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Abstract. In this paper we study various Hardy inequalities in the Heisenberg group Hn,
w.r.t. the Carnot-Carathéodory distance δ from the origin. We firstly show that the optimal
constant for the Hardy inequality is strictly smaller than n2 = (Q − 2)2/4, where Q is the
homogenous dimension. Then, we prove that, independently of n, the Heisenberg group does
not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is
replaced by its projection along ∇Hδ. This is in stark contrast with the Euclidean case, where
the radial Hardy inequality is equivalent to the standard one, and has the same constant.

Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e.,
directions tangent to the Carnot-Carathéodory balls. In particular, we show that the as-
sociated constant is bounded on homogeneous cones CΣ with base Σ ⊂ S2n, even when Σ
degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is
well-known to explode for homogeneous cones in the Euclidean space.

1. Introduction

The classical Hardy inequality states that

(1)

∫
Rd
|∇u|2 dp ≥

(
d− 2

2

)2 ∫
Rd

|u|2

|p|2
dp, ∀u ∈ C∞c (Rd \{0}),

where the constant on the r.h.s. is sharp. Here, |p| denotes the Euclidean distance from the
origin, and |∇u|2 is the squared norm of the Euclidean gradient. In the Euclidean setting,
the above is actually equivalent to the so-called “radial” Hardy inequality:

(2)

∫
Rd

∣∣∣∣∇u(p) · p
|p|

∣∣∣∣2 dp ≥ (d− 2

2

)2 ∫
Rd

|u|2

|p|2
dp, ∀u ∈ C∞c (Rd \{0}).

This can be proved via polar coordinates, and trivially implies (1). Then, one can show the
sharpness of (1) by explicitly finding a radial minimizing sequence.

In this paper we are interested in extensions of the above inequalities to the Heisenberg
setting (see [2, 6]). For n ∈ N, the Heisenberg group Hn is R2n+1 endowed with the sub-
Riemannian structure generated by the 2n-dimensional distribution D ⊂ T R2n+1 with or-
thonormal frame:

(3) Xi = ∂xi −
yi
2
∂z, Yi = ∂yi +

xi
2
∂z, i = 1, . . . , n.

Here, we denoted points in R2n+1 by (x, y, z) ∈ Rn×Rn×R. The resulting structure is step
2, with the only non-trivial commutators being [Xi, Yi] = Z, i = 1, . . . , n, where Z = ∂z. We
denote by δ the Carnot-Carathéodory distance from the origin, and for all λ > 0 we let the
anisotropic homogeneous dilations of Hn to be

(4) %λ : R2n+1 → R2n+1, %λ(x, y, z) = (λx, λy, λ2z), λ > 0.
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2 V. FRANCESCHI AND D. PRANDI

Recall that δ is 1-homogeneous w.r.t. %λ, i.e., δ(%λp) = λδ(p), λ > 0, p ∈ Hn. (See Section 2
for more details.)

The literature regarding Hardy inequalitiees in the Heisenberg setting is extensive. Garofalo
and Lanconelli [12] proved the following weighted Hardy-type inequality

(5)

∫
Hn
|∇Hu|2 dp ≥ n2

∫
Hn

|u|2

N2
|∇HN |2 dp, u ∈ C∞c (Hn \ {0}).

Here, ∇Hu denotes the horizontal gradient of u, i.e., the gradient along the directions (3),

while N(x, y, z) := 4
√

(|x|2 + |y|2)2 + 16z2 is the Korányi gauge. This is an homogeneous norm
equivalent to δ, associated with the fundamental solution of the sub-Laplacian. Inequality
(5) is sharp, and the constant is the correct equivalent of the Euclidean Hardy constant,
obtained by replacing the Euclidean dimension by the homogeneous dimension Q = 2n + 2.
The main drawback of (5) is that the weight |∇HN | is singular on the center Z = {x = y = 0}.
Unweighted (but not sharp) Hardy inequalities in the Heisenberg group w.r.t. the the Korányi
gauge have been studied in, e.g., [3, 4]. We refer to [8, 21] for an Lp analog of inequality (5).
Generalizations to more general Carnot groups can be found in, e.g., [13, 14, 23], for sub-
Riemannian structures which are not Carnot groups see [7, 9, 10, 15] and references therein.

Concerning the Carnot-Carathéodory distance, Lehrback [17] has shown that there exists
a constant c > 0 such that

(6)

∫
Hn
|∇Hu|2 dp ≥ c

∫
Hn

|u|2

δ2
dp, u ∈ C∞c (Hn \ {0}).

(The same results follows also from the results in [3, 4], using the fact that the Korányi gauge
is equivalent to δ.) Unfortunately the proofs are based on very general techniques, which have
no hope to yield any information about the optimal constant, that we henceforth denote by

(7) cn := sup{c > 0 s.t. (6) holds} = inf
u∈C∞c (Hn\{0})

∫
Hn |∇Hu|

2 dp∫
Hn
|u|2
δ2 dp

.

Such an optimal constant is claimed in [25] to coincide with the one of (5), i.e., cn = n2. The
argument is based on divergence-like results on metric balls which should yield a radial Hardy
inequality for c > 0, i.e.,

(8)

∫
Hn
|〈∇Hu,∇Hδ〉|2 dp ≥ c

∫
Hn

|u|2

δ2
dp, u ∈ C∞c (Hn \ {0}).

The claimed result is that crad
n := sup{c > 0 s.t. (8) holds} ≥ n2, which implies cn ≥ n2.

Our first result, contained in Section 3, raises a crucial criticism against the above claim.

Theorem 1. For any n ≥ 1, we have that

(9) crad
n = 0 and cn < n2.

Since (6) has to hold with cn > 0, the above implies that, in the Heisenberg case, the
full Hardy inequality is not equivalent to the radial one. This is in stark contrast w.r.t. the
Euclidean case.

The flaw of the argument in [25] is the implicit assumption that, as in the Euclidean
setting, the horizontal unit vector field ∇Hδ coincides with the generator of the dilations
d
dλ%λ. However, in the Heisenberg setting the latter is not horizontal. We fix this problem in
Section 5, and show that this technique yields exactly the weighted Hardy inequality (5).
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We also mention that in [24] a radial Hardy inequality with sharp constant n2 is obtained
for any homogenous norm ‖ · ‖ (and thus also for δ), by replacing the integrated quantity on
the l.h.s. of (8) with | d

d‖p‖u|
2, which takes into account non-horizontal directions.

1.1. Non-radial Hardy inequalities on homogeneous cones. Motivated by Theorem 1,
in the second part of the paper we derive some new Hardy inequalities by considering the
components of the horizontal gradient ∇Hu along vector fields orthogonal to ∇Hδ. These
techniques are particularly well-adapted to derive Hardy inequalities on homogenous cones,
but not on the full space. Let us briefly introduce this setting.

Let Σ ⊂ Sd−1 be a spherical cap. The associated Euclidean cone, obtained via Euclidean
(homogeneous) dilations, is Ceucl

Σ = {λp | λ > 0, p ∈ Σ} ⊂ Rd. Hardy inequalities for
these sets w.r.t. the Euclidean distance from the origin have been deeply investigated in the
literature, see e.g., [11]. In particular, letting ∇⊥ denote the components of the gradient
orthogonal to the radial vector field p/|p|, the arguments in [11] allow to prove that the
following Hardy inequality holds

(10)

∫
Ceucl

Σ

∣∣∣∇⊥u(p)
∣∣∣2 dp ≥ c∫

Ceucl
Σ

|u|2

|p|2
dp, ∀u ∈ C∞c (Ceucl

Σ ),

with optimal constant c⊥,eucl
n = λ1(Σ), where λ1(Σ) is the first Dirichlet eigenvalue of the

Laplace-Beltrami operator on Σ ⊂ Sd−1. A trivial consequence of this fact is that c⊥,eucl
n (Σ)→

+∞ as Σ degenerates to a point, i.e., when the cone degenerates to a half-line. In the present
paper, we show that this is not the case for homogeneous cones in Hn, that we now introduce.

The Heisenberg homogenous cone associated with a spherical cap Σ ⊂ S2n is CΣ = {%λ(p) |
λ > 0, p ∈ Σ}, where %λ are the dilations defined in (4). Observe that ∂CΣ is an Euclidean
paraboloid. Although these sets are smooth (which is not the case for the Euclidean cones)
the origin is a characteristic point for the sub-Riemannian structure, i.e., CΣ is tangent to the
distribution at the origin. In the following we focus on spherical caps Σ entirely contained
in the upper hemisphere S2n

+ = {|x|2 + |y|2 + z2 = 1 | z > 0}. The associated homogeneous

cones are uniquely identified by a parameter αΣ > 0 such that CΣ = {(x, y, z) ∈ R2n+1 |
|x|2 + |y|2 < αΣz}.

Similarly to the Euclidean case, we let ∇⊥H denote the components of the horizontal gradient

orthogonal to ∇Hδ. (Observe that, given u ∈ C∞(Hn), the vector field ∇⊥Hu only makes sense
on Hn \ Z, since ∇Hδ is not defined on Z.) We consider the following Hardy inequalities on
CΣ, for c > 0:

(11)

∫
CΣ

|∇⊥Hu|2 dp ≥ c
∫
CΣ

|u|2

δ2
dp, ∀u ∈ C∞c (CΣ),

and let the optimal constant in the above to be

(12) c⊥n (Σ) := sup{c > 0 s.t. (11) holds} = inf
u∈C∞c (CΣ)

∫
CΣ
|∇⊥Hu|2 dp∫

CΣ
|u|2δ−2 dp

.

We have the following.

Theorem 2. Let Σ ⊂ S2n
+ be a spherical cap and ρΣ = φ−1(αΣ) ∈ [0, 2π], where φ : [0, 2π]→

[0,+∞] is the order-reversing diffeomorphism defined by

(13) φ(r) =
4(1− cos r)

r − sin r
.
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Then, we have

(14)
n2ρ2

Σ

4
≤ c⊥n (Σ) ≤ π2n2.

In particular, contrarily to the Euclidean case, c⊥n (Σ) is always bounded.

Remark 3. For the upper-half plane Hn
+ = {z > 0} = CS2n

+
we have αS2n

+
= +∞ and ρS2n

+
= 0.

In this case, the l.h.s. of (14) is trivial. On the other hand, for the center Z = {x = y = 0} =
C{(0,0,1)} we have α{(0,0,1)} = 0 and ρ{(0,0,1)} = 2π. For Hardy inequalities in the half space
we refer to [18, 19] and in more general convex domains we refer to [16, 22].

The bounds in (14) are probably not sharp. On the other hand, Theorem 2 is deduced
from a weighted directional Hardy inequality which is sharp. In order to present it, we need
to introduce some notation.

As detailed in Section 2, exploiting the explicit optimal synthesis of the Heisenberg’s
geodesics issued from the origin, one can introduce “polar”-like coordinates (t,$, r) ∈ U =
[0,+∞)× S2n−1 × (−2π, 2π) which parametrize Hn \ Z. In particular, the coordinates t, r of
a point (ξ, z) ∈ Hn are defined by t = δ(ξ, z), and r = ψ(ξ, z), where ψ(ξ, z) = φ−1(|ξ|2/z) for
φ is defined in (13). Observe that ψ(0, z) = sgn(z)2π and ψ(ξ, 0) = 0.

Our main result is then the following.

Theorem 4. Let Σ ⊂ S2n
+ be a spherical cap. Then, we have

(15)

∫
CΣ

|∇⊥Hu|2

ψ
dp ≥ n2

4

∫
CΣ

|u|2

δ2
ψ dp, ∀u ∈ C∞c (CΣ).

Moreover, the above inequality is sharp, in the sense that

(16) c⊥n (Σ, ψ) := inf
u∈C∞c (CΣ)

∫
CΣ
ψ−1|∇⊥Hu|2 dp∫

CΣ
ψ|u|2δ−2 dp

=
n2

4
.

We remark that, as shown in Appendix A, the arguments used in the above are valid also
in the Euclidean case. In particular, in this case they allow to correctly predict the explosion

of the constant c⊥,eucl
n (Σ) as Σ degenerates to a point.
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for his replies to our questions. The authors acknowledge the support of ANR-15-CE40-0018
project SRGI - Sub-Riemannian Geometry and Interactions and of a public grant overseen by
the French National Research Agency (ANR) as part of the Investissement d’avenir program,
through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.The
first author is supported by a public grant as part of the FMJH.

2. Preliminaries

On R2n+1 we denote coordinates by (ξ, z) ∈ R2n×R, ξ = (ξ1, . . . , ξn), ξi = (xi, yi). The
n-th Heisenberg group Hn is R2n+1 endowed with the sub-Riemannian structure with or-
thonormal frame (3), satisfying the commutation relations [Xi, Yi] = ∂z, and [Xi, Yj ] = 0 if
i 6= j. These are left-invariant vector fields w.r.t. to the non-commutative group law

(17) (ξ, z) ? (ξ′, z′) =

(
ξ + ξ′, z + z′ +

1

2
〈ξ, J̃ξ′〉R2n

)
, where J =

(
0 1
−1 0

)
,
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and, for any matrix M ∈ L(R2), we let M̃ ∈ L(R2n) be the corresponding block diagonal

operator, i.e., M̃ =
⊕n

j=1M . The center of the group is Z = {ξ = 0}. Moreover, the

sub-Riemannian distribution D = span{X1, . . . , Xn, Y1, . . . , Yn}, is characterized by

(18) D(ξ,z) = ker

(
dz − 1

2
〈ξ, Jdξ〉R2n

)
.

For any point p ∈ Hn, any vector v ∈ Dp ⊂ TpHn ' R2n+1 can be written as v = (v′, vz) ∈
R2n × R. Then, the sub-Riemannian metric is

(19) 〈v, w〉Hn = 〈v′, w′〉R2n , ∀v, w ∈ TpHn, p ∈ Hn.

We denote the associated norm by ‖v‖Hn :=
√
〈v, v〉Hn .

We say that a curve γ : [0, 1] → Hn is horizontal if it is absolutely continuous and γ̇(t) ∈
Dγ(t) for a.e. t ∈ [0, 1]. The Carnot-Cathéodory distance of p ∈ Hn from the origin is then
defined as

(20) δ(p) := inf

{∫ 1

0
‖γ̇(t)‖Hn dt

∣∣∣∣ γ : [0, 1]→ Hn is horizontal, γ(0) = 0, and γ(1) = p

}
.

The associated balls are denote by Bε = {δ < ε}.
We now identify a horizontal vector field that plays the role of the “polar” vector field t−1∂ϕ

in Euclidean polar coordinates (t,$, ϕ) ∈ R+ × Sd−2 × (−π/2, π/2) 7→ t($ cosϕ, sinϕ) ∈ Rd.
(See Appendix A.)

Definition 5. The polar vector field Ξ ∈ Γ(H1 \Z) is the only unit smooth horizontal vector
field orthogonal to ∇Hδ and to the generators of rotations around Z, that is upward pointing
on the plane {z = 0}.

The precise expression in a particular set of coordinates of Ξ is given in Proposition 8.

2.1. Polar-like coordinates. In this section, we introduce suitable polar-like coordinates
that will be instrumental in proving our results.

To present the idea behind these coordinates, let us consider the case n = 1. In this setting,
for any point p ∈ H1 \Z there exists a unique geodesic connecting the origin to p. The family
of all these geodesics depends on two parameters pz ∈ R, θ ∈ S1, corresponding to the curves

(21) γθ,pz(t) =

(
cos(tpz − θ)− cos θ

pz
,
sin(tpz − θ) + sin θ

pz
,
tpz − sin(tpz)

p2
z

)
, t ∈ (0, 2π/pz).

By definition, it holds that γ̇θ,pz(t) = ∇Hδ(γθ,pz(t)) for t ∈ (0, 2π/pz), and one could use the
above to define polar coordinates Ψ : {(t, pz) | 0 < tpz < 2π} × S1 → H1 \ Z by Ψ(t, θ, pz) :=
γθ,pz(t). However, this yields a transformation whose jacobian has a complicated form and,
moreover, that does not behave well under the anisotropic dilations {%λ}λ>0. Indeed, although
the distance is 1-homogeneous, geodesics are not invariant under dilations and one can check
that %λ(Ψ(t, θ, p)) = Ψ(λt, θ, λ−1p). For these reasons, we consider a rescaled version of Ψ,
letting r = tpz. (See Figure 1.) This yields the map Φ : R+×S1× (−2π, 2π)→ H1 \Z defined
by

(22) Φ(t, θ, r) :=

(
t
cos(r − θ)− cos θ

r
, t

sin(r − θ) + sin θ

r
, t2

r − sin r

r2

)
.

In the general case n ≥ 1, we denote points on the sphere $ ∈ S2n−1 ⊂ R2n as $ =
($1, . . . , $n), $i = ($1

i , $
2
i ) ∈ R2, and let Rr be the clockwise rotation of angle r ∈ R. That
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|ξ|

z

Ξ ∇Hδ

t r

∂B1

Figure 1. Graphical depiction of (r, t) in Φ coordinates. Notice that r
parametrizes the position on the Carnot-Carathéodory unit sphere, up to ro-
tations around the center, while t encodes the distance from the origin. Nev-
ertheless, ∂t is the dilation vector field, and not ∇Hδ.

is,

(23) Rr =

(
cos r − sin r
sin r cos r

)
.

Observe that, in particular, J = R−π/2 and hence the matrix A commutes with Rα for any
α ∈ R.

Then, considering the optimal synthesis for Hn (see, e.g., [20, 5]) leads to the following.

Definition 6. Consider U = R+×S2n−1 × (−2π, 2π). Then, the diffeomorphism Φ : U →
Hn \ Z is defined by Φ(t,$, r) = (ξ, z), where

(24) ξi =
t

r
A$i, z = t2

r − sin r

2r2
, A = −J(Id−Rr) =

(
sin r −1 + cos r

1− cos r sin r

)
.

Henceforth, for any $ ∈ S2n−1, we represent T$S2n−1 = $⊥ ⊂ R2n. When clear from the
context, we identify vectors Θ ∈ TS2n−1 with (0,Θ, 0) ∈ TU . Thus, TU ' {(vt, v$, vr) ∈
R2n+2 | v$ ⊥ $} ' R2n+1. Moreover, we denote by d$ the standard volume measure on
S2n−1. Namely, d$ stands for the (2n− 1)-form

(25)
1

2n

n∑
k=1

2∑
`=1

(−1)`−1$`
kd$

1
1 ∧ . . . ∧ d̂$`

k ∧ . . . ∧ d$
2
n,

where the hat denotes a missing element.
The next proposition collects some basic facts on Φ, following via direct computations from

the explicit optimal synthesis of geodesics in Hn and (18) .

Proposition 7. The following hold.

i. Let (ξ, z) = Φ(t,$, r). Then, t = δ(p), i.e., ($, r) 7→ Φ(t,$, r) is a parametrization
of ∂Bt \ Z. Moreover,

(26)
|ξ|2

z
= φ(r) := 4

1− cos r

r − sin r
.
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Figure 2. Graphs of the functions v (left) and w (right), defined in Proposition 8.

ii. Letting A′ = ∂rA = Rr, we have

(27) DΦ(t,$, r) =

 1

r
Ã$

t

r
Ã − t

r2
Ã$ + t

r Ã
′$

t
r − sin r

r2
0 − t2

r2
r−2 sin r+r cos r

2r

 .

iii. We have that Φ∗L3 = t2n+1µ(r) dt d$ dr, where

(28) µ(r) =
(2− 2 cos r − r sin r) (2− 2 cos r)n−1

r2n+2
.

iv. We have

(29) DΦ(t,$,r) =

{
(v′, vz) ∈ TΦ(t,$,r)Hn ' R2n×R

∣∣∣∣ vz =
1

2

t

r

〈
Ã$, J̃v′

〉
R2n

}
.

Henceforth, we let {W3, . . . ,W2n} ⊂ Γ(S2n−1) be a fixed orthonormal frame for the distri-

bution on S2n−1 given by $ 7→ $⊥ ∩ (J̃$)⊥ ⊂ T$S2n−1. The following proposition presents
the orthonormal frame that is central to all the results of this paper.

Proposition 8. An orthonormal frame for Φ∗D is given by {V1, . . . , V2n}, with

V1 = Φ∗(∇Hδ) =
(

1, 0,
r

t

)
, V2 = Φ∗(Ξ) =

(
0,
r

t
v(r)J̃$,

r

t
w(r)

)
,(30)

Vj =

(
0,

|r|
t
√

2(1− cos r)
Wj , 0

)
, j = 3, . . . , 2n.(31)

Here,

(32) w(r) =
r

2− r cot
(
r
2

) , v(r) =
r − sin r

2− r sin r − 2 cos r
.

Remark 9. All the vector fields above are well defined for r = 0 and smooth on U . In
particular,

(33) lim
r→0

1

6

r

t
w(r) = lim

r→0

1

2

r

t
v(r) = lim

r→0

|r|
t
√

2(1− cos r)
=

1

t
,

Also, we point out that both v and w are odd functions, positive for r > 0, which explode
when r → 0, see Figure 2.

Remark 10. Several important properties of this frame are connected with the following
relation, which can be directly checked from the definitions of w and µ:

(34) ∂r(rwµ) = −nrµ.
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In order to prove Proposition 8, we need the following two preliminary Lemmas.

Lemma 11. We have

(35) φ∗(∇Hδ)|Φ(t,$,r) = ∂t +
r

t
∂r.

Proof. Exploiting the fact that, for fixed $ ∈ S2n−1 and pz ∈ R, the curves t 7→ Φ(t,$, tpz)
are arc-length parametrized geodesics for 0 < |tpz| < 2π, one deduces that

(36) ∇Hδ|Φ(t,$,r) =

(
Ã′$,

t

r

1

2
(1− cos r)

)
∈ R2n × R.

Observe that

Φ∗∂t|Φ(t,$,r) =

(
Ã

r
$, t

r − sin r

r2

)
∈ R2n × R,(37)

Φ∗∂r|Φ(t,$,r) =

(
t

r

(
Ã′ − Ã

r

)
$,− t

2

r2

r − 2 sin r + r cos r

2r

)
∈ R2n × R.(38)

The statement then follows by direct computations. �

Lemma 12. Let α, β : (−2π, 2π)→ R be such that

(39) α(r) =
r − sin r

r(1− cos r)
β(r), ∀r ∈ (−2π, 2π).

Then, letting V̄j = (0,Wj , 0), j = 3, . . . , 2n, a (non-orthonormal) basis for Φ∗D is given by
{V1, V̄2, . . . , V̄2n}, with

(40) V1 = Φ∗(∇Hδ) =
(

1, 0,
r

t

)
V̄2 =

(
0,
α(r)

t
J$,

β(r)

t

)
.

Proof. By definition, Φ∗V1 = ∇Hδ is a horizontal vector field. Its expression in Φ-coordinates
is derived in Lemma 11.

Let V ∈ Γ(S2n−1), i.e., V ∈ R2n such that V ($) ⊥ $. Observe that ATJA = 2(1−cos r)J .
Then, by identifying V ∈ TS2n−1 and (0, V, 0) ∈ TU and by (29), Φ∗V ∈ Γ(D) if and only if

(41) 0 =
1

2

t

r

〈
Ã$,

t

r
J̃ÃV ($)

〉
R2n

⇐⇒ V ($) ⊥ J̃$.

In particular, dim(TS2n−1 ∩ Φ∗D) = 2n − 2. Thus, the basis V̄3, . . . , V̄2n for TS2n−1 yields
2n− 2 additional horizontal directions.

We now turn to show that V̄2 is linearly independent to the others. Straightforward com-
putations yield

(42) Φ∗V̄2(t,$, r) =
1

r

(
αÃJ̃$ + β

(
Ã′ − 1

r
Ã

)
$,β

t

r

2 sin r − r cos r − r
2r

)
By (29), we have that Φ∗V̄2 is horizontal if and only if

(43) β
(2 sin r − r cos r − r)

r
=

〈
Ã$, αJ̃ÃJ̃$ + βJ̃(Ã′ − 1

r
Ã)$

〉
R2n

.
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Since J̃$ ⊥ $, we have

(44)

〈
Ã$, J̃(Ã′ − 1

r
Ã)$

〉
R2n

=
〈
Ã$, J̃Ã′$

〉
R2n

=
n∑
i=1

〈
A$i, JA

′$i

〉
R2 =

n∑
i=1

(1− cos r)|$i|2 = 1− cos r.

Here, we used the invariance under rotations in R2 of A, J , and A′ and the explicit expression
for (ATJA′)11 = 1− cos r. Moreover, by the fact that J2 = − Id and (ATA)11 = 2(1− cos r),
we have

(45)
〈
Ã$, J̃ÃJ̃$

〉
R2n

= −2(1− cos r).

By the assumption on α and β, the statement follows by (43), (44), and (48). �

Proof of Proposition 8. Observe that, α(r) = rv(r) and β(r) = rw(r) satisfy assumption (39).
Firstly, we show that the basis given in Lemma 12 can be orthonormalized to {V1, . . . , V2n}.

To this purpose, we claim that the push-forward of V̄j , j = 3, . . . , 2n, is orthogonal to vector
fields of the form X = (a,$, br/t), with a, b : (−2π, 2π)→ R. Indeed, we have

(46) 〈Φ∗V̄j ,Φ∗X〉Hn =

〈
t

r
ÃWj ,

t

r
Ã$

〉
R2n

+

〈
t

r
ÃWj ,

(
(a− b)Ã

r
+ bÃ′

)
$

〉
R2n

.

Since ATA = 2(1− cos r) Id and ATA′ = A, we have

ÃT

(
(a− b)Ã

r
+ bÃ′

)
$ =

(
2(1− cos r)

a− b
r

+ bÃ

)
$,(47)

Then, by definition of A, we get

(48) Ã$ =
(
−J̃ + R̃rJ̃

)
$ = (sin r)$ + (cos r − 1)J̃$.

Hence, by (47) and (48) we get

(49) ÃT

(
(a− b)Ã

r
+ bÃ′

)
$ ∈ span{$, J̃$}.

Since V̄j = (0,Wj , 0) with Wj ⊥ {ω, J̃ω}, and ATA = 2(1− cos r) Id, this proves the claim.
As a consequence of the previous claim, we have that span{V3, . . . , V2n} is orthogonal to

span{V1, V2}. Moreover, for any i, j = 3, . . . , 2n, we have

(50) 〈Φ∗V̄i,Φ∗V̄j〉Hn = 2t2
1− cos r

r2
〈Wi,Wj〉R2n .

Since {W3, . . . ,W2n} are orthonormal in R2n, this shows that Vi = V̄i/‖Φ∗V̄i‖nH and that
{V3, . . . , V2n} is an orthonormal family.

Let us now show that also {V1, V2} is an orthonormal family. It is clear that, by Lemma 11,
‖Φ∗V1‖H1 = ‖∇Hδ‖H1 ≡ 1, since δ satisfies the Eikonal equation. On the other hand, if
α(r) = g(r)β(r), where g is given by (39), we have

(51) |Φ∗V̄2|2 =
β2

r2

∣∣∣(g(r)ÃJ̃ − Ã′ − Ã/r
)
$
∣∣∣2
R2n

=

(
r cot

(
r
2

)
− 2
)2

r2
,
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thus showing that ‖Φ∗V2‖Hn = w−1‖Φ∗V̄2‖Hn ≡ 1. Finally, we have

(52) 〈Φ∗V1,Φ∗V2〉Hn =

〈
Ã′$,

(
vÃJ̃ + Ã′ − Ã

r

)
$

〉
=
〈
Ã′$, J̃Ã′$

〉
= 0.

To complete the proof, we need to show that V2 = Φ∗(Ξ). To this aim, observe that
rotations around Z are generated by the vector fields Φ∗(V3), . . . ,Φ∗(V2n) that are orthogonal
to Φ∗(V2). Indeed, these are 2n− 2 linearly independent vector fields such that V (|ξ|2) ≡ 0,
as is evident from the fact that

(53)
|ξ|2

2
=
t2

r2
(1− cos r), if (ξ, z) = Φ(t,$, r).

Finally, a simple computation shows that

(54) lim
r→0

dz (Φ∗(V2)) |Φ(t,$,r) = − lim
r→0

tw(r)
r − 2 sin r + r cos r

2r2
=
t

2
> 0.

Since {z = 0} \ Z = Φ({r = 0}) and Ξ ⊥ Φ∗(V2), this completes the proof. �

2.2. Horizontal Sobolev spaces. The Haar measure on Hn is, up to a constant, the 2n+1-
dimensional Lesbegue measure. This allows to define the space of square integrable functions
L2(Hn). Moreover, the horizontal gradient associated with the Heisenberg structure is

(55) ∇Hu =

n∑
i=1

((Xiu)Xi + (Yiu)Yi) , u ∈ C∞(Hn).

Then, H1(Hn) is the closure of C∞c (Hn) w.r.t. the horizontal Sobolev norm

(56) ‖u‖2H1(Hn) =

∫
Hn
|u|2 dp+

∫
Hn
|∇Hu|2 dp.

The same techniques used in [1] show that C∞c (Hn\{0}) is dense in H1(Hn). In particular, all
the infima appearing in the definitions of the Hardy constants can be calculated on H1

c (Hn),
i.e., compactly supported functions of H1(Hn).

In the following we show how, under suitable technical assumptions, the fact that a cer-
tain function belongs to H1(Hn) can be checked in terms of integrals in the Φ coordinates,
regardless of the singularity of the latter.

Proposition 13. Let u ∈ L2(Hn) be such that u ◦ Φ(t,$, r) = g(t)h(r) for some function
g : (0,+∞) → R and h : (−2π, 2π) → R bounded as r → 2π. Then, u ∈ H1(Hn) if and only
if both Φ∗u and Φ∗|∇Hu| belong to L2(U, t2n+1µ(r) dt d$ dr).

Proof. The necessary part of the proof is immediate. We thus focus on the other implication.
To this purpose, observe that Φ∗u ∈ L2(U, t2n+1µ(r) dt d$ dr) is trivially equivalent to u ∈
L2(Hn). Fix then u ∈ L2(Hn) such that Φ∗|∇Hu| ∈ L2(U, t2n+1µ(r) dt d$ dr).

By assumption, there exists ϕ : (0,+∞) → R such that u(ξ, α|ξ|2) = h(φ−1(α))ϕ(|ξ|) for
α > 0 and where φ is defined in (13). Fix a sequence of positive numbers αk → 0 and let
Ωk = {|ξ|2 ≤ αk|z|}. Define

(57) vk(ξ, z) = h ◦ φ−1(αk)ϕ(
√
αk|z|), (ξ, z) ∈ Ωk.

The Euclidean gradient of vk can be directly computed as

(58) |∇vk| = |∂zvk| = h ◦ φ−1(αk)

√
αk
4|z|

∣∣ϕ′(√αk|z|)∣∣.



HARDY-TYPE INEQUALITIES IN Hn 11

Thus we get

(59)

∫
Ωk

|∇Hvk|2 dp ≤
(
h ◦ φ−1(αk)

)2
ω2nαk

∫ +∞

0
|ϕ′(η)|2η2n−1 dη.

Since Φ∗|∇Hu| ∈ L2(U, t2n+1µ(r) dt d$ dr), the integral on the r.h.s. is bounded, as is the
quantity h ◦ φ−1(αk) as k → +∞. Therefore,

(60) lim
k→+∞

∫
Ωk

|∇Hvk|2 dp = 0.

Define uk = u|Ωck + vk|Ωk . Thanks to a triangle inequality argument, the above result

and the fact that Φ∗|∇Hu| belongs to L2(U, t2n+1µ(r) dt d$ dr) imply that (uk)k is a Cauchy
sequence in H1(H1). Since, by construction, uk → u pointwise, this completes the proof of
the statement. �

3. Upper bounds of Hardy constants on Hn

In this Section, we prove Theorem 1. We start by considering the radial Hardy constant,
in the following.

Proposition 14. It holds crad
n = 0.

Proof. Let h ∈ C∞c ((0,+∞)) and define

(61) u ◦ Φ(t,$, r) =
(r
t

)n
h(t).

By continuity, the above defines a continuous function u : H1 → R. Then, direct computations
yield

(62) 〈∇Hu,∇Hδ〉|Φ(t,$,r) =
(r
t

)n
h′(t), 〈∇Hu,Ξ〉|Φ(t,$,r) = n

(r
t

)n
w(r)

h(t)

t
.

In particular, this implies that u ∈ H1
0 (H1) by Proposition 13. Finally, direct computations

yield

(63) crad
n ≤

∫
Hn |〈∇Hu,∇Hδ〉|

2 dp∫
Hn

u2

δ2 dp
=

∫ +∞
0 |h′|2t dt∫ +∞
0

h2

t2
t dt

.

Observe that, letting v : R2 → R be the radially symmetric function defined by v(p) = h(|p|),
where |p| is the Euclidean norm of p, we have

(64)

∫ +∞
0 |h′|2t dt∫ +∞
0

h2

t2
t dt

=

∫
R2 |∇v| dp∫
R2
|v|2
|p|2 dp

.

Since the Euclidean Hardy constant in R2 is obtained via radially symmetric functions, taking
the infimum w.r.t. h ∈ C∞c ((0,+∞)) in (63) yields the statement by (1). �

Remark 15. The proof is based on the fact that all functions of the form f ◦ Φ(t,$, r) =
ϕ(r/t) satisfy 〈∇Hf,∇Hδ〉 ≡ 0.

We now turn our attention to the full Hardy constant.

Proposition 16. For any n ≥ 1 we have that cn < n2
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Proof. Recall that the Koranyi norm associated with Hn is N = (|ξ|4 + 16z2)1/4. By Propo-
sition 7(i), we then have

(65) N ◦ Φ(t,$, r) =

√
2t

|r|
4
√
r2 − 2r sin r − 2 cos r + 2.

With a little abuse of notation we still denote by N the Korany norm in the coordinates Φ.
Since δ(Φ(t, ·, ·)) = t, t > 0, for any α ∈ R we have

(66)
|Nα/2|2

δ2
= 2α/2tα−2

(
4
√
r2 − 2r sin(r)− 2 cos(r) + 2

|r|

)α
= tα−2γ(r)α.

Here, γ : [−2π, 2π]→ R is defined by the last equality. Observe that the above is independent
of n and $. Then, using the orthonormal basis of Proposition 8, we obtain

(67) |∇HN(t,$, r)|2 =
1− cos r√

2 + r2 − 2 cos r − 2r sin r
.

In particular, for any α ∈ R we have

|∇H(Nα/2)|2 =
α2

4

r2(1− cos r)

2 (r2 − 2r sin(r)− 2 cos(r) + 2)

|Nα/2|2

δ2

=
α2

4
tα−2γ(r)αη(r).

(68)

Here, η is defined by the last equality, and is independent of α.
Observe that both γ and η are non-negative continuous function. Since one can check that

γ ≥ 1/
√
π, γαη is integrable w.r.t. µ(r) dr for any α ∈ R. In particular, this implies that

|Nα/2|2δ−2 and |∇H(Nα/2)|2 are integrable on [1,+∞)×(−2π, 2π) w.r.t. t2n+1µ(r) dt dr if and
only if α < −2n.

Now, let us fix a smooth function χ : R+ → [0, 1] such that χ|[0,1/2] ≡ 0 and χ|[1,+∞] ≡ 1.
Then, for α < −2n, we let

(69) uα ◦ Φ(t, θ, r) =

{
χ(t)Nα/2(1, θ, r), if t ≤ 1,

Nα/2(t, θ, r), otherwise.

Then uα can be extended by continuity to the whole Hn. By definition of χ, (66), and (68),
for any α < −2n there exists (vk)k ⊂ C∞c (H1) such that

(70) lim
k→+∞

∫
Hn

|vk|2

δ2
dp =

∫
Hn

|uα|2

δ2
dp, lim

k→+∞

∫
Hn
|∇Hvk|2 dp =

∫
Hn
|∇Huα|2 dp.

In particular, by Proposition 13, we have

(71) cn ≤ inf

{∫
H1 |∇Huα|2 dp∫

H1
u2
α
δ2

: α ∈ [−2n+ 1,−2n)

}
.

Let us estimate the quotient above. By (66), we have

(72)

∫
Hn

|uα|2

δ2
dp ≥

∫
δ≥1

|uα|2

δ2
dp = |S2n−1|

∫ +∞

1
tα+2n−1 dt

∫ 2π

−2π
γαµdr.

Observe that the integral in t on the r.h.s. goes to +∞ as α→ (−2n)−. Moreover, Nα/2|t=1

and ∂r(N
α/2)|t=1 are uniformly bounded from above for α ∈ [−2n+1,−2n). As a consequence,
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there exists a constant C > 0 such that |∇Huα|2 ≤ C on {δ ≤ 1}. In particular, by (68), we
obtain

(73)

∫
H1

|∇Huα|2 dp ≤ CL3({0 ≤ δ ≤ 1}) +
α2

4
|S2n−1|

∫ +∞

1
tα+2n−1 dt

∫ 2π

−2π
γαηµ dr.

Taking the quotient of (73) and (72), and passing to the limit as α→ −2n, yields

cn ≤ n2

∫ 2π
−2π γ

−2nηµ dr∫ 2π
−2π γ

−2nµdr
.(74)

Here, we passed to the limit under the integral signs by dominated convergence. Simple
computations show that η(0) = 1, η(±2π) = 0, and that η is monotone decreasing in |r|.
Hence, for any a > 0, it holds

(75)

∫
|r|>a

γ−2nηµ dr < η(a)

∫
|r|>a

γ−2nµdr, and

∫
|r|≤a

γ−2nηµ dr ≤
∫
|r|≤a

γ−2nµdr.

Since η(a) < 1 and
∫
|r|>a γ

−2nµdr > 0, together with (74), the above yields the statement. �

Remark 17. The proofs of Propositions 14 and 16 are obtained by considering two different
sequences of functions. It is interesting to note that it does not seem possible to build a single
sequence yielding both bounds at the same time.

4. Non-radial Hardy inequalities on homogeneous cones

In this section we prove Theorems 2 and 4. To this aim we need the following.

Lemma 18. Let V ∈ Γ(Hn \ Z) be given by Φ∗V (r,$, t) = ϕ(r, t)J̃$ where ϕ : R+ ×
(−2π, 2π)→ R is integrable w.r.t. t2n+1µdtdr. Then, for any f ∈ C∞c (Hn) it holds

(76)

∫
Hn
V f dp = 0.

Proof. Let V ∈ Γ(U) be defined as V(t,$, r) = (0, J̃$, 0). Then,

(77)

∫
R2n+1

V f dp =

∫ ∞
0

ϕ(r, t)t2n+1

∫ 2π

−2π
µ(r)

∫
S2n−1

V(Φ∗f) d$dtdr.

By the divergence theorem we get

(78)

∫
S2n−1

V(Φ∗f) d$ = −
∫
S2n−1

(Φ∗f) divS2n−1 V d$.

Thus, in order to prove the statement it suffices to show that divS2n−1 V ≡ 0.
Henceforth, with abuse of notation, we denote the volume form on S2n−1, as defined in

(25), by Ω. The restriction of the vector field V to Γ(S2n−1), still denoted by V, reads

(79) V($) = ($2
1,−$1

1, . . . , $
2
n,−$1

n) =
n∑
k=1

2∑
`=1

(−1)`−1$`+1
k ∂$`k

,

where by convention we let `+ 1 = `+ 1 mod 2. Recall that, by definition, (divS2n−1 V )Ω =

d(ιVΩ). Since d$`
k(V) = (−1)`−1$`+1

k , we have

(80) αk := ιV(d$1
k ∧ d$2

k) = $1
kd$

1
k +$2

kd$
2
k.
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Henceforth we let, for simplicity, d$k := d$1
k ∧ d$2

k. By the properties of the contraction
operator we can then compute:

ιV
(
d$1

1∧ . . . ∧ d̂$`
k ∧ . . . ∧ d$

2
n

)
= ιV

(
d$`+1

k ∧ d$1 ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n

)
− d$`+1

k ∧ ιV(d$1 ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n)

= (−1)`$`
kd$1 ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n

−
∑
i 6=k

d$`+1
k ∧ d$1 ∧ . . . ∧ αi ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n

(81)

Thus, we obtain ιVΩ = −(A+B)/2n, where

A =
n∑
k=1

2∑
`=1

($`
k)

2d$1 ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n,(82)

B =
n∑
k=1

2∑
`=1

∑
i 6=k

(−1)`−1$`
kd$

`+1
k ∧ d$1 ∧ . . . ∧ αi ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n.(83)

Let us now compute d(ιVΩ). By the properties of d and since dαi = 0, we have

dA =

n∑
k=1

2∑
`=1

2$`
kd$

`
k ∧ d$1 ∧ . . . ∧ d̂$k ∧ . . . ∧ d$n = 2

n∑
k=1

d$1 ∧ . . . ∧ αk ∧ . . . ∧ d$n,

dB = 2(n− 1)

n∑
i=1

d$1 ∧ . . . ∧ αi ∧ . . . ∧ d$n

Thus,

d (ιVΩ) = −2
n∑
i=1

d$1 ∧ . . . ∧ αi ∧ . . . ∧ d$n(84)

Observe that we need to compute the above 2n− 1 form on vectors tangent to the sphere.
For any v ∈ T$S2n−1, we have

∑n
i=1 αi(v) = 〈$, v〉R2n = 0, which yields

(85) αi|TS2n−1 = −
∑
j 6=i

αj |TS2n−1 .

Together with the fact that αj ∧ d$j = 0, this implies that

(86) d (ιVΩ) |TS2n−1 = 2
n∑
i=1

∑
j 6=i

d$1 ∧ . . . ∧ αj︸︷︷︸
i-th position

∧ . . . ∧ d$n = 0,

completing the proof of the statement. �

Proof of Theorem 4. Let f ∈ C∞c (Hn). By Lemma 18 and the expression of Ξ in Φ-coordinates
given in Proposition 8, we get

(87)

∫
Hn

Ξf dp =

∫ +∞

0

∫
S2n−1

(∫ 2π

−2π

rw(r)

t
(∂rf ◦ Φ)|(t,$,r)µ(r) dr

)
d$ t2n+1 dt
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Then, by Remarks 9 and 10, an integration by parts yields

(88)

∫
Hn

Ξf dp = n

∫ +∞

0

∫
S2n−1

(∫ 2π

−2π

r

t
f ◦ Φ(t,$, r)µ(r) dr

)
d$ t2n+1 dt = n

∫
Hn

f

δ
ψ dp.

Here, no boundary terms appear since limr→±2π w(r) = 0. By density the above holds for any
Lipschitz function compactly supported outside the origin. In particular, letting f = u2/δ
where u ∈ C∞c (CΣ), the Cauchy-Schwarz inequality implies

(89)
n

2

∫
CΣ

u2

δ2
ψ dp ≤

∫
CΣ

|u|
δ
|Ξu| dp ≤

(∫
CΣ

u2

δ2
ψ dp

)1/2(∫
CΣ

|Ξu|2

ψ
dp

)1/2

.

Here we used that CΣ ⊂ {ψ > 0}. By construction, we have that |Ξu|2 ≤ |∇H⊥u|2, and thus
the above yields (15).

We now turn to the proof of the sharpness. Recall that, in Φ-coordinates, there exists
ρΣ ∈ (0, 2π) such that CΣ = {Φ(t,$, r) | r > ρΣ}. Let ρ > ρΣ and η > 0 be sufficiently small,
and consider a cut-off function χ : (ρΣ, 2π)→ [0, 1] such that

(90) χ|(ρΣ,ρ) ≡ 0, χ|(ρ+η,2π) ≡ 1.

Moreover, consider 0 < t1 < t2 < +∞ and fix a function ϕ ∈ C∞c ((0,+∞)) with suppϕ ⊂
[t1, t2]. Let γ > −1/2 and define

(91) v(r) := χ(r) (rw(r)µ(r))γ , u ◦ Φ(t,$, r) = ϕ(t)v(r).

The above definition for u can be extended by continuity to the whole Hn, since limr→2π v(r) =
0. Observe that v ∈ L2([ρΣ, 2π], µ dr) for any γ > −1/2. Indeed,

(92) v2µ ∼ (2π)−(2n+1)(2γ+1)π2γ(2π − r)2n(2γ+1)−1 as r → (2π)−.

Moreover, we have suppu ⊂ Bt2 \Bt1 and |∇⊥Hu|2 = |Ξu|2, so that, by Proposition 13,

(93) c⊥n (Σ, ψ) ≤ Ru :=

∫
CΣ
ψ−1|Ξu|2 dp∫
CΣ
ψ u

2

δ2 dp
.

By Remark 9, it holds that v′ = (rwµ)γ(χ′ − nγχw−1). Thus, by the Φ-coordinate expres-
sion of Ξ given in Proposition 8, we have

(94) |Ξu| ◦ Φ =


0 for r ∈ [ρΣ, ρ),

ϕδ−1r(rwµ)γ(χ′w − nγχ) for r ∈ [ρ, ρ+ η),

nγr|u|δ−1 otherwise.

Recalling that ψ ◦ Φ = r and that dp = t2n−1µd$ dt dr, we get

(95) Ru ≤
∫ ρ+η
ρ r(rwµ)2γ(χ′w − nγχ)2µdr∫ 2π

ρΣ
v2ψ µdr

+ n2γ2.

Observe that there exists C > 0 such that, for γ ≥ −1/2, we have

(96)

∫ ρ+η

ρ
(rwµ)2γ(χ′w − nγχ)2 ψ−1µdr ≤ Ceγη, .

The statement then follows by (93) and (95). Indeed, thanks to (92), it holds

�(97) lim
γ→(−1/2)+

∫ 2π

ρΣ

v2ψ µdr = +∞.
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Proof of Theorem 2. Observe that CΣ = {ρΣ < ψ ≤ 2π}. Thus, for any u ∈ C∞c (CΣ), it holds

(98) ρ2
Σ

∫
CΣ
ψ−1|∇⊥Hu|2 dp∫
CΣ
ψ u

2

δ2 dp
<

∫
CΣ
|∇⊥Hu|2 dp∫
CΣ

u2

δ2 dp
≤ 4π2

∫
CΣ
ψ−1|∇⊥Hu|2 dp∫
CΣ
ψ u

2

δ2 dp

By definition of c⊥n (Σ) and c⊥n (Σ, ψ), thanks to Theorem 4 taking the infimum for u ∈ C∞c (CΣ)
in the above yields the statement. �

5. An alternative proof of the Hardy inequality (5)

In this section, we start by proposing a fix for the argument of [25] in Lemma 19, and then
we show that this yields a different proof of the classical Hardy inequality (5) by Garofalo
and Lanconelli in Proposition 20.

To this aim, we define the vector field T ∈ Γ(Hn \ Z) by

(99) T = ∇Hδ − (Φ∗w)−1Ξ.

Here, Ξ is the polar vector field of Definition 5 and w is the function defined in Proposition 8.
Then a correct version of [25, Lemma 3.1] is the following.

Lemma 19. Let 0 < R1 < R2 and f ∈ C1((BR2 \BR1) \ Z). Then,

(100)

∫
∂B1

f(%R2p) dσ(p)−
∫
∂B1

f(%R1p) dσ(p) =

∫
BR2
\BR1

〈∇Hf, T 〉
1

δ2n+1
dp.

Here, we let Bt = {δ < t} and denoted by dσ the surface measure of ∂B1.

Proof. By Proposition 8, we have that Φ∗T = (1, rv(r)
tw(r) J̃$, 0). Then, by Lemma 18 we have

(101)

∫
BR2
\BR1

〈∇Hf, T 〉
δ2n+1

dp =

∫ 2π

−2π

∫
S2n−1

(∫ R2

R1

∂t(Φ
∗f) dt

)
d$ µ(r)dr.

Finally, an integration by parts yields∫
BR2
\BR1

〈∇Hf, T 〉
δ2n+1

dp =

∫ 2π

−2π

∫
S2n−1

((Φ∗f)|t=R2 − (Φ∗f)|t=R1) d$ µ(r)dr

=

∫
∂B1

f(%R2p) dσ(p)−
∫
∂B1

f(%R1p) dσ(p). �

Proposition 20. For any u ∈ C∞c (Hn \ {0}) it holds

(102)

∫
Hn
|∇Hu|2 dp ≥ n2

∫
Hn

|u|2

N2
|∇HN |2 dp.

Here, N(ξ, z) := 4
√
|ξ|4 + 16z2 is the Koranyi gauge.

Proof. Applying Lemma 19 to f =
(
uδn|T |−1

)2
and letting R1 ↓ 0 and R2 ↑ +∞, since f has

compact support outside of the origin, we obtain

(103) n

∫
Hn

u2

δ2
|T |−2 dp = −

∫
Hn

u

δ
|T |−2〈∇Hu, T 〉.

Then, as in the proof of Theorem 4, by Cauchy-Schwarz inequality we obtain

(104) n2

∫
Hn

u2

δ2
|T |−2 dp ≤

∫
Hn
|∇Hu|2 dp.

Here, we used that, again by Cauchy-Schwarz inequality |〈∇Hu, T 〉| ≤ |∇Hu||T |.
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In order to complete the proof, we are left to show that |T |2δ2 = N2/|∇HN |2. By definition,
we have

(105) Φ∗|T |2 =
1 + w2

w2
.

On the other hand, following the computations in the proof of Proposition 16, we have

(106) Φ∗
(

N2

|∇HN |2

)
= 2

t2

r2

r2 − 2 cos r − 2r sin r + 2

1− cos r
.

The conclusion then follows at once by direct computations. �

Appendix A. An Euclidean non-radial Hardy inequality

In this section we present an Euclidean version of Theorem 4. Let x = (x′, xd) ∈ Rd−1×R.
We consider coordinates (t,$, ϕ) ∈ R+ × Sd−2 × (−π/2, π/2) in Rd, defined by

(107) (x′, xd) = t($ cosϕ, sinϕ).

In this case, the polar vector field is Ξ = 1
t ∂ϕ, which is unit thanks to the fact that

(108) ϕ = arctan
xd
‖x′‖

.

Moreover, the volume form becomes td−1 cosd−2 ϕdt dϕ dσ($), where dσ is the standard vol-
ume on Sd−2.

Let us consider a spherical cap Σ ⊂ Sd−1
+ , and let CΣ be the associated Euclidean cone.

We can always assume it to be centered on the d-th coordinate axis, i.e., CΣ = {ϕ > aΣ} for
some aΣ ∈ (0, π/2). We have the following.

Theorem 21. Let d ≥ 3. Then, letting ψ(x′, xd) = xd/‖x′‖, we have

(109)

∫
CΣ

|〈∇u,Ξ〉|2

ψ
dx ≥

(
d− 2

2

)2 ∫
CΣ

|u|2

|x|2
ψ dx, ∀u ∈ C∞c (CΣ).

Moreover, the inequality is sharp.

Proof. Let v ∈ C∞c (CΣ). An integration by part yields∫
CΣ

〈∇v,Ξ〉 dx =

∫ +∞

0
td−1 dt

∫
Sd−2

dσ($)

∫ π/2

aΣ

1

t
∂ϕv cosd−2 ϕdϕ

= (d− 2)

∫ +∞

0
td−1 dt

∫
Sd−2

dσ($)

∫ π/2

aΣ

v

t
cosd−3 ϕ sinϕdϕ

= (d− 2)

∫
CΣ

v

|x|
ψ dx

(110)

Here, we used that ψ = tanϕ in polar coordinates, thanks to (108). The desired inequality
then follows from the above, choosing v = u2/t and applying Cauchy-Schwarz on the l.h.s..

To obtain the sharpness, observe that choosing u(t, ϕ) = η(t)(cosϕ)γ where η(t) is any
cutoff with compact support and γ ∈ R, we have

(111)

∫
CΣ

|〈∇u,Ξ〉|2

ψ
dx = γ2

∫
CΣ

|u|2

|x|2
ψ dx.

Direct computations show that the last integral is finite if and only if γ > 2−d
2 . Then,

the statement follows via a cut-off argument as the one in the proof of Theorem 4, letting

γ →
(

2−d
2

)+
. �
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Since the function ψ is unbounded on the vertical axis {x′ = 0}, the above does not yield

any upper bound on c⊥,eucl
n (Σ). Indeed, we can only recover the following lower bound, which

is not sharp but correctly shows that c⊥,eucl
n (Σ) → +∞ as Σ degenerates to a point (i.e.,

aΣ ↑ π/2).

Corollary 22. Let Σ = {ϕ > aΣ} ⊂ Sd−1 be a spherical cap. Then,

(112) c⊥,eucl
n (Σ) ≥

(
d− 2

2

)2

tan2 aΣ.
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