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Abstract

This paper is concerned with equilibrium configurations of one-dimensional particle system

with non-convex nearest-neighbour and next-to-nearest-neighbour interactions and its passage

to the continuum. The goal is to derive compactness results for a Γ-development of the energy

with the novelty that external forces are allowed. In particular, the forces may depend on

Lagrangian or Eulerian coordinates.

Our result is based on a new technique for deriving compactness results which are required

for calculating the first-order Γ-limit: instead of comparing a configuration of n atoms to a

global minimizer of the Γ-limit, we compare the configuration to a minimizer in some subclass

of functions which in some sense are “close to” the configuration. This new technique is

required due to the additional presence of forces with non-convex potentials. The paper is

complemented with the study of the minimizers of the Γ–limit.

1 Introduction

The derivation of continuum theories from atomistic models in the context of elasticity theory has
been a very active area of research in the previous decades. Prominent mathematical methods,
as well as the present paper, are phrased in the context of Γ-convergence; see, e.g., [3] for an
introduction. One important problem for which partial results are available is the derivation of
continuum models for brittle fracture as a limit of atomistic models. In the limit we expect a
variational problem that yields information on the cracks and models the elastic behaviour of the
material outside the crack. Such variational models are often referred to as Griffith energies, cf.
[16, 26].
Following [4, 22], we focus on one-dimensional systems of particles (e.g. atoms or molecules) which
interact with their nearest and next-to-nearest neighbours via some non-convex potential like
the classical Lennard-Jones potential. Here, we additionally allow for external forces, including
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dead as well as live loads. That is, the external forces may depend on the position within the
reference configuration of the system as well as on the deformation, i.e., on Lagrangian and Eulerian
coordinates. We stress that the class of interaction potentials between the particles which we
consider in our analysis contains many physically relevant non-convex interaction potentials; the
classical Lennard-Jones potential is just one example, cf. Section 3. One-dimensional systems serve
as toy-models and may have applications to linear atomic structures like carbon atom wires, cf.
e.g. [11] or one-dimensional systems of silicon [21]. However, there are some mathematical results
known for higher-dimensional variational problems modeling fracture or image segmentation, cf.
[7, 12, 17, 18].
In the setting of one-dimensional chains of atoms as considered here, there are essentially two
approaches that lead to a limiting functional that contains information on the elastic behaviour
outside cracks as well as information on the cracks. (1) One approach is starting from an energy
density of the discrete system which is given by the sum of all interaction potentials between the
atoms of the chain. The Γ-limit of this energy yields an integral functional that corresponds to a
bulk energy contribution only; information on the size of the fracture is lost since the integrand
of that bulk term (d = 1-dimensional) is the convex hull of an effective potential which has its
minimum on an unbounded set. One therefore considers the so-called Γ-limit of first order which
recovers some information on surface energies (d− 1 = 0-dimensional), i.e. on the energies related
to the crack formation. A Γ-development then yields the desired limiting model, cf. [2, 10, 23].
We note that this first approach, which we follow here, allows for large deformations, cf. also
[4, 22]. (2) The second approach starts from suitably rescaled energy densities which essentially
scale surface and bulk contributions in the same way. The Γ-limit of such rescaled energies leads to
a contribution of a linear elastic energy and a part depending on the cracks. The latter approach
involves a harmonic approximation around the minimum of the interaction potentials and thus
can be considered as an approach in small displacements, cf. [8, 10, 23, 25]. Moreover, there are
studies of one-dimensional systems with different scalings for the convex and the concave part of
the internal potentials, cf. [9, 5, 6]. For other mathematical approaches to discrete to continuum
analysis for fracture mechanics we refer to [13, 14, 19].
Atomic chains with interactions between K ≥ 2 neighbours were treated in [25]. In computational
mechanics one often considers hybrid models; these were mimicked in a discrete-to-continuum
limit in [24]. Heterogeneous materials and their continuum limit as well as homogenization in the
context of fracture were studied in [20]. With the current paper we set the ground for analysing
such systems also in the presence of external forces.

In this paper we first calculate the Γ-limit H of the energy Hn of the discrete system as the
number of atoms n tends to infinity (Section 2.1). As one can see from the obtained formula,
any information on the number of cracks (i.e., the jump points of macroscopic deformation u) is
lost in the Γ-limit: indeed the positive singular part of the derivative of u has no influence on
H . Therefore, in order to gain further insight in the limiting behaviour of the considered chain of
atoms, we study a higher order description ofHn by employing the development by Γ-convergence.
More precisely, one considers the sequence of functionals

Hℓ
1,n(un) :=

Hn(un)− infu H(u)

λn
(1)

with the goal of determining a Γ-limit for Hℓ
1,n, denoted by H1 and called first order Γ-limit or

Γ-limit of first order of Hn. Incorporation of forces poses additional challenges, as the value of the
minimum of H is not known explicitly and therefore the derivation of properties Hℓ

1,n requires a
careful analysis.
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Here we restrict our attention to the characterization of the minimizers of the zeroth-order Γ-limit
and the compactness results relevant for the identification of the first order Γ-limit. The full study
of the Γ-development of the discrete energies is postponed to a future work. In order to derive
compactness results, one is tempted to employ the method of even-odd interpolation developed in
[4] and used in the previous papers. However this fails without proper modifications: the even-
odd interpolation strongly modifies the deformation u of the chain of atoms (while preserving the
gradient) and therefore it cannot provide enough control of the external force that is depending
explicitly on the variable u.
The novel method that we develop for the proof of the compactness results involves the construc-
tion of suitable competitors for H that we denote by v1,n and v2,n. The goal is to choose v1,n and
v2,n such that the difference 1

λn

(Hn(un) − 1
2 (H(v1,n) + H(v2,n))) provides control of (u′

n − γ)+

while at the same time being controlled by Hℓ
1,n(un). Here, γ is the minimizer of the effective

interaction potential and thus the equilibrium condition of u′ in the absence of external forces, cf.
Assumption A in Section 3. The definition of v1,n and v2,n is based on a careful step-by-step con-
struction that truncates the slopes of the standard interpolation and introduces jumps in suitably
chosen points of the domain (see Section 5).

The outline of the paper is as follows. In Section 2.2 we study properties for minimizers of the
zeroth-order Γ-limit in order to gain a preliminary understanding of the first order Γ-limit. More
precisely, we characterize the points of the domain (depending of the external force) where a
non-elastic behaviour can occur and we relate the size of a crack to the external force. Then we
show further regularity results of the minimizers and we prove that there cannot be regions in the
domain with a complete compression. This part is inspired by [9], where they consider the special
case of a dead load Φ(x, u) = −f(x)u(x).
In Section 2.3 we state the main results concerning the compactness estimates for the first order
Γ-limit: in Theorem 11 (a) we prove that sequences of configurations that keep Hℓ

1,n uniformly
bounded have only a finite number of bonds such that (u′

n − γ)+ ≥ ε. Notice that this result is
different to the usual compactness estimates obtained in previous related works as [4, 22]. Indeed,
the energy does not provide a control of the distance of u′

n from γ, but only of its positive part.
This is an effect due to the presence of the external forces. In Theorem 11 (b) we provide a more
precise information on the magnitude of (u′

n − γ)+. Finally, in Theorem 11 (c) we prove that the
ratio of compression of the material remains uniformly bounded along sequences that keep the
rescaled energies Hℓ

1,n bounded. This ensures that in the derivation of the first order Γ-limit the
singular behaviour of the potentials at zero is immaterial.
The set of assumptions on the interaction potentials that are used throughout the paper (denoted
by Assumption A ) will be written explicitly only in Section 3. The reader can go through the
statements of the main results assuming that the interaction potentials are two standard Lennard-
Jones potentials (see Remark 1).
In Sections 4 and 5 we provide the proofs of the results stated in Section 2.2 (for the properties
of minimizers of the limit functional) and Section 2.3 (for the main results about compactness),
which concludes the paper.

2 Setting and main results

2.1 Setting

A configuration of the chain of n + 1 atoms is described by a map un : λnZ ∩ [0, 1] → R, where
we abbreviate λn := 1

n , n ∈ N. As it is customary, we call the set of all possible configurations

3
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Figure 1: A chain of n + 1 atoms with interactions given by the potentials J1 and J2 and the
external potential Φ.

An(0, 1) and we identify it with the set of all piecewise affine interpolations on [0, 1]:

An(0, 1) = {u : [0, 1] → R : u ∈ C([0, 1]), u(x) is affine in (iλn, (i+ 1)λn) ∀i = 0, . . . , n− 1}.

We also denote by ui
n := u(iλn) the deformed configuration of the i-th atom in the chain.

The atoms are assumed to interact with their nearest neighbours and next-to-nearest neighbours;
the interactions are described using two non-convex potentials J1 and J2 for nearest-neighbour
and next-to-nearest neighbour interactions, respectively. We furthermore assume that the external
forces are described by a potential Φ : [0, 1]×R → R, where the first variable describes the position
of the atom in the reference configuration and the second variable describes the position of the
atom in the deformed configuration.

Remark 1. Throughout the paper we assume the potential Φ to be in C2([0, 1]×R). Moreover the
assumptions on Jj for j = 1, 2 are quite classical for the usual convex-concave interaction potentials
and they are satisfied by the standard Lennard-Jones potentials. In order to avoid technicalities
in this first part of the paper we summarize the set of assumptions satisfied by Φ, J1 and J2 in
Assumption A . The precise assumptions will be written explicitly and commented on in Section 3.
For the moment the reader can think of them as a standard set of assumptions satisfied by the
Lennard-Jones potential. The constant γ > 0 denotes the minimizer of the effective potential
J0 defined in (5), and (0, γc + c) for some c > 0 is the regime of strict convexity, see [H0] in
Assumption A for details.

Example 2. If the external force f depends only on the Lagrangian coordinate, i.e., describes a
dead load, the potential simply is

Φ(x, u(x)) = −f(x)u(x) . (2)

If the external force also depends on the Eulerian coordinate, which models what is sometimes
called live loads, the potential reads

Φ(x, u(x)) = −
ˆ u(x)

0

f(x,w) dw .

4



We define the energy associated with a configuration un by

Hn(un) :=

n−1∑

i=0

λnJ1

(
ui+1
n − ui

n

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2
n − ui

n

2λn

)
+

n∑

i=0

λnΦ(iλn, u
i
n) . (3)

Moreover, we add Dirichlet boundary conditions in the following way:

[B0] u0
n = 0 and un

n = ℓ,

and we prescribe the slope of the discrete configuration at the boundary, i.e. we require that

[B1] u1
n = λnθ0 and un−1

n = ℓ− λnθ1

for some fixed θ0, θ1 > 0. The reader can compare assumptions [B0] and [B1] with [4] where only
[B0] is assumed and [22] where additionally [B1] is imposed. The Dirichlet conditions [B0] and
[B1] correspond to the situation of a Hard loading device. As remarked in [13] and in [14] it is
natural to impose four Dirichlet boundary conditions in the case of next-to-nearest neighborhood
interactions as they ensure the equilibrium of the discrete system.
We set

Aℓ
n(0, 1) := {u ∈ An(0, 1) : [B0] and [B1] hold}

and

Hℓ
n(un) =

{
Hn(un) if un ∈ Aℓ

n(0, 1) ,
+∞ otherwise .

(4)

Endowing Aℓ
n(0, 1) with the L1 topology we define the (zeroth-order) Γ-limit of Hℓ

n for n → +∞
as

H := Γ− lim
n→∞

Hℓ
n

in the L1 topology (see [3] for an introduction on Γ-convergence).
In order to identify the Γ-limit H we define the effective potential J0 as the inf-convolution of J1
and J2, i.e.

J0(z) := inf

{
J2(z) +

1

2
(J1(z1) + J1(z2)) :

1

2
(z1 + z2) = z

}
. (5)

Its minimizer is denoted by γ, see Assumption A . Further, J∗∗
0 is the lower convex envelope of

J0, cf. (15). We also denote by BV ℓ([a, b]) the functions u ∈ BV ((a− 1, b+ 1)) that are equal to
0 on (a− 1, a) and equal to ℓ > 0 on (b, b+ 1). Moreover given u ∈ BV ([a, b]), the notation Dsu
refers to the singular part of the distributional derivative of u, while u′ refers to the absolutely
continuous part.

Proposition 3. Suppose that Assumption A is satisfied. Then the Γ-limit of (Hℓ
n)n with respect

to the L1(0, 1) topology is given by

H(u) :=






ˆ 1

0

J∗∗
0 (u′) + Φ(x, u) dx if u ∈ BV ℓ([0, 1]) and Dsu ≥ 0

+∞ else .

(6)
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The derivation of the zeroth-order Γ-limit for functionals of the type of (3) is classical and it has
been established in [22] in case Φ ≡ 0 (see also [4, Theorem 4.2] and [6, Theorem 3.2] for earlier
related results). We refer to Section 4 for the proof.
As one can see from (6) any information on the number of cracks (i.e., the jump points of u) is lost in
the zeroth-order Γ-limit: indeed the positive singular part of the derivative of u has no influence
on H . Therefore, in order to gain further insight in the limiting behaviour of the considered
chain of atoms, we provide a higher order description of Hn by employing the development by
Γ-convergence introduced in [2] (see also [4, 10]). More precisely, one considers the sequence of
functionals

Hℓ
1,n(un) :=

Hℓ
n(un)− infu H(u)

λn
(7)

with the goal of determining a Γ-limit for Hℓ
1,n (denoted by H1), called first order Γ-limit of Hn.

The next properties of the minimizers of the limit functional will be useful to study the first order
Γ-limit.

2.2 Properties of minimizers of the limit functional

The existence of minimizers of the limit functional is obtained by a classical application of the
direct method in the calculus of variations (see, e.g. [15]).

Proposition 4. Suppose that Assumption A is satisfied. Then the functional H : L1(0, 1) →
(−∞,+∞] defined in (6) has a minimizer u ∈ BV ℓ([0, 1]).

The study of minimizers of the zeroth-order Γ-limit is fundamental for the identification of the
first order Γ-limit. Indeed, from (7) it follows that the first-order Γ-limit is infinite for all u in the
domain of definition of H with H(u) − infv H(v) > 0. For this reason we devote the rest of this
section to the study of the properties of minimizers of H .
Note that in the special case Φ(x, u) = −f(x)u(x) the analysis performed below has already been
carried out by Braides, Dal Maso and Garroni in [9].

Depending on the external potential Φ(x, u) we can identify a region in [0, 1] in which there is
elastic behaviour and no cracks. More precisely, we will show that both (u′ − γ)+ and Dsu
necessarily vanishes outside some set determined by the external potential Φ.

Proposition 5. Suppose that Assumption A is satisfied. Let u ∈ BV ℓ([0, 1]) be a minimizer of
H. Let F : [0, 1] → R be defined by

F (x) :=

ˆ 1

x

−∂Φ

∂u
(y, u(y)) dy .

Let M be the set of (global) maximum points of F . Then the supports of (u′− γ)+ and of Dsu are
subsets of M .

The following examples show that indeed a minimizer can have jumps both in (0, 1) and at the
boundary, as well as a derivative that is strictly bigger than γ.

Example 6. Let Φ(x,w) = 0 for every x,w. Then M = [0, 1] and it is clear from (15) that any
function u ∈ BV ℓ([0, 1]) with slope bigger than γ and non-negative Dsu is a minimizer for H, a
case that was already handled in [22].

6



Example 7. Let Φ(x, u(x)) = −f(x)u(x). Thus −∂uΦ(x, u(x)) = f(x). Firstly note that there
can only be a crack at x0 ∈ (0, 1) if f(x0) = 0. Secondly we consider the case f(x) < 0 and ℓ > γ.
Then M = {1}. Assume that u ∈ BV ℓ([0, 1]) is a minimizer of H. If we modify it by defining
ũ ∈ BV ℓ([0, 1]) as

ũ(x) :=

ˆ x

0

min{u′, γ} dx ,

then J∗∗
0 (ũ′) = J∗∗

0 (u′) and Φ(x, ũ) ≤ Φ(x, u). Hence H(ũ) = H(u) and 1 ∈ Sũ.

The next proposition yields information regarding the behaviour of Φ at the jumps of a minimizer
u ∈ BV ℓ([0, 1]) of H .

Proposition 8. Suppose that Assumption A is satisfied. Let u ∈ BV ℓ([0, 1]) be a minimizer of
H. Then given x0 ∈ Su ∩ (0, 1) the condition

Φ(x0, u(x0−)) = Φ(x0, u(x0+)) = min
w∈[u(x0−),u(x0+)]

Φ(x0, w)

is satisfied. If x0 ∈ Su ∩ {0, 1}, then the following holds true:

Φ(0, u(0+)) = min
w∈[u(0−),u(0+)]

Φ(0, w) ,

Φ(1, u(1−)) = min
w∈[u(1−),u(1+)]

Φ(1, w) .

Next we prove that the derivative of any minimizer of H is bounded away from zero almost
everywhere. Physically this means that the ratio of compression of the material is bounded in the
continuum limit.

Proposition 9. Suppose that Assumption A is satisfied. Then any minimizer u ∈ BV ℓ([0, 1]) of
H satisfies essinfx∈[0,1] u

′(x) > 0.

We finally compute the Euler-Lagrange equation associated with H . The Euler-Lagrange equation
yields continuity of u′ on a certain set.

Proposition 10. Suppose that Assumption A is satisfied. Any minimizer u of H is a solution
to the Euler-Lagrange-Equation

ˆ 1

0

J∗∗
0

′(u′)φ′ +
∂Φ

∂u
(x, u)φ dx = 0 for any φ ∈ C∞

0 ([0, 1]). (8)

Moreover u′ is continuous on the open set

Mγ := {x ∈ [0, 1] : u′(x) < γ} . (9)

2.3 Compactness

In this section we state the main results of this paper, the compactness of sequences with bounded
rescaled energy Hℓ

1,n. As mentioned earlier, this is of central importance for the derivation of the
first order Γ-limit.

Theorem 11. Suppose that Assumption A is satisfied. Let (un) ⊂ Aℓ
n(0, 1) be a sequence of

configurations such that supn H
ℓ
1,n(un) < +∞. Then the following statements hold:

7



(a) For every ε > 0 there exists a constant C = C(ε) > 0 independent of n (but possibly
depending on the sequence (un)n) such that

#

{
i :

ui+1
n − ui

n

λn
≥ γ + ε

}
≤ C(ε) (10)

and

#

{
i :

∣∣∣∣
ui+1
n − ui

n

λn
− ui+2

n − ui+1
n

λn

∣∣∣∣ ≥ ε

}
≤ C(ε) . (11)

(b) Set In :=
{
i :

ui+1
n

−ui

n

λn

≤ γc
}
. Then there exists C > 0 such that

∑

i∈In

(
ui+1
n − ui

n

λn
− γ

)2

+

≤ C . (12)

(c) There holds

lim inf
n→∞

min
i∈{0,...,n−1}

ui+1
n − ui

n

λn
> 0 . (13)

Some comments are in order.
Part (a) of Theorem 11 shows that sequences of configurations that keep the rescaled energies
Hℓ

1,n uniformly bounded have only a finite number of bonds such that (u′
n − γ)+ ≥ ε. We remark

that in contrast to the previous works [4, 22] we do not expect the L1 limit of an equibounded
sequence to have derivative equal to γ almost everywhere if ℓ ≥ γ. This is due to the effect
of the external force applied on the system. Part (b) provides a more precise information on the
magnitude of (un−γ)+. In part (c) we prove that the ratio of compression of the material remains
uniformly bounded along sequences for which the rescaled energies Hℓ

1,n are bounded. This is the
asymptotic counterpart of Proposition 9. It ensures that in the derivation of the first order Γ-limit
the singular behaviour of the potentials is in fact immaterial. The proofs of parts (a), (b) and (c)
of Theorem 11 can be found in Sections 5.1, 5.2 and 5.3, respectively.

As a consequence of Theorem 11 we deduce the following result about the convergence of a sequence
of configurations equibounded in energy. The proof is an adaptation of Theorem 3.1 in [5] (see
also [4]); it can be found in Section 5.3.

Proposition 12. Suppose that Assumption A is satisfied. Let (un)n ⊂ Aℓ
n(0, 1) be a sequence of

configurations such that supn→+∞ Hℓ
1,n(un) < ∞. Then, up to a subsequence, un → u strongly in

L1(0, 1), where u ∈ SBV ℓ([0, 1]) is such that

(i) #Su < +∞,

(ii) [u] > 0 in Su,

(iii) u′ ≤ γ almost everywhere in (0, 1).

Here, [u] denotes the difference of the left and the right limits of u.

As a consequence of Proposition 12, no information is encoded in the first order Γ-limit if all
minimizers of H have slope strictly bigger than γ in some set of positive measure or have a non-
zero Cantor part of the derivative. Due to the effect of the external force this can happen easily
as the following example shows.

8



Example 13. Consider an arbitrary function u ∈ C2((0, 1)) such that u(0) = 0, u(1) = ℓ and
u′ > γ. Then choosing Φ(x,w) = (u − w)2, the function u is the unique minimizer of H. Hence
by the previous considerations and Theorem 11 the first order Γ-limit is infinite.

As a positive result we show that under some further assumptions on the external force, there
always exists a minimizer ofH with derivative bounded by γ. The proof can be found in Section 5.3.

Proposition 14. Suppose that Assumption A is satisfied. Assume in addition that

sign
∂Φ

∂u
(x,w) is independent on w ∀x ∈ [0, 1] (14)

and that sign ∂Φ
∂u only changes its value at finitely many points on [0, 1]. Then there exists a

minimizer u ∈ BV ℓ([0, 1]) of H with u′(x) ≤ γ for almost every x ∈ (0, 1) and |Dcu|([0, 1]) = 0.

3 Assumption A on interaction potentials and external forces

We say that Assumption A is satisfied if the interaction potentials J1 and J2 as well as the effective
potential J0 defined in (5) satisfy conditions [H0]–[H5] and if the external force is described by a
potential Φ satisfying condition [Φ1] stated as follows:

[H0] (strict convexity on a bounded interval) There exists γc ∈ (0,+∞) and c > 0 such that Jj
is strictly convex in (0, γc + c) for j = 0, 1.

[H1] (regularity) Jj ∈ C2((0,∞)) for j = 0, 1, 2.

[H2] (uniqueness of minimal energy configurations) For any fixed z ∈ (0, γc)

min

{
J2(z) +

1

2
(J1(z1) + J1(z2)) :

1

2
(z1 + z2) = z

}

is attained at exactly z1 = z2 = z.

[H3] (behaviour at infinity) Jj(z) → Jj(∞) ∈ R for z → ∞ for j = 0, 1, 2.

[H4] (structure of J0) J0 has a unique minimum point γ < γc with infz∈[γc,∞) J0(z) > J0(γ).

[H5] Jj(z) = +∞ for z ≤ 0 and Jj(z) → +∞ as z → 0 for j = 1, 2.

We remark that assumption [H0] about the strict convexity of J1 up to γc is needed in part (b)
of Theorem 11. The other hypotheses are classical in the context of one dimensional, non-convex
discrete to continuum theory (see for example [4, 22]).

Our assumption on the potential Φ is as follows:

[Φ1] Φ ∈ C2([0, 1]× R).

Remark 15. Assumptions [H0] and [H4] imply that

J∗∗
0 (z) :=

{
J0(z) z < γ,
J0(γ) z ≥ γ.

(15)

Remark 16 (Lennard-Jones potentials). The classical Lennard-Jones potentials satisfy the as-
sumptions [H0]–[H5]. Indeed for given c1, c2 > 0 we define

J1(z) =
c1
z12

− c2
z6

and J2(z) = J1(2z)

for z > 0 and we extend them to +∞ on (−∞, 0]. One can check that J1, J2 and J0 satisfy
[H1]–[H5] (see Remark 4.1 in [22] for the detailed computation).

9



4 Proofs for Proposition 3 and Section 2.2

Proof of Proposition 3. As the result for Φ ≡ 0 has already been proved in [22] it is enough to
show the convergence of the force term for any converging sequence (un)n ⊂ Aℓ

n(0, 1).
Consider (un)n ⊂ Aℓ

n(0, 1) be a sequence of discrete configurations converging to some limit u in
L1(0, 1). We can suppose without loss of generality that u′

n > 0 for every n ∈ N. Indeed if there
exists a sequence nk such that u′

nk
(x) ≤ 0 in an interval, then H(unk

) = +∞ for every k and
H(u) = +∞ thanks to assumption [H5]. Thus we have

∣∣∣∣∣

n∑

i=0

λnΦ(iλn, u
i
n)−

ˆ 1

0

Φ(x, u(x)) dx

∣∣∣∣∣

≤
n−1∑

i=0

∣∣∣∣λnΦ(iλn, un(iλn))−
ˆ (i+1)λn

iλn

Φ(y, u(y)) dy

∣∣∣∣+ λn sup
x∈[0,1],0≤w≤ℓ

|Φ(x,w)|

≤
n−1∑

i=0

ˆ (i+1)λn

iλn

|Φ(y, u(y))− Φ(iλn, un(iλn))| dy + Cλn

≤
n−1∑

i=0

sup
x∈[0,1],0≤w≤ℓ

|∇Φ(x,w)|
(
λ2
n +

ˆ (i+1)λn

iλn

|u(y)− un(iλn)| dy
)

+ Cλn

≤C

n−1∑

i=0

ˆ (i+1)λn

iλn

|u(y)− un(y)| dy + C

n−1∑

i=0

ˆ (i+1)λn

iλn

|un(y)− un(iλn)| dy + Cλn .

Thus as un → u in L1(0, 1) it is enough to prove that

lim
n→+∞

n−1∑

i=0

ˆ (i+1)λn

iλn

|un(y)− un(iλn)| dy = 0 . (16)

Indeed by the fact that un is increasing for every n we have

n−1∑

i=0

ˆ (i+1)λn

iλn

|un(y)− un(iλn)| dy ≤
n−1∑

i=0

ˆ (i+1)λn

iλn

un ((i+ 1)λn)− un(iλn) dy = λnℓ

that yields (16).

Proof of Proposition 4. By Proposition 3, H is the Γ-limit of some functional with respect to
the L1(0, 1)-topology. Hence it is lower semicontinuous in L1(0, 1) (cf., [3, Proposition 1.28]). As
the weak-∗ convergence of (uk)k towards u in BV ([0, 1]) implies that uk → u in L1(0, 1), H is
sequentially lower semicontinuous with respect to weak-∗ convergence in BV ([0, 1]).
Moreover, given (uk)k ⊂ BV ℓ([0, 1]) of H satisfying supk H(uk) < +∞ there holds that u′

k > 0
because otherwise we had J∗∗

0 (u′
k) = +∞ by [H5]. Hence uk is monotone increasing and bounded

by ℓ for every k ∈ N. Thus ||uk||L1(0,1) ≤
´ 1

0 ℓ dx = ℓ and |Duk|([0, 1]) = ℓ − 0. This implies
||uk||BV ([0,1]) ≤ C uniformly in k.
By the direct method of the calculus of variations we thus get existence of a minimizer (see also
[3, Theorem 1.21]).
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Proof of Proposition 5. Assume that the thesis does not hold. We then show that u is not a
minimizer of H . Let λ be the measure defined by

λ(A) :=

ˆ

A∩[0,1]

(u′ − γ)+dx+Dsu(A ∩ [0, 1])

for any Borel set A ⊂ R. If the thesis were wrong, then the support of λ would not be contained
in M . Choose a point m ∈ M and set

ũ(x) :=

ˆ x

0

min{u′, γ} dy + λ([0, 1]) · χ{x:x>m}(x) .

Following our definition of BV ℓ([0, 1]) and observing that Du((−1, x]) = Du([0, x]) for any x ∈
[0, 1] we obtain for the right continuous good representative of u, again denoted by u, see [1,
Theorem 3.28], that

u(x) =

ˆ x

0

u′(y) dy +Dsu([0, x]), x ∈ [0, 1] . (17)

Hence, as
´ x

0 min{u′, γ} dy −
´ x

0 u′ dy = −
´ x

0 (u
′ − γ)+ dy, we infer that

ũ(x)− u(x) =− λ([0, x]) + λ([0, 1]) · χ{x:x>m}(x)

=−
ˆ x

0

d(λ− λ([0, 1])δm) ,

where δm denotes the Dirac measure concentrated in the point m. Obviously, ũ ∈ BV ℓ([0, 1]).
We have u′ = ũ′ outside the set {u′ > γ}, inside of which we have ũ′ = γ. Since by (15)
J∗∗
0 (v) = J∗∗

0 (γ) for v ≥ γ, for µ ∈ [0, 1] we calculate

H(u)−H((1 − µ)u+ µũ) =

ˆ 1

0

Φ(x, u(x))− Φ(x, (1− µ)u(x) + µũ(x)) dx.

We now show that this contradicts the assumption that u is a minimizer of H . Note that we
choose convex combinations of u and ũ here to ensure that the jumps do not become negative and
we are dealing with monotone increasing functions. Dividing by µ and letting µ → 0, we obtain

d

dµ
H((1− µ)u + µũ)

∣∣∣∣
µ=0

=

ˆ 1

0

∂Φ

∂u
(x, u(x))(ũ(x)− u(x)) dx

=

ˆ 1

0

∂Φ

∂u
(x, u(x))

(
−
ˆ x

0

d(λ− λ([0, 1])δm)(y)

)
dx

=

ˆ 1

0

(
ˆ 1

y

−∂Φ

∂u
(x, u(x)) dx

)
d(λ − λ([0, 1])δm)(y)

=

ˆ 1

0

F (y) d(λ− λ([0, 1])δm)(y) =

ˆ 1

0

F (y) dλ(y)− λ([0, 1])F (m)

=

ˆ 1

0

F (y)− F (m) dλ(y)

=

ˆ

(suppλ)∩M

F (y)− F (m) dλ(y) +

ˆ

(suppλ)\M

F (y)− F (m) dλ(y)

=

ˆ

(suppλ)\M

F (y)− F (m) dλ(y) .

11



Since m is a (global) maximizer of F , we have F (x) ≤ F (m) for any x ∈ [0, 1] and for x /∈ M we
have F (x) < F (m). Moreover, due to the continuity of F , we have that M is closed. Hence, as
we assume by contradiction that the support of λ is not a subset of M , it follows that

d

dµ
H((1− µ)u + µũ)

∣∣∣∣
µ=0

< 0 ,

which yields the desired contradiction as u is supposed to be a minimizer of H .

Proof of Proposition 8. We argue by contradiction. To this end, we “split” the jump into two
smaller jumps and move one of the jumps a little to the left or right. If x0 = 0 or x0 = 1, we
can only move in one direction, thereby explaining the weaker assertions of the proposition at the
boundary.
Suppose Φ(x0, u(x0−)) > Φ(x0, w) for some w ∈ (u(x0−), u(x0+)]. The other case can be handled
similarly.
Let ε > 0 be small and define ũε(x) ∈ BV ℓ([0, 1]) as

ũε(x) :=

{
u(x) for x /∈ [x0 − ε, x0]

u(x) + w − u(x0−) for x ∈ [x0 − ε, x0] .

We have
ˆ 1

0

J∗∗
0 (u′) dx =

ˆ 1

0

J∗∗
0 (ũ′

ε) dx (18)

and
ˆ 1

0

Φ(x, ũε(x)) − Φ(x, u(x)) dx =

ˆ x0

x0−ε

Φ(x, u(x) + w − u(x0−))− Φ(x, u(x)) dx . (19)

As x ր x0, we have u(x) → u(x0−) and thus u(x) +w− u(x0−) → w. Hence by continuity of Φ,
(18) and (19), we obtain that

lim
ε→0

H(ũε)−H(u)

ε
= lim

ε→0

1

ε

ˆ x0

x0−ǫ

Φ(x, u(x) + w − u(x0−))− Φ(x, u(x)) dx

=Φ(x0, w)− Φ(x0, u(x0−)) < 0 .

This is in contradiction to the fact that u is a minimizer of H .

Proof of Proposition 9. Let u be a minimizer of H . Suppose by contradiction that u satisfies
essinfx∈[0,1] u

′(x) = 0. Fix m,n ∈ N such that m < n and set

An :=

{
x ∈ [0, 1] : u′(x) <

1

n

}

and

Cm :=

{
x ∈ [0, 1] : u′(x) >

1

m

}
.

As essinfx∈[0,1] u
′(x) = 0, for every n ∈ N one has that |An| > 0. Moreover

lim
n→+∞

|An| = 0 , (20)

12



as otherwise H(u) = +∞. For the same reason there exists m0 > 0 such that for all m > m0 we
have |Cm| > 0. Next we define a regularization ũ of u, which increases the derivative of u to 1/m
where it becomes too small and decreases the derivative on Cm in order to meet the boundary
condition at 1. For x ∈ [0, 1] we set

ũ(x) :=

ˆ

[0,x]\An

u′(y) dy +Dsu([0, x]) +

ˆ

[0,x]∩An

1

m
dy +

|Cm ∩ [0, x]|
|Cm|

ˆ

An

(
u′(y)− 1

m

)
dy .

It turns out that ũ ∈ BV ℓ([0, 1]). Notice in addition that

ũ′(x) = u′(x) for a.e. x ∈ [0, 1] \ (Cm ∪ An) . (21)

By the above definition of ũ and Equation (17), we obtain for any x ∈ [0, 1]

|ũ(x) − u(x)| ≤
ˆ

[0,x]∩An

∣∣∣
1

m
− u′(y)

∣∣∣ dy +
ˆ

An

∣∣∣
1

m
− u′(y)

∣∣∣dy
|Cm ∩ [0, x]|

|Cm| .

By the definition of An and the fact that u′ ≥ 0 the following estimate holds:

sup
x∈[0,1]

|u(x)− ũ(x)| ≤ 2|An|
m

. (22)

Moreover, by [H1] and [H3] we know that J∗∗
0 is Lipschitz continuous on [ 1

2m ,∞) for every m > 0.
Thus, using (20), for any m large enough there exists n0(m) such that for all n ≥ n0 for a.e.
x ∈ Cm the inequality

|J∗∗
0 (ũ′(x)) − J∗∗

0 (u′(x))| ≤ C(m)
|An|
m

holds.
This yields for any n large enough using [Φ1] as well as Equations (21) and (22)

H(ũ)−H(u)

=

ˆ

An

J∗∗
0

(
1

m

)
− J∗∗

0 (u′) dx+

ˆ

Cm

J∗∗
0 (ũ′)− J∗∗

0 (u′) dx+

ˆ 1

0

Φ(x, ũ(x))− Φ(x, u(x)) dx

≤
ˆ

An

J∗∗
0

(
1

m

)
− J∗∗

0

(
1

n

)
dx+

ˆ

Cm

C(m)
|An|
m

dx+
C|An|
m

≤ |An|
(
J∗∗
0

(
1

m

)
− J∗∗

0

(
1

n

)
+

C(m)

m
+

C

m

)
.

Selecting n large enough we see that, thanks to hypothesis [H5], the right hand side becomes
negative. Hence we have reached a contradiction because u minimizes H .

Proof of Proposition 10. Let u be a minimizer of H . For every test function φ consider u+λφ
for λ ∈ R. Thanks to the minimality of u we have

H(u+ λφ)−H(u)

λ
≥ 0 . (23)

By Proposition 9, for λ small enough, u′(x) + λφ′(x) > 0 for almost every x ∈ [0, 1]. Therefore
letting λ → 0 in (23) and using assumptions [Φ1], [H1] and [H3] to differentiate under the integral
sign we obtain that

ˆ 1

0

J∗∗
0

′(u′)φ′ +
∂Φ

∂u
(x, u)φ dx ≥ 0 .
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Then replacing φ with −φ we infer the opposite inequality.
To prove the regularity of u′ in Mγ , defined in (9), we notice that the boundedness of u implies that
∂Φ
∂u (x, u) is bounded. The Euler-Lagrange equation (8) therefore entails that J∗∗

0
′(u′) is Lipschitz.

Notice that the preimage of {0} of the continuous map J∗∗
0

′(u′) equals {x ∈ [0, 1] : u′(x) ≥ γ} by
the strict monotonicity of J∗∗

0
′(z) for z ≤ γ (assumption [H0]) and the fact that J∗∗

0
′(z) is constant

for z ≥ γ. Since {0} is closed, {x ∈ [0, 1] : u′(x) ≥ γ} is closed. Hence Mγ is open.
By the continuity of J∗∗

0
′(u′), the strict monotonicity of J∗∗

0
′ also implies the continuity of u′ on

Mγ .

5 Proofs for Section 2.3

In what follows we use extensively the following quantity:

R(z1, z2) :=
1

2
[J1(z1) + J1(z2)] + J2

(
z1 + z2

2

)
− J0

(
z1 + z2

2

)
. (24)

First of all we propose a technical lemma that shows that under the assumption of convexity of
J0 and J1 (see hypothesis [H0]), the functional R(z1, z2) is bounded from below quadratically. We
will employ this estimate in the proof of part (b) of Theorem 11.

Lemma 17. Let [H0]–[H5] be satisfied. Then

R(z1, z2) ≥ c |z1 − z2|2 for all 0 < z1, z2 < γc . (25)

Proof. By strict convexity of J1 on (0, γc+ c) (see assumption [H0]), the function R(a+ b, a− b)−
C|b|2 is still convex in b for C > 0 small enough as long as b is such that a+ b, a− b < γc. By the
definition of J0 we know that R(a+ b, a− b) ≥ 0. Moreover thanks to hypothesis [H2], R(a, a) = 0
whenever a < γc. Hence

R(a+ b, a− b) = R(a+ b, a− b)−R(a, a) ≥ C|b|2

for a+ b, a− b < γc. Hence (25) follows.

We are in position to prove the main theorem. In the next sections we prove separately part (a),
(b) and (c) of Theorem 11.

5.1 Proof of part (a) of Theorem 11

Proof. Let (un) ⊂ Aℓ
n(0, 1) be a sequence of configurations such that supn H

ℓ
1,n(un) < +∞.

The first step of the proof of the compactness result for the Γ-limit of first order is the con-
struction of suitable competitors for H that allow to obtain the estimates in (10) and (11).
In particular the goal is to define competitors v1,n and v2,n in such a way that the difference
1
λn

(
Hℓ

n(un)− 1
2 (H(v1,n) +H(v2,n))

)
provides control of the quantities in (10) and (11). Observe

in addition that this difference is controlled from above by Hℓ
1,n(un). We remark that the com-

petitors v1,n and v2,n are not continuous and hence do not belong to Aℓ
n(0, 1); however, they are

admissible functions for H .
We will divide the proof in two steps: the first one is devoted to the construction of the competitors
and the second one to the compactness estimates.

Step 1. Construction of the competitors v1,n and v2,n

14



0 1

0

ℓ

x

un(x)

ṽ1,n(x)

ṽ2,n(x)

Figure 2: A configuration of the discrete chain (black) and the corresponding naive even-odd
interpolators ṽ1,n, ṽ2,n (dashed lines, blue, red)

Define first ṽ1,n : [0, 1] → R on the even atoms (and on the n-th one) in the following way:

ṽ1,n(2kλn) := un(2kλn) for k ∈ N0, k ≤ n
2

ṽ1,n(nλn) := un(nλn)

and then by piecewise affine interpolation for all other values of x ∈ [0, 1]. Define ṽ2,n similarly,
but prescribing the values of ṽ2,n at 0, (2k + 1)λn and nλn instead, for k ≤ n−1

2 .
As usual in this context, the general idea is to use the quantity

1

2
J1

(
ui+1
n − ui

n

λn

)
+

1

2
J1

(
ui+2
n − ui+1

n

λn

)
+ J2

(
ui+2
n − ui

n

2λn

)

= J0

(
ui+2
n − ui

n

2λn

)
+R

(
ui+1
n − ui

n

λn
,
ui+2
n − ui+1

n

λn

)
(26)

(see (24) for the definition of R) in order to compare Hn(un) with
1
2H(ṽ1,n)+

1
2H(ṽ2,n). However,

due to the presence of a force term Φ this does not work directly, as the affine interpolation
involved in the definition of ṽi,n may lead to a large difference between un and ṽi,n at some points
(see Fig. 2). We thus need to modify the functions ṽi,n accordingly.
We define v1,n to be equal to ṽ1,n everywhere, with the following exception: if the slope of ṽ1,n
exceeds γ on an interval (2kλn, (2k + 2)λn), where γ is as in [H4], we prescribe v1,n on the atoms
2kλn, (2k + 1)λn and (2k + 2)λn as

v1,n(2kλn) := ṽ1,n(2kλn),

v1,n((2k + 1)λn) := un((2k + 1)λn),

v1,n((2k + 2)λn) := ṽ1,n((2k + 2)λn).

Then, we extend it to (2kλn, (2k+2)λn) not by affine interpolation but we instead impose v1,n to
have slope γ almost everywhere on the interval (2kλn, (2k + 2)λn). In this way we are forced to
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un(x)

v1,n(x)

Figure 3: A configuration of the discrete chain (black) and the corresponding adjusted even-odd
interpolating function v1,n before the final translation step (dashed line, bl)

introduce jumps in some intermediate points of the interval (2kλn, (2k + 2)λn); in particular we
allow for jumps in (2k + 1

2 )λn and (2k + 3
2 )λn (cf. Fig. 3).

Finally, we possibly perform a translation to v1,n obtaining as a final outcome the function v1,n:
if the jumps at (2k+ 1

2 )λn or at (2k+ 3
2 )λn are negative, we add a constant to v1,n on the interval

((2k + 1
2 )λn, (2k + 3

2 )λn) in such a way that the negative jump is eliminated and the function
becomes continuous at that point again (cf. Fig. 4 and 5). This does not cause another negative
jump to appear on the other end of the interval, since we are in the case of the slope of v1,n being
larger than γ on (2kλn, (2k + 2)λn).
The definition of v2,n is performed using the obvious modifications: on the intervals (2k −
1)λn, (2k + 1)λn) one applies to ṽ2,n the same procedure used to construct v1,n from ṽ1,n.

Step 2. Compactness estimates

Now we are in a position to prove the statements of part (a) of Theorem 11. By (26) and the
definition of ṽ1,n above, the following equality holds for any even 0 ≤ i ≤ n− 2:

1

2
J1

(
ui+1
n − ui

n

λn

)
+

1

2
J1

(
ui+2
n − ui+1

n

λn

)
+ J2

(
ui+2
n − ui

n

2λn

)

=
1

2λn

ˆ (i+2)λn

iλn

J0(ṽ
′
1,n) dx+R

(
ui+1
n − ui

n

λn
,
ui+2
n − ui+1

n

λn

)
. (27)

An analogous equality holds for i odd and ṽ2,n. Taking the sum with respect to i ranging from 0

16



0 1

0

ℓ

x

un(x)

v1,n(x)

Figure 4: A configuration of the discrete chain (black) and the corresponding adjusted even-odd
interpolating function v1,n after the final translation step (dashed line, blue); the left discontinuity
has been fixed during the translation step

0 1

0

ℓ

x

un(x)

v1,n(x)

Figure 5: A slightly different configuration of the discrete chain (black) and the corresponding
adjusted even-odd interpolating function v1,n (dashed line, blue); here no translation was required
as no “backward” jump occurred as a result of the modification of ṽ1,n and consequently v1,n
remains discontinuous at two points.
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to n− 2 and multiplying by λn, we therefore obtain

n−1∑

i=0

λnJ1

(
ui+1
n − ui

n

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2
n − ui

n

2λn

)

=
1

2

ˆ 1

0

J0(ṽ
′
1,n) dx +

1

2

ˆ 1

0

J0(ṽ
′
2,n) dx+

n−2∑

i=0

λnR

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
(28)

+
λn

2

[
J1

(
u1
n − u0

n

λn

)
+ J1

(
un
n − un−1

n

λn

)
− J0

(
u1
n − u0

n

λn

)
− J0

(
un
n − un−1

n

λn

)]
,

where the last line contains the corrections for the segments at the end of the chain. Moreover as
the slope of un at the boundary is prescribed (see assumption [B1]), the terms in the last line can
be estimated by Cλn. This yields

n−1∑

i=0

λnJ1

(
ui+1
n − ui

n

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2
n − ui

n

2λn

)

≥1

2

ˆ 1

0

J0(ṽ
′
1,n) dx+

1

2

ˆ 1

0

J0(ṽ
′
2,n) dx+

n−2∑

i=0

λnR

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
− Cλn . (29)

Notice that for 1 ≤ i ≤ n− 1 even we have that ui
n = v1,n(iλn) and the function v1,n is Lipschitz

with slope less or equal than γ in ((i − 1
2 )λn, (i +

1
2 )λn). Therefore by Lipschitz continuity of Φ

(see assumption [Φ1]), we infer

1

λn

ˆ (i+ 1
2
)λn

(i− 1
2
)λn

Φ(x, v1,n(x)) dx− Φ(iλn, u
i
n) ≤

1

λn

ˆ (i+ 1
2
)λn

(i− 1
2
)λn

∣∣Φ(x, v1,n(x)) − Φ(iλn, u
i
n)
∣∣ dx

≤ Cλn +
C

λn

ˆ (i+ 1
2
)λn

(i− 1
2
)λn

|v1,n(x)− ui
n| dx ≤ Cλn . (30)

For 1 ≤ i ≤ n− 1 odd we can distinguish two cases. If
ui+1
n

−ui−1
n

2λn

> γ we have, by the construction

in the previous step that |ui
n − v1,n(iλn)| ≤ Cλn. On the other hand if

ui+1
n

−ui−1
n

2λn

≤ γ we have

v1,n(iλn) = ṽ1,n(iλn) =
ui+1
n

+ui−1
n

2 . In this case as well it is easy to check that |ui
n − v1,n(iλn)| ≤

Cλn. Therefore, thanks to assumption [Φ1], we infer

1

λn

ˆ (i+ 1
2
)λn

(i− 1
2
)λn

Φ(x, v1,n(x)) dx− Φ(iλn, u
i
n)

≤ 1

λn

ˆ (i+ 1
2
)λn

(i− 1
2
)λn

|Φ(x, v1,n(x)) − Φ(iλn, v1,n(iλn))| dx+
∣∣Φ(iλn, v1,n(iλn)− Φ(iλn, u

i
n)
∣∣

≤ Cλn . (31)

Analogous estimates hold for v2,n.
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Then, multiplying inequalities (30) and (31) by λn/2 and summing from 1 to n− 1, we obtain

n∑

i=0

λnΦ(iλn, u
i
n)

≥1

2

ˆ 1

0

Φ(x, v1,n) dx+
1

2

ˆ 1

0

Φ(x, v2,n) dx+ λnΦ(0, 0) + λnΦ(1, ℓ)

− 1

2

ˆ

λn

2

0

Φ(x, v1,n) + Φ(x, v2,n) dx− 1

2

ˆ 1

1−λn

2

Φ(x, v1,n) + Φ(x, v2,n) dx− Cλn

≥1

2

ˆ 1

0

Φ(x, v1,n) dx+
1

2

ˆ 1

0

Φ(x, v2,n) dx− Cλn , (32)

where in the last inequality we used assumption [Φ1]. Putting together estimates (32) and (29),
we infer

n−1∑

i=0

λnJ1

(
ui+1
n − ui

n

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2
n − ui

n

2λn

)
+

n∑

i=0

λnΦ(iλn, u
i
n)

≥1

2

ˆ 1

0

J∗∗
0 (v′1,n) + Φ(x, v1,n) dx+

1

2

ˆ 1

0

J∗∗
0 (v′2,n) + Φ(x, v2,n) dx

+
1

2

ˆ 1

0

(J0 − J∗∗
0 )(ṽ′1,n) dx +

1

2

ˆ 1

0

(J0 − J∗∗
0 )(ṽ′2,n) dx

+

n−2∑

i=0

λnR

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
− Cλn ,

where we have used J∗∗
0 (v′i,n) = J∗∗

0 (ṽ′i,n), as ṽ
′
i,n only differs from v′i,n on segments with slope of

at least γ and J∗∗
0 (z) is constant for all z ≥ γ.

Note that the first two integrals on the right-hand side are precisely 1
2H(v1,n) +

1
2H(v2,n). Sub-

tracting this term from both sides of the equation and dividing by λn, we obtain that

Hℓ
1,n(un) =

Hℓ
n(un)− infH(u)

λn

≥ Hℓ
n(un)− 1

2H(v1,n)− 1
2H(v2,n)

λn

≥ 1

2λn

ˆ 1

0

(J0 − J∗∗
0 )(ṽ′1,n) dx+

1

2λn

ˆ 1

0

(J0 − J∗∗
0 )(ṽ′2,n) dx

+

n−2∑

i=0

R

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
− C . (33)

Notice that the constant C in (33) does not depend on the sequence (un)n ⊂ Aℓ
n(0, 1).

Let us prove (10) by contradiction. Given 0 < ε < γc−γ
2 define

In :=

{
i :

ui+1
n − ui

n

λn
> γ + ε

}
,

Jn :=

{
i :

ui+2
n − ui

n

2λn
> γ + ε/2

}
.
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Suppose by contradiction that there exists ε > 0 such that

lim sup
n→+∞

#In = +∞ . (34)

First we prove that (34) implies that

lim sup
n→+∞

#Jn = +∞ . (35)

Indeed, using (33) and the equiboundedness of the rescaled energy, we obtain

n−2∑

i=0

R

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
≤ C . (36)

Introduce the notation

In :=

{
i :

∣∣∣∣
ui+1
n − ui

n

λn
− ui+2

n − ui
n

2λn

∣∣∣∣ ≥
ε

2

}
∩ Jc

n ,

where we denote by Jc
n the set of indices that do not belong to Jn. By the definition of J0 we have

that R(z1, z2) ≥ 0 for every z1, z2. In addition to that, whenever 1
2 (z1+ z2) ∈ (0, γc), we also have

that R(z1, z2) = 0 if and only if z1 = z2 = 1
2 (z1 + z2) by [H2]. Therefore, as ε is chosen such that

ε < γc−γ
2 and thanks to hypotheses [H1] and [H5], there exists a constant C(ε) > 0 not depending

on n such that for every i ∈ In

R

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
≥ C(ε) .

Hence from (36) we infer

C ≥
n−2∑

i=0

R

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
≥
∑

i∈In

R

(
ui+2
n − ui+1

n

λn
,
ui+1
n − ui

n

λn

)
≥ (#In)C(ε) .

We deduce then that #In < C, where the constant C is not depending on n. By the definition of
In and Jn we have also that

In ∩ Jc
n =

{
i ∈ In ∩ Jc

n :

∣∣∣∣
ui+1
n − ui

n

λn
− ui+2

n − ui
n

2λn

∣∣∣∣ ≥
ε

2

}
= In ∩ In .

As #In < C, we conclude that #(In ∩ Jc
n) < C. Then (35) follows as a consequence of (34).

Finally, using the inequality (33) we obtain

∑

i∈Jn

(
J0

(
ui+2
n − ui

n

2λn

)
− J0(γ)

)
≤ C.

Hence (35) yields a contradiction with assumption [H4].
In an analogous way it is possible to obtain (11).
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5.2 Proof of part (b) of Theorem 11

Proof. In order to obtain (12) we estimate in the following way:

∑

i∈In

(
ui+1
n − ui

n

λn
− γ

)2

+

=
∑

i∈In

min

{(
ui+1
n − ui

n

λn
− γ

)2

+

, (γc − γ)2

}

=
∑

i∈In

min

{(
ui+1
n − ui−1

n

2λn
− γ +

ui+1
n − ui

n

2λn
− ui

n − ui−1
n

2λn

)2

+

, (γc − γ)2

}

≤
∑

i∈In

min

{
2

(
ui+1
n − ui−1

n

2λn
− γ

)2

+

+ 2

(
ui+1
n − ui

n

2λn
− ui

n − ui−1
n

2λn

)2

+

, (γc − γ)2

}

≤
∑

i∈In

min

{
2

(
ui+1
n − ui−1

n

2λn
− γ

)2

+

, (γc − γ)2

}

+
∑

i∈In

min

{
2

(
ui+1
n − ui

n

2λn
− ui

n − ui−1
n

2λn

)2

+

, (γc − γ)2

}

≤ 2
∑

i∈In

min

{(
ui+1
n − ui−1

n

2λn
− γ

)2

+

, (γc − γ)2

}
+
∑

i∈In

∣∣∣∣
ui+1
n − ui

n

λn
− ui

n − ui−1
n

λn

∣∣∣∣
2

.

Using (10) in part (a) of Theorem 11 we deduce that for all i ∈ In but a finite number of indices
(independent on n) one has that

ui
n − ui−1

n

λn
< γc ,

where c is the constant defined in assumption [H0]. Therefore combining this fact with Lemma 17
and the inequality (33) we infer that

∑

i∈In

∣∣∣∣
ui+1
n − ui

n

λn
− ui

n − ui−1
n

λn

∣∣∣∣
2

< C .

Notice that

In :=

{
i :

ui+1
n − ui−1

n

2λn
> γc

}
⊂
({

i :
ui+1
n − ui

n

λn
> γc

}
∪
{
i :

ui
n − ui−1

n

λn
> γc

})
;

hence, thanks to (10) in Theorem 11, its cardinality is finite and independent of n. Therefore

∑

i∈In

(
ui+1
n − ui

n

λn
− γ

)2

+

≤ 2
∑

i∈Ic
n

(
ui+1
n − ui−1

n

2λn
− γ

)2

+

+ C . (37)

Finally, using the strict convexity of J0 in (0, γc + c) (see hypothesis [H0]), from (37) we obtain
that

∑

i∈In

(
ui+1
n − ui

n

λn
− γ

)2

+

≤ C
∑

i∈Ic
n

(
J0

(
ui+1
n − ui−1

n

2λn

)
− J∗∗

0

(
ui+1
n − ui−1

n

2λn

))
+ C ≤ C ,

where in the last inequality we used (33) and the equiboundedness of the rescaled energy.
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5.3 Proofs of part (c) of Theorem 11 and of the final remarks

Proof of part (c) of Theorem 11. By contradiction suppose that (13) does not hold true. No-
tice first that, as Jj(z) = ∞ for z ≤ 0 (see [H5]), we may restrict ourselves to sequences of

configurations (un)n of the discrete chains with un → u with u′
n > 0. Set 0 < S < S̃ and define

h(x) :=

ˆ x

λn

χ{u′

n
<S} dt and w(x) :=

ˆ x

λn

χ{u′

n
>S̃} dt .

for x ∈ (λn, 1 − λn) and extended constantly (and in a continous way) to (0, 1). Then setting
K > 0, define

ũn(x) := un(x) +Kh(x)− Kh(1)w(x)

w(1)
.

One can easily check that ũn ∈ Aℓ
n(0, 1). Moreover

ũ′
n(x) = u′

n(x) +Kχ{u′

n
<S} −

Kh(1)χ{u′

n
>S̃}

w(1)
.

Notice that h(1) → 0 as S → 0 uniformly in n. Indeed if, by contradiction, h(1) is bounded away
from zero as S → 0 and along a subsequence nk → 0, then using a diagonal argument it is easy to
see that supn Hn(un) = +∞ contradicting the hypothesis. Moreover for a similar argument it is

possible to choose S̃ small enough such that w(1) > C > 0 uniformly in n.

Hence choosing S small enough such that Kh(1)/w(1) ≤ S̃/2 we ensured that ũ′
n(x) > 0 and

therefore ũn ∈ Aℓ
n(0, 1). Moreover

|ũn − un| = K

∣∣∣∣h(x)− h(1)
w(x)

w(1)

∣∣∣∣ ≤ Kh(1).

This implies, thanks to assumption [Φ1] that

∣∣∣∣∣

n∑

i=0

λnΦ(iλn, u
i
n)−

n∑

i=0

λnΦ(iλn, ũ
i
n)

∣∣∣∣∣ ≤ Ch(1) .

Therefore

Hn(un)−Hn(ũn) ≥
n−1∑

i=0

[
J1

(
ui+1
n − ui

n

λn

)
− J1

(
ũi+1
n − ũi

n

λn

)]

+

n−2∑

i=0

[
J2

(
ui+2
n − ui

n

λn

)
− J2

(
ũi+2
n − ũi

n

λn

)]
− Ch(1) . (38)

Among the contribution of the first neighborhood interaction in the previous estimate, we treat
the intervals with u′

n ≥ S̃ and the intervarls with u′
n < S differently (if S < u′

n ≤ S̃, then

ũ′
n = u′

n). First consider the intervals (iλ, (i + 1)λ) where u′
n ≥ S̃. In these intervals we have

|ũ′
n − u′

n| ≤ Kh(1)/w(1) ≤ S̃/2 for n big enough. Hence thanks to hypothesis [H1] we have

J1

(
ui+1
n − ui

n

λn

)
− J1

(
ũi+1
n − ũi

n

λn

)
≥ −Ch(1) .

22



On the other if u′
n < S on (iλ, (i + 1)λ), then K < ũ′

n < S + K on these segments. Therefore,
thanks to the convexity of J1 in assumption [H0] (we choose K + S small enough to make J1
monotone in (0,K + S)), we obtain

J1

(
ui+1
n − ui

n

λn

)
− J1

(
ũi+1
n − ũi

n

λn

)
≥ J1(S)− J1(K)

on these segments.
Regarding the next-to-nearest neighbour potentials, we split the sum (38) into the sum of the

intervals (iλn, (i+1)λn) such that u′
n ≥ S̃ either on (iλn, (i+1)λn) or ((i+1)λn, (i+2)λn) where

we have (using again hypothesis [H1])

J2

(
ui+2
n − ui

n

2λn

)
− J2

(
ũi+2
n − ũi

n

2λn

)
≥ −Ch(1)

and in the intervals such that u′
n < S either on (iλn, (i+ 1)λn) or ((i+ 1)λn, (i+ 2)λn), where

J2

(
ui+2
n − ui

n

2λn

)
− J2

(
ũi+2
n − ũi

n

2λn

)
≥ −C

as J2 is bounded from below. In the remaining cases we have u′
n = ũ′

n in (iλn, (i + 2)λn). Hence
from inequality (38) we obtain

Hn(un)−Hn(ũn) ≥ h(1) (J1(S)− J1(K)− C)− Ch(1) ,

where C does not depend on n and on S.
Notice in addition that

h(1) = λn#

{
i :

ui+1
n − ui

n

λn
< S

}
.

Hence

lim sup
n

Hn(un)−Hn(ũn)

λn
≥
[
J1(S)− J1(K)− C

]
lim sup

n
#

{
i :

ui+1
n − ui

n

λn
< S

}
. (39)

As we supposed that (13) does not hold, one has that

lim inf
n→∞

min
i∈{0,...,n−1}

ui+1
n − ui

n

λn
= 0 .

This implies that for every S > 0 it holds

lim sup
n

#

{
i :

ui+1
n − ui

n

λn
< S

}
≥ 1 . (40)

By extracting a subsequence from (un)n (denoted again by un) we can suppose that the lim sup
in (40) and

lim sup
n

Hn(un)−Hn(ũn)

λn
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are both realized. Then

lim inf
n

Hℓ
1,n(un) ≥ lim inf

n

Hn(un)−Hn(ũn)

λn
+ lim inf

n
Hℓ

1,n(ũn)

≥ lim inf
n

Hn(un)−Hn(ũn)

λn
−M

= lim
n

Hn(un)−Hn(ũn)

λn
−M , (41)

where we used (33) in the proof of the part A) of Theorem 11 to estimate Hℓ
1,n(ũn) from below

by −M . We remark that M is independent of the sequence ũn and more precisely of S. Finally
choosing S small enough in (39) and using hypothesis [H5] and the equiboundness of Hℓ

1,n(un) in
combination with (40) and (41) we reach a contradiction.

Proof of Proposition 12. In order to prove the convergence properties of un we first observe
that with the same argument as in the proof of Proposition 4 one proves that ‖un‖BV (0,1) ≤ C

uniformly in n. Therefore there exists a (not relabelled) subsequence (un)n and u ∈ BV ℓ([0, 1])
such that un ⇀ u weakly* in BV . In particular we have that un → u strongly in L1. Notice in
addition that, thanks to assuption [H5] and the equiboundness of the energy, (ui+1

n − ui
n)/λn > 0

for every i and n.
We describe in details the arguments for n even, as for n odd the modifications are straightforward.
Consider

In :=

{
i ∈ {0, . . . , n− 2} :

ui+2
n − ui

n

2λn
>

√
n

}

and define the following function:

vn(x) :=

{
un(x) x ∈ [iλn, (i + 2)λn), i /∈ In
un(iλn) x ∈ [iλn, (i + 2)λn), i ∈ In .

Let us prove that vn → u in L1 as n → +∞. Indeed by construction

ˆ 1

0

|un − vn| dx =
∑

i∈In

ˆ (i+2)λn

iλn

|un − un(iλn)| dx ≤
∑

i∈In

λn(un((i+ 2)λn)− un(iλn)) ≤ λnℓ .

Defining

Hn(un) =
n−2∑

i=1

[
J0

(
ui+2
n − ui

n

2λn

)
− J⋆⋆

0

(
ui+2
n − ui

n

2λn

)]

we have, thanks to (33), that supn Hn(un) < C and therefore supn #In < M for M > 0. Hence
we can suppose that Svn converges to a finite set that we denote by {x1, . . . , xm} ⊂ [0, 1]. As the
nature of the following argument is local, we can assume without loss of generality that S = {x0}.
Define the following sequence of functions:

wn(x) =






vn(0) +

ˆ x

0

v′n(t) dt x ≤ x0

vn(0) +

ˆ x

0

v′n(t) +
∑

t∈Svn

[vn(t)] x > x0 .
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Let us prove first that wn → u almost everywhere in (0, 1). Indeed for every ε > 0 there exists
n0 such that for n > n0 we have dist(Svn , x0) < ε. Hence wn = vn in (x0 − ε, x0 + ε). As ε is
arbitrary it follows that vn and wn have the same pointwise limit.
Notice that by construction w′

n = v′n; moreover v′n = u′
n for x ∈ (iλn, (i + 2)λn) with i /∈ In and

v′n = 0 otherwise. Hence one deduces that there exists c1, c2 > 0 such that

c1

ˆ 1

0

|v′n|
2
dx− c2 ≤ Hn(un) < C . (42)

Indeed, given C > 0, by the construction of vn, we have
ˆ 1

0

|v′n|
2
dx =

ˆ

{v′

n
≤γ+C}

|v′n|
2
dx+

ˆ

{v′

n
>γ+C}

|v′n|
2
dx ≤ (γ + C)2 + n|{v′n > γ + C}| ,

while on the other hand calling ICn := {i : v′n > γ+C in (iλn, (i+2)λn)}, there exists C̃ > 0 such
that (see hypothesis [H4])

n−2∑

i=0

J0

[(
ui+2
n − ui

n

2λn

)
− J⋆⋆

0

(
ui+2
n − ui

n

2λn

)]
≥

∑

i∈In

[
J0

(
ui+2
n − ui

n

2λn

)
− J0 (γ)

]
≥ C̃#ICn

= C̃n|{v′n > γ + C}| .
Therefore (42) holds with the right choice of the constants c1 and c2.
Equation (42) implies that ‖w′

n‖L2((0,1)) = ‖v′n‖L2((0,1)) < C and, applying Poincaré’s inequality
on the interval (0, x0) and (x0, 1), we infer that wn is uniformly bounded in W 1,2((0, 1) \ {x0}).
Hence u ∈ W 1,2((0, 1) \ {x0}) and, up to subsequences, w′

n ⇀ u′ weakly in L2((0, 1)). In addition
to that, from the definition of w it follows that

lim
n→+∞

[wn](x0) = [u](x0) .

Finally we define the new potential J̃0(z) := J0(z) − J⋆⋆
0 (z) for z > 0 and the rescaled (and

extended) ones:

Fn(z) =





J̃0(z)

λn
0 < z ≤ √

n

+∞ otherwise ,
(43)

and

Gn(z) =





J̃0

(
z

λn

)
0 < z ≤ 1√

n
+∞ otherwise .

(44)

We observe that

Hn(un) =
∑

i/∈In

J̃0

(
vi+2
n − vin
2λn

)
+
∑

i∈In

J̃0

(
[vn]((i+ 2)λn)

λn

)

=

ˆ b

a

Fn(v
′
n) dx+

∑

t∈Svn

Gn[vn](t) .

By classical results of gamma convergence (see for example Proposition 2.2 in [5]) and generalizing
for and arbitrary number of discontinuity we obtain

C > lim inf
n

Hn(un) ≥
ˆ 1

0

F (u′) dx+
∑

t∈Su

G([u](t)) if u ∈ SBV ((0, 1))
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where

F (z) =

{
0 0 < z ≤ γ
+∞ otherwise

and

G(w) =





J0(+∞)− J0(γ) w ≥ γ
+∞ w ≤ 0
0 otherwise .

Moreover lim infn Hn(un) = +∞ if u ∈ L1(0, 1) \ SBV ((0, 1)).
Hence we deduce that u ∈ SBV ((0, 1)), [u] > 0 and u′ ≤ γ almost everywhere and, thanks to
hypothesis [H5], that #Su < +∞.

Proof of Proposition 14. We will shows that given a minimizer u, we may construct a mini-
mizer ũ such that ũ′ = min{u′, γ} holds and such that Dsũ is concentrated on the set of points
where ∂Φ

∂u changes sign.

We have supposed that ∂Φ
∂u changes sign at x1 < x2 < . . . < xM−1 for some M ∈ N. Set x0 = 0

and xM = 1. Then define

ũ(x) :=

ˆ x

xi

min{u′(y), γ} dy + ai (45)

for x ∈ (xi, xi+1), where we choose

ai := u(xi+)

if Φ(x,w) is nondecreasing in w for x ∈ (xi, xi+1) and

ai := u(xi+) +

ˆ xi+1

xi

(u′(y)− γ)+ dy + |Dsu|((xi, xi+1))

if Φ(x,w) is nonincreasing in w for x ∈ (xi, xi+1). We have ũ(x) ≤ u(x) on (xi, xi+1) if Φ(x,w) is
nondecreasing in w and the reverse estimate if Φ(x,w) is nonincreasing in w. Hence

H(u)−H(ũ) =

M−1∑

i=0

ˆ xi+1

xi

Φ(x, u(x))− Φ(x, ũ(x)) dx ≥ 0 .

So, ũ ∈ BV ℓ([0, 1]) is also a minimizer of H .
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