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Abstract

We study the existence and uniqueness for an elliptic problem with a non-
linear dynamic boundary condition, relating the conormal derivative of the
unknown to the time derivative of its jump across an internal interface. We
firstly prove the well-posedness of a suitable linear version of this problem,
by means of a classical result in abstract parabolic theory; then, we study the
nonlinear case using a fixed point technique.
Our mathematical scheme is of interest in the modelling of electrical conduc-
tion in biological tissues.

1 Introduction

We are interested in the existence and uniqueness of the solutionu of the problem

−div(σ1∇u) = g(x, t, u) , in Ω1; (1.1)

−div(σ2∇u) = g(x, t, u) , in Ω2; (1.2)

σ1∇u(int) · ν = σ2∇u(out) · ν , onΓ ; (1.3)

α
∂

∂t
[u] + f([u]) = σ2∇u(out) · ν , onΓ ; (1.4)

[u](x, 0) = S(x) , onΓ ; (1.5)

u(x, t) = 0 , on∂Ω; (1.6)
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where the operatorsdiv and∇ act only with respect to the space variablex. The
notation in (1.1)–(1.4), (1.6), means that the indicated equations are in force in the
relevant spatial domain for0 < t < T , andT > 0 is a given time.

Here,Ω is an open connected bounded subset ofRN such thatΩ = Ω1∪Ω2∪Γ ,
whereΩ1 andΩ2 are two disjoint open subsets ofΩ, Γ = ∂Ω1 ∩ Ω = ∂Ω2 ∩ Ω is
a compact regular set, and|Γ ∩ ∂Ω|N−1 = 0. We assume thatΩ, Ω1 andΩ2 have
Lipschitz boundaries. Moreover,σ1, σ2 andα are positive constants, andν is the
normal unit vector toΓ pointing intoΩ2. Sinceuε is not in general continuos across
Γ we have set

u(int) := trace ofu|Ω1onΓ ; u(out) := trace ofu|Ω2 onΓ .

Indeed we refer conventionally toΩ1 as to theinterior domain, and toΩ2 as to the
outer domain. We also denote

[u] := u(out)− u(int) .

Similar conventions are employed for other quantities; for example (1.3) can be
rewritten as

[σ∇u · ν] = 0 , onΓ ,

where
σ = σ1 in Ω1, σ = σ2 in Ω2.

Suitable assumptions on the datag, f andS will be given in next section.
We point out that our results can be reproduced also in a periodic setting (see

Remarks 3.3 and 3.5), a situation usually occurring in homogenization problems
[1], [2].

The mathematical interest of this problem is due to the presence of the dynamic
condition (1.4), and to the non linear termsf and g. Moreover, in the periodic
setting, our approach yields estimates for the solution which are independent on the
spatial period, a result which is of interest in homogenization [2].

Due to the presence of the nonlinear dynamic boundary condition (1.4), our
problem can be compared to the problems studied in [4], [5] and [9] (in the last
paper the partial differential equations are of parabolic type). However, equation
(1.4) is set on the interfaceΓ and involves the jump[u] of the unknownu acrossΓ ,
while the dynamic condition in [4], [5] and [9] is set on the boundary of the domain
and involves the trace of the unknown. Moreover, our method, which relies on a
fixed point theorem, is different from the semigroup theory used in [4], [5] and the
potential theory used in [9].

Our mathematical scheme models the electrical conduction in biological tissues
[3], where one of the phases,Ω2, is the extracellular space, the other one,Ω1, is
the intracellular space, the interfaceΓ is the cell membrane and the unknownu
is the electrical potential. We note that the dependence of the electrical potential
on time is not merely parametrical, due to the equation (1.4), taking into account
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the nonlinear conductive/capacitive behaviour of the cell membrane. This model
permits to investigate the Maxwell–Wagner interfacial polarization effect [6], that
is the response of biological tissues to the injection of electrical currents in the
radiofrequency range, which is relevant in clinical applications.

An alternative approach to the electrical conduction in biological tissues can be
obtained by homogenization of the present model [1], [2], since the extracellular
and intracellular spaces are finely mixed phases. Of course, the well-posedness
results of this paper are needed even in that context.

The paper is organized as follows: in Section 2 we set our notations and assump-
tions on the data. Moreover, we state two crucial tools in the development of the
paper: the Poincaré-like inequality (2.10), applying to functions that jumps on the
interfaceΓ , and the energy estimate (2.17). In Section 3 we prove existence and
uniqueness of weak solutions to (1.1)–(1.6). The main idea is to prove firstly the
well-posedness of a suitable linear version of our problem, by means of a classical
result in abstract parabolic theory (see, e.g., [10]), properly adapted to this situation.
Then, the nonlinear case is studied using a fixed point technique.

2 Preliminary results

2.1 Notations

Given an open bounded and regular setA, we denote byLp(A), 1 ≤ p ≤ ∞,
and byW k,p(A), k ∈ N, the standard Lebesgue and Sobolev spaces. In particular,
Hk(A) stands forW k,2(A). We denote also byH1

o (A) the subset ofH1(A) of those
functions which vanish on∂A. Moreover, we recall that for any function inHk(A),
its trace on the boundary belongs to the fractionary Sobolev spaceHk−1/2(∂A).
Finally, BV (A) indicates the space of functions inL1(A), whose distributional
derivatives are measures of bounded total variation.

Let I be a real interval andX a Banach space. We denote byLp(I;X), 1 ≤ p ≤
∞, and byHk(I;X), k ∈ N, the spaces of measurable functionsh : I → X such
that

‖h‖p
Lp(I;X) =

∫
I

‖h(t)‖p dt < +∞ if 1 ≤ p < +∞ ;

‖h‖L∞(I;X) = ess sup
t∈I

|h(t)| < +∞ if p = +∞ ;

‖h‖2
Hk(I;X) =

∫
I

‖h(t)‖2 dt+
k∑

j=1

∫
I

‖d
jh

dtj
(t)‖2 dt < +∞ .

Moreover, we denote byCk(I;X), 0 ≤ k ≤ ∞, the spaces of the continuous
functionsh : I → X, having continuous derivatives, up to orderk (continuous
derivatives of any order, in the casek = ∞).
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Finally,Lp
loc(A) is the space of those functions belonging toLp(K), for every open

setK compactly contained inA, and analogously for the other functional spaces
considered in this paper.

LetY = Π(aj, bj) := (a1, b1)×(a2, b2)×· · ·×(aN , bN), with aj < bj, for every
j = 1, . . . , N , be a cell inRN . A function defined onRN is said to beY -periodic
if it is periodic of periodbj − aj with respect to each variablexj, with 1 ≤ j ≤ N .
In such a case,Y will be said the periodicity cell.

2.2 Assumptions on the data

The functionf in (1.4) fulfils

f ∈ W 1,∞(R) , f(0) = 0 . (2.1)

The functiong in equations (1.1) and (1.2) is a Caratheodory function such that

g(·, ·, 0) ∈ L∞(Ω× (0, T ))
|g(x, t, s)− g(x, t, s′)| ≤ L|s− s′| , for all x ∈ Ω, t > 0, s, s′ ∈ R,

(2.2)
for a constantL independent ofx, t, s, s′, and such that

LC < γ0 , (2.3)

whereγ0 is a suitable positive constant depending on the parameters in (1.1)–(1.6)
and on‖f ′‖∞, andC > 0 is the constant appearing in Poincaré’s inequality in
Proposition 2.2 or Corollary 2.3.
Moreover, we assume thatS ∈ H

1/2
o (Γ,Ω), whereH1/2

o (Γ,Ω) is the space of the
traces onΓ of the functions belonging toH1

o (Ω). Clearly,H1/2
o (Γ,Ω) is a Hilbert

space. Note thatH1/2
o (Γ,Ω) = H1/2(Γ ), if Γ ∩ ∂Ω = ∅.

In the following we denote byγ a generic positive constant, taking in princi-
ple different values in different occurrences. These constants depend only on the
geometrical properties ofΩ, Ω1 andΩ2, and onα, σ1, σ2, T , L, and on the global
bounds forg andf ′. We also denote by∇F the pointwise spatial gradient of a given
functionF , whileDF denotes its variation measure (in theBV sense). In general
∇F andDF differ, as we often consider functions with jumps.
Throughout the paper, the dependence on the spatial variables of the involved func-
tions is understood, even if omitted.

REMARK 2.1 - By means of minor changes in our approach, we may consider
cases with non vanishing sources appearing on the right hand sides of (1.3), (1.4).

Of special interest in applications is the case of nonvanishing Dirichlet data,
where (1.6) is replaced with

u(x, t) = û(x, t) , on∂Ω, whereû ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)).
(2.4)
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In this case we look at the homogeneous Dirichlet problem forv = u− û, i.e.,

−div(σ∇v) = σ∆û+ g(x, t, v + û) , in Ω1, Ω2; (2.5)

[σ∇v · ν] = −[σ]∇û · ν , onΓ ; (2.6)

α
∂

∂t
[v] + f([v]) = σ2∇v(out) · ν + σ2∇û · ν , onΓ ; (2.7)

[v](x, 0) = S(x) , onΓ ; (2.8)

v(x, t) = 0 , on∂Ω. (2.9)

2.3 Poincaŕe inequalities

In this section we will state a generalized version of the Poincaré’s inequality, which
applies to functions admitting jumps. For a similar result, see also Proposition 3.8
of [8].

Proposition 2.2 Letu : Ω → R be given by

u|Ω1 = u1|Ω1 , u|Ω2 = u2|Ω2 , u1 , u2 ∈ H1
o (Ω) .

Then ∫
Ω

u2 dx ≤ C

{∫
Ω

|∇u|2 dx+

∫
Γ

[u]2 dσ

}
, (2.10)

whereC depends onΩ andΓ .

Proof - Asu2 is of classW 1,1 both inΩ1 and inΩ2, u2 ∈ BV (Ω), and the usual
contradiction argument, exploitingu2 = 0 on∂Ω in the sense of traces, shows that∫

Ω

u2 dx ≤ γ|Du2(Ω)| ≤ γ

∫
Ω

|u||∇u|dx+γ

∫
Γ

|[u2]|dσ , γ = γ(Ω) . (2.11)

Indeed the singular part of the variation ofu (and therefore ofu2) is concentrated
onΓ . We estimate above last integral by∫

Γ

|[u]|(|u(int)|+ |u(out)|) dσ ≤ δ−1

∫
Γ

[u]2 dσ + δ

∫
Γ

(|u(int)|2 + |u(out)|2) dσ , (2.12)

for a δ ∈ (0, 1) to be chosen presently. Using standard trace inequalities, we check
that ∫

Γ

(|u(int)|2 + |u(out)|2) dσ ≤ γ

∫
Ω

(
u2 + |∇u|2

)
dx , (2.13)

whereγ = γ(Γ,Ω1,Ω2). A further application of Cauchy-Schwartz inequality to
(2.11) yields∫

Ω

u2 dx ≤ γδ−1

∫
Ω

|∇u|2 dx+ γδ−1

∫
Γ

[u]2 dσ + γδ

∫
Ω

u2 dx ,
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whence (2.10) on selecting a small enoughδ. �

In many applications (see e.g. [1] and [2]), it is useful to obtain a precise de-
pendence of the constantγ in the proof of previous lemma, and then ofC in (2.10),
on Ω1, Ω2 andΓ . To this purpose, setEk = k−NE, whereE is a given regular
Y -periodic set. Clearly, it follows thatEk ∩ k−NY has a measure of orderk−N and
its boundary area is of orderk1−N , k ∈ N. Moreover, assume thatΩ1 = Ek ∩ Ω,
Ω2 = Ω \ Ω1 andΓ = ∂Ω1 ∩ Ω. Note that|Ω1| ∼ 1, while |Γ | ∼ k. Then, the
following result holds (see Lemma 7.1 in [2]).

Corollary 2.3 Assume thatΩ1, Γ andE are as stated before. Letu : Ω → R be as
in Proposition 2.2. Then∫

Ω

u2 dx ≤ C

{∫
Ω

|∇u|2 dx+ k

∫
Γ

[u]2 dσ

}
. (2.14)

HereC depends only onΩ andE and not onk.

Proof - Arguing as in the proof of Proposition 2.2 and replacingδ with δ/k in
(2.12), we obtain∫

Ω

u2 dx ≤ γ

∫
Ω

|u||∇u|dx +γ(δ/k)−1

∫
Γ

[u]2 dσ

+γ(δ/k)

∫
Γ

(|u(int)|2 + |u(out)|2) dσ ,

(2.15)

for a δ ∈ (0, 1) to be chosen presently. SettingQi = k−NY + zi, i = 1, . . . , kN ,
and using the periodic structure ofΩ1 together with standard trace inequalities, we
check that for eachi ∈ N∫

Γ∩Qi

(|u(int)|2 + |u(out)|2) dσ ≤ γk

∫
Ω∩Qi

(
u2 + k−2|∇u|2

)
dx , (2.16)

where nowγ = γ(E, Y ) does not depend onQi. Next we add (2.16) over all the
cells coveringΩ, and use the resulting inequality in (2.15). Then, applying again
Cauchy-Schwartz inequality and selecting a small enoughδ, we may conclude fol-
lowing the same argument as in the proof of Proposition 2.2. �

REMARK 2.4 - If Ec is connected, one can prove an estimate similar to (2.14), but
with the factork formally replaced byk−1 (in this spirit, see Lemma 6 of [7]).
We note also that, as a consequence of (2.14), the Lipschitz constantL in (2.3) is
independent of the scalingk.
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2.4 Energy estimates

On multiplying (1.1), (1.2) byu and integrating formally by parts, using also (1.3)–
(1.5), (2.2) and Proposition 2.2 or Corollary 2.3, we obtain, for0 < t < T ,∫ t

0

∫
Ω

σ|∇u|2 dx dτ +
α

2

∫
Γ

[u]2(x, t) dσ +

∫ t

0

∫
Γ

[u]f([u]) dσ dτ

=
α

2

∫
Γ

S2(x) dσ +

∫ t

0

∫
Ω

g(x, t, u)u dx dτ

≤ α

2

∫
Γ

S2(x) dσ + L

∫ t

0

∫
Ω

u2 dx dτ +

∫ t

0

∫
Ω

g(x, t, 0)u dx dτ

≤ α

2

∫
Γ

S2(x) dσ + LC

∫ t

0

∫
Ω

|∇u|2 dx dτ + LC

∫ t

0

∫
Γ

[u]2(x, t) dσ dτ

+δ−1

∫ t

0

∫
Ω

g2(x, t, 0) dx dτ + δ

∫ t

0

∫
Ω

|∇u|2 dx dτ + δ

∫ t

0

∫
Γ

[u]2(x, t) dσ dτ ,

whence, by Gronwall’s inequality, (2.3) and using the linear growth off , it follows∫ t

0

∫
Ω

|∇u|2 dx dt+

∫
Γ

[u]2(x, t) dσ ≤

γ

(∫
Γ

S2(x) dσ +

∫ t

0

∫
Ω

g2(x, t, 0) dx dτ

)
≤ γ ,

(2.17)

whereγ depends onΩ, T ,L, σ, α, ‖S‖L2(Γ ), ‖g(·, ·, 0)‖L∞(Ω×(0,T )) and the Poincaré
constantC. This energy estimate will be instrumental in the following.

3 Existence and uniqueness of weak solutions

Given a spaceX(Ω) of real functions defined overΩ, we denote byXo(Ω) the sub-
space ofX(Ω) comprised of those functions which have zero trace on the boundary
∂Ω. Then we set

Xo(Ω) = {u = (u1, u2) | u1 := u|Ω1 = u′|Ω1
, u2 := u|Ω2 = u′′|Ω2

,

with u′, u′′ ∈ Xo(Ω)} ,
‖u‖Xo(Ω) = ‖u1‖X(Ω1) + ‖u2‖X(Ω2) .

Let us firstly consider the linear case; i.e.,g(x, t, s) ≡ P (x, t) independent ofs ∈ R
andf(s) = βs, with β ∈ R. We also assume more general conditions in (1.3) and
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(1.4):

−σ∆u = P (t) , in Ω1, Ω2; (3.1)

[σ∇u · ν] = Q(t) , onΓ ; (3.2)

α
∂

∂t
[u] + β[u] = σ2∇u(out) · ν + h(t) , onΓ ; (3.3)

[u](x, 0) = S , onΓ , (3.4)

u(x, t) = 0 , on∂Ω. (3.5)

HereP ∈ L2(Ω × (0, T )), Q ∈ L2(0, T ;L2(Γ )), h ∈ L2(0, T ;L2(Γ )) andS ∈
H

1/2
o (Γ,Ω). The constantβ ∈ R equalsf ′(0) in many interesting applications (see

[1] and [2]).

In order to state the existence of a solution of this problem, we first consider its
stationary formulation, given by

−σ∆u = P , in Ω1, Ω2; (3.6)

[σ∇u · ν] = Q , onΓ ; (3.7)

[u] = S , onΓ ; (3.8)

u = 0 , on∂Ω; (3.9)

whereP ∈ L2(Ω), Q ∈ L2(Γ ), andS ∈ H
1/2
o (Γ,Ω). The rigorous weak formula-

tion of (3.6)–(3.9) is∫
Ω

σ∇u · ∇ϕ dx+

∫
Γ

Qϕdσ =

∫
Ω

Pϕ dx , (3.10)

for all ϕ ∈ H1
o (Ω), with u ∈ H1

o(Ω), such that[u] = S in the sense of traces onΓ .

Lemma 3.1 Let S, P , Q be as above. Then(3.6)–(3.9) (i.e., (3.8), (3.10)), has a
unique solutionu ∈ H1

o(Ω), satisfying

‖u‖H1
o(Ω) ≤ γ

(
‖S‖H1/2(Γ ) + ‖P‖L2(Ω) + ‖Q‖L2(Γ )

)
. (3.11)

Proof - Let us begin with the auxiliary problems

− σ1∆u1 = P in Ω1, u1 = 0 onΓ , u1 = 0 on∂Ω,

− σ2∆u2 = P in Ω2, u2 = S onΓ , u2 = 0 on∂Ω.
(3.12)

Existence and uniqueness of the solutions to these Dirichlet problems are classical
and we have that̄u = (u1, u2) ∈ H1

o(Ω). Note that[ū] = S. Moreover

‖ū‖H1
o(Ω) ≤ γ

(
‖S‖H1/2(Γ ) + ‖P‖L2(Ω)

)
. (3.13)

Then we seeku in the form

u = w + ū , wherew ∈ H1
o (Ω).
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More exactly, the problem forw is∫
Ω

σ∇w · ∇ϕ dx = −
∫

Ω

σ∇ū · ∇ϕ dx+

∫
Ω

Pϕ dx−
∫

Γ

Qϕdσ , (3.14)

for all ϕ ∈ H1
o (Ω). The right hand side of this equation defines a continuous lin-

ear operator inH1
o (Ω), whose norm is bounded exactly by the right hand side of

(3.11), as a consequence of (3.13). The left hand side defines a continuous bilinear
form, which is easily seen to be coercive in the spaceH1

o (Ω). Thus, an applica-
tion of Lax-Milgram theorem yields existence and uniqueness of a solutionw as
above, and therefore existence ofu. Now (3.11) follows from (3.13) and from stan-
dard continuous dependence ofw on the data in (3.14). Uniqueness of solutions to
(3.10) is immediate. �

Next let us come back to the evolution problem (3.1)–(3.5). Rigorously, the
problem can be formulated as: find a functionu ∈ L2(0, T ;H1

o(Ω)), such that
[u] ∈ C(0, T ;L2(Γ )), satisfying (3.4) and∫ T

0

∫
Ω

σ∇u · ∇ϕ dx dt+

∫ T

0

∫
Γ

ϕ(int)Qdσ dt− α

∫ T

0

∫
Γ

[u]
∂

∂t
[ϕ] dσ dt

+ β

∫ T

0

∫
Γ

[u][ϕ] dσ dt−
∫ T

0

∫
Γ

[ϕ]hdσ dt =

∫ T

0

∫
Ω

Pϕ dx dt , (3.15)

for all ϕ ∈ L2(0, T ;H1
o(Ω)) such that[ϕ] ∈ H1(0, T ;L2(Γ )), andϕ = 0 at t = 0,

t = T .
Define, for almost everyt ∈ (0, T ), w(t) ∈ H1

o (Ω) as the solution to (3.6)–(3.9)
with P = P (t), Q = Q(t), S = 0. Thenu = v + w, wherev solves in the sense
above

−σ∆v = 0 , in Ω1, Ω2; (3.16)

[σ∇v · ν] = 0 , onΓ ; (3.17)

α
∂

∂t
[v] + β[v] = σ2∇v(out) · ν + q(t) , onΓ ; (3.18)

[v](x, 0) = S , onΓ ; (3.19)

v(x, t) = 0 , on∂Ω; (3.20)

with
q(t) = h(t) + σ2∇w(t)(out) · ν , 0 < t < T . (3.21)

Clearly, q ∈ L2(0, T ;H−1/2(Γ,Ω)), whereH−1/2(Γ,Ω) denotes the topological
dual space ofH1/2

o (Γ,Ω). Indeed, for a.e.t ∈ (0, T ) and everyr ∈ H1/2
o (Γ,Ω), we

have

〈q(t), r〉 =

∫
Γ

h(t)r dσ − 〈〈σ2∆w(t), r̃〉〉 −
∫

Ω2

σ2∇w(t)∇r̃ dx
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where r̃ is an extension toH1
o (Ω) of r, such that‖r̃‖H1

o (Ω) ≤ γ‖r‖H1/2(Γ ), and

〈·, ·〉 and〈〈·, ·〉〉 denote the duality pairing betweenH−1/2(Γ,Ω), H1/2
o (Γ,Ω) and

H−1(Ω),H1
o (Ω), respectively.

Theorem 3.2 For any givenq ∈ L2(0, T ;H−1/2(Γ,Ω)), problem(3.16)–(3.20)ad-
mits a unique solutionv ∈ L2(0, T ;H1

o(Ω)) with [v] ∈ C(0, T ;L2(Γ )). Therefore,
problem(3.1)–(3.5)admits a unique solution.

Proof - The proof follows from an application of abstract parabolic theory, as
summarized for example in [10], chapter 23. We consider the three Hilbert spaces
H

1/2
o (Γ,Ω) ⊂ L2(Γ ) ⊂ H−1/2(Γ,Ω), and a bilinear form on the first one

a(ρ, r) =

∫
Ω

σ∇V(ρ) · ∇V(r) dx , ρ , r ∈ H1/2
o (Γ,Ω) , (3.22)

whereV(r) is the solution to (3.6)–(3.9) withP = 0, Q = 0, S = r, for each

r ∈ H1/2
o (Γ,Ω). Clearlya is bilinear, symmetric and continuous (owing to estimate

(3.11)). Moreover we have the coercivity estimate

a(r, r) +

∫
Γ

r2 dσ =

∫
Ω

σ|∇V(r)|2 dx+

∫
Γ

r2 dσ

≥ γ‖V(r)‖2
H1

o(Ω) ≥ γ‖r‖2
H1/2(Γ )

,

(3.23)

where we have made use, in this order, of Poincaré’s inequality (Proposition 2.2),
and of classical trace inequalities. Thus there exists a unique solution, which we
denote as[v], to

[v] ∈ L2(0, T ;H
1/2
o (Γ,Ω)) ∩ C(0, T ;L2(Γ )) , [v](0) = S ,

α
d
dt

∫
Γ

[v](t)r dσ + a([v](t), r) = 〈q(t), r〉 , for all r ∈ H1/2
o (Γ,Ω),

in the sense of distributions (Theorem 23.A [10]). A standard density argument
proves thatv = V([v]) is the sought after solution.

Uniqueness of solutions of (3.1)–(3.5) follows from the observation that the dif-
ference of two solutions solves (3.1)–(3.5) with zero dataP ,Q, h, S. �

REMARK 3.3 - AssumeΩ = Y , then Theorem 3.2 holds also if we replace the
boundary condition (3.5) with the requirement thatu ∈ L2(0, T ;H1

×(Y )), where

H1
×(Y ) = {u | u1 := u|Ω1 = u′|Ω1

, u2 := u|Ω2 = u′′|Ω2
,

with u′, u′′ ∈ H1
per(Y ) ;

∫
Y

u = 0} ,

and

H1
per(Y ) = {u ∈ H1

loc(R
N) : u is Y -periodic} .
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Clearly, in this case, we must assume that the dataP,Q, h, S of the problem are
Y -periodic with respect to thex variable, that the compatibility condition∫

Y

P dx =

∫
Γ

Qdσ (3.24)

is satisfied and that in (3.23) it is used Poicaré’s inequality in the version of [8].

Next we extend previous results to the nonlinear problem relevant to us. Let us
begin with

−σ∆u = g(t, u) , in Ω1, Ω2; (3.25)

[σ∇u · ν] = Q(t) , onΓ ; (3.26)

α
∂

∂t
[u] + f([u]) = σ2∇u(out) · ν + h(t) , onΓ ; (3.27)

[u](x, 0) = S , onΓ ; (3.28)

u(x, t) = 0 , on∂Ω. (3.29)

Theorem 3.4 Assume thatg satisfies(2.2), with L as in (2.3), and thatf satisfies
(2.1). Moreover let us stipulate thatQ, h ∈ L2(0, T ;L2(Γ )). Then there exists a
unique solution of problem(3.25)–(3.29).

Proof - Consider the Banach spaceX = L2(0, T1;H1
o(Ω)) , endowed with the

natural norm

‖u‖L2(0,T1;H1
o(Ω)) :=

(∫ T1

0

‖u(t)‖2
H1

o(Ω) dt

)1/2

,

whereT1 will be choosen later. Let us introduce an operatorH acting onX by
means ofH(u) = w, wherew is the solution of

−σ∆w = g(t, u) , in Ω1, Ω2; (3.30)

[σ∇w · ν] = Q(t) , onΓ ; (3.31)

α
∂

∂t
[w] + f([u]) = σ2∇w(out) · ν + h(t) , onΓ ; (3.32)

[w](x, 0) = S , onΓ ; (3.33)

w(x, t) = 0 , on∂Ω. (3.34)

Clearly, the operatorH is well defined; moreover, multiplying previous equation
byw and integrating by parts, we obtain thatH(X) ⊂ X.

Given u1, u2 ∈ X and the corresponding solutionsw1 = H(u1) andw2 =
H(u2), subtracting from each other the two formulations of (3.30)–(3.34) written

11



for u1 andu2 respectively, multiplying againstw1−w2 and integrating by parts, we
obtain∫

Ωt

|∇(w1 − w2)|2 dx dt+

∫
Γ

[w1 − w2]
2(t) dσ

≤ γ1

[∫
Ωt

|g(u1)− g(u2)| |w1 − w2| dx dt

+

∫ t

0

∫
Γ

|f([u1])− f([u2])| |[w1 − w2]| dσ dt
]

≤ γ1

[
L

∫
Ωt

|u1 − u2| |w1 − w2| dx dt+

∫ t

0

∫
Γ

|[u1 − u2]| |[w1 − w2]| dσ dt
]

≤ γ1

[
L

2

∫
ΩT1

|u1 − u2|2 dx dt+
LC

2

∫
Ωt

|∇(w1 − w2)|2 dx dt

+ δ

∫ T1

0

∫
Γ

[u1 − u2]
2 dσ dt+

1

δ

∫ t

0

∫
Γ

[w1 − w2]
2 dσ dt

]
(3.35)

whereγ1 depends only onσ, α, ‖f ′‖∞. Taking into account (2.3), the second term
in the last inequality can be absorbed into the left hand side, while the fourth term
will be treated using Gronwall’s Lemma. If we set

F (t) =

∫
Γ

[w1 − w2]
2(t) dσ

G(T1) = γ1

[
L

2

∫
ΩT1

|u1 − u2|2 dx dt+ δ

∫ T1

0

∫
Γ

[u1 − u2]
2 dσ dt

]

by (3.35), it follows

F (t) ≤ G(T1) +
γ1

δ

∫ t

0

F (τ) dτ ,

which implies ∫ T1

0

F (τ) dτ ≤ G(T1)T1e
γ1

T1
δ .

Inserting this estimate in (3.35) and using Proposition 2.2, we obtain∫ T1

0

‖w1(t)− w2(t)‖2
H1

o(Ω) dt ≤ γ2

[
1 + (T1 + T1/δ)e

γ1
T1
δ

]
·

(
L

2

∫
ΩT1

|u1 − u2|2 dx dt+ δ

∫
ΩT1

|∇(u1 − u2)|2 dx dt

)
,

where nowγ2 depends also on the Poincare’s constant and the trace embedding.

Taking into account that, by (2.3), we may assume thatL < min
(

1
Cγ1

, 1
γ2(1+2e)

)
12



and choosing

δ ≤ 1

2(1 + 2e)γ2

and T1 = min

(
1, δ,

δ

γ1

)
it follows∫ T1

0

‖w1(t)− w2(t)‖2
H1

o(Ω) dt ≤
1

2

∫ T1

0

‖u1(t)− u2(t)‖2
H1

o(Ω) dt

which implies thatH is a contraction. So, it admits a unique fixed point, i.e., a
solution of problem (3.25)–(3.29) exists inX. Noting that the widthT1 of the time
interval is independent of the iteration step, we may conclude the proof by iterating
this argument over(0, T ). �

REMARK 3.5 - As already pointed out in Remark 3.3, existence and uniqueness
of solutions to (3.25)–(3.28) in the periodic case with null mean average can be
proven by means of methods analogous to the ones employed above in Theorem
3.4. We omit the details. Moreover, we note that, if the assumption of null mean
average is not required, then uniqueness of the solution does not hold. However,
it can be easily proved that, for any two periodic solutionsu1, u2 of (3.25)–(3.28)
with g ≡ 0, there exists a functionψ ∈ L2(0, T ), depending only ont such that
u1(x, t) − u2(x, t) = ψ(t) for a.e. t ∈ (0, T ). Clearly,ψ(t) = 1

|Y |

∫
Y
u1(x, t) −

u2(x, t) dx.
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