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Abstract. We consider the well-known minimizing-movement approach to

the definition of a solution of gradient-flow type equations by means of an
implicit Euler scheme depending on an energy and a dissipation term. We per-

turb the energy by considering a (Γ-converging) sequence and the dissipation

by varying multiplicative terms. The scheme depends on two small parameters
ε and τ , governing energy and time scales, respectively. We characterize the

extreme cases when ε/τ and τ/ε converges to 0 sufficiently fast, and exhibit

a sufficient condition that guarantees that the limit is indeed independent of
ε and τ . We give examples showing that this in general is not the case, and

apply this approach to study some discrete approximations, the homogeniza-

tion of wiggly energies and geometric crystalline flows obtained as limits of
ferromagnetic energies.

1. Introduction. In the present paper we offer a contribution to the general prob-
lem of understanding the interaction between energy and dissipation terms in varia-
tional approaches to gradient-flow type evolutions from the standpoint of minimiz-
ing movements (see also e.g. [11, 12, 13] for related work).

Implicit Euler schemes are a well-established tool to prove existence and approxi-
mation for evolution equations with a gradient-flow structure. We follow De Giorgi’s
formalization [10], which has allowed to use them as a basis for the definition and
study of gradient flows in metric spaces [4]. In order to define a minimizing move-
ment from an initial datum u0 for a functional φ defined on a metric space (S, d),
for fixed τ > 0 one defines a discrete orbit {uτn} by iterated minimization, requiring
that uτ0 = u0 and that uτn be a minimizer of

u 7→ φ(u) +
d2(u, uτn−1)

2τ
. (1)

Any limit of a subsequence of the piecewise-constant interpolations uτ (t) = uτdt/τe is

called a minimizing movement for φ. Such a limit exists under very mild conditions
on φ, and, under proper differentiability assumptions on φ, is a curve of maximal
slope for φ, which is a generalization of the definition of a solution of the gradient-
flow equation

u′ = −∇φ(u) (2)

2010 Mathematics Subject Classification. 47J30, 35K90, 49J45, 47J35, 35B27.

Key words and phrases. Gradient flows, variational evolution, Γ-convergence, homogenization.
.

1



2 ANDREA BRAIDES AND ANTONIO TRIBUZIO

(see [4] Chapter 2).
In this paper we perturb the scheme above both considering a family of ener-

gies φε depending on an additional parameter ε in place of a single φ, and a per-
turbation by varying multiplicative coefficients {aτn} of the squared-distance term
(dissipation). In this case the discrete orbits depend on ε and τ and are defined by
successive minimization requiring that uτ,εn be a minimizer of

u 7→ φε(u) + aτn
d2(u, uτ,εn−1)

2τ
. (3)

By letting ε and τ tend to 0 at the same time, we then define the {aτ}-perturbed
minimizing movements along

{
φε
}

at scale τ as all possible limits of subsequences
of the corresponding piecewise-constant interpolations uτ,ε(t) = uτ,εdt/τe.

In the case of a single function φε = φ, the resulting {aτ}-perturbed minimizing
movements for φ have been analyzed in [14] showing on one hand that, under proper
local-summability assumptions on {1/aτn}n, the resulting minimizing movements are
a perturbed curve of maximal slope with rate a∗, which again extends the notion
of a solution of the gradient-flow equation

a∗u′ = −∇φ(u). (4)

Here, 1/a∗ is a weak limit of the piecewise-constant interpolations of {1/aτn}n. On
the other hand, if the local-summability assumptions on {1/aτn}n fail, the resulting
minimizing movement may result discontinuous and may be used to explore different
energy wells.

When varying energies φε but no perturbation are considered (i.e, aτn = 1 for
all τ and n), the scheme above has been analyzed in [7, 8] showing that in general
the resulting minimizing movements along

{
φε
}

at scale τ do depend on how τ
and ε tend to 0, even if we assume that φε Γ-converge to some limit φ (which is
not restrictive by a compactness argument). If equi-coerciveness assumptions on
φε hold, then diagonal arguments show that we may identify the limit motions in
‘fast-converging ε-τ regimes’. More precisely, if ε converges sufficiently fast to 0
with respect to τ then the limit is a minimizing movement for φ, while if conversely
τ converges sufficiently fast to 0 with respect to ε then it is a limit of minimizing
movements for φε as ε→ 0. In other ε-τ regimes (critical regimes) the minimizing
movements are in a sense an interpolation of these two extreme cases. All regimes
give the same result if some general conditions envisaged by Colombo and Gobbino
are satisfied by {φε} [8], which in particular hold in the ‘trivial’ case of convex
energies but are forbidden by fast-oscillating energies.

In the case of φε Γ-converging to some limit φ, the presence of many local minima
may result in a pinning phenomenon (i.e., orbits may be trapped in energy wells).
The addition of the perturbations {aτn} has the effect of allowing for a wider ex-
ploration of local energy wells, while maintaining a fixed overall effect on the limit
continuum rate a∗. We prove that general {aτ}-perturbed minimizing movements
along

{
φε
}

interpolate between the fast-converging regimes given now by {aτ}-
perturbed minimizing movements for φ and limits of minimizing movements for φε
as ε→ 0, and that the Colombo-Gobbino conditions still provide a ‘commutability
result’. The effect in the critical regimes are examined in three sets of examples.
First, we deal with one-dimensional discretizations of the simple energy φ(u) = −u,
showing that different perturbations with the same a∗ may give different pinning
effects at the microscopic level, influencing the final homogenized velocity. The sec-
ond example deals with one-dimensional wiggly energies, related to gradient flows
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of the type

u′ = −F ′
(u
ε

)
, (5)

with oscillating F . A minimizing-movement-based study of such energies has been
performed in [5], showing pinning phenomena in terms of the ratio ε/τ . Here, we
prove a general homogenization formula for the effective velocity, and an explicit
description of the effect of the perturbations {aτn} on the pinning threshold. Finally,
a third example is given of a perturbed crystalline motion derived from lattice
energies of ferromagnetic type as in [9], showing the dependence of the velocity and
consequently of the pinning threshold on the values of the perturbations.

2. Perturbed minimizing movements along a family of functionals. Fol-
lowing the notation in [4], we consider a complete metric space (S, d), and a Haus-
dorff topology σ on S, weaker than the one induced by the metric d and such that
d is σ-lower semicontinuous.

We consider a time-discretization parameter τ > 0. For every τ we consider
a sequence (aτn)n≥1, such that aτn > 0 for every n ≥ 1. We call this family of
(τ -parameterized) sequences “perturbations”, and we will use the notation

aτ : (0,+∞)→ (0,+∞), aτ (t) := aτdt/τe

to denote the corresponding piecewise-constant interpolation, where dse denotes the
upper integer part of s.

For each ε > 0 we will consider a proper functional φε : S → (−∞,+∞] with
the corresponding domains denoted by D(φε).

With given ε and τ we consider families of sequences {uτ,εn }n satisfyingu
τ,ε
0 ∈ D(φε)

uτ,εn ∈ argmin
u∈S

{
φε(u) + aτn

d2(u,uτ,εn−1)

2τ

}
if n ≥ 1.

(6)

If such a family exists then we say that it solves the Euler iterated minimization
scheme along the sequence of functionals {φε} at time discretization scale τ per-
turbed by {aτ}. This scheme is a modified formulation of the one presented in [4];
in that case {aτ} take the constant value 1 and φε are all equal to a single φ. If,
for a fixed τ and ε, there exist every step uτ,εn of scheme (6), then the sequence is
called a discrete solution or a discrete orbit for (6), and is identified with the curve

uτ,ε : [0,+∞)→ S, uτ,ε(t) := uτ,εdt/τe.

We define gradient-flow type motions as the limits of uτ,ε for ε and τ tending
to 0. The two parameters τ and ε are thought to be related in the sense that
they depend on each other, and the limit motion may depend on their relation. In
order to highlight this, depending on the situation, we will write τ(ε) or ε(τ) and
sometimes, we refer to these relations with the term of “τ -ε regimes”.

Definition 2.1. A curve u : [0,+∞) → S is called a {aτ}-perturbed minimiz-
ing movement along

{
φε
}

if there exist two infinitesimal sequences (τk), (εk) such
that uτk,εk discrete solutions exist for every k and pointwise converge to u in the
topology σ.

For perturbations {aτ} taking the constant value 1, this definition is the same
as that of minimizing movement along the sequence of functionals {φε} at scale τ
given in [8]. For non-constant {aτ} and a single functional this definition has been



4 ANDREA BRAIDES AND ANTONIO TRIBUZIO

used in [14]. Reworking the arguments therein, which are themselves an elaboration
of those in [4] we have the properties contained in the following remark.

Remark 1 (Existence of perturbed minimizing movements). Following the case of
a single (unperturbed) functional in [4], we consider the following conditions:

1. (lower semicontinuity) φε are σ-lower semicontinuous for every ε > 0
2. (equicoerciveness) there exists u∗ ∈ S such that for all c > 0

inf
u∈S,ε>0

{
φε(u) + c d2(u, u∗)

}
> −∞

3. (equicompactness) for all c > 0 there exists a σ-compact Kc such that⋃
ε>0

{
u ∈ S

∣∣ d(u, u∗) < c, φε(u) < c
}
⊂ Kc

4. (control of initial data) there exists a constant C0 such that for all τ, ε > 0,
d(uτ,ε0 , u∗) ≤ C0 and φε(u

τ,ε
0 ) ≤ C0

5. (local uniform integrability) the family {1/aτ} is uniform integrable in [0, T ]
for all T > 0.

These hypotheses imply (see [14] Section 2 for details) that for any T > 0 there
exists a constant CT depending on the perturbations such that

d(uτ,ε(t), u∗) ≤ CT , φε(u
τ,ε(t)) ≤ C0, for every t ∈ [0, T ] (7)

i.e. the σ-precompactness of discrete orbits, and a regularity of discrete solutions

d(uτ,ε(t), uτ,ε(s)) ≤ c θT (t+ τ, s), for all t, s ∈ [0, T ] (8)

where c is a positive constant and

θT (t, s) = sup
τ>0

∫ t

s

1

aτ (ξ)
dξ

defines a modulus of continuity. Applying a variant of the Ascoli-Arzelá Theo-
rem (see Proposition 3.3.1 [4]) we obtain the existence of (at least) one perturbed
minimizing movement u ∈ ACloc(0,+∞;S) as limit of a sequence uτk,εk .

Moreover, the increments of the discrete solutions

|(uτ,ε)′|(t) :=
d(uτ,εn , uτ,εn−1)

τ
, if t ∈ ((n− 1)τ, nτ ] (9)

weakly converge (up to subsequences) in L1
loc(0,+∞) to a function A, which is an

upper bound for the metric derivative of u (for its definition, see for instance [4]
Theorem 1.1.2), i.e.

|u′|(t) := lim
s→t

d(u(t), u(s))

|t− s|
≤ A(t), a.e. in (0,+∞), (10)

and, defining (as in [4] Definition 3.2.1) for every τ, ε the De Giorgi interpolants

ũτ,ε(t) ∈ argmin
u∈S

{
φ(u) + aτn

d2(u, uτn−1)

2δ

}
Gτ,ε(t) = aτn

d(ũτ,ε(t), uτn−1)

τ

, if t = (n− 1)τ + δ (11)

we also obtain the following discrete energy estimate

1

2

∫ nτ

0

aτ (ξ)|(uτ,ε)′|2(ξ)dξ +
1

2

∫ nτ

0

1

aτ (ξ)
G2
τ,ε(ξ)dξ = φε(u

τ,ε
0 )− φε(uτ,εn ). (12)

for all n ≥ 1, that will bring to a convergence in energy.
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Remark 2 (Curves of maximal slope with perturbed velocity). In [4] it is proved
that minimizing movements for a single functional φ at the scale τ are curves of
maximal slope with respect to |∂−φ|(u), the relaxed local slope of φ, which is defined
as the σ-lower semicontinuous envelope of

|∂φ|(u) = lim inf
v→u

(
φ(u)− φ(v)

)
+

d(u, v)
,

under the assumption that |∂−φ|(u) be a strong upper gradient (see Definition 1.2.1
[4]). In the perturbed case, we need a generalization of the concept of curve of
maximal slope for a functional in metric spaces to obtain the analogous result
(Theorem 3.9 [14]) that {aτ}-perturbed minimizing movements for φε are curves of
maximal slope for some φ with a perturbed velocity.

Definition 2.2 (Definition 3.2 [14]). Let g : S → [0,+∞] be a strong upper gradient
for φ, that is for any v ∈ AC(a, c;S), g ◦ v is Borel and

|φ(v(t))− φ(v(s))| ≤
∫ t

s

g(v(ξ))|v′|(ξ))dξ, for any a < s < t < b.

If λ : (a, b) → (0,+∞) is a measurable function, u ∈ AC(a, b;S) is a curve of
maximal slope for φ with respect to a strong upper gradient g of rate λ if φ ◦ u
equals almost everywhere a non-increasing map (still denoted by φ ◦ u) and for all
a < s < t < b

φ(u(t))− φ(u(s)) ≤ −1

2

∫ s

t

1

λ(ξ)
|u′|2(ξ)dξ − 1

2

∫ s

t

λ(ξ)g(u(ξ))2dξ. (13)

If λ is constant then u is a curve of maximal slope for φ with respect to g according
to the definition given in [4].

2.1. The conditions of Colombo-Gobbino. As in [8], we prove that if the func-
tionals converge in a strong way (conditions of Colombo-Gobbino below) we have a
“commutatibility result”.

Definition 2.3. We say that a sequence of functionals
{
φε
}

converges to a func-
tional φ according to the conditions of Colombo-Gobbino if for every sequence εk → 0

and for all vk
σ−→ v, such that supk

{
|φεk(vk)|, |∂φεk |(vk)

}
< +∞ we have

lim
k
φεk(vk) = φ(v), lim inf

k
|∂φεk |(vk) ≥ |∂φ|(v). (14)

With this condition we have the following result.

Theorem 2.4. If assumptions from 1 to 5 of Remark 1 hold (so that there exists
at least one perturbed minimizing movement), if a finite a∗ exists such that the
functions {1/aτ} weakly converge to 1/a∗ in L1

loc(0,+∞) (which is always satisfied
up to subsequences by assumption 5 of Remark 1 ), if

(i) φε converges to φ according to the conditions of Colombo-Gobbino
(ii) the local slope |∂φ| is a strong upper gradient for φ

then every {aτ}-perturbed minimizing movement along
{
φε
}

of problem (6) is a
curve of maximal slope for φ with respect to |∂φ| of rate 1/a∗.

Remark 3. The assumption of the finiteness of a∗ is only technical and can be
avoided by a more precise definition of curve of maximal slope of given rate (as the
one in [14]), that we omitted here for the sake of simplicity. Note moreover that
E = {t | a∗(t) = +∞}, that is 1/aτ ⇀ 0 on E, corresponds to the parameters in
which the curve u has zero velocity.



6 ANDREA BRAIDES AND ANTONIO TRIBUZIO

The proof of this theorem follows the one in [4] with the help of two additional
technical results presented in [14] with all the details and recalled below. The
first one can be proved using test functions lower than lim infτ→0G

2
τ,ε in the weak

convergence of 1/aτ . The second one can be obtained by slightly modifying the
result of Γ-convergence of Dirichlet energy functionals on Sobolev spaces (Theorem
2.35 and Example 2.36 [6]).

Lemma 2.5. Let ũτ,ε and Gτ,ε be defined as in (11). Then for every t > 0 we have

lim inf
τ,ε→0

∫ d tτ eτ
0

1

aτ (ξ)
G2
τ,ε(ξ)dξ ≥

∫ t

0

1

a∗(ξ)
lim inf
τ,ε→0

G2
τ,ε(ξ)dξ.

Since |∂φε|(ũτ,ε(t)) ≤ Gτ,ε(t) (Lemma 3.1.3 [4]) Lemma 2.5 implies

lim inf
τ,ε→0

∫ d tτ eτ
0

1

aτ (ξ)
G2
τ,ε(ξ)dξ ≥

∫ t

0

1

a∗(ξ)
lim inf
τ,ε→0

|∂φε|2(ũτ,ε(ξ))dξ. (15)

Lemma 2.6. Let (uτ,ε)′ be defined as in (9) and A as in (10). Let τk, εk be
sequences such that uτk,εk , (uτ,ε)′ and aτk converge respectively to u,A and a∗, then
exists a subsequence (not relabeled) such that for every t > 0

lim inf
k

∫ d tτk eτk
0

aτk(ξ)|(uτk,εk)′|2(ξ)dξ ≥
∫ t

0

a∗(ξ)A2(ξ)dξ. (16)

Proof of Theorem 2.4. Taking the limit in the energy estimate (12), thanks to the
conditions of Colombo-Gobbino, and inequalities (15) and (16), we have

φ(u(0)) = lim
k
φεk(uτk,εk0 )

≥ lim inf
k

1

2

∫ nτk

0

aτk(ξ)|(uτ,ε)′|2(ξ)dξ +
1

2

∫ nτk

0

1

aτk(ξ)
G2
τk,εk

(ξ)dξ

+φεk(uτk,εk(t))

≥ 1

2

∫ t

0

a∗(ξ)A2(ξ)dξ +
1

2

∫ t

0

1

a∗(ξ)
lim inf

k
|∂φεk |2(ũτk,εk(ξ))dξ

+φ(u(t))

≥ 1

2

∫ t

0

a∗(ξ)|u′|2(ξ)dξ +
1

2

∫ t

0

1

a∗(ξ)
|∂φ|2(u(ξ))dξ + φ(u(t))

and the result follows.

2.2. Fast-converging sequences. Now, we treat the case when we only make
the assumption of Γ-convergence of the sequence of the functionals φε, which al-
ways holds up to subsequences in separable metric spaces. In what follows we set
φ = Γ-limε φε. Under these weaker hypotheses not in every τ -ε regime we have
commutation between the Γ-limit and the minimizing movement, as shown by the
following result which is a readjustment to the perturbed case of the result in [7]
(Theorem 8.1).

Theorem 2.7. Let conditions from 1 to 5 of Remark 1 hold, and let the family
of functionals

{
φε
}

be equi-mildly-coercive; that is, for every c > 0 there exists a
d-compact set Kc such that and for all ε > 0

inf
u∈S

{
φε(u) + c d2(u, u∗)

}
= inf
u∈Kc

{
φε(u) + c d2(u, u∗)

}
where u∗ is the same as in condition 2 of Remark 1. Then, we have that
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(i) there exists a scale ε(τ) such that if ε ≤ ε(τ) every {aτ}-perturbed minimizing
movement along

{
φε
}

is a {aτ}-perturbed minimizing movement with respect
to φ;

(ii) there exists a scale τ(ε) such that if τ ≤ τ(ε) every {aτ}-perturbed minimizing
movement along

{
φε
}

is a limit curve of the sequence
{
uε
}

, where, for every
fixed ε, uε is a {aτ}-perturbed minimizing movement with respect to the single
functional φε.

Proof. (i) with fixed τ , for any sequence εn → 0 and any vn → v the term
d2(vn, u

τ,εn
0 ) converges to d2(v, uτ0) which implies that

Γ- lim
ε→0

(
φε(u) + aτ1

d2(u, uτ,ε0 )

2τ

)
= φ(u) + aτ1

d2(u, uτ0)

2τ

and, by the equicoerciveness assumption, we have the convergence of the minima

lim
ε→0

min
u∈S

{
φε(u) + aτ1

d2(u, uτ,ε0 )

2τ

}
= min

u∈S

{
φ(u) + aτ1

d2(u, uτ0)

2τ

}
.

Hence, every minimizer uτ,ε1 converges to a minimizer uτ1 for the corresponding min-
imum problem with respect to φ when ε tends to 0. Repeating the same argument
every uτ,εn converges to the corresponding uτn for every n ≥ 1 and so we have the
convergence of the discrete solutions

lim
ε→0

uτ,ε = uτ .

Since uτ converges to a {aτ}-perturbed minimizing movement with respect to φ, a
diagonal argument defines ε(τ).

(ii) with fixed ε > 0, we have convergence of discrete solutions to uε and these
perturbed minimizing movements are equicompact and equicontinuous. This follows
by passing to the limit in (7) and (8) in Remark 1, since these properties depend
on the perturbations, which do not depend on ε. Hence, the result follows by the
Ascoli-Arzelá Theorem.

Remark 4. In the sequel, we will use the notation u0 and u∞ to indicate per-
turbed minimizing movements obtained under condition (i) and (ii), respectively,
of Theorem 2.7.

3. Examples of critical regimes. Theorem 2.7 highlights that, between opposite
types of fast-converging sequences, there are in general one or more critical ε-τ
regimes, at which the minimizing movements describe an effective motion different
from the extreme ones. Various types of critical regimes have been already studied
in [7] in the case of un-perturbed minimizing movements. Here we highlight some
effects of the perturbations with two simple examples.

On the real line, we consider the functions

φε(t) =

{
−t t ∈ εZ
+∞ otherwise

as a prototype of multi-well energies with different well depth. It is not restrictive
to take uτ,ε0 ≡ 0. The perturbations {aτ} are assumed to satisfy assumption 5 of
Remark 1.
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All the hypotheses of Remark 1 are satisfied, so that {aτ}-perturbed minimizing
movements along

{
φε
}

are well-defined curves u : [0,+∞) → R. In this case, the
iterated minimization algorithm (6) takes the form

uτ,εn ∈ argmin
u∈εZ

{
− u+ aτn

|u− uτ,εn−1|2

2τ

}
,

so that uτ,εn is the point of εZ closest to the minimum of the parabola, that is
uτ,εn−1 + τ/aτn.

Note that if τ/aτn ∈ ε(Z + 1/2) there are two such points, so that we have

uτ,εn =

{
uτ,εn−1 + τ/aτn ± ε/2 if τ/aτn ∈ ε(Z + 1/2)

uτ,εn−1 + εbτ/(εaτn) + 1/2c otherwise.

The cases of double minimizers can be treated separately, so for simplicity we con-
sider the assumption

1

aτn
6∈ ε

τ

(
Z +

1

2

)
(17)

in which case {uτ,εn } is defined iteratively by

uτ,εn = uτ,εn−1 + ε

⌊
τ

εaτn
+

1

2

⌋
. (18)

3.1. Pinning. We say that the perturbed motion is pinned if there exists a constant
c such that for any aτ > c then u ≡ u0. We define the infimum of such constants
as the pinning threshold of the motion.

Define γ = γ(τ, ε) = ε/τ . Condition (17), which ensures the uniqueness of the
minima, is

1

aτn
6∈ γ
(
Z +

1

2

)
.

By (18), if aτn < 2
γ then uτ,εn > uτ,εn−1, otherwise we have uτ,εn = uτ,εn−1. Hence, if

aτ > 2/γ the motion is pinned, i.e. u(t) ≡ 0 and 2/γ is the pinning threshold.
Note that aτ > 2/γ is a sufficient condition in order to obtain a pinned motion,

but not necessary. In fact, consider the set Iγ,τ (t) := {ξ ∈ [0, t] | aτ (ξ) ≤ 2/γ}. By
(18) the discrete solution is

uτ,ε(t) = ε
∑

nτ∈Iγ,τ (t)

⌊
τ

εaτn
+

1

2

⌋
= γ

∫
Iγ,τ (t)

⌊
1

aτ (ξ)γ
+

1

2

⌋
dξ

and we obtain the estimate∣∣Iγ,τ (t)
∣∣ ≤ uτ,ε(t) ≤ ∫

Iγ,τ (t)

1

aτ (ξ)
dξ +

γ

2

∣∣Iγ,τ (t)
∣∣.

Hence, if the following condition over the perturbations {aτ} is satisfied

lim
k

∣∣Iγk,τk(t)
∣∣ = 0 for all t ≥ 0, (19)

where γk = γ(εk, τk), we have a pinned motion u = limk u
τk,εk . Otherwise, if for

some t0 ≥ 0

lim sup
k

∣∣Iγk,τk(t0)
∣∣ > 0

taking the limit along a suitable subsequence of (τk) we obtain u(t0) > 0.
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Remark 5. In case of N -periodic perturbations, we have that condition (19) is
satisfied if and only if

α := inf
1≤n≤N

aτn >
2

γ
. (20)

So in this case, the pinned perturbed motions are characterized by the pinning
threshold, i.e. if α > 2/γ the motion is pinned, otherwise it is not.

3.2. Fast-convergences. In this case, the scales defined in (i) and (ii) of Theorem
2.7, can be chosen as τ(ε) = o(ε) and ε(τ) = o(τ).

Indeed, consider ε(τ) = o(τ), by (18) we have, for every t ≥ 0

uτ,ε(t) =

dt/τe∑
n=1

ε

⌊
τ

εaτn
+

1

2

⌋
so taking the limit for τ → 0 in

dt/τe∑
n=1

τ

aτn
−
⌊
t

τ

⌋
ε ≤ uτ,ε(t) ≤

dt/τe∑
n=1

τ

aτn
+

⌊
t

τ

⌋
ε

we obtain

u0(t) =

∫ t

0

1

a∗(ξ)
dξ,

the {aτ}-perturbed minimizing movement with respect to φ(t) = −t = Γ-limε→0 φε(t).
Now, let τ(ε) = o(ε), so that 1/γ(ε)→ 0 for ε→ 0. Assumption 5 of Remark 1

implies that ∣∣Iδ,τ (t)
∣∣ ≤ 2

γ

∫
Iδ,τ (t)

1

aτ (ξ)
dξ ≤ 2

γ

∥∥∥∥ 1

aτ

∥∥∥∥
L1(0,t)

≤ 2

γ
C0,t.

Hence, pinning condition (19) is satisfied, i.e. u∞(t) ≡ 0 for these regimes, but for
every ε the perturbed minimizing movements uε are identically 0 because φε has a
discrete domain, so the result follows.

This shows that the critical regimes are such that ε(τ) = γ(τ)τ , with γ(τ)
a bounded function with infτ γ(τ) > 0. Without loss of generality consider the
regimes

ε = γτ.

In what follows, we use the notation uγ for the {aτ}-perturbed minimizing move-
ments along {φγτ}.

3.3. Periodic perturbations. Now, given 0 < α < β, choose general periodic
perturbations

aτn =

{
α n odd

β n even.

Such perturbations *weakly converge to the inverse of the harmonic mean between
α and β, that is 1/a∗ = (1/α+ 1/β)/2. Hence

u0(t) =
1

a∗
t, u∞(t) ≡ 0.

In this case, in the critical regimes, we have different perturbed minimizing move-
ments depending on γ, chosen according to condition (17). Define kα = b1/(αγ) +
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1/2c and kβ = b1/(βγ) + 1/2c. By (18) we have

uτ,εn =

{
uτ,εn−1 + kαε n odd

uτ,εn−1 + kβε n even
=

⌈
n

2

⌉
kαε+

⌊
n

2

⌋
kβε

and so the discrete solution is

uτ,ε(t) =

⌈
t

2τ

⌉
kαε+

⌊
t

2τ

⌋
kβε =

⌈
t

2τ

⌉
kαγτ +

⌊
t

2τ

⌋
kβγτ

and taking the limit we have

uγ(t) =
1

aγ
t, with

1

aγ
:= γ

kα + kβ
2

.

Remark 6. By varying γ we obtain different perturbed minimizing movements
depending on the value 1/aγ . The function γ 7→ 1/aγ is a piecewise linear function
having jumps in the bifurcation values, i.e. by (17) in

γαj :=
2

(2j − 1)α
, γβj :=

2

(2j − 1)β
,

and 1/aγ = 0 for all γ > γα1 as stated by condition (20). Moreover 1/aγ → 1/a∗

when γ → 0 (see Figure 1). In fact 1/aγ can be seen as an approximation of the
harmonic mean between α and β taking values on γZ.

We shortly examine the determination of the largest velocity that the motion
could reach. To do this it suffices to evaluate 1/aγ at the right-end extremes of
the continuity intervals, since there the function is increasing. This corresponds to

considering the greatest jump value at γαj and γβj for all j ≥ 1. These are

1

aγ
α
j

=
j

(2j − 1)α
+
γαj
2

⌊
1

βγαj
+

1

2

⌋
=

1

(2j − 1)α

(
j +

⌊
(2j − 1)α

2β
+

1

2

⌋)
1

aγ
β
j

=
γβj
2

⌊
1

αγβj
+

1

2

⌋
+

j

(2j − 1)β
=

1

(2j − 1)β

(⌊
(2j − 1)β

2α
+

1

2

⌋
+ j

)
.

Since α < β, the value (2j − 1)α/(2β) + 1/2 is less than j so that its lower integer

part is less then or equal to j − 1, which yields 1/aγ
α
j ≤ 1/α = 1/aγ

α
1 . While, when

α ≥ β/2, (2j− 1)β/(2α) + 1/2 ≤ 2j− 1/2, so 1/aγ
β
j ≤ 1/β+ j/((2j− 1)β) < 2/β =

1/aγ
β
1 . Now, since 1/α ≥ 1/aγ

α
1 if and only if α ≤ β/2, we have that

sup
γ>0

1

aγ
= max

j≥1

{
1

aγ
α
j
,

1

aγ
β
j

}
=

{
1/α α ≤ β/2
2/β α ≥ β/2.

Therefore, the largest velocity of uγ , which is reached in 2/α if α ≤ β/2 and in 2/β
otherwise, depends on the ratio α/β (Figure 1).

The behavior of 1/aγ when γ → 0,+∞ gives a compatibility property for the
perturbed minimizing movements. Indeed

lim
γ→0

uγ = u0, lim
γ→+∞

uγ = u∞,

uniformly on compacts subsets of (0,+∞).
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Figure 1. The dark line represents the graph of γ 7→ 1/aγ , the
light line is the constant 1/a∗. On the left α > β/2 so the sup is

reached in γβ1 , on the right α < β/2 and the sup is reached in γα1 .

3.4. Different flows generated by perturbations with the same harmonic
mean. Slightly modifying the functionals, the situation could be more complicated.
Consider the sets Zε := 3εZ ∪ ε(3Z + 1) and the functionals

φε(t) =

{
−t t ∈ Zε
+∞ otherwise

with initial data uτ,ε0 ≡ 0, and perturbations satisfying assumption 5 of Remark
1. As well as in the previous section, when τ = o(ε) or ε = o(τ) we have fast-
convergences, so we study the case ε = γτ , with γ ∈ (0,+∞).

The n-th step of the discrete solution is the projection of uτ,εn−1 + τ/aτn on Zε.
Note that the points of the domain are not equidistanced. We define the projection
on Zε

PZε(t) =


t± ε/2 if t ∈ ε(3Z + 1/2)

t± ε if t ∈ ε(3Z + 2)

εd(2t+ 2)/(3ε)e otherwise

(21)

and uτ,εn = PZε(u
τ,ε
n−1 + τ/aτn). Note that by (21), the condition (17) which ensures

the absence of bifurcations is replaced by

1

aτn
6∈ γ

((
Z +

1

2

)
∪ (Z + 2)

)
and there are two critical values of the perturbations which affect the motion:

(i) if aτn > 2/γ total pinning, i.e. uτ,εn = uτ,εn+1;
(ii) if 1/γ < aτn < 2/γ partial pinning, i.e. if uτ,εn−1 + ε 6∈ Zε then uτ,εn = uτ,εn−1

otherwise uτ,εn = uτ,εn−1 + ε
(iii) if aτn < 1/γ then uτ,εn > uτ,εn−1.

Consider, γ ∈ (1/2, 1). We present two perturbations oscillating between the
values 1 and 2 with a different period, having the same harmonic mean, which
generate two different motions. According to the above conditions, when aτn = 2 we
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are in the case we have partial pinning, when aτn = 1 we have no pinning. Consider
first

aτn =

{
1 n odd

2 n even

except an initial phase displacement, when n is odd uτ,εn = uτ,εn−1 + 2ε, when is even
uτ,εn = uτ,εn−1 + ε, so for large n we have

uτ,εn = o(1) +
⌈n

2

⌉
ε+

⌊n
2

⌋
2ε

and the discrete solution is

uτ,ε = o(1) + γ

(⌈
1

2

⌈
t

τ

⌉⌉
τ +

⌊
1

2

⌈
t

τ

⌉⌋
2τ

)
.

By taking the limit as τ → 0, we have

uγ(t) = γ
3

2
t.

Now, consider the perturbations

aτn =

{
1 n ∈

(
4N + 1

)
∪ (4N + 2)

2 n ∈
(
4N + 3

)
∪ 4N

After an initial phase displacement, we have the following periodic situation. Let
n ∈ 4N + 1, we always have that uτ,εn = ε(3k + 1) for some integer k and

(i) aτn = 1 we have no pinning and uτ,εn+1 = uτ,εn + 2ε;
(ii) aτn+1 = 1 again no pinning and uτ,εn+2 = uτ,εn + 3ε;

(iii) aτn+2 = 2 we have partial pinning and uτ,εn+2 + ε 6∈ Zε, so uτ,εn+3 = uτ,εn+2;
(iv) aτn+3 = 2 and, as above, uτ,εn+4 = uτ,εn+2.

Hence, for any large n we have uτεn+4 = uτ,εn + 3ε, that is uτ,ε4n = o(1) + 4ε+ 3nε and
the discrete solution is

uτ,ε(t) = o(1) + γ

(⌈
1

4

⌈
t

τ

⌉⌉
τ +

⌊
1

4

⌈
t

τ

⌉⌋
2τ

)
.

Taking the limit we obtain

uγ(t) = γ
3

4
t.

4. Oscillating energies. In this section we study the homogenization of perturbed
gradient-flows along wiggly energies, which has already been treated in its unper-
turbed formulation in [5] and in [7] (Example 8.2). Consider a positive constant
T > 0 and W a 1-periodic, Lipschitz, even function with ‖W ′‖∞ = 1 and zero
average. Now, consider the energies

φε(t) = εW

(
t

ε

)
+ Tt,

and assume that all the hypotheses of Remark 1 are satisfied, so that we have
perturbed gradient-flows along φε.

In [5], it is proved that critical regimes for this motion are those such that the
ratio ε/τ is bounded with positive infimum, and the case ε = γτ is studied. In
such critical regimes, there exists a pinning threshold of initial data and minimizing
movements are linear functions with a homogenized velocity. We will prove that for
perturbed minimizing movements analogous results hold.
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4.1. Fast convergences. We prove that in the regimes ε(τ) = o(τ) and τ(ε) = o(ε)
we have fast convergences.

Consider ε(τ) = o(τ). Denote by φ(u) = Tu the Γ-limit of φε. In order to
lighten the notation, for every n and τ we define F (u) := φ(u) + aτn(u− uτ,εn−1)2/2τ

and Fε(u) := φε(u) + aτn(u − uτ,εn−1)2/2τ . By a direct computation we can write
Fε(u) = F (u) + εW (u/ε). Now, denote

v := argmin
u∈R

F (u) = uτ,εn−1 −
τ

aτn
T.

Since
∣∣εW (t/ε)| ≤ ε/2 we have that

F (uτ,εn ) < F (v) + ε. (22)

Indeed, otherwise Fε(u
τ,ε
n ) ≥ F (uτ,εn ) − ε/2 ≥ F (v) + ε/2 > Fε(v), which is in

contrast with the minimality of uτ,εn . By the minimality of v we have that F (u) =
aτn(u− v)2/2τ + F (v), so by (22) we have that

|uτ,εn − v| ≤
(

2τε

aτn

) 1
2

. (23)

Now take {n}, {m} two family of integers (depending on τ) such that n > m and
both nτ and mτ converge to t ≥ 0. By (23), applying a discrete Hölder inequality
we have that∣∣∣∣∣uτ,εn − uτ,εm + T

n∑
i=m+1

τ

aτi

∣∣∣∣∣ ≤
n∑

i=m+1

(
2

1

aτi
τε

) 1
2

≤
(

2τε(n−m)

n∑
i=m+1

1

aτi

) 1
2

and dividing both the members by (n−m)τ we get∣∣∣∣uτ,εn − uτ,εm(n−m)τ
+ T

1

n−m

n∑
i=m+1

1

aτi

∣∣∣∣ ≤ (2
ε

τ

1

n−m

n∑
i=m+1

1

aτi

) 1
2

.

Taking the limit as τ → 0, by Lebesgue’s Theorem (up to subsequences)

u′(t) = − 1

a∗(t)
T, for almost every t ≥ 0;

hence u is a {aτ}-perturbed minimizing movements with respect to φ.
Let τ(ε) = o(ε). For the single functional φε we have

uε(t)′ = − 1

a∗(t)

(
T +W ′

(
uε(t)

ε

))
for all t ≥ 0. (24)

First, note that, for T ≤ 1, the set of constant solutions
{
x ∈ R

∣∣T +W ′(x/ε) = 0
}

tends to be dense, so that for every initial value uε0 the solution uε lives in an interval
of length ε, so u∞(t) ≡ u0 for any T ≤ 1, and initial data u0 ∈ R. Whereas, for
T > 1 integrating (24) from t1 to t2 we obtain∫ uε(t2)

uε(t1)

1

T +W ′(s/ε)
ds = −

∫ t2

t1

1

a∗(t)
dt.

But 1/(T + W ′(s)) is a summable 1-periodic function, so the integrand L1-weak

converges to the average
∫ 1

0
1/(T +W ′(s))ds. Now define the function

f(T ) =

0 if T ≤ 1(∫ 1

0

1

T +W ′(s)
ds
)−1

if T > 1
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taking the limit for ε→ 0, and t1, t2 → t we have

u∞(t) = u0 − f(T )

∫ t

0

1

a∗(ξ)
dξ for all t ≥ 0.

4.2. Critical regimes. We now study the critical regimes. It is not restrictive to
suppose that ε = γτ , with γ > 0. Since

argmin
u∈R

{
φε(u) + aτn

(u− uτ,εn−1)2

2τ

}
= argmin

u∈R

{
1

ε
φε(u) +

1

ε
aτn

(u− uτ,εn−1)2

2τ

}
we reduce to the following rescaled problem by taking y = u/εy0 ∈ R

yτn ∈ argmin
y∈R

{φ1(y) +
aτn
2 γ(y − yτn−1)2}. (25)

We obtain that uτ,εn = εyτn, provided that y0 = uτ,ε0 /ε. The rescaled discrete
solutions yτ in general depends on τ because of the perturbations. If one takes, as
in the following, periodic perturbations the dependence on τ will disappear.

First, we recall a useful result presented and proved in [5] Proposition 3.1.

Lemma 4.1. Given any function ψ1, ψ2 : R → R, and a positive constant β > 0.
For any x1, x2 ∈ R, if

y1 ∈ argmin
t∈R

{ψ1(t) + β(t− x1)2}, y2 ∈ argmin
t∈R

{ψ2(t) + β(t− x2)2}

then ψ1(y1)− ψ1(y2) + ψ2(y2)− ψ2(y1) ≤ 2β(x1 − x2)(y1 − y2).

By mimicking the argument of the proof of the previous lemma, we obtain the
following useful result.

Lemma 4.2. Given ψ : R → R, and two positive constants 0 < α < β. For any
y0 ∈ R, if

yα ∈ argmin
t∈R

{ψ(t) + α(t− y0)2}, yβ ∈ argmin
t∈R

{ψ(t) + β(t− y0)2}

then (yα − yβ) has the same sign of (yα − y0).

Proof. By the minimality of yα and yβ we can write

ψ(yα) + α(yα − y0)2 ≤ ψ(yβ) + α(yβ − y2)
ψ(yβ) + β(yβ − y0)2 ≤ ψ(yα) + β(yα − y2)

and summing them up we get

(α− β)(yα − y0)2 ≤ (α− β)(yβ1 − y0)2

which implies, on one hand that |yα − y0| ≥ |yβ − y0|, on the other hand

0 ≤ (yα − yβ)((yβ − y0) + (yα − y0)).

Since (yβ − y0) + (yα − y0) has the sign of yα − y0, we get the thesis.

The monotonicity of unperturbed discrete solutions follows from Lemma 4.1,
as shown in [5]. In the perturbed case we have no monotonicity of the discrete
solutions. Nevertheless, an important property remains; namely, the monotone
behavior with respect to initial data. This is ensured by the following result (see
[5] Proposition 4.2), which still holds in the perturbed case with the same proof.
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Proposition 1. Given y0, z0 ∈ R two initial data, and two positive constants S ≥
T > 0. Consider {yτn} solutions of (25) starting from y0 with φ1(t) = W (t) + Tt
and {zτn} starting from z0 with φ1(z) = W (t) + St. If z0 ≤ y0 then zτn ≤ yτn, for all
n ≥ 1 and τ > 0.

Remark 7. For {yτn} solution of (25) either yτn ≤ yτn−1 or yτn ≤ yτn−1 + 1, because
φ1(t) + aτnγ(t− yτn−1)2/2 < φ1(t+ 1) + aτnγ(t+ 1− yτn−1)2/2 if yτn−1 ≤ t ≤ yτn−1 + 1.

Moreover, yn+1 ≤ yτn−1 + 1. Indeed, otherwise yτn−1 + 1 < yτn+1 ≤ yτn−1 + 2, by
the observation above. As

φ1(yτn+1 − 1) < φ1(yτn+1) < φ1(yτn) < φ1(t) (26)

for any yτn−1 < t < yτn and therefore

yτn < yτn+1 − 1 ≤ yτn−1 < yτn+1, (27)

(26) and (27) lead to a contradiction. Reasoning by induction we get that yτn+k ≤
yτn−1+1 for any k ≥ 0, n ≥ 1. This means that, even if the motion is not (in general)
monotone, once it reaches an energy well either it proceeds further decreasing the
energy or remains in that well.

Consider the case of N -periodic perturbations, that is

aτn = ai, if n = kN + i for some k ∈ N, (28)

for any τ . The solutions of (25) with such perturbations do not depend on τ .

Proposition 2. Consider {aτn} as in (28) and {yn} a solution of (25) with φ1(t) =
W (t) + Tt. Then there exists the limit

fγ(T, {an}) = lim
n→∞

y0 − yn
n

≥ 0

and it is independent on y0. Moreover T 7→ fγ
(
T, (an)

)
is an increasing map.

Proof. First, notice that, by the periodicity of W , for any integer l the solution of
(25) from y0 + l is yln = yn + l. Indeed

yl1 ∈ argmin
t∈R

{
W (t) + Tt+ aτ1

γ

2

(
t− (y0 + l)

)2}
= argmin

t∈R

{
W (t− l) + T (t− l)− T l + aτ1

γ

2

(
(t− h)− y0

)2}
= argmin

s∈R

{
W (s) + Ts+ aτ1

γ

2

(
s− y0

)2}
+ l,

and the claim follows by induction. We first consider the case y0 = 0. For any
k ≥ 1 let h = bykNc, so that 0 ≤ ykN − h < 1. If z0 = ykN − h then we have that
zi = ykN+i − h by the N -periodicity of {an}. By Proposition 1 with T = S, since
0 < z0 ≤ 1, we have that yi ≤ zi ≤ yi + 1, which reads as yi ≤ ykN+i − h ≤ yi + 1,
and by the definition of h we have

yi + ykN − 1 ≤ ykN+i ≤ yi + ykN + 1. (29)

For all m < n, denote m′ = bm/NcN and consider k such that and n = km′ + i,
with 0 ≤ i < m′. Since m′ is a multiple of N , the second inequality in (29) applies
and we get

yn
n
≤ ykm′ + yi + 1

km′ + i
≤ kym′ + yi + k

km′ + i
≤ ym′

m′
+

1

m′
+

yi
km′

.
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Taking the limit as n→∞ and keeping m fixed we have

lim sup
n→∞

yn
n
≤ ym′ + 1

m′
.

Now, consider 0 ≤ j < N such that m = bm/NcN + j = m′ + j. By the first
inequality in (29) we have ym ≥ ym′ + yj − 1, so (ym′ + 1)/m′ ≤ (ym + 2− yj)/m′.
Taking the limit as m→∞ we have that

lim sup
n→∞

yn
n
≤ lim inf

m→∞

ym
m

which yields the existence of the limit, which is non-negative from Remark 7.
Now, consider any y0 6= 0 and let h = by0c, so that 0 ≤ y0 − h ≤ 1. We have

y0n − 1 ≤ yn − y0 ≤ y0n + 1,

where {y0n} the discrete solution of (25) starting from 0. This implies that fγ
(
T, (an)

)
is independent on the initial data y0. Moreover, let {zn} be the rescaled discrete
solution for linear energy component S ≥ T . By Proposition 1 we have −zn ≥ −yn
which implies the monotonicity of fγ in T .

If an ≡ c then, following the notation in [5], we have fγ(T, {an}) = fcγ(T ).

Theorem 4.3. Let {an} be as in (28); then for all γ ∈ (0,+∞), and for any initial
data u0 ∈ R, the {aτ}-perturbed minimizing movement along {φγτ} is

uγ(t) = u0 − γfγ
(
T, (an)

)
t, for all t ≥ 0.

Proof. For every t > 0, the pointwise convergence of discrete solutions implies

uγ(t)− u0
t

= lim
k

uτk,εk(t)− uτk,εk0

t
.

Consider n = dt/τke, which depends on t and k. For every t > 0, we have n → ∞
when k →∞. We then obtain

uγ(t)− u0
t

= γ lim
k

yn − y0
n

= −γfγ
(
T, (an)

)
by multiplying and dividing by εk.

4.3. The pinning threshold. We extend the definition of the pinning threshold
given in [5] (see Definition 5.2) to the perturbed case, still working with periodic
perturbations as in (28).

Definition 4.4. For any γ > 0, the pinning threshold with perturbations {an} at
regime γ is

Tγ({an}) := sup{T > 0 | fγ(T, {an}) = 0}.

Notice that, by the monotonicity of T 7→ fγ(T, {an}), then fγ(T, {an}) = 0 for
every T < Tγ({an}).

If an ≡ c, following the notation in [5], we have Tγ({an}) = Tcγ .

Proposition 3. Given {an} as in (28), and set α = min1≤i≤N ai. Then

Tγ({an}) = Tαγ .



PERTURBED MINIMIZING MOVEMENTS 17

Proof. Consider T < Tαγ and denote as {yαn} a solution of (25) starting from y0
corresponding to an ≡ α. We have that (y0−yαn)/n→ 0 by the definition of pinning
threshold. As already noted, the unperturbed discrete solutions are monotone, so
it is yαn . Assume that yα1 ≤ y0. By Lemma 4.2, yα1 ≤ y1. Consider

z ∈ argmin
t∈R

{
φ1(t) + a2

γ

2
(t− yα1 )2

}
.

On one hand, from Proposition 1 we get that z ≤ y2; on the other hand, by
applying again Lemma 4.2 yα2 ≤ z, and by induction we get yαn ≤ yn. Hence,
0 ≤ (y0− yn)/n ≤ (y0− yαn)/n→ 0; that is, fγ(T, {an}) = 0. Analogous if yα1 ≥ y0.
This yields that Tαγ ≤ Tγ({an}).

Now take T > Tαγ . Since fαγ(T ) > 0, {yαn} is decreasing. It is not restrictive
suppose that a1 = α. From Remark 7 yN ≤ yα1 + 1 that yields yN+1 ≤ yα2 + 1.
Analogously y2N ≤ yα2 + 1 and therefore y2N+1 ≤ yα3 + 1. So we have that ykN+1 ≤
yαk+1 + 1, which implies that (y0 − yαk+1)/(k + 1) ≤ (y0 − ykN+1 + 1)/(kN + 1). By
taking the limit as k →∞ we have that 0 < fαγ(T ) ≤ Nfγ(T, {an}), in particular
T > Tγ({an}) and the thesis follows.

5. Perturbed motion of discrete interfaces. Since the interest of studying the
perturbation method defined in Section 2 relies on the competition between an
energy and a dissipation term, it can be also applied to the well-know scheme of
geometric minimizing movements defined in the pioneering work [3].

In this section, we analyze the effect of the perturbations on the motion of two-
dimensional discrete interfaces studied in [9].

5.1. Setting of the problem. We briefly recall the setting of the problem; for
any ε > 0 we consider the lattice εZ2. For any set of indices I ⊂ εZ2 we define

Pε(I) = ε#{(i, j) | i ∈ I, j /∈ I, |i− j| = ε}.

We generalize these functionals to any set E ⊂ R2 which is union of squares centered
in a point of the lattice εZ2 with side length ε, that is

E =
⋃
i∈I

Qε(i), (30)

where Qε(i) = [i1 − ε/2, i1 + ε/2] × [i2 − ε/2, i2 + ε/2], and denote with Dε the
family of such sets. With a slight abuse of notation we write Pε(E) = Pε(I) for any
set as in (30).

If we consider the family of sets of finite perimeter S = {E ⊂ R2 |H1(∂∗E) <
∞}, where ∂∗E denotes the reduced boundary of E, endowed with the Hausdorff
distance, such functionals correspond to

Pε(E) =

{
H1(∂E) E ∈ Dε

+∞ otherwise

defined in S, with domain D(Pε) = Dε. As already noted in [9] and proved for in-
stance in [1], Pε approximate (in the sense of Γ-convergence) the crystalline perime-
ter

P (E) =

∫
∂∗E

‖ν‖1dH1.
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Remark 8. These functionals could also be seen as interface energies on spin
systems. Given u : Z2 → {±1} one defines the interaction energies

Eε(u) =
ε

4

∑
i,j∈I
|i−j|=1

|ui − uj |2

and Eε(u) = Pε({i ∈ εZ2 |u(i/ε) = 1}).

The dissipations Dε(F,E) are defined as follows. For any I ⊂ εZ2 and i ∈ εZ2

we define

dε∞(i, I) =

{
dist∞(i, I) i /∈ I
dist∞(i, εZ2\I) i ∈ I

and for any E as in (30) dε∞(x, ∂E) = dε∞(i, ∂I) + ε/2, if x ∈ Qε(i). Then, for any
E,F ∈ Dε

Dε(F,E) =

∫
E4F

dε∞(x, ∂E)dx,

where E4F denotes the symmetric difference between E and F .
Finally, we can set the following minimization schemeE

τ,ε
0 ∈ S

Eτ,εn ∈ argmin
E∈S

{Pε(E) +
aτn
τ Dε(E,E

τ,ε
n−1)}, (31)

and again denote as Eτ,ε(t) = Eτ,εdt/τe its discrete solutions. Any limit in the Haus-

dorff metric of {Eτ,ε} is a {aτ}-perturbed geometric minimizing movement at regime
τ -ε.

In the following, we study the perturbed scheme (31) in the special case in
which Eτ,ε0 = Eε0 are coordinate rectangles converging in the Hausdorff metric as
ε → 0, because this case already provides an interesting example of the effects of
the perturbation in this setting. We also consider {aτ} satisfying assumption 5 of
Remark 1.

We focus our analysis on the regimes ε = γτ , which has been proved to be the
critical one for the un-perturbed case. The fast-converging cases are obtained as
limit cases of the critical ones.

5.2. Motions of coordinate rectangles. In [9] Theorem 1 it has been proved
that motions {Eτ,ε} starting from a coordinate rectangle Eε keeps the rectangular
shape. We reduce to study the evolution of the lengths Lτ,ε1,n, Lτ,ε2,n of the sides of
Eτ,εn .

In the proof of Theorem 1 [9] it is proved that, if E is a coordinate rectangle in
Dε of sides of length L1, L2, the minimizer

E′ ∈ argmin
F∈Dε

{Pε(F ) + ηDε(F,E)/ε},

is a coordinate rectangle centered in the center of E and sides of length L′1, L
′
2 which

satisfies

L′1 − L1

ε
= −2

⌊
2

ηL2

⌋
+O(ε2),

L′2 − L2

ε
= −2

⌊
2

ηL1

⌋
+O(ε2),

except when 2/ηL1 or 2/ηL1 is in a neighborhood of an integer of amplitude which
is infinitesimal with respect to ε. In order to simplify the exposition, we omit these
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cases, as their treatment does not vary from that of the corresponding cases in [9].
By taking η = γaτn, and E = Eτ,εn−1, for any n ≥ 1 we have

Lτ,ε1,n − L
τ,ε
1,n−1

τ
= −2γ

⌊
2

γaτnL
τ,ε
2,n−1

⌋
+O(ε2)

Lτ,ε2,n − L
τ,ε
2,n−1

τ
= −2γ

⌊
2

γaτnL
τ,ε
1,n−1

⌋
+O(ε2).

(32)

Note that, as in Remark 1, equation (8) reads

Dε(E
τ,ε(t), Eτ,ε(s)) ≤ c θT (t+ τ, s)

for any t, s ∈ [0, T ]. This means that (up to subsequences) Lτ,ε1 , Lτ,ε2 converge
pointwise to some absolutely continuous functions L1, L2, as τ → 0. This implies
the pointwise convergence, in the Hausdorff metric of the discrete solutions, i.e.
dH(Eτk,εk(t), E(t))→ 0 for some infinitesimal {τk}, {εk}, to the coordinate rectan-
gle E(t) with sides of length L1(t), L2(t). In particular E(t) satisfies the following
system of coupled ordinary differential equations{

L′1(t) = −2γv1(t)

L′2(t) = −2γv2(t).
(33)

where v1 and v2 are respectively the weak limit in L1(0, T ) of b2/(γaτ (t)Lτ,ε2 (t))c
and b2/(γaτ (t)Lτ,ε1 (t))c.

5.3. The case of periodic perturbations. We can find the explicit form of v1
and v2, for instance in the case of N -periodic perturbations {an} as in (28). For
any 1 ≤ i ≤ N consider

χτi (s) =

{
1 s ∈ ((kN + i− 1)τ, (kN + i)τ ], k ∈ N
0 otherwise,

which weakly converge to 1/N in L1
loc. We can rewrite the first of (32) as

Lτ,ε1,n = Lτ,ε1,n−1 − 2γτ

⌊
2

γan

1

Lτ,ε2,n

⌋
= Lτ,ε1,0 − 2γτ

n∑
k=0

⌊
2

γak

1

Lτ,ε2,k

⌋

= Lτ,ε1,0 − 2γτ

N∑
i=1

n/N∑
k=1

⌊
2

γai

1

Lτ,ε2,kN+i

⌋

= Lτ,ε1,0 − 2γ

N∑
i=1

∫ nτ

0

⌊
2

γai

1

Lτ,ε2 (s)

⌋
χτi (s)ds ,

and taking the limit as τ → 0, by the weak convergence of χτi and the local uniform

convergence of Lτ,ε2 we obtain that v1 =
∑N
i=1b2/(γaτi L2)c/N . Analogous for v2,

hence (33) reads as 

L′1(t) = −2γ
1

N

N∑
i=1

⌊
2

γaτi L2(t)

⌋

L′2(t) = −2γ
1

N

N∑
i=1

⌊
2

γaτi L1(t)

⌋
.

(34)
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Note that in the perturbed case the pinning condition changes; indeed, defined
α = min1≤i≤N ai, if

L1,0 >
2

γα
,

then L′2(t) = 0 for t > 0 small enough. The same holds for L1. As in [9] Theorem
2 the motion is characterized in three cases:

(i) total pinning, i.e. E(t) ≡ E0, if L1,0, L2,0 > 2/(γα);
(ii) if L1,0 ≤ 2/(γα) and L2,0 < 2/(γα), E(t) shrinks up to an extinction time;

(iii) partial pinning if L1,0 > 2/(γα) and L2,0 < 2/(γα) with 2/(γaiL2,0) 6∈ N
for any i, in which only one couple of sides moves up to a time t0 such that
L1,0(t0) ≤ 2/(γα), then E(t) follows the motion described in the previous
case.

Remark 9 (Limit cases). As noted above, in the un-perturbed case, when τ(ε) =
o(ε) and ε(τ) = o(τ) we have fast convergences. In the general case of perturbed
motion of discrete interfaces, the situation is slightly more complicated and can be
treated separately. Nevertheless, in the periodic case we can do some interesting
observations.

When τ(ε) = o(ε) we have total pinning of the motion, indeed from (32)

L
τ(ε),ε
i,1 = Lε0,1 − 2ε

⌊
2τ

εaiLε2,0

⌋
= Lε0,1

and same for Lε2, for ε sufficiently small.
The case ε(τ) = o(τ), also for non-periodic perturbations, reduces to the study

of the Γ-limit of the functionals Pε/a
τ(ε). We do not provide a limit result in this

work, but one can observe that taking the limit in (34) as γ → 0 we get
L′1(t) = − 2

a∗L2(t)

L′2(t) = − 2

a∗L1(t)
,

where a∗ is the harmonic mean of {an}. This can be regarded as the flat flow
perturbed by a∗, with respect to the crystalline perimeter P defined above (see [2]
for the study of the flat flow in the un-perturbed case; see also [7] Section 9.4).
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