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ABSTRACT. In this paper we prove optimal regularity for the convex envelope of supersolutions to general
fully nonlinear elliptic equations with unbounded coefficients. More precisely, we deal with coefficients and
right hand sides (RHS) in Lq with q ≥ n. This extends the result of L. Caffarelli on the C1,1

loc regularity of
the convex envelope of supersolutions of fully nonlinear elliptic equations with bounded RHS. Moreover, we
also provide a regularity result with estimates for ω−semiconvex functions that are supersolutions to the same
type of equations with unbounded RHS (i.e, RHS in Lq , q ≥ n). By a completely different method, our results
here extend the recent regularity results obtained by the first and third authors in [3] for q > n, as far as fully
nonlinear PDEs are concerned. These results include, in particular, the apriori estimate obtained by L. Caffarelli,
J. J. Kohn, L. Nirenberg and J. Spruck in [10] on the modulus of continuity of the gradient of ω−semiconvex
supersolutions (for linear equations and bounded RHS) that have a Hölder modulus of semiconvexity.

1. INTRODUCTION

The issue about the regularity of the convex envelope appears in many branches of Analysis and Geom-
etry, among others. A list of few of them includes: Alexandrov-Bakelman-Pucci estimate in fully nonlinear
equations [6, 24], Monge-Ampère equation [7, 29, 15, 20], geometric flows [12, 30], Hamilton-Jacobi equa-
tions [4, 19, 11], optimal transportation [22], calculus of variations and optimal control [11], etc. As shown
in [36], the convex envelope can also be seen as a solution to an obstacle problem. Note that the convex
envelope always enjoys local interior Lipschitz regularity (being a convex function), so the delicate question
is to investigate under what conditions one can say that it isC1 or more regular. In the papers [9, 28, 32, 36],
results in this direction were established. Matters about the optimal regularity of the convex envelope are
indeed harder and seem to be much less known.

Recently, the second author together with G. De Philippis studied questions related to this subject in
[16]. More precisely, they investigated how the regularity of the boundary data and of the boundary itself
make an influence on the regularity of the convex envelope. There, they presented a list of regularity results,
and by a set of examples they show the sharpness of their conditions. As pointed out in [28], inquiring
about smoothness of convex envelopes is not meant only to satisfy mathematical curiosity: the operation of
convexification is fundamental, for instance, in the mathematical study of thermodynamic phase equilibria
(see [28] and the references therein).

In [6], for the first time 1 in the context of viscosity solutions for fully nonlinear elliptic PDEs, L. Caf-
farelli proved the famous Alexandrov-Bakelman-Pucci estimate (ABP estimate). A key step in Caffarelli’s
proof is to show that the convex envelope of supersolutionsM−λ,Λ(D2u) ≤ f 2 is C1,1

loc when f ∈ L∞. A
closely related subject to the regularity of the convex envelope is the regularity of ω−semiconvex functions,
where ω is a general modulus of semiconvexity. These functions also enjoy local Lipschitz regularity (see
for instance [18, Lemma A.5] or Proposition 8.2), and the same questions about how much further regularity
they eventually possess naturally arise.
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1We point out that around the same time, N. Trudinger in [39] (without explicitly stating the ABP maximum principle for viscosity

supersolutions) pointed out that the ABP maximum principle holds for semi-concave functions using the standard proof. From there
one can also obtain it for viscosity supersolutions by regularizing the supersolutions via inf-convolution.

2This is a Pucci extremal opertator with ellipticity constants 0 < λ < Λ. We recall definition in section 2.
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In [10], L. Caffarelli, J.J. Kohn, L. Nirenberg, and J. Spruck investigated an apriori estimates for the
modulus of continuity of the gradient for classical supersolutions of linear second order uniformly elliptic
equations with bounded RHS that are also ω0−semiconvex for ω0(t) = Ctα with α ∈ (0, 1), and they
obtained a logarithmic modulus of continuity for the gradient (see the Corollary of Lemma 2.2 in [10]).

The study of convexity properties related to supersolutions plays a relevant role in the theory of fully
nonlinear PDEs (see for instance the classical paper by O. Alvarez, J.M. Lasry, and P. L. Lions [2] and
the references therein). Moreover, in [31], C. Imbert obtained the convexity of solutions as well as C1,1

estimates for convex supersolutions for some class of fully nonlinear equations.
Recently, in [3], the first and third authors obtained an optimal regularity result with estimates that

improve the Corollary of Lemma 2.2 in [10]. The context in [3] involved general ω−semiconvex functions
that are supersolutions to fully nonlinear and quasilinear equations with unbounded RHS case (meaning
RHS is in Lq with q > n).

The purpose of this current paper is two-fold: The first goal is to present the optimal interior regularity
of the convex envelope of Ln viscosity supersolutions of the Pucci extremal operators with unbounded
coefficients. Very roughly, one of our results says: if u < 0 in B1 and u = 0 along ∂B1 satisfies in the
viscosity sense

P−γ [u] :=M−λ,Λ(D2u)− γ(x)|∇u| ≤ f(x) in B1

where 0 ≤ γ ∈ Lp(B1), f ∈ Lq(B1) with p ≥ n and q ≥ n, then the convex envelope of u, denoted
by Γu, belongs to C1,1−n/q

loc (B1) (here and in the sequel, C1,1−n/q
loc (B1) = C1(B1) when q = n). It is

worth emphasizing that also the case where p = n is treated here, exploiting a simple result from measure
theory in order to extend to this case some results that previously were only available for p > n. As we
shall discuss later, our C1,1−n/q

loc regularity result is sharp. Under a more specific geometric setting for u,
we obtain in fact a precise estimate for the corresponding Hölder semi-norm of the gradient of the convex
envelope (see Theorem 2.8).

Our second goal is to provide a sharp regularity result for ω−semiconvex supersolutions to the Pucci
extremal operator P−γ given above. As far as fully nonlinear equations are concerned, this improves the
corresponding result in [3]. In fact, the technique developed in [3] seems to be unable to treat the case
where the coefficients of the equation are in Ln. The reason behind this is that the method in [3] is based on
a new quantitative version for the Inhomogeneous Hopf-Oleı̆nik Lemma (IHOL) that requires RHS in Lq

with q > n. As a matter of fact, a stronger version of IHOL for fully nonlinear equations was obtained by
B. Sirakov in a form of a boundary weak Harnack inequality in [38]. IHOL for quasilinear equations was
also obtained in [3].

The key point in our argument is a new estimate on the growth rate of ω−semiconvex functions that are
below supersolutions. The philosophical idea here is that Harnack inequality allows solutions to reproduce
their modulus of continuity by below also from above. Thus, semiconvexity together with the equation
(Harnack type estimates) should imply regularity at the contact points (see Remark 4.1). As a matter of
fact, our estimate is obtained by the use of the weak Harnack inequality for equations with unbounded
coefficients proven by S. Koike and A. Swiech in [33]3 Note that in [6] or [8], weak Harnack inequality
is obtained from (a clever use of) the ABP estimate which by its turn is proven by using the regularity of
the convex envelope. There, the fact that RHS is in L∞ seems to play an important role in L. Caffarelli’s
argument. Here instead, based on the new version of the weak Harnack inequality in [33], we are able to
reverse this approach and show that the optimal regularity of the convex envelope can be obtained by using
the weak Harnack inequality.

Our paper is organized as follows: In section 2, we describe the structural conditions about the PDEs
studied in the paper and also present our main results. In section 3, we discuss some examples that show
that our regularity results are sharp. Section 4 is devoted to the proof of our key estimate that yields the
(pointwise) regularity inside the contact set. In sections 5 and 6, we give the proofs of our results related to
the regularity of the convex envelope. In section 7, we present the proof of our regularity Theorem about
ω−semiconvex functions. In section 8, we provide a self contained proof of the Lipschitz regularity and
Lp − L∞ estimates for ω−semiconvex functions and their gradients that are needed in the paper. We be-
lieve these estimates may show to be useful in other circumstances and may be of independent interest.

3Although not explicitly stated in [33], as explained in Remark 4.6 below, the weak Harnack inequality for p = q = n is a
consequence of the results in that paper.
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Finally, for completeness, in the appendix we give short proofs of some useful Lemma about the relation
between C1,ω pointwise regularity and the classical C1,ω regularity. This is needed in the analysis of our
estimates.

Acknowledgments: The work of A. Figalli is supported by the ERC Grant “Regularity and Stability in
Partial Differential Equations (RSPDE)”. The work of D. Moreira is supported by CNPq grant “Universal-
2014” - 447536/2014-1. The authors would like to thank Lihe Wang for sharing nice ideas contained the
appendix of this paper. The authors also thank the anonymous referees for their useful comments on a
preliminary version of this paper.

2. SETTING AND MAIN RESULTS

To state our main results, we first recall some basic definition from convex analysis and fully nonlinear
PDEs.

2.1. Convex envelope and ω−semiconvex functions. Let u ∈ C0(Ω), where Ω is an open bounded set
in Rn. We define the convex envelope of u (and denote it by Γu) the function defined for every x ∈ Ω as
follows

Γu(x) := sup
{
ϕ(x) : ϕ is convex in Ω and ϕ ≤ u in Ω

}
= sup

{
L(x) : L is affine in Ω and L ≤ u in Ω

}
.

The set
C(u) :=

{
x ∈ Ω : u(x) = Γu(x)

}
is called the contact set between u and the convex envelope Γu. In principle, this set may be empty or may
be contained inside the boundary of Ω. These consideration will be relevant for our results here. We will
return to this issue below.

We also recall some definition from nonsmooth analysis. Let Ω ⊂ Rn be an open bounded convex set.
We say that u : Ω→ R is ω−semiconvex if for any x, y ∈ Ω and any t ∈ [0, 1]

(2.1) u(tx+ (1− t)y) ≤ tu(x) + (1− t)u(y) + t(1− t)|x− y|ω(|x− y|).

where ω : [0,∞)→ [0,∞) is a nondecreasing upper semicontinuous functions such that

ω(0) = lim
t→0+

ω(t) = 0.

We recall the normal mapping at x0 defined as

∂ωu(x0) :=
{
p ∈ Rn : u(x) ≥ u(x0) + p · (x− x0)− |x− x0|ω(|x− x0|) ∀x ∈ Ω

}
.

In the case u is ω−semiconvex, the sets ∂ωu(x) are non-empty and compact (see Proposition 2.1 in [1]).

Remark 2.1 (Perturbation by affine functions). Let u : Ω → R be a ω−semiconvex function defined
in Ω a bounded open convex set. Assume that L(x) = A · (x − x0) + B with A ∈ Rn and B ∈ R be an
affine function in Rn. Then, ϕ(x) := ϕ(x) + L(x) is also ω−semiconvex in Ω. This elementary fact will
be relevant in the proof of Theorem 2.9.

2.2. Supersolutions and Pucci Operators. We now introduce the structural conditions for the PDEs that
appear in this paper. We start by recalling the Pucci extremal operators. Let us denote Sn×n the space of
symmetric matrices of order n. For 0 < λ ≤ Λ, the operatorM−λ,Λ : Sn×n → R is given by

(2.2) M−λ,Λ(M) = λ ·
∑
ei>0

ei + Λ ·
∑
ei<0

ei = λ · Tr(M+)− Λ · Tr(M−),

(2.3) M+
λ,Λ(M) = Λ ·

∑
ei>0

ei + λ ·
∑
ei<0

ei = Λ · Tr(M+)− λ · Tr(M−),
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where ei are the eigenvalues of M and Tr(M) denotes the trace of the matrix M . We recall that

(2.4) M−λ,Λ(M) = inf
M∈Aλ,Λ

Tr(AM), M+
λ,Λ(M) = sup

M∈Aλ,Λ
Tr(AM),

where

(2.5) Aλ,Λ :=
{
A ∈ Sn×n : λIn ≤ A ≤ ΛIn

}
.

For γ ≥ 0 a measurable function, we define the Pucci operator P−λ,Λ,γ : Sn×n × Rn × Ω→ R to be

(2.6) P−λ,Λ,γ(M,v, x) =M−λ,Λ(M)− γ(x)|v|.

Throughout the paper, γ, f ∈ Lr(Ω) with γ ≥ 0. Also, r ≥ n will be specified in each particular result.
Recall that u ∈ C0(Ω) is a solution to P−γ [u] ≤ f in Ω in the Ln−viscosity sense if for any φ ∈ W 2,n

loc (Ω)
such that u− φ has a local mimimum at x0 ∈ Ω we have

ess lim inf
x→x0

(
P−γ [φ]− f(x)

)
= ess lim inf

x→x0

(
M−λ,Λ(D2φ(x))− γ(x)|∇φ(x)| − f(x)

)
≤ 0.

Subsolutions are defined similarly. For simplicity, we also make use of the following notation:

P−γ [u](x) = P−λ,Λ,γ [u](x) := P−λ,Λ,γ(D2u(x),∇u(x), x),

S(γ, f) := S(λ,Λ, γ, f) =
{
u ∈ C0(Ω) : P−γ [u](x) ≤ f(x) in Ω in the Ln − viscosity sense

}
,

Ss(γ, f) := Ss(λ,Λ, γ, f) =
{
u ∈W 2,n

loc (Ω) : P−γ [u](x) ≤ f(x) a.e. in Ω
}
.

Remark 2.2. We refer the reader to [13] for details about the Lp viscosity theory of fully nonlinear PDEs.

2.3. Moduli of continuity and a preliminary result from measure theory.

Definition 2.3. A modulus of continuity is a nondecreasing function ω : [0, δω) → [0,∞) such that
lim
t→0+

ω(t) = ω(0) = 0. Here δω ∈ (0,∞].

Let a differentiable function u be defined in an open set Ω. We define the following quantity for any K ⊂ Ω:

(2.7) [∇u]C0,ω(K) := inf
{
C > 0 : |∇u(x)−∇u(y)| ≤ C · ω(|x− y|), ∀x, y ∈ K, |x− y| < δω

}
Note that, if ω is strictly positive and [∇u]C0,ω(K) <∞, then it is easy to see that

[∇u]C0,ω(K) = sup
x,y∈K

x6=y, |x−y|<δω

|∇u(x)−∇u(y)|
ω(|x− y|)

.

We say that a function u ∈ C1,ω
loc (Ω) if it is differentiable in Ω and for any K ⊂⊂ Ω we have

‖u‖C1,ω(K) := ‖u‖L∞(K) + ‖∇u‖L∞(K) + [∇u]C0,ω(K) <∞.

For α ∈ (0, 1], we recall the weighted C1,α norm that will also appear in the sequel: If u ∈ C1,α(Br)

‖u‖∗C1,α(Br) := ‖u‖L∞(Br) + r · ‖∇u‖L∞(Br) + r1+α · [∇u]Cα(Br),

where

[∇u]Cα(Br) = sup
x,y∈Br
x 6=y

|∇u(x)−∇u(y)|
|x− y|α

.

Generally speaking, in this paper, we will always have γ ∈ Lp(Ω) and f ∈ Lq(Ω). This will be specified
precisely in each statement in the sequel. As matter of fact, throughout the paper, one of the following
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conditions with respect to these exponents will be always in place

(E)


p ≥ q > n,

p > q ≥ n,

p = q = n and u ∈ Ss(γ; f) in Ω.

In order to deal with the case p = q = n, the following result will be important (see Remarks 2.5 and 4.4).

Lemma 2.4. Let g ∈ L1(Rn). Then there exists a modulus of continuity Θ : [0,∞)→ [0,∞) such that∫
Bρ(x0)

|g(x)|dx ≤ Θ(ρ) ∀x0 ∈ Ω, ∀ρ > 0.

In particular, if Ω ⊂ Rn and g ∈ L1(Ω), we have∫
Bρ(x0)∩Ω

|g(x)|dx ≤ Θ(ρ) ∀x0 ∈ Ω, ∀ρ > 0.

Proof. By the absolute continuity property of the integral, for any ε > 0 there exists δ = δ(ε) > 0 such
that

(2.8)
∫
Bρ(x0)

|g(x)|dx < ε ∀x0 ∈ Rn, ∀ρ ≤ δ(ε).

Thanks to this fact, it suffices to set

Θ(ρ) := sup
x0∈Rn

∫
Bρ(x0)

|g(x)|dx ∀ρ > 0.

In the case g ∈ L1(Ω), we apply the previous result to the extension of g by zero outside Ω. �

2.4. Statement of the main results. Before we state our results, we make a Remark.

Remark 2.5. In Theorems 2.6, 2.8 and 2.9, condition (E) will be always in place. Moreover, whenever
q = n, C1,1−n/q

loc (Ω) simply means C1(Ω). Note that, when p = q = n, it follows by Lemma 2.4 applied to
g(x) = γ(x)n that there exists a modulus of continuity Θγ such that

||γ||Ln(Bρ(x0)∩Ω) ≤ Θγ(ρ) ∀x0 ∈ Ω.

In the next statements, Θγ will refer to this modulus of continuity. Analogously, if q = n, Lemma 2.4
applied to g(x) = |f(x)|n guarantees the existence of a modulus of continuity ϑ such that

max
{
‖f‖Ln(Br(x0)∩Ω), r

1−np · ‖γ‖Lp(Br(x0)∩Ω)

}
≤ ϑ(r) ∀x0 ∈ Ω, ∀r > 0.

Theorem 2.6. Let Ω be an open, bounded and convex set in Rn and u ∈ C0(Ω) ∩ S(γ; f) in Ω, with
γ ∈ Lp(Ω) and f ∈ Lq(Ω). Suppose that u = 0 on ∂Ω and that u < 0 in Ω. Then, Γu ∈ C1,1−n/q

loc (Ω) and
this regularity is optimal. Moreover, in the case q = n, let ϑ be a modulus of continuity such that

(2.9) max
{
‖f‖Ln(Br(x0)), r

1−np · ‖γ‖Lp(Br(x0))

}
≤ ϑ(r) ∀x0 ∈ Ω, ∀r ≤ dist(x0, ∂Ω).

Then Γu ∈ C1,ϑ
loc (Ω), where for any Ω′ ⊂⊂ Ω

ϑ(r) = ϑΩ′(r) = Cϑ(µr) ∀r ∈ [0, r∗].

Here
r∗ = r∗(n, inf

Ω
u,Ω′, dist(Ω′, ∂Ω)) > 0, µ = µ(n, inf

Ω
u,Ω′) > 0,

(2.10) C = C(n, p, q, λ,Λ, ‖γ‖Lp(Ω), inf
Ω
u,Ω′, dist(Ω′, ∂Ω),Θγ) > 0.
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There is a related result to Theorem 2.6 that can be found in the classical book of C. Gutierrez on the
Monge-Ampère Equation (Proposition 6.6.1 in [29]). There, like in the statement above, u vanishes on the
boundary and it is negative inside the domain. However, it has regularity up to the boundary, i.e, u ∈ C2(Ω).
As a matter of fact, Proposition 6.6.1 in [29] follows from Proposition 4.1 in [16] since the C2 regularity
may be replaced only by the (1+α) semi-convavity of u. Observe also that Proposition 6.6.1 in [29] follows
from our Theorem 2.6 above since ∆u ≤ ‖∆u‖L∞(Ω) and thus the supersolution condition is satisfied.

Remark 2.7. Roughly speaking, the idea of the proof of Theorem 2.6 is the following: We use the PDE
(Pucci extremal operator) to prove some kind of semi-concavity property via our key estimate (Proposition
4.2 below). This gives the regularity inside the contact set. Then, we use the prescribed geometry of u to
propagate the regularity from the contact set to the rest of the domain. We point out that the geometry of u
plays an important role here, as it forces the contact between u and its convex envelope Γu to happen inside
the domain and not only on the boundary (see Remark 5.3). In the absence of this geometry, the contact set
may be totally contained on the boundary and even the differentiability of the convex envelope may be lost,
as shown in Example 3.1 below.

Under some more specific geometry, we obtain the following result which can be seen as an extension
of Lemma 3.5 in book [8] by L. Caffarelli and X. Cabré. We note that the regularity provided by (2.11) is
optimal.

Theorem 2.8. Let u ∈ C0(Br) ∩ S(γ; f) in Br, with γ ∈ Lp(Br) and f ∈ Lq(Br). Assume that u ≥ 0
along ∂Br, and let Γu be the convex envelope of −u− with respect to B2r, where u− is extended by zero
outsideBr4. Then, Γu ∈ C1,1−n/q

loc (Br). Also, in the case q > n, givenR0 > 0 the following estimate holds
for 0 < r ≤ R0

(2.11) ‖Γu‖∗
C

1,1−n
q (Br)

≤ C
((

1 + ‖γ‖Lp(Br)

)
‖u‖L∞(Br) + ‖f+‖Lq(Br)

)
where C = C(n, λ,Λ, p, q, R0, ‖γ‖Lp(BR0

)) > 0.

Moreover, in the case q = n, let ϑ be a modulus of continuity such that

(2.12) max
{
‖f‖Ln(Bρ(x0)), ρ

1−np ‖γ‖Lp(Bρ(x0))

}
≤ ϑ(ρ) ∀x0 ∈ Br, 0 < ρ < r ≤ R0.

Then u ∈ C1,ϑ(Br/384n) with the following estimate

(2.13) [∇Γu]C0,ϑ(Br/384n) ≤ C
(

1 +
‖u‖∞(Br(x0))

r

)
.

Here,
ϑ(ρ) := ϑ(6nρ) for ρ ∈ [0, r/48n],

and

(2.14) C = C(n, p, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0.

Finally, our last result concerns the optimal regularity of supersolutions that are ω−semiconvex.

Theorem 2.9. Let ϕ ∈ S(γ, f) in Br be a bounded ω−semiconvex function in Br with 0 < r ≤ R0.
Assume that γ ∈ Lp(Br) and f ∈ Lq(Br), and let α = 1 − n/q ≥ 0, β := n(q−1 − p−1) ≥ 0. Then
ϕ ∈ C1,ζ(Br/64), where

(2.15) ζ(s) := ω(4s) +

(
‖f‖Lq(B4s) + sβ

(‖ϕ‖L∞(Br)

r
+ ω(r)

)
‖γ‖Lp(B4s)

)
sα for s ∈ (0, r/8).

In the case q = n, let ϑ be a modulus of continuity such that

(2.16) max
{
‖f‖Ln(Bρ(x0)), ρ

1−np ‖γ‖Lp(Bρ(x0))

}
≤ ϑ(ρ) ∀x0 ∈ Br, 0 < ρ < r − |x0| ≤ r ≤ R0.

Let Υ be given by the following formula for any s ∈ (0, r/8):

Υ(s) :=

 ω(4s) + sα if n > q,

ω(4s) + ϑ(4s) if n = q, with ϑ as in (2.16) above.

4Here, γ and f are also extended by zero outisde Br . See the proof for details
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Then, ϕ ∈ C1,Υ(Br/64) with the following estimates in the respective cases as the ones above:

[∇ϕ]C0,Υ(Br/64) ≤ C
(

1 + ‖f‖Lq(Br) +

(‖ϕ‖L∞(Br)

r
+ ω(r)

)
‖γ‖Lp(Br)

)
,

[∇ϕ]C0,Υ(Br/64) ≤ C
(

1 +
‖ϕ‖L∞(Br)

r
+ ω(r)

)
.

Here,

(2.17) C = C(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0.

Remark 2.10. The dependence on Θγ in the constants (2.10), (2.14) and (2.17) only takes place in the case
p = q = n. Furthermore, in that case, R0 > 0 can be dropped in (2.14) and (2.17).

3. EXAMPLES

We briefly point out examples showing the sharpness ine Theorems 2.6 and 2.8 (see also [3]).

Example 3.1 (Breaking down the geometry of u in Theorem 2.6). This example is inspired by the very
nice one constructed by A. Fathi and M. Zavidovique in Remark 2.4 in [19]. The authors were interested
in showing that the condition of coercivity on the boundary is not artificial if one is interested in obtaining
higher regularity (beyond local Lipschitz regularity) of the convex envelope. See Theorem 2.3 in [19].
Here, we perform a simple modification of their example to fit our purposes, i.e, to show that the geometry
imposed in Theorem 2.6 is relevant for some degree of smoothness beyond local Lipschitz regularity of the
convex envelope to hold. We give a detailed construction below.

Let R = [0, 1]× [0, 1] and u : R→ R such that

u(x, y) :=

 x− y + 1, for x ≤ y,

y − x+ 1, for x > y.

It is easy to see that u defined above is concave since it has a supporting plane from above at all points in R
(see figure 1 below). Thus,

∆u ≤ 0 in R◦ := int(R) in the viscosity sense.

Now let us consider ϕ : R→ R given by

ϕ(x, y) :=

 −x− y + 1, for x+ y ≤ 1,

x+ y − 1, for x+ y > 1.

By a similar argument (see figure 2 below), it is also easy to check that ϕ is convex and ϕ ≤ u in R. Thus,

(3.1) ϕ ≤ Γu in R.

We claim that ϕ = Γu. Indeed, let us consider the sets

T1 =
{

(x, y) ∈ R : x+ y ≤ 1
}

and T2 =
{

(x, y) ∈ R : x+ y ≥ 1
}
.

If we denote Γiu the convex envelope of u|Ti : Ti → R for i = 1, 2, then we have

(3.2) Γu ≤ Γiu in Ti for i = 1, 2.

Let now, Ai(x, y) to be a generic affine function such that Ai ≤ u|Ti in Ti for i = 1, 2. In particular, by
construction of u

u(1, 0) = u(0, 1) = 0.

Observe that ϕ ≡ 0 along the edge x+ y = 1, Moreover, since Ai is affine in Ti,

(x, y) ∈ R, x+ y = 1 =⇒ Ai(x, y) ≤ max{u(1, 0), u(0, 1)} = 0 ≤ ϕ(x, y).

Also, both ϕ and u are affine functions along the edges of R and they coincide on the vertices of R.
Thus, we conclude that Ai ≤ ϕ on ∂Ti, and therefore Ai ≤ ϕ in Ti (since they are both affine). This proves
that Γiu ≤ ϕ in Ti. By (3.1) and (3.2) we conclude that ϕ = Γu in R.

We now set v := u − 2. Then Γv = Γu − 2, ∆v ≤ 0 in R◦, and v ≤ −1 in R, but v 6≡ 0 along ∂R.
Here, Γv is not differentiable at any point on the diagonal x + y = 1. Also, C(v) ⊂ ∂R and the optimal
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FIGURE 2. The graph of Γu

regularity of Γv is only locally Lipschitz continuous. This show the necessity of the geometry of u required
in Theorem 2.6.

Example 3.2 (Sharpness of the exponent 1 − n/q, when RHS is in Lq with q > n, for Theorem 2.6).
Let q > 2 and consider the functions I : (0, 3/4]→ [0,∞) and w : [0, 3/4]→ [0,∞) given by

I(t) :=
t1−2/q

| ln(t)|2/q
, w(t) :=

∫ t

0

I(s) ds.

We observe that w ∈ C1,1−2/q([0, 1/2]) ∩ C∞(0, 3/4). Also, w is nonnegative, convex, and (strictly)
increasing in [0, 1/2]. Now, we define in two dimensions

u(x) := w(|x|)− w(1/2) for x ∈ B1/2 ⊂ R2.

Then u is nonpositive (since w attains its maximum on [0, 1/2] at t = 1/2) and convex, with u ≡ 0 on
∂B1/2 and u < 0 in B1/2. One can check that u ∈ C1,1−2/q

loc (B1/2) ∩C∞(B1/2 \ {0}). Moreover, a direct
computation shows that ∆u = f where

f(x) :=
(2− 2/q)|x|−2/q

| ln |x‖2/q
+

2

q

|x|−2/q

| ln |x‖1+2/q
∈ Lq(B1/2).

In particular, by the Calderon-Zygmund theory, u ∈W 2,q
loc (B1/2) with q > 2 (this can also be checked by a

direct computation). In particular, u is a Lq−strong solution, hence a Lq−viscosity solution to ∆u = f in
B1/2 by Theorem 2.1 in [14]. Since u is convex in B1/2 it coincides with its convex envelope, i.e, Γu ≡ u
in B1/2. Hence,

|∇Γu(x)| = |∇u(x)| = I(|x|) ∈ C0,1−2/q(B1/2) \ C0,1+ε−2/q(B1/2) ∀ ε > 0.

Example 3.3 (Sharpness of the exponent 1 − n/q, when RHS is in Lq with q > n, for Theorem 2.8).
We define ũ(x) := −(u(x))−, where u(x) := 4w(|x|) − w(1/2) for x ∈ B1/2 with w as in Example
3.2. Clearly ∆u = 4f ∈ Lq(B1/2) (f defined in Example 3.2) with q > 2. Since w is strictly increas-
ing in [0, 1/2], there exists r0 < 1/2 such that u < 0 in Br0 and u ≥ 0 in B1/2 \ Br0 . In particular,
ũ < 0 in Br0 and ũ ≡ 0 in B1/2 \ Br0 . Now, set v(x) := w(|x|) − w(1/2). Then, ũ(0) = v(0) =

−w(1/2) < 0. Moreover, v ≤ ũ in B1/2. Since v is convex in B1/2, we have v ≤ Γũ ≤ ũ in B1/2.

Since v, ũ ∈ C1,1−2/q(Br0/2) in a sharp way, we conclude that Γũ cannot have better regularity than
Γũ ∈ C1,1−2/q(B1/2). This shows that regularity in Theorem 2.8 is sharp.

Example 3.4 (Counterexample with RHS in Lq with q < n). Let us consider the convex function u(x) =
|x| − 1 defined in B1 ⊂ Rn for n ≥ 2. Direct computation shows that ∆u(x) = (n − 1)|x|−1 =: f(x)
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for x 6= 0. Now, it follows that f ∈ Lq(B1) if and only if 0 < q < n. Taking q ∈ (p0, n) where
p0 = p0(n) ∈ [n/2, n) is the exponent defined in [33]. We conclude from Theorem 3.1 in [33] that u is a
Lq viscosity solution to ∆u = f(x) in B1. However, u is not differentiable at the origin. This shows that
neither Theorem 2.6 nor Theorem 2.9 hold for q < n.

4. KEY ESTIMATE AND THE REGULARITY ON THE CONTACT SET

Now we present an estimate which is the starting point for all the results in this paper. Before, a Remark
to explain the ideas.

Remark 4.1. An important feature of the Harnack inequality is that control by below implies control by
above and vice-versa. As a matter of fact, Harnack inequality allows solutions to replicate their modulus
of continuity from below to above (and vice-versa also). Moreover, if the equation “does not see” linear
functions, this can go up to C1,1 regularity once one can choose the tangent plane of the solution to be the
canonical reference axis for the estimates. Let us now formalize the argument.

Assume u ∈ C0(B1) satisfiesM−λ,Λ(D2u) ≤ 0 ≤ M+
λ,Λ(D2u) in B1 in the viscosity sense. Let l be

an affine function so that u(0) = l(0). Assume that u separates from l by below with modulus of continuity
given by ω ≥ 0. By this, we mean

inf
Br

(u− l) ≥ −ω(r) ∀r ∈ (0, 1).

Thus, by setting vr(x) := u(x) − l(x) + ω(r) for x ∈ B1, we see that 0 ≤ vr ∈ C0(Br) and moreover
M−λ,Λ(D2vr) ≤ 0 ≤ M+

λ,Λ(D2vr) in Br in the viscosity sense. Thus, by Harnack inequality, there exists
a universal C = C(n, λ,Λ) ≥ 1 so that

sup
Br/2

(u− l) ≤ sup
Br/2

(u− l + ω(r)) = sup
Br/2

vr ≤ Cvr(0) = Cω(r) ∀r ∈ (0, 1).

In the case we are dealing with supersolutions, only half-Harnack inequality (weak Harnack inequality)
is at our disposal. In order to reproduce the type of argument above we need some kind of L∞−Lε estimate
for ε > 0 small in order to pass from the average control to a uniform control. Moreover, if equation “sees”
linear functions, the slope of the tangent plane can be incorporated to the RHS of the equation and thus we
also need gradient estimates in order to control the error produced by the tilt of the tangent plane in our
estimates.

We apply these lines of ideas for ω−semiconvex functions that are below supersolutions. They have a
C1,ω modulus of continuity by below, they do satisfy the L∞ − Lε estimate as well as gradient estimates
as proven in Proposition 8.2. Thus, by using the equation to transfer information from the supersolution
to the ω−semiconvex function, we may expect ω−semiconvex functions that are below supersolutions to
be regular, once they can reproduce a regular modulus of continuity by above at the contact points. This
modulus of continuity should be dictated by ω and by the RHS. This is indeed the case and the details are
presented in our key estimate below (zero tangent plane case) as well as in Proposition 7.1 where these kind
of ideas are used in full generality.

Proposition 4.2 (Key estimate). Let u ∈ S(γ; f) in Br where γ ∈ Lp(Br), f ∈ Lq(Br), and r ≤ R0.
Suppose that ϕ is a ω−semiconvex function in Br such that 0 ≤ ϕ ≤ u in Br. Then, for any ρ ∈ (0, r),

(4.1) ‖ϕ‖L∞(Bρ/2) ≤ C
(

inf
B 3ρ

4

u+ ϑ(ρ)ρ
)

where α = 1− n
q ≥ 0 and for ρ ∈ (0, r)

(4.2) ϑ(ρ) := ρα‖f‖Lq(Bρ) + ω(ρ),

and

(4.3) C = C(n, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0

is a universal constant. Also we have

(4.4) ϑ(ρ) = o(1) as ρ→ 0.
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In the case that u(0) = 0, i.e, if 0 is a contact point, then

(4.5) ‖ϕ‖L∞(Bρ/2) ≤ Cϑ(ρ)ρ.

In particular, in this case, ϕ is differentiable at the origin and∇ϕ(0) = 0.

Remark 4.3. Our key estimate above is an extension of L. Caffarelli’s crucial estimate on the C1,1 regu-
larity of the convex envelope inside the contact set given in Lemma 3.3 in the book [8]. Indeed, in Lemma
3.3 in [8], γ = 0, f ∈ L∞, ω = 0 (convex functions setting) and 0 = ϕ(0) = u(0). This way, we recover
the quadratic growth at the contact points, since in this case (4.5) reads

sup
Bρ/2

ϕ ≤ C||f ||L∞(Br)ρ
2, ∀ρ ∈ (0, r).

Remark 4.4. The case p = q = n in (E) is allowed in Proposition 4.2, thanks to Lemma 2.4 and Remark
2.5. Indeed, as explained in Remark 4.6 below, the weak Harnack inequality for Ln−strong supersolution
holds in this case and so does our Proposition 4.2. As in Remark 2.10, the dependence of C > 0 given in
(4.3) on the modulus of continuity Θγ takes place only in the case p = q = n. Moreover, in this case, the
dependence of C > 0 given in (4.3) on both R0 and ||γ||Ln(BR0

) can be dropped.

Remark 4.5. In [37], the Harnack inequality is obtained for linear equations in nondivergence form with
zero RHS and drift term in Ln. Also, in [35], a similar result is obtained in the situation where equation
holds in the regions where gradient is large.

Remark 4.6. In the case p = q = n, the weak Harnack inequality holds for Ln−strong supersolutions,
namely, 0 ≤ u ∈ Ss(γ; f) with γ, f ∈ Ln. Moreover, in this case, the (universal) constant in the weak
Harnack inequality also depends on Θγ . Besides, there is no dependence neither on ||γ||Ln(BR0

) nor onR0.
Indeed, by Remark 4.4 in [33], weak Harnack inequality holds for nonnegative Ln−strong supersolutions
in Ss(γ; f) under the assumption that ||γ||Ln is (universally) small (see also Lemma 4.3 in [33]). The
argument in the proof of Theorem 4.5 in [33] shows that weak Harnack inequality follows from Lemma 4.3
and Remark 4.4 in [33], using and a covering argument (like for instance, the one pointed out by X. Cabré
in Remark 3.2 in [5]) provided it holds in small cubes (or balls). This is indeed the case, as one can see by
following an argument similar to the one used in the proof of Theorem 4.5 in [33], where condition p > n
should be replaced by the use of Lemma 2.4 applied to g = γn. We also refer the reader to Theorem 2.3,
Remark 1 and Corollary 1 in [34] for general statement and proofs about the weak Harnack inequality.

Remark 4.7. In case p = q = n, it is not clear if a function in S(γ, f) which is also inW 2,n is a Ln−strong
solution. Therefore one has to require in (E) that our function is a strong supersolution. Essentially, the dif-
ficulty here comes from the lack of existence results for Ln−strong solutions for (Pucci) extremal equations
when p = q = n. Thus, one cannot implement an argument like in Theorem 3.4 and Corollary 3.7 in [13]
(bounded drift term) or, more generally, Proposition 9.1 in [33].

Proof of Proposition 4.2. Since ϕ ≤ u, it follows from the weak Harnack inequality (see Theorem 4.5 and
Remarks 4.4 and 5.2 in [33]) applied to u that, for any ρ ∈ (0, r),

(4.6)
(∫

B3ρ/4

|ϕ(x)|εdx
) 1
ε

≤
(∫

B3ρ/4

|u(x)|εdx
) 1
ε

≤ C
(

inf
B 3ρ

4

u+ ρ2−nq ‖f‖Lq(Bρ)

)
where ε = ε(n, λ,Λ) > 0 and C = C(n, q, λ,Λ, R0, ‖γ‖Lp(BR0

),Θγ) > 0 (see also Remark 4.6) are
universal constants. Also, we can apply the Lp−L∞ estimate for ω−semiconvex functions (see Proposition
8.2) with p = ε to get

(4.7) sup
Bρ/2

|ϕ| ≤ C2

[(∫
B3ρ/4

|ϕ|εdx

)1/ε

+ ρω(ρ)

]
for some C2 = C2(n, λ,Λ) > 0.
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Combining (4.6) and (4.7) above we obtain

sup
Bρ/2

|ϕ| ≤ CC2

(
inf
B 3ρ

4

u+ ρ2−nq ‖f‖Lq(Bρ)

)
+ C2ρω(ρ)

≤ C2(C + 1) inf
B 3ρ

4

u+ C2(C + 1)
(
ρα‖f‖Lq(Bρ) + ω(ρ)

)
ρ

= C
(

inf
B 3ρ

4

u+
(
ρα‖f‖Lq(Bρ) + ω(ρ)

)
ρ
)

= C
(

inf
B 3ρ

4

u+ ϑ(ρ)ρ
)
,

for C := C2(C + 1). Finally, (4.4) is obvious if q > n, while in the case q = n it follows from Lemma 2.4
applied to g(x) = |f(x)|n. �

5. PROOF OF THEOREM 2.6

Before we proceed with the proof of Theorem 2.6, we recall the following result from convex analysis.

Lemma 5.1 (Affine components with respect to the contact set - Lemma 6.6.2 in [29]). Let Ω be an
open bounded convex domain. Suppose u ∈ C0(Ω). Let x0 ∈ Ω \ C(u) and L be a supporting hyperplane
to Γu at x0. Then, there exist at most n+ 1 points xi ∈ C(u) such that

x0 =

n+1∑
i=1

λixi with λi ≥ 0 and
n+1∑
i=1

λi = 1.

Furthermore,

(5.1) L(xi) = Γu(xi) = u(xi) ∀i ∈
{

1, · · · , n+ 1
}
.

In particular, L is a supporting hyperplane to Γu at any xi ∈ {x1, · · · , xn+1}. Moreover,

(5.2) L ≡ Γu in conv
{
x1, · · · , xn+1

}
Remark 5.2. Although (5.2) is not explicitly stated in Lemma 6.6.2 in [29], it is easy to verify it holds.
Indeed, it is a direct consequence of (5.1) and convexity. In order to see this, let x ∈ conv

{
x1, · · · , xn+1

}
.

Since L ≤ Γu in Ω and x =
∑n+1
i=1 αixi for some αi ≥ 0 with

∑n+1
i=1 αi = 1, we have

L(x) ≤ Γu(x) = Γu

( n+1∑
i=1

αixi

)
≤
n+1∑
i=1

αiΓu(xi) =

n+1∑
i=1

αiL(xi) = L(x).

Proof of Theorem 2.6

Proof. We divide the proof in two cases. The regularity inside and outside the contact set. So, let

(5.3) Ω′ ⊂⊂ Ω and δ := dist(Ω′, ∂Ω)/4 > 0.

Claim 1: Let x0 ∈ Ω′ ∩ C(u) and Lx0
be a supporting hyperplane for Γu at x0. Then,

(5.4) ‖Γu − Lx0‖L∞(Br/2(x0)) ≤ ϑx0
(r)r ∀r ∈ (0, δ],

where

(5.5) ϑx0
(r) := C

(
‖f‖Lq(Br(x0)) +

( ‖u‖L∞(Ω)

dist(Ω′, ∂Ω)
‖γ‖Lp(Br(x0))

)
rβ
)
rα,

α = 1− n

q
≥ 0, β = n

(
1

q
− 1

p

)
≥ 0,

and C = C(n, q, p, λ,Λ, δ, ‖γ‖Lp(Ω),Θγ) > 0 is a universal constant.

Proof of claim 1: Since Lx0
is a supporting plane of Γu at x0, we have

0 ≤ Γu − Lx0
≤ u− Lx0

in Bδ(x0) and 0 = Γu(x0)− Lx0
(x0) = u(x0)− Γu(x0).
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Observe that u− Lx0
∈ S(γ; f + γ|∇Lx0

|) in B2δ(x0). By Proposition 4.2 applied to the convex function
ϕ = Γu − Lx0 (and thus ω ≡ 0) we obtain (since x0 is a contact point)

‖Γu − Lx0
‖L∞(Br/2(x0)) ≤ ϑ̂x0

(r)r ∀ r ∈ (0, δ],

where
ϑ̂x0(r) = Crα‖f − γ|∇Lx0 |‖Lq(Br(x0)), α = 1− n

q
≥ 0,

and C = C(n, q, λ,Λ, δ, ‖γ‖Lp(Ω),Θγ) > 0 is a universal constant as before. From the conclusion of
Proposition 4.2, we also conclude that Γu is differentiable at x0 with ∇Γu(x0) = ∇Lx0

. Now, we observe
that the constant function L ≡ −‖u‖L∞(Ω) is affine and below u everywhere in Ω. Thus, from the definition
of Γu,

(5.6) − ‖u‖L∞(Ω) ≤ Γu(x) ∀x ∈ Ω.

Now, since Γu is convex and Γu ≤ u = 0 on ∂Ω, by the gradient estimates on convex functions (see Lemma
3.2.1 in [29], for instance) we obtain

(5.7) |∇Lx0
| = |∇Γu(x0)| ≤ −Γu(x0)

dist(x0, ∂Ω)
≤
‖u‖L∞(Ω)

dist(Ω′, ∂Ω)
.

This implies that

ϑ̂x0
(r) ≤ C

(
‖f‖Lq(Br(x0)) +

‖u‖L∞(Ω)

dist(Ω′, ∂Ω)
‖γ‖Lq(Br(x0))

)
rα(5.8)

≤ C ′
(
‖f‖Lq(Br(x0)) +

( ‖u‖L∞(Ω)

dist(Ω′, ∂Ω)
‖γ‖Lp(Br(x0))

)
rβ
)
rα(5.9)

where C ′ = C(1 + |B1|(
1
q−

1
p )). This finishes the proof of Claim 1.

Let us set, for each m ∈ N∗,

Km := conv
(
Lm

)
where Lm :=

{
x ∈ Ω : u(x) ≤ − 1

m

}
.

Clearly, Lm ⊂ Km for all m ∈ N. Note that, due to the boundary condition u = 0 on ∂Ω, we also have

Lm =

{
x ∈ Ω : u(x) ≤ − 1

m

}
.

Thus, Lm ⊂ Ω is compact for every m ∈ N∗. Also, since u < 0 in Ω,

(5.10) Lm ⊂ Lm+1 ∀m ∈ N∗ and
⋃

m∈N∗
Lm = Ω.

Hence, since Ω is convex, Km is convex and compact (see Corollary A.1.7 in the appendix of [11]) and
Km ⊂ Ω for all m ∈ N∗. Moreover,

(5.11) Km ⊂ Km+1 ∀m ∈ N∗ and
⋃

m∈N∗
Km = Ω

and thus

(5.12) dm := dist(Km, ∂Ω) > 0 ∀m ∈ N∗.

Claim 2: Let x0 ∈ Km \ C(u) and
{
λi
}n+1

i=1
and

{
xi
}n+1

i=1
as in Lemma 5.1. Let us set

(5.13) λ :=
1

4m(n+ 1)(− infΩ u)
> 0.

Then there exists at least one index j ∈
{

1, · · · , n+ 1
}

such that xj ∈ K2m and λj ≥ λ.
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Proof of claim 2 (see also Remark 5.3): Since Γu(x) ≤ u(x) ≤ −1/m for all x ∈ Lm, we conclude by
convexity of Γu that

(5.14) Γu ≤ −1/m in Km.

This implies, in particular, that

(5.15) u ≤ −1/m in Km ∩
{
u = Γu

}
.

We claim that for at least one index j ∈
{

1, · · · , n+ 1
}

we have xj ∈ K2m.

Indeed, if this is not the case, since Ω \K2m ⊂ Ω \ L2m, we have

(5.16) u(xj) > −
1

2m
∀j ∈ {1, · · · , n+ 1}.

Thus, by (5.14) and (5.16), we have for L a supporting hyperplane to Γu at x0 that

(5.17) − 1

m
≥ Γu(x0) = L(x0) = L

( n+1∑
i=1

λixi

)
=

n+1∑
i=1

λiL(xi) =

n+1∑
i=1

λiu(xi) > −
1

2m
,

which is clearly a contradiction.

Now, we claim that for at least one index j ∈
{

1, · · · , n + 1
}

for which the corresponding xj ∈ K2m we
necessarily have λj ≥ λ. Indeed, suppose this is not the case. Then, by (5.17) and (5.16), we estimate

− 1

m
≥
n+1∑
i=1

λiu(xi) =
∑

xi∈K2m

λiu(xi) +
∑

xi /∈K2m

λiu(xi)

≥
∑

xi∈K2m

λ inf
Ω
u+

∑
xi /∈K2m

− λi
2m

≥
n+1∑
i=1

λ inf
Ω
u+

n+1∑
i=1

− λi
2m

= λ(n+ 1) inf
Ω
u− 1

2m
= − 3

4m

which is impossible. Thus, claim 2 is now proven. Before we proceed, we observe that once u < 0 in Ω, it
follows from (5.10) and (5.11) that there exists m0 ∈ N∗ such that Ω′ ⊂ Lm0

⊂ Km0
⊂ K2m0

. From this
and recalling (5.3) and (5.12) we conclude that

(5.18) 0 < d2m0
≤ dist(Ω′, ∂Ω) = 4δ.

We define the following constants:

(5.19) δ0 :=
1

4
d2m0

≤ δ,

(5.20) λ0 :=
1

4m0(n+ 1)(− infΩ u)
> 0 5,

(5.21) %0 := min

{
δ0,

δ0 · λ0

4

}
≤ δ0 ≤ δ.

Claim 3: Let x0 ∈ Ω′ \ C(u) and Lx0
be a supporting hyperplane to Γu at x0. Then,

(5.22) ‖Γu − Lx0‖L∞(Br(x1)) ≤ ϑ∗x1

(
2r

λ0

)
r ∀r ∈ (0, %0]

5We assume that λ0 ∈ (0, 1) by taking m0 = m0(n,Ω′, inf
Ω
u) large enough.
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for some x1 ∈ C(u) ∩K2m0
, where

(5.23) ϑ∗x1
(r) := C

(
‖f‖Lq(Br(x1)) +

(‖u‖L∞(Ω)

d2m0

‖γ‖Lp(Br(x1))

)
rβ
)
rα, for r ∈ [0, δ0].

Again, here

α = 1− n

q
≥ 0, β = n

(
1

q
− 1

p

)
≥ 0,

and C = C(n, q, p, λ,Λ, d2m0 , ‖γ‖Lp(Ω),Θγ) > 0 is universal.

Proof of claim 3: From Lemma 5.1, x0 =
∑n+1
i=1 λixi where xi ∈ C(u) and λi ≥ 0 with

∑n+1
i=1 λi = 1.

Also, by claim 2, we can assume, up to relabeling the indices if necessary, that λ1 ≥ λ0 and x1 ∈ K2m0
,

where λ0 is given above in (5.20). In order to simplify the notation, we denote L := Lx0
and recall that L

is a supporting plane for Γu at all points xi for i ∈ {1, · · · , n+ 1}, as indicated in Lemma 5.1.

Now, by applying claim 1 (the regularity case for points inside the contact set) with Ω′ replaced by K2m0

and x0 replaced by x1, we obtain an analogue of estimate (5.4) which is

(5.24) ‖Γu − L‖L∞(Br/2(x1)) ≤ ϑ∗x1
(r)r ∀r ∈ (0, δ0],

where for D = D(n, q, p, λ,Λ, d2m0 , ‖γ‖Lp(Ω),Θγ) > 0 and

(5.25) ϑ̂x1
(r) := D

(
‖f‖Lq(Br(x1)) +

(‖u‖L∞(Ω)

d2m0

‖γ‖Lp(Br(x1))

)
rβ
)
rα,

which is clearly well defined in (0, δ0]. Observe that

|h| ≤ %0 =⇒ x1 +
h

λ1
∈ B |h|

λ1

(x1) ⊂⊂ B |2h|
λ1

(x1) ⊂⊂ Ω,

since by (5.21), we have
2|h|
λ1
≤ 2|h|

λ0

≤ 2%0

λ0

≤ δ0 =
1

4
d2m0 .

Thus, by (5.24), for any |h| ≤ %0 we obtain

(5.26)
∣∣∣∣Γu(x1 +

h

λ1

)
− L

(
x1 +

h

λ1

)∣∣∣∣ ≤ ‖Γu − L‖L∞(B|h|/λ1
(x1)) ≤ ϑ̂x1

(
2|h|
λ1

)
2|h|
λ1

.

Also, observe that for |h| ≤ %0 we have x0 + h ∈ Ω, thanks to (5.21). Thus

L(x0 + h) ≤ Γu(x0 + h) = Γu

( n+1∑
i=2

λixi + λ1

(
x1 +

h

λ1

))

≤
n+1∑
i=2

λiΓu(xi) + λ1Γu

(
x1 +

h

λ1

)
(by convexity)

≤
n+1∑
i=2

λiL(xi) + λ1

(
L

(
x1 +

h

λ1

)
+ ϑ̂x1

(
2|h|
λ1

)
2|h|
λ1

)
(by (5.26))

≤
n+1∑
i=2

λiL(xi) + λ1L

(
x1 +

h

λ1

)
+ 2ϑ̂x1

(
2|h|
λ1

)
|h|

≤ L(x0 + h) + 2ϑ̂x1

(
2|h|
λ0

)
|h| (L is affine and ϑ̂x1 is nondecreasing).

This implies that, for ϑ∗x1
(t) := 2ϑ̂x1

(t),

(5.27) ‖Γu − L‖L∞(Br(x0)) ≤ ϑ∗x1

(
2r

λ0

)
r ∀r ∈ (0, %0],

and thus, claim 3 is proven.
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Now, we summarize our findings. For any x0 ∈ Ω′ ⊂⊂ Ω and for all r ∈ (0, %0], we define

(5.28) ϑ#
x0

(r) :=


ϑx0(r), if x0 ∈ C(u)

ϑ∗x1

(
2r
λ0

)
if x0 /∈ C(u) (x1 as given in claim 3),

where ϑx0(r) and ϑ∗x1
(r) are given respectively by (5.5) and (5.23). Then we have the following estimate

(5.29) ‖Γu − Lx0‖L∞(Br(x0)) ≤ ϑ#
x0

(r)r ∀r ∈ (0, %0],

where Lx0
is a supporting plane for Γu at x0.

By (5.18) and recalling α = 1− n
q ≥ 0 and β = n(q−1 − p−1) ≥ 0, we have

(5.30) ϑx0
(r) ≤ D1

(
‖f‖Lq(Br(x0)) + rβ‖γ‖Lp(Br(x0))

)
rα, ∀r ∈ (0, %0],

(5.31) ϑ∗x1

(
2r

λ0

)
≤ D2

(
‖f‖Lq(B 2r

λ0

(x1)) + rβ‖γ‖Lp(B 2r
λ0

(x1))

)
rα ∀r ∈ (0, %0],

where

D1 := C
(

1 + ||u||L∞(Ω)d
−1
2m0

)
, D2 := C

(
1 + ||u||L∞(Ω)d

−1
2m0

)
(1 + 2βλ

−β
0 )(1 + 2αλ

−α
0 ) > 0.

Here, C and C are given in (5.5) and (5.23). Also note that, since u < 0 in Ω, ||u||L∞(Ω) = − inf
Ω
u.

The Theorem follows from the estimates (5.30) and (5.31). Indeed, if q > n, and thus α ∈ (0, 1), we have

ϑ#
x0

(r) ≤ max{D1, D2}(1 + %β0 )(‖f‖Lq(Ω) + ‖γ‖Lp(Ω))r
α, ∀r ∈ (0, %0].

Thus, u ∈ C
1,1−nq
loc (Ω) by (5.29) and Corollary 9.2. Now we study the case q = n. In this case, α = 0.

Then, it follows from (5.30) and (5.31) and the absolute continuity property of the integral that

(5.32) ϑ#
x0

(r) = o(1) as r → 0.

Thus, Γu is differentiable everywhere in Ω. Since it is also convex, then Γu ∈ C1(Ω) (see Theorem A.1.13
in [11]). Finally, still in the case q = n, it follows from (2.9), (5.30), and (5.31), that for r ∈ [0, %0] (recall
that λ0 = λ0(m0, n, inf

Ω
u) ∈ (0, 1))

(5.33) ϑ#
x0

(r) ≤


2D1ϑ(r) if x0 ∈ C(u),

2D2ϑ
(

2r
λ0

)
if x0 /∈ C(u).

In particular,

ϑ#
x0

(r) ≤ 2(D1 +D2)ϑ

(
2r

λ0

)
, ∀r ∈ [0, %0].

Once more, the result follows from (5.29) and Corollary 9.2. This finishes the proof of Theorem 2.6. �

Remark 5.3. Observe that claim 2 above actually shows that C(u) ∩ Ω 6= ∅. This is a consequence of the
geometry imposed on u. It is encoded in the proof in the properties of the sublevelsets Lm and their convex
hull Km.
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6. PROOF OF THEOREM 2.8

In this section we give the proof of Theorem 2.8. Essentially, it follows the ideas of the proof of Theorem
2.6 but in this case we have a better control on the affine projection x1 and its coefficient λ from the previous
proof. This control was already studied by L. Caffarelli and X. Cabré in their book [8] and this analysis will
replace claim 2 of the previous proof. This better control indeed allows us to get a precise estimate for the
weighted C1,α norm of Γu whenever α = 1− n/q > 0. The details follow below.

Proof of Theorem 2.8. First, let us extend γ and f by zero outside Br. It is not hard to check that −u− =
min{u, 0} ∈ S(γ; f+) in B2r. We recall that Γu denotes the convex envelope of −u− in B2r. As before,
we divide the proof in two cases: estimates inside and outside the contact set. The contact set here is given
by

C(u) :=
{
x ∈ B2r : −u−(x) = Γu(x)

}
.

In what follows, Lx0
denotes a supporting plane for Γu at x0 ∈ Br.

Case 1: x0 ∈ Br ∩ C(u).

By following the proof of claim 1 in the proof of Theorem 2.6, we conclude that for any x0 ∈ Br ∩ C(u)
we have

(6.1) ‖Γu − Lx0‖L∞(Bρ/2(x0)) ≤ ϑx0(ρ)ρ ∀ρ ∈ (0, δ],

where δ := r/4 and

(6.2) ϑx0
(ρ) := C

(
‖f+‖Lq(Bρ(x0)) +

(‖u‖L∞(Br)

r
‖γ‖Lp(Bρ(x0))

)
ρβ
)
ρα,

with

α = 1− n

q
≥ 0, β = n

(
1

q
− 1

p

)
≥ 0

and

(6.3) C = C(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0 is a universal constant.

Case 2: x0 ∈ Br \ C(u).

Here, we are exactly in the same conditions of Step 1 in the proof of Lemma 3.5 in [8]. Thus from observa-
tions (a) and (b) of that proof, it follows that x0 ∈ conv

{
x1, · · · , xn+1

}
, where these points need not to be

all distinct and they lie in Br ∩
{
u = Γu

}
except possibly one that may belong to ∂B2r. Also, Lx0 ≡ Γu

in conv
{
x1, · · · , xn

}
, and if we write x0 =

∑n+1
i=1 λixi with λi ≥ 0 and

∑n+1
i=1 λi = 1, then there is at

least one index i ∈
{
x1, · · · , xn

}
for which λi ≥ 1/3n and xi ∈ Br ∩ C(u). Without losing generality,

relabeling the indices if necessary, we assume that such pair is (λ1, x1).

The discussion above plays the role of claim 2 in the proof of the Theorem 2.6. This allows us to repeat
directly the proof of claim 3 taking d2m0

= r, λ0 = 1/3n, and %0 = r/48n. Observe that here, in the
notation of Theorem 2.6, we have δ = δ0 = r/4. As before, we have for any x0 ∈ Br that

(6.4) ‖Γu − Lx0
‖L∞(Bρ(x0)) ≤ ϑ#

x0
(ρ)ρ ∀r ∈ (0, %0],

where

(6.5) ϑ#
x0

(ρ) :=

 ϑx0
(ρ), if x0 ∈ C(u)

ϑ∗x1
(6nρ) if x0 /∈ C(u) (x1 as in the previous discussion).

Here, ϑx0(ρ) is given by (6.2) and

(6.6) ϑx1
(6nρ) := C2

(
‖f+‖Lq(B6nρ(x1)) +

(‖u‖L∞(Br)

r
‖γ‖Lp(B6nρ(x1))

)
ρβ
)
ρα,
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where C2 = C2(n, q, p, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0. In the case q > n, proceeding as before, we obtain

ϑ#
x0

(ρ) ≤ C3

(
‖f+‖Lq(Br) +

‖u‖L∞(Br)

r
‖γ‖Lp(Br)

)
ρα for ρ ≤ r/4(6.7)

with

C3 = C3(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0.

Moreover, thanks to the gradient estimate

|∇Γu(x)| ≤ −Γu(x)

dist(x, ∂Br)
≤
‖u‖L∞(Br)

r
∀x ∈ Br,

it follows directly from (6.4), (6.7) and Lemma 9.1 that

‖u‖∗
C

1,1−n
q (Br/2)

≤ C4

((
1 + ‖γ‖Lp(Br)

)
‖u‖L∞(Br) + ‖f+‖Lq(Br)

)
where C4 = C4(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0

),Θγ) > 0.

As before, in the case where q = n, it follows that α = 0 and that

ϑ#
x0

(ρ) = o(1) as ρ→ 0.

This implies that Γu is differentiable everywhere in Br. By convexity, as before, Γu ∈ C1(Br).

Finally, still in the case q = n, we recall that (2.12) holds. Then from (6.2) and (6.6) we get

ϑ#
x0

(ρ) ≤ C5

(
1 +
‖u‖∞(Br(x0))

r

)
ϑ(6nρ) =: C5

(
1 +
‖u‖∞(Br(x0))

r

)
ϑ(ρ) ∀ρ ∈ [0, %0],

where C5 = C5(n, q, p, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0.

Thus, from (6.4) and Lemma 9.1 with r0 = r/48n we see that Γu ∈ C1,ϑ(Br/384n) with

[∇Γu]C0,ϑ(Br/384n) ≤ C6

(
1 +
‖u‖∞(Br(x0))

r

)
,

where C6 = C6(n, q, p, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0. �

7. INTERIOR REGULARITY OF ω−SEMICONVEX SUPERSOLUTIONS AND PROOF OF THEOREM 2.9

Now we discuss the regularity of ω−semiconvex supersolutions. We refer the reader again to Remark
4.1 for the ideas in the following proof.

Proposition 7.1 (Pointwise regularity for nonnegative ω−semiconvex supersolutions). Let ϕ ∈ S(γ; f)
inBr with γ ∈ Lp(Br), f ∈ Lq(Br), and r ≤ R0. Additionally, assume that ϕ is a bounded ω−semiconvex
function in Br. Then, ∂ωϕ(0) = {p} is a singleton and if we set L(x) := p · x+ ϕ(0) for x ∈ Rn, then

(7.1) ‖ϕ− L‖L∞(Bρ/4) ≤ Cζ(ρ)ρ ∀ρ ∈ (0, r),

where

(7.2) ζ(ρ) := ω(ρ) + ρα
(
‖f‖Lq(Bρ) + ρβ

(‖ϕ‖L∞(Br)

r
+ ω(r)

)
‖γ‖Lp(Bρ)

)
with

α = 1− n

q
≥ 0, β = n

(
1

q
− 1

p

)
≥ 0,

and C = C(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0. In particular, ϕ is differentiable at 0 with∇ϕ(0) = p.
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Proof. Let ρ ∈ (0, r). From the semiconvexity of ϕ, there exists p ∈ ∂ωϕ(0). We now set L(x) :=
p · x + ϕ(0) for all x ∈ Rn. Once more from the semiconvexity of ϕ, we conclude that ψ(x) := ϕ(x) −
L(x) + ρω(ρ) ≥ 0 in Bρ. From Remark 2.1, ψ is ω−semiconvex in Br. Moreover, ψ ∈ S(γ; f + |∇L|γ)
in Br. Now, observe that for C1 = C1(n, p, q) > 0 and 0 < ρ < r

ρα‖f + |∇L|γ‖Lq(Bρ) + ω(ρ) ≤ ρα
(
‖f‖Lq(Bρ) + |∇L| · ‖γ‖Lq(Bρ)

)
≤ ρα

(
‖f‖Lq(Bρ) + |B1|

1
q−

1
p |∇L| · ‖γ‖Lp(Bρ) · ρβ

)
≤ C1ρ

α
(
‖f‖Lq(Bρ) + |∇L| · ‖γ‖Lp(Bρ) · ρβ

)
=: χ(ρ)(7.3)

Hence, we can apply Proposition 4.2 in Bs to obtain, for all s ∈ (0, ρ)

‖ψ‖L∞(Bs/2) ≤ C ′
(

inf
B 3s

4

ψ + χ(s)s
)
.

with C ′ = C ′(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0. Now, by taking s = ρ/2, we arrive to

‖ϕ− L+ ρω(ρ)‖L∞(Bρ/4) = ‖ψ‖L∞(Bρ/4) ≤ C ′
(

inf
B 3ρ

8

ψ + χ
(ρ

2

)
ρ
)

≤ C ′
(
ψ(0) + χ(ρ)ρ

)
≤ C ′

(
ω(ρ)ρ+ χ(ρ)ρ

)
.

From this, we conclude

(7.4) ‖ϕ− L‖L∞(Bρ/4) ≤ C ′′
(
ω(ρ)ρ+ χ(ρ)ρ

)
with C ′′ = C ′ + 1.

In particular, by the absolute continuity property of the integral, we see that χ(ρ) = o(1) as ρ → 0. Thus,
ϕ is differentiable at zero and∇ϕ(0) = ∇L = p. This proves that ∂ωϕ(0) = {p}.
In order to control χ(ρ), we need an estimate on |∇L| appearing in (7.3). We can assume without losing
generality that∇ϕ(0) 6= 0. Fix s < r. By the ω−semiconvexity of ϕ to obtain

(7.5) ‖ϕ‖L∞(Br) ≥ ϕ(x) ≥ ϕ(0)+∇ϕ(0)·x−|x|ω(|x|) ≥ −‖ϕ‖L∞(Br)+∇ϕ(0)·x−rω(r) ∀x ∈ Bs.
Hence, choosing x = |∇ϕ(0)|−1∇ϕ(0)s, we arrive at

(7.6) rω(r) + 2‖ϕ‖L∞(Br) ≥ |∇ϕ(0)|s.
Now, letting s↗ r, we obtain

(7.7) |∇L| ≤ 2‖ϕ‖L∞(Br)/r + ω(r).

Hence, recalling (7.3), we conclude that the right hand side in (7.4) can be bounded by

2C ′′(1 + C1)

(
ω(ρ) + ρα

(
‖f‖Lq(Bρ) + ρβ

(‖ϕ‖L∞(Br)

r
+ ω(r)

)
‖γ‖Lp(Bρ)

))
· ρ,

as desired. �

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. We apply Proposition 7.1 in Br/2(x0) for every x0 ∈ Br/2 to deduce that ϕ is
differentiable at x0. Moreover, denoting Lx0(x) := ϕ(x0) +∇ϕ(x0) · (x− x0) for all x ∈ Rn, we have

(7.8) ‖ϕ− Lx0
‖L∞(Bρ/4(x0)) ≤ Cζ(ρ)ρ ∀x0 ∈ Br/2, ∀ρ ∈ (0, r/2),

where

ζ(ρ) := ω(ρ) +

(
‖f‖Lq(Bρ(x0)) + ρβ

(‖ϕ‖L∞(Br)

r
+ ω(r)

)
‖γ‖Lp(Bρ(x0))

)
ρα,

and C = C(n, p, q, λ,Λ, R0, ‖γ‖Lp(BR0
),Θγ) > 0. Hence, performing the change of variables s = ρ/4,

we arrive to

(7.9) ‖ϕ− Lx0‖L∞(Bs(x0)) ≤ 4Cζ(4s)s =: Cζ(s)s ∀x0 ∈ Br/2, ∀s ∈ (0, r/8).

Recalling Remark 2.5 (absolute continuity of the integral), we see that ζ(s) = o(1) as s → 0. Thus, u is
differentiable and also C1(Br) (see Proposition 3.3.4 in [11]). Then, Lemma 9.1 applied with r0 = r/8
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gives the first part of the Theorem. For the second part we observe that, in any of the cases described in the
definition of Υ, we have that ζ(s) ≤ Υ(s) for any s ∈ (0, r/8). Once more, Lemma 9.1 implies the result.
This finishes the proof. �

8. Lp − L∞ ESTIMATES FOR ω−SEMICONVEX FUNCTION FOR p > 0

In this section we present the (local) Lipschitz regularity as well as theLp−L∞ estimates for ω−semiconvex
functions and their gradients. Here, the L∞ norm of the function and of the gradient are controlled by av-
erage values of u and the modulus of semi-convexity. Some versions of these estimates can be found in
Theorem 6.7 in [17] for convex functions in the case p = 1. Here we give a real analysis proof of the
general Lp−L∞ estimates based on classical ideas from [17] and [23] (see for instance, Proposition 8.19).
We refer the reader also to Theorem 8.1.9 in the recent book [25].

Lemma 8.1. Let φ : [%,R]→ R be a nonnegative bounded function. Assume that forall % ≤ t < s ≤ R

φ(t) ≤ A(s− t)−α +B(s− t)−β + C + θφ(s),

for some A,B,C ≥ 0 and α > β > 0 and θ ∈ [0, 1). Then we have

φ(%) ≤ D
(
A(R− %)−α +B(R− %)−β + C

)
for some D = D(α, θ) > 0.

Proof. See Lemma 6.1 in [27]. �

Proposition 8.2. 6 Let u ∈ L1(Br) be a ω−semiconvex function and p ∈ (0,∞). Then the following hold:

(a) u ∈ C0,1
loc (Br);

(b) There exists C1 = C1(n, p) > 0 such that

(8.1) sup
Br/2

|u| ≤ C1

[(∫
Br

|u|pdx
)1/p

+ rω(r)

]
.

Equivalently, for some C2 = C2(n, p) > 0, for every 0 < ρ < r we have

(8.2) sup
Bρ

|u| ≤ C2

[
1

(r − ρ)n/p

(∫
Br

|u|pdx
)1/p

+ (r − ρ)ω(r − ρ)

]
.

(c) For some C3 = C3(n, p) > 0 we have

(8.3) ess sup
Br/2

|∇u| ≤ C3

r

[(∫
Br

|u|pdx
)1/p

+ rω(r)

]
.

Equivalently, for every 0 < ρ < r, there exists C4 = C4(n, p) > 0 such that

(8.4) ess sup
Bρ

|∇u| ≤ C4

r − ρ

[
1

(r − ρ)n/p

(∫
Br

|u|pdx
)1/p

+ (r − ρ)ω(r − ρ)

]
.

(d) If u ∈ L∞(Br) then, for 0 < ρ < r,

(8.5) ess sup
Bρ

|∇u| ≤ 2

(
||u||L∞(Br)

r − ρ
+ ω(r − ρ)

)
.

In particular 7

(8.6) ess sup
Br/2

|∇u| ≤ 4

(
||u||L∞(Br)

r
+ ω(r)

)
.

6The estimates given in (b) and (c) for p > 1 are relevant only when u ∈ Lp(Br), as otherwise they are trivially true.
7As a matter of fact, by proceeding as in the proof of items (b) and (c) of Proposition 8.2, we see that the estimates in (8.5) and

(8.6) are indeed equivalent, up to modifying the (universal) constants appearing in their statements.
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Proof. Case I: We assume initially that u ∈ C1(Br) and prove all the estimates first.

Fix a point z ∈ Br/2. Then, for any y ∈ Br/2(z),

(8.7) u(y) ≥ u(z) +∇u(z) · (y − z)− |y − z|ω(|y − z|) ≥ u(z) +∇u(z) · (y − z)− rω(r).

Now, integrating (8.7) with respect to y in Br/2(z),

(8.8) u(z) ≤
∫
Br/2(z)

|u(y)|dy + rω(r) ≤ 2n

[∫
Br

|u|dy + rω(r)

]
.

This gives an estimate from above for u(z). We now proceed towards an estimate from below.

We choose a cutoff function ξ ∈ C∞c (Br) such that

(8.9) 0 ≤ ξ ≤ 1, |∇ξ| ≤ C

r
, ξ ≡ 1 in B3r/16 and ξ ≡ 0 in Br \B 3r

8

for a universal constant C > 0. Note that, for any y ∈ B 3r
8

, we have

(8.10) u(z) ≥ u(y) +∇u(y) · (z − y)− |z − y|ω(|z − y|) ≥ u(y) +∇u(y) · (z − y)− rω(r).

Observe now that, by the Divergence Theorem, since ξ ≡ 0 on ∂B 3r
8

we have
(8.11)

0 =

∫
B 3r

8

divy
(
u(y)(ξ(y)(z − y))

)
dy =

∫
B 3r

8

∇u(y) · ξ(y)(z − y)dy +

∫
B 3r

8

u(y)divy
(
ξ(y)(z − y)

)
dy.

Note that, thanks to (8.9), there exists a universal constant D > 0 (independent of r) such that

(8.12)
∥∥divy

(
ξ(y)(y − z)

)∥∥
L∞(B 3r

8
)
≤ ‖∇ξ(y) · (y − z)‖L∞(B 3r

8
) + ‖ξ(y)divy(y − z)‖L∞(B 3r

8
) ≤ D.

Hence, multiplying (8.10) by ξ(y), integrating over B3r/8 with respect to y, and using (8.11), we obtain

u(z)

∫
B 3r

8

ξ(y)dy ≥
∫
B 3r

8

u(y)ξ(y)dy +

∫
B 3r

8

ξ(y)∇u(y) · (z − y)dy −
∫
B 3r

8

rω(r)dy

=

∫
B 3r

8

u(y)
[
ξ(y)− divy

(
ξ(y)(y − z)

)]
dy −

∫
B 3r

8

rω(r)dy

≥ −(D + 1)

[∫
B 3r

8

|u|dy +

∫
B 3r

8

rω(r)dy

]
.(8.13)

Since,

I :=

∫
B 3r

8

ξ(y)dy ≥
∫
B3r/16

ξ(y)dy ≥ |B3r/16| = 2−n|B3r/8|,

we have

I−1

[∫
B 3r

8

|u|dy +

∫
B 3r

8

rω(r)dy

]
≤ 2n

[∫
B 3r

8

|u|dy + rω(r)

]
.

So, it follows by (8.13) that

(8.14) u(z) ≥ −2n(D + 1)

[∫
B 3r

8

|u|dy + rω(r)

]
.

Thus, (8.8) and (8.14) together prove (8.1) for p = 1 with C1 = 2n(D + 1).
We observe since u ∈ L1(B1) then u ∈ Lp(B1) for p ∈ (0, 1] since in this case, L1(Br) ↪→ Lp(Br)
by Proposition 6.12 in [21]. In the sequel, whenever proving any of the estimates appearing in (b) or (c)
involving the p−average of u with p > 1, we will assume without loss of generality that u ∈ Lp(Br) since
otherwise the estimate is trivial. Note also that, since the average integral is a monotone function of the
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exponent, (8.1) is also proven for any p ∈ [1,∞).
Now, let 0 < ρ < r and x0 ∈ Bρ and p ≥ 1. Thus, by (8.1) applied to Br−ρ(x0), we have

|u(x0)| ≤ sup
B(r−ρ)/2(x0)

|u|

≤ G

[(∫
Br−ρ(x0)

|u|pdy
)1/p

+ (r − ρ)ω(r − ρ)

]

≤ G

[
1

(r − ρ)n/p

(∫
Br

|u|pdy
)1/p

+ (r − ρ)ω(r − ρ)

](8.15)

where G,G > 0 are dimensional constants. Taking the supremum over x0 ∈ Bρ, the estimate above yields
(8.2) for p ≥ 1. We now study the case p ∈ (0, 1). Let 0 < ρ ≤ t < s ≤ r. Assume x0 ∈ Bt. Clearly,
Bs−t(x0) ⊂ Bs. Proceeding as in the estimate (8.15) applied to the ball Bs−t(x0), we obtain

|u(x0)| ≤ sup
B(s−t)/2(x0)

|u|

≤ G

[
1

(s− t)n

(∫
Bs

|u|dy
)

+ (s− t)ω(s− t)

]

≤ G

[
1

(s− t)n

(∫
Bs

|u|pdy
)
· sup
Bs

|u|1−p + (s− t)ω(s− t)

]

≤ ε sup
Bs

|u|+ c(ε, p, n)

(s− t)n/p

(∫
Br

|u|pdy
)1/p

+G(r − ρ)ω(r − ρ),

(8.16)

where here we used Young’s inequality with conjugate exponents (1− p)−1 ≥ 1 and p−1 ≥ 1, namely

ab ≤ εa
1

1−p + c(ε, p)b1/p for a, b ≥ 0 and any ε ∈ (0, 1).

Thus, defining φ : [ρ, r] → R as φ(t) = sup
Bt

|u|, the chain of inequalities above implies, by taking the

supremum over Bt, that

(8.17) φ(t) ≤ A0

(s− t)n/p
+ C0 + εφ(s)

where

(8.18) A0 = c(ε, p, n)

(∫
Br

|u|pdy
)1/p

and C0 := G(r − ρ)ω(r − ρ).

Hence, choosing for instance ε = 1/2, Lemma 8.1 implies that, for some D = D(n, p) > 0, we have

(8.19) φ(ρ) ≤ D
(
A0(r − ρ)−n/p + C0

)
.

This proves (8.2), and thus (8.1), for p ∈ (0, 1). Hence (b) is proven.

We now prove (c). To this aim, given z ∈ Br/2, we define

Sz :=
{
y ∈ Rn :

r

8
≤ |y − z| ≤ r

4
and ∇u(z) · (y − z) ≥ 1

2
|∇u(z)||y − z|

}
⊂ B3r/4.

Since u is ω−semiconvex and of class C1, we have

u(y) ≥ u(z) +∇u(z) · (y − z)− |y − z|ω(|y − z|) ∀y ∈ Sz.

In particular, by the definition of Sz , this implies that

u(y) ≥ u(z) +
r

16
|∇u(z)| − rω(r) ∀y ∈ Sz.
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Integrating over Sz with respect to y and using (b), we obtain

|∇u(z)| ≤ 16

r

[∫
Sz

|u(y)− u(z)|dy + rω(r)

]
≤ 16

r

[
2 sup
B 3r

4

|u|+ rω(r)

]

≤ C3

r

[(∫
Br

|u|pdx
)1/p

+ rω(r)

]
.

This proves (8.3). In order to show (8.4), it suffices to apply (8.3) in Br−ρ(x0) for x0 ∈ Bρ and proceed as
done in (8.15).

Case II: Assume that u is merely ω−semiconvex (i.e, it may not be necessarily C1).

In this case, we proceed by regularizing u. Let s < r. Then, for ε ∈ (0, r − s), we set

uε(x) := (u ∗ ηε)(x) =

∫
Br

ηε(x− y)u(y)dy =

∫
Bε

u(x− y)ηε(y)dy for x ∈ Br−ε ⊃ Bs.

Here ηε(x) := ε−nη(x/ε) where 0 ≤ η ≤ 1, η ∈ C∞0 (Rn),
∫
Rn η(x)dx = 1 and supp(η) ⊂ B1 is

a standard mollifier. We claim that uε is ω−semiconvex in Br−ε. Indeed, we first observe that for x, y ∈
Br−ε, z ∈ Bε and λ ∈ [0, 1], we have

u
(
λx+ (1− λ)y − z

)
= u(λ(x− z) + (1− λ)(y − z))
≤ λu(x− z) + (1− λ)u(y − z) + λ(1− λ)|x− y|ω(|x− y|).

Multiplying the estimate above by ηε(z) ≥ 0 and integrating over Bε with respect to z we obtain

uε
(
λx+ (1− λ)y

)
=

∫
Bε

u
(
λx+ (1− λ)y − z

)
ηε(z)dz

≤ λ

∫
Bε

u(x− z)ηε(z)dz + (1− λ)

∫
Bε

u(y − z)ηε(z)dz

+ λ(1− λ)

∫
Bε

|x− y|ω(|x− y|)ηε(z)dz

= λuε(x) + (1− λ)uε(y) + λ(1− λ)|x− y|ω(|x− y|),

since
∫
Bεr

ηε(z)dz = 1. Moreover, uε ∈ C∞(Br−ε). Now, let 0 < ρ < s < r. For ε < r − s, we have
0 < ρ < s < r − ε < r and by the estimates in Case I (since u ∈ C1(Bs) is ω−semiconvex) we obtain

(8.20) sup
Bρ

|uε| ≤ C2 · I(uε, ρ, s, s, p),

(8.21) sup
Bρ

|∇uε| ≤
C4

s− ρ
· I(uε, ρ, s, s, p),

where

(8.22) I(ξ, ρ, s, t, p) :=

[
1

(s− ρ)n/p

(∫
Bt

|ξ|pdx
)1/p

+ (s− ρ)ω(s− ρ)

]
.

Now, let p ∈ (0,∞). Then,

(8.23)
(∫

Bs

|uε|pdx
)1/p

≤ |Bs|
1
p−1

∫
Bs

|uε|dx ≤ |Bs|
1
p−1

∫
Br

|u|dx for p ∈ (0, 1),
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(8.24)
(∫

Bs

|uε|pdx
)1/p

≤
(∫

Br

|u|pdx
)1/p

for p ∈ [1,∞).

Above, we used once more that L1(Br) ↪→ Lp(Br) if p ∈ (0, 1) (Proposition 6.12 in [21]) and that the
mollification never increases the Lp−norm for p ≥ 1 (Theorem C.19 in [26]). Plugging the information
contained in (8.23) and (8.24) in the definition of I(uε, ρ, s, s, p) in (8.22) and adding them up, we have
that, for all p ∈ (0,∞),

(8.25) I(uε, ρ, s, s, p) ≤
(

1 + |Bs|
1
p−1(s− ρ)(1−np )

)
I(u, ρ, s, r, 1) + I(u, ρ, s, r, p) <∞.

Thus, by Ascoli-Arzelà Theorem and the properties of mollifiers (Theorem C.19 in [26]), we obtain from
(8.20) and (8.21) that uε → u ∈ C0(Bρ) uniformly in Bρ. Moreover, from the uniform convergence, we
have

I(uε, ρ, s, s, p)→ I(u, ρ, s, s, p) as ε→ 0.

Thus from (8.20), by letting ε→ 0, we conclude that supBρ |u| ≤ C2 · I(u, ρ, s, s, p). Now, letting s↗ r,
we arrive to the estimate in (8.2) which by its turn implies (8.1). For the gradient estimate, we observe that
by (8.21)

|uε(x)− uε(y)| ≤ C4 ·
I(uε, ρ, s, s, p)

s− ρ
· |x− y|, ∀x, y ∈ Bs.

As before, letting ε → 0 and s ↗ r afterwards, we obtain that u ∈ C0,1(Bs) with estimate (8.4) that
also implies (8.3). A simple covering argument together with the use of the previous estimates yield u ∈
C0,1
loc (Br).

Finally, we observe that estimate (8.5) in (d) follows from the estimates (7.5), (7.6) and (7.7) applied to the
ball Br−ρ(x0) (instead of Br) for any point of differentiability x0 ∈ Bρ of u. �

9. APPENDIX: POINTWISE C1,ω vs. GLOBAL C1,ω

In this Appendix, we present some estimates relating pointwise C1,ω behavior and classical C1,ω reg-
ularity in the interior. These estimates are well known, specially in the C1,α case. However, it is not so
easy to find a reference for their proofs, in particular in the generality discussed here. For completeness, we
include the result here. The proof and ideas presented below are originally due to Lihe Wang.

Lemma 9.1 (C1,ω− interior regularity by uniform control on Taylor’s expansion). Let u be defined in
Br and ω : [0, δω) → [0,∞) a modulus of continuity. Moreover, let r0 ≤ min{r/2, δω}. Assume that for
every x0 ∈ Br/2 there exists an affine function Px0 such that

(9.1) |u(x)− Px0
(x)| ≤ T |x− x0|ω(|x− x0|) ∀x ∈ Br0(x0).

Then, u ∈ C1,ω(Br0/8) with the estimate

(9.2) [∇u]C0,ω(Br0/8) ≤ ET.

Moreover if

(9.3) sup
x0∈Br/2

|∇Px0 | ≤ T

and ω is strictly positive, then u ∈ C1,ω(Br/2) and the following estimate holds:

(9.4) [∇u]C0,ω(Br/2) ≤
(

1 +
1

ω(r0/4)

)
ET.

In both estimates above, E > 0 is a dimensional constant.

Proof. Clearly, (9.1) implies that u is differentiable at any point in Br/2. Now, assume x0, y0 ∈ Br/2 with
x0 6= y0 and 2d0 := 2|x0−y0| ≤ r0/2. Set z0 := (x0+y0)/2 ∈ Br/2.Clearly, |z0−x0| = |z0−y0| = d0/2.
Therefore Bd0/2(z0) ⊂ Bd0

(x0) ∩Bd0
(y0) ⊂ Br. By assumption (9.1) we have

(9.5) ||u− Px0 ||L∞(B d0
2

(z0)) ≤ ||u− Px0 ||L∞(Bd0
(x0)) ≤ Td0ω(d0)



24 J. EDERSON M. BRAGA, ALESSIO FIGALLI, AND DIEGO MOREIRA

and

(9.6) ||u− Py0
||L∞(B d0

2

(z0)) ≤ ||u− Py0
||L∞(Bd0

(y0)) ≤ Td0ω(d0).

Now, since Px0 − Py0 is affine, we have for a dimensional constant C > 0 that∣∣∣∇u(x0)−∇u(y0)
∣∣∣ =

∣∣∣∇Px0
−∇Py0

∣∣∣ ≤ 2C

d0

∣∣∣∣∣∣Px0
− Py0

∣∣∣∣∣∣
L∞(Bd0/2

(z0))

≤ 2C

d0

(∣∣∣∣∣∣u− Px0

∣∣∣∣∣∣
L∞(Bd0

(x0))
+
∣∣∣∣∣∣u− Py0

∣∣∣∣∣∣
L∞(Bd0

(y0))

)
≤ 4CTω(d0) = 4CTω(|x0 − y0|),(9.7)

where we added (9.5) and (9.6) in the last inequality. Now, we observe that if x0, y0 ∈ Br0/8 with x0 6= y0

then 2d0 := 2|x0 − y0| ≤ r0/2. Thus, estimate (9.2) follows readily from (9.7). Let x0, y0 ∈ Br/2 be such
that d0 := |x0 − y0| > r0/4 > 0. Then by (9.3), we have

(9.8)
|∇u(x0)−∇u(y0)|

ω(|x0 − y0|)
=
|∇Px0

−∇Py0
|

ω(|x0 − y0|)
≤ 2T

ω(r0/4)
.

Now, estimate (9.4) follows immediately by adding up the estimates (9.7) and (9.8). We can take E :=
4C + 2 and this finishes the proof.

�

By a standard covering argument, we obtain the following Corollary.

Corollary 9.2 (Pointwise Taylor’s expansion everywhere). Let u : Ω→ R where Ω ⊂ Rn is an open set,
and let ω : [0, δω)→ [0,∞) be a strictly positive modulus of continuity. Assume that for any Ω′ ⊂⊂ Ω and
for every x0 ∈ Ω′ there exist an affine function Px0

and positive constants rΩ′ , CΩ′ , GΩ′ such that

‖u− Px0‖L∞(Br(x0)) ≤ CΩ′ · rω(r) ∀r ≤ rΩ′ ≤
{
δω, dist(Ω

′, ∂Ω)/2
}
,

‖∇Px0
‖L∞(Ω′) ≤ CΩ′ .

Then, u ∈ C1,ω
loc (Ω).
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Email address: dmoreira@mat.ufc.br


	1. Introduction
	2.  Setting and Main Results
	2.1. Convex envelope and -semiconvex functions
	2.2. Supersolutions and Pucci Operators
	2.3. Moduli of continuity and a preliminary result from measure theory
	2.4. Statement of the main results

	3. Examples
	4. Key estimate and the Regularity on the contact set
	5. proof of Theorem 2.6
	6. Proof of Theorem 2.8
	7. Interior Regularity of -semiconvex supersolutions and Proof of Theorem 2.9
	8.  Lp-L estimates for -semiconvex function for p>0
	9. Appendix: Pointwise C1, vs. global C1, 
	References

