L>* BOUNDS OF STEKLOV EIGENFUNCTIONS AND SPECTRUM
STABILITY UNDER DOMAIN VARIATION

DORIN BUCUR, ALESSANDRO GIACOMINI, AND PAOLA TREBESCHI

ABSTRACT. We give a practical tool to control the L°°-norm of the Steklov eigenfunctions in a
Lipschitz domain in terms of the norm of the BV -trace operator. The norm of this operator has
the advantage to be characterized by purely geometric quantities. As a consequence, we give a
spectral stability result for the Steklov eigenproblem under geometric domain perturbations and
several examples where stability occurs. In particular we deal with geometric domains which
are not equi-Lipschitz, like vanishing holes, merging sets, approximations of inner peaks.
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1. INTRODUCTION

In the present paper we are interested to obtain a control of the L°°-norm of Steklov eigen-
functions in terms of the associated eigenvalues and some geometric information of the domain,
with the aim to obtain stability results for the Steklov eigenproblem under perturbations of the
domain.

Let Q C RY be an open bounded domain with Lipschitz boundary. We say that ¢ > 0 is an
eigenvalue of the Steklov problem if there exists u € W12(Q) \ {0}, such that

—Au=0 inQ
%zau on 0,

where v is the outward normal at the boundary. The equation above is understood in a weak
sense, namely
Vo € WH(Q) - / VuVedr = O’/ updHN 1,
Q o0
where HV~! denotes the (N — 1)-dimensional Hausdorff measure. As (2 is Lipschitz, there is a
sequence of eigenvalues
0=09g<01<03... > +00,

given by the Rayleigh formula

) fQ|Vu|2dx
1.1 VkEeN : 0(Q) = s
(1) EN o) = i ) T BN

where Si11 denotes the family of all subspaces of dimension k + 1 in WH2(Q).
1
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It is known that the eigenfunctions belong to L™ (see for instance [7, 11] for a suitable variant
of Steklov problem ). The proof of this fact usually involves the norm of some Sobolev embedding
theorem and consequently the Lipschitz character of the domain appears to play an important
role in the estimate.

For different eigenvalues of the Laplace operator, the Lipschitz character of the domain does
not enter into the L*>° estimate of the eigenfunctions. This is the case of the Dirichlet eigenvalues
(—Au = Auin Q, u = 0 on 99Q) for which the following estimate holds (see for instance [8, Example
2.1.8))

N
[ufloo < CNAT|ul2,

and of the Robin eigenvalues (—Au = Au in £, % + Bu = 0 on 09) for 8 > 0, where (see [14,
Proposition 8])

N
Julle < Cx (5 + 5+ 3) A el
Above, and throughout the paper, by C'y we denote a dimensional constant which may change
from line to line.

A natural question is to understand at what extent the L>°-norm of the Steklov eigenfunctions
depend on the geometry of the domain. The purpose of this paper is to investigate this question
and to give precise L™-estimates depending on the norm Ci,qc.(2) of the trace operator on the
space of functions of bounded variation BV () (see Section 2)

(1.2) T : BV(Q) — L' (09).
In Theorem 3.1, we show that for an eigenfunction u with eigenvalue o we have
(1.3) [ulloo < Cllullz2(a0)

where C' depends only on N, Ctrace(€2),]€2] and o.

We obtain the previous estimate through a Moser iteration technique: we obtain the crucial
increase in summability for the scheme not relying as usual on the Sobolev embedding theorem
for W12(Q), but employing the Sobolev embedding

BV(RN) = L¥1(RV).

The key idea is to extend u to zero outside €2 and to interpret the new function % as an element
of BV(RY): the increase in summability turns out to depend on the total variation of @, which is
given by

\Dﬂ|(RN):/ |Vu\dx+/ Ju| dHN L.
Q 09

The dependence of the L*-bound on Cipqee(€2) in (1.3) is connected to the fact that the last term
in the right-hand side of the above formula is precisely the L' norm of the trace of u on 9.

Contrary to the Dirichlet and Robin boundary conditions, the eigenvalues alone can not con-
trol the L°°-norm of the Steklov eigenvalue, even under a control of volume and perimeter. In
Section 6 we report an example of a sequence of domains converging to the unit cube, having
a first Steklov eigenvalue constant, converging volumes and perimeters, while the corresponding
normalized eigenfunctions have an L°°-norm which blows up.

A uniform bound for the Steklov eigenfunctions plays a crucial role in the study of the stability
of eigenvalues/eigenfunctions under perturbation of the geometric domain. Assume that (2,)nen
is a sequence of bounded open sets in RN with Lipschitz boundaries such that §,, — € strongly in
LY(RY), where Q is also Lipschitz regular. Let uf € W12(Q,,) be the k-th Steklov eigenfunction
with associated eigenvalue o obtained from the scheme (1.1). In the analysis of the stability of
the equation

(1.4) Yo € WH2(Q,) : / vugwd:c:o;;/ ufpdHN 1
Qn Oy
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a uniform L*>°-bound for (u})nen entails that the right hand side of the equation behaves loosely
speaking as the perimeter of 9€2,,. As a consequence, additional geometric assumptions concerning
the behaviors of the perimeters are likely to lead to a stability result.

In Theorem 4.1 we show that equation (1.4) is stable provided that

lo, — lg strongly in L'(RY), HN1(0Q,) — HVH(09)
and

(1.5) Sup Ctrace(Qn) < +00.

Thanks to estimate (1.3), this last condition is the key to get that the k-th (normalized) eigen-
functions on ,, are uniformly bounded in n, so that the right hand side of (1.4) can be suitably
handled (see Lemma 4.4 and Lemma 4.5).

We remark that condition (1.5) can be fulfilled even if the Lipschitz character of the domains
is deteriorating, i.e., even under suitable singular perturbations of the geometric boundary. The
stability of the spectrum in the context of equi-Lipschitz sets has been investigated in [3].

Finally we notice that the trace constant Ctyqce turns out to be characterized geometrically (see
for instance [2], [15, Section 5.10], [5]), and so can be easily estimated in some given geometrical
situations. In Section 5 we will recall these characterizations, while in Section 6 we will collect
some examples in which (1.5) is satisfied, and a stability result then follows.

The paper is organized as follows. In Section 2 we fix the notation and recall some basic facts
concerning functions of bounded variation and sets of finite perimeter employed in the rest of the
paper. Section 3 is devoted to the proof of the L*°-bound for Steklov eigenfunctions, while the
main application to the stability of the Steklov spectrum is contained in Section 4. In Section 5
we recall the geometric descriptions of Cypqce, and in Section 6 we collect some applications of our
stability result.

2. NOTATION AND PRELIMINARIES

In this section we introduce the basic notation and recall some notions employed in the rest of
the paper.

Basic notation. If E C RY, we will denote with |F| its N-dimensional Lebesgue measure, and
by HN=Y(E) its (N — 1)-dimensional Hausdorff measure: we refer to [9, Chapter 2] for a precise
definition, recalling that for sufficiently regular sets H~ ! coincides with the usual area measure.
Moreover, we denote by E° the complementary set of E, and by 1g its characteristic function,
ie,lg(z)=1if z € E, 1g(z) = 0 otherwise. If u is a function defined on F, we will denote with
ulg the extension of u to R which is equal to zero outside E.

If A C RY is open and 1 < p < 400, we denote by LP(A) the usual space of p-summable
functions on A with norm indicated by ||-||,. WP (A) will stand for the Sobolev space of functions
in LP(A) whose gradient in the sense of distributions belongs to LP(A, RY). Finally M(A;RY)
will denote the space of R¥-valued Radon measures on A, which can be identified with the dual
of RV-valued continuous functions on A vanishing at the boundary.

Functions of bounded variation. If A C RY is open, we say that u € BV (A) if u € L'(A) and
its derivative in the sense of distributions is a finite Radon measure on A4, i.e., Du € M;(A4;RY).
BV (A) is called the space of functions of bounded variation on A. BV (A) is a Banach space under
the norm |ullpy(ay := |ullzr(a)y + [|Dull pm,(aray- We call |[Dul(A) = |[Dul|pq,(a;rey the total
variation of u. We refer the reader to [1] for an exhaustive treatment of the space BV.

If u € BV(A), then the measure Du can be decomposed canonically (and uniquely) as

Du = D% + DIy + D.

The measure D®u is the absolutely continuous part (with respect to the Lebesgue measure) of the
derivative: the associated density is denoted by Vu € L'(A4;RY). The measure D7u is the jump
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part of the derivative and it turns out that
Diu=(ut —u”) @vHN | J,.

Here J, is the jump set of u, v is the normal to J,, while u* are the two traces of v on the jump
set. Finally D is called the Cantor part of the derivative, and it vanishes on sets which are
o-finite with respect to HN 1.

Notice that W'1(A) C BV (A): moreover if u € WHH(A), [ull gy a)y = ullwrr(a)-

We will make use the following standard properties of BV.

Theorem 2.1. The following items hold true.
(a) Sobolev embedding. The space BV (RY) is continuously embedded in LP(RY) for every

1<p< % The embedding s compact in LfOC(RN) for every 1 <p< %

(b) Lower semicontinuity of the total variation. If A C RY is open and (u,)nen is a bounded
sequence in BV (A) with u, — u strongly in L'(A), then u € BV (A) and

|Du|(A) < liminf |Du,|(A).
n
We will be concerned with the trace operator in BV. If Q C RY is an open bounded domain
with Lipschitz boundary, there exists a continuous linear operator
T:BV(Q) — L'(09)

such that, denoting T'(u) on 9 still by wu, the following integration by parts formula holds true:
for every ¢ € CH(RY)

(2.1) /u@igodx:/ ugoyidHNflf/cpdDiu,
Q a0 Q

where v; denotes the i-th component of the exterior normal v. We will denote with Cypqee(€2) the
norm of 7. Thanks to (2.1), T is a lifting to BV (£2) of the trace operator on W1(Q) (with the
same norm).

A consequence of (2.1) is the following result which is pivotal to our analysis: if u € Wh1(Q),
we have ulg € BV (RY) with

futallpves = [ [Valdo+ [ fuldi¥ s [ fulda.
Q [o19] Q

Sets of finite perimeter. Given E C RY measurable and A C RY open, we say that E has
finite perimeter in A (or simply has finite perimeter if A = RY) if

Per(E; A) := sup {/ div(p)dz : ¢ € C°(A;RNY), [|¢]loe < 1} < 400.
E

If |[E| < 400, then E has finite perimeter if and only if 1z € BV (R™). It turns out that
Dl =vgHV Y O*E,  Per(E;RYN)=HN"10'E),

where 0* F is called the reduced boundary of E, and vg is the associated inner approximate normal
(see [1, Section 3.5]). It turns out that 9*E C OF, but the topological boundary can in in general
be much larger than the reduced one.

We will make use of the following isoperimetric inequalities. If £ C RY has finite perimeter
with |E| < 400, then

|E|"% < OyHNY(07E),
where Cy is a dimensional constant. If Q@ C R¥ is a bounded open set with Lipschitz boundary,
(2.2) min{|E|"~,|Q\ E|'~ } < CHNH0*ENQ)

for every E C € of finite perimeter, where C' depends only on (2.
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3. THE L°°-BOUND FOR THE EIGENFUNCTIONS

Let Q C RY be an open bounded domain with Lipschitz boundary. Recall that u € W12(€Q) is
an eigenfunction for the Steklov problem with associated eigenvalue o if u # 0 and

(3.1) Yo € WH2(Q) : /VUV(pd.’E:U/ updHN L.
Q o0

The following L*-estimate for eigenfunctions of the Steklov problem holds true, involving the
norm Clqce(2) of the trace operator (1.2).

Theorem 3.1 (L*°-bound for Steklov eigenfunctions). Let Q@ C RY be an open bounded
domain with Lipschitz boundary. Then for every eigenfunction u € W2(Q) of the Steklov problem
with associated eigenvalue o we have uw € L™ () with

(3.2) lullo < Cy/llu?lwia) < Cllull2o0),
where C and C depend only on N, Cirace(Q),1Q] and o.
Proof. We divide the proof in several steps.

Step 1: We claim that if [u|* € WH1(Q) with a > 2, then |u|*X € W1(Q) with

(33) llrsacay < € (525 + 100 ) 1t sy
where
IN —1 1
4 = 1> 1
(3.4) X=on_a 'Ton_32~

and C = C(N, 0, Cirace ().
For every M > 0, consider
up = (uAM)V (—M)
and
v = Jun|* Pun

Since ¢y is the composition of uy, € WH2(Q) N L%°(Q2) with the C! function F(s) := |s|*~2s, by
the chain rule for Sobolev functions we get ¢y € W1H2(Q), with

Vou = (o — 1)|un|* 2V

Testing equation (3.1) with ¢ = @a, since |u|* € WH1(Q) and in view of the trace theorem on
BV (Q) (recall that Wh1(Q) C BV(Q) with the same norm) , we get

/ Vu(a — 1) |upr|* 2 Vuys do = o/ ulupr | Dup dHN
Q re)

< a/ Ju|® dHN 1
< Uctmce(Q)”|U‘QHW1’1(Q)-
By the definition of uy; we get

/ Vu(a — 1lun|*2Vuy dz = / (@ — 1)|unt]*2|Vu|2da.
Q {-M<u<M}

Hence, letting M — 400, from the Monotone Convergence Theorem, we get

(3.5) /Q(a D)2Vl dr < 0 Chraee( @)l -

Let us prove now that |u|** € WH1(Q). Notice that, since uy; € WH2(Q)NL>®(£2), by composition
we have

|’LL]u|aX € Wl’l(ﬂ).
Let us compute explicitly the W' norm, and then let M — +oc.
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(a) By using Holder inequality and (3.5) we have
/ 9 (June] )] da = ax/ fun X Vg | d
Q Q

= ax/ g | Fuar |27 V| do

IN

ax/ |u*X % [u] 27 [Vl do
(3.6) < W\// |u|2ex— adx\/(a—l)/ |u]*=2|Vu|? dx
\/F\/mwcm )l flwrr @

where in the last inequality we have used the explicit value of x given in (3.4), while
C1 = C(0,Clrace()).

Let us observe now that |u|® € W1(Q) together with the Lipschitz regularity of
yields |u|*1q € BV(RY); hence by Sobolev’s embedding theorem (see Theorem 2.1) it
follows that |u|®lg € L™ 1(RY) with

A
_aN_ a
( /Q ] %25 dm) < Oxlll*1all sy @) .

where C'y is a constant depending on N. Since

|||u|alﬂHBV(RN) :/ |u|ad1’+/ V(|u|a)dx+/ ‘U|O‘dHN—1
0 ~ o9
< (1 + Ctrace(Q))”|u|a”W1’1(Q)’

we finally obtain

(3.7) ([1#a) ™ <clu v
with Cy = C(N, Ctrace(2)). Using (3.7) in (3.6) we get

_N
/ IV (Juag )] de < C ﬁ Calllule 135 oy o/ Ml s

ax

= ] II% = Cs === llul*l}y1.1 0
/7 @ =BT (@)

with C3 = C(N, ag, Cirace (Q))

(b) By using Holder’s inequality with exponents

N 2N
(N-1)x 2N-1
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and in view of (3.7) we get

/IUMlaXd < (/ |uM|a><de) Q7
</ |u|axpdx) Q[
-

2N—1

(3.9) |u| ¥ dx) Q|77

ANERE
(02|||u| lhvts ) ) Il

with Cy = C(N, Ctrace(2)).
Gathering (3.8) and (3.9) it follows

ax 1
|||uM|aX||W1,1(Q) < Cj (m + |Q|2N) H|u|a”>{f{/1,1(g)v

with C5 = max{Cs5,Cy} = C(N, 0, Ctrace(2)).
Letting M — 400 and using the Dominated Convergence Theorem, it follows that |u|*X €
WH1(Q) with

a ax 5
(3.10) ™ v < Cs (2 + 1905 ) Nl s o

This concludes the proof of Step 1 choosing C'= Cj5 in (3.3).

Step 2: Let us prove that u € L> () with

(3.11) [ulloo < Cy/llu?llwrr(e),

where C' = C(N, 0, Crace (), |2]). We employ a Moser-iteration technique.
Let o := 2™ with m € N in (3.10). Since

m+1

2x <4y BT

2x™m —1
we may write (recall that x > 1)

m+41 2Xm+1 L
™ lwiaq) < Cs (WHQPN) [

3.12 m m
(3.12) < Cs (D 1007 1l oy

= Cox & T[Ju[>" ||§V1J(Q)’
where
Ce:=Cs5(4+ \Qlﬁ) = CO(N, 0, Cirace(2), [2]).

Taking into account (3.12) we thus obtain

—m—1 —m—1 m —m—1 m —m
H|U|2X le Q) = < (Cs)X (X 2 +1) |||U|2X ||%/<V171(Q)'

Iterating again estimate (3.12) in the right-hand side of the above inequality we get

m+1

(3.13) a7 1155, 17(9) (Co Xl lwra) < Cllu?wia o),
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where
m—+1 m _]
A= =, = +1) —J-t and  C = C(N,0,Ciace(),]9)).
I M AR (¥, Chrace ), 19)

Hence, the trace theorem in BV and (3.13) yield

—m—1

([ an =) < el
o0

with C7 = C(N, 0, Ctrace(2), |€2]). Letting m — +oo, we therefore obtain

l[u?(| Lo o02) < Crllu?lwa (e,

ull Lo (o0) < vV Cry/lu2lwra (o).

Being w harmonic, (3.11) follows from the maximum principle, so that Step 2 is concluded.

from which

Step 3: Conclusion. Let us prove that
(3.14) [w?[lwi (@) < Cllull7zaa)

with C = C(N, o,|Q]). Then estimate (3.2) follows immediately from Step 2.
We first observe that testing equation (3.1) with u we get

(3.15) / \w|2dx:a/ u? dHN L
Q oN

/V(uz)dxz/ZuVude/uzdx—i—/ |Vu\2da::/u2dx+a/ u? dHN 1
Q Q Q Q Q o9

from which we infer

Hence

(3.16) ||u2HW11(Q) < 2/ u? dl‘—i—O’/ w2 dHN L.
Q o

From u? € WH(Q) and the Lipschitz regularity of Q we get u?lq € BV (RY). Using Holder’s
inequality, the Sobolev embedding BV (RY) into L~ (RY), and Young’s inequality we get

—1

N

N
/quxg (/ uNZNld:r> |Q|%
Q Q

< Cn|D(u?1q)|(RV)|Q|F

=Cy (/ 2u|Vu| dx —|—/ u? d?-[N_l) |Q\%
Q o9

<Cn (E/quac—&—l/ |Vu|2dx—|—/ u2d’HN_1> |Q\%
Q €Ja o0

Choosing ¢ such that CN£|Q|% = % we can absorb the first integral in the right-hand side of the
above inequality into the left-hand side and using (3.15) we infer

(3.17) /quxSC(N,a,|Q|)/ w2 dHN 1,
Q o0

Inequality (3.14) follows now from (3.16) and (3.17). O
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4. THE STABILITY RESULT

As mentioned in the Introduction, our main application of Theorem 3.1 is to an issue of stability
of the Steklov spectrum under the variation of the domain. The following result holds true.

Theorem 4.1 (A stability result for the Steklov spectrum). Let (2,)nen be a sequence of
bounded Lipschitz domains such that

(4.1) 1o, — 1o strongly in Ll(]RN)7
(4.2) HNL(00,) = HY1(99)
and

(43) sup Ctrace(Qn) < 400,

where Q C RY is also a bounded Lipschitz domain, and Cirace(Qy) is the norm of the trace operator
(1.2). Then the Steklov spectrum is stable, i.e., for every k >0

(4.4) 01 (n) — o1 (9Q).

Moreover, up to a subsequence,

(4.5) uplo, — urlo strongly in LQ(RN)

and

(4.6) Vupla, — Vuglg strongly in L*(R™;RY),

where ul € W2(Q,,) and u, € WH2(Q) are normalized eigenfunctions corresponding to og(S2,)
and o(Q) respectively.

Remark 4.2. The key assumption (4.3) concerns the uniform bound on the trace constants
Clrace Of the converging domains: we refer the reader to Section 5 for a review of the geometric
characterization of Cirqce, and to Section 6 for some applications to singular perturbations of
the domain. Assumption (4.2) is crucial for the convergence of the spectrum even in the case of
equilipschitz domains (for which the control (4.3) comes from free), as [3, Example 3.6] shows.

Remark 4.3. The hypothesis above on the Lipschitz regularity is not requesting uniform con-
stants. Moreover, the fact that the domains are assumed to be Lipschitz is not crucial for the
stability issue, being merely a classical setting in which the Steklov problem is usually considered,
and its spectrum is known to consist of eigenvalues. One can replace this hypothesis, by asking
Q,, 2 to be bounded open sets, with a topological boundary of finite Hausdorff measure such that

HN (09, \ 07Q,) = HYN 100\ 07Q) = 0,
T, : WH2(Q,) — L*(09,), T : WH2(Q) — L*(09) compact.
Above, since the boundary are not assumed to be Lipschitz, the operators T' and T,, are defined

using the BV trace. In this case, the Steklov problem still has a spectrum consisting on eigenvalues,
which can be obtained by the usual min-max formula.

4.1. Some technical lemmas. We need some preliminary lemmas.
Lemma 4.4. Let (Q,)nen be a sequence of bounded Lipschitz domains such that
la, — la strongly in L*(RN),

where Q CRY is also a bounded Lipschitz domain.
Let u, € WH2(Q,,) with

unla, — ulg strongly in L*(RN),

and
Vun |2, myy) < C
for some u € WH2(Q) and C > 0 independent of n. Then

liminf/ |t | dHN 1 2/ lu| dHN L.
" o, o0
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Proof. By considering positive and negative parts, it is not restrictive to assume wu,,u > 0. Let
us consider
Up = unlq, € BV (RY).
Since
vy — ulg strongly in L*(R™),
by the lower semicontinuity of the total variation for BV functions (see Theorem 2.1) we infer
that for every open set A C RV

/ \Vu\dx—k/ wdHN ! < liminf [/ |Vun\dx—|—/ und’HNl} .
ANQ ANOK " ANQ, AN,

Let 092 C A. We deduce

/ wdHN ! < lim inf [/ [V daj—i—/ Un dHN_l}
a0 n ANQ, ANOQy,

< liminf [||vun||L2(QmRN)|A|1/2+/ Uy, dHN‘l} < C|A|1/2+hminf/ wy dHN L
n [o97% n [2197%

If we let A shrink to €2, the conclusion follows. O

Lemma 4.5. Let (Q,)nen be a sequence of bounded Lipschitz domains such that

(4.7 1o, — 1o strongly in L*(RN),

and

(4.8) HN L (00,) = HN1(09),

where Q C RY s also a bounded Lipschitz domain. Let u, € W42(Q,,) be such that
(4.9) IVtn 2@, mv) + lunlloe < €

for some C independent of n.
Then there exists u € W12(Q) such that up to a subsequence

(4.10) upla, — ulg strongly in L*(RN),
(4.11) Vupla, = Vulg weakly in L?(RY;RY),
and
(4.12) / Uy dHN ™ — [ wdHN L

o0, aQ

Proof. Let us divide the proof in two steps.

Step 1. Let us prove (4.10) and (4.11). Consider
Up = uplq, € BV(RY).
Notice that
lonllovies) = [ [Vunldot+ [ funldi¥ s [ jundo

n Oy, Qn
< I Vunll 2 (@) Qa2 + lunlloo MY 7 (020) + [lun ool 2] < Ci,

for some C; > 0 independent of n.
Thanks to Theorem 2.1, we find a function v € BV (R¥) such that, up to a subsequence,

(4.13) Up —> U pointwise a.e. in RY.

Up to a further subsequence we may also assume

(4.14) Vunlg, — f  weakly in L2(RY;RY)
for some f € L2(RY;RY).
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We claim that

(4.15) v=20 a.e. on RV \ Q
with
(4.16) Dv = fdx on Q.

From (4.15) and (4.16) we infer
v =ulg

with u € W12(Q) such that f = Vu on . Then (4.11) is a consequence of (4.14), while (4.10)
follows from (4.13), (4.7) and the uniform L*°-bound given by (4.9) thanks to the Dominated
Convergence Theorem.

In order to conclude the step, let us prove claims (4.15) and (4.16). Claim (4.15) is a consequence
of (4.7) and of (4.13). Let us pass to claim (4.16). The lower semicontinuity of the perimeter
together with (4.8) yields that

(417) = HNTILOQ, D o= HYTILOQ weakly™ in the sense of measures on RY.
Let
Dv, = Vuylg, dz + U HY 09, =: Ay + 1,
where v, denotes the inner normal to the boundary. Clearly thanks to (4.14) we have
Ap = fdx weakly” in the sense of measures.

Notice that in view of (4.8) and (4.9) we have

7 (RY) = / i AHN 1 < i o Y1 (0) < C

with C5 independent of n. Up to a further subsequence we may assume
N — 1 weakly™ in the sense of measures on RY.
Since
1| < ||un||ooHN71|—aﬂn < Cln,
thanks to (4.17) we infer
Il < CHNLoQ,
so that n turns out to be supported on 99Q. Since Dv = f dx + 7, claim (4.16) follows.

Step 2. Let us prove (4.12). Let C be the constant appearing in (4.9), so that ||u,|. < C.
Applying Lemma 4.4 to the positive function C + u,, we obtain

lim inf (C +up)dHN 7 > / (C 4 u)dH N1,
n 9, 15)9)
so that

Clim HY~1(09,,) + lim inf / Uy dHN T > CHNTH(09Q) + / wdHN L
n n [o192% o

In view of the convergence (4.8) of the perimeters we infer

(4.18) lim inf Uy dHN ! z/ wdHN L.
n oy, onN

Applying again Lemma 4.4 to the positive function C' — u,, we obtain
ClimHN~1(09,) —limsup/ w, dHN 71 > CHYTH(0Q) —/ wdHN 1,
" n o oQ
which yields similarly
(4.19) limsup/ Uy dHN ! S/ wdHN L
n o, a0
The convergence (4.12) follows gathering (4.18) and (4.19). O
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Remark 4.6. Under the assumptions of Lemma 4.5, we also have

lim ui dHN ! = / w2 dHN L.
0, Q

n

Indeed it is sufficient to apply the result to the functions v, := u2 for which

/ Vol d + [[tnlo0 = 4/ W2 V2 de + un |2 < C,

n n

where C' is independent of n, and one has
vpla, — u?lg strongly in LQ(RN).
4.2. Proof of Theorem 4.1. We proceed in several steps.

Step 1: Upper semicontinuity for the eigenvalues. Let us prove that for every k > 1

(4.20) lim sup 0% (2,,) < 0k (Q).
n
We will use the Courant-Fisher representation

J4 |Vv|? dx
or(A) = min max -4 __—
k( ) VEVri1 veV\{0} faA U2 dHN_l

where A C R” is an open bounded domain with a Lipschitz boundary, and Vj1 denotes the family
of the subspaces of W2(A) with dimension & + 1. The minimum is achieved on the subspace
generated by the eigenfunctions v; associated to o;(A) with j = 0,1,...,k, where we may assume
Vo = 1.

Let V' € Vi41(€2) be the subspace generated by the first (k + 1) eigenfunctions ug, u1, . .., ux of
Q, that is

V = span{ug, ..., ux}.

Since Q has a Lipschitz boundary, we may assume (by regularity given by Theorem 3.1 and by
regular extension) that u; € WH2(RY) N L (RY). We can then consider the restrictions of u; to
Q,, and the associated generated vector space V,, which has dimension k + 1 if n is large enough.
Let

Wy, = Aguo + -+ Apup €V,

be such that
Jo, [Vw,|? da Jo, [Vw]? dz

Too, W2 AHN T~ wdViioy T wdHN T

We may assume »_,(A?)? = 1 with A" = X; for i = 0,..., k. Let w:= >, \ju; € V. Then the
convergence (4.1) of the domains entails

lim/ |an|2dm:/ |Vwl|? dz.
n Ja, Q

On the other hand, in view of Lemma 4.5 and Remark 4.6 we deduce

n

lim w2 dHN T = / w? dHN L
oy, oQ

We thus conclude

. . an [Vwl|? dx . an V| do
timsup ok(n) < Imsup | b o) T, w2 AN P T e N
_ fﬂlvw|2 dx < fQ‘VUde :O'k(Q)a

B Joqw? dHN-1 — ven\}%?{(o} Joq v2 dHNL
so that (4.20) follows.
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Step 2: The convergence result for o;. Let u} be a normalized eigenfunction for o1(£2,,),
that is such that

/ ut dHN " =0, / (u)?dH "' =1 and / |Vul|? de = 01(Q).
o, o, Qn
Thanks to Step 1, since limsup,, o1(€2,) < 01(€2), we have

/ |Vui|?dr < C
Qp
for some C independent of n. Moreover thanks to the uniform bound on Ciyqce(€2,) given by (4.3)
and to Theorem 3.1 we may assume that

[utlloo < M

for some M independent of n.
In view of Lemma 4.5 and Remark 4.6 we infer that up to a subsequence

(4.21) ul'le, — ulg strongly in L*(R")

for some u € WH2(Q) with

(4.22) Vullg, — Vulg  weakly in L(RY;RY),

(4.23) / wdHY ™ = lim ut dHN T =0

oQ nJosx,

and

(4.24) / u? dHN T = lim (u)2dHN "t = 1.
o0 o Jo,

Taking into account Step 1 we deduce

01(Q) > limsup o1(£,,) > liminf oy (2,) = liminf/ |Vul|? do > / |Vu|? de > 01(9),
n n Q, Q

n

the last inequality coming from the fact that u is admissible for the computation of ¢1(Q) in view
of (4.23) and (4.24). We infer that u is an eigenfunction for o1 (f2) and that (4.4) holds true for
k = 1. Moreover the convergences (4.5) and (4.6) follow from (4.21), (4.22) and the relation

lim/ |Vul|? dz = lim o1 (Q,) = 01(Q) = / |Vul|? d.
n Ja, n Q

Step 3: Convergence of the higher order eigenvalues. Proceeding by induction, thanks to
Step 1 and a diagonal argument, it is sufficient to show that if the result is true for the eigenvalues
of order k < h, then it is true also for that of order k = h + 1.

Let uj; ; be a normalized eigenfunction for oj,41(§2,), that is such that

[oaan =0 [ apapat o [ v = oa@,)

n

and
/69 uﬁﬂu?d’HN_l:O for every j =1,...,h.

Recall that thanks to (4.3) and to Theorem 3.1 we have
[0} [l < M

for every j=1,...,h 4+ 1, where M is independent of n.
In view of Step 1 we have

| 19 de = o) <

n

for some C independent of n.
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Thanks to Lemma 4.5 and Remark 4.6 we infer that up to a subsequence

(4.25) up 1o, = ulg strongly in L*(RY)

for some u € WH2(Q) with

(4.26) Vup 1q, = Vulg weakly in L*(RY; RY),

(4.27) / wdHN ! = lim up  dHN T =0
a0 "oy,

and

(4.28) / uw? dHN T = lim/ (up )2 dHN " = 1.

9 " Jog,

Moreover we claim that

(4.29) / ujudHY "t =0  forj=1,... h.
a0

Since

op+1(02) = min{/ |Vo|? da / vdHN ! = 0,/ V2 dHN T =1,
Q ETy)

o0
/ ujvd’l-lNl—Oforj—l,...,h},
o0

taking into account Step 1 we deduce

on+1(€2) = limsup op41(€2n) > liminf 441 (25)

= liminf/ |Vauj, | do > / |Vu|? dz > o,41(Q),
n Q. Q

the last inequality coming from the fact that u is admissible for the computation of o41(Q) in
view of (4.27), (4.28) and claim (4.29). We infer that (4.4) holds true for £k = h + 1, and that
u € WH2(Q) is an eigenfunction associated to oj41(€2). The convergences (4.5) and (4.6) follow
from (4.25), (4.26) and the relation

lim/ (Vup, 2 de = limop41(R,) = 0p41(Q) = / |Vul|? d.
n Q. n Q

In order to conclude the proof, we need to show that claim (4.29) holds true. This is a straight-
forward consequence of Lemma 4.5 applied to the functions vy, := u7uj ,, for which we have, in
view of the convergence result for the eigenvalues of order j < h,

/ Voal? da + [[om]oo < 2 / W21V 2+ ()2 [V ] i e o s e

n n

< 2M2/ [[Vuj, |* + |Vu} ] de+ M? < C

for some C independent of n, while (by the Dominated Convergence Theorem)
vnla, — ujuntile strongly in L2(]RN).
The proof is thus concluded.

Remark 4.7 (Stability of the spectrum and uniform L*°-bound for eigenfunctions). In
the proof above, the uniform bound (4.3) on Cypqee(Q5,) is employed to infer the uniform L*°-bound
for normalized Steklov eigenfunctions

(4.30) sup [|u [l = (a,) < +oo.

An inspection of the proof shows that the bound (4.30) (in addition to (4.1) and (4.2)) is sufficient
to guarantee the stability of the Steklov spectrum. Since the constant trace C,qce admits geometric
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characterizations, as we report in Section 5, checking the uniform bound (4.3) is in principle easier
than verifying (4.30).

5. GEOMETRIC CONTROL OF THE BV-TRACE

In this section we recall some results concerning the geometric description of the norm Cly.qce (€2)
of the trace operator
T :BV(Q) — L'(09),

where Q C R¥ is an open bounded domain with a sufficiently smooth boundary.

There are several geometric descriptions of Cyrqce(£2), all of being based on the same principle.
The difference is only coming at the passage from localised versions around the boundary to global
inequalities. We refer the reader to [2] (see [15, Section 5.10] as well) and to the more recent paper
[5]. The constant Ctyqce is finite even on domains which are not Lipschitz regular. This may occur
even in domains with inner peaks or in domains with cracks. We report below a list of results in
this sense.

Let 2 C RY be a bounded open set such that HV~1(9Q) < +oo. Following [2], Cirace(Q) is
finite provided that Q(2) < 400, where

HN-LHO*EN0*Q)
HN-LO*ENQ)

:EC QN By(x), Per(E,Q) < —l—oo}.
z€ed) r—0

(5.1) Q(f2) := sup limsup sup{

If Q(2) < 400, for every € > 0 there exists a constant C(£2, ) such that

(5.2) Yu € BV(Q) : / lu|dHN 7t < (Q() +¢ / |Du| + C(2,e / |u|dz.
Q

The constant C(€2, €) turns out to depend upon a partition of unity {¢; }i=1,... x of 0Q subordinated
to a finite family of balls { B, (z;)};=1,.. » with z; € 90 and such that

“ HNLO*EN0*Q)
PUHN T ENQ)

More precisely, an inspection of the proof of [2, Theorem 4] shows that we may choose

.....

: B C QN B, (x)), Per(E,Q) < —i—oo} <QE)+e

k
(5.3) C(Q,e) =(Q() +¢) maxz Vil
i=1
Note that the trace of u € BV (Q) is defined only on the reduced boundary of Q. In general,
the reduced boundary 0*(2 is a subset of the topological boundary 92 and their difference may
be of strictly positive HV~!-measure. This is the case, for instance, when  has an inner crack.
A rather similar interpretation for domains which satisfy moreover HN~1(9Q \ 9*Q) = 0 is given
n [15, Theorem 5.10.7].
Concerning the uniform bound (4.3) in our main stability result, the following result holds true.

Proposition 5.1. Let D C RN be bounded, and let (,)nen be a sequence of open bounded
domains with HN~1(0Q,) < +oco and Q, C D. Assume that there exist Q,7 > 0 such that for
every x € 08,

HN YO E N6 Q)
B C - <0.
sup{ HY-1("ENQ,) E C Q, N Br(x),Per(E,Q,) < Jroo} <Q

Then the constants Cirace(S2n) are uniformly bounded.

(5.4)

Proof. Up to a subsequence, we may assume that 02, — K in the Hausdorff metric for some
compact set K C RY. Let us consider a partition of unity {¢;}i=1,.. 1 of an open neighborhood of
K subordinated to the family of balls { B /2(;) }i=1,... x, With 2; € K. Let a2} € 0, be such that
x* — x;. Then for n large we have that {¢;};=1,.  is also a partition of unity of a neighborhood
of 09, subordinated to the family of balls {Bz(z}")}i=1,.. % In view of (5.1), (5.2), (5.3), and
taking into account (5.4), the conclusion follows. O
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A more direct way to avoid the presence of the unknown constant C(f2,,¢) is to use the
following results from [5]. Assume € is a bounded open set with finite perimeter, such that
HN=L(0Q \ 0*Q) = 0 and such that there exists a constant C' > 0 with the property that for
E C Q of finite perimeter

min{HY "1 O*ENQ), HNHOQ\ 0*E)} < CHYNHO*ENQ).

One introduces the constants

B |[E/HN =100\ 0*E) + |Q\ E/HN~1(0*E N aN)
Cmo(§)) = peo QHN1(0*ENQ)
and
HN=L(0*E N 0Q)
HN-L(0*ENQ)

Crned(Q) = sup
ECQ,|E|<I

Then, for every u € BV () we have
[t = wmol[L1(80) < Crnw ()| Dul(£2),

lu — Umedll 21 (902) < Crmea(2)|Dul(82),
where

1 1
Uy :z—/udx and Umed ::inf{teR:|{u>t}§|Q|}
€2 Jo 2

(see [12, Theorem 9.6.4 and Theorem 9.5.2 | and [4, Theorem 1.1]).
Immediately, one gets the trace inequalities

HN =190
il o) < Cono()] Dl () + mf)unmm,

and
HN-1(H0
il o) < Comea(€)| Dl () + 2Qf>|u||u<m.

Consequently, in order to apply Theorem 4.1, the knowledge of the values Cy,,,(22,,) or Crnea(25)
are enough to get full control of Cyreee(£2r), since the isoperimetric ratios in the right-hand side
of the above inequalities are already uniformly bounded, by hypothesis.

6. FURTHER REMARKS AND EXAMPLES

In this section, we give several examples of stability of Steklov eigenvalues for some specific
domain variation and an example showing that the L*°-norm of the eigenfunctions can not be
controlled by the corresponding eigenvalue alone, as it is the case of Dirichlet and Robin eigenval-
ues.

Example 1. (Vanishing homothetic holes) In this example, we just give an interpretation of
the asymptotic result of Nazarov [13] from the perspective of our approach. Assume €2 and w are
two open, bounded, Lipschitz sets containing the origin. One defines €, := Q\ ew, for € > 0 small.
Nazarov gave the precise asymptotic behaviour of o4 (€2.), when e — 0T. A simpler question is just
to understand that the spectrum behaves continuously with respect to this singular perturbation,
namely to prove that

(6.1) 01 (Qe) = 01(22).

In view of Theorem 4.1, we need simply to check that the trace constant of €. remains bounded
as ¢ vanishes: we will make use of the Anzellotti-Giaquinta characterization described in Section
5.

Without loosing generality, assume that diam(w) = 1 and that d(0,09) = 3, and let 0 < ¢ <
1. Let us consider z. € 9(Q\ ew) and a measurable set E with finite perimeter contained in
(Q\ ew) N Bi(x). Clearly, the set FE can not touch simultaneously 92 and 9(¢w). If it touches
only 0f2 then the ratio
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HNHO*ENOQ.)  HNHO*ENOIN)
HN-L(O*ENQ.)  HN-L(0*ENQ)
is uniformly bounded, as € is Lipschitz. If it touches 0(ew) we observe first that setting

E. := E N Bo.(x.),

taking into account that ew C Ba.(z.) we have
HYN N O*E- N Q) < HYTHO*EN QL)
as the projection onto the sphere dBa.(z.) is a contraction on RY \ By, (z.). Consequently

HY N0 ENON.) _ HN (9" N 0Q.) HN=1 (0 (LE) N ow)

HN-H*ENQ.) — HN-Y0*E-NQ)  HN-1(0*(1E.) N (Ba(Lz.)\@))’

where éEg is the homothety of E. of center the origin and scale % Since w is Lipschitz, the ratio
is uniformly bounded from above, independently on F..

We can thus apply Proposition 5.1 and conclude that the constants Ciyqce(€2e) are uniformly
bounded: from Theorem 4.1 we thus infer that (6.1) holds true.

Example 2. (Vanishing multiple random convex holes) In what follows Cy will denote
a dimensional constant which may change from line to line. Let Q be a bounded open set with
Lipschitz boundary. For every n € N, we consider K7, ..., K] pairwise disjoint, nonempty closed
convex subsets of {2 and denote

Qn :=Q\ (K{U...K").
Let 7y, be the maximal diameter of (K); and d,, the minimal distance between any couple from
{K}],...,K 0Q}.
If
(6.2) n NIy, = o(dy),
we prove that for every k € N

We start with some estimates on r, and d,,. First, as the measure of 2 is fixed, and any convex
set has a tubular neighbourhood of size d7 which does not intersect any other convex, we get that
there exists a dimensional constant Cn such that

d¥n < Cn|9QY,
so that in particular d,, — 0. Since K" is convex, this implies that
(6.4) HN YU 0KT) < CynrY =1 = o(dY 1) = 0,

where C'y is another dimensional constant.
From the previous estimates, we see that the convergence of the spectrum (6.3) is a consequence
of Theorem 4.1 provided that we get a uniform estimate for the trace constant of the domain €2,,.
In order to estimate the trace constant, we follow the Anzellotti-Giaquinta characterization
described in Section 5. Let us choose a point z,, € 912, and estimate the ratio

HN-YO*E N0,
HN-L(O*ENQ,)
for a set E lying in Br(z,) N Q, with 7 sufficiently small. The key idea is to prove that we can
decouple the estimate around each set K* and the boundary 0f2.
Since 2 is Lipschitz, we know that there exists a constant M > 0 such that
(6.6) HN YO ENON) < MHN Y 9*ENQ).

Indeed we can choose 7 in such a way that |E| < 1 and |E| < |\ E|. Then (6.6) follows from the
trace theorem in BV (applied to 1z) and the relative isoperimetric inequality on € (see (2.2)).

(6.5)
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Assume that
(6.7) HY YO E N (U;0KT)) < %”HN‘l(a*E na).
We may write
HNHO*ENoN,) = HYN L0 ENaQ) + HY 19" E N (U;0K™))
<HNHO*ENIN) + %HN—l(a*E nQ),
while
HN YO ENQ) =HY YO ENQ,) + HY 10" E N (U;0KT))
<HN L OENQ,) + %HN_I(a*E nQ),

so that HN~"1(0*E N Q) < 2HN-Y9*E N Q,,). Taking into account (6.6) we conclude that
HN=YO*E N oQy,) < HN=HO*ENON) + sHNHO*ENQ)

<2M + 1.
T ENQ,) = HYN-1(0"E N Q) =M
Let us assume that (6.7) does not hold: using again (6.6) we may write
1 1
(6.8) HY O E N (U;0KT)) > i’H,N’l(a*E nQ) > WHN’l(a*E Non).

Let us denote dggq, : Qn — [0, diam(£2)] the distance function to 02, and let us set
E;:=En{z €, :dsq,(z) >t} and F:=FE\ {z € Q, : dgq, (z) > t}.

Assume that for some ¢ € (0, %’”‘) (recall that d,, is the minimal distance), we have that
(6.9) HYN O F,nQ,) <HNTHO'ENQ,).
Since

HN=HO*ENOQy,) - HN=L(0*F, N oNy,)
HN-HO*ENQ,) — HN-YO*F,NQ,)
a uniform estimate for (6.5) follows since the set F; N, can be decomposed around each K" and
09). Around 09 the inequality holds with constant M and around each K the inequality holds
with constant 1, the norm of the projection on the convex sets.
Assuming that for every ¢ € (0, %), (6.9) fails, we get that for almost every t € (0, %)

HN YO E, N0 {daq, > t}) > HN LI E,\ 0" {doq, > t}).

Setting
o(t) := HN"H9"E; N0 {daq, >t})) and v(t) := | E,
we get from the isoperimetric inequality
N—-1

20’(t) > CNU(t)T.
Since v'(t) = —o(t) (from the coarea formula), integrating over (0, %) we get that
ON|E|* > CN%".
On the other hand, we may write using the isoperimetric inequality, (6.6), (6.8) and (6.4)
|E|" < CyHN (0" E)
=Cy (HN"HO*ENOQ) + HYN"HO"ENQ)) < Cn(M +1)HN (O ENQ)
< 20N (M + D)HNHO*ENUIK]") < 20N (M + DYHN TN (UOK]) < 20N (M + 1)nr) 1.

We conclude that
nrﬁ[—l > Cd,]y_l,

in contradiction with our assumption (6.2).
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By Proposition 5.1 we infer that the trace constants Cypqce(§2,) are uniformly bounded, so that
the convergence of the spectrum (6.3) follows.

Example 3. (Merging domains) The question is to see what happens to the Steklov spectrum
in case of two disconnecting smooth domains. We refer to the paper of Girouard and Polterovich
[10] for the case of two discs with vanishing intersection and explain it in our framework.

Let 7. = (1 —¢,0,...,0),y. = (=1 +¢,0,...,0) € RV and assume

Q¢ := Bi(z:) U By (y:) and 0 := Bi(x0) U B1(yo),

where z¢ := (1,0,...,0) and yo := (—1,0,...,0). Although Q has a cuspidal point, the spectrum of
the Steklov problem is still consisting of eigenvalues, as the trace operator T : W12(Q) = L2(0Q)
is compact. We claim that the Steklov eigenvalues of 2. converge to those of 2 . Indeed, following
Remark 4.3 to cope with the non regularity of €2, one has only to evaluate Ciprqee(€2e) and to
prove that it is uniformly bounded. For this, take a function v € BV (€.) and write the trace
inequality in By (2 ), B1(ye) for u|p, (z.), Ul B, (y.), respectively. Adding the two inequalities, we get
that Cprace(2e) is not larger than the double of Cypqee(B1)-

Example 4. (Inward cusps) This example is devoted to domains with inward cusps (inner
peaks).

Let © be a smooth domain of R?, outside an inward cusp. Assume that the cusp lies at the
origin, and that in a neighbourhood U the domain is locally the subgraph of a continuous function
f:(=6,8) — RY, such that

f(0)=0, feC'((-6,0)U(0,8)), lim f'(t)=—o0, and lim f'(t) = +oc.
t—0— t—0+

Assume that f. : [—¢,e] — RT is a C! perturbation of f on [—¢,¢] such that f.(de) = f(+e),

fl(£e) = f'(£e) and f. is convex on (—&,¢). We notice first that W12(Q) has a compact trace

in L2(09) so the Steklov spectrum consists of eigenvalues. The question is whether the Steklov

spectrum is stable.

In view of Theorem 4.1 and of Remark 4.3, one has to evaluate the constants Ciyace(€2e),
where (). is the subgraph of f.. We follow, as in the previous examples, the Anzellotti-Giaquinta
characterization described in Section 5. It is sufficient to localize only at the origin. Taking a set
E C Q. N B,-(0) with B,.(0) C U, and decomposing F in

E=En(Q\DUIENQN{zy >20}JU[ENQN{z; <0},
one gets uniform bounds for the ratio
HN-LO*E N ofN.)
HN-L(O*ENQ,)

from the analysis of each piece, since QN {x; > 0} and QN {z; < 0} are Lipschitz regular, while
0.\  has a convex exposure to the projection operator onto the boundary of ..

Example 5. (The L*-norm of Steklov eigenfunctions are not controlled by the eigen-
values alone) We report below an example of a sequence of Lipschitz domains converging to a
cube, satisfying the first two requirements of Theorem 4.1, while the associated oy is constant but
not converge to the k-th eigenvalue of the limiting domain. Thanks to Remark 4.7, this shows that
the L>-norms of the (normalized) Steklov eigenfunctions blow up, even if volume and perimeter
are converging and o is constant. This behavior is clearly different from what happens in the
case of Dirichlet and Robin boundary conditions.

We consider for simplicity the two dimensional case: our example is an adaptation to the case
of Steklov conditions of a classical example of Courant and Hilbert [6, Page 420] (see also the
examples of Girouard and Polterovich [10]). Let us consider for € > 0

Q:=]-1,1> and  R.:=[1,1+¢[x]0,&%],

and let us set
Q. = QUR..
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As ¢ — 0 we have
lo, = 1o strongly in LY(R?)  and  HY(0Q.) — HY().

It is easy to see that for every k > 1 we have o1 (Q:) — 0 # 0%(£2). Let us indeed consider the
piecewise linear function ¢ : R — R given by

s ifOSsSi

%75 ifigsgﬁ
P(s) == 3

s—1 1f1§8§1

0 otherwise.

with fol ¢(s)ds = 0. If we consider the admissible test function for the computation of oy (€2)

given by
L T, — 1
L)Oé:(x) T ¢ ( € ) i

we get (the support is contained in R,)
63 06 5% /(s/s)zds _ ifol((ﬁ/)zds .
2f05 o(s/e)2ds 2 fol #2 ds

For k > 1, it is sufficient to consider the admissible k-uple of functions {@%1!, ... ©&*} with
disjoint supports contained in R, given by

(pl;,i(x) :¢<_Z€+k€(xl_1)> i=1,...,k,

and the same computation leads again to
1. 24
< € fo E‘b )" ds N
2 [ ¢?ds

Since the conclusion of Theorem 4.1 is violated, this means that the trace constants Ciqee(Qe)
are not uniformly bounded. We can directly check this fact by considering the function ¢. above

Ul(Qs) S

0% 1(Q).

(6.10) o () 0% o4 (Q).
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for which
€ 5 &
lecllrroon =5 and  lecllpvo, = lgellwrr) ="+ -
Notice that if we replace the rectangle R, with the rectangle
R! = [1,1 +te][x]0,e%[,  t€[0,1]

and set QL := Q U RL, we have that
tef0,1] — 0

is a deformation from the square @ (obtained for ¢ = 0) and the domain €. (obtained for ¢t = 1).
Along this deformation, in which ¢ is fixed, we have that the trace constants Ciqe.(Q2L) are
uniformly bounded since we have

Ctrace(QZ) S Ctrace(Ré) + Ctrace (Al) + Ctrace (AQ)
where

R =] —1,14¢t[x]0,e%, Ay :=]—1,1[x]e* 1,  Ag:=] —1,1[x] —1,0].

€

Notice that Cirace (Ré) can be estimated uniformly in ¢ since by means of a well controlled dilation
we can transform the rectangle R! into the rectangle | — 1,1[x]0, 3.

In view of Theorem 4.1 and of (6.10), we conclude that for every k > 1 there exists g > 0 such
that for every € < €y we can select t = £, such that

Uk(QZE) = %Jk(ﬂ)

Again as € — 0 we have
Lot = 1o strongly in LI(RQ) and 7-[1([«)9?) - Hl(Q),

with
o (QLe) constant but oy (QLe) # o1 ().
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