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Abstract

We characterize arbitrary codimensional smooth manifoldsM with boundary embed-
ded in Rn using the square distance function and the signed distance function from M
and from its boundary. The results are localized in an open set.
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1 Introduction

It is well known that the smoothness of the boundary of a bounded open subset of Rn can
be characterized using the signed distance function (see for instance [11, 13, 12, 9]). This
characterization is useful for several purposes, in particular is related to the study of Hamilton-
Jacobi equations [6] and it can be used to face the mean curvature flow of a one-codimensional
family of smooth embedded hypersurfaces without boundary [10].

For a compact smooth embedded manifold without boundary of arbitrary codimension,
it turns out that the meaningful function to be considered is the square distance function: in
[7] De Giorgi conjectured1 that if E is a connected subset of an open set Ω ⊆ Rn such that
E ∩ Ω = E ∩ Ω and the 1

2 -square distance function from E,

ηE(x) :=
1

2
inf
y∈E
|x− y|2, x ∈ Rn,

is smooth in a neighborhood of E, then E is an embedded smooth manifold2 without boundary
in Ω of codimension equal to rank

(
∇2ηE

)
. Such a conjecture has been proven in [3, 4] (see

also [9]) and can be considered as one of the motivations of this paper.
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1IfM is a compact smooth embedded manifold without boundary then the square distance function ηM is
smooth in a suitable tubular neighborhood of M, see Theorem 2.2.

2See Theorem 2.3.
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Investigations on arbitrary codimensional mean curvature flow lead De Giorgi [8] to further
express the motion using the Laplacian of the gradient of the 1

2 -square distance function from
the evolving manifolds, and also to describe the flow passing to a level set formulation: we
refer to [3] for more details, and to [5, 16, 2] for further applications.

In this paper we want to characterize a smooth arbitrary codimensional manifold with
boundary embedded in Rn, using the distance functions. The presence of the boundary is
the novelty here, and indeed another motivation for our research came from the study of
curvature flow of networks [14], where a sort of “boundary” (the triple points) is present in
the evolution problem.

We start our discussion on the smoothness of the distance function from a manifold with
boundary with a simple observation. Let E be a smooth compact curve in Rn with two end
points (like the ones in Fig. 1 for n = 2 or in Fig. 4 for n = 3): then ηE turns out to be
smooth in a sufficiently small neighborhood of E, excluding portions of a smooth hypersurface
orthogonal to the boundary of E (the two dashed segments in Fig. 1, and the two disks in
Fig. 4)3. This suggests that we have to exclude the boundary and possibly some portions of
a hypersurface containing it, if we are hoping to get some sort of regularity for the squared
distance function from a manifoldM with boundary. In fact, in Propositions 4.2 3) and 4.4 3)
we show that, in general, ηM is smooth in a neighborhood ofM out of a suitable hypersurface
containing the boundary.

Supposing M = M is a smooth manifold with boundary, roughly speaking M is the
union of two sets: the relative interiorM◦ (a relatively open subset ofM) and the boundary
∂M (a smooth submanifold ofM of codimension one so thatM lies locally “on one side” of
∂M), joined smoothly; in particularM is contained in the relative interior of a larger smooth
manifold of the same dimension.

We want to mimic the above properties for a pair of subsets of Rn, making use only of the
distance functions and their regularity properties. Therefore, let E and L be two subsets of
Rn and Ω ⊆ Rn be an open set. We want to isolate a set of necessary and sufficient conditions
to be satisfied by the signed distance function and the square distance function from E and
from L so that E ∪ L is a smooth manifold with boundary L in Ω. Our main Definition
3.2 reformulate the above properties as follows. We say that E ∪ L is a smooth manifold
with boundary in the sense of distance functions, and we write (E,L) ∈ DhBCk(Ω) (where h
stands for the dimension of E and k for its smoothness degree), if:

- L ∩ Ω = L ∩ Ω and ηL is smooth in a neighborhood of L in Ω: this guarantees the
smoothness of L;

- E ∩ (Ω \ L) = E ∩ (Ω \ L) and ηE is smooth in a neighborhood of E in Ω \ L: this
guarantees the smoothness of E in Ω \ L;

- all points of L are accumulation points of E;

- there is a neighborhood B of E \L in Ω such that the signed distance function dB from
B (negative in B) is smooth in a neighborhood A of L: this guarantees the smoothness
of the boundary of B in A. Such a boundary is, roughly, represented by the two dashed
segments in Fig. 1 and the two disks in Fig. 4. Hence the set E \ L must lie on one

3We can even consider the case n = 1: take a bounded closed interval E = [a, b] ⊂ R. Then ηE ∈ C1,1 but
not C2 in any neighborhood of E in R; however, ηE is smooth in R \ {a, b}.
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side of L. In particular points of L do not belong to the relative interior of E ∪ L, see
Fig. 3;

- there is a smooth extension of ηE in an open neighborhood of B ∩A: this ensures that
E and L join smoothly.

The main results of this paper are Theorems 4.1 and 5.1, where we show that Definition
3.2 is equivalent to the classical definition of smooth manifold embedded in Rn with boundary.
The results are valid in any codimension and localized in an open set. Notice that localization
of Definition 2.4 (on which Definition 3.2 is based) in an open set is necessary: for instance,
even in the simplest case Ω = Rn in the list above, the regularity on ηE is required only in
Rn \ L, which is an open set.

The content of the paper is the following. In Section 2 we introduce the class DhCk(Ω),
of h-dimensional embedded Ck-manifolds without boundary in Ω in the sense of distance
functions (Definition 2.4). After quoting some known results, we recall the correspondence
between the classical definition of manifolds without boundary and sets in DhCk(Ω) (Remark
2.5).

In Definition 3.2 we introduce the class DhBCk(Ω); in Section 3 we illustrate the motiva-
tions behind this definition through several observations (Remark 3.3) and examples.

In Section 4 we prove our first main result (Theorem 4.1) showing that h-dimensional
embedded Ck-manifolds with boundary in Ω are elements of DhBCk−1(Ω).

In Section 5 we prove our second main result4 (Theorem 5.1), showing that sets in
DhBCk(Ω) are h-dimensional embedded Ck−1-manifolds with boundary.

Acknowledgements. The first author is grateful to Prof. Ennio De Giorgi who, several
years ago, drew attention to the problem discussed in this paper.

2 Manifolds without boundary and distance functions

In this section we recall the notion of smooth (resp. analytic) manifold without boundary
of arbitrary codimension, using the distance function, and the relation with the classical
definition of smooth manifold. In what follows N stands for the set of positive natural numbers,
and n ∈ N.

Given E ⊆ Rn, we set

dE(x) := dist(x,E)− dist(x,Rn \ E), x ∈ Rn,

and

ηE(x) :=
1

2
(dist(x,E))2, x ∈ Rn,

where dist(x,E) := infy∈E |x− y| and by convention inf ∅ := +∞. Note that

dE = dE ,

where E denotes the closure of E in Rn, and dE is a one-Lipschitz function. If E has empty
interior then dE(·) = dist(·, E).

If ρ > 0, we set
E+
ρ := {ξ ∈ Rn : dist(ξ, E) < ρ},

4In the C∞ or analytic case, this is the converse of Theorem 4.1.
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and if ρ : E → (0,+∞] is a function, we set E+
ρ(·) :=

⋃
x∈E
{ξ ∈ Rn : |ξ − x| < ρ(x)}.

We denote by Cω(Ω) the class of real analytic functions in the open set Ω ⊆ Rn and by
Bρ(x) (resp. Bh

ρ (x)) the open ball of Rn (resp. of Rh, h < n) centered at x of radius ρ > 0.

Let us recall the definition of the class of h-dimensional embedded Ck-manifolds5 without
boundary in a nonempty open set Ω ⊂ Rn (see for instance [17, 7]).

Definition 2.1 (Smooth embedded manifold without boundary). Let k ∈ N∪{∞, ω}
and h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a nonempty open set. We say that Γ ⊂ Rn is a h-
dimensional embedded Ck-manifold without boundary in Ω if

Γ ∩ Ω = Γ ∩ Ω, (2.1)

and for all x ∈ Γ ∩ Ω there exist an open set R ⊂ Rn, an open set G ⊂ Rh, and maps
φ ∈ Ck(G;Rn), ψ ∈ Ck(R;Rh) such that

x ∈ R, ψ(φ(y)) = y ∀y ∈ G,

Γ ∩R = {φ(y) : y ∈ G}. (2.2)

Theorem 2.2. Let k ∈ N, k ≥ 2, or k ∈ {∞, ω} and h ∈ {1, . . . , n}. Let Γ ⊂ Rn be a compact
h-dimensional embedded Ck-manifold without boundary in Rn. Then ηΓ is Ck−1 in a tubular
neighbourhood Γ+

ρ of Γ and ηΓ(x + p) = 1
2 |p|

2 for any x ∈ Γ and any p in the normal space
NxΓ to Γ at x, with x+ p ∈ Γ+

ρ . In particular the matrix ∇2ηΓ(x) represents the orthogonal
projection on NxΓ.

Proof. See [1, Theorem 2] and [9].

Theorem 2.2 is still valid if Γ is a h-dimensional embedded Ck-manifold without boundary
(not necessarily compact) in some open set Ω, provided that Γ+

ρ becomes a neighborhood

Γ+
ρ(·) ⊂ Ω of Γ ∩ Ω. Indeed, following the same proof of Theorem 2.2 in [1] it follows that

that for any x ∈ Γ ∩ Ω there exists ρ(x) > 0 such that Bρ(x)(x) ⊂ Ω, ηΓ ∈ Ck−1(Bρ(x)(x)),

η(x + p) = 1
2 |p|

2 for any p ∈ NxΓ such that x + p ∈ Bρ(x)(x), and rank(∇2ηΓ(x)) = n − h.

Defining Γ+
ρ(·) := ∪x∈ΓBρ(x)(x) we get the assertion.

Theorem 2.3. Let k ∈ N, k ≥ 3 or k ∈ {∞, ω}. Let A ⊆ Rn be an open set, E ⊂ Rn a
closed subset and suppose that ηE ∈ Ck(A). Then any connected component of E ∩ A is an
embedded Ck−1-manifold without boundary in A.

Proof. See [4, Theorem 2.4].

Notice that if rank(∇2ηE(x)) = n− h for any x in a connected component of E ∩A, then
such a connected component must have dimension h. Furthermore it is sufficient to have E
closed in A to get the thesis of Theorem 2.3. Indeed it is enough to apply Theorem 2.3 to E,
hence any connected component of E ∩A (= E ∩A) is a manifold without boundary.

The above results suggest to introduce the following class of sets (which we shall consider as
the class of h-dimensional embedded Ck-manifolds without boundary in the sense of distance
functions):

5k stands for a positive natural number. We also consider the cases k = +∞ or k = ω (analytic manifolds),
in these cases k − 1 = +∞ (resp. ω).
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Definition 2.4 (The class DhCk(Ω)). Let k ∈ N, k ≥ 2, or k ∈ {∞, ω} and h ∈ {0, . . . , n}.
Let Ω ⊆ Rn be a nonempty open set, E ⊂ Rn. We write E ∈ DhCk(Ω) if

(i) E ∩ Ω = {x ∈ Ω : ηE(x) = 0};

(ii) there exists an open set A ⊆ Ω with E ∩ Ω ⊆ A such that ηE ∈ Ck(A);

(iii) rank(∇2ηE(x)) = n− h for any x ∈ E ∩ Ω.

Remark 2.5. (I) If E ∈ DhCk(Ω), k ≥ 3 or k ∈ {∞, ω} then E is closed in Ω and E∩Ω is a
h−dimensional embedded manifold of class Ck−1(Ω) without boundary in Ω. Conversely,
if Γ is a h−dimensional embedded manifold of class Ck(Ω), k ≥ 2 or k ∈ {∞, ω} without
boundary in Ω then Γ ∈ DhCk−1(Ω).

(II) E = ∅ ∈ DhCk(Ω) for any h, k and any open set Ω.

(III) If E = E ⊆ Ω then E ∈ DhCk(Ω) implies E ∈ DhCk(Ω′) for any open set Ω′ ⊃ Ω.

3 Manifolds with boundary and distance functions

We start this section by defining what we mean by an embedded h-dimensional Ck-manifold in
an open set with boundary in the sense of distance functions. But first we recall the classical
definition (see for instance [17, 7]).

Definition 3.1 (Smooth embedded manifold with boundary). Let k ∈ N∪{∞, ω} and
h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a nonempty open set. We say thatM⊆ Rn is a h-dimensional
embedded manifold of class Ck with boundary of class Ck in Ω (a h-dimensional Ck-manifold
in Ω with boundary, for short) if

M∩ Ω =M∩ Ω

and for all x ∈ M ∩ Ω there exist an open set R ⊆ Rn, an open set G ⊆ Rh, maps φ ∈
Ck(G;Rn), ψ ∈ Ck(R;Rh) and a point z ∈ Rh such that

x ∈ R, ψ(φ(y)) = y ∀y ∈ G,

M∩R = {φ(y) : y ∈ G, 〈y, z〉 ≥ 0} . (3.1)

The boundary of M in Ω, denoted

∂ΩM (∂M when Ω = Rn),

is the set of all points x ∈M∩ Ω such that

x = φ(y), y ∈ G, 〈y, z〉 = 0.

We denote by M◦ the (relative) interior of M defined as M\ ∂ΩM and by TxM (resp.
NxM) the tangent space (resp. the normal space) to M at x ∈M.

Our main definition of smooth manifold with boundary using the distance functions reads
as follows.

Definition 3.2 (The class DhBCk(Ω)). Let k ∈ N, k ≥ 2 or k ∈ {∞, ω} and h ∈ {1, . . . , n}.
Let Ω ⊆ Rn be a nonempty open set, and E,L ⊆ Rn. We write (E,L) ∈ DhBCk(Ω) if:
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Figure 1: Ω = B1(0) is an open disk in R2, k = ∞, h = 1, E is the bold curve (including the two
endpoints), L consists of the two end points of E; d(E\L)∩Ω(·) = dist(·, (E \ L) ∩ Ω) =
dist(·, E), dL∩Ω(·) = dist(·, L ∩ Ω), B contains the shaded region, A is the union of the
two small disks containing L. In Section 4 it will also useful to consider H := A ∩ ∂B,
which in this case consists of two dashed segments containing L and normal to E. Finally,
{x ∈ A : dB(x) ≤ 0} consists of the grey areas inside the two disks, including the dashed
segments.

(i) L ∈ Dh−1Ck(Ω) and E ∈ DhCk(Ω \ L);

(ii) d(E\L)∩Ω(x) ≤ dL∩Ω(x) for any x ∈ Rn;

(iii) if we define
B := {x ∈ Ω : d(E\L)∩Ω(x) < dL∩Ω(x)}, (3.2)

then there exists an open set A ⊆ Ω with L ∩ Ω ⊆ A such that dB ∈ Ck(A);

(iv) we have6 ηE ∈ Ck
(
{x ∈ A : dB(x) ≤ 0}

)
.

Since Definition 3.2 is crucial, some comments are in order. Informally the set L ∩ Ω
should be considered as the “boundary” of E ∪ L in Ω, and by condition (i) it must satisfy
Definition 2.4, with h−1 in place of h, while E must satisfy Definition 2.4 not in the whole of
Ω, but only in the open set Ω\L (remember that L is closed in Ω by condition (i) in Definition
2.4), see Fig. 1 for an elementary example.

To understand condition (iii), which is a regularity requirement on ∂B, we refer to Ex-
amples 3.5 and 3.8.

Condition (iv) says that E ∩ Ω is smooth up to L ∩ Ω. Note carefully that, in general,
ηE is not of class Ck in an open neighborhood of E ∪ L. For instance, if n = 1 = h, E =
[−1, 1] ⊂ R, L = {±1} then ηE ∈ C1,1 but not C2 in a neighborhood of L.

Note that (E, ∅) ∈ DhBCk(Ω) if and only if E ∈ DhCk(Ω). Moreover if E = E, L = L,
and E ∪ L ⊆ Ω then (E,L) ∈ DhBCk(Ω) implies (E,L) ∈ DhBCk(Ω′) for every open set
Ω′ ⊇ Ω.

6If C ⊂ Rn, we say that f ∈ Ck(C) if there exist an open set Ĉ ⊃ C and a function f̂ ∈ Ck(Ĉ) such that

f̂ = f on C.
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Remark 3.3. Suppose k ∈ N, k ≥ 3 or k ∈ {∞, ω} and (E,L) ∈ DhBCk(Ω).

(I) By Definition 3.2 (i) we have L ∈ Dh−1Ck(Ω) hence, recalling Remark 2.5, we have
that L is an embedded (h−1)-dimensional Ck−1-manifold without boundary in Ω. Also, since
E ∈ DhCk(Ω\L), E is an embedded h-dimensional Ck−1-manifold without boundary in Ω\L.

(II) In Definition 3.2, we do not specify whether or not points of L belong to E. However,
condition (ii) says that (if L is nonempty) all points of L ∩ Ω are accumulation points of
(E \ L) ∩ Ω. Indeed, if x ∈ L ∩ Ω then dL∩Ω(x) = 0, hence (ii) implies

d(E\L)∩Ω(x) ≤ 0,

and so x ∈ (E \ L) ∩ Ω.

(III) We have
(E ∪ L) ∩ Ω = (E ∪ L) ∩ Ω.

Indeed Definition 3.2(i) implies

L ∩ Ω = L ∩ Ω and E ∩ (Ω \ L) = E ∩ (Ω \ L).

Take x ∈ E ∪ L ∩ Ω. If x ∈ L ∩ Ω then x ∈ L ∩ Ω ⊆ (E ∪ L) ∩ Ω. If x 6∈ L ∩ Ω, then

x ∈ E ∩ (Ω \ L) ⊆ E ∩ (Ω \ L) = E ∩ (Ω \ L) ⊆ (E ∪ L) ∩ Ω.

(IV) We have
(E ∪ L) ∩ Ω = {x ∈ Ω : ηE(x) = 0},

i.e.,
E ∩ Ω = (E ∪ L) ∩ Ω. (3.3)

Indeed, from (II) it follows (E ∪ L) ∩ Ω ⊆ E ∩ Ω. Now take x ∈ (E \ E) ∩ Ω, and select a
sequence (xj) ⊆ E ∩ Ω with xj → x. But xj ∈ (E ∪ L) ∩ Ω which is closed in Ω by (III).
Therefore x ∈ (E ∪ L) ∩ Ω.

(V) Recalling (3.2), we have
(E \ L) ∩ Ω ⊆ B. (3.4)

Indeed let x ∈ (E \ L) ∩ Ω so that d(E\L)∩Ω(x) ≤ 0. Since L is closed in Ω we have
dist(x, L ∩ Ω) > 0 and therefore d(E\L)∩Ω(x) < dist(x, L ∩ Ω) = dL∩Ω(x).

(VI) We have
L ∩ Ω ⊂ topological boundary of B. (3.5)

Let x ∈ L ∩ Ω; from (II), x ∈ (E \ L) ∩ Ω, hence x ∈ B from (3.4). Since B is open, it
remains to show that x /∈ B, i.e., that d(E\L)∩Ω(x) = dL∩Ω(x). Since dim(L ∩ Ω) < n,
dL∩Ω(·) = dist(·, L ∩ Ω). By Definition 3.2(ii), d(E\L)∩Ω(x) ≤ dL∩Ω(x) = dist(x, L ∩ Ω) = 0
and since x 6∈ (E \ L) we have d(E\L)∩Ω(x) = dist(x, (E \ L) ∩ Ω) ≥ 0. Thus d(E\L)∩Ω(x) =
dist(x, L ∩ Ω) = 0. Notice that from (3.5) it follows

L ∩ Ω ⊆ {x ∈ A : dB(x) ≤ 0}.

(VII) In a neighborhood of L∩Ω, the topological boundary of B is an embedded hypersur-
face of class Ck−1. Indeed since B is an open set and there exists an open set A ⊃ L∩Ω such
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Figure 2: Left: E is a segment in R2. Right: E is an arc of a circle in R2 and L its two end points.

that dB ∈ Ck(A), it follows from [9] that in A the topological boundary of B is a Ck−1 hyper-
surface. Consistently with our notation in Definition 3.1, we indicate by ∂AB the boundary
of B in A.

(VIII) For h = n we have
B = (E \ L) ∩ Ω. (3.6)

The inclusion (E \ L) ∩ Ω ⊆ B is in (3.4). To show the converse inclusion we argue by
contradiction. Assume that B 6⊂ (E \ L) ∩ Ω. From (I) we know that (E \ L) ∩ Ω is an open
set and L ∩ Ω is a hypersurface, moreover L ∩ Ω is the topological boundary of (E \ L) in Ω
from (3.3). Hence (E \ L) ∩ Ω ∩B 6= ∅; it follows L ∩B 6= ∅ which contradicts (3.5).

Example 3.4. We start from the simplest nontrivial case (Fig. 2, left): we take n = 2,
h = 1, k ∈ {∞, ω}, Ω = R2, L = {(±1, 0)}, and E = (−1, 1) × {0} (E = (−1, 1] × {0}
or E = [−1, 1) × {0} or E = [−1, 1] × {0} would not affect the discussion). In this case it
is immediate to verify that the set B in condition (iii) equals B = (−1, 1) × R; the largest
A fulfilling condition (iii) can be taken to be A = R2 \ {x1 = 0}, and {(x1, x2) ∈ A :
dB((x1, x2)) ≤ 0} = ([−1, 1]× R) \ {x1 = 0}. Finally, in order to fulfill (iv), it is sufficient to
take η̂E = η

Ê
, where Ê = (−1 − δ, 1 + δ) × {0}, for any δ > 0 so that η

Ê
∈ Ck([−1, 1] × R).

Note that ηE is not even C2 on {x = ±1}.
If we choose L to be only one point of the two points {(±1, 0)}, say L = {(1, 0)}, then

E = (−1, 1)× {0} is no longer closed in Ω \ L hence it does not belong to D1Ck(Ω \ L). On
the other hand E = (−1, 1]× {0} is closed in Ω \ L but condition (ii) of Definition 2.4 (with
Ω replaced by Ω \ L) is not satisfied, hence E does not belong to D1Ck(Ω \ L).

Example 3.5. Take n = 2, h = 1, k ∈ {∞, ω}, E = (cos θ, sin θ), θ ∈ (5π
4 ,

7π
4 ), Ω = R2, and

L = {(±1√
2
, −1√

2
)}, see Fig. 2. We have B∩(R×(−∞, 0)) = {(x1, x2) ∈ R2 : |x1| < |x2|, x2 < 0}.

A can be taken to be any open subset of R × (−∞, 0) containing L that does not contain
the origin. Finally, taking η̂E = η

Ê
where Ê = (cos θ, sin θ), θ ∈ (5π

4 − δ,
7π
4 + δ), δ < π

4 ,

condition (iv) is fulfilled. Note that ∂B is smooth close to L, but not necessarily far from L
(for instance at the origin).

Example 3.6. Take n = h ≥ 1, k ∈ {∞, ω}, E = B1(0), Ω = Rn, and L = ∂B1(0). Note
that ηE ∈ C1(B1+ε(0)) \ C2(B1+ε(0)) for any ε > 0. B1(0) ∈ DnCk(Rn \ ∂B1(0)): indeed E is
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Figure 3: Example 3.8: L is the union of the two bold circles, one being included in the larger open
disk, B is the grey region. Dashed segments: graph of the signed distance function dB along
{y = 0}.

closed in Rn \∂B1(0), ηE |E = 0 thus ηE ∈ Ck(E \L) and rank(∇2ηE(x)) = 0 for all x ∈ E \L.
Moreover L ∈ Dn−1C

k(Rn) from Remark 2.5 (I). Hence condition (i) is fulfilled; condition
(ii) is immediate and we also have B = B1(0) and A = Rn \ {0}. Finally, η̂E = 0 in Rn allows
to check condition (iv).

Example 3.7. Take n = 2, h = 1, k ∈ {∞, ω}, E = S1 the unit circle centered at the origin,
Ω = R2, and L = ∅. Then condition (i) is immediate. Notice that dL ≡ +∞ hence B = R2,
dB ≡ −∞, and A = ∅ so that also condition (iv) is trivially satisfied.

Example 3.8. Take n = h = 2, E = B2(0), Ω = R2, and L = ∂B1(0) ∪ ∂B2(0). Then (i)
and (ii) of Definition 3.2 are fulfilled. B = B2(0) \ L, moreover there is no A ⊃ ∂B1(0) such
that dB ∈ C1(A) hence (iii) is not satisfied (note that ηE = 0 in B2(0), i.e., fulfilling (iv) also
depends on the existence of A), see Fig. 3.

4 Smooth manifolds with boundary are in DhBCk(Ω)

In this section we show that smooth manifolds with boundary in the classical sense (Definition
3.1) are smooth manifolds with boundary in the sense of distance functions (Definition 3.2),
more precisely:

Theorem 4.1. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω}. Let Ω ⊆ Rn be a nonempty open set and
M ⊂ Rn be an embedded Ck-manifold of dimension h ≤ n with nonempty boundary in Ω.
Then (M, ∂ΩM) ∈ DhBCk−1(Ω).

First we need the following result.

Proposition 4.2. Let k ∈ N, k ≥ 2, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. Let M ⊂ Rn be a
compact embedded Ck-manifold of dimension h with nonempty boundary in Rn. Then there
exists ε > 0 such that, setting

Hε :=
⋃

x∈∂M
Bε(x) ∩NxM, (4.1)
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Figure 4: M is a curve (smooth up to the boundary) embedded in R3, N is a smooth extension ofM,
and Hε consists of two open disks normal to M at the endpoints (the boundary of M).

the following properties hold:

1) ∂M⊆ Hε ⊆
⋃

x∈∂M
NxM;

2) Hε is an embedded Ck−1-hypersurface without boundary in M+
ε , and NxHε ⊆ TxM for

any x ∈ ∂M;

3) ηM ∈ Ck−1(M+
ε \Hε).

Proof. Since we can work separately on each connected component of M, from now on we
suppose that M is connected. Suppose first h = n. In this case the interior of M is a
nonempty open set with Ck-boundary, and [13, 12, 9] if ε > 0 is sufficiently small, dM is
of class Ck in the tubular neighborhood (∂M)+

ε of ∂M. Define Hε := ∂M. Then 1) holds
(with the equalities in place of the inequalities), and also 2) holds because TxM = Rn for any
x ∈ ∂M. Moreover dist(·,M) ∈ Ck(M+

ε \Hε), since dist(·,M) = 0 in the interior of M and
dist(·,M) = dM(·) in M+

ε \M, hence also 3) follows.
Now suppose h ∈ {1, . . . , n− 1}. We divide the proof into 3 steps.

Step 1. There exists ε1 > 0 such that

ηM ∈ Ck−1(Vε1), (4.2)

where Vε1 is the neighborhood of the relative interior M◦ of M defined as

Vε1 :=
⋃

x∈M◦
Bε1(x) ∩NxM◦. (4.3)

The initial part of the proof of this step is rather standard, see for instance [1]. Take any
x◦ ∈ M◦. Since M is a smooth manifold embedded in Rn, there exists ρ = ρ(x◦) > 0 such
that

Bρ(x◦) ∩M = Bρ(x◦) ∩M◦, (4.4)

and there are smooth orthonormal vector fields ν1(x), . . . , νn−h(x) spanning NxM◦ for any
x ∈ Bρ(x◦) ∩M◦. Consider the function

Φ̃ = Φ̃M◦ : (Bρ(x◦) ∩M◦)× Rn−h −→ Rn, Φ̃(x, α) := x+
n−h∑
i=1

αiν
i(x), (4.5)

10



where α = (α1, . . . , αn−h) ∈ Rn−h. Let G ⊂ Rh be an open set and f : G→ Bρ(x◦) ∩M◦ be

a local parametrization ofM◦ with f(y◦) = x◦, y◦ ∈ G. Then Φ̃ in local coordinates becomes

Φ : G× Rn−h → Rn, Φ(y, α) := Φ̃(f(y), α) = f(y) +
n−h∑
i=1

αiν
i(f(y)).

Clearly Φ is Ck−1 and therefore dΦ(y◦,0) is represented by a matrix with columns

fy1(y◦), fy2(y◦), . . . , fyh(y◦), ν
1(f(y◦)), ν

2(f(y◦)), . . . , ν
n−h(f(y◦)),

where y = (y1, . . . , yh) and fyi = ∂
∂yi

. Since span{fy1(y◦), . . . , fyh(y◦)} = Tx◦M, the columns
of dΦ(y◦,0) are linearly independent. Hence, by the implicit function theorem, Φ is locally

invertible with inverse of class Ck−1. Let

O := (Br◦(x◦) ∩M◦)×Bn−h
r◦ (0),

where 0 < r◦ = r(x◦) ≤ ρ is so that the implicit function theorem holds, and let

Ψ : Φ̃(O) ⊂ Rn → O, Ψ(ξ) = (x(ξ), α(ξ)),

be the local inverse of Φ̃. Take δ◦ ∈ (0, r◦/2) and ξ ∈ Bδ◦(x◦) ⊂ Φ̃(O), and let x ∈ M be so
that dist(ξ,M) = |x−ξ|, recall thatM is closed by Definition 3.1. Since |x−ξ| ≤ |x◦−ξ| < δ◦
it follows x ∈ Br◦(x◦)∩M◦ (recall (4.4) and r◦ ≤ ρ), hence x = x(ξ)7 and dist(ξ,M) = |α(ξ)|.
Thus,

ηM(ξ) =
1

2
|α(ξ)|2 =

1

2

n−h∑
i=1

(αi(ξ))
2 ∀ξ ∈ Bδ◦(x◦),

where α(ξ) = (α1(ξ) . . . αn−h(ξ)). Therefore ηM ∈ Ck−1(Bδ◦ (x◦)).

Now we deal with points on ∂M. SinceM is an embedded Ck-manifold with boundary, it
can be extended8 to a connected Ck-manifold with boundary N of the same dimension such
that ∂M ⊂ N ◦. Let x̄ ∈ ∂M ⊂ N and repeat the argument at the beginning of this step
withM replaced by N , to conclude that ηN is Ck−1 in Bδ(x̄) ⊂ Φ̃N ◦((Br(x̄)∩N ◦)×Bn−h

r (0))
for r > 0 sufficient small and δ ∈ (0, r2). Consider the open set

W =W(x̄) := Bδ(x̄) ∩
(

Φ̃N ◦((Br(x) ∩M◦)×Bn−h
r (0))

)
.

We claim that
ηM = ηN on W,

and hence ηM ∈ Ck−1(W). Indeed, take ξ ∈ W; then ξ ∈ Bδ(x̄) implies the existence of a
unique x(ξ) ∈ N such that dist(ξ,N ) = |x(ξ)−ξ| and ξ ∈ Nx(ξ)N (clearly NxM◦ = NxN ◦ at

x ∈ M◦). Moreover ξ ∈ Φ̃N ◦
(
(Br(x̄) ∩M◦)×Bn−h

r (0)
)

implies x(ξ) ∈ M◦ by the definition

of Φ̃N ◦ . In particular, any point of W has a unique point of minimal distance to N on
Br(x̄) ∩M◦.

By the compactness of M, we can select ε1 > 0 such that:

7Indeed ξ ∈ NxM◦, i.e., for any ω ∈ TxM we have < x− ξ, ω >= 0. To prove that, consider a local chart
f around x such that f(p) = x and dfpτ = ω. Since p is a minimum point for the function |ξ − f(p + στ)|2
where |σ| is small enough then 0 = d

dσ
|ξ − f(p+ στ)|2|σ=0 =< ξ − x, ω >.

8This directly follows from Definition 3.1.
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- (4.2) holds;

- for any ξ ∈ Vε1 there exists a unique x(ξ) ∈ M◦ such that dist(ξ,M) = |ξ − x(ξ)|, in
particular

dist(·,M) < dist(·, ∂M) in Vε1 ; (4.6)

- by construction Vε1 ⊂ M+
ε1 and the topological boundary of Vε1 is K ∪ Hε1 , where K ⊂

∂(M+
ε1) and Hε1 is defined in (4.1) with ε replaced by ε1. Hence the closure of Vε1 in M+

ε1 is
Hε1 (see Fig. 4);

- ηN ∈ Ck−1(M+
ε1) and

ηN = ηM in Vε1 ∪Hε1 . (4.7)

Step 2. For ε2 > 0 small enough, Hε2 is a Ck−1 embedded hypersurface without boundary in

M+
ε2 .
Let x̄ ∈ ∂M and g : G′x̄ ⊂ Rh−1 −→ Bρ(x̄) ∩ ∂M, ρ > 0, be a local chart on ∂M. Define

X(y′, α) = g(y′) +
n−h∑
i

αiν
i(g(y′)), y′ ∈ G′x̄, α ∈ Bn−h

ε(x̄) (0), (4.8)

where {νi(g(y′))}i=1,...,n−h are orthonormal vector fields of class Ck−1 spanning the normal
space to M at g(y′) ∈ ∂M and ε(x̄) > 0. Clearly X is Ck−1 and dX(y′,0) is non singular and
X is a local homeomorphism onto its image. Now, we use the compactness of ∂M to get a
finite subcovering

⋃l
i=1 gi(G

′
x̄i) =

⋃l
i=1Bρi(x̄i) ∩ ∂M = ∂M, x̄i ∈ ∂M, and define

ε2 := min{ε(x̄i) : i = 1, . . . , l} > 0, Hε2 =

l⋃
i=1

X(G′x̄i ×B
n−h
ε2 (0)).

It remains to prove that, possibly reducing the value of ε2, any ζ ∈ Hε2 has an open
neighborhood V such that V ∩Hε2 is exactly the image of one of the charts X(G′x̄i×B

n−h
ε2 (0))

(that is, Hε2 has no self-intersections). Assume that ε2 > 0 is small enough so that

Hε2 ⊂ (∂M)+
ε2 ,

and

- for every ξ ∈ (∂M)+
ε2 there exists unique xξ ∈ ∂M such that ξ ∈ Nxξ∂M and

dist(ξ, ∂M) = |ξ − xξ|;

- the projection map P : (∂M)+
ε2 → ∂M, P (ξ) = xξ is Ck−1, see [15].

Now let ζ ∈ Hε2 and x̄i be such that xζ ∈ Bρi(x̄i) ∩ ∂M. Define V := P−1(Bρi(x̄i) ∩ ∂M)
which is an open neighborhood of ζ in Rn. We have

V ∩Hε2 = X(G′x̄i ×B
n−h
ε2 (0)).

Indeed, if ξ ∈ V ∩ Hε2 then xξ ∈ Bρi(x̄i) ∩ ∂M, |ξ − xξ| < ε2 and ξ ∈ NxξM , i.e., ξ ∈
X(G′x̄i ×B

n−h
ε2 (0)) by the definition of X in (4.8). On the other hand the inclusion V ∩Hε2 ⊇

X(G′x̄i ×B
n−h
ε2 (0)) is immediate.

Note that assertions 1) and 2) of the proposition follow immediately from (4.1), with ε
replaced by ε2.
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Step 3. There exists ε ∈ (0,min(ε1, ε2)) such that

ηM ∈ Ck−1(M+
ε \Hε). (4.9)

From Theorem 2.2, we may assume that η∂M is Ck−1 in a tubular neighborhood (∂M)+
ε3 of

∂M of radius ε3 > 0. Define
ε := min{ε1, ε2, ε3}. (4.10)

If Vε is as in step 1, we have Vε ⊂M+
ε and, from step 1, ηM is Ck−1 in Vε. We claim that

ηM = η∂M in M+
ε \ Vε. (4.11)

Since ∂M ⊂ M, dist(·,M) ≤ dist(·, ∂M) hence ηM ≤ η∂M. Assume by contradiction
that there exists ξ ∈ M+

ε \ Vε such that dist(ξ,M) < dist(ξ, ∂M). Then there exists x ∈
M \ ∂M such that |ξ − x| = dist(ξ,M) < ε which, by the definition of Vε, implies ξ ∈ Vε, a
contradiction.

Since the closure of Vε inM+
ε is Hε (see the end of step 1) it follows thatM+

ε \ (Vε ∪Hε)
is an open subset of (∂M)+

ε3 in which ηM is Ck−1. Hence assertion 3) is proven.

Now, we prove Theorem 4.1 when Ω = Rn and supposing that the manifold is compact.

Theorem 4.3. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. Let M ⊂ Rn be an
embedded compact Ck-manifold of dimension h with nonempty boundary ∂M in Rn. Then

(M, ∂M) ∈ DhBCk−1(Rn).

Proof. We have to check conditions (i)-(iv) of Definition 3.2.
Suppose h = n. By Remark 2.5 (I) it follows ∂M∈ Dn−1Ck−1(Rn). One also immediately

checks thatM∈ DnCk−1(Rn\∂M). Moreover dM(·) = ±dist(·, ∂M) ≤ dist(·, ∂M) = d∂M(·)
and B =M\ ∂M, hence [13, 12, 1] the function dB is Ck in a tubular neighborhood of ∂M,
which shows condition (iii). Clearly {x ∈ Rn : dB(x) ≤ 0} = M; thus η̂ ≡ 0 is a Ck(Rn)
extension of ηM, so that condition (iv) is fulfilled.

Now suppose h < n. From Remark 2.5(I) we have

∂M∈ Dh−1Ck−1(Rn).

Moreover, since M is a Ck-manifold without boundary in Rn \ ∂M then, again by Remark
2.5(I),

M∈ DhCk−1(Rn \ ∂M),

which shows (i). We also have dM(·) = dist(·,M) ≤ dist(·, ∂M) = d∂M(·), which shows (ii).
Let B be defined as in (3.2) with Ω = Rn, and (E,L) := (M, ∂M). Then by (4.6) and

the last comments in step 1 in Proposition 4.2 we have

B ∩M+
ε = Vε and M+

ε ∩ ∂B = Hε,

where ε, Vε and Hε are as in (4.10), (4.3) and (4.1), respectively. Since by Proposition 4.2 2)
Hε is an embedded hypersurface (without boundary) of class Ck−1 inM+

ε then, following the
same argument in the comment after Theorem 2.2 and using [13, 12, 1], there exists an open
neighborhood A ⊂M+

ε of Hε such that dB ∈ Ck−1(A). Hence condition (iii) is satisfied.
Finally, since {x ∈ A : dB(x) ≤ 0} ⊂ Vε ∪Hε, condition (iv) follows from (4.7).
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Now we generalize Proposition 4.2: dropping the compactness of M implies that we can
not take tubular neighborhoods of constant width.

Proposition 4.4. Let k ∈ N, k ≥ 2, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a
nonempty open set. Let M⊂ Rn be an embedded Ck-manifold of dimension h with nonempty
boundary in Ω. Then there exists a function ε :M∩ Ω→ (0,+∞] such that, setting

Hε(·) :=
⋃

x̄∈∂ΩM
Bε̄(x̄)(x̄) ∩Nx̄M (4.12)

where ε(x̄) := sup{ρ > 0 : Bρ(x̄) ∩Nx̄M⊂ (M∩ Ω)+
ε(·)}, the following properties hold:

1) ∂ΩM⊆ Hε(·) ⊆
⋃

x̄∈∂ΩM
Nx̄M;

2) Hε(·) is an embedded Ck−1-hypersurface without boundary in (M∩Ω)+
ε(·), and Nx̄Hε(·) ⊆

Tx̄M for any x̄ ∈ ∂ΩM;

3) ηM ∈ Ck−1((M∩ Ω)+
ε(·) \Hε(·)).

Proof. The proof is similar to the proof of Proposition 4.2 with slight modifications. We
suppose thatM∩Ω is connected. Let us write for simplicity εx = ε(x), εx = ε̄(x) and so on.

Assume first h = n; then the interior ofM∩Ω is a nonempty open set with Ck-boundary
in Ω, and for every x̄ ∈ ∂ΩM there exists εx̄ > 0 such that Bεx̄(x̄) ⊂ Ω and dM ∈ Ck(Bεx̄(x̄))
[13, 12, 9], hence dM is of class Ck in (∂ΩM)+

ε(·) ⊂ Ω. Define Hε(·) := ∂ΩM. Then assertions

1)-3) follow as in the proof of Proposition 4.2.

Now suppose h ∈ {1, . . . , n − 1}. Following the same argument in step 1 in the proof of
Proposition 4.2 it follows that:

- for every x◦ ∈ (M∩Ω)◦ there exists ε1
x◦ > 0 such thatBε1x◦ (x◦) ⊂ Ω, Bε1x◦ (x◦)∩∂ΩM = ∅

and ηM ∈ Ck−1(Bε1x◦ (x◦));

- if N ⊂ Ω is a connected embedded Ck-manifold of dimension h containing M and so
that ∂ΩM ⊂ N o then, for every x̄ ∈ ∂ΩM, there exists ε1

x̄ > 0 such that Bε1x̄(x̄) ⊂ Ω
and

Wε1x̄
=Wε1x̄

(x̄) : = {ξ ∈ Bε1x̄(x̄) : dist(ξ,N ) = |ξ − xξ|, xξ ∈ (M∩ Ω)◦}

=
⋃

y∈(M∩Ω)◦

Bε1x̄(x̄) ∩NyM

is an open subset of Ω, and Wε1x̄
∩Bε1x̄(x̄) =Wε1x̄

∪
( ⋃
y∈∂ΩM

(Bε1x̄(x̄) ∩NyM)
)

;

- ηM = ηN in Wε1x̄
, hence ηM ∈ Ck−1

(
Wε1x̄

∩Bε1x̄(x̄)).

Define
Vε1(·) :=

( ⋃
x◦∈(M∩Ω)◦

Bε1x◦ (x◦)
)
∪
( ⋃
x̄∈∂ΩM

Wε1x̄

)
.
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The presence of the set
⋃
x̄∈∂ΩMWε1x̄

is due to the fact that, whenM is not compact, it could

happen that, as x◦ ∈ M◦ converges to a point of ∂ΩM, the corresponding ε1
x◦ converges to

zero.
By construction Vε1(·) ⊂ (M∩Ω)+

ε1(·) and the topological boundary of Vε1(·) is K ∪Hε1(·),

where K is subset of the topological boundary of ((M∩ Ω)+
ε1(·)) and Hε1(·) are as in (4.12)

with ε̄ replaced by ε̄1. Hence the topological boundary of Vε1(·) in (M ∩ Ω)+
ε1(·) is Hε1(·).

Moreover ηN ∈ Ck−1((M ∩ Ω)+
ε1(·)) and ηN = ηM in Vε1(·) ∪ Hε1(·). We conclude that

ηM ∈ Ck−1(Vε1(·)).
Following the same arguments in step 1 and step 2 in the proof of Proposition 4.2 it

follows that for each x̄ ∈ ∂ΩM there exist ε2
x̄ > 0, G′x̄ ⊂ Rh−1, Bx̄ ⊂ Rn−h+1 open sets and a

Ck−1-diffeomorphism

X : G′x̄ ×Bx̄ → Bε2x̄(x̄) ⊂ Rn, X(y′, α) := g(y′) +
n−h+1∑
i=1

αiν
i(g(y′)),

where g : G′x̄ ⊂ Rh−1 −→ Bε2x̄(x̄)∩ ∂ΩM is a local chart on ∂ΩM and {νi(g(y′))}i=1,...,n−h+1,

νn−h+1(g(y′)) ∈ Tg(y′)M, are orthonormal vector fields of class Ck−1 spanning the normal
space to ∂ΩM at g(y′) ∈ ∂ΩM. Thus

(∂ΩM)+
ε2(·) =

⋃
x̄∈∂ΩM

X(G′x̄ ×Bx̄).

Let

X : G′x̄ ×Bn−h
x̄ → Bε2x̄(x̄), X(y′, α) := g(y′) +

n−h∑
i=1

αiν
i(g(y′)),

where Bn−h
x̄ := {(α1, · · · , αn−h+1) ∈ Bx̄ : αn−h+1 = 0} ⊂ Rn−h (note that X equals the

restriction of X in G′x̄×Bn−h
x̄ , hence it is a Ck−1-diffeomorphism). Setting Hε2(·) as in (4.12)

with ε̄ replaced by ε̄2, we have

Hε2(·) =
⋃

x̄∈∂ΩM
X(G′x̄ ×Bn−h

x̄ ).

Thus for each ζ ∈ Hε2(·) there exists x̄ ∈ ∂ΩM such that ζ ∈ X(G′x̄ × Bn−h
x̄ ). Letting

V := X(G′x̄×Bx̄), following the argument in step 2 of Proposition 4.2, we may show that the
maps X(G′x̄ × Bn−h

x̄ ) are local charts covering Hε2(·). This completes the proof of assertion
2).

To prove 3) we assume that η∂M is Ck−1 in a neighborhood (∂ΩM)+
ε3(·) of ∂ΩM, see the

comment after Theorem 2.2, and we define ε(x) := min{ε1
x, ε

2
x, ε

3
x}. Again following step 3 in

the proof of Proposition 4.2 we have ηM ∈ Ck−1((M∩ Ω)+
ε(·) \Hε(·)).

Conclusion of the proof of Theorem 4.1. It follows from Proposition 4.4 the same way the
proof of Theorem 4.3 follows from Proposition 4.2.
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5 Sets in DhBCk(Ω) are smooth manifolds with boundary

The goal of this section is to prove a sort of converse9 of Theorem 4.1. That is, we want to
show the following:

Theorem 5.1. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω} and h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a
nonempty open set, and let E,L ⊂ Rn be such that (E,L) ∈ DhBCk(Ω). Then (E ∪L)∩Ω is
a h-dimensional Ck−1-manifold in Ω with boundary L ∩ Ω.

Proof. Let us assume first Ω = Rn (which includes the converse of Theorem 4.3). We can
suppose

L 6= ∅,

since if L = ∅ the result follows from Remark 2.5 (I).
Recall from Remark 3.3 (I) that L is an embedded Ck−1-manifold in Rn without boundary

of dimension h − 1, and E is an embedded Ck−1-manifold without boundary in Rn \ L of
dimension h.

Moreover from condition (iv) in Definition 3.2, following the notation of (iii) in particular
concerning the sets B and A, if we call

C := {x ∈ A : dB(x) ≤ 0}, (5.1)

then there exist an open set Ĉ ⊂ Rn containing C and a function η̂ ∈ Ck(Ĉ) such that

η̂ = ηE on C. (5.2)

We divide the proof of the theorem into five steps.

Step 1. We have
E ∩ C ⊆ {x ∈ Ĉ : ∇η̂(x) = 0}. (5.3)

From [4, Lemma 2.1], ηE is differentiable on E and

E = {x ∈ Rn : ∇ηE(x) = 0}.

Hence, since from (3.3) we have E = E ∪ L, it follows

E ∩ C = (E ∪ L) ∩ C = {x ∈ C : ∇ηE(x) = 0}. (5.4)

Now we show that
∇η̂ = ∇ηE on (E ∪ L) ∩ C. (5.5)

We split the proof into two cases. If x ∈ (E \ L) ∩ C then from (3.4) and (5.1) it follows

x ∈ B ∩ C = {x ∈ A : dB(x) < 0} = B ∩A ⊂ C. (5.6)

Hence, since B ∩A is open, x is an interior point of C, and from (5.2) we deduce

∇η̂(x) = ∇ηE(x).

9In the C∞ or analytic case, it is the converse.
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Now, let x ∈ L = L ∩ C; recall from Remark 3.3 (VII) that the topological boundary of B is
of class Ck−1 in a neighborhood of x. Then x ∈ ∂AB = {x ∈ A : dB(x) = 0} from (3.5). We
shall show that

∇η̂(x)ν = ∇ηE(x)ν ∀ν ∈ Rn. (5.7)

Take ν ∈ Rn \ {0}. Let n ≥ 2 (the case n = 1 being trivial); if ν ∈ Tx∂AB then there exist
ε > 0 and α : (−ε, ε) → ∂AB of class C1 such that α(0) = x, α′(0) = ν. Hence, using also
(5.2),

∇ηE(x)ν =
d

dt
ηE(α(t))|t=0 =

d

dt
η̂(α(t))|t=0 = ∇η̂(x)ν.

If ν ∈ Nx∂AB then we can select β : (−ε, ε)→ Rn of class C1 such that β(0) = x, β′(0) = ν
and β((−ε, 0)) is contained in the interior of C. Hence, denoting by d

dt−
the left derivative,

∇η̂E(x)ν =
d

dt
ηE(β(t))|t=0 =

d

dt−
ηE(β(t))|t=0 =

d

dt−
η̂(β(t))|t=0 =

d

dt
η̂(β(t))|t=0 = ∇η̂(x)ν.

This concludes the proof of (5.7), and then (5.3) follows from (5.4) and (5.5).

Step 2. We have

rank
(
∇2η̂(x)

)
= n− h for any x ∈ (E ∪ L) ∩ C. (5.8)

From Definition 3.2 (i), Definition 2.4 (iii) and (5.6) we have

rank
(
∇2η̂(x)

)
= n− h for any x ∈ (E \ L) ∩ C. (5.9)

Now we observe that (5.9) holds also for x ∈ L. Indeed, if x ∈ L, from (3.3) we can select a
sequence {xm} ⊂ (E \L)∩C converging to x. Then, by the continuity of ∇2η̂ at x, it follows
rank

(
∇2η̂(x)

)
= n− h.

Step 3. There exists an embedded h-dimensional manifold N of class Ck−1, without
boundary in a sufficiently small neighborhood of E ∪ L, such that

E ∪ L ⊂ N .

For h = n, it is sufficient to take N = Rn. Hence, suppose h < n. Take

x ∈ L

and, recalling (5.8), let {ν1, ν2, . . . , νn−h} be an orthonormal basis of Im
(
∇2η̂(x)

)
. Define

Fi(x) := 〈∇η̂(x), νi〉, i = 1, . . . , n− h, x ∈ Ĉ,

and set
F : Ĉ −→ Rn−h, F := (F1, F2, . . . , Fn−h).

From (3.3),(5.4) and (5.5) we have

(E ∪ L) ∩ C = E ∩ C ⊆ {x ∈ Ĉ : ∇η̂(x) = 0} ⊆ {x ∈ Ĉ : F (x) = 0}. (5.10)

Observe that F ∈ Ck−1(Ĉ;Rn−h). Moreover, if we denote by JF (x) the Jacobian of F at x,
then

JF (x) = QT∇2η̂(x), (5.11)
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where QT is the transposed of the n× (n−h) matrix Q :=
[
ν1ν2 . . . νn−h

]
having as columns

the linear independent vectors (νi)i=1,...,n−h. Recalling the definition of ν1, . . . νn−h, by con-
struction JF (x) has rank n−h. Choose σ = σ(x) > 0 so that the Jacobian of F has constant
rank n− h on Bσ(x). Let

Γx := Bσ(x) ∩ {x ∈ Ĉ : F (x) = 0}.

Then the implicit function theorem ensures that Γx is an embedded h−dimensional manifold
(without boundary in Bσ(x)) of class Ck−1.

Note that Bσ(x) ∩ ((E \ L) ∩ C) (which is nonempty by (3.4) and (5.1)) is a manifold
without boundary in Bσ(x) \ L of dimension h (Remark 3.3 (I)) and it is contained in Γx by
(5.10). Hence Γx is an extension of (E \ L) ∩ C in Bσ(x).

Defining

N := E ∪
⋃
x∈L

Γx,

we have that N satisfies the assertion.

Step 4. E ∪ L is an embedded h-dimensional Ck−1-manifold in Rn with boundary.
We need to check that Definition 3.1 is satisfied. Recall from Remark 3.3 (III) that

E ∪ L = E ∪ L. Now, let x ∈ E \ L; in this case there is nothing to prove, since E \ L is a
manifold without boundary in Rn \ L of dimension h (Remark 3.3 (I)).

Let x̄ ∈ L. Since L is a Ck−1 embedded submanifold of N of codimension 1 (step 3), there
exist an open neighborhood R ⊂ Rn of x̄ and a Ck−1 local parametrization

φ : G := Bh
1 (0)→ U := R ∩N ⊂ Rn (5.12)

such that
R ∩ L = {φ(y) : y = (y1, . . . , yh) ∈ G, yh = 0}. (5.13)

Hence U ∩L divides U into two relatively open connected components U+ and U− defined as

U± := {φ(y) : y ∈ G, 〈y,±eh〉 > 0}, (5.14)

where eh := (0, . . . , 0, 1) ∈ Rh (note that (E \ L) ∩ (U \ L) 6= ∅). Clearly

L ∩ U+ = L ∩ U− = ∅. (5.15)

Let us show
U± ∩ (E \ L) 6= ∅ ⇒ U± ∩ (E \ L) = U±. (5.16)

Assume U+ ∩ (E \ L) 6= ∅ and suppose by contradiction that U+ \
(
U+ ∩ (E \ L)

)
is

nonempty (the case for U− being similar).
Recalling that U+ is connected and that both sets E \ L and U+ are relatively open in

N , we have
U+ ∩ (E \ L)  U+ ∩ (E \ L) ∩ U+. (5.17)

Thus
U+ ∩ (E \ L) ∩ U+ ⊆ U+ ∩ (E \ L) = (U+ ∩ (E \ L)) ∪ (L ∩ U+), (5.18)

where the equality follows from Remark 3.3 (III). From (5.17) and (5.18) we deduce L∩U+ 6=
∅, which contradicts (5.15).
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Case 1. U− ∩ (E \L) = ∅. Then from (5.16) it follows U ∩ (E \L) = U+, and (3.1) (with
M replaced by E ∪ L) is a consequence of (5.13) and (5.14). We argue similarly in the case
U+ ∩ (E \ L) = ∅.

Case 2. U± ∩ (E \ L) 6= ∅. Then from (5.16) it follows U ∩ (E \ L) = U \ L, and (2.2)
follows from (5.13) and (5.14).

This concludes the proof of step 4.

Step 5. We have
∂(E ∪ L) = L.

Since E is a Ck−1-manifold without boundary in Rn \ L of dimension h (Remark 3.3 (I)), we
have

∂(E ∪ L) ⊆ L.

To prove the converse inclusion, recalling also the proof of step 4 (see (5.12), (5.13) and
(5.16)), it is sufficient to show that for any x ∈ L there is no relatively open neighborhood U
of x in N such that U ∩ (E \ L) = U \ L.

Let x ∈ L, and recall once more the definition of B in (3.2), and that L ⊂ ∂AB (see (3.5)).
From condition (iii) of Definition 3.2 we know that dB is of class Ck in a neighborhood of
x. Hence there exist a neighborhhood R ⊂ Rn of x, δ > 0, and a map ψ ∈ Ck(R;Rn) such
that ψ(R) = Bδ(0), ψ(R ∩ B) = Bδ(0) ∩ {xn > 0} and ψ(R ∩ ∂B) = Bδ(0) ∩ {xn = 0} (in
particular B locally lies on one side of ∂B).

If h = n, our assertion follows from the fact that B = E \ L by (3.6).
Assume now h < n. Suppose by contradiction that there exist x ∈ L and a neighborhood

U of x in N such that U \ L = U ∩ (E \ L). Since B is locally on one side of ∂B and
x ∈ L ⊂ ∂AB, recalling also (3.4), we have

U \ L ⊂ B.

Moreover since U is relatively open in N and by (3.5) we have L ⊂ ∂AB, we get

TxN = TxU ⊂ Tx∂AB.

Take ξ ∈ B \ N such that dist(ξ,N ) = |ξ − x|. Then

dL(ξ) = dist(ξ, L) = dist(ξ, E \ L) = dE\L(ξ), (5.19)

where the second equality follows from Remark 3.3 (III) and x̄ ∈ L, and the last equality
follows from the fact that E \ L ⊂ N and ξ 6∈ N , so that ξ 6∈ E \ L. Then (5.19) contradicts
the inclusion ξ ∈ B = {z ∈ Rn : d(E\L)∩Ω(z) < dL∩Ω(z)}.

This concludes the proof when Ω = Rn. The proof when Ω is a nonempty open subset of
Rn follows by replacing E with E∩Ω, L with L∩Ω, and Rn with Ω in the above arguments.
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