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Abstract

We study a model of crowd motion following a gradient vector field, with
possibly additional interaction terms such as attraction/repulsion, and we present
a numerical scheme for its solution through a Lagrangian discretization. The
density constraint of the resulting particles is enforced by means of a partial optimal
transport problem at each time step. We prove the convergence of the discrete
measures to a solution of the continuous PDE describing the crowd motion in
dimension one. In a second part, we show how a similar approach can be used to
construct a Lagrangian discretization of a linear advection-diffusion equation. Both
discretizations rely on the interpretation of the two equations (crowd motion and
linear diffusion) as gradient flows in Wasserstein space. We provide also a numerical
implementation in 2D to demonstrate the feasibility of the computations.

1 Introduction
In this paper we present an approximation scheme to solve evolution PDEs which
have a gradient-flow structure in the space of probability measures P(Ω) endowed
with the Wasserstein distance W2. Here, Ω ⊂ Rd is a given compact domain where
the evolution takes place, and the PDE will naturally be complemented by no-flux
boundary conditions. The approximation that we present is Lagrangian in the sense
that the evolving measure ρt will be approximated by an empirical measure of the
form 1

N

∑N
i=1 δxi(t) and we will look for the evolution of the points xi. We will use

this approximation to provide an efficient numerical method, based on the most recent
developments in semi-discrete optimal transport [6, 13, 12, 3]. Here, “semi-discrete”
refers to the fact that the discretization of the diffusion effects in the evolution equation
involves computation of the optimal transport plans between an empirical measure and
diffuse measures.

Starting from the pioneering work of Otto and Jordan-Kinderlherer-Otto [18, 9] it
is well-known that some linear and non-linear diffusion equations can be expressed in
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terms of a gradient flow in the space W2(Ω). More precisely, the Fokker-Planck equation

∂tρ−∆ρ− div(ρ∇V ) = 0

is the gradient flow of the energy E(ρ) :=
∫
ρ log ρ +

∫
V dρ, and the porous-medium

equation
∂tρ−∆ρm − div(ρ∇V ) = 0,m ∈ (1,+∞)

is the gradient flow of the energy E(ρ) :=
∫ 1
m−1ρ

m +
∫
V dρ, Recently, also the limit

case m =∞ has been considered, in the framework of crowd motion [16]. In this case,
the functional is E(ρ) :=

∫
V dρ if ρ satisfies the constraint ρ ≤ 1, and E(ρ) = +∞

otherwise; the corresponding PDE is
∂tρ+ div(ρv) = 0
v = −∇p−∇V
0 ≤ ρ ≤ 1, p ≥ 0, p(1− ρ) = 0.

One can see the appearance of a pressure p accounting for the constraint ρ ≤ 1. We
will come back later to the precise meaning and formulations of this last equation.

Approximation by empirical measures Since any probability measure can be
approximated by empirical measures, it is tempting to perform an approximation
scheme just by considering the gradient flow of one of the above energy functionals E on
the set PN (Ω) of uniform measures on N atoms, and then let N →∞. Unfortunately,
the domain of the above functionals is reduced to absolutely continuous measures, and
its intersection with PN (Ω) is empty. The main idea and novelty of this paper is to
write E(ρ) = F (ρ) +

∫
V dρ where F is the entropy or the congestion constraint,

F (ρ) =
∫
ρ log ρ (linear diffusion)

or F (ρ) =
{

0 if ρ ≤ 1
+∞ if not

(crowd motion, m=+∞),

and to replace F by its Moreau-Yosida regularization

Fε(µ) := inf
ρ
F (ρ) + 1

2εW
2
2 (µ, ρ).

The energies Fε are finite and well-defined for arbitrary probability measures µ, and
converge to F as ε→ 0. More importantly, we will see that it is possible to compute
very efficiently Fε(µ) when µ ∈ PN (Ω). The evolution of the discrete measures is then
dealt with by keeping track of the positions of the particles X = (x1, . . . , xN ) ∈ RNd in
the support of the associated measure µX = 1

N

∑N
i=1 δxi . Thanks to the correspondence

between X and µX , we can think of Fε as an energy on the space of particle positions
too, given by

Fε(x1, . . . , xN ) = Fε

 1
N

∑
1≤i≤N

δxi

 (1.1)
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The discrete gradient flow then takes the form of a system of ODEs{ 1
N ẋi(t) = −∇xiFεN (x1(t), . . . , xN (t))− 1

N∇V (xi(t)),
XN (0) = XN

0 ,
(1.2)

for a suitable choice of εN → 0. The particles are only coupled by the forces
−∇xiFεN (x1, . . . , xN ) due to diffusion or to the congestion constraint. Finally, we
note that the initial condition can be selected by optimal quantization of the initial
density ρ0 ∈P(Ω),

XN
0 ∈ arg min

X∈RNd
W 2

2 (ρ0, µX), (1.3)

granting, in many situations, an initial error of approximately W 2
2 (ρ0, µXN

0
) . (1/N)1/d.

Convergence In the paper we will present the approximation scheme and prove, in
these two cases, the convergence of the curves of empirical measures to the solution of
the corresponding PDE, under the assumption that a certain bound on the approximate
solutions themselves is satisfied. This assumption is unnatural, and it would be desirable
to remove it, or replace it with an assumption on the approximation of the initial data.
Yet, this seems to be a non-trivial problem, which is closely related to the general
question of the convergence of gradient flows once the functionals Γ-converge. We
refer to [19, 22] as classical papers on this question. In these papers, a semi-continuity
property on the slopes of the functionals is required, which is in the same spirit of the
bounds we need. These required bounds are stronger in the crowd motion case, as the
equation is non-linear and stronger compactness is needed, while sligthly weaker in
the Fokker-Planck case, which is indeed a linear equation. We show that such bounds
can be obtained in dimension 1 (see §4). However, we insist that these bounds can be
verified numerically in general, which makes the scheme we propose interesting for the
approximation in arbitrary dimension.

Comparison to existing Lagrangian schemes The optimal transport interpreta-
tion of advection-diffusion equations by Otto and Jordan-Kinderlherer-Otto [18, 9] has
already led to many Lagrangian schemes:

• In dimension d = 1 it is quite easy to construct such Lagrangian schemes. This
is due to the fact that the Wasserstein space (P(R),W2) can be isometrically
embedded into L2([0, 1]) through the inverse cumulative distribution function.
Discretizing probability densities in a lagrangian way then amounts to discretizing
inverse cdfs, which can be done using finite elements of order one [2] or two [15],
leading respectively to piecewise constant or piecewise linear densities.

• In dimension d ≥ 2, one cannot isometrically embed the Wasserstein space in a Lp
space, making the choice of discretization less canonical. There exists discretization
based on piecewise constant densities over Voronoi cells [5], or using Gaussian
mixtures (“blobs”) [4]. Evans, Savin and Gangbo [8] have proposed a general
way to rewrite some Wasserstein gradient flows as gradient flows in the space of
diffeomorphisms (the idea is to write ρt = st#ρ0 where st is a time-dependent
diffeomorphism), which is used to construct a Lagrangian discretization in [10].
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Our scheme could be considered as a variant of the scheme of [5] involving Voronoi
cells but it is, to the best of our knowledge, the first one to use Laguerre cells (see §5.1),
which are objects intrinsically related to the Wasserstein structure of the equation. The
use of Laguerre cells, easy to handle via modern computational geometry tools, is now
state-of-the-art when the transport cost is quadratic. However, we stress that we only
use quadratic transport costs in the computation of the Moreau-Yosida regularization of
the diffusion or congestion term, which means that we could a priori think of attacking
with the same ideas other PDEs, which have a gradient structure for other distances. We
refer for instance to [1] for PDEs induced by a cost functions of the form c(x, y) = |x−y|q
or [17] for the so-called relativistic heat equation.

2 Lagrangian discretization of crowd motion
Formulation of the continuous problem We fix a compact domain Ω ⊂ Rd and
a potential V ∈ C1(Rd) bounded from below, e.g. V ≥ 0. The crowd is described
by a probability measure ρ in Ω. Each agent tries to follow the gradient vector field
−∇V while ensuring that the probability density satisfies the density constraint ρ ≤ 1.
Therefore, we introduce the constraint set

K = {ρ ∈Pac(Ω) : ρ ≤ 1}, (2.1)

and we assume that |Ω| ≥ 1 so that K is non-empty. There are a few possible ways to
express this idea of constrained motion, which are at least formally equivalent. The
first version is straightforward, but a bit problematic to formulate rigorously. The mass
evolution is expressed by a continuity equation where the driving vector field is the
projection of −∇V onto the tangent cone of the set K:{

∂tρ+ div(ρv) = 0, ρ ∈ K,
v = ΠTρK(−∇V ),

(2.2)

where

TρK =
{
v ∈ L2(ρ;Rd) : div(v) ≥ 0 on {ρ = 1}, v · n ≤ 0 on ∂Ω ∩ {ρ = 1}

}
.

Note that the choice of the boundary conditions on v · n is not relevant at this stage,
since anyway the equation ∂tρ+ div(ρv) = 0 is already intended with no-flux boundary
conditions ρv · n = 0, i.e. v · n = 0 on {ρ > 0}. Choosing to impose v · n ≤ 0 on the
part of the boundary where the density ρ is saturated allows for an easier expression of
the normal cone below. Indeed, projecting to the tangent cone amounts to subtracting
a vector from the normal cone, dual to the tangent cone, thereby leading to{

∂tρ+ div(ρv) = 0, ρ ∈ K,
v = −∇V − w, w ∈ NρK,

(2.3)

where
NρK =

{
∇p : p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0

}
.

This can be seen by observing that TρK contains all divergence-free vector fields and
hence, by Helmotz decomposition, any vector w in the dual cone NρK is such that ρw
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is the gradient of a scalar function. Once we identify that this function should vanish
on {ρ < 1}, the constraints on the pressure p are obtained by dualizing those defining
TρK. More explicitly, 

∂tρ+ div(ρv) = 0, ρ ∈ K,
v = −∇V −∇p,
p ≥ 0, p(1− ρ) = 0,

(2.4)

where p is to be thought of as a pressure field enforcing the density constraint. Finally,
solutions to (2.2) also formally coincide with the gradient flow{

∂tρ ∈ −∂E(ρ),
ρ(0) = ρ0,

(2.5)

with respect to the Wasserstein distance of the energy E : P(Ω)→ R ∪ {∞} given by

E(ρ) =
∫
V dρ+ F (ρ), where F (ρ) = iK(ρ) =

{
0 if ρ ∈ K
+∞ if not.

The equation (2.5) is a differential inclusion, meaning that a priori the element of the
subdifferential which is selected is not known. This translates into the fact that the
pressure only belongs to a cone and is not an explicit function of the density, as it
happens in other equations, for instance of porous medium type. However, in many
differential inclusion problems there is indeed uniqueness, corresponding to the idea that
only choice of the pressure will preserve the constraint: at a very formal level, we can
say that even if we only imposed ∇ · v ≥ 0 on the saturated region — and this was done
in order not to increase the density in the future after saturation — we should also have
∇ · v = 0, at least for t > 0, otherwise the density would violate the constraint in the
past. This means that p should be uniquely determined as the solution of −∆p = ∆V
on the saturated region {ρ = 1}, with Dirichlet boundary condition on the part of the
boundary of this region contained in the interior of Ω and suitable non-homogeneous
Neumann condition ∇p · n = −∇V · n on the part contined in ∂Ω.

Discretization As explained in the introduction, our strategy for the numerical
solution of the crowd motion is to employ a Lagrangian discretization of (2.5), meaning
that we consider the time evolution of a probability measure which remains uniform
over a set containing N points:

PN (Rd) =
{

1
N

N∑
i=1

δxi : xi ∈ Rd
}
.

Since the intersection between the constraint set K = {ρ ∈ Pac(Ω) : ρ ≤ 1} and
PN (Rd) is empty, we are forced to replace the constraint ρ ∈ K with a penalization,
therefore considering the regularized energy given by

Eε(ρ) =
∫

Ω
V dρ+ 1

2εd2
K(ρ) =

∫
Ω
V dρ+ 1

2ε min
σ∈K

W 2
2 (ρ, σ).

Note that 1
2εd

2
K is the Moreau-Yosida regularization of the convex indicator function

F = iK of the set K.
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The evolution of the discrete measures is dealt with by keeping track of the positions
of the particles X = (x1, . . . , xN ) ∈ RNd, to which corresponds the associated measure
µX = 1

N

∑N
i=1 δxi . Thanks to the correspondence between X and µX , we can think of

Eε as an energy on the space of particle positions too, given by

Eε(X) = Eε(µX) = 1
N

N∑
i=1

V (xi) + 1
2εd2

K(µX).

Assume for a moment that the point set X ∈ RNd does not belong to the set

DN = {(x1, . . . , xN ) ∈ RNd | xi = xj for some i 6= j}. (2.6)

Then it is easy to see that for small perturbations V = (v1, . . . , vN ) ∈ RNd, the optimal
transport map between µX and µX+V simply maps xi to xi + vi, thus showing that the
map X 7→ µX is locally isometric, i.e. if ‖V ‖ is small enough,

W 2
2 (µX , µX+V ) = 1

N
‖V ‖2.

This suggests to replace the continuous Wasserstein gradient flow (2.5) by the discrete
gradient flow (2.7) with respect to the Euclidean metric:{ 1

N Ẋ
N (t) = −∇EN

(
XN (t)

)
,

XN (0) = XN
0 ,

(2.7)

where EN = EεN for a suitable choice of εN → 0. The initial condition can be selected
by optimal quantization as in (1.3).

Given µ ∈PN (Rd), let σ ∈ K be the projection of µ onto K, i.e. a minimizer of

min
σ∈K

W 2
2 (µ, σ).

Its existence follows by compactness, while its uniqueness and continuity with respect
to µ are guaranteed by Proposition 5.2 in [7]. Let also T : Ω → Rd be the (unique)
optimal transport map from σ to µ. The cell Li = T−1(xi) represents the part of the
mass of σ which is attached to the particle xi. Denoting by βi(X) = −

∫
Li
xdσ(x) =∫

Li
x dσ(x)/

∫
Li

dσ(x) the barycenter of the cell Li, Proposition 5.1 gives

∂EN

∂xi
(X) = − 1

N
∇V (xi) + 1

NεN

(
βi(X)− xi

)
,

and therefore (2.7) becomes more explicitlyẋ
N
i (t) = −∇V

(
xNi (t)

)
+ 1
εN

[
βi
(
XN (t)

)
− xNi (t)

]
,

XN (0) = XN
0 .

(2.8)

Moreover, Proposition 5.1 shows that 1
2εd

2
K is 1

2Nε -concave, which proves that the
vector field −∇Eε(X) is well-defined a.e. and provides several useful properties of the
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flow of this vector field. In particular, following [21] (slightly adapting the proof of
Proposition 2.3), one can prove the existence, for every initial datum, of a solution of

X ′(t) ∈ −∂+Eε(X(t)),

where ∂+ is the superdifferential of semiconcave functions. Solutions of this ODE satisfy
a reverse Gronwall inequality which provides

|X1(t)−X2(t)| ≥ e−Ct|X1(0)−X2(0)|,

opposite to what happens for the gradient flows of semiconvex functions: this is not useful
for uniqueness purposes, but states that solutions cannot concentrate too much, and in
particular we obtain that for a.e. initial datum the flow avoids for a.e. time the non-
differentiability set. In particular, we have existence of solutions ofX ′(t) = −∇Eε(X(t)),
in the almost everywhere sense and for almost every initial datum. Therefore it is always
possible to find µN (0) and XN that satisfy the hypothesis of the following theorem.
However, we insist that the goal of the present paper is to show approximation results,
and the existence proof for the “discrete” problem with a finite number of particles is
not the core of our analysis, which explains why we do not provide more details about
the existence for a.e. intial datum.

Theorem 2.1 (Convergence of the discrete scheme). For every N ∈ N, let εN ∈ (0,∞)
and µN (0) ∈PN (Rd) be such that

1
εN

W 2
2 (ρ0, µN (0)) ≤ C, lim

N→∞
εN = 0.

Let XN ∈ C1([0, T ],RNd) be a solution of (2.7) or, equivalently, (2.8) and let µN :
[0, T ]→PN (Rd) be the corresponding curve of measures. Assume that

1
ε2
N

∫ T

0
W 2

2

(
σN ,

1
N

N∑
i=1

δβi(XN )

)
dt ≤ C, (2.9)

for some constant independent of N and that ρ0 ∈ K. Then, as N → ∞, and up to
subsequences, µN → ρ in C0([0, T ];W2(Rd)

)
, where ρ is a weak solution to (2.4).

Proof. For simplicity of notation, let us write βNi (t) in place of βi
(
XN (t))

)
. Define the

time dependent vector valued measures

MN (t) =
N∑
i=1

ẋNi (t) 1
N
δxNi (t) = − 1

N

N∑
i=1

[
∇V

(
xNi (t)

)
+ 1
εN

(
xNi (t)− βNi (t)

)]
δxNi (t).

Define also the space-time measures µN ∈M+([0, T ]×Ω) and MN ∈M ([0, T ]×Ω;Rd)
given by

µN =
∫ T

0
δt ⊗ µN (t) dt, MN =

∫ T

0
δt ⊗MN (t) dt.

By construction they satisfy the equation

∂tµN (t) + divMN (t) = 0, (2.10)
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in a weak sense because, for any ζ ∈ C1
c (Rd), one has

d
dt

∫
Rd
ζ dµN (t) = d

dt

(
1
N

N∑
i=1

ζ
(
xNi (t)

))
= 1
N

N∑
i=1
∇ζ
(
xNi (t)

)
· ẋNi (t)

=
∫
Rd
∇ζ · dMN (t)

This also means that (µN ,MN ) solve the continuity equation

∂tµN + divMN = 0 (2.11)

in distributional sense.
The first step is showing that the measures µN admit a limit in some sense. This is

a consequence of the energy estimate∫ T

0

∫
Ω

∣∣∣∣dMN (t)
dµN (t)

∣∣∣∣2 dµN (t) dt =
∫ T

0

1
N

N∑
i=1
|ẋNi (t)|2 dt

=
∫ T

0
−∇EN

(
XN (t)

)
· ẊN (t) dt

=
∫ T

0
− d

dtE
N(XN (t)

)
dt

= EN
(
XN (0)

)
− EN

(
XN (T )

)
≤ EN

(
XN (0)

)
≤ C,

(2.12)

because then the Benamou-Brenier formula for the W2 distance

W 2
2
(
µN (t0), µN (t1)

)
≤ −
∫ t1

t0

∫
Ω

∣∣∣∣(t1 − t0)dMN (t)
dµN (t)

∣∣∣∣2 dµN (t) dt

≤
(∫ T

0

∫
Ω

∣∣∣∣dMN (t)
dµN (t)

∣∣∣∣2 dµN (t) dt
)
|t1 − t0|

(2.13)

shows that the functions [0, T ] →
(
P(Ω),W2

)
: t 7→ µN (t) are equi-continuous, since

they are all 1/2-Hölder with the same constant. Ascoli-Arzelà then ensures that µN → ρ
in C([0, T ],W2(Ω)), up to a subsequence. In particular, µN ⇀ ρ in M+([0, T ]× Ω).

Next, we show that also the family of measures MN admits a limit. Indeed,

‖MN‖TV =
∫ T

0
‖MN (t)‖TV dt =

∫ T

0

1
N

N∑
i=1
|ẋNi (t)| dt = 1

N

N∑
i=1

∫ T

0
|ẋNi (t)|dt

≤ 1
N

N∑
i=1

√
T

(∫ T

0
|ẋNi (t)|2 dt

)1/2

≤
√
T

(
1
N

N∑
i=1

∫ T

0
|ẋNi (t)|2 dt

)1/2

≤
√
TEN

(
XN (0)

)
≤
√
TC,

and by compactness in the space of measures, they admit a weak limit MN ⇀ M in
M ([0, T ]× Ω;Rd).
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In particular, the weak convergence of µN and MN is sufficient to pass to the limit
(2.11) and infer that

∂tρ+ divM = 0.

To show that M � ρ, we will use a few properties of the Benamou-Brenier functional
B2 :M([0, T ] × Ω) ×M([0, T ] × Ω,Rd) → R ∪ {+∞}. These properties are found in
Proposition 5.18 of [20]: (i) If M � µ, B2(µ,M) =

∫
[0,T ]×Ω

∣∣∣dMdµ ∣∣∣2 dµ. (ii) The functional
B2 is lower semi-continuous wrt narrow convergence. (iii) B2(µ,M) < +∞ only if µ ≥ 0
and M � µ. In our case, using the fact that MN � µN and previous computations, we
get that

B2(µN ,MN ) =
∫ T

0

∫
Ω

∣∣∣∣dMN (t)
dµN (t)

∣∣∣∣2 dµN (t) dt

is uniformly bounded. Then, by lower semi-continuity, B2(ρ,M) is finite. This implies,
by the third property of B2 that M � ρ.

Let now σN be the projection of µN on K and let TN : Ω → Rd be the optimal
transport map (TN )#σN = µN . Notice that

1
2εN

W 2
2
(
µN (t), σN (t)

)
= 1

2εN
min
σ∈K

W 2
2
(
µN (t), σ

)
≤ EεN

(
µN (t)

)
≤ EεN

(
µN (0)

)
≤
∫

Ω
V dµN (0) + 1

2εN
W 2

2 (ρ0, µN (0))

≤
∫

Ω
V dρ0 + Lip(V )W2(ρ0, µN (0)) + 1

2εN
W 2

2 (ρ0, µN (0)) ≤ C,

therefore σN (t) converges to the same limit ρ(t) as µN (t). We used that ρ0 ∈ K so that
dK(ρ0) = 0. In particular this means that ρ(t) ∈ K for all t.

For ξ ∈ C1(Rd;Rd) and omitting time dependence for brevity, we have∫
Rd
ξ · dMN = −

∫
Ω

(
∇V (TN ) + TN − Id

εN

)
· ξ(TN ) dσN . (2.14)

By Brenier’s Theorem and the particular structure of the optimal partial transport
problem, we have that

TN = Id−∇ϕN
where ϕN : Ω→ R is a semi-concave function satisfying ϕN ≤ 0 and (1− σN )ϕN = 0;
see [16, Lemma 3.1] or Proposition 5.2 of this paper. If we introduce the pressure field

pN = −ϕN
εN
≥ 0

we have that
TN − Id
εN

= ∇pN , (1− σN )pN = 0.

We must show that pN ⇀ p in L2([0, T ];H1(Ω)
)
to some admissible pressure field.

This follows from the equi-boundedness∫ T

0

∫
Ω
|∇pN |2 dx dt ≤ C <∞,
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together with a Poincaré inequality based on the fact that |{pN = 0}| ≥ |Ω| − 1. This
allows to transform L2 bounds on the gradients into full H1 bounds. We now prove the
aforementioned equi-boundedness. For every t ∈ [0, T ], which we omit for brevity of
notation, we have that

W 2
2 (µN , σN ) =

N∑
i=1

∫
Li

|y − xi|2 dσN (y) =
N∑
i=1

∫
Li

|y − βi + βi − xi|2 dσN (y)

=
N∑
i=1

∫
Li

|y − βi|2 dσN (y) +
N∑
i=1

1
N
|βi − xi|2 + 2

N∑
i=1

∫
Li

〈y − βi | βi − xi〉dσN (y)

≤W 2
2

(
σN ,

1
N

N∑
i=1

δβi

)
+ 1
N

N∑
i=1
|xi − βi|2

(2.15)

where in the last step we use that
∫
Li

(y − βi) dσN (y) = 0.
The first term can be treated with the bound given by Assumption (2.9). For the

second term, notice that

1
ε2
N

∫ T

0

1
N

N∑
i=1
|xi − βi|2 dt =

∫ T

0

1
N

N∑
i=1

∣∣∣∣xi − βiεN

∣∣∣∣2 dt

=
∫ T

0

1
N

N∑
i=1
|ẋNi +∇V (XN

i )|2 dt

≤ 2
∫ T

0

1
N

N∑
i=1

(
|ẋNi |2 + |∇V (XN

i )|2
)

dt

≤ 2C + 2 Lip(V )2T

(2.16)

by (2.12). In conclusion,∫ T

0

∫
Ω
|∇pN |2 dx dt = 1

ε2
N

∫ T

0

∫
Ω
|∇ϕN |2 dx dt

= 1
ε2
N

∫ T

0
W 2

2 (µN , σN ) dt ≤ CT + 2C + 2 Lip(V )2T.

The next step is to show that p(1− ρ) = 0. The difficulty is that both σN and pN
are converging weakly, which is not sufficient in order to pass to the limit the nonlinear
relation pN (1− σN ) = 0.

For 0 ≤ t0 < t1 ≤ T , let us introduce the average pressure

pt0,t1N (x) = −
∫ t1

t0
pN (t, x) dt = 1

t1 − t0

∫ t1

t0
pN (t, x) dt.

Define also the measures λN ∈M+([0, T ]) given by

λN = ‖∇pN (t)‖L2(Ω) ·L 1 =
(∫

Ω
|∇pN (t)|2 dx

)
·L 1.
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Their total masses

|λN |([0, T ]) =
∫ T

0

∫
Ω
|∇pN |2 dx dt =

∫ T

0

∫
Ω
|∇pN |2 dσN dt

are uniformly bounded, as previously shown; therefore, up to a subsequence, they
converge weakly to a measure λ ∈ M+([0, T ]). Note that the second equality in the
previous formula uses that pN (1− σN ) = 0.

For every N , we split in two pieces the following identity:

0 = −
∫ t1

t0

∫
Ω
pN (t) d(1− σN (t)) dt

= −
∫ t1

t0

∫
Ω
pN (t) d(1− σN (t0)) dt+ −

∫ t1

t0

∫
Ω
pN (t) d(σN (t0)− σN (t)) dt

=
∫

Ω
pt0,t1N d(1− σN (t0)) + −

∫ t1

t0

∫
Ω
pN (t) d(σN (t0)− σN (t)) dt.

In order to deal with the first integral, we observe that we have strong convergence
pt0,t1N

L2(Ω)−−−−→ pt0,t1 since pt0,t1N is bounded in H1 (as it is obtained as an average, for fixed
t0, t1 of a time-dependent function on which we have L2

tH
1
x bounds), and that we have

σN (t0) ⇀ ρ(t0) as N →∞ (this convergence is a weak convergence of measures, but it
is also weak in L2 because of the L∞ bounds on the densities). Hence, the first integral
converges to

lim
N→∞

∫
Ω
pt0,t1N d(1− σN (t0)) =

∫
Ω
pt0,t1 d(1− ρ(t0)).

At any Lebesgue point t0 of the map [0, T ]→ L2(Ω) : t 7→ p(t) we have pt0,t1 −−−−→
t1→t0

p(t0),
hence

lim
t1→t0

∫
Ω
pt0,t1 d(1− ρ(t0)) =

∫
Ω
p(t0) d(1− ρ(t0)).

Employing Lemma 2.2, the second integral can be estimated as∣∣∣∣−∫ t1

t0

∫
Ω
pN (t) d(σN (t0)− σN (t)) dt

∣∣∣∣ ≤ −∫ t1

t0
‖∇pN (t)‖L2(Ω)W2

(
σN (t0), σN (t)

)
dt

≤ ω(t1 − t0) −
∫ t1

t0
‖∇pN (t)‖L2(Ω) dt

≤ ω(t1 − t0)
(
−
∫ t1

t0
‖∇pN (t)‖2L2(Ω) dt

)1/2

= ω(t1 − t0)
√
λN ([t0, t1])
t1 − t0

,

where ω is a continuity modulus for the curve t 7→ σN (t) in the Wasserstein space
W2. Note that the continuity of the curve t 7→ σN (t) comes from the continuity of
t 7→ µN (t) (a consequence of (2.13)) and the continuity of the projection operator
µ 7→ arg minσW 2

2 (µ, σ); see, for instance, [7]).
When N →∞, for almost every t0 and t1 we have

lim
N→∞

√
λN ([t0, t1])
t1 − t0

≤

√
λ([t0, t1])
t1 − t0

,
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which tends to a finite constant when t1 → t0 for a.e. t0. This latter fact comes from
differentiation of measures: this quantity represents the density of the measure λ w.r.t.
the Lebesgue measure on the real line, and the limit exists and is equal to the density of
the absolutely continuous part of λ a.e. If we also consider the factor ω(t1 − t0), we see
that the second integral goes to 0 for almost every t0 when taking the limits N →∞
and t1 → t0, in this order.

Summing up, we have shown that∫
Ω
p(t0) d(1− ρ(t0)) = lim

t1→t0
lim
N→∞

−
∫ t1

t0

∫
Ω
pN (t0) d(1− σN (t0)) dt = 0

for almost every t0 ∈ [0, T ], which proves p(1− ρ) = 0, by the positivity of p.
We can finally show that M = (−∇V −∇p)ρ. Fix ξ ∈ C1([0, T ]×Ω;Rd). By (2.14),

we know that∫ T

0

∫
Ω
ξ · dMN = −

∫ T

0

∫
Ω

(∇V (TN ) +∇pN ) · ξ(TN ) dσN dt.

The first term passes to the limit because∫ T

0

∫
Ω
∇V (TN ) · ξ(TN ) dσN =

∫ T

0

∫
Ω
∇V · ξ dµN →

∫ T

0

∫
Ω
∇V · ξ dρ.

For the second term,∣∣∣∣∣
∫ T

0

∫
Ω
∇pN · [ξ(TN )− ξ] dσN dt

∣∣∣∣∣ ≤
(∫ T

0

∫
Ω
|∇pN |2 dσN dt

)1/2

·
(∫ T

0

∫
Ω
|ξ(TN )− ξ|2 dσN dt

)1/2

≤
(∫ T

0

∫
Ω
|∇pN |2 dσN dt

)1/2

Lip(ξ)W2(µN , σN )→ 0,

therefore

lim
N→∞

∫ T

0

∫
Ω
∇pN · ξ(TN ) dσN dt = lim

N→∞

∫ T

0

∫
Ω
∇pN · ξ dσN dt

= lim
N→∞

∫ T

0

∫
Ω
∇pN · ξ dx dt

=
∫ T

0

∫
Ω
∇p · ξ dx dt

=
∫ T

0

∫
Ω
∇p · ξ dρdt.

The following lemma is borrowed from [16, Lemma 3.5] (but was first presented in
other papers, such as [14]).

Lemma 2.2. Let µ0, µ1 ∈P(Ω) be probability measures with densities bounded by 1.
Then for all f ∈ H1(Ω) we have that∣∣∣∣∫

Ω
f d(µ1 − µ0)

∣∣∣∣ ≤ ‖∇f‖L2(Ω)W2(µ0, µ1).
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Remark 2.3. The convergence result can be generalized to handle PDEs involving other
terms such as self-interaction involving a C1,1 kernel W :{

∂tρ+ div(ρv) = 0, ρ ∈ K,
v = −∇V −∇W ∗ ρ− w, w ∈ NρK,

which can be regarded as the gradient flow, in (P(Ω),W2) of the energy

E(ρ) =
{∫

Ω V (x) dρ(x) + 1
2
∫

Ω
∫

ΩW (x− y) dρ(x) dρ(y) if ρ ∈ K,
∞ otherwise,

provided the Kernel W is even. In this case, the discretized system becomes
ẋNi (t) = −∇V

(
xNi (t)

)
− 1
N

∑
j

∇W (xi − xj) + 1
εN

[
βi
(
XN (t)

)
− xNi (t)

]
,

XN (0) = XN
0 .

The only difference with respect to Theorem 2.1 will the presence of a modified
velocity field ∇VN instead of ∇V , with VN = V +W ∗ µN . In the proof of Theorem 2.1
we used the weak convergence of µN to handle the term

∫
∇V · ξdµN ; we will now also

need the uniform convergence ∇VN → ∇(V + W ∗ ρ) (which is a consequence of the
regularity assumption on W ) to handle the same term. Also note that in the definition
of the flow one can omit the term ∇W (xi − xj) for i = j, as it is usually done, since
anyway ∇W (0) = 0.

Theorem 2.4 (Convergence of the discrete scheme in 1D). Let Ω ⊂ R be an interval.
For every N ∈ N, let εN = 1/N and µN (0) ∈PN (R) be such that

1
εN

W 2
2 (ρ0, µN (0)) ≤ C,

Let XN ∈ C1([0, T ],RN ) be a solution of (2.7) or, equivalently, (2.8) and let µN :
[0, T ]→PN (R) be the corresponding curve of measures. Then, as N →∞, and up to
subsequences, µN → ρ in C0([0, T ];W2(R)

)
, where ρ is a weak solution to (2.4).

Proof. This is an immediate consequence of Theorem 2.1 and Proposition 4.1, which
allows to verify the assumption

1
ε2
N

∫ T

0
W 2

2

(
σN ,

1
N

N∑
i=1

δβi

)
dt ≤ C.

3 Lagrangian discretization of linear diffusion
The previously presented Lagrangian scheme can be adapted to solve also the advection-
diffusion equation {

∂tρ+ div(ρv) = 0,
v = −∇V −∇ log ρ,

(3.1)
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on a bounded domain Ω, with no-flux boundary conditions. This equation arises as the
gradient flow with respect to W2 of the energy

E(ρ) =
∫
V dρ+H(ρ) where H(ρ) =

{∫
Ω log ρdρ ρ� L d ¬Ω,
∞ otherwise,

We adopt the same Lagrangian discretization as before. For the atomic measures µN ,
the entropy (the second term in the energy) is identically +∞, therefore we need to
substitute it with a similar functional, in the same manner that we replaced the hard
constraint ρ ∈ K with a penalization. To this end, we consider its Moreau-Yosida
regularization

Hε(ρ) = min
σ∈P(Ω)

1
2εW

2
2 (ρ, σ) +H(σ). (3.2)

and the new energy becomes Eε(ρ) =
∫

Ω V dρ+Hε(ρ). Letting Fε(x1, . . . , xN ) = Hε(µX),
the discrete measure µN (t) represented by the particles XN (t) can then evolve according
to the system of ODE as before, namely{ 1

N ẋi(t) = − 1
N∇V (xi)−∇xiFε(X),

XN (0) = XN
0 .

(3.3)

Theorem 3.1 (Convergence of the discrete scheme). For every N ∈ N, let εN ∈ (0,∞)
and µN (0) ∈PN (Rd) such that

1
εN

W 2
2 (ρ0, µN (0)) ≤ C, lim

N→∞
εN = 0.

Let XN ∈ C1([0, T ],RNd) be a solution of (3.3) and let µN : [0, T ] → PN (Rd) be the
corresponding curve of measures. Assume that

1
εN

∫ T

0
W 2

2

(
σN ,

1
N

N∑
i=1

δβi

)
dt→ 0, (3.4)

where σN is the minimizer in the definition of Hε(µN ) (see (3.2)). Then, as N →∞,
and up to subsequences, µN → ρ in C0([0, T ];W2(Rd)

)
, where ρ is a weak solution to

(3.1).

Proof. Define as before the vector measures

MN =
N∑
i=0

ẋNi (t) 1
N
δxNi (t).

Together with µN , they solve the continuity equation

∂tµN (t) + divMN (t) = 0.
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Moreover,

∫ T

0

∣∣∣∣dMN (t)
dµN (t)

∣∣∣∣2 dµN (t) =
∫ T

0

1
N

N∑
i=1
|ẋNi (t)|2 dt

=
∫ T

0
−∇EN

(
XN (t)

)
· ẊN (t) dt

=
∫ T

0
− d

dtE
N(XN (t)

)
dt

= EN
(
XN (0)

)
− EN

(
XN (T )

)
≤ EN

(
XN (0)

)
≤ C,

so the functions [0, T ]→
(
P(Ω),W2

)
: t 7→ µN (t) are equi-continuous, because they are

1/2-Hölder with the same constant. Ascoli-Arzelà then ensures that µN ⇀ ρ, up to a
subsequence.

The rest of the proof is similar to the previous one with the following modifications.
The measure σN minimizing

min
σ∈P(Ω)

∫
Ω

log σ dσ + 1
2εW

2
2 (µN , σ)

satisfies
σN = cNe

−ϕN/(2εN )L d ¬Ω.

where ϕN is the optimal potential from σN to µN and cN is a normalization constant.
This optimality condition can be recovered from the first variation of the objective
functional. This implies that L d-almost everywhere on Ω the density σN is strictly
positive and

TN − Id
εN

= −∇ϕN2εN
= ∇ log σN = ∇σN

σN
.

Passing to the limit MN in order to get M = −∇V ρ−∇ρ is now easier because∫ T

0

∫
Ω
∇V · ξ dµN →

∫ T

0

∫
Ω
∇V · ξ dρ

as before. Setting pN = log σN (which is the term which plays a similar role to that of
the pressure in the previous section), we have for any ξ ∈ C0

c (Ω),

lim
N→∞

∫ T

0

∫
Ω
∇pN · ξ(TN ) dσN dt = lim

N→∞

∫ T

0

∫
Ω
∇pN · ξ dσN dt

= lim
N→∞

∫ T

0

∫
Ω
∇σN · ξ dx dt

= − lim
N→∞

∫ T

0

∫
Ω
σN div ξ dx dt

= −
∫ T

0

∫
Ω
ρdiv(ξ) dx dt.

15



The first step in the above equation is justified because∣∣∣∣∣
∫ T

0

∫
Ω
∇pN ·

(
ξ(TN )− ξ

)
dσN dt

∣∣∣∣∣ ≤ Lip(ξ)
∫ T

0

∫
Ω
|∇pN | · |TN − Id| dσN dt

= Lip(ξ) 1
εN

∫ T

0

∫
Ω
|TN − Id|2 dσN dt

= Lip(ξ) 1
εN

∫ T

0
W 2

2 (σN , µN ) dt→ 0.

The last term tends to 0 by writing, as in (2.15),

W 2
2 (σN , µN ) ≤W 2

2

(
σN ,

1
N

N∑
i=1

δβi

)
+ 1
N

N∑
i=1
|xi − βi|2.

The first term tends to 0 by assumption, and the second term is O(εN ) because of
(2.16).

Theorem 3.2 (Convergence of the discrete scheme in 1D). Let Ω ⊂ R be a bounded
interval. For every N ∈ N, take a number εN > 0 and µN (0) ∈PN (R) such that

1
εN

W 2
2 (ρ0, µN (0)) ≤ C, lim

N→∞
εN = 0, lim

N→∞
N2εN = +∞.

Let XN ∈ C1([0, T ],RN ) be a solution of (3.3) and let µN : [0, T ] → PN (R) be the
corresponding curve of measures. Then, as N →∞, and up to subsequences, µN → ρ
in C0([0, T ];W2(R)

)
, where ρ is a weak solution to (3.1).

Proof. This is an immediate consequence of Theorem 3.1 and Proposition 4.2, which
provide

1
εN

∫ T

0
W 2

2

(
σN ,

1
N

N∑
i=1

δβi

)
dt ≤ 1

N
√
εN
→ 0.

4 Bounds in 1D
In this section we prove that, for both the crowd motion and the linear diffusion
discretizations, in one dimension there are bounds on the quantities which are relevant
for the application of Theorems 2.1 and 3.1. The results come from a static analysis, in
the sense that the evolution equations do not play any role in the estimates.

We begin with the easier case of the crowd motion.

Proposition 4.1. Let Ω ⊂ R be an interval. Let x1, . . . , xN ∈ R, let µN be the
corresponding atomic measure, σN its W2-projection on {ρ ∈ P(Ω) : ρ ≤ 1}, T
the optimal transport map between σN and µN . Define the Laguerre cells and their
barycenters as

Li = T−1({xi})

βi = N

∫
Li

x dσN (x)
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Then, choosing ε = 1/N ,

1
ε2W

2
2

(
σN ,

1
N

N∑
i=1

δβi

)
dt ≤ 1

12 .

Proof. Each Laguerre cell Li is an interval of length 1/N and its barycenter is the
midpoint. Moreover, σN has constant density 1 on every cell Li, therefore

W 2
2

(
σN ,

N∑
i=1

δβi

)
=

N∑
i=1

∫
Li

|y − βi|2 dy =
N∑
i=1

∫ βi+1/(2N)

βi−1/(2N)
|y − βi|2 dy

= N

∫ 1/(2N)

−1/(2N)
y2 dy = 1

12N2 ,

which gives the claim.

We now pass to the case which is relevant for linear diffusion.

Proposition 4.2. Let Ω ⊂ R be a bounded interval. Let x1, . . . , xN ∈ R, let µN be the
corresponding atomic measure, and define, for ε > 0:

σN = arg min
ρ∈P(Ω)

1
2εW

2
2 (µN , ρ) +H(ρ).

Let β1, . . . , βN be the barycenters of the Laguerre cells L1, . . . , LN of σN . Then we have

W 2
2

(
σN ,

1
N

N∑
i=1

δβi

)
≤ C(Ω)

√
ε

N
,

where C(Ω) only depends on the length |Ω| of Ω.

The proof of this proposition relies on the next lemma, which is a particular case of
the main theorem of [11].

Lemma 4.3. Let σ = e−(y−x)2/(2ε) dy be a Gaussian measure, let L be an interval such
that σ(L) = 1

N . Then, the variance of Nσ ¬L is upper bounded by the variance of σ:

N

∫
L

(y − β)2 dσ(y) ≤ ε, where β = N

∫
L
y dσ(y).

Proof of Proposition 4.2. Let `i = |Li| denote the length of the i-th Laguerre cell. We
fix a parameter ¯̀∈ (0, 1) to be specified later and divide the cells in two groups:

• short cells: S = {i : `i < ¯̀};

• long cells: L = {i : `i ≥ ¯̀}.

Notice that |S| ≤ N and |L| ≤ |Ω|/¯̀. By Proposition 5.3, we know that the restriction of
σN to the Laguerre cell Li is proportional to a Gaussian of the form exp(− 1

2ε(x− xi)2).
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Therefore, using Lemma 4.3 to estimate the contribution of the long cells, we get

W 2
2

(
σN ,

1
N

N∑
i=1

δβi

)
=
∑
i∈S

∫
Li

(y − βi)2 dσN (y) +
∑
i∈L

∫
Li

(y − βi)2 dσN (y)

≤
∑
i∈S

1
N
`2i +

∑
i∈L

ε

2N ≤
¯̀
N

∑
i∈S

`i + ε|Ω|
2¯̀N

≤
¯̀|Ω|
N

+ ε|Ω|
2¯̀N

= 3
√
ε|Ω|

2N ,

where in the last step we chose ¯̀=
√
ε.

5 Numerical scheme

5.1 Computation of the Moreau-Yosida regularization

Let F : Pac(Ω)→ R∪{+∞}, which we assume to be lower-semicontinuous with respect
to the Wasserstein metric W2. We consider the Moreau-Yosida regularization

Fε : X ∈ RNd 7→ inf
σ∈Pac(Ω)

1
2εW

2
2 (σ, µX) + F (σ), (5.1)

and we assume that for every X ∈ RNd, the minimization problem defining Fε(X)
admits a unique solution. This assumption is satisfied in the two relevant cases for this
paper, since the projection onto measures with bounded densities is always unique, see
[7], and the minimizer in the entropy case is unique because of strict convexity. We let

DN = {(x1, . . . , xN ) ∈ RNd | xi = xj for some i 6= j}.

Our first proposition gives an explicit formulation for the gradient of Hε given a solution
σ of the minimization problem defininig Hε. We recall that a function F on Rk is
λ-semi-concave if and only if F − λ‖·‖2 is concave.

Proposition 5.1. Fε is 1
2Nε -semi-concave on RNd and continuously differentiable on

RNd \ DN . Given X = (x1, . . . , xN ) ∈ RNd \ DN , we let σ the unique minimizer in
(5.1), T the unique optimal transport map between σ and µX , and Li = T−1(xi). Then,

∇xiFε(X) = 1
N

xi − βi(X)
ε

where βi(X) := N

∫
Li

x dσ(x)

Proof. First, let us underline that we work under the assumption that the optimal σ
in the minimization problem defining Fε(X) is unique for every X. This uniqueness
implies continuity of the map X 7→ σ. Let X ∈ RNd, σ the unique minimizer in (5.1)
and T the unique optimal transport map between σ and µX . Given Y ∈ RNd,

Fε(Y ) ≤ 1
2εW

2
2 (σ, µY ) + F (σ).
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By construction, one can decompose σ =
∑

1≤i≤N σi where σi ≥ 0, T (σi) = xi, and such
that σi(Ω) = 1/N . Considering the transport which maps σi to yi one gets

Fε(Y ) ≤ 1
2ε
∑
i

∫
|x− yi|2 dσi + F (σ)

≤ 1
2ε
∑
i

∫
|x− xi + xi − yi|2 dσi + F (σ)

≤ Fε(X) +
∑
i

〈 1
Nε

(βi(X)− xi)|xi − yi〉+ 1
2Nε

∑
i

|xi − yi|2

≤ Fε(X) + 〈 1
Nε

(β(X)−X)|X − Y 〉+ 1
2Nε |X − Y |

2

where we have set βi(X) = N
∫
x dσi and β(X) = (β1(X), . . . , βN (X)). This inequality

can be rewritten as
Gε(Y ) ≤ Gε(X) + 〈 1

Nε
β(X)|X − Y 〉

where Gε(X) = Fε(X)− 1
2Nε‖X‖

2. This shows that 1
Nεβ(X) belongs to the superdif-

ferential of Gε at X, so that the superdifferential of Gε is never empty, also showing
that Gε is concave. If X 6∈ DN , then σi = σ

¬
T−1(xi) and the point βi(X) is uniquely

defined (we use here the hypothesis on the uniqueness of the minimal σ in (5.1)). Using
the stability of optimal transport maps, we get that X ∈ RNd \D 7→ β(X) is continuous
on RNd \DN , which shows that Gε ∈ C1(RNd \DN ) and that

∇xiGε(X) = 1
Nε

βi(X).

The properties of Fε can be deduced from those of Gε.

The next two propositions explain how to compute the optimal σ in the definition of
the Moreau-Yosida regularization in the crowd motion and linear diffusion. Using Kan-
torovich duality, this problem can be reformulated as the computation of a Kantorovich
potential satisfying a finite-dimensional non-linear system, (5.2) or (5.3).

Given x1, . . . , xN ∈ Rd and ψ ∈ RN we define the Laguerre cell of the point xi with
respect to Ω as

Li(ψ) = {x ∈ Ω | ∀j, ‖x− xi‖2 − ψi ≤ ‖x− xi‖2 − ψi}.

Note that the next proposition is a special case of the characterization of Wasserstein
projections on K, proven in [16, Lemma 3.1].

Proposition 5.2. Consider F : P(Ω) → R defined by F (µ) = 0 if µ ∈ K and
F (µ) = +∞ otherwise, where K is defined in (2.1). Then for all X ∈ RNd \ DN , there
exists ψ ∈ RN− such that

∀i, |Li(ψ) ∩ Ω ∩ B(yi,
√
ψi)| =

1
N

(5.2)

Given such a ψ, define ϕ = min(mini‖· − xi‖2 − ψi, 0) and σ = 1{ϕ<0}∩Ω.

(a) σ ∈Pac(Ω) is the Wasserstein projection of µX on K,
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(b) ϕ ≤ 0, ϕ(1− σ) = 0

(c) (ϕ,ψ) is an admissible pair of Kantorovich potential in the transport from σ to µX

Proof. By Kantorovich duality, one can write for any σ ∈Pac(Ω),

W 2
2 (σ, µX) = max

ψ∈RN

∫
Ω

min
i
‖x− xi‖2 − ψi dσ(x) +

∑
1≤i≤N

ψi
N

= max
ψ∈RN

∑
1≤i≤N

∫
Li(ψ)

‖x− xi‖2 − ψi dσ(x) +
∑

1≤i≤N

ψi
N
,

thus giving

min
σ∈K

1
2εW

2
2 (σ, µX) = min

σ∈K
max
ψ∈RN

1
2ε

∑
1≤i≤N

∫
Li(ψ)

‖x− xi‖2 − ψi dσ(x) + 1
2ε

∑
1≤i≤N

ψi
N

Switching the minimum and the maximum, we get the following dual problem

max
ψ∈RN

min
σ∈L1(Ω),0≤σ≤1

1
2ε

∑
1≤i≤N

∫
Li(ψ)

‖x− xi‖2 − ψi dσ(x) + 1
2ε

∑
1≤i≤N

ψi
N

= max
ψ∈RN

D(ψ),

where, we set

Bi(ψ) := B(xi,
√
ψi) = {x ∈ Rd | ‖x− xi‖2 − ψi ≤ 0},

and
D(ψ) = 1

2ε
∑

1≤i≤N

∫
Li(ψ)∩Bi(ψ)

‖x− xi‖2 − ψi dx− 1
2ε

∑
1≤i≤N

ψi
N
.

With similar arguments as in [12, Theorem 1.1], one can prove that D is concave, C1,
and that its partial derivatives are

∂ψiD(ψ) = − 1
2ε

(
|Li(ψ) ∩ Bi(ψ)| − 1

N

)
.

It is easy to see that the maximum is attained in the dual problem, thus proving the
existence of ψ ≤ 0 satisfying (5.2). Define σ and ϕ as in the statement. Then, the
property ϕ(1− σ) is obvious. In addition,

ϕ(x) + ψi = min(min
j
‖x− xj‖2 − ψj , 0) + ψi ≤ ‖x− xi‖2,

so that the pair (ϕ,ψ) is admissible in the dual Kantorovich problem. It is also optimal
in the optimal transport problem between σ and µX by construction, since ϕ coincides
with the c-transform of ψ on the support of σ. This shows that

1
2εd2

K(µX) ≤ 1
2εW

2
2 (σ, µX) = 1

2ε

∫
ϕdσ − 1

2ε

∫
ψ dµX

≤ 1
2ε
∑
i

∫
Li(ψ)∩Ω∩Bi(ψ)

ϕdx− 1
2ε

∫
ψ dµX = D(ψ).

Since the converse inequality holds by weak duality, we get strong duality, and in
particular σ is the solution to the primal problem.
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The following proposition, dealing with the linear diffusion case, is obtained in a very
similar manner (one can for instance use Proposition 8.6 in [20] to get the optimality
condition for the dual problem). We also refer the reader to Theorems 3.1–3.2 in [3],
where similar results are shown for more general functionals.

Proposition 5.3. Let H : P(Ω)→ R be Boltzmann’s functional, and X ∈ RNd \DN .
Then, there exists ψ ∈ RN such that

∀i,
∫
Li(ψ)

e−
1

2ε (‖x−xi‖2−ψi) dx = 1
N

(5.3)

Given such a ψ, define ϕ = mini‖· − xi‖2 − ψi and σ = e−
ϕ
2ε1Ω. Then,

(a) σ ∈Pac(Ω) is the unique minimizer of minPac(Ω)
1
2εW

2
2 (·, µX) +H(·).

(b) 1
2εϕ+ log(σ) = 0

(c) (ϕ,ψ) is a pair of optimal Kantorovich potentials in the transport from σ to µX .

Remark 5.4. In practice, equations (5.2) and (5.3) are solved using the same damped
Newton algorithm as in [12]. The cells Li(ψ) are computed using computational geometry
techniques ensuring a near-linear computational time in 2D. The integrals are computed
exactly in the crowd motion case, and using quadratures ensuring a negligible numerical
error in the linear diffusion case.
Remark 5.5. The computation of the Moreau-Yosida regularization of the congestion
constraint and the entropy is implemented in the open-source library sd-ot, which is
available at https://github.com/sd-ot. The numerical schemes for crowd motion
and linear diffusion are implemented as examples in the Python package.

5.2 Numerical experiments (crowd motion)

In this paragraph, we consider Ω ⊆ R2 a compact domain, V : Ω→ R a potential, and
we define as usual the congestion term F : P(Ω)→ R by F (µ) = 0 if µ has density ≤ 1
and +∞ if not. We consider the discretization of the crowd motion model explained
above: an initial point set X0 = (x0

1, . . . , x
0
N ) is evolved through the ODE system{ 1

N ẋi(t) = −∇xiFε(x1(t), . . . , xNh(t))− 1
N∇V (xi(t)),

xi(0) = x0
i

which we discretize using a simple explicit Euler scheme:

xk+1
i − xki
τ

= −∇xiFε(xk1, . . . , xkNh)−∇V (xki ).

Propositions 5.1–5.2 can be used to compute the gradient of the regularized congestion
term Fε. Figure 5.2 illustrates this computation by showing a point setX = (x1, . . . , xN ),
the projected measure σ ∈Pac(Ω), σ ≤ 1 and the gradient (∇xiFε(X))1≤i≤N ).

21



Figure 1: From left to right: a) a point cloud x1, . . . , xN drawn uniformly in [0, 4
5 ]2 with

N = 100 points. b) the support of Wasserstein projection of µ = 1
N

∑
i δxi on the set of

probability densities bounded by 1, c) the Laguerre cells d) the arrows joining colored
points to blue points are proportional to −∇xiHε(x1, . . . , xN ).

Radial case As a first test case, we consider a simple problem with radial symmetry,
introduced in [16, Section 5], and whose solution is explicit. The domain is the set
Ω = {x ∈ R2 | x2 ≥ |x1|, ‖x‖ ≤ R}, and the potential is given by V (x) = ‖x‖. In
our experiment, we assume that R = 2 and α = 1

π , so that ρ0 = α1Ω is a probability
measure. As shown in [16], the evolution of the crowd is then given by

ρt(x) =


1 if r ∈ [0, b(t)[
α
(
1 + t

‖x‖

)
if r ∈ [b(t), R− r[

0 if r ∈ [R− t, T ],

where b is a solution of b(0) = 0
b′(t) = α b(t)+t

b(t)−α(b(t)+t) .

Given h > 0, we denote Nh = Card(Ω∩hZ2) and we let x0
1, . . . , x

0
Nh

be the an arbitrary
numbering of the points in the intersection Ω ∩ hZ2. In all experiments, we set τ = h

2 ,
ε = h and T = 1. Figure 5.2 displays the evolution of the Laguerre cells at six time
steps. To get error estimates, we measure the Wasserstein distance between:

• ρ̄t = (x 7→ ‖x‖)#ρt ∈P(R), which is the distribution of distances from the origin,
computed from the exact solution ρt;

• µ̄k = 1
Nh

∑
1≤i≤Nh δ‖xki ‖

∈ P(R) the distribution of distances from the origin,
computed on the discrete solution µk = 1

Nh

∑
1≤i≤Nh δxi .

The relation between h and errh = max0≤k≤T
τ
W2(ρ̄kτ , µ̄k), as reported in Table 1,

suggests a near-linear convergence rate.

h 1
20

1
30 40

1
50

1
100

1
200

errh 5.24 · 10−2 3.06 · 10−2 2.15 · 10−2 1.70 · 10−2 4.96 · 10−3 2.80 · 10−3

Table 1: Error errh between the exact and numeric solution to the crowd motion model
as a function of the space-discretization h.
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Figure 2: Evolution of particles in the radial case, with h = 1
40 . The color of the cell i

is related to the position of the point x0
i , allowing to visualize the movement of particle.

Figure 3: The distribution of the crowd computed at 6 different timesteps, with h = α
30 .

The color of the Laguerre cells encodes the value of the y coordinate of the corresponding
particle at t = 0.

Bimodal case In this case, is obtained as the union of three squares Ω = Ω`∪Ωr∪Ωc:
two “rooms” Ω` and Ωr joined by a corridor Ωc, where

Ω` = [0, α]2, Ωr = [43α,
7
3α]× [0, α], Ωc = [α, 4

3α]× [13α,
2
3α], α = 2√

π

The crowd is initially located in the left room Ω` and the potential V is constructed as
the distance function to the two corners {(7

3α, α), (7
3α, 0)} of the right room Ωr. More

precisely, V is obtained as the solution to the following Eikonal equation, which is
computed using a fast marching method:{

‖∇V ‖ = 1,
V (7

3α, α) = V (7
3α, 0) = 0.

Given h > 0, we denote Nh = Card(Ω` ∩ hZ2) and we let x0
1, . . . , x

0
Nh

be the list of
points in Ω` ∩ hZ2, so that the crowd is initially located on the left square Ω`. Here, we
set the final time to T = 3, and as before, we have ε = h, τ = h

2 .

Visualization In Figures 3 and 4, we visualize the distribution of the crowd at the
timesteps ti = i/5

T for 0 ≤ i ≤ 5, for two space discretizations h = α
30 and h = α

80 . In
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Figure 4: The distribution of the crowd computed at 6 different timesteps, with h = α
80 .

Figure 5: The left (resp. right) column corresponds to h = α
30 (resp. h = α

80). The first
row display the timeout function defined in (5.4), which measures the time taken by a
particle to leave the corridor. The second row displays the trajectories of all particles.
The third row shows the trajectories of 20 randomly chosen cluster of particles.
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Figure 5.2, we highlight some features of the Lagrangian trajectory. First, given a
particle x0

i , we can compute the minimum time required for the particle to enter the
right room:

τi := τ min{k ∈ N | xki ∈ Ωr}. (5.4)

The exit time τi is displayed as a function of the particle coordinate x0
i at time t = 0 in

the first row of Figure 5.2. This figure shows (as one could expect) that the exit time
is not proportional to the distance to the “door” Ω` ∩ Ωc, as people in front tend to
escape faster than those on side of the door. Finally, the next two rows of show the
trajectory of the particles. The trajectories seem to be regular in time, but also seem to
depend continuously on the initial condition (except near the non-differentiability locus
of the potential V ).
Remark 5.6 (On the assumption (2.9)). In the 2D cases treated here, we cannot guarantee
that our numerical solutions converge to a solution of the crowd motion equation since
convergence requires the estimate (2.9). However, it is quite easy to see that this
estimate holds if one is able to prove that the diameter of the Laguerre cells is bounded
uniformly by C(1/N)1/d – this is what is established in 1D in Section 4. Figure 3 (and
in fact all our simulations) suggest that such an estimate is satisfied in practice.
Remark 5.7 (Lagrangian interpretation). The Eulerian crowd-motion equation (2.4) can
be turned into a Lagrangian equation by introducing the map st ∈ L2(ρ0,Ω), which
describes the displacement of the crowd from its position at time t = 0 (more precisely,
st(x) is the position at time t which was at x at time 0). Formally, s should satisfy the
following system 

ṡ = v ◦ s
s0 = id
ρ = s#ρ0

v = −∇p−∇V
ρ ≤ 1, p ≥ 0, p(1− ρ) = 0,

(5.5)

and we expect that the numerical solution, shown in Figure 5.2, provides a piecewise-
constant (in space) approximation to s. We note however that the system (5.5) has
not been studied; showing existence of solutions to this system would require to better
understand the regularity of the pressure p appearing in (2.4).

5.3 Numerical experiments (diffusion)

In this paragraph, we consider Ω ⊆ R2 a compact domain, and we let F be Boltzmann’s
functional. We consider the discretization of the heat equationl explained above: an
initial point set X0 = (x0

1, . . . , x
0
N ) is evolved through the ODE system (3.3) (with

V = 0), which we discretize again using a simple explicit Euler scheme:

xk+1
i − xki
τ

= −∇xiFε(xk1, . . . , xkNh).

In the numerical example presented in Figures 6,7 and 8, the initial density is uniform
over a disk D, and approximated by the uniform measure over hZ2∩D. Despite the lack
of convergence result in 2D, one can observe the consistency between the simulations
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Figure 6: Simulation of the heat equation, at several timesteps, for h = 1
30 . The color

of the cell Li is proportional to exp(− 1
2ε(‖βi(X) − xi‖2 + ψi)) (see (5.3)). For better

visibility, the density is represented on a color scale where the current maximum is
always labeled with the same color (yellow).

with h = 1
30 and h = 1

80 . Some of the cells near the boundary of the disk D are very
elongated; however this does not a priori prevent Assumption (3.4) to hold, since there
are few elongated cells and the assumed bound is on a mean quantity.
Remark 5.8 (Lagrangian interpretation). The trajectories we construct (displayed in
Figure 8) should not be interpreted as realizations of solutions of the stochastic ODE
associated with the heat equation. As in remark 5.7, we expect (but do not prove) that
our numerical solutions actually approximate the solution to a Lagrangian equation
which can be derived from the heat equation, namely

ṡ = v ◦ s
s0 = id
ρ = s#ρ0

v = −∇ log ρ.

(5.6)

In contrast with Remark 5.7, the existence of solutions to (5.6) has been established
in an article of Evans, Gangbo and Savin [8], assuming that the initial density ρ0 is
bounded from above and below. Their result can also be extended to some non-linear
diffusion equations, under assumptions on the nonlinearity. This Lagrangian point
of view has already been used to construct numerical schemes for nonlinear diffusion
equations, see [10].
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Figure 7: Simulation of the heat equation, at several timesteps, for h = 1
80 .

Figure 8: Trajectories of particles along the heat flow (see Rem. 5.8). Left: h = 1
30 ,

Right: h = 1
80 .
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