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1. Introduction

In the theory of Dynamic Fracture, the deformation of an elastic material evolves according to the elasto-
dynamics system, while the evolution of the crack follows Griffith’s dynamic criterion, see [13]. This principle,
originally formulated in [11] for the quasi–static setting, states that there is an exact balance between the
energy released during the evolution and the energy used to increase the crack, which is postulated to be
proportional to the area increment of the crack itself.

For an antiplane displacement, the elastodynamics system leads to the following wave equation

ü(t, x)−∆u(t, x) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (1.1)

with some prescribed boundary and initial conditions. Here, Ω ⊂ Rd is an open bounded set with Lipschitz
boundary, which represents the cross–section of the material, the closed set Γt ⊂ Ω models the crack at time
t in the reference configuration, u(t) : Ω \ Γt → R is the antiplane displacement, and f is a forcing term. In
this case, Griffith’s dynamic criterion reads

E(t) +Hd−1(Γt \ Γ0) = E(0) + work of external forces,

where E(t) is the total energy at time t, given by the sum of kinetic and elastic energy, and Hd−1 is the
(d− 1)–dimensional Hausdorff measure.

From the mathematical point of view, a first step to study the evolution of the fracture is to solve the
wave equation (1.1) when the evolution of the crack is assigned, see for example [14, 3, 7, 2, 18] (we refer also
to [10, 6, 16] for the case of a 1–dimensional model). When we want to take into account the viscoelastic
properties of the material, Kelvin–Voigt’s model is the most common one. If no crack is present, this leads
to the damped wave equation

ü(t, x)−∆u(t, x)−∆u̇(t, x) = f(t, x) (t, x) ∈ (0, T )× Ω. (1.2)

As it is well known, the solutions to (1.2) satisfy the energy–dissipation balance

E(t) +

∫ t

0

∫
Ω

|∇u̇|2 dxds = E(0) + work of external forces. (1.3)

When we consider a crack in a viscoelastic material, Griffith’s dynamic criterion becomes

E(t) +Hd−1(Γt \ Γ0) +

∫ t

0

∫
Ω

|∇u̇|2 dxds = E(0) + work of external forces. (1.4)

For a prescribed crack evolution, this model was already considered by [3] in the antiplane case, and more
in general by [18] for the vector–valued case. As proved in the quoted papers, the solutions to (1.2) on a
domain with a prescribed time–dependent crack, i.e., with Ω replaced by Ω \Γt, satisfy (1.3) for every time.
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This equality implies that (1.4) cannot be satisfied unless Γt = Γ0 for every t. This phenomenon was already
well known in mechanics as the viscoelastic paradox, see for instance [17, Chapter 7].

To overcome this problem, we modify Kelvin–Voigt’s model by considering a possibly degenerate viscosity
term depending on t and x. More precisely, we study the following equation

ü(t, x)−∆u(t, x)− div(Ψ2(t, x)∇u̇(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt. (1.5)

On the function Ψ: (0, T ) × Ω → R we only require some regularity assumptions (see (2.7)); a particularly
interesting case is when Ψ assumes the value zero on some points of Ω, which means that the material has
no longer viscoelastic properties in such a zone.

The main result of this paper is Theorem 3.1, in which we show the existence of a weak solution to (1.5).
This is done in the more general case of linear elasticity, that is when the displacement is vector–valued and
the elastic energy depends only on the symmetric part of its gradient. To this aim, we first perform a time
discretization in the same spirit of [3], and then we pass to the limit as the time step goes to zero by relying
on energy estimates; as a byproduct, we obtain the energy–dissipation inequality (4.4). By using the change
of variables method implemented in [14, 7], we also prove a uniqueness result, but only in dimension d = 2
and when Ψ(t) vanishes on a neighborhood of the tip of Γt.

We complete our work by providing an example in d = 2 of a weak solution to (1.5) for which the fracture
can grow while balancing the energy. More precisely, when the cracks Γt move with constant speed along
the x1–axis and Ψ(t) is zero in a neighborhood of the crack tip, we construct a function u which solves (1.5)
and satisfies

E(t) +

∫ t

0

∫
Ω

|Ψ∇u̇|2 dx ds+H1(Γt \ Γ0) = E(0) + work of external forces. (1.6)

Notice that this is the natural extension of Griffith’s dynamic criterion (1.4) to this setting.
The paper is organized as follows. In Section 2 we fix the notation adopted throughout the paper, we

list the standard assumptions on the family of cracks {Γt}t∈[0,T ] and on the function Ψ, and we specify the
notion of weak solution to problem (1.5). In Section 3 we state our main existence result (Theorem 3.1),
and we implement the time discretization method. We conclude the proof of Theorem 3.1 in Section 4,
where we show the validity of the initial conditions and the energy–dissipation inequality (4.4). Section 5
deals with uniqueness: under stronger regularity assumptions on the cracks sets, in Theorem 5.5 we prove
the uniqueness of a weak solution, but only when the space dimension is d = 2. To this aim, we assume
also that the function Ψ is zero in a neighborhood of the crack tip. We conclude with Section 6, where in
dimension d = 2 we show an example of a moving crack that satisfies Griffith’s dynamic energy–dissipation
balance (1.6).

2. Notation and Preliminary Results

The space of m × d matrices with real entries is denoted by Rm×d; in case m = d, the subspace of
symmetric matrices is denoted by Rd×dsym. Given two vectors v1, v2 ∈ Rd, their Euclidean scalar product is

denoted by v1 · v2 ∈ R and their tensor product is denoted by v1 ⊗ v2 ∈ Rd×d; we use v1 � v2 ∈ Rd×dsym to

denote the symmetric part of v1 ⊗ v2, namely v1 � v2 := 1
2 (v1 ⊗ v2 + v2 ⊗ v1). Given A ∈ Rm×d, we use

AT to denote its transpose; we use A1 · A2 ∈ R to denote the Euclidean scalar product of two matrices
A1, A2 ∈ Rd×d.

The partial derivatives with respect to the variable xi are denoted by ∂i. Given a function f : Rd → Rm,
we denote its Jacobian matrix by ∇f , whose components are (∇f)ij := ∂jfi, i = 1, . . . ,m, j = 1, . . . , d.
For a tensor field F : Rd → Rm×d, by divF we mean the divergence of F with respect to rows, namely
(divF )i :=

∑d
j=1 ∂jFij , for i = 1, . . . ,m.

The d–dimensional Lebesgue measure is denoted by Ld and the (d − 1)–dimensional Hausdorff measure
by Hd−1. We adopted standard notations for Lebesgue and Sobolev spaces on open subsets of Rd; given an
open set Ω ⊆ Rd we use ‖·‖∞ to denote the norm of L∞(Ω;Rm). The boundary values of a Sobolev function
are always intended in the sense of traces. Given a bounded open set Ω with Lipschitz boundary, we denote
by ν the outer unit normal vector to ∂Ω, which is defined Hd−1–a.e. on the boundary.

Given a Banach space X, its norm is denoted by ‖ · ‖X ; if X is an Hilbert space, we use (·, ·)X to denote
its scalar product. The dual space of X is denoted by X ′, and we use 〈·, ·〉X′ to denote the duality product
between X ′ and X. Given two Banach spaces X1 and X2, the space of linear and continuous maps from X1



A DYNAMIC MODEL FOR VISCOELASTIC MATERIALS WITH PRESCRIBED GROWING CRACKS 3

to X2 is denoted by L (X1;X2); given A ∈ L (X1;X2) and u ∈ X1, we write Au ∈ X2 to denote the image
of u under A.

Given an open interval (a, b) ⊆ R, Lp(a, b;X) is the space of Lp functions from (a, b) to X. Given
u ∈ Lp(a, b;X), we denote by u̇ ∈ D′(a, b;X) its distributional derivative. The set of continuous functions
from [a, b] to X is denoted by C0([a, b];X). Given a reflexive Banach space X, C0

w([a, b];X) is the set of
weakly continuous functions from [a, b] to X, namely

C0
w([a, b];X) := {u : [a, b]→ X : t 7→ 〈x′, u(t)〉X′ is continuous from [a, b] to R for every x′ ∈ X ′}.

Let T be a positive real number and let Ω ⊂ Rd be a bounded open set with Lipschitz boundary. Let
∂DΩ be a (possibly empty) Borel subset of ∂Ω and let ∂NΩ be its complement. We assume the following
hypotheses on the geometry of the cracks:

(E1) Γ ⊂ Ω is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;
(E2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ is the union

of two disjoint open sets U+ and U− with Lipschitz boundary;
(E3) {Γt}t∈[0,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for every 0 ≤ s ≤ t ≤ T .

Thanks (E1)–(E3) the space L2(Ω \ Γt;Rm) coincides with L2(Ω;Rm) for every t ∈ [0, T ] and m ∈ N. In
particular, we can extend a function u ∈ L2(Ω \ Γt;Rm) to a function in L2(Ω;Rm) by setting u = 0 on
Γt. Moreover, the trace of u ∈ H1(Ω \ Γ) is well defined on ∂Ω. Indeed, we may find a finite number of
open sets with Lipschitz boundary Uj ⊂ Ω \ Γ, j = 1, . . .m, such that ∂Ω \ (Γ ∩ ∂Ω) ⊂ ∪mj=1∂Uj . Since

Hd−1(Γ ∩ ∂Ω) = 0, there exists a constant C > 0, depending only on Ω and Γ, such that

‖u‖L2(∂Ω) ≤ C‖u‖H1(Ω\Γ) for every u ∈ H1(Ω \ Γ;Rd). (2.1)

Similarly, we can find a finite number of open sets Uj ⊂ Ω \ Γ, j = 1, . . .m, with Lipschitz boundary, such
that Ω \Γ = ∪mj=1Uj . By using second Korn’s inequality in each Uj (see, e.g., [15, Theorem 2.4]) and taking
the sum over j we can find a constant CK , depending only on Ω and Γ, such that

‖∇u‖2L2(Ω;Rd×d) ≤ CK
(
‖u‖2L2(Ω;Rd) + ‖Eu‖2

L2(Ω;Rd×dsym)

)
for every u ∈ H1(Ω \ Γ;Rd), (2.2)

where Eu is the symmetric part of ∇u, i.e., Eu := 1
2 (∇u+∇uT ).

For every t ∈ [0, T ] we define

Vt := {u ∈ L2(Ω \ Γt;Rd) : Eu ∈ L2(Ω \ Γt;Rd×dsym)}.

Notice that in the definition of Vt we are considering only the distributional gradient of u in Ω \ Γt and not
the one in Ω. The set Vt is a Hilbert space with respect to the following norm

‖u‖Vt := (‖u‖2H + ‖Eu‖2H)
1
2 for every u ∈ Vt.

To simplify our exposition, for every m ∈ N we set H := L2(Ω;Rm) and HN := L2(∂NΩ;Rm); we always
identify the dual of H by H itself and L2(0, T ;L2(Ω;Rm)) by L2((0, T )× Ω;Rm).

Thanks to (2.2), the space Vt coincides with the usual Sobolev space H1(Ω \ Γt;Rd). Therefore, by (2.1),
it makes sense to consider for every t ∈ [0, T ] the set

V Dt := {u ∈ Vt : u = 0 on ∂DΩ},

which is a Hilbert space with respect to ‖·‖Vt . Moreover, by combining (2.2) with (2.1), we derive also the
existence of a constant Ctr > 0 such that

‖u‖HN ≤ Ctr‖u‖VT for every u ∈ VT . (2.3)

Let C,B : Ω→ L (Rd×dsym;Rd×dsym) be two fourth-order tensors satisfying:

Cijhk,Bijhk ∈ L∞(Ω) for every i, j, h, k = 1, . . . , d, (2.4)

C(x)η1 · η2 = η1 · C(x)η2, B(x)η1 · η2 = η1 · B(x)η2 for a.e. x ∈ Ω and for every η1, η2 ∈ Rd×dsym, (2.5)

C(x)η · η ≥ λ1|η|2, B(x)η · η ≥ λ2|η|2 for a.e. x ∈ Ω and for every η ∈ Rd×dsym, (2.6)

for two positive constants λ1, λ2 independent of x. Consider a function Ψ: (0, T )× Ω→ R satisfying

Ψ ∈ L∞((0, T )× Ω), ∇Ψ ∈ L∞((0, T )× Ω;Rd). (2.7)
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Given f ∈ L2(0, T ;H), w ∈ H2(0, T ;H) ∩ H1(0, T ;V0), g ∈ H1(0, T ;HN ), u0 ∈ V0 with u0 − w(0) ∈ V D0 ,
and u1 ∈ H, we want to find a solution to the viscoelastic dynamic system

ü(t)− div(CEu(t))− div(Ψ2(t)BEu̇(t)) = f(t) in Ω \ Γt, t ∈ (0, T ), (2.8)

satisfying the following boundary and initial conditions

u(t) = w(t) on ∂DΩ, t ∈ (0, T ), (2.9)

(CEu(t) + Ψ2(t)BEu̇(t))ν = g(t) on ∂NΩ, t ∈ (0, T ), (2.10)

(CEu(t) + Ψ2(t)BEu̇(t))ν = 0 on Γt, t ∈ (0, T ), (2.11)

u(0) = u0, u̇(0) = u1. (2.12)

As usual, the Neumann boundary conditions are only formal, and their meaning will be specified in Defini-
tion 2.4.

Throughout the paper we always assume that the family {Γt}t∈[0,T ] satisfies (E1)–(E3), as well as C, B,

Ψ, f , w, g, u0, and u1 the previous hypotheses. Let us define the following functional spaces:

V := {ϕ ∈ L2(0, T ;VT ) : ϕ̇ ∈ L2(0, T ;H), ϕ(t) ∈ Vt for a.e. t ∈ (0, T )},
VD := {ϕ ∈ V : ϕ(t) ∈ V Dt for a.e. t ∈ (0, T )},
W := {u ∈ V : Ψu̇ ∈ L2(0, T ;VT ), Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T )}.

Remark 2.1. In the classical viscoelastic case, namely when Ψ is identically equal to 1, the solution u to
system (2.8) has derivative u̇(t) ∈ Vt for a.e. t ∈ (0, T ) with Eu̇ ∈ L2(0, T ;H). For a generic Ψ we expect to
have ΨEu̇ ∈ L2(0, T ;H). Therefore W is the natural setting where looking for a solution to (2.8). Indeed,
from a distributional point of view we have

Ψ(t)Eu̇(t) = E(Ψ(t)u̇(t))−∇Ψ(t)� u̇(t) in D′(Ω \ Γt;Rd×dsym) for a.e. t ∈ (0, T ),

and E(Ψu̇),∇Ψ� u̇ ∈ L2(0, T ;H) if u ∈ W, thanks to (2.7).

Remark 2.2. The set W coincides with the space of functions u ∈ H1(0, T ;H) such that u(t) ∈ Vt and
Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ), and satisfying∫ T

0

‖u(t)‖2Vt + ‖Ψ(t)u̇(t)‖2Vt dt <∞. (2.13)

This is a consequence of the strong measurability of the maps t 7→ u(t) and t 7→ Ψ(t)u̇(t) from (0, T ) into
VT , which gives that (2.13) is well defined and u,Ψu̇ ∈ L2(0, T ;VT ). To prove the strong measurability of
these two maps, it is enough to observe that VT is a separable Hilbert space and that the maps t 7→ u̇(t) and
t 7→ Ψ(t)u̇(t) from (0, T ) into VT are weakly measurable. Indeed, for every ϕ ∈ C∞c (Ω \ ΓT ) the maps

t 7→
∫

Ω\ΓT
Eu(t, x)ϕ(x) dx = −

∫
Ω\ΓT

u(t, x)�∇ϕ(x) dx,

t 7→
∫

Ω\ΓT
E(Ψ(t, x)u̇(t, x))ϕ(x) dx = −

∫
Ω\ΓT

Ψ(t, x)u̇(t, x)�∇ϕ(x) dx

are measurable from (0, T ) into R, and C∞c (Ω \ ΓT ) is dense in L2(Ω).

Lemma 2.3. The spaces V and W are Hilbert spaces with respect to the following norms:

‖ϕ‖V := (‖ϕ‖2L2(0,T ;VT ) + ‖ϕ̇‖2L2(0,T ;H))
1
2 for every ϕ ∈ V,

‖u‖2W := (‖u‖V + ‖Ψu̇‖2L2(0,T ;VT ))
1
2 for every u ∈ W.

Moreover, VD is a closed subspace of V.

Proof. It is clear that ‖·‖V and ‖·‖W are norms on V and W induced by scalar products. We just have to
check the completeness of such spaces with respect to these norms.

Let {ϕk}k ⊂ V be a Cauchy sequence. Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences, respectively, in
L2(0, T ;VT ) and L2(0, T ;H), which are complete Hilbert spaces. Thus there exists ϕ ∈ L2(0, T ;VT ) with
ϕ̇ ∈ L2(0, T ;H) such that ϕk → ϕ in L2(0, T ;VT ) and ϕ̇k → ϕ̇ in L2(0, T ;H). In particular there exists a
subsequence {ϕkj}j such that ϕkj (t)→ ϕ(t) in VT for a.e. t ∈ (0, T ). Since ϕkj (t) ∈ Vt for a.e. t ∈ (0, T ) we
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deduce that ϕ(t) ∈ Vt for a.e. t ∈ (0, T ). Hence ϕ ∈ V and ϕk → ϕ in V. With a similar argument, we can
prove that VD ⊂ V is a closed subspace.

Let us now consider a Cauchy sequence {uk}k ⊂ W. We have that {uk}k and {Ψu̇k}k are Cauchy
sequences, respectively, in V and L2(0, T ;VT ), which are complete Hilbert spaces. Thus there exist two
functions u ∈ V and z ∈ L2(0, T ;VT ) such that uk → u in V and Ψu̇k → z in L2(0, T ;VT ). Since u̇k → u̇ in
L2(0, T ;H) and Ψ ∈ L∞((0, T )×Ω), we also have that Ψu̇k → Ψu̇ in L2(0, T ;H), which gives that z = Ψu̇.
Finally let us prove that Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ). By the fact that Ψu̇k → Ψu̇ in L2(0, T ;VT ), there
exists a subsequence {Ψu̇kj}j such that Ψ(t)u̇kj (t)→ Ψ(t)u̇(t) in VT for a.e. t ∈ (0, T ). Since Ψ(t)u̇kj (t) ∈ Vt
for a.e. t ∈ (0, T ) we deduce that Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ). Hence u ∈ W and uk → u in W. �

We are now in position to define a weak solution to (2.8)–(2.11).

Definition 2.4 (Weak solution). We say that u ∈ W is a weak solution to system (2.8) with boundary
conditions (2.9)–(2.11) if u− w ∈ VD and

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(CEu(t), Eϕ(t))H dt+

∫ T

0

(BE(Ψ(t)u̇(t)),Ψ(t)Eϕ(t))H dt

−
∫ T

0

(B∇Ψ(t)� u̇(t),Ψ(t)Eϕ(t))H dt =

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(g(t), ϕ(t))HN dt

(2.14)

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Notice that the Neumann boundary conditions (2.10) and (2.11) can be obtained from (2.14), by using
integration by parts in space, only when u(t) and Γt are sufficiently regular.

Remark 2.5. If u̇ is regular enough (for example u̇ ∈ L2(0, T ;VT ) with u̇(t) ∈ Vt for a.e. t ∈ (0, T )), then we
have ΨEu̇ = E(Ψu̇)−∇Ψ� u̇. Therefore (2.14) is coherent with the strong formulation (2.8). In particular,
for a function u ∈ W we can define

ΨEu̇ := E(Ψu̇)−∇Ψ� u̇ ∈ L2(0, T ;H), (2.15)

so that equation (2.14) can be rephrased as

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(CEu(t), Eϕ(t))H dt+

∫ T

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt

=

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(g(t), ϕ(t))HN dt

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Definition 2.6 (Initial conditions). We say that u ∈ W satisfies the initial conditions (2.12) if

lim
h→0+

1

h

∫ h

0

(‖u(t)− u0‖2Vt + ‖u̇(t)− u1‖2H) dt = 0. (2.16)

3. Existence

We now state our main existence result, whose proof will be given at the end of Section 4.

Theorem 3.1. There exists a weak solution u ∈ W to (2.8)–(2.11) satisfying the initial conditions u(0) = u0

and u̇(0) = u1 in the sense of (2.16). Moreover u ∈ Cw([0, T ];VT ), u̇ ∈ Cw([0, T ];H)∩H1(0, T ; (V D0 )′), and

lim
t→0+

u(t) = u0 in VT , lim
t→0+

u̇(t) = u1 in H.

To prove the existence of a weak solution to (2.8)–(2.11), we use a time discretization scheme in the same
spirit of [3]. Let us fix n ∈ N and set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1.

We define

V kn := V Dkτn , gkn := g(kτn), wkn := w(kτn) for k = 0, . . . , n,
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fkn :=
1

τn

∫ kτn

(k−1)τn

f(s) ds, Ψk
n :=

1

τn

∫ kτn

(k−1)τn

Ψ(s) ds, δgkn :=
gkn − gk−1

n

τn
for k = 1, . . . , n,

δw0
n := ẇ(0), δwkn :=

wkn − wk−1
n

τn
, δ2wkn :=

δwkn − δwk−1
n

τn
for k = 1, . . . , n.

For every k = 1, . . . , n let ukn ∈ VT , with ukn − wkn ∈ V kn , be the solution to

(δ2ukn, v)H + (CEukn, Ev)H + (BΨk
nEδu

k
n,Ψ

k
nEv)H = (fkn , v)H + (gkn, v)HN for every v ∈ V kn , (3.1)

where

δukn :=
ukn − uk−1

n

τn
for k = 0, . . . , n, δ2ukn :=

δukn − δuk−1
n

τn
for k = 1, . . . , n.

The existence of a unique solution ukn to (3.1) is an easy application of Lax–Milgram’s theorem.

Remark 3.2. Since δukn ∈ V(k−1)τn , then Ψk
nEδu

k
n = E(Ψk

nu
k
n)−∇Ψk

n�ukn, so that the discrete equation (3.1)
is coherent with the weak formulation given in (2.14).

In the next lemma, we show a uniform estimate for the family {ukn}nk=1 with respect to n ∈ N that will
be used later to pass to the limit in the discrete equation (3.1).

Lemma 3.3. There exists a constant C > 0, independent of n ∈ N, such that

max
i=1,..,n

‖δuin‖H + max
i=1,..,n

‖Euin‖H +
n∑
i=1

τn‖Ψi
nEδu

i
n‖2H ≤ C. (3.2)

Proof. We fix n ∈ N. To simplify the notation we set

a(u, v) := (CEu,Ev)H , bkn(u, v) := (BΨk
nEu,Ψ

k
nEv)H for every u, v ∈ VT .

By taking as test function v = τn(δukn − δwkn) ∈ V kn in (3.1), for k = 1, . . . , n we obtain

‖δukn‖2H − (δuk−1
n , δukn)H + a(ukn, u

k
n)− a(ukn, u

k−1
n ) + τnb

k
n(δukn, δu

k
n) = τnL

k
n,

where

Lkn := (fkn , δu
k
n − δwkn)H + (gkn, δu

k
n − δwkn)HN + (δ2ukn, δw

k
n)H + a(ukn, δw

k
n) + bkn(δukn, δw

k
n).

Thanks to the following identities

‖δukn‖2H − (δuk−1
n , δukn)H =

1

2
‖δukn‖2H −

1

2
‖δuk−1

n ‖2H +
τ2
n

2
‖δ2ukn‖2H ,

a(ukn, u
k
n)− a(ukn, u

k−1
n ) =

1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) +

τ2
n

2
a(δukn, δu

k
n),

and by omitting the terms with τ2
n, which are non negative, we derive

1

2
‖δukn‖2H −

1

2
‖δuk−1

n ‖2H +
1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) + τnb

k
n(δukn, δu

k
n) ≤ τnLkn.

We fix i ∈ {1, . . . , n} and sum over k = 1, . . . , i to obtain the following discrete energy inequality

1

2
‖δuin‖2H +

1

2
a(uin, u

i
n) +

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ E0 +

i∑
k=1

τnL
k
n, (3.3)

where E0 := 1
2‖u

1‖2H + 1
2 (CEu0, Eu0)H . Let us now estimate the right–hand side in (3.3) from above.

By (2.3) and (2.4) we have∣∣∣∣∣ i∑
k=1

τn(fkn , δu
k
n − δwkn)H

∣∣∣∣∣ ≤ ‖f‖2L2(0,T ;H) +
1

2
‖ẇ‖2L2(0,T ;H) +

1

2

i∑
k=1

τn‖δukn‖2H , (3.4)∣∣∣∣∣ i∑
k=1

τna(ukn, δw
k
n)

∣∣∣∣∣ ≤ ‖C‖∞2
‖ẇ‖2L2(0,T ;V0) +

‖C‖∞
2

i∑
k=1

τn‖Eukn‖2H , (3.5)∣∣∣∣∣ i∑
k=1

τn(gkn, δw
k
n)HN

∣∣∣∣∣ ≤ 1

2
‖g‖2L2(0,T ;HN ) +

C2
tr

2
‖ẇ‖2L2(0,T ;V0). (3.6)
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For the other term involving gkn, we perform the following discrete integration by parts

i∑
k=1

τn(gkn, δu
k
n)HN = (gin, u

i
n)HN − (g(0), u0)HN −

i∑
k=1

τn(δgkn, u
k−1
n )HN . (3.7)

Hence for every ε ∈ (0, 1), by using (2.3) and Young’s inequality, we get∣∣∣∣∣ i∑
k=1

τn(gkn, δu
k
n)HN

∣∣∣∣∣ ≤ ε

2
‖uin‖2HN +

1

2ε
‖g‖2L∞(0,T ;HN ) + ‖g(0)‖HN ‖u0‖HN +

i∑
k=1

τn‖δgkn‖HN ‖uk−1
n ‖2HN

≤ Cε +
εC2

tr

2
‖uin‖2VT +

C2
tr

2

i∑
k=1

τn‖ukn‖2VT ,

(3.8)

where Cε is a positive constant depending on ε. Thanks to Jensen’s inequality we can write

‖uln‖2VT ≤ ‖Eu
l
n‖2H +

(
‖u0‖H +

l∑
j=1

τn‖δujn‖H

)2

≤ ‖Euln‖2H + 2‖u0‖2H + 2T
l∑

j=1

τn‖δujn‖2H ,

so that (3.8) can be further estimated as∣∣∣∣∣ i∑
k=1

τn(gkn, δu
k
n)HN

∣∣∣∣∣ ≤ Cε +
εC2

tr

2

(
‖Euin‖2H + 2‖u0‖2H + 2T

i∑
j=1

τn‖δujn‖2H

)

+
C2
tr

2

i∑
k=1

τn

(
‖Eukn‖2H + 2‖u0‖2H + 2T

k∑
j=1

τn‖δujn‖2H

)

≤ C̃ε +
εC2

tr

2
‖Euin‖2H + C̃

i∑
k=1

τn
(
‖δukn‖2H + ‖Eukn‖2H

)
,

(3.9)

for some positive constants C̃ε and C̃, with C̃ε depending on ε. Similarly to (3.7), we can say

i∑
k=1

τn(δ2ukn, δw
k
n)H = (δuin, δw

i
n)H − (δu0

n, δw
0
n)H −

i∑
k=1

τn(δuk−1
n , δ2wkn)H , (3.10)

from which we deduce that for every ε > 0∣∣∣∣∣ i∑
k=1

τn(δ2ukn, δw
k
n)H

∣∣∣∣∣ ≤‖δuin‖H‖δwin‖H + ‖u1‖H‖ẇ(0)‖H +
i∑

k=1

τn‖δuk−1
n ‖H‖δ2wkn‖H

≤ 1

2ε
‖δwin‖2H +

ε

2
‖δuin‖2H + ‖u1‖H‖ẇ(0)‖H +

1

2

i∑
k=1

τn‖δuk−1
n ‖2H +

1

2

i∑
k=1

τn‖δ2wkn‖2H

≤C̄ε +
ε

2
‖δuin‖2H +

1

2

i∑
k=1

τn‖δukn‖2H , (3.11)

where C̄ε is a positive constant depending on ε. We estimate from above the last term in right-hand side
of (3.3) in the following way

i∑
k=1

τnb
k
n(δukn, δw

k
n) ≤

i∑
k=1

τn(bkn(δukn, δu
k
n))

1
2 (bkn(δwkn, δw

k
n))

1
2

≤ 1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) +

1

2
‖B‖∞‖Ψ‖2∞‖ẇ‖2L2(0,T ;V0).

(3.12)

By considering (3.3)–(3.12) and using (2.6) we obtainÅ
1− ε

2

ã
‖δuin‖2H +

λ1 − εC2
tr

2
‖Euin‖2H +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ Ĉε + Ĉ

i∑
k=1

τn
(
‖δukn‖2H + ‖Eukn‖2H

)
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for two positive constants Ĉε and Ĉ, with Ĉε depending on ε. We can now choose ε < 1
2 min

{
1, λ1

C2
tr

}
to

derive the following estimate

1

4
‖δuin‖2H +

1

4
‖Euin‖2H +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ C1 + C2

i∑
k=1

τn
(
‖δukn‖2H + ‖Eukn‖2H

)
, (3.13)

where C1 and C2 are two positive constants depending only on u0, u1, f , g, and w. Thanks to a discrete
version of Gronwall’s lemma (see, e.g., [1, Lemma 3.2.4]) we deduce the existence of a constant C3 > 0,
independent of i and n, such that

‖δuin‖H + ‖Euin‖H ≤ C3 for every i = 1, . . . , n and for every n ∈ N.

By combining this last estimate with (3.13) and (2.6) we finally get (3.2) and we conclude. �

We now want to pass to the limit into the discrete equation (3.1) to obtain a weak solution to (2.8)–(2.11).
We start by defining the following approximating sequences of our limit solution

un(t) := ukn + (t− kτn)δukn, ũn(t) := δukn + (t− kτn)δ2ukn t ∈ [(k − 1)τn, kτn], k = 1, . . . , n,

u+
n (t) := ukn, ũ+

n (t) := δukn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

u−n (t) := uk−1
n , ũ−n (t) := δuk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Notice that un ∈ H1(0, T ;H) with u̇n(t) = δukn = ũ+
n (t) for t ∈ ((k − 1)τn, kτn) and k = 1, . . . , n. Let us

approximate Ψ and w by

Ψ+
n (t) := Ψk

n, w+
n (t) := wkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

Ψ−n (t) := Ψk−1
n , w−n (t) := wk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Lemma 3.4. There exists a function u ∈ W, with u−w ∈ VD, such that, up to a not relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L2(0,T ;VT )−−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇, (3.14)

∇Ψ±n � ũ±n
L2(0,T ;H)−−−−−−−⇀
n→∞

∇Ψ� u̇, E(Ψ±n ũ
±
n )

L2(0,T ;H)−−−−−−−⇀
n→∞

E(Ψu̇). (3.15)

Proof. Thanks to Lemma 3.3 the sequences {un}n ⊂ H1(0, T ;H)∩L∞(0, T ;VT ), {u±n }n ⊂ L∞(0, T ;VT ), and
{ũ±n }n ⊂ L∞(0, T ;H) are uniformly bounded. By Banach-Alaoglu’s theorem there exist u ∈ H1(0, T ;H)
and v ∈ L2(0, T ;VT ) such that, up to a not relabeled subsequence

un
L2(0,T ;VT )−−−−−−−⇀
n→∞

u, u̇n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇, u+
n

L2(0,T ;VT )−−−−−−−⇀
n→∞

v.

Since there exists a constant C > 0 such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−−→

n→∞
0,

we can conclude that u = v. Moreover, given that u−n (t) = u+
n (t− τn) for t ∈ (τn, T ), ũ+

n (t) = u̇n(t) for a.e.
t ∈ (0, T ), and ũ−n (t) = ũ+

n (t− τn) for t ∈ (τn, T ), we deduce

u−n
L2(0,T ;VT )−−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇.

By (3.2) we derive that the sequences {E(Ψ+
n ũ

+
n )}n ⊂ L2(0, T ;H) and {∇Ψ+

n � ũ+
n }n ⊂ L2(0, T ;H) are

uniformly bounded. Indeed there exists a constant C > 0 independent of n such that

‖∇Ψ+
n � ũ+

n ‖2L2(0,T ;H) =
n∑
k=1

∫ kτn

(k−1)τn

‖∇Ψk
n � δukn‖2H dt ≤ ‖∇Ψ‖2∞

n∑
k=1

τn‖δukn‖2H ≤ C,

‖E(Ψ+
n ũ

+
n )‖2L2(0,T ;H) =

n∑
k=1

∫ kτn

(k−1)τn

‖E(Ψk
nδu

k
n)‖2H dt =

n∑
k=1

τn‖Ψk
nEδu

k
n +∇Ψk

n � δukn‖2H

≤ 2
n∑
k=1

τn‖Ψk
nEδu

k
n‖2H + 2

n∑
k=1

τn‖∇Ψk
n � δukn‖2H ≤ C.
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Therefore, there exists w1, w2 ∈ L2(0, T ;H) such that, up to a further not relabeled subsequence

∇Ψ+
n � ũ+

n

L2(0,T ;H)−−−−−−−⇀
n→∞

w1, E(Ψ+
n ũ

+
n )

L2(0,T ;H)−−−−−−−⇀
n→∞

w2.

We want to identify the limit functions w1 and w2. Consider ϕ ∈ L2(0, T ;H), then∫ T

0

(∇Ψ+
n � ũ+

n , ϕ)H dt =
1

2

∫ T

0

(ũ+
n , ϕ∇Ψ+

n )H dt+
1

2

∫ T

0

(ũ+
n , ϕ

T∇Ψ+
n )H dt =

∫ T

0

(ũ+
n , ϕ

sym∇Ψ+
n )H dt,

where ϕsym := ϕ+ϕT

2 . Since ũ+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇ and ϕsym∇Ψ+
n

L2(0,T ;H)−−−−−−−→
n→∞

ϕsym∇Ψ by dominated convergence

theorem, we obtain∫ T

0

(∇Ψ+
n � ũ+

n , ϕ)H dt −−−−→
n→∞

∫ T

0

(u̇, ϕsym∇Ψ)H dt =

∫ T

0

(∇Ψ� u̇, ϕ)H dt,

and so w1 = ∇Ψ� u̇. Moreover for φ ∈ L2(0, T ;H) we have∫ T

0

(Ψ+
n ũ

+
n , φ)H dt =

∫ T

0

(ũ+
n , φΨ+

n )H dt −−−−→
n→∞

∫ T

0

(u̇,Ψφ)H dt =

∫ T

0

(Ψu̇, φ)H dt,

thanks to ũ+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇ and Ψ+
nφ

L2(0,T ;H)−−−−−−−→
n→∞

Ψφ, again implied by dominated convergence theorem.

Therefore Ψ+
n ũ

+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

Ψu̇, from which E(Ψ+
n ũ

+
n )

D′(0,T ;H)−−−−−−→
n→∞

E(Ψu̇), that gives w2 = E(Ψu̇). In

particular we have Ψu̇ ∈ L2(0, T ;VT ). By arguing in a similar way we also obtain

∇Ψ−n � ũ−n
L2(0,T ;H)−−−−−−−⇀
n→∞

∇Ψ� u̇, E(Ψ−n ũ
−
n )

L2(0,T ;H)−−−−−−−⇀
n→∞

E(Ψu̇).

Let us check that u ∈ W. To this aim, let us consider the following set

F := {v ∈ L2(0, T ;VT ) : v(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;VT ).

We have that F is a (strong) closed convex subset of L2(0, T ;VT ), and so by Hahn-Banach’s theorem the set
F is weakly closed. Notice that {u−n }n, {Ψ−n ũ−n }n ⊂ F , indeed

u−n (t) = uk−1
n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

Ψ−n (t)ũ−n (t) = Ψk−1
n δuk−1

n ∈ V(k−1)τn ⊆ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−n
L2(0,T ;VT )−−−−−−−⇀
n→∞

u and Ψ−n ũ
−
n

L2(0,T ;VT )−−−−−−−⇀
n→∞

Ψu̇, we conclude that u,Ψu̇ ∈ F . Finally, to show that

u− w ∈ VD we observe

u−n (t)− w−n (t) = uk−1
n − wk−1

n ∈ V k−1
n ⊆ V Dt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Therefore {u−n −w−n }n ⊂ {v ∈ L2(0, T ;VT ) : v(t) ∈ V Dt for a.e. t ∈ (0, T )}, which is a (strong) closed convex

subset of L2(0, T ;VT ), and so it is weakly closed. Since u−n
L2(0,T ;VT )−−−−−−−⇀
n→∞

u and w−n
L2(0,T ;V0)−−−−−−−→
n→∞

w, we get that

u(t)− w(t) ∈ V Dt for a.e. t ∈ (0, T ), which implies u− w ∈ VD. �

We now use Lemma 3.4 to pass to the limit in the discrete equation (3.1).

Lemma 3.5. The limit function u ∈ W of Lemma 3.4 is a weak solution to (2.8)–(2.11).

Proof. We only need to prove that u ∈ W satisfies (2.14). We fix n ∈ N, ϕ ∈ C1
c (0, T ;VT ) such that

ϕ(t) ∈ V Dt for every t ∈ (0, T ), and we consider

ϕkn := ϕ(kτn) for k = 0, . . . , n, δϕkn :=
ϕkn − ϕk−1

n

τn
for k = 1, . . . , n,

and the approximating sequences

ϕ+
n (t) := ϕkn, ϕ̃+

n (t) := δϕkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.
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If we use τnϕ
k
n ∈ V kn as test function in (3.1), after summing over k = 1, ..., n, we get
n∑
k=1

τn(δ2ukn, ϕ
k
n)H +

n∑
k=1

τn(CEukn, Eϕkn)H +
n∑
k=1

τn(BΨk
nEδu

k
n,Ψ

k
nEϕ

k
n)H

=
n∑
k=1

τn(fkn , ϕ
k
n)H +

n∑
k=1

τn(gkn, ϕ
k
n)HN .

(3.16)

By these identities
n∑
k=1

τn(δ2ukn, ϕ
k
n)H =−

n∑
k=1

τn(δuk−1
n , δϕkn)H = −

∫ T

0

(ũ−n (t), ϕ̃+
n (t))H dt,

from (3.16) we deduce

−
∫ T

0

(ũ−n , ϕ̃
+
n )H dt+

∫ T

0

(CEu+
n , Eϕ

+
n )H dt−

∫ T

0

(B∇Ψ+
n � ũ+

n , Eϕ
+
n )H dt

+

∫ T

0

(BE(Ψ+
n ũ

+
n ), Eϕ+

n )H dt =

∫ T

0

(f+
n , ϕ

+
n )H dt+

∫ T

0

(g+
n , ϕ

+
n )HN dt.

(3.17)

Thanks to (3.14), (3.15), and the following convergences

ϕ+
n

L2(0,T ;VT )−−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−−→
n→∞

ϕ̇, f+
n

L2(0,T ;H)−−−−−−−→
n→∞

f, g+
n

L2(0,T ;HN )−−−−−−−−→
n→∞

g,

we can pass to the limit in (3.17), and we get that u ∈ W satisfies (2.14) for every ϕ ∈ C1
c (0, T ;VT ) such

that ϕ(t) ∈ V Dt for every t ∈ (0, T ). Finally, by using a density argument (see [8, Remark 2.9]), we conclude
that u ∈ W is a weak solution to (2.8)–(2.11). �

4. Initial Conditions and Energy–Dissipation Inequality

To complete our existence result, it remains to prove that the function u ∈ W given by Lemma 3.5 satisfies
the initial conditions (2.12) in the sense of (2.16). Let us start by showing that the second distributional
derivative ü belongs to L2(0, T ; (V D0 )′). If we consider the discrete equation (3.1), for every v ∈ V D0 ⊆ V kn ,
with ‖v‖V0

≤ 1, we have

|(δ2ukn, v)H | ≤‖C‖∞‖Eukn‖H + ‖B‖∞‖Ψ‖∞‖Ψk
nEδu

k
n‖H + ‖fkn‖H + Ctr‖gkn‖HN .

Therefore, taking the supremum over v ∈ V D0 with ‖v‖V0
≤ 1, we obtain the existence of a positive constant

C such that
‖δ2ukn‖2(V D0 )′ ≤ C(‖Eukn‖2H + ‖Ψk

nEδu
k
n‖2H + ‖fkn‖2H + ‖gkn‖2HN ).

If we multiply this inequality by τn and we sum over k = 1, . . . , n, we get
n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C

(
n∑
k=1

τn‖Eukn‖2H +
n∑
k=1

τn‖Ψk
nEδu

k
n‖2H + ‖f‖2L2(0,T ;H) + ‖g‖2L2(0,T ;HN )

)
. (4.1)

Thanks to (4.1) and Lemma 3.3 we conclude that
∑n
k=1 τn‖δ2ukn‖2(V D0 )′

≤ C̃ for every n ∈ N for a positive

constant C̃ independent on n ∈ N. In particular the sequence {ũn}n ⊂ H1(0, T ; (V D0 )′) is uniformly bounded

(notice that ˙̃un(t) = δ2ukn for t ∈ ((k − 1)τn, kτn) and k = 1, . . . , n). Hence, up to extract a further (not
relabeled) subsequence from the one of Lemma 3.4, we get

ũn
H1(0,T ;(V D0 )′)−−−−−−−−−⇀

n→∞
w3, (4.2)

and by using the following estimate

‖ũn − ũ+
n ‖L2(0,T ;(V D0 )′) ≤ τn‖ ˙̃un‖L2(0,T ;(V D0 )′) ≤ C̃τn −−−−→

n→∞
0

we conclude that w3 = u̇.
Let us recall the following result, whose proof can be found for example in [9].

Lemma 4.1. Let X,Y be two reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).
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Since H1(0, T ; (V D0 )′) ↪→ C0([0, T ], (V D0 )′), by using Lemmas 3.4 and 4.1 we get that our weak solution
u ∈ W satisfies

u ∈ C0
w([0, T ];VT ), u̇ ∈ C0

w([0, T ];H), ü ∈ L2(0, T ; (V D0 )′).

By (3.14) and (4.2) we hence obtain

un(t)
H−−−−⇀

n→∞
u(t), ũn(t)

(V D0 )′−−−−⇀
n→∞

u̇(t) for every t ∈ [0, T ], (4.3)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1.
To prove that

lim
h→0+

1

h

∫ h

0

(
‖u(t)− u0‖2Vt + ‖u̇(t)− u1‖2H

)
dt = 0

we will actually show

lim
t→0+

u(t) = u0 in VT , lim
t→0+

u̇(t) = u1 in H.

This is a consequence of following energy–dissipation inequality which holds for the weak solution u ∈ W of
Lemma 3.5. Let us define the total energy as

E(t) :=
1

2
‖u̇(t)‖2H +

1

2
(CEu(t), Eu(t))H t ∈ [0, T ].

Notice that E(t) is well defined for every t ∈ [0, T ] since u ∈ C0
w([0, T ];VT ) and u̇ ∈ C0

w([0, T ];H), and that
E(0) = 1

2‖u
1‖2H + 1

2 (CEu0, Eu0)H .

Theorem 4.2. The weak solution u ∈ W to (2.8)–(2.11), given by Lemma 3.5, satisfies for every t ∈ [0, T ]
the following energy–dissipation inequality

E(t) +

∫ t

0

(BΨEu̇,ΨEu̇)H ds ≤ E(0) +Wtot(t), (4.4)

where ΨEu̇ is the function defined in (2.15) and Wtot(t) is the total work on the solution u at time t ∈ [0, T ],
which is given by

Wtot(t) : =

∫ t

0

[(f, u̇− ẇ)H + (CEu,Eẇ)H + (BΨEu̇,ΨEẇ)H − (u̇, ẅ)H − (ġ, u− w)HN ] ds

+ (u̇(t), ẇ(t))H + (g(t), u(t)− w(t))HN − (u1, ẇ(0))H − (g(0), u0 − w(0))HN .

(4.5)

Remark 4.3. From the classical point of view, the total work on the solution u at time t ∈ [0, T ] is given
by

Wtot(t) :=Wload(t) +Wbdry(t), (4.6)

where Wload(t) is the work on the solution u at time t ∈ [0, T ] due to the loading term, which is defined as

Wload(t) :=

∫ t

0

(f(s), u̇(s))H ds,

and Wbdry(t) is the work on the solution u at time t ∈ [0, T ] due to the varying boundary conditions, which
one expects to be equal to

Wbdry(t) :=

∫ t

0

(g(s), u̇(s))HN ds+

∫ t

0

((CEu(s) + Ψ2(s)BEu̇(s))ν, ẇ(s))HD ds,

being HD := L2(∂DΩ;Rd). Unfortunately, Wbdry(t) is not well defined under our assumptions on u. Notice
that when Ψ ≡ 1 on a neighborhood U of the closure of ∂NΩ, then every weak solution u to (2.8)–(2.11)
satisfies u ∈ H1(0, T ;H1((Ω ∩ U) \ Γ;Rd)), which gives that u ∈ H1(0, T ;HN ) by our assumptions on Γ.
Hence the first term of Wbdry(t) makes sense and satisfies∫ t

0

(g(s), u̇(s))HN ds = (g(t), u(t))HN − (g(0), u(0))HN −
∫ t

0

(ġ(s), u(s))HN ds.

The term involving the Dirichlet datum w is more difficult to handle since the trace of (CEu + Ψ2BEu̇)ν
on ∂DΩ is not well defined even when Ψ ≡ 1 on a neighborhood of the closure of ∂DΩ. If we assume that
u ∈ H1(0, T ;H2(Ω \ Γ;Rd)) ∩H2(0, T ;L2(Ω;Rd)) and that Γ is a smooth manifold, then we can integrate
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by part equation (2.14) to deduce that u satisfies (2.8). In this case, (CEu+ Ψ2BEu̇)ν ∈ L2(0, T ;HD) and
by using (2.8), together with the divergence theorem and the integration by parts formula, we deduce∫ t

0

((CEu(s) + Ψ2(s)BEu̇(s))ν, ẇ(s))HD ds

=

∫ t

0

[
(div(CEu(s) + Ψ2(s)BEu̇(s)), ẇ(s))H + (CEu(s) + Ψ2(s)BEu̇(s), Eẇ(s))H − (g(s), ẇ(s))HN

]
ds

=

∫ t

0

[
(ü(s), ẇ(s))H − (f(s), ẇ(s))H + (CEu(s) + Ψ2(s)BEu̇(s), Eẇ(s))H − (g(s), ẇ(s))HN

]
ds

=

∫ t

0

[(CEu(s), Eẇ(s))H + (BΨ(s)Eu̇(s),Ψ(s)Eẇ(s))H − (f(s), ẇ(s))H ] ds

+

∫ t

0

[(ġ(s), w(s))HN − (u̇(s), ẅ(s))H ] ds− (g(t), w(t))HN + (u̇(t), ẇ(t))H + (g(0), w(0))HN − (u1, ẇ(0))H .

Hence, the definition of total work given in (4.5) is coherent with the classical one (4.6). Notice that if
u is the solution to (2.8)–(2.11) given by Lemma 3.5, then (4.5) is well defined for every t ∈ [0, T ], since
g ∈ C0([0, T ];HN ), ẇ ∈ C0([0, T ];H), u ∈ C0

w([0, T ];VT ), and u̇ ∈ C0
w([0, T ];H). In particular, the function

t 7→ Wtot(t) from [0, T ] to R is continuous.

Proof. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n} such that t ∈ ((j − 1)τn, jτn].
After setting tn := jτn, we can rewrite (3.3) as

1

2
‖ũ+

n (t)‖2H +
1

2
(CEu+

n (t), Eu+
n (t))H +

∫ tn

0

(BΨ+
nEũ

+
n ,Ψ

+
nEũ

+
n )H ds ≤ E(0) +W+

n (t), (4.7)

where

W+
n (t) :=

∫ tn

0

[
(f+
n , ũ

+
n − w̃+

n )H + (CEu+
n , Ew̃

+
n )H + (BΨ+

nEũ
+
n ,Ψ

+
nEw̃

+
n )H

]
ds

+

∫ tn

0

[
(ũ+
n , w̃

+
n )H + (g+

n , ũ
+
n − w̃+

n )HN
]

ds.

Thanks to (3.2), we have

‖un(t)− u+
n (t)‖H = ‖ujn + (t− jτn)δujn − ujn‖H ≤ τn‖δujn‖H ≤ Cτn −−−−→

n→∞
0,

‖ũn(t)− ũ+
n (t)‖2(V D0 )′ = ‖δujn + (t− jτn)δ2ujn − δujn‖2(V D0 )′ ≤ τ

2
n‖δ2ujn‖2(V D0 )′ ≤ Cτn −−−−→n→∞

0.

The last convergences and (4.3) imply

u+
n (t)

H−−−−⇀
n→∞

u(t), ũ+
n (t)

(V D0 )′−−−−⇀
n→∞

u̇(t),

and since ‖u+
n (t)‖VT + ‖ũ+

n (t)‖H ≤ C for every n ∈ N, we get

u+
n (t)

VT−−−−⇀
n→∞

u(t), ũ+
n (t)

H−−−−⇀
n→∞

u̇(t). (4.8)

By the lower semicontinuity properties of v 7→ ‖v‖2H and v 7→ (CEv,Ev)H , we conclude

‖u̇(t)‖2H ≤ lim inf
n→∞

‖ũ+
n (t)‖2H , (4.9)

(CEu(t), Eu(t))H ≤ lim inf
n→∞

(CEu+
n (t), Eu+

n (t))H . (4.10)

Thanks to Lemma 3.4 and (2.15), we obtain

Ψ+
nEũ

+
n = E(Ψ+

n ũ
+
n )−∇Ψ+

n � ũ+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

E(Ψu̇)−∇Ψ� u̇ = ΨEu̇,

so that∫ t

0

(BΨEu̇,ΨEu̇)H ds ≤ lim inf
n→∞

∫ t

0

(BΨ+
nEũ

+
n ,Ψ

+
nEũ

+
n )H ds ≤ lim inf

n→∞

∫ tn

0

(BΨ+
nEũ

+
n ,Ψ

+
nEũ

+
n )H ds, (4.11)
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since t ≤ tn and v 7→
∫ t

0
(Bv, v)H ds is a non negative quadratic form on L2(0, T ;H). Let us study the

right–hand side of (4.7). Given that we have

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]f, ũ+
n − w̃+

n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇− ẇ,

we can deduce ∫ tn

0

(f+
n , ũ

+
n − w̃+

n )H ds −−−−→
n→∞

∫ t

0

(f, u̇− ẇ)H ds. (4.12)

In a similar way, we can prove∫ tn

0

(CEu+
n , Ew̃

+
n )H ds −−−−→

n→∞

∫ t

0

(CEu,Eẇ)H ds, (4.13)∫ tn

0

(BΨ+
nEũ

+
n ,Ψ

+
nEw̃

+
n )H ds −−−−→

n→∞

∫ t

0

(BΨEu̇,ΨEẇ)H ds, (4.14)

since the following convergences hold

χ[0,tn]Ew̃
+
n

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]Eẇ, CEu+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

CEu,

χ[0,tn]Ψ
+
nEw̃

+
n

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]ΨEẇ, Ψ+
nEũ

+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

ΨEu̇.

It remains to study the behaviour as n→∞ of the terms∫ tn

0

( ˙̃un, w̃
+
n )H ds,

∫ tn

0

(g+
n , ũ

+
n − w̃+

n )HN ds.

Thanks to formula (3.10) we have∫ tn

0

( ˙̃un, w̃
+
n )H ds = (ũ+

n (t), w̃+
n (t))H − (u1, ẇ(0))H −

∫ tn

0

(ũ−n , ˙̃wn)H ds.

By arguing as before we hence deduce∫ tn

0

( ˙̃un, w̃
+
n )H ds −−−−→

n→∞
(u̇(t), ẇ(t))H − (u1, ẇ(0))H −

∫ t

0

(u̇, ẅ)H ds, (4.15)

thanks to (4.8) and by these convergences

χ[0,tn]
˙̃wn

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]ẅ, ũ−n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇,

‖w̃+
n (t)− ẇ(t)‖H =

∥∥∥∥w(jτn)− w((j − 1)τn)

τn
− ẇ(t)

∥∥∥∥
H

=

∥∥∥∥∥−
∫ jτn

(j−1)τn

(ẇ(s)− ẇ(t)) ds

∥∥∥∥∥
H

≤ −
∫ jτn

(j−1)τn

‖ẇ(s)− ẇ(t)‖H ds −−−−→
n→∞

0.

Notice that in the last convergence we used the continuity of w from [0, T ] in H. Similarly we have∫ tn

0

(g+
n , ũ

+
n − w̃+

n )HN ds = (g+
n (t), u+

n (t)− w+
n (t))HN − (g(0), u0 − w(0))HN −

∫ tn

0

(ġn, u
−
n − w−n )HN ds

so that we get∫ tn

0

(g+
n , ũ

+
n − w̃+

n )HN ds −−−−→
n→∞

(g(t), u(t)− w(t))HN − (g(0), u0 − w(0))HN −
∫ t

0

(ġ, u− w)HN ds (4.16)

thanks to (4.8), the continuity of s 7→ g(s) in HN , and the fact that

χ[0,tn]ġn
L2(0,T ;HN )−−−−−−−−→

n→∞
χ[0,t]ġ, u−n − w−n

L2(0,T ;HN )−−−−−−−−⇀
n→∞

u− w.

By combining (4.9)–(4.16), we deduce the energy–dissipation inequality (4.4) for every t ∈ (0, T ]. Finally,
for t = 0 the inequality trivially holds since u(0) = u0 and u̇(0) = u1. �

We now are in position to prove the validity of the initial conditions.
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Lemma 4.4. The weak solution u ∈ W to (2.8)–(2.11) of Lemma 3.5 satisfies

lim
t→0+

u(t) = u0 in VT , lim
t→0+

u̇(t) = u1 in H. (4.17)

In particular u satisfies the initial conditions (2.12) in the sense of (2.16).

Proof. By sending t→ 0+ into the energy–dissipation inequality (4.4) and using that u ∈ C0
w([0, T ];VT ) and

u̇ ∈ C0
w([0, T ];H) we deduce

E(0) ≤ lim inf
t→0+

E(t) ≤ lim sup
t→0+

E(t) ≤ E(0),

since the right–hand side of (4.4) is continuous in t, u(0) = u0, and u̇(0) = u1. Therefore there exists
limt→0+ E(t) = E(0). By using the lower semicontinuity of t 7→ ‖u̇(t)‖2H and t 7→ (CEu(t), Eu(t))H , we
derive

lim
t→0+

‖u̇(t)‖2H = ‖u1‖2H , lim
t→0+

(CEu(t), Eu(t))H = (CEu0, Eu0)H .

Finally, since we have

u̇(t)
H−−−−⇀

t→0+
u1, Eu(t)

H−−−−⇀
t→0+

Eu0,

we deduce (4.17). In particular the functions u : [0, T ] → VT and u̇ : [0, T ] → H are continuous at t = 0,
which implies (2.16). �

We can finally prove Theorem 3.1.

Proof of Theorem 3.1. It is enough to combine Lemmas 3.5 and 4.4. �

Remark 4.5. We have proved Theorem 3.1 for the d-dimensional linear elastic case, namely when the
displacement u is a vector–valued function. The same result is true with identical proofs in the antiplane
case, that is when the displacement u is a scalar function and satisfies (1.5).

5. Uniqueness

In this section we investigate the uniqueness properties of system (2.8) with boundary and initial con-
ditions (2.9)–(2.12). To this aim, we need to assume stronger regularity assumptions on the crack sets
{Γt}t∈[0,T ] and on the function Ψ. Moreover, we have to restrict our problem to the dimensional case d = 2,
since in our proof we need to construct a suitable family of diffeomorphisms which maps the time–dependent
crack Γt into a fixed set, and this can be explicitly done only for d = 2 (see [7, Example 2.14]).

We proceed in two steps; first, in Lemma 5.2 we prove a uniqueness result in every dimension d, but
when the cracks are not increasing, that is ΓT = Γ0. Next, in Theorem 5.5 we combine Lemma 5.2 with the
finite speed of propagation theorem of [5] and the uniqueness result of [8] to derive the uniqueness of a weak
solution to (2.8)–(2.12) in the case d = 2.

Let us start with the following lemma, whose proof is similar to that one of [8, Proposition 2.10].

Lemma 5.1. Let u ∈ W be a weak solution to (2.8)–(2.11) satisfying the initial condition u̇(0) = 0 in the
following sense

lim
h→0+

1

h

∫ h

0

‖u̇(t)‖2H = 0.

Then u satisfies

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(CEu(t), Eϕ(t))H dt+

∫ T

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt

=

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(g(t), ϕ(t))HN dt

for every ϕ ∈ VD such that ϕ(T ) = 0, where ΨEu̇ is the function defined in (2.15).

Proof. We fix ϕ ∈ VD with ϕ(T ) = 0 and for every ε > 0 we define the following function

ϕε(t) :=

®
t
εϕ(t) t ∈ [0, ε],

ϕ(t) t ∈ [ε, T ].
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We have that ϕε ∈ VD and ϕε(0) = ϕε(T ) = 0, so we can use ϕε as test function in (2.14). By proceeding
as in [8, Proposition 2.10] we obtain

lim
ε→0+

∫ T

0

(u̇(t), ϕ̇ε(t))H dt =

∫ T

0

(u̇(t), ϕ̇(t))H dt,

lim
ε→0+

∫ T

0

(CEu(t), Eϕε(t))H dt =

∫ T

0

(CEu(t), Eϕ(t))H dt,

lim
ε→0+

∫ T

0

(f(t), ϕε(t))H dt =

∫ T

0

(f(t), ϕ(t))H dt.

It remains to consider the terms involving B and g. We have∫ T

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕε(t))H dt =

∫ ε

0

(BΨ(t)Eu̇(t),
t

ε
Ψ(t)Eϕ(t))H dt+

∫ T

ε

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt,∫ T

0

(g(t), ϕε(t))HN dt =

∫ ε

0

(g(t),
t

ε
ϕ(t))HN dt+

∫ T

ε

(g(t), ϕ(t))HN dt,

hence by the dominated convergence theorem we get∫ T

ε

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt −−−−→
ε→0+

∫ T

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt,∣∣∣∣∫ ε

0

(BΨ(t)Eu̇(t),
t

ε
Ψ(t)Eϕ(t))H dt

∣∣∣∣ ≤ ‖B‖∞‖Ψ‖∞ ∫ ε

0

‖Ψ(t)Eu̇(t)‖H‖Eϕ(t)‖H dt −−−−→
ε→0+

0,∫ T

ε

(g(t), ϕ(t))HN dt −−−−→
ε→0+

∫ T

0

(g(t), ϕ(t))HN dt,∣∣∣∣∫ ε

0

(g(t),
t

ε
ϕ(t))HN dt

∣∣∣∣ ≤ ∫ ε

0

‖g(t)‖HN ‖ϕ(t)‖HN dt −−−−→
ε→0+

0.

By combining together all the previous convergences we get the thesis. �

We now state the uniqueness result in the case of a fixed domain, that is ΓT = Γ0. We follow the same
ideas of [12], and we need to assume

Ψ ∈ Lip([0, T ]× Ω), ∇Ψ̇ ∈ L∞((0, T )× Ω;Rd), (5.1)

while on Γ0 we do not require any further hypotheses.

Lemma 5.2 (Uniqueness in a fixed domain). Assume (5.1) and ΓT = Γ0. Then the viscoelastic dynamic
system (2.8) with boundary and initial conditions (2.9)–(2.12) (the latter in the sense of (2.16)) has a unique
weak solution.

Proof. Let u1, u2 ∈ W be two weak solutions to (2.8)–(2.11) with initial conditions (2.12). The function
u := u1 − u2 satisfies

1

h

∫ h

0

(‖u(t)‖2Vt + ‖u̇(t)‖2H) dt −−−−→
h→0+

0, (5.2)

hence by Lemma 5.1 it solves

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(CEu(t), Eϕ(t))H dt+

∫ T

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕ(t))H dt = 0 (5.3)

for every ϕ ∈ VD such that ϕ(T ) = 0. We fix s ∈ (0, T ] and consider the function

ϕs(t) :=

®
−
∫ s
t
u(τ)dτ t ∈ [0, s],

0 t ∈ [s, T ].

Since ϕs ∈ VD and ϕs(T ) = 0, we can use it as test function in (5.3) to obtain

−
∫ s

0

(u̇(t), u(t))H dt+

∫ s

0

(CEϕ̇s(t), Eϕs(t))H dt+

∫ s

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕs(t))H dt = 0.
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In particular we deduce

−1

2

∫ s

0

d

dt
‖u(t)‖2H dt+

1

2

∫ s

0

d

dt
(CEϕs(t), Eϕs(t))H dt+

∫ s

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕs(t))H dt = 0,

which implies

1

2
‖u(s)‖2H +

1

2
(CEϕs(0), Eϕs(0))H =

∫ s

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕs(t))H dt, (5.4)

since u(0) = 0 = ϕs(s). From the distributional point of view the following equality holds

d

dt
(ΨEu) = Ψ̇Eu+ ΨEu̇ ∈ L2(0, T ;H), (5.5)

indeed, for all v ∈ C∞c (0, T ;H) we have∫ T

0

(
d

dt
(Ψ(t)Eu(t)), v(t))Hdt = −

∫ T

0

(Ψ(t)Eu(t), v̇(t))H dt

= −
∫ T

0

(E(Ψ(t)u(t))−∇Ψ(t)� u(t), v̇(t))H dt

=

∫ T

0

(E(Ψ̇(t)u(t)) + E(Ψ(t)u̇(t)), v(t))H dt−
∫ T

0

(∇Ψ̇(t)� u(t) +∇Ψ(t)� u̇(t), v(t))H dt

=

∫ T

0

(Ψ̇(t)Eu(t), v(t))H dt+

∫ T

0

(Ψ(t)Eu̇(t), v(t))H dt.

In particular ΨEu ∈ H1(0, T ;H) ⊂ C0([0, T ], H), so that by (5.2)

‖Ψ(0)Eu(0)‖2H = lim
h→0

1

h

∫ h

0

‖Ψ(t)Eu(t)‖2Hdt ≤ C lim
h→0

1

h

∫ h

0

‖u(t)‖2Vtdt = 0

which yields Ψ(0)Eu(0) = 0. Thanks to (5.5) and to property Ψu ∈ H1(0, T ;H), we deduce

d

dt
(BΨEu,ΨEϕs)H = (BΨ̇Eu,ΨEϕs)H + (BΨEu̇,ΨEϕs)H + (BΨEu, Ψ̇Eϕs)H + (BΨEu,ΨEϕ̇s)H

= 2(BΨEu, Ψ̇Eϕs)H + (BΨEu̇,ΨEϕs)H + (BΨEu,ΨEϕ̇s)H ,

and by integrating on [0, s] we get∫ s

0

(BΨ(t)Eu̇(t),Ψ(t)Eϕs(t))H dt

=

∫ s

0

ï
d

dt
(BΨ(t)Eu(t),Ψ(t)Eϕs(t))H − 2(BΨ(t)Eu(t), Ψ̇(t)Eϕs(t))H − (BΨ(t)Eϕ̇s(t),Ψ(t)Eϕ̇s(t))H

ò
dt

≤ (BΨ(s)Eu(s),Ψ(s)Eϕs(s))H − (BΨ(0)Eu(0),Ψ(0)Eϕs(0))H

+

∫ s

0

[
2(BΨ(t)Eu(t),Ψ(t)Eu(t))

1
2

H(BΨ̇(t)Eϕs(t), Ψ̇(t)Eϕs(t))
1
2

H − (BΨ(t)Eϕ̇s(t),Ψ(t)Eϕ̇s(t))H

]
dt

≤
∫ s

0

î
(BΨ(t)Eu(t),Ψ(t)Eu(t))H + (BΨ̇(t)Eϕs(t), Ψ̇(t)Eϕs(t))H − (BΨ(t)Eϕ̇s(t),Ψ(t)Eϕ̇s(t))H

ó
dt

≤ ‖B‖∞‖Ψ̇‖2∞
∫ s

0

‖Eϕs(t)‖2Hdt,

since Eϕs(s) = 0 = Ψ(0)Eu(0) and Eϕ̇s = Eu in (0, s). By combining the previous inequality with (5.4)
and using the coercivity of the tensor C, we derive

λ1

2
‖Eϕs(0)‖2H +

1

2
‖u(s)‖2H ≤

1

2
(CEϕs(0), Eϕs(0))H +

1

2
‖u(s)‖2H ≤ ‖B‖∞‖Ψ̇‖2∞

∫ s

0

‖Eϕs(t)‖2Hdt.

Let us set ξ(t) :=
∫ t

0
u(τ)dτ , then

‖Eϕs(0)‖2H = ‖Eξ(s)‖2H , ‖Eϕs(t)‖2H = ‖Eξ(t)− Eξ(s)‖2H ≤ 2‖Eξ(t)‖2H + 2‖Eξ(s)‖2H ,
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from which we deduce

λ1

2
‖Eξ(s)‖2H +

1

2
‖u(s)‖2H ≤ C

∫ s

0

‖Eξ(t)‖2Hdt+ Cs‖Eξ(s)‖2H , (5.6)

where C := 2‖B‖∞‖Ψ̇‖2∞. Therefore, if we set s0 := λ1

4C , for all s ≤ s0 we obtain

λ1

4
‖Eξ(s)‖2H ≤

Å
λ1

2
− Cs

ã
‖Eξ(s)‖2H ≤ C

∫ s

0

‖Eξ(t)‖2Hdt.

By Gronwall’s lemma the last inequality implies Eξ(s) = 0 for all s ≤ s0. Hence, thanks to (5.6) we get
‖u(s)‖2H ≤ 0 for all s ≤ s0, which yields u(s) = 0 for all s ≤ s0. Since s0 depends only on C, B, and Ψ, we
can repeat this argument starting from s0, and with a finite number of steps we obtain u ≡ 0 on [0, T ]. �

In order to prove our uniqueness result in the case of a moving crack we need two auxiliary results, which
are [4, Theorem 6.1] and [8, Theorem 4.3]. For the sake of the readers, we rewrite below the statements
without proof.

The first one ([4, Theorem 6.1]) is a generalization of the well–known result of finite speed of propagation
for the wave equation. Given an open bounded set U ⊂ Rd, we define by ∂LU the Lipschitz part of the
boundary ∂U , which is the collection of points x ∈ ∂U for which there exist an orthogonal coordinate system
y1, . . . , yd, a neighborhood V of x of the form A× I, with A open in Rd−1 and I open interval in R, and a
Lipschitz function g : A→ I, such that V ∩ U := {(y1, . . . , yd) ∈ V : yd < g(y1, . . . , yd−1)}. Moreover, given
a Borel set S ⊆ ∂LU , we define

HS(U ;Rd) := {u ∈ H1(U ;Rd) : u = 0 on S}.
Notice that HS(U ;Rd) is a Hilbert space, and we denote its dual by H−1

S (U ;Rd).

Theorem 5.3 (Finite speed of propagation). Let U ⊂ Rd be an open bounded set and let ∂LU be the Lipschitz
part of ∂U . Let S0 and S1 be two Borel sets with S0 ⊆ S1 ⊆ ∂LU , and let C : U → L (Rd×dsym;Rd×dsym) be a
fourth-order tensor satisfying (2.4)–(2.6). Let

u ∈ L2(0, T ;H1
S0

(U ;Rd)) ∩H1(0, T ;L2(U ;Rd)) ∩H2(0, T ;H−1
S1

(U ;Rd))
be a solution to

〈ü(t), ψ〉H−1
S1

(U ;Rd) + (CEu(t), Eψ)L2(U ;Rd×dsym) = 0 for every ψ ∈ H1
S1

(U ;Rd),

with initial conditions u(0) = 0 and u̇(0) = 0 in the sense of L2(U ;Rd) and H−1
S1

(U ;Rd), respectively. Then

u(t) = 0 a.e. in Ut := {x ∈ U : dist(x, S1 \ S0) > t
»
‖C‖∞}

for every t ∈ [0, T ].

Proof. See [4, Theorem 6.1]. �

The second one ([8, Theorem 4.3]) is a uniqueness result for the weak solutions of the wave equation in

a moving domain. Let Ĥ be a separable Hilbert space, and let {V̂t}t∈[0,T ] be a family of separable Hilbert
spaces with the following properties:

(i) for every t ∈ [0, T ] the space V̂t is contained and dense in Ĥ with continuous embedding;

(ii) for every s, t ∈ [0, T ], with s < t, V̂s ⊂ V̂t and the Hilbert space structure on V̂s is the one induced

by V̂t.

Let a : V̂T × V̂T → R be a bilinear symmetric form satisfying the following conditions:

(iii) there exists M0 such that

|a(u, v)| ≤M0‖u‖V̂T ‖v‖V̂T for every u, v ∈ V̂T ;

(iv) there exist λ0 > 0 and ν0 ∈ R such that

a(u, u) ≥ λ0‖u‖2V̂T − ν0‖u‖2Ĥ for every u ∈ V̂T .

Assume that

(U1) for every t ∈ [0, T ] there exists a continuous and linear bijective operator Qt : V̂t → V̂0, with contin-

uous inverse Rt : V̂0 → V̂t;



18 M. CAPONI AND F. SAPIO

(U2) Q0 and R0 are the identity maps on V̂0;
(U3) there exists a constant M1 independent of t such that

‖Qtu‖Ĥ ≤M1‖u‖Ĥ for every u ∈ V̂t, ‖Rtu‖Ĥ ≤M1‖u‖Ĥ for every u ∈ V̂0,

‖Qtu‖V̂0
≤M1‖u‖V̂t for every u ∈ V̂t, ‖Rtu‖V̂t ≤M1‖u‖V̂0

for every u ∈ V̂0.

Since V̂t is dense in Ĥ, (U3) implies that Rt and Qt can be extended to continuous linear operators from Ĥ
into itself, still denoted by Qt and Rt. We also require

(U4) for every v ∈ V̂0 the function t 7→ Rtv from [0, T ] into Ĥ has a derivative, denoted by Ṙtv;
(U5) there exists η ∈ (0, 1) such that

‖ṘtQtv‖2Ĥ ≤ λ0(1− η)‖v‖2
V̂t

for every v ∈ V̂t;

(U6) there exists a constant M2 such that

‖Qtv −Qsv‖Ĥ ≤M2‖v‖V̂s(t− s) for every 0 ≤ s < t ≤ T and every v ∈ V̂s;

(U7) for very t ∈ [0, T ) and for every v ∈ V̂t there exists an element of Ĥ, denoted by Q̇tv, such that

lim
h→0+

Qt+hv −Qtv
h

= Q̇tv in Ĥ.

For every t ∈ [0, T ], define

α(t) : V̂0 × V̂0 → R as α(t)(u, v) := a(Rtu,Rtv) for u, v ∈ V̂0,

β(t) : V̂0 × V̂0 → R as β(t)(u, v) := (Ṙtu, Ṙtv) for u, v ∈ V̂0,

γ(t) : V̂0 × Ĥ → R as γ(t)(u, v) := (Ṙtu,Rtv) for u ∈ V̂0 and v ∈ Ĥ,

δ(t) : Ĥ × Ĥ → R as δ(t)(u, v) := (Rtu,Rtv)− (u, v) for u, v ∈ Ĥ.
We assume that there exists a constant M3 such that

(U8) the maps t 7→ α(t)(u, v), t 7→ β(t)(u, v), t 7→ γ(t)(u, v), and t 7→ δ(t)(u, v) are Lipschitz continuous
and for a.e. t ∈ (0, T ) their derivatives satisfy

|α̇(t)(u, v)| ≤M3‖u‖V̂0
‖v‖V̂0

for u, v ∈ V̂0,

|β̇(t)(u, v)| ≤M3‖u‖V̂0
‖v‖V̂0

for u, v ∈ V̂0,

|γ̇(t)(u, v)| ≤M3‖u‖V̂0
‖v‖Ĥ for u ∈ V̂0 and v ∈ Ĥ,

|δ̇(t)(u, v)| ≤M3‖u‖Ĥ‖v‖Ĥ for u, v ∈ Ĥ.

Theorem 5.4 (Uniqueness for the wave equation). Assume that Ĥ, {V̂t}t∈[0,T ], and a satisfy (i)–(iv) and

that (U1)–(U8) hold. Given u0 ∈ V̂0, u1 ∈ Ĥ, and f ∈ L2(0, T ; Ĥ), there exists a unique solution

u ∈ V̂ := {ϕ ∈ L2(0, T ; V̂T ) : u̇ ∈ L2(0, T ; Ĥ), u(t) ∈ V̂t for a.e. t ∈ (0, T )}
to the wave equation

−
∫ T

0

(u̇(t), ϕ̇(t))Ĥ dt+

∫ T

0

a(u(t), ϕ(t)) dt =

∫ T

0

(f(t), ϕ(t))Ĥ dt for every ϕ ∈ V̂,

satisfying the initial conditions u(0) = u0 and u̇(0) = u1 in the sense that

lim
h→0+

1

h

∫ h

0

Ä
‖u(t)− u0‖2

V̂t
+ ‖u̇(t)− u1‖2

Ĥ

ä
dt = 0.

Proof. See [8, Theorem 4.3]. �

We now are in position to prove the uniqueness theorem in the case of a moving domain. We consider
the dimensional case d = 2, and we require the following assumptions:

(H1) there exists a C2,1 simple curve Γ ⊂ Ω ⊂ R2, parametrized by arc–length γ : [0, `] → Ω, such that
Γ ∩ ∂Ω = γ(0) ∪ γ(`) and Ω \ Γ is the union of two disjoint open sets with Lipschitz boundary;

(H2) there exists a non decreasing function s : [0, T ]→ (0, `) of class C1,1 such that Γt = γ([0, s(t)]);



A DYNAMIC MODEL FOR VISCOELASTIC MATERIALS WITH PRESCRIBED GROWING CRACKS 19

(H3) |ṡ(t)|2 < λ1

CK
, where λ1 is the ellipticity constant of C and CK is the constant that appears in Korn’s

inequality in (2.2).

Notice that hypotheses (H1) and (H2) imply (E1)–(E3). We also assume that Ψ satisfies (5.1) and there
exists a constant ε > 0 such that for every t ∈ [0, T ]

Ψ(t, x) = 0 for every x ∈ {y ∈ Ω : |y − γ(s(t))| < ε}. (5.7)

Theorem 5.5. Assume d = 2 and (H1)–(H3), (5.1), and (5.7). Then the system (2.8) with boundary
conditions (2.9)–(2.11) has a unique weak solution u ∈ W which satisfies u(0) = u0 and u̇(0) = u1 in the
sense of (2.16).

Proof. As before let u1, u2 ∈ W be two weak solutions to (2.8)–(2.11) with initial conditions (2.12). Then
u := u1 − u2 satisfies (5.2) and (5.3) for every ϕ ∈ VD such that ϕ(T ) = 0. Let us define

t0 := sup{t ∈ [0, T ] : u(s) = 0 for every s ∈ [0, t]},
and assume by contradiction that t0 < T . Consider first the case in which t0 > 0. By (H1), (H2), (5.1),
and (5.7) we can find two open sets A1 and A2, with A1 ⊂⊂ A2 ⊂⊂ Ω, and a number δ > 0 such that for
every t ∈ [t0 − δ, t0 + δ] we have γ(s(t)) ∈ A1, Ψ(t, x) = 0 for every x ∈ A2, and (A2 \A1) \ Γ is the union of
two disjoint open sets with Lipschitz boundary. Let us define

V̂ 1 := {u ∈ H1((A2 \A1) \ Γt0−δ;R2) : u = 0 on ∂A1 ∪ ∂A2}, Ĥ1 := L2(A2 \A1;R2).

Since every function in V̂ 1 can be extended to a function in V Dt0−δ, by classical results for linear hyperbolic

equations (se, e.g., [9]), we deduce ü ∈ L2(t0 − δ, t0 + δ; (V̂ 1)′) and that u satisfies for a.e. t ∈ (t0 − δ, t0 + δ)

〈ü(t), φ〉(V̂ 1)′ + (CEu(t), Eφ)Ĥ1 = 0 for every φ ∈ V̂ 1.

Moreover, we have u(t0) = 0 as element of Ĥ1 and u̇(t0) = 0 as element of (V̂ 1)′, since u(t) ≡ 0 in [t0−δ, t0),

u ∈ C0([t0 − δ, t0]; Ĥ1), and u̇ ∈ C0([t0 − δ, t0]; (V̂ 1)′). We are now in position to apply the result of finite
speed of propagation of Theorem 5.3. This theorem ensures the existence of a third open set A3, with
A1 ⊂⊂ A3 ⊂⊂ A2, such that, up to choose a smaller δ, we have u(t) = 0 on ∂A3 for every t ∈ [t0, t0 + δ],
and both (Ω \A3) \ Γ and A3 \ Γ are union of two disjoint open sets with Lipschitz boundary.

In Ω \A3 the function u solves

−
∫ t0+δ

t0−δ

∫
Ω\A3

u̇(t, x) · ϕ̇(t, x) dxdt+

∫ t0+δ

t0−δ

∫
Ω\A3

C(x)Eu(t, x) · Eϕ(t, x) dxdt

+

∫ t0+δ

t0−δ

∫
Ω\A3

B(x)Ψ(t, x)Eu̇(t, x) ·Ψ(t, x)Eϕ(t, x) dx dt = 0

for every ϕ ∈ L2(t0 − δ, t0 + δ; V̂ 2) ∩H1(t0 − δ, t0 + δ; Ĥ2) such that ϕ(t0 − δ) = ϕ(t0 + δ) = 0, where

V̂ 2 := {u ∈ H1((Ω \A3) \ Γt0−δ;R2) : u = 0 on ∂DΩ ∪ ∂A3}, Ĥ2 := L2(Ω \A3;R2).

Since u(t) = 0 on ∂DΩ ∪ ∂A3 for every t ∈ [t0 − δ, t0 + δ] and u(t0 − δ) = u̇(t0 − δ) = 0 in the sense
of (2.16) (recall that u ≡ 0 in [t0 − δ, t0)), we can apply Lemma 5.2 to deduce u(t) = 0 in Ω \ A3 for every
t ∈ [t0 − δ, t0 + δ].

On the other hand in A3, by setting

V̂ 3
t := {u ∈ H1(A3 \ Γt;R2) : u = 0 on ∂A3}, Ĥ3 := L2(A3;R2),

we get that the function u solves

−
∫ t0+δ

t0−δ

∫
A3

u̇(t, x) · ϕ̇(t, x) dxdt+

∫ t0+δ

t0−δ

∫
A3

C(x)Eu(t, x) · Eϕ(t, x) dxdt = 0

for every ϕ ∈ L2(t0 − δ, t0 + δ; V̂ 3
t0+δ) ∩H1(t0 − δ, t0 + δ; Ĥ3) such that ϕ(t) ∈ V̂ 3

t for a.e. t ∈ (t0 − δ, t0 + δ)
and ϕ(t0 − δ) = ϕ(t0 + δ) = 0. Here we would like to apply the uniqueness result of Theorem 5.4 for the

spaces {V̂ 3
t }t∈[t0−δ,t0+δ] and Ĥ3, endowed with the usual norms, and for the bilinear form

a(u, v) :=

∫
A3

C(x)Eu(x) · Ev(x)dx for every u, v ∈ V̂ 3
t0+δ.
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As show in [7, Example 2.14] we can construct two maps Φ,Λ ∈ C1,1([t0 − δ, t0 + δ]×A3;R2) such that for
every t ∈ [0, T ] the function Φ(t, ·) : A3 → A3 is a diffeomorfism of A3 in itself with inverse Λ(t, ·) : A3 → A3.
Moreover, Φ(0, y) = y for every y ∈ A3, Φ(t,Γ ∩ A3) = Γ ∩ A3 and Φ(t,Γt0−δ ∩ A3) = Γt ∩ A3 for every

t ∈ [t0 − δ, t0 + δ]. For every t ∈ [t0 − δ, t0 + δ], the maps (Qtu)(y) := u(Φ(t, y)), u ∈ V̂ 3
t and y ∈ A3, and

(Rtv)(x) := v(Λ(t, x)), v ∈ V̂ 3
t0−δ and x ∈ A3, provide a family of linear and continuous operators which

satisfy the assumptions (U1)–(U8) of Theorem 5.4 (see [8, Example 4.2]). The only condition to check is
(U5). The bilinear form a satisfies the following ellipticity condition

a(u, u) ≥ λ1‖Eu‖2L2(A3;R2×2
sym)

≥ λ1

Ĉk
‖u‖2

V̂ 3
t0+δ

− λ1‖u‖2Ĥ3 for every u ∈ V̂ 3
t0+δ, (5.8)

where ĈK is the constant in Korn’s inequality in V̂ 3
t0+δ, namely

‖∇u‖2L2(A3;R2×2) ≤ ĈK(‖u‖2L2(A3;R2) + ‖Eu‖2
L2(A3;R2×2

sym)
) for every u ∈ V̂ 3

t0+δ.

Notice that for t ∈ [t0 − δ, t0 + δ]

(Ṙtv)(x) = ∇v(Λ(t, x))Λ̇(t, x) for a.e. x ∈ A3,

from which we obtain

‖ṘtQtu‖2Ĥ3 ≤
∫
A3

|∇u(x)|2|Φ̇(t,Λ(t, x))|2 dx.

Hence, have to show the property

|Φ̇(t, y)|2 < λ1

ĈK
for every t ∈ [t0 − δ, t0 + δ] and y ∈ A3.

This is ensured by (H3). Indeed, as explained in [7, Example 3.1], we can construct the maps Φ and Λ in
such a way that

|Φ̇(t, y)|2 < λ1

CK
,

since |ṡ(t)|2 < λ1

CK
. Moreover, every function in V̂ 3

t0+δ can be extended to a function in H1(Ω\Γ;Rd). Hence,

for Korn’s inequality in V̂ 3
t0+δ, we can use the same constant CK of H1(Ω \ Γ;Rd). This allows us to apply

Theorem 5.4, which implies u(t) = 0 in A3 for every t ∈ [t0, t0 + δ]. In the case t0 = 0, it is enough to argue
as before in [0, δ], by exploiting (5.2). Therefore u(t) = 0 in Ω for every t ∈ [t0, t0 + δ], which contradicts the
maximality of t0. Hence t0 = T , that yields u(t) = 0 in Ω for every t ∈ [0, T ]. �

Remark 5.6. Also Theorem 5.5 is true in the antiplane case, with essentially the same proof. Notice that,
when the displacement is scalar, we do not need to use Korn’s inequality in (5.8) to get the coercivity in

V̂ 3
t0+δ of the bilinear form a defined before. Therefore, in this case in (H3) it is enough to assume |ṡ(t)|2 < λ1.

6. A Moving Crack Satisfying Griffith’s Dynamic Energy–Dissipation Balance

We conclude this paper with an example of a moving crack {Γt}t∈[0,T ] and weak solution to (2.8)–(2.12)
which satisfy the energy–dissipation balance of Griffith’s dynamic criterion, as happens in [4] for the purely
elastic case. In dimension d = 2 we consider an antiplane evolution, which means that the displacement u
is scalar, and we take Ω := {x ∈ R2 : |x| < R}, with R > 0. We fix a constant 0 < c < 1 such that cT < R,
and we set

Γt := {(σ, 0) ∈ Ω : σ ≤ ct}.
Let us define the following function

S(x1, x2) := Im(
√
x1 + ix2) =

1√
2

x2√
|x|+ x1

x ∈ R2 \ {(σ, 0) : σ ≤ 0},

where Im denotes the imaginary part of a complex number. Notice that S ∈ H1(Ω \ Γ0) \H2(Ω \ Γ0), and
it is a weak solution to ®

∆S = 0 in Ω \ Γ0,

∇S · ν = ∂2S = 0 on Γ0.
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Let us consider the function

u(t, x) :=
2√
π
S

Å
x1 − ct√

1− c2
, x2

ã
t ∈ [0, T ], x ∈ Ω \ Γt

and let w(t) be its restriction to ∂Ω. Since u(t) has a singularity only at the crack tip (ct, 0), the function
w(t) can be seen as the trace on ∂Ω of a function belonging to H2(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω \ Γ0)), still
denoted by w(t). It is easy to see that u solves the wave equation

ü(t)−∆u(t) = 0 in Ω \ Γt, t ∈ (0, T ),

with boundary conditions

u(t) = w(t) on ∂Ω, t ∈ (0, T ),

∂u

∂ν
(t) = ∇u(t) · ν = 0 on Γt, t ∈ (0, T ),

and initial data

u0(x1, x2) :=
2√
π
S

Å
x1√

1− c2
, x2

ã
∈ H1(Ω \ Γ0),

u1(x1, x2) := − 2√
π

c√
1− c2

∂1S

Å
x1√

1− c2
, x2

ã
∈ L2(Ω).

Let us consider a function Ψ which satisfies the regularity assumptions (5.1) and condition (5.7), namely

Ψ(t) = 0 on Bε(t) := {x ∈ R2 : |x− (ct, 0)| < ε} for every t ∈ [0, T ],

with 0 < ε < R − cT . In this case u is a weak solution, in the sense of Definition 2.4, to the damped wave
equation

ü(t)−∆u(t)− div(Ψ2(t)∇u̇(t)) = f(t) in ∈ Ω \ Γt, t ∈ (0, T ),

with forcing term f given by

f := − div(Ψ2∇u̇) = −∇Ψ · 2Ψ∇u̇−Ψ2∆u̇ ∈ L2(0, T ;L2(Ω)),

and boundary and initial conditions

u(t) = w(t) on ∂Ω, t ∈ (0, T ),

∂u

∂ν
(t) + Ψ2(t)

∂u̇

∂ν
(t) = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1.

Notice that for the homogeneous Neumann boundary conditions on Γt we used ∂u̇
∂ν (t) = ∇u̇(t)·ν = ∂2u̇(t) = 0

on Γt. By the uniqueness result proved in the previous section, the function u coincides with that one found
in Theorem 3.1. Thanks to the computations done in [4, Section 4], we know that u satisfies for every
t ∈ [0, T ] the following energy–dissipation balance for the undamped equation, where ct coincides with the
length of Γt \ Γ0

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω;R2) + ct =

1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω;R2) +

∫ t

0

(
∂u

∂ν
(s), ẇ(s))L2(∂Ω) ds.

(6.1)

Moreover, we have∫ t

0

(
∂u

∂ν
(s), ẇ(s))L2(∂Ω) ds =

∫ t

0

(∇u(s),∇ẇ(s))L2(Ω;R2) ds−
∫ t

0

(u̇(s), ẅ(s))L2(Ω) ds

+ (u̇(t), ẇ(t))L2(Ω) − (u̇(0), ẇ(0))L2(Ω).

(6.2)

For every t ∈ [0, T ] we compute

(f(t), u̇(t)− ẇ(t))L2(Ω) = −
∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)](u̇(t, x)− ẇ(t, x)) dx

= −
∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)(u̇(t, x)− ẇ(t, x))] dx
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+

∫
(Ω\Bε(t))\Γt

Ψ2(t, x)∇u̇(t, x) · (∇u̇(t, x)−∇ẇ(t, x)) dx.

If we denote by u̇⊕(t) and ẇ⊕(t) the traces of u̇(t) and ẇ(t) on Γt from above and by u̇	(t) and ẇ	(t) the
trace from below, thanks to the divergence theorem we have∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)(u̇(t, x)− ẇ(t, x))] dx

=

∫
∂Ω

Ψ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ẇ(t, x)) dx+

∫
∂Bε(t)

Ψ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ẇ(t, x)) dx

−
∫

(Ω\Bε(t))∩Γt

Ψ2(t, x)∂2u̇
⊕(t, x)(u̇⊕(t, x)− ẇ⊕(t, x)) dH1(x)

+

∫
(Ω\Bε(t))∩Γt

Ψ2(t, x)∂2u̇
	(t, x)(u̇	(t, x)− ẇ	(t, x)) dH1(x) = 0,

since u(t) = w(t) on ∂Ω, Ψ(t) = 0 on ∂Bε(t), and ∂2u̇(t) = 0 on Γt. Therefore for every t ∈ [0, T ] we get

(f(t), u̇(t)− ẇ(t))L2(Ω) = ‖Ψ(t)∇u̇(t)‖2L2(Ω;R2) − (Ψ(t)∇u̇(t),Ψ(t)∇ẇ(t))L2(Ω;R2). (6.3)

By combining (6.1)–(6.3) we deduce that u satisfies for every t ∈ [0, T ] the following Griffith’s energy–dis-
sipation balance for the viscoelastic dynamic equation

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω;R2) +

∫ t

0

‖Ψ(s)∇u̇(s)‖2L2(Ω;R2) ds+ ct

=
1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω;R2) +Wtot(t),

(6.4)

where in this case the total work takes the form

Wtot(t) :=

∫ t

0

[
(f(s), u̇(s)− ẇ(s))L2(Ω) + (∇u(s),∇ẇ(s))L2(Ω;R2) + (Ψ(s)∇u̇(s),Ψ(s)∇ẇ(s))L2(Ω;R2)

]
ds

−
∫ t

0

(u̇(s), ẅ(s))L2(Ω) ds+ (u̇(t), ẇ(t))L2(Ω) − (u̇(0), ẇ(0))L2(Ω).

Notice that equality (6.4) gives (1.6). This show that in this model Griffith’s dynamic energy–dissipation
balance can be satisfied by a moving crack, in contrast with the case Ψ = 1, which always leads to (1.3).
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