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Abstract

Given a bounded open subset Ω of Rd and two positive weight functions
f and g, the Cheeger sets of Ω are the subdomains C of finite perimeter
of Ω that maximize the ratio

∫
C f(x) dx

/ ∫
∂∗C g(x) dHd−1. Existence of

Cheeger sets is a well-known fact. Uniqueness is a more delicate issue
and is not true in general (although it holds when Ω is convex and f ≡
g ≡ 1 as recently proved in [4]). However, there always exists a unique
maximal (in the sense of inclusion) Cheeger set and this paper addresses
the issue of how to determine this maximal set. We show that in general the
approximation by the p-Laplacian does not provide, as p → 1, a selection
criterion for determining the maximal Cheeger set. On the contrary, a
different perturbation scheme, based on the constrained maximization of∫
Ω f(u − εΦ(u)

)
dx for a strictly convex function Φ, gives, as ε → 0, the

desired maximal set.

Keywords: Cheeger sets, p-Laplacian approximation, concave penalization,
1-Laplacian type operators.

MSC 2000: 49J45, 49Q10, 49R50, 35J20, 35P99

1 Introduction

Given a bounded open Lipschitz subset Ω of Rd Cheeger sets are defined as the
subsets C of Ω which maximize the ratio |C|/ Per(C) where Per(C) is the perime-
ter of C and |C| denotes the Lebesgue measure of C. By the direct methods of
the calculus of variations and in particular by the De Giorgi theory of perime-
ters and BV spaces (see for instance [2]) the existence of a Cheeger set follows
straightforwardly.

We consider here a slightly more general situation, where the Lebesgue mea-
sure and the perimeter are weighted by two weight functions f and g; more
precisely, we consider the problem

µ1 := sup

{ ∫
C

f dx∫
∂∗C

g dHd−1
: C ⊂ Ω

}
(1.1)
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where ∂∗C is the reduced boundary of C and Hd−1 is the Hausdorff d− 1 dimen-
sional measure. Again, under the assumptions

• f ∈ L∞(Ω), f > 0 a.e.,
• g is continuous on Ω and inf g > 0,

the direct methods of the calculus of variations apply and provide the existence
of a Cheeger set.

An important fact is that the shape optimization problem (1.1) is tightly
related to the variational problem:

µ1 = sup

{∫
Ω

fu dx : u ∈ BV0(Ω),

∫
Rd

g d|Du| ≤ 1

}
, (1.2)

where BV0(Ω) denotes the class of functions in BV (Rd) that vanish outside Ω.
Note that for u ∈ BV0(Ω), one has:∫

Rd

g d|Du| =
∫

Ω

g d|Du|+
∫

∂Ω

g|u| dHd−1.

We remark that µ1 coincides with the inverse of the first eigenvalue λ1 of an
operator of 1-Laplacian type. More precisely,

λ1 =
1

µ1

= inf {R(u) : u ∈ BV0(Ω), u 6= 0} (1.3)

where R(u) is the Rayleigh quotient

R(u) :=

∫
Rd g d|Du|∫
Ω

f |u| dx
.

In the sequel, we will denote by χC the characteristic function of the set C ⊂ Rd,
and define the set of solutions of (1.2):

Q :=

{
u ∈ BV0(Ω) :

∫
Rd

g d|Du| ≤ 1,

∫
Ω

fu dx = µ1

}
(1.4)

as well as the family of Cheeger sets:

C :=

{
C ⊂ Ω : χC ∈ BV0(Ω),

∫
C

f dx = µ1

∫
∂∗C

g dHd−1

}
. (1.5)

Of course χC is a solution of (1.3) whenever C ∈ C. There is however a more
precise relationship between Cheeger sets and solutions of (1.3): u solves (1.3) if
and only if all its level sets are Cheeger sets. We refer to Theorem 2 of [3] for a
proof, the case f = g = 1 being well-known.

Except under special additional assumptions (for instance when f = g = 1 and
Ω is convex, see [4]), one cannot expect Cheeger sets to be unique and examples
are known where they are actually infinitely many (see for instance [8, 9] and
the examples of Section 2). On the other hand, the family of Cheeger sets C is
stable by countable union (see Theorem 3 of [3]). This implies that C possesses
a maximal element in the sense of inclusion, the maximal Cheeger set of Ω:
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Proposition 1.1. There exists a unique maximal Cheeger set, i.e. a unique
C0 ∈ C such that for every C ∈ C, C is included in C0 up to a Lebesgue negligible
set.

Proof. Let us consider the problem of maximizing the Lebesgue measure of C
among all Cheeger sets C ∈ C. Since {χC : C ∈ C} is compact in L1(Ω), we
obtain the existence of some maximizer C0. If C ∈ C, since C ∪ C0 ∈ C, we have
C ⊂ C0 up to a Lebesgue negligible set, therefore C0 is a maximal Cheeger set
and it is obviously the only one (up to a Lebesgue negligible set again).

The question of determining the maximal Cheeger set then becomes an in-
teresting issue. The main focus of the present paper is to investigate whether
natural approximation schemes select at the limit the maximal Cheeger set.

A possibility, that has been investigated for instance in [8, 10], is to consider
the solutions up of a PDE involving the p-Laplace operator and to let p tend to
1. The hope is that the limit function u is a characteristic function of the form
u = αχC with C the maximal Cheeger set, or that at least the support of u is
the maximal Cheeger set. The arguments in favour of this approach are that it
works when f = g = 1 and Ω is convex (see [8]) and that in any case all level
sets of the limit function u are Cheeger sets (see [3]).

We show in Section 2 that the procedure above cannot be expected to work
in general. We consider the p-approximation of problem (1.2)

µp := sup
{∫

Ω

fu dx :

∫
Ω

g|Du|p dx ≤ 1, u ∈ W 1,p
0 (Ω)

}
. (1.6)

The unique (nonnegative) maximizer up of (1.6) is of course the solution of the
PDE

− div
(
g|Du|p−2Du

)
= λpf, u ∈ W 1,p

0 (Ω), with λp :=
1

µp

. (1.7)

As p → 1, the maximal values µp in (1.6) tend to the maximal Cheeger value
µ1 in (1.1) (see Proposition 2.1) and, denoting by up the unique solution of the
PDE (1.7), we have convergence of some subsequence to some solution u of (1.2).
However, we show by some onedimensional examples, that neither the limit of up

nor its support identify in general the maximal Cheeger set.
In Section 3 we consider a different kind of approximation:

sup
{∫

Ω

f
(
u− εΦ(u)

)
dx :

∫
Rd

g d|Du| ≤ 1, u ∈ BV0(Ω)
}

(1.8)

We show that if the function Φ is strictly convex and Φ(0) = 0 then the optimal
solutions uε of problem (1.8) tend as ε → 0 to a characteristic function u = αχC

where C is the maximal Cheeger set in Ω.
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2 The p-Laplacian approximation

2.1 Convergence of the p-Laplacian approximation

By classical arguments, we know that there exists a unique solution, denoted by
up, of the variational problem (1.6). In addition up > 0 in Ω (see [14]) and by
standard elliptic regularity theory (see [13] or [6]), up ∈ C1,α(Ω) whenever g is of
class C1 (an assumption that we won’t need here). Moreover, up is the unique
solution of the p-Laplace equation

− div
(
g|Du|p−2Du

)
= λpf, u ∈ W 1,p

0 (Ω) (2.1)

where λp = 1/µp and µp is the maximal value of (1.6). By construction, one has:

µp =

∫
Ω

fup dx and
(∫

Ω

g|Dup|p dx
)1/p

= 1. (2.2)

This section is devoted to the convergence of µp to µ1 and to the convergence
(up to a subsequence) of the maximizers up to some maximizer of (1.2).

Proposition 2.1. As p → 1 the maximal values µp in (1.6) tend to the maximal
Cheeger value µ1 in (1.1).

Proof. Using Hölder’s inequality, we have∫
Ω

g|Dup| dx ≤
(∫

Ω

g dx

)(p−1)/p (∫
Ω

g|Dup|p dx
)1/p

=

(∫
Ω

g dx

)(p−1)/p

. (2.3)

We thus deduce

µ1 ≥
∫

Ω
fup dx∫

Ω
g|Dup| dx

≥ µp

(∫
Ω

g dx

)(1−p)/p

, (2.4)

hence

µ1 ≥ lim sup
p→1

µp

(∫
Ω

g dx

)(p−1)/p

= lim sup
p→1

µp. (2.5)

Let δ > 0; by standard approximation results (see in particular Remark 2.12
in [7] and Proposition 3.15 in [2]), there exists a nonnegative function v ∈ C∞(Rd)
with v ≡ 0 on Rd \ Ω such that∫

Ω

g|Dv| dx = 1 and

∫
Ω

fv dx ≥ µ1 − δ. (2.6)

We then have

µp ≥
∫

Ω
fv dx(∫

Ω
g|Dv|p dx

)1/p
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so that

lim inf
p→1

µp ≥ lim inf
p→1

∫
Ω

fv dx(∫
Ω

g|Dv|p dx
)1/p

≥ µ1 − δ. (2.7)

Since δ > 0 is arbitrary in (2.7), together with (2.5) we finally get µ1 = lim µp.

Proposition 2.2. Up to a subsequence, (up)p converges in L1(Ω), as p → 1, to
a solution u of (1.2).

Proof. Combining Hölder’s inequality with the fact that
∫

Ω
g|Dup|p dx ≤ 1 we

obtain
∫

Ω
|Dup| dx ≤ M for a suitable constant M ≥ 0. The sequence (up)p

is therefore bounded in BV0(Ω), and thus precompact in L1(Ω). Hence (up)
converges, up to a subsequence (still denoted (up)) to some u in L1(Ω). Applying
standard lower-semi continuity results (see for instance Corollary 1 of [3]), we
then get ∫

Rd

g d|Du| ≤ lim inf
p→1

∫
Ω

g|Dup| dx ≤ lim inf
p→1

(

∫
Ω

g|Dup|p dx)1/p (2.8)

where the second inequality follows from (2.3). Therefore
∫

Rd g d|Du| ≤ 1. On
the other hand

lim
p→1

∫
Ω

fup dx =

∫
Ω

fu dx. (2.9)

Finally we get ∫
Ω

fu dx∫
Ω

g d|Du|
≥ lim sup

p→1

∫
Ω

fup dx

(
∫

Ω
g|Dup|p dx)1/p

= µ1 (2.10)

which concludes the proof.

Getting back to the main purpose of the present paper, namely the selection
of the maximal Cheeger set, at this point, two questions naturally arise:

• is the limit function u (up to a multiplicative constant) the characteristic
function of the maximal Cheeger set?

• in case of a negative answer to the previous question, does the support of
u identify the maximal Cheeger set?

As we shall see in the next section, by means of simple one-dimensional
counter-examples, the answer is actually negative to both questions.
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2.2 The one-dimensional case

In this section, we consider problem (1.6) (equivalently equation (2.1)) in dimen-
sion one. In this case the differential equation (2.1) can be explicitly integrated
and this will enable us to analyze the limit of maximizers of problem (1.6) as
p → 1.

We take Ω := (−1, 1) and f, g two even functions (that satisfy the general
assumptions of the paper); then, it is easy to see that the solution of (1.6) is
even too. Setting n = 1

p−1
(so that n → +∞ as p → 1) we thus consider the

maximization problem

sup
{∫ 1

−1

fu dx :

∫ 1

−1

g|u′|1+1/n dx ≤ 1, u ∈ W
1,1+1/n
0 (−1, 1)

}
(2.11)

and denote by wn the solution of (2.11). We also set

F (x) :=

∫ x

0

f(t) dt, h(x) := F (x)/g(x).

Proposition 2.3. The (even) solution of (2.11) is given by

wn(x) =

∫ 1

x
hn dt(

2
∫ 1

0
ghn+1 dt

)n/(n+1)
∀x ∈ [0, 1]. (2.12)

Proof. Obviously, wn is proportional to un that solves

g(x)|u′n(x)|−1+1/nu′n(x) = −F (x). (2.13)

Thus un is decreasing on [0, 1] and by (2.13) −u′n(x) = hn(x). Integrating once

more and using the fact that un(1) = 0 leads to un(x) =
∫ 1

x
hn(t) dt. Now we set

wn = Cnun with Cn such that 2
∫ 1

0
g|w′

n|1+1/n dt = 1 which proves the result.

Proposition 2.4. There exist Cheeger sets of (−1, 1) which are symmetric in-
tervals.

Proof. From Proposition 2.2, we know that un converges in L1, up to a subse-
quence, to a solution u of (1.2). Since un is even and nonincreasing on (0, 1], the
same holds for u. From Theorem 2 of [3] the level sets of u are Cheeger sets.
Therefore there exists a symmetric interval which is a Cheeger set.

Determining Cheeger sets of the form [−a, a] amounts to solve

sup
{
h(a) : a ∈ [0, 1]

}
.
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Proposition 2.5. If h(x) ≤ h(1) for every x ∈ [0, 1] then the maximal Cheeger
set coincides with the whole interval [−1, 1].

Proof. Indeed in this case a = 1 is a maximizer of h.

We now study the behaviour of the functions wn as n → +∞. The function
h(x) is bounded and, since the expression of wn is homogeneous of degree zero in
h, we may assume that max h = 1.

Proposition 2.6. Assume that in an interval [a, b] with 0 ≤ a < b < 1 we have
h(x) = 1 and that h(x) < 1 in an open interval (α, 1). Then wn(x) → 0 for every
x ∈ (α, 1).

Proof. We have

2

∫ 1

0

ghn+1 dt ≥ 2

∫ b

a

ghn+1 dt = 2

∫ b

a

g dt (2.14)

therefore (
2

∫ 1

0

ghn+1 dt
)n/(n+1)

≥
(
2

∫ b

a

g dt
)n/(n+1)

(2.15)

and then for n large enough(
2

∫ 1

0

ghn+1 dt
)n/(n+1)

≥
∫ b

a

g dt. (2.16)

On the other hand, since h(x) < 1 in (α, 1), hn(x) → 0 as n →∞ in (α, 1). Taking
into account the expression of wn given by (2.12), this gives the result.

Putting together Propositions 2.5 and 2.6 we can easily construct functions
f and g such that the maximal Cheeger set is the whole interval [−1, 1] whereas
the limit function limn wn(x) vanishes in a neighbourhood of 1.

Example 2.7. Taking for instance f ≡ 1 and

g(x) =


1/4 if x ∈ [0, 1/4]
x if x ∈ [1/4, 1/2]

4x

3 + |4x− 3|
if x ∈ [1/2, 1]

provides the desired counterexample. Indeed in this case, by Proposition 2.5,
the maximal Cheeger set is the full interval (and all the intervals [−a, a] with
a ∈ [1/4, 1/2] are Cheeger sets) whereas the limit of the wn’s vanishes on [1/2, 1].
We have plotted the graph of w = limn wn in the next figure.
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Example 2.8. Take f ≡ 1 and

g(x) =

{
1/2 if x ∈ [0, 1/2]
x if x ∈ [1/2, 1].

All the intervals [−a, a] with a ∈ [1/2, 1] are Cheeger sets and wn again converges
to some function plotted below which is not a characteristic function but whose
support is the maximal Cheeger set.
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Remark 2.9. We notice that in both examples, limn wn is a solution of (1.2) which
is continuous and nonconstant. Of course, such solutions can exist only if there
is a continuum of Cheeger sets as in the previous examples.
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Example 2.10. We now consider a case where h achieves its maximum only at 1
and 1/2, for instance:

h(x) =


2x if x ∈ [0, 1/2]
2(1− x) if x ∈ [1/2, 3/4]
2x− 1 if x ∈ [3/4, 1]

which is obtained by taking f ≡ 1 and

g(x) =


1/2 if x ∈ [0, 1/2]
x/(2− 2x) if x ∈ [1/2, 3/4]
x/(2x− 1) if x ∈ [3/4, 1].

In this case, wn still converges to a multiple of the characteristic of [−1/2, 1/2].
The next graph represents w100.
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0.7

0 0.1 0.2 0.3 0.4 0.5

t

3 Concave penalizations select maximal Cheeger

sets

In this section, we approximate the maximization problem

sup
{∫

Ω

fu dx :

∫
Rd

g d|Du| ≤ 1, u ∈ BV0(Ω)
}

(3.1)

by the strictly concave penalization

sup
{∫

Ω

f
(
u− εΦ(u)

)
dx :

∫
Rd

g d|Du| ≤ 1, u ∈ BV0(Ω)
}

(3.2)

9



where ε > 0 is a perturbation parameter and Φ is a strictly convex nonnegative
function that satisfies:

Φ(0) = 0, 0 ≤ Φ(t) < +∞ ∀t ∈ R+. (3.3)

Again, we denote by µ1 the optimal value of (3.1). We recall that, from Theorem
4 of [3], the set Q of solutions of (3.1) is in fact included in L∞(Ω).

Theorem 3.1. Let uε be the solution of (3.2); then the following holds:

• (uε)ε converges in L1(Ω), as ε → 0+, to the solution u of

inf

{∫
Ω

fΦ(u) dx : u ∈ Q

}
, (3.4)

• u = αχC0 for some α > 0 and C0 ⊂ Ω,

• C0 is the maximal Cheeger set, i.e. C0 ∈ C and C0 contains every other
Cheeger set (up to a Lebesgue negligible set).

Proof. Since (uε)ε is bounded in BV (Ω), it admits a subsequence (not relabeled)
that converges in L1(Ω) to some u ∈ BV0(Ω) and

u ≥ 0,

∫
Rd

g d|Du| ≤ 1.

Let v ∈ Q; for every ε > 0 we have

0 ≥
∫

Ω

f(uε − v) dx ≥ ε

∫
Ω

f
(
Φ(uε)− Φ(v)

)
dx. (3.5)

Letting ε → 0+ in (3.5) and using the facts that Φ ≥ 0 and Φ(v) is bounded since
v ∈ L∞(Ω) (by Theorem 4 of [3]), we then get∫

Ω

fu dx =

∫
Ω

fv dx = µ1

hence u ∈ Q. Dividing by ε in (3.5), thanks to Fatou’s Lemma, we get∫
Ω

fΦ(u) dx ≤ lim inf
ε→0+

∫
Ω

fΦ(uε) dx ≤
∫

Ω

fΦ(v) dx

so that u solves (3.4). By the strict convexity of Φ, the minimization problem
(3.4) admits u as unique solution and the whole family (uε)ε converges to u.
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Let us now prove the second assertion. Assume by contradiction that u is not
of the form αχC0 with α > 0 and C0 ⊂ Ω; then u 6= w with

w :=

∫
Ω

fu dx∫
{u>0} f dx

χ{u>0}. (3.6)

From Theorem 3 of [3] it follows that the set C = {w > 0} = {u > 0} is a
Cheeger set and that w ∈ Q. Now using Φ(0) = 0, the fact that u 6= w and
Jensen’s inequality, we get∫

Ω

fΦ(u) dx =

∫
{u>0}

fΦ(u) dx >

(∫
{u>0}

f dx

)
Φ

( ∫
Ω

fu dx∫
{u>0} f dx

)
=

∫
Ω

fΦ(w) dx

contradicting the fact that u solves (3.4). This proves that u = αχC0 with

C0 = {u > 0} and α =

∫
Ω

fu dx∫
{u>0} f dx

.

It remains to prove that C0 is the maximal Cheeger set. Let us remark that for
every C ∈ C, one has

χC∫
∂∗C

g dHd−1
=

µ1χC∫
C

f dx
∈ Q

so that by (3.4)(∫
C

f dx

)
Φ

(
µ1∫

C
f dx

)
≥
(∫

C0

f dx

)
Φ

(
µ1∫

C0
f dx

)
∀C ∈ C. (3.7)

Moreover, the function t 7→ tΦ(µ1

t
) is decreasing, and thus (3.7) implies∫

C0

f dx ≥
∫

C

f dx ∀C ∈ C. (3.8)

Since C0 ∪ C ∈ C for every C ∈ C, we then have∫
C\C0

f dx = 0 ∀C ∈ C

and since f > 0 this proves that C ⊂ C0 (up to a negligible set).
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4 Concluding remarks and related problems

This paper has focused on the selection of the maximal Cheeger set and we have
given elementary examples for which there are several (even infinitely many)
Cheeger sets. In such nonuniqueness cases, we have shown that the natural p-
Laplacian approximation does not always select the maximal Cheeger set (but the
concave penalization scheme of Section 3 does). However, when there is a unique
Cheeger set (equivalently when (1.2) possesses a unique solution), Propositions
2.1 and 2.2 of course imply the convergence of the p-Laplacian approximations
up to (a multiple of) the characteristic function of the unique Cheeger set. Of
course, when there is such uniqueness, the selection of the maximal Cheeger set
is not a relevant issue. In fact, nonuniqueness is rather rare as the following
genericity result shows:

Proposition 4.1. Let g ∈ C0(Ω) with g ≥ g0 for a positive constant g0. Then
there exists a Gδ dense subset X of C0(Ω, R+) such that for every f ∈ X, (1.2)
admits a unique solution (equivalently C is a singleton).

Proof. For every f ∈ C0(Ω) (not necessarily nonnegative) we define

V (f) := sup

{∫
Ω

fu dx : u ∈ BV0(Ω), u ≥ 0,

∫
Rd

g d|Du| ≤ 1

}
,

then V is a convex continuous (even Lipschitz) functional on C0(Ω). Since C0(Ω)
is separable and complete, when equipped with the sup norm, it follows from a
theorem of Mazur (see [11] or Theorem 1.20 in [12]) that V is Gâteaux differen-
tiable on a Gδ dense subset of C0(Ω). Generic uniqueness then follows at once
from the fact that the subgradient of V at f ∈ C0(Ω, R+) is exactly the set of
solutions of (1.2).

Remark 4.2. The previous proof works in the same way when the weight f is taken
in any separable Banach space naturally related to the problem (e.g. Lq(Ω) with
q ∈ [d, +∞)). A similar proof also works for fixed f and a generic g.

Also, in the present paper, we have only considered the stationary case, al-
though another related interesting issue is the asymptotic behaviour of the (mo-
tion by mean curvature-like) evolution equation

∂tu− div

(
g

Du

|Du|

)
= f.
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Place du Maréchal De Lattre De Tas-
signy
75775 Paris Cedex 16 - FRANCE
carlier@ceremade.dauphine.fr

Myriam Comte
Laboratoire Jacques-Louis Lions
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