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Abstract

We study the existence and uniqueness for an elliptic problem with a non-
linear dynamic boundary condition, relating the conormal derivative of the
unknown to the time derivative of its jump across an internal interface. We
firstly prove the well-posedness of a suitable linear version of this problem,
by means of a classical result in abstract parabolic theory; then, we study the
nonlinear case using a fixed point technique.

Our mathematical scheme is of interest in the modelling of electrical conduc-
tion in biological tissues.

1 Introduction

We are interested in the existence and uniqueness of the solutibiihe problem

—div(o1Vu) = g(x,t,u), inQy; (1.1)
—div(oaVu) = g(z,t,u), in Qs; (1.2)

o1 Vu'™ .y = g, Vu®W. p onl (1.3)
a%[u] + f([u]) = 0o VU . p | onrl (1.4)
[u](x,0) = S(x), onr; (1.5)

u(z,t) =0, onof; (1.6)



where the operatoréiv andV act only with respect to the space variableThe
notation in (1.1)—(1.4), (1.6), means that the indicated equations are in force in the
relevant spatial domain far < ¢t < 7', and7” > 0 is a given time.

Here () is an open connected bounded subs@&8fsuch that) = Q, UQ,UT,
where(2; and(2, are two disjoint open subsets Qf I' = 0, N Q) = 9N, N QIS
a compact regular set, and N 0Q|y_; = 0. We assume thde, (; and(2, have
Lipschitz boundaries. Moreover;, o, anda are positive constants, andis the
normal unit vector td" pointing into$2,. Sinceu, is not in general continuos across
I" we have set

u™ = trace ofug,onI’; " := trace ofu, onT.

Indeed we refer conventionally @, as to thenterior domain and to(), as to the
outer domain We also denote

[u] = u(out) . u(int) )

Similar conventions are employed for other quantities; for example (1.3) can be
rewritten as
[oVu-v] =0, onl’,

where
o =01 in Qq, O = 09 in Q.

Suitable assumptions on the datg andS will be given in next section.

We point out that our results can be reproduced also in a periodic setting (see
Remarks 3.3 and 3.5), a situation usually occurring in homogenization problems
[1], [2].

The mathematical interest of this problem is due to the presence of the dynamic
condition (1.4), and to the non linear ternfisand g. Moreover, in the periodic
setting, our approach yields estimates for the solution which are independent on the
spatial period, a result which is of interest in homogenization [2].

Due to the presence of the nonlinear dynamic boundary condition (1.4), our
problem can be compared to the problems studied in [4], [5] and [9] (in the last
paper the partial differential equations are of parabolic type). However, equation
(1.4) is set on the interfacE and involves the jumpu| of the unknown. acrossl’,
while the dynamic condition in [4], [5] and [9] is set on the boundary of the domain
and involves the trace of the unknown. Moreover, our method, which relies on a
fixed point theorem, is different from the semigroup theory used in [4], [5] and the
potential theory used in [9].

Our mathematical scheme models the electrical conduction in biological tissues
[3], where one of the phaseS;, is the extracellular space, the other ofig, is
the intracellular space, the interfageis the cell membrane and the unknown
is the electrical potential. We note that the dependence of the electrical potential
on time is not merely parametrical, due to the equation (1.4), taking into account
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the nonlinear conductive/capacitive behaviour of the cell membrane. This model
permits to investigate the Maxwell-Wagner interfacial polarization effect [6], that

is the response of biological tissues to the injection of electrical currents in the
radiofrequency range, which is relevant in clinical applications.

An alternative approach to the electrical conduction in biological tissues can be
obtained by homogenization of the present model [1], [2], since the extracellular
and intracellular spaces are finely mixed phases. Of course, the well-posedness
results of this paper are needed even in that context.

The paper is organized as follows: in Section 2 we set our notations and assump-
tions on the data. Moreover, we state two crucial tools in the development of the
paper: the Poincérlike inequality (2.10), applying to functions that jumps on the
interfacel”, and the energy estimate (2.17). In Section 3 we prove existence and
uniqueness of weak solutions to (1.1)—(1.6). The main idea is to prove firstly the
well-posedness of a suitable linear version of our problem, by means of a classical
result in abstract parabolic theory (see, e.g., [10]), properly adapted to this situation.
Then, the nonlinear case is studied using a fixed point technique.

2 Preliminary results

2.1 Notations

Given an open bounded and regular detwe denote byL”(A), 1 < p < oo,

and byWW*?(A), k € N, the standard Lebesgue and Sobolev spaces. In particular,
H*(A) stands fol?/*2(A). We denote also by} (A) the subset of/!(A) of those
functions which vanish o A. Moreover, we recall that for any function fii*( A),

its trace on the boundary belongs to the fractionary Sobolev SB4cE?(0A).

Finally, BV (A) indicates the space of functions irf (A), whose distributional
derivatives are measures of bounded total variation.

Let 7 be areal interval and” a Banach space. We denote(/; X),1 <p <
oo, and byH*(I; X), k € N, the spaces of measurable functigns/ — X such
that

1l 1y = / IR dt < +00 if 1< p < +oo:

| A|| oo (1,x) = ess sup |h(t)| < 400 if p=+o00;
tel

€

k .
dih
121 1) :/I||h(t)||2dt+2/ll|ﬁ(t)||2dt < +00.
j=1

Moreover, we denote by*(I; X), 0 < k < oo, the spaces of the continuous
functionsh : I — X, having continuous derivatives, up to ordefcontinuous
derivatives of any order, in the cake= c0).



Finally, L? (A) is the space of those functions belongingtg K'), for every open

loc

set K compactly contained inl, and analogously for the other functional spaces
considered in this paper.

LetY = Il(a;, b;) := (a1, b1) X (ag, b2) X - - - X (an, by), With a; < b;, for every
j=1,...,N, beacellinR". A function defined oR" is said to beY"-periodic
if it is periodic of periodb; — a; with respect to each variabig, with1 < j < N.
In such a case;” will be said the periodicity cell.

2.2 Assumptions on the data
The functionf in (1.4) fulfils

feWhe(R), f(0)=0. (2.2)
The functiong in equations (1.1) and (1.2) is a Caratheodory function such that

g(+,-,0) € L>®(Q x (0,7))

lg(x,t,s) — g(x,t,8")| < L|s — §|, forallz € Q,t >0,s,s € R,
(2.2)
for a constant. independent of;, ¢, s, s’, and such that
LC < 7y, (2.3)

where~, is a suitable positive constant depending on the parameters in (1.1)—(1.6)
and on||f'||-, andC' > 0 is the constant appearing in Poinearinequality in
Proposition 2.2 or Corollary 2.3.
Moreover, we assume that € H,/*(I', ), whereH,'*(I', Q) is the space of the
traces on/” of the functions belonging té7!((2). Clearly, Hi/Q(F, Q) is a Hilbert
space. Note thatly/*(I, Q) = HY2(I), if ' N 09 = 0.

In the following we denote by a generic positive constant, taking in princi-
ple different values in different occurrences. These constants depend only on the
geometrical properties @i, 2; and(2,, and ona, o1, 09, T, L, and on the global
bounds forg and f’. We also denote by I the pointwise spatial gradient of a given
function F', while DF denotes its variation measure (in tB& sense). In general
V F andDF differ, as we often consider functions with jumps.
Throughout the paper, the dependence on the spatial variables of the involved func-
tions is understood, even if omitted.

REMARK 2.1 - By means of minor changes in our approach, we may consider
cases with non vanishing sources appearing on the right hand sides of (1.3), (1.4).

Of special interest in applications is the case of nonvanishing Dirichlet data,
where (1.6) is replaced with

u(z,t) = a(z,t), onds, wheren € L*(0,T; H*(Q)) N H'(0,T; H'()).
(2.4)



In this case we look at the homogeneous Dirichlet problem feru — 4, i.e.,

—div(eVv) = At + g(z, t,v + 0), in Qy, Qo; (2.5)
[oVv-v|=—[g|Vi-v, onrl; (2.6)
a%[v] + f([v]) = 02V v + 0,V - v, onrl; (2.7)
[v](z,0) = S(x), onl (2.8)

v(z,t) =0, onos. (2.9)

2.3 Poincak inequalities

In this section we will state a generalized version of the Po&isamequality, which
applies to functions admitting jumps. For a similar result, see also Proposition 3.8
of [8].

Proposition 2.2 Letu : €2 — R be given by

1
Ui, = U11Q; 5, Uy, = U2IQ, Uy, Uz € Ho (Q)

/Qu2d$§ C{/Q|Vu|2 dx+L[u]2da}, (2.10)

whereC depends ofi? and I".

Then

Proof - Asw? is of classi¥'! both inQ2; and in(2,, u*> € BV (), and the usual
contradiction argument, exploitingg = 0 on 912 in the sense of traces, shows that

/ W de < 4| D) < / |Vl dz + / [2)do, 5 =+(Q). (211)
Q Q I

Indeed the singular part of the variationwfand therefore ofi?) is concentrated
onI'. We estimate above last integral by

S+ ey do <570 [ [ do 45 [ (2 4 W) b, 212
r r r

forad € (0,1) to be chosen presently. Using standard trace inequalities, we check
that

/(|u(int)’2 4 ‘u(Out)P) do < ,y/ (u2 + ‘VUF) dLU, (213)
r Q

wherey = ~(I,€Q4,Qs). A further application of Cauchy-Schwartz inequality to
(2.11) yields

/u2da:§75_1/|Vu|2d:v+75_1/[u]2d0+75/uzdx,
0 Q r Q
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whence (2.10) on selecting a small enoudgh O

In many applications (see e.g. [1] and [2]), it is useful to obtain a precise de-
pendence of the constanin the proof of previous lemma, and then@iin (2.10),
on ), O, andI'. To this purpose, seb, = ¥~V E, whereFE is a given regular
Y -periodic set. Clearly, it follows thaf, N k=Y has a measure of order? and
its boundary area is of ordér—", k € N. Moreover, assume thét, = £, N,
Q= Q\QandI” = 00, N2 Note that|Q2,| ~ 1, while |I"| ~ k. Then, the
following result holds (see Lemma 7.1 in [2]).

Corollary 2.3 Assume thaf2;, I" and E are as stated before. Let: {2 — R be as
in Proposition 2.2. Then

/Qu2 dr < 0{/ﬂ|vu|2dx+k/F[u]2da}. (2.14)

Here C' depends only of® and £ and not onk.

Proof - Arguing as in the proof of Proposition 2.2 and replacingith ¢ /% in
(2.12), we obtain

/qudx gfy/Q\uHVu]dw +7(5/k)1ﬁ[u}2da
(2.15)

A (8/k) / (™ 4 |2 dor

forad € (0,1) to be chosen presently. SettiGy = kY + z;, 1 = 1,..., kY,
and using the periodic structure @Qf together with standard trace inequalities, we
check that for eache N

/ (Jul™)? + |u©91%) do < 7/@/ (v® + k7% Vul?) dz, (2.16)
I'nQe; QNQ;

where nowy = (£, Y’) does not depend of);. Next we add (2.16) over all the
cells covering(), and use the resulting inequality in (2.15). Then, applying again
Cauchy-Schwartz inequality and selecting a small enauge may conclude fol-
lowing the same argument as in the proof of Proposition 2.2. O

REMARK 2.4 - If E¢is connected, one can prove an estimate similar to (2.14), but
with the factork formally replaced by:~! (in this spirit, see Lemma 6 of [7]).

We note also that, as a consequence of (2.14), the Lipschitz corstan{@.3) is
independent of the scaling



2.4 Energy estimates

On multiplying (1.1), (1.2) by: and integrating formally by parts, using also (1.3)—
(1.5), (2.2) and Proposition 2.2 or Corollary 2.3, we obtain(fer ¢t < T,

/Ot/QJIVuPdde +t%L[u]2(x,t) da+/0t/r[u]f([u])dod7
:%/FSQ(:C)dJ+/O /Qg(:c,t,u)udxdT
g%/FSQ(az)da—i-L/Ot/ﬂvfdxdT—i-/Ot/ﬂg(x,t,O)uda:dT

< %/FSQ(x)dHLC/Ot/Q|vuy2dxd7+Lc/ot/F[uP(:c,t)dadT

¢ t t
200 [ ] paodr s [ [1vapdedr+o [ [P,
0 Q 0 Q 0 r

whence, by Gronwall’s inequality, (2.3) and using the linear growtl, af follows

/Ot/Q’WIdedH/F[uP(x,t)dgS
7(/F52(x)da+/Ot/ggz(x,t,o)dxdT) <,

wherey depends of, T', L, o, a, ||S|| 2¢r) ||9(, -, 0)|| o= (2 (0,)) @nd the Poincar
constant’. This energy estimate will be instrumental in the following.

(2.17)

3 Existence and uniqueness of weak solutions

Given a spac& (€2) of real functions defined ovét, we denote byX,(€2) the sub-
space ofX (2) comprised of those functions which have zero trace on the boundary
0%). Then we set

X, () = {u = (u1,u2) | wy = uj, = u"Ql , Ug = U, = uﬁb,
with v’ u" € X,(Q)},

[ullx,@) = [luallx @) + lluallx@y) -

Let us firstly consider the linear case; igz, ¢, s) = P(x,t) independentof € R
andf(s) = (s, with 5 € R. We also assume more general conditions in (1.3) and



(1.4):

—oAu = P(t) , in Qq, Qs (31)
oVu-v] =Q(t), onrl (3.2)
a%[u] + B[u] = 0o Vu - v+ h(t), onrl (3.3)
[u](x,0) =S, onl", (3.4)
u(z,t) =0, onof. (3.5)

Here P € L*(Q x (0,7)), Q@ € L*(0,T;L*(I")), h € L*(0,T;L*(I')) andS €
Hol/Z(F, ). The constant € R equals/f’(0) in many interesting applications (see
[1] and [2]).

In order to state the existence of a solution of this problem, we first consider its
stationary formulation, given by

—0cAu =P, in Qq, Qo (3.6)
[oVu-v] =@, onrl (3.7)
[u] =S, onrl (3.8)
u=20, ono; (3.9)

whereP € L%(Q), Q € L*(I'), andS € H,'*(I', Q). The rigorous weak formula-
tion of (3.6)—(3.9) is

/0Vu-Vg0dx+/Qcpda=/Pcpdx, (3.10)
Q r Q

forall p € H}(Q), with u € H.(Q2), such thafu] = S in the sense of traces dn

Lemma 3.1 Let S, P, Q be as above. Thef3.6)+3.9) (i.e., (3.8), (3.10), has a
unique solution: € H1(Q), satisfying

lullray < V(IS + 1P 2 + 1Q2cr) - (3.11)
Proof - Let us begin with the auxiliary problems

—UlAulzp in Ql; u1:O OnF, u1:O OI’I@Q,

3.12
_UQAUQZP in Qs, upy =S5 onl, ug =0 on of). ( )

Existence and uniqueness of the solutions to these Dirichlet problems are classical
and we have that = (uy,us) € H.(Q2). Note thafu] = S. Moreover

lallra @y < YISz + 1P l2@) - (3.13)
Then we seek in the form

u=w-+1u, wherewe HX(Q).
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More exactly, the problem far is

/an-Vgodx——/UV@-V@d$+/P<pdx—/Qgpda, (3.14)
Q Q Q r

for all p € H!(Q2). The right hand side of this equation defines a continuous lin-
ear operator inf}(Q), whose norm is bounded exactly by the right hand side of
(3.11), as a consequence of (3.13). The left hand side defines a continuous bilinear
form, which is easily seen to be coercive in the spag¢). Thus, an applica-

tion of Lax-Milgram theorem yields existence and uniqueness of a solutias
above, and therefore existencexofNow (3.11) follows from (3.13) and from stan-

dard continuous dependencewbn the data in (3.14). Uniqueness of solutions to
(3.10) is immediate. O

Next let us come back to the evolution problem (3.1)—(3.5). Rigorously, the
problem can be formulated as: find a functione L?(0,T;H.(Q)), such that
[u] € C(0,T; L*(I)), satisfying (3.4) and

/OT/QaVu.VgdedtJr/OT/Fgo(int)ngdt—a/OT/F[u]%[go]dadt
+5/0T/F[u][30]dadt—/OT/F[go]hdadt—/OT/QPgodxdt, (3.15)

forall p € L?(0,T;H(Q2)) such thaly] € H'(0,T; L*(I")), andp = 0 att = 0,
t="T.

Define, for almost every € (0,7, w(t) € H!(Q) as the solution to (3.6)—(3.9)
with P = P(t), Q = Q(t), S = 0. Thenu = v + w, wherev solves in the sense
above

—oAv = 0, in Ql, QQ, (316)
[oVv-v]| =0, onrl (3.17)
a%[v] + B[] = 0 Vo . v 4 (1), onrl; (3.18)
[v](z,0) =S, onIl’ (3.19)
v(x,t) =0, ono%; (3.20)
with
q(t) = h(t) + o2 Vw () - v, 0<t<T. (3.21)

Clearly,q € L*(0,T; H-Y/*(I',Q?)), where H~'/2(I",)) denotes the topological
dual space off)/*(I’, Q). Indeed, for a.et € (0, T) and everyr € Hy/*(I',2), we
have

(a(t). ) = / Wt do — ({osh(t), 7)) — / o Vu(t)VF dr

Qo

9



where7 is an extension td7;(Q) of r, such thatl|7|| ;1) < 7I|7[lz1/2(r), and

(-,-) and((-,-)) denote the duality pairing betweeh~'/2(I",Q2), Hy/*(I",) and
H-YQ), H(Q), respectively.

Theorem 3.2 For any giveng € L?(0,T; H~/2(I',Q)), problem(3.16)+3.20)ad-
mits a unique solutiom € L?(0,T; H!(Q)) with [v] € C(0,T; L*(I'")). Therefore,
problem(3.1)+3.5) admits a unique solution.

Proof - The proof follows from an application of abstract parabolic theory, as
summarized for example in [10], chapter 23. We consider the three Hilbert spaces

HY*(I',Q) c L2(I') ¢ H-Y(I',Q), and a bilinear form on the first one
a(p,r) = / oVV,) - VV,dz, p,r € HYX(IQ), (3.22)
Q

whereV/,, is the solution to (3.6)—(3.9) witl® = 0, Q@ = 0, S = r, for each

re Hj/Q(F, Q). Clearlya is bilinear, symmetric and continuous (owing to estimate
(3.11)). Moreover we have the coercivity estimate

a(r,r)+/r2da :/JIVV(T)Fda:—F/erJ
r 0 r

> WV lry Z Y7l »

(3.23)

where we have made use, in this order, of Poi@sanequality (Proposition 2.2),
and of classical trace inequalities. Thus there exists a unique solution, which we
denote asv|, to

[v] € L2(0,T; Hy* (I, ) N C(0,T; L(T)), [0)(0) = 5,

a% F[U](t)r do + a([v](t),r) = (q(t),r), forallr € HY*(I,Q),

in the sense of distributions (Theorem 23.A [10]). A standard density argument
proves that = V{;,)) is the sought after solution.

Uniqueness of solutions of (3.1)—(3.5) follows from the observation that the dif-
ference of two solutions solves (3.1)—(3.5) with zero dat&), h, S. 0J

REMARK 3.3 - Assume2 = Y, then Theorem 3.2 holds also if we replace the
boundary condition (3.5) with the requirement that 2?(0,7; H.(Y)), where

H>1< (Y) - {u ’ Uy = U, = u‘,Ql y U 1= UjQy = uigb )
with u’ u” € H;er(y> ;/YU = 0}7
and

H' (Y)={ue H. (RY) : uisY-periodic .

per
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Clearly, in this case, we must assume that the dat, h, S of the problem are
Y -periodic with respect to the variable, that the compatibility condition

AP%:ﬁQw (3.24)

is satisfied and that in (3.23) it is used Po&ainequality in the version of [8].

Next we extend previous results to the nonlinear problem relevant to us. Let us
begin with

—oAu = g(t,u), in Qq, Q; (3.25)
[oVu-v] =Q(t), onrl (3.26)
a%h}hﬂM)—@VMMWu+h@, onr: (3.27)
[u](x,0) =95, onrl (3.28)

u(z,t) =0, on of2. (3.29)

Theorem 3.4 Assume thay satisfieq2.2), with L as in(2.3), and thatf satisfies
(2.1). Moreover let us stipulate thap, » € L*(0,7; L*(I")). Then there exists a
unique solution of probler(8.25)+3.29)

Proof - Consider the Banach spade= L?(0,71; H!(2)) , endowed with the
natural norm

1/2

T
Jull 20,113 (2)) = (/0 H“(t)”%},(mdt) :

whereT; will be choosen later. Let us introduce an operatbacting onX by
means ofH (u) = w, wherew is the solution of

—oAw = g(t,u), in Qq, Q; (3.30)

[oVw - v] = Q(t), onrl (3.31)
a%w¢+ﬂmpzﬁvwwru+mw, onr: (3.32)
[w](x,0) =S, onrl’ (3.33)

w(z,t) =0, onof. (3.34)

Clearly, the operataof is well defined; moreover, multiplying previous equation
by w and integrating by parts, we obtain thé{X ) C X.

Givenui,u; € X and the corresponding solutions = H(u;) andw, =
H(us), subtracting from each other the two formulations of (3.30)—(3.34) written
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for u; andu, respectively, multiplying against; — w, and integrating by parts, we
obtain

IV (wy — wy)|* de dt +/[w1 —wy)?(t) do

Q_ r

< | lotun) = gla)] = el do

- t 1)) = 1) s = ) o dt]

< e [ o= sl = sl draer [ [ =l o~ el dor
< m —é/ luy — ug|? dxdt+% IV (wy — wy)|* do dt

rT
+ / /ul—u2 do dt + = //wl—wg dadt}
(3.35)

where~; depends only om, «, || f'||-- Taking into account (2.3), the second term
in the last inequality can be absorbed into the left hand side, while the fourth term
will be treated using Gronwall's Lemma. If we set

F(t) - /F w1 — wol2(t) do

L n
G(Ty) =m —/ luy — ug|? do dt—|—5/ /[ul—u2]2 do dt
2 Qry 0 r

by (3.35), it follows

t
) <G+ % [ Feyar
0
which implies
T 7
/ F(r)dr < G(Ty)Tie"s .
0

Inserting this estimate in (3.35) and using Proposition 2.2, we obtain

T )
| nlt) = ety it <0 [1+ T+ T
0

L
—/ |uy — ug|? da dt—|—§/ |V (up — ug)|? d dt |
2 Oy Qry

where now~y, depends also on the Poincare’s constant and the trace embedding.

Taking into account that, by (2.3), we may assume that min <cln m>

12



and choosing

1 J
§< —— d  Ty=min(1,5<
~ 2(142¢)7s o Lo ( ’Yl)

it follows

T T
1 1 1
| 1) = a0y @t < 5 [ it = w0l

which implies thatH is a contraction. So, it admits a unique fixed point, i.e., a
solution of problem (3.25)—(3.29) exists . Noting that the width/; of the time
interval is independent of the iteration step, we may conclude the proof by iterating
this argument ove(0, 7). O

REMARK 3.5 - As already pointed out in Remark 3.3, existence and uniqueness
of solutions to (3.25)—(3.28) in the periodic case with null mean average can be
proven by means of methods analogous to the ones employed above in Theorem
3.4. We omit the details. Moreover, we note that, if the assumption of null mean
average is not required, then uniqueness of the solution does not hold. However,
it can be easily proved that, for any two periodic solutians u, of (3.25)—(3.28)

with ¢ = 0, there exists a functiop € L?(0,7T), depending only or such that
ui(z,t) — us(x,t) = P(t) for ae.t € (0,7). Clearly,y(t) = 37 [, wa(z,t) —
ug(z,t) de.
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