNT, M isany C' manifolds with C* boundary, (5.20)

is the whole of SBVP(Q;T) N LY(2)?

The answer is in general no. Consider 'y C R? the union of three half lines starting from the
origin. Let I' C R? be defined by I'y xR and let [ be the straight line {(0,0,t) |t € R}. The set I
disconnects R3\ T into three connected components Q1,Q, Q3. Let v: R — R be the function
which assumes three different constant values on each of the connected components, say a; #
ag # az # ay. Clearly v € SBVP((;T) for every p € [1,3). We claim that for p € (2,3),
the function v cannot be approximated in SBV? by functions satisfying (5.20). Indeed, any
function u € SBVP(Q) satisfying (5.20) has the property that v, is defined everywhere, except
on a (3 —p)-dimensional Hausdorff set, and it is a function taking at most two values. By using
a slightly modified version of Theorem 2 (where we have to substitute the LP convergence of
the functions with the L' convergence), we deduce that any limit u in SBV?(Q;T") of functions
satisfying (5.20), inherits the property that its blow-up converges to a function wu, which takes
at most two values for every x except on a set of Hausdorff dimension 3 — p. However for
every point x € [, v, assumes three different values, namely a1, aa, a3. Since dimy (1) = 1, this
implies that for every p € (2,3), v cannot be approximated by functions satisfying (5.20).

6. MORE ON THE CLASS J,

We dedicate this section to construct sets living in J,. In the second part we present a
counterexample to Theorem 1.

6.1. Some examples. Let n > 3 and 1 < p < n— 1. We write the generic point x € R”
as r = (y,t) € R" 1 x R. We define WHP(R"™1) as the space of all Sobolev functions
f € WEP(R"1) such that for every y € R"~! except on a set of Hausdorff dimension n—1—p,
y is a Lebesgue point for the distributional gradient D f .

Now let f € WHP(R"™1) and consider its sub-graph

S;={zeR"|t< f(y),yeR"'}.

1By using the theory of capacity it is easy to see that W2P(R"~1) c WL.P(R"—1)
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It is well known that S; is a set having locally finite perimeter in R™.
Consider the following sets

A= {yewl |3f(y) R, lim ) - F)] dHo},

r—0 B~ 1 ()
and

B:={yecR" 1| 3IDf(y) €R", lim |IDf(z) = Df(y)| dz =0 ¢,
0 B ()
where B~ !(y) is the (n — 1)-dimensional ball of radius r centered at y. To be precise we will
call the graph of f the set of points of the form
graph(f) := {(y,1) e R"' xR |y € ANB, t = f(y)}.

Proposition 6.1. Let f € WHP(R"™1) with 1 < p <n—1 and n > 3. Then graph(f) belongs
to Jp.
Proof. By using the theory of capacity developed in [9] (see also [7, Section 4.7]), and the
definition of W', we know that
dimy (R \ANB)<n—1-p.
Therefore, it follows for example by [19, Corollary 8.11] that
dimy (R '\ (ANB)] xR) <n —p.
We claim that for every z = (y,t) € R™ such that y € AU B one and only one of the

following conditions occurs

e xcC G*Sf_;

o O (n-1y 9S8y, x) = 0.
By Proposition 3.7, this would imply that 0* Sf_ has a non vanishing upper isoperimetric profile

at x.
We first prove that for every x = (y,t) € (AU B) x R such that t < f(y), it holds

O U D(H T Lo ST x) =0, (6.1)

or equivalently
li n=L((9*S7 ) s) = 0. 6.2
Jim, #H (0757 )rs) (6-2)

Now, since lim,_,q an_l(y) |f(2) — f(y)| dz = 0, then by a change of variable in the integral
we have )
Jim, 1f(y+r() = fW -0y =0

In particular, this means that for every € > 0

lim [{|f(y+7()) = f(y)l > e} N By~1(0)| = 0. (6.3)

r—0t
For every z € B"1(0) such that |f(y +r2z) — f(y)| < € we have

Pt~ @)~ fwtr) - f@)  fw) 1 e

- — )

r r r r r

and if € < %, by the previous inequalities we deduce

|f(y+7rz) —t| S f(y)—t'

T 2r

Hence, for sufficiently small value of r, we have

Therefore, for sufficiently small value of r, we have

{Ifty+r() —tl/r <130 BYH0) € {If(y +r(-) = F(y)| > e} 0 BY~H(0).
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Notice that
(a*S;)T,az C {(st) S B?il(o) X (—]_, ]_) | S = f(y—‘r”’Z)—t} .

As a consequence, for sufficiently small value of r, we have the following inequalities

(0\)/ 14+ |Df(2)|? dz (6.4)

H (0757 ) < / )
{1 (y+r())—tl/r<13NBT~

< / ~ XD de. (6.5)
{If (y+r(:)—F(W)|>eynBT 1 (0)
Therefore, by using (6.3) and the definition of B, we deduce

lim V14 |Df(z)]? dz =0,

T S (e ()) = F (@) >e}n By (0)
which proves claim (6.1).
Analogously one can prove that if # = (y,t) € (AU B) x R is such that f(y) <t then (6.1)
holds.
Finally it remains to prove that if € graph(u) then z € 0*Sy . First of all, since y
is a Lebesgue point for u and a Lebesgue point for Du, by using [I, Theorem 3.83], w is
approximately differentiable at y, i.e.

|f(y +72) — f(y) — Du(y) - 2|

lim dz = 0.
r—0t BTﬁl(O) r
Therefore if we set Ly (z) := Du(y) - z, then
fyt+r() =) _, Ly(), in LYBIY(0)), as r — 0T (6.6)

T
This means that if we define C;(0) to be the cylinder given by Bf~*(0) x (—1, 1), we can write

lim P((S; —x)/r;C1(0)) = lim V1+ |Df(y +r2)2dz. (6.7)

r—0+ r—0t B?fl(O)

Moreover, if we call H, the lower half space relative to the unit vector %, we can

continue equality (6.7) in the following way

lim P((Sy —z)/r;C1(0)) = lim V1+|Df(y+72)2dz
r—0+ r—0+ B 1(0) (68)

= P(H, ; C1(0)),

where we used that y is a Lebesgue point for Du. Putting together (6.6) with (6.8) we deduce

(i) (S; —x)/r — H, in measure in C1(0) as r — 0%;

(if) Tlim, o+ P((S} —x)/r; C1(0)) = P(H; ; C1(0)).
Since B1(0) € C1(0), condition (i) implies in particular

(Sy —a)/r — H,, in measure in B;(0), asr — ot. (6.9)
Moreover, since P(H_ ;0B1(0)) = 0 we have
P(Hg;€1(0)) = lim P((S7 —2)/r; C1(0))

> hmsup[P(( 7 —)/r; B1(0)) + P((S} — )/r;C1(0) \ B1(0))]

r—0t
>11Hj)1ipp(( —a)/r; B1(0)) +lim inf P((S; —2)/r;C1(0) \ B1(0))
= liminf P((S; —2)/r; B1(0)) + liminf P((S} — )/r; C1(0) \ B1(0))

> P(H, ; B1(0)) + P(H, ;C1(0) \ B1(0))
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which implies

lim sup P((SJ? —x)/r; B1(0)) = lim inf P((SJ? —x)/r; B1(0)) = P(H ; B1(0)). (6.10)

r—0+ r—0t
Putting together (6.9) and (6.10) we can apply [, Proposition 1.62] to the measures D]l(s;_m)/r
(0 < r < 1), to deduce that

17]1(3;_1)”(31 (0)) = D1, (B1(0)) = wp—1 v, (), asr — 0T, (6.11)

where vy is the inner unit vector relative to H, . Finally, by (6.10) we deduce

P(S;; By (x))

lim 1 = Wn-1,
r—0+ rn—
which together with (6.11) implies
Dls, (B@) 0l (Bi(0) _ o pe(Bi(0))

lim ——— — -1 HrA\P1\M))
AR DL, B ) o PSS B ) e wy

and this is exactly (1.1), hence we can conclude z € 9*S} . O

Remark 6.2. Since for n — 1 — 2p > 0 it is possible to construct functions u € W2P(R"~1)
such that the topological closure of their graphs have arbitrarily large n-dimensional Lebesgue
measure, with the previous example we have shown that a generic set in 7, is not essentially
closed.

Proposition 6.3. Let  be an open set of R (n > 3), and let (T;)M, (M € N), be sets
such that for every i there exists & € S"™! and f; € WYP(&) (1 < p <n—1) with T; =
graph(f;) NQ. Then T := Uf\il T; belongs to J,
Proof. Proposition 6.1 shows that for every x €  and for every 1 < ¢ < M, except an
(n — p)-dimensional Hausdorff set, one and only one of the following conditions occurs

e 1 c 8*5}71,;

o O*M=(Y"=1 1 §*S;,, x) = 0.

Now fix such an x € Q. By reordering the indices ¢ we may suppose for example that
there exists £ € N such that for every 1 < i < k z € 8*55 and for every k < i < M
@*("_1)(5}“90) = 0. Without loss of generality we may also suppose that if 1 <17 < iy <k
and I';, T';, have the same tangent space at «, then the measure-theoretic normals of Sy~ and

i1
S; are the same at x. For the same reason, without loss of generality, we may suppose that

2
for every k < i < M =z is a point of density 1 for SJ?

Given r > 0 such that B,(z) C 2, we set for 1 <i <k

E; =5} N B, (x) and Ef = S}t N B, (x).
and

Ey; =1y € B:1(0) | vr,(z) -y <0} and Ea:i :={y € B1(0) | vp,(z) -y > 0},
For k <1 < M we set
Ei,l = Sf_L n B,-(x),
and
E07i = Bl (0)

By eventually reordering again the first £ indices, we may assume that there exist k1, ko, . .., kmn
(m < k) such that

vr.

1

=ry, if and only if kj < 1,10 < kj+1.
Now we want to define the sets F. ; and Ejy ; of Definition 3.2. For this purpose let us denote
as 2227 the family of maps from {1,..., M} into {—,+}. Given o € 3} we define

M .
E,=(EY,
i=1
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and
M .
EO,O' = m Egy(il)a
i=1

whenever Ey , # (.
We have 1 < N, < 2M (here, instead of j, we have indexed our sets with the parameter o
running in ¥47). Notice that
lim |(Es)rzAEpe| =0.
r—0+

Moreover Ey , are conical and indecomposable sets, since they are intersection of half spaces.
Also, by our choice of = € ), we have that
lim P((E;)p0; B1(0)) = P(Ej;; B1(0), i=1,..., M.

r—0t
By construction we have also that, since Ey, # 0, then o(i1) = o(iz) for every k; < iy,is <
i)

kj41 and for every j = 1,...,m. This means that the family (Ej ")}, satisfies also point (3)

of Lemma 6.4. Therefore we can deduce that ’
lim P((Eq)r2; B1(0)) = P(Eo,0; B1(0)).
r—0+
Hence, we are in position to apply Proposition 1.13 and to deduce that for every o € ¥3 such

that Eg , # 0, there exist indecomposable components of (E, ), ., say F;, such that
lim |F,. ,AEp .| =0, (6.12)
r—0t

and
li%1+ P(F, ,;B1(0)) = P(Ey; B1(0)). (6.13)
r—

This gives immediately condition (1.1) and (2.1) of Definition 3.2.
Finally, by (6.13) we can use the same argument as in the proof of Proposition 3.7 to deduce

liminf hg, (A) > hg, ,(A), A€ (0,1/2],
r—0+ ’ '
which implies condition (1.2) of Definition 3.2 since hg, ,(X) > 0 for every X € (0,1/2]. O

Lemma 6.4. Let Q) C R"™ be an open set. Let (E,;)M, (M € N) be sets having finite perimeter
in Q. Suppose that there exist sets (Eg ;)M having finite perimeter in Q such that

(1) hmr—)O‘*’ |ET,iAEO,i| =0,1<:< M;'

(2) lim, o+ P(E,;;Q) = P(Eo;9Q), 1 <i<M;

(3) Hn_l(a*Eo,il n 8*E0,i2 N {Z/Eo,il # VEo,iz}) =0, 1 <iy1 <ip <M.
Then we have

M M
lim, P( (_]1 E,.; 31(0)> = P( (_]1 Eoi; 31(0)>.

Proof. We proceed by induction on M. For M = 1 there is nothing to prove. By induction
suppose that our statement holds for M — 1, then we want to show that it still holds for M.
For this purpose, suppose to have (E, ;)M satisying (1)-(3). If we consider the first M — 1
sets (E,.;)M 71, then clearly they still satisfy (1)-(3), hence by inductive hypothesis we have

M—1 M—1
lim P E,.;:B,(0)) = P Eoi:B1(0) ). 6.14
tin P(() B80) = () Fas 3100)) (6.14)
=1 i=1

If we define E. == X" E,., B, == N " Eo; and E, := E, 1, Eo == Eor, then we have
that the couple E,., E! still satisfies (1)-(3): the first is clearly satisfied; the second follows from
(6.14); for the third just notice that if € 9*Ej N 0* Ey then there must exists 1 <i < M —1
such that z € 0" Fy; N 0" Eo, i, therefore if vg; (v) = —vE, (7) also vg, ,(z) = —vE, ,, (x). This
immediately implies H"~"(0*Ej N 0*Ey N {vg, # vi,(z)}) = 0. Hence, we are reduced to
prove our statement for M = 2.
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In order to do that, we notice that by Theorem 1.2 the following identities hold
P(EL;B1(0)) = H" Y (0" E, N EM) + H" 1 (0" E. N EY)

6.15
+H"YO*E.NO*E,. N {ve, =vE, }) + H* Y O*E.NO*E, N {ve, #vE,}), (6.15)

and analogously
P(E,; B1(0)) = H" Y (9*E, n B!V + "L (9*E,. N E'(") (6.16)

+H" O ELNO*E, N{vg, =vp, }) + H" (0" E.NI*E, N{ve, # vE,}).
Summing both sides of (6.15) and (6.16), and using Leibniz formulas (1.2) for the reduced
boundary of an intersection of sets with finite perimeter we get
P(EL: By(0)) + P(Ey; By(0)) = P(EL0 Ey: Bi(0)) + P(EF 0 ES; By(0))
+ 21" O E.NO*E, N{ve, # vg,}).
Taking the limsup on both sides we get
P(Eq; B1(0)) + P(Eo; B1(0)) = limsup[P(E; N Ey; B1(0)) + P(E;* N E}; B1(0))

r—0t
+ 27‘[”_1(8*E7/‘ N 8*ET n {VE; 7é VET})]
> liminf[P(E! N E,; B1(0)) + P(E' N ES; B;(0))

r—0t

(6.17)

+ 27‘[”71(6*E£ No*E, N {VE; # VET})]
> P(E) N Eo; B1(0)) + P(Ey N Eg; B1(0))
+ 2liminf H" 1 (0*E. NO*E,. N {ve: #ve.})

r—0+
= P(E}; B1(0)) + P(Ey; B1(0))
+ 2liminf K" (0*E. N 0" E, N {vg # vE,}),

r—0+

where in the last equality we use again identity (6.17) for Ej), Eo, and the fact that H"~1(9* E{N
0" Eo N{vey # ve,(x)}) = 0.
By (6.18) we immediately deduce

liminf H" " (0*E. N 0*E, N {vg, #vg,}) =0.

r—0t

(6.18)

Moreover since (6.18) is true for every subsequence r; — 07 we can choose r; such that
limsup H" (0*E.NO*E, N{vp, #vg,}) = lim H" YO*E. NO*E,, N{ve, #ve, }),
r—0+ " j—o0 7 i J

and we immediately deduce that

lim H" Y(0*E.NO*E, N{vg #vg,})=0.

r—0+

Using this last information again in (6.18), we obtain

lim [P(E; N Ey; B1(0)) + P(E,* N Ef; B1(0))] = P(Ey N Eo; B1(0)) + P(E N Eg; B1(0)),

r—0t

which by the lower semicontinuity of the perimeter implies separately

lirgl+ P(E; N Ey; B1(0)) = P(Ej N Eo; B1(0)),
r—

and
11I(IJ1+ P(EI*NES; B1(0)) = P(EY N E§; B1(0)).
r—
This is exactly our desired result. (Il

The purpose of the previous propositions was to show that the class J, is much richer than
the class of C'-manifolds. Nevertheless, we were able to cover condition (1.2) of Definition 3.2,
by using the convergence of the perimeter

r—
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However, we want to show that (6.19) is not necessary in order to have a non-vanishing upper
isoperimetric profile at z. In the next example we exhibit a rectifiable set I' in R? such that
there exists a set of Hausdorff dimension a (0 < a < 1) on which I" admits an asymptotic
upper isoperimetric profile but the limit (6.19) diverges to +oo.

Ezample 6.5 (Cantor’s home). We work in R2. We define a sequence of closed sets, say (J,,)2 ;,
following the usual way to construct the Cantor’s middle third set (see [19, Subsection 4.10]):

let J; :=[0,1] and define J,, := 2= U <§ + %) Set C, := Ny—y Jn-

3
Now fix 2 < s < 3 and consider by induction the following sets:

61 = J1 X [0, L] ,
s—1
and

G = Cpo1 \ (Cpe1 \ Cp X (—00,8,)), (n>2)

where
si—n 1 1 =1
s (s—1) ;sl R ;sl
We define the Cantor’s home % C R? as
o0
%= ()%

w =

@)

U e

FIGURE 2. Cantor’s home

By construction % is a closed set and P(%) < co. Indeed it can be easily verified that
271

P(€pir) = P(€) + ——— n=1,2,...,
( +1) ( ) + (S — 1)8" n
which means

- o~ 2"

i=1
where in the last inequality we have used s > 2.
We claim that 9*% admits a non vanishing upper isoperimetric profile at every x € R?. As
a consequence 0*% € J, for every p > 1.
To prove our claim, notice that if we call C' C [0, 1] the Cantor’s set, i.e.

C = ﬁ Jn, (6.20)
n=1

then it is easy to see that for every z € R? \ (C' x {0}) our claim is satisfied. Therefore, we
need only to prove that for x € C' x {0} our claim holds.



42 E. TASSO

If x € C x {0}, by using the fact that the number of connected components of J,, N (z1 —
5,71 + 5) can be asymptotically estimated by on—1o81/5T a5 n — 00, together with the fact
that s < 3, it is possible to check that

O*(L*L¢,r) =0, (6.21)

while
O H'LO*C, x) = +oc. (6.22)
Now we denote the generic point x € R? as z = (xy,x2) for 71,72 € R, and we prove that
conditions (1) and (2) of Definition 3.2 are satisfied with N, = 1. Instead of the balls B, (z)

we prefer to work with the squares Q,.(x). It is clear that everything will be true also for balls.
Pick z € C' x {0}. Set

e Ly = Q1(0);
o 1 :=Q1(0)\ Z=2 for every r > 0.

T

First of all, since for each r the sets F).; are connected open sets with finite perimeter, then
they are indecomposable (see Remark 1.6). Moreover, conditions (1.1) and (2.1) immediately
follow from construction and from (6.21), respectively.

In order to show that also condition (1.2) is satisfied, first of all notice that for each r > 0
the sets F.; are open connected and of finite perimeter, hence in particular they are indecom-
posable. We claim that for every r > 0 and every A € (0,1/2] we have

he,  (A) > 5. (6.23)
In order to show (6.23) we shall prove that for every r > 0

min{|E|, |F,, \ E|} <3HYO*ENFY)), ECF,,. (6.24)

This can be achieved by proving that for every r € (0,1) it holds the following Poincaré’s
inequality

/ lu— | de < 3|Du|(F1), u € BV(Q1(0)), (6.25)
Fra

where @ := f;, u. Then (6.24) follows by choosing u = 1 in (6.25), since in this case

/ o — | dz > min{ |E],|Fra \ E|},
Fra

and
H* O ENEY) > H" Y9 EN F1) = |Dul(Fa).
Given t € R we write
Fy:={xy €R| (t,x2) € F}, and F' := {z; € R | (21,t) € F}.
Notice that for each r > 0 the sets F}.; have the following two properties

(1) (z1,22) € F1 and (21, y2) € F,1 implies (z1, Ax2+(1—X\)y2) € F.1 for every A € [0, 1];
(2) (z1,22) € Fr1, (y1,22) € Frq and 22 € (—1/2,0) implies (Az1 + (1 — A)y1,x2) € Fra
for every A € [0, 1].
We show that any set F C Q1(0) satisfying (1) and (2) admits a Poincaré’s inequality like

(6.25).
]{m u(xy, T2) — (]é u(y1,y2)dy1dy2)

Indeed we have
0
S 2/ |:/ <f |u(x17x2) - U(ylva)‘ dyldy2> d‘rl dx2:| dt.
-1/2 LJF \JF

0
/ |lu — @l dx = 2/ [
F —1/2
If t € (—1/2,0), by using the triangle inequality, we can write

dl‘l d$2:| dt

[u(zr, 22) = ulyr, y2)| < luler, 22) = uler, O] + |ulzr,t) = ulys, O] + [uys, 1) — wyr, v2)l,
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hence by using the Fundamental Theorem of Calculus we have

0
F -1/2 F\JF
0
+2/ |:/ (][ |D1“|(Ft)|dy1dy2> d(gl dx2:| dt
-1/2 F\JF
0
+ 2/ |:/ (][ |D2U|(Fy1) dy1d y2> dxq d;(;2:| dt,
—-1/2 LJF \JF

and finally by using Fubini’s Theorem

1/2 0
/ lu — | da g/ | Dou|(Fy, )| LY (Fy, ) day +2|F|/ |Dyul|(FY) dt
F —-1/2 —1/2

1/2
+/ | Dol (Fy ) |LY(Fy, ) dy
2

< [Dau|(F) + 2|F||Dyul(F) + |Dyul (F)
< (1+2|F))| Dul(F).
Since |F| < 1, this shows exactly (6.25).

Remark 6.6. In the previous example, the set 4 has a non vanishing upper isoperimetric profile
for every x € R? but with the stronger condition

lim inf inf :
PG P (>0

Therefore by Remark 4.9 if we set I' = ¢ in Theorem 1, then (0.3) actually holds with respect
to the strong LP-convergence.
6.2. A counterexample. Now we want to exploit the idea of the previous example to show

that, the indecomposability condition together with condition (1.2) of Definition 3.2 are crucial
in order to get the validity of Theorem 1.

Ezample 6.7 (Optimality for the class J,). We start by showing that the indecomposability
assumption on the sets (F ;) in Definition 3.2, cannot be removed in order to get the validity
of Theorem 1. For this purpose we shall construct a countably (H"~!,n — 1)-rectifiable set I'
in R? with H"~}(T") < oo, such that there exists ['y C R? with dimy () = logs(2), with the
following properties
(a) forevery z € Ty there exists a family of sets F,. C B1(0) (r > 0) satisfying lim, o+ |F-AB1(0)| =
0;
(b) there exists a function u € SBV?(R?;T) such that for every x € Ty the blow-up u,., does
not converge.
To construct such a I'; we start by considering % C R? the reflection of the Cantor’s home
given in Example 6.5 with respect to the x; axis, i.e.

cff = {(.’1?1,,%2) S R? | (.’1?1, —372) S (g}
We define F := € U%. The set E can be seen also as the limit in measure of €, U%,, when
n — 0o, where %, is the approximated Cantor’s home at the n-th step (see Example 6.5) and
%, is its reflection with respect to the xi-axis (see Figure 3). Clearly E has a non vanishing
upper isoperimetric profile for every x € R?\ (C' x {0}), where C' denotes the Cantor’s set (see
(6.20)). By arguing as in Example 6.5 we know that E is a set of finite perimeter and
O"(L"LE,x)=0, x e C x{0}.
Now let (C,) and (s,) be the sequence of sets and the sequence of numbers defined in
Example 6.5, respectively. Define the following function
1 ifz e C2n—1 \Ogn X (—Sgn, Sgn)
u(x) =< -1 ifz e O\ Cony1 X (—S2n11,52n11) (6.26)
0 otherwise.
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FI1GURE 3. Approximation of E at the fifth step.

By Remark 1.22 we know that u € SBV?(R?;0*E). Call f: R — R the restriction of u to the
r1 axis, i.e.

f()=u(-,0).
Notice that given z € C'x {0}, then if the blow-up of u at & = (1, z2) converges as 7 — 07 then
also the blow-up of f at x7 must converge. To see this, by using the fact that the parameter s
of Example 6.5 has been chosen strictly less than 3, it is not difficult to show that

Tl_i)rél+ L"l({yl € (—=1,+1) | ur,w(yly?ﬂ) = fra (y1) for every ya }) = 2.

This means that any limit u, in L'(B;) of (u,,) must be constant along the segments orthog-
onal to the zi-axis and contained in By, and moreover it must satisfy

T [ frs () = a0l =0,

Therefore, given z = (z1,z2), if we want to prove that (u,,) does not converge, we can
reduce ourselves to prove that f, ., does not converge.

In view of the previous observation, we claim that for every z; € C x {0}, except on a
countable set A, f,,, does not converge as r — 0%. For this purpose, we show that given
z1 € C'\ A, then for every € > 0 there exists a couple of radii r,7’ < € such that

1
”fr,a:l - fr',m1||L°(Bl) > 5 (627)

To see this it is convenient to write every point in the Cantor’s set in base 3. This means
that given x; € C, then there exists a map o defined on every positive integer number with

values in {0, 2}, such that
o~ o(i)
1= Z 3i
i=1

Define the set A to be the set of points x1 in the Cantor’s set such that there exists ig € N
(depending on z) such that for every i > iy the function o alternates consecutively the values
0 and 2. Clearly the set A is countable. We want to prove our claim on every point 21 € C'\ A.

Let z1 € C'\ A, then by definition of A there exists a sufficiently large value of n such that
1/3" <e¢/2 and o(n) =o(n+1) =0o0r o(n) = o(n+1) = 2. Let us suppose to be in the case
o(n) = 2 (the case o(n) = 0 can be treated in the same way). Since z; € C, then z; belongs
to a connected component (an interval) of J,,_1, say I (J, are those defined in Example 6.5).
We can consider a partition of I made of three closed intervals I, I, Is (with overlapping

end-points) each of length % where I; is the most-left one, I3 is the most right one, and I is
in between. By construction of the sets (J,), we know that J,, NI = I; U3, and since o(n) = 2
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then 1 € I3. By (6.26), we know that f takes value 1 or —1 on I5. Let us suppose for example
1. As before we can consider a partition of I3 made of three closed intervals I3 1, I3 9, I3 3 (with
overlapping end-points) each of length |I3]/3 where I3 is the most-left one, I3 3 is the most
right one, and I3 5 is in between. In addition, by (6.26), we know that f assumes the value —1
on I3 . As before, since o(n + 1) = 2, then x; € I3 3.

Now call a the left end-point of I and b the left end-point of I35. Clearly we have the

following estimates
2

2
(r1 —a) < 3 and (z1 —b)

Moreover, if we set r = x; — a and ' = x1 — b, then we can write

| frwr = for il Lo(By) 2]{3 |f(z1+ (21— a)yr) — f(@1 + (21 = D)y1)| A Ldyy

:]{3 |f(x1+ 1) — flz1 + (z1 = b) /(w1 — a)y1)| A Ldys.
(z1—a)

(z1—a)

Using the fact that, by construction, the dilated interval @=b) (I3,2 — x1) has left end-point
coincident with the left end-point of the interval Iy — zq, and that |f(z1 +y1) — f(a1 + (21 —
b)/(x1 —a)y1)| =2 on (I —xq1) N %(I&g — 1), we can continue the previous inequality
by writing

1 (1 —a)
o B > |—a)n-2=Y
[ for (21 —a) = Far (zr -ty Lo(B1) = @ =) ‘( 2 = T1) (@1 = D)

“n g—(n+1)
:mm{@?—a)’ ?xl—w}

>

(I3,2 — x1)

1
2 )
where for the last inequality we use (6.28). This proves our claim and shows that at every
z € (C\ A) x {0} the blow-up u, , does not converge as r — 0.

Finally, by setting I := 0*E, T’y := (C'\ A) x {0}, and F, := B1(0) \ E,, we obtain (a)
and (b). As a consequence we deduce that I' ¢ 7, for every p € (2 — logs(2),2]. In this case
it is clear that what fails in the definition of non vanishing upper isoperimetric profile is the
indecomposability of the sets (F} ;),>¢ for every x € C x {0}.

Exploiting the previous idea, it is possible to construct sets I' I'g, and a function u satisfying
(a) and (b) with the additional property that the sets F,. are indecomposable. This together
with Theorem 1, immediately implies that on every point of I'y the set I' satisfies all the
properties of Definition 3.2 except (1.2). This shows that condition (1.2) is crucial in view of
Theorem 1.

The idea is to connect each white rectangle of E (see Figure 3) by small bridges without
altering the local behavior of the set E on points of the set C' x {0}. To do this, define for each
n > 1, 6, := 1/7". We start by connecting the two white rectangles whose horizontal sides
have length 1/3? with the white rectangle whose horizontal sides have length 1/3 (see figure
3) by subtracting from the set F a thin horizontal bridge in the following way

Ey:=FE\ (1/3%,1—-1/3%) x (s3 — 01, 83).
By induction, if we call the n-th thin bridge R,, := (1/3""1,1 — 1/3""1) X (8,42 — On, Snt2)
(sn, are defined in Example 6.5), then we define for general n (see Figure 4 for n = 3)
En =L \ Rn

Since by the choice of (d,,) the rectangles (R,,) are pairwise disjoint, by subtracting from
E,_1 the rectangle R, one adds an amount of perimeter which is exactly 2(2"*1 — 2)/37+1,
i.e.

P(E,) = P(E,_1) +2(2""! - 2)/3"1,
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FIGURE 4. The set E3

This means that by defining
E = ﬂ E,,
n=1

then E’ is a closed set of finite perimeter in R2.
Since E' C E, this means that we still have that for every z € C' x {0} it holds

O"(L"LE,z) =0,

but with the additional property that for every r > 0 the open sets B1(0) \ £}, are connected
and with finite perimeter and hence indecomposable (see Remark 1.6). The connectedness
comes from the fact that if @); is a connected components (white rectangle) of the set [Ci—1 \
Cp] X (—Sn, spn) for some n (where (C),) and (s,) are defined in Example 6.5), and Q2 is a
connected components (white rectangle) of the set [C,—1\Chn] X (—Sm, 8m,) for some m, both Q1
Q2 with non empty intersection with B,.(x) (z € C x {0}), then there must exist a sufficiently
large M > max{n, m} for which the bridge Rj; connects Q1 N B,-(z) with Q2 N B, (x).

Now we define the function v € SBV?(R?;9*E’) in the following way. If z ¢ |J;—, R, N E
we define v(z) := u(z) where u is the function defined in (6.26). If x € R,,NE for some n, then
by construction there exists a connected components of J,, 1 C [0, 1] (see Example 6.5), say I,
such that @ € T X (Sp42 — dp, Sny2). We have two cases: suppose that I X (S;42 — dp, Sni2)
connects two rectangles where v has the same value, i.e. —1 or +1, then we simply define v(z)
to be exactly —1 or +1, respectively; otherwise suppose that v changes value (for example from
—1 to +1), then if we call p: I — R the linear interpolation between —1 and +1 we define

v(x) := p(m(z)),

where 7;: R? — R is the projection onto the first component (we proceed analogously if v
changes value from +1 to —1).

Clearly, since v differs from u on a set which is contained in E, and ©™(L"L E,z) = 0 for
every € C' x {0}, then the blow-up of v has the same behavior of the blow-up of u at each
point in C' x {0}. It remains to prove that Vv € L?(R?). But by our choice of §,, an easy
computation shows that we can estimate from above

o 6n+1
/2|Vv|2dx§22 <00
R n=1
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7. NON CONVERGENCE OF THE BLOW-UP

In this last part we construct a set in E C R? with the property that its blow-up (E — z)/r
does not converge in measure on every point of a set having Hausdorff dimension equal to 1.
To show this, we need the following theorem which can be deduced from the results obtained
in [22] (see also [10] for a simpler proof). Anyway we decide to present this result with an
alternative proof which is more convenient for our purpose.

Theorem 7.1. Let N C (0,1). Then N has zero Lebesgue measure if and only if there exists a
Lipschitz function u: (0,1) — R such that u is not differentiable from the right at every point
of N.

Proof. If f is lipschitz then the set of point where it is not right differentiable has Lebesgue
measure zero from Rademacher’s Theorem.

Now let N C R be such that [N| = 0. We claim that there exists a Borel set ' C R such
that for every x € N we have

Fn FnN
0= liminf FO@ZEOL ) EO @z 4]

r—0+ r r—s0+ r

=1 (7.1)

To prove this, notice that for every 0 < ¢ < 1/6, since |[N| = 0, we can find a cover of N
made of open and disjoint subintervals of (0, 1), say (;)$2,, such that

(1) £, 11 < o | |
2) NnL ¢ U2 {z € L | 1/2°0F) < dist(2, R\ [;) < 1/2%9}, for some s € [1/2,1]
depending on I;.
Indeed (1) simply follows by the fact that |[N| = 0. Moreover, let a < b be the end points of
the intervals I;; then since |[N| = 0 we have that for every j
{se€[1/2,1] |ae N —1/2¥}[ =0,
therefore also
U{sel/2.1] Jae N —1/29} =o0.
j=1
For this reason by choosing s € (J;2,{s € [1/2,1] | a € N —1/2°7} we obtain that

a+1/2% ¢ N, j=1,2,3,....

By repeating the same argument for the right end point we can find s € [1/2, 1] satisfying (2).

Define Z! C (0,1) to be a cover of N made of open intervals satisfying (1) and (2) with
€ = 1/6. By induction we define Z* in the following way. For every I € Z'~! we consider the
set

Nj:=Nn{zel|1/2°0) < dist(z,R\ I) < 1/2%},

where s € [1/2,1] is relative to I. Since |N;| = 0 we can use the claim to find a cover of N;
made of open and disjoint subintervals of {x € I | 1/2°U%1) < dist(z,R\ I) < 1/2%}, say
(I;)$2,, satisfying (1) and (2) with € = 1/67. Finally, we call Z* the family made of all open
intervals obtained as in the previous procedure, by letting I varies in Z*~! and j varies in N.

We set _
F::U( U ny I), (7.2)

=1 Jez?i-1 =2l
and we claim that F does the job. Clearly F is Borel since every Z° is a family made of open
intervals. Moreover, whenever x € N, since for every i the family Z; covers IV, then for every
i there exists I € Z' such that x € I. Moreover, by property (2) there exists j such that
ze{reT]|1/2°UtD) < dist(x, R\ T) < 1/2%} for some s € [1/2,1]. Since

1 j+1 B B
(x,:ﬂ + W) c | {zeT|1/220%D <dist(ar, R\ T) < 1/2°%},
k=j—1
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and since by construction the intervals I € Z;; 1 which are contained in the set {x € T | 1/250k+1) <
dist(x, R\ T) < 1/2F} are such that > |I| < e with € = 1/6, we can write
J+1

1 1
U Iﬂ(as,x+25(j+2)> Z o

Iezit+t | k=j—1

If i is odd, by (7.2) we have that T\ Urez,,, I C F, and then

|F O (2,2 +1/220F2)] gs(i+2) [ 1 1N 23(“2 1
1/2s(+2) = 2s(j+2) 21 6k ) Z Gk
9(s—1)j+3s 3 1
=1-"5 o (7.3)

>1-

2 1
3i—1 Z 67’
k=1
where for the last inequalty we use s € [1/2,1]. Therefore for each i odds there exists a
corresponding j;, with j; — oo as i — oo, satisfying (7.3), hence by letting ¢ — oo among all
odds numbers, this proves

F
imsup L@ 2 EDL

r—0t r

If i is even, by (7.2) we have that F N1 C Urez,,, I, and then

F O (z,2 +1/250+2) s 25G+2) B 1
s(j+2) _
1/25G+2) Z 6’f T it Zﬁk
k=j—1 =1
(s 1)j+3s 1
= Z o (7.4)
k=1
°1
<3 T

where for the last inequalty we use s € [1/2,1]. Argulng as before, this proves

F
liming L0 @247

r—0t r

=0.

Finally, define
u(t) ;== |FN(0,t)], t € (0,1).
Clearly w is 1-Lipschitz and moreover (u(x + r) — u(z))/r = [(F N (z,z + r))|/r for every
0 <r <1-—=z By (7.1) we immediately deduce that w is not right differentiable at every
xz € N. (]

Theorem 7.2. There exists a set E C R? of finite perimeter, such that the set of points where
its blow-up (E — x)/r does not converge locally in measure has Hausdorff dimension 1.

Proof. Let N C (0,1) be a set of Hausdorff dimension equal to 1. It can be easily constructed
as a countable union of sets N, with positive 7' ~!/¥-measure. Clearly N has zero Lebesgue
measure.

Let u: (0,1) — R be the 1-lipschitz function given by the previous proposition, which is not
right differentiable at every point of N. Define E:={z € R? | 0 <z < 1, 0 < 22 < u(z1)}.
We claim that at every point x of the form x; € N and z2 = u(z1) the blow-up of F at  does
not converge in measure.

Indeed, since u is 1-Lipschitz, then in the square (—1,1)? C R? the set (E — z)/r can be
described as the subgraph of the function y1 — (uy 4, (Y1) — u(x1))/r for y1 € (—1,1) and for
every r < min{z1,1 — z1}. Hence the convergence of (E — z)/r locally in measure implies
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in particular the convergence in L}, ((0,1)) of the sequence ((uyz, (y1) — u(x1))/r) to some
function v(y;). Moreover, since for every A > 0 we have

v(Ay1) = (Ur 2y (AY1) — u(w1)) /1 = Arﬁgh(ukrﬂn(yl)_'u(xl))/AT:: Av(y1),

lim
r—0t
1

then v is positively one-homogeneous. But since w is 1-Lipschitz, then the L;

can be improved to a uniform convergence on the closed interval [0, 1], i.e.

convergence

lim sup st ryy) —ul@) v(yr)| =0,
r—0t+ y1€[0,1] r

Thanks to the positively one homogeneity of v, this immediately implies the right differentia-
bility of u at x; with «/(z1) = v(1) which is a contradiction. This proves the theorem. O
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