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Abstract. Building upon the recent results in [13] we provide a thorough description of the

free boundary for the fractional obstacle problem in Rn+1 with obstacle function ϕ (suitably
smooth and decaying fast at infinity) up to sets of null Hn−1 measure. In particular, if ϕ

is analytic, the problem reduces to the zero obstacle case dealt with in [13] and therefore we
retrieve the same results:

(i) local finiteness of the (n − 1)-dimensional Minkowski content of the free boundary (and

thus of its Hausdorff measure),
(ii) Hn−1-rectifiability of the free boundary,

(iii) classification of the frequencies up to a set of Hausdorff dimension at most (n − 2) and

classification of the blow-ups at Hn−1 almost every free boundary point.
Instead, if ϕ ∈ Ck+1(Rn), k ≥ 2, similar results hold only for a distinguished subset of points

in the free boundary where the order of contact of the solution and the obstacle is less than

k + 1.

1. Introduction

Quasi-geostrophic flow models [9], anomalous diffusion in disordered media [4] and American
options with jump processes [10] are some instances of constrained variational problems involving
free boundaries for thin obstacle problems. In this paper we analyze the fractional obstacle problem
with exponent s ∈ (0, 1), a problem that can be stated in several ways, each motivated by a different
application and suited to be studied with different techniques. We follow here the variational
approach: given ϕ : Rn → R smooth and decaying sufficiently fast at infinity, one seeks for
minimizers of the Hs-seminorm

[v]2Hs :=

ˆ
Rn×Rn

|v(x′)− v(y′)|2

|x′ − y′|n+2s
dx′ dy′

s ∈ (0, 1), on the cone

A :=
{
v ∈ Ḣs(Rn) : v(x′) ≥ ϕ(x′)

}
,

where Ḣs(Rn) is the homogeneous space defined as the closure in the Hs seminorm of C∞c (Rn)
functions. Existence and uniqueness of a minimizer w follow for all s ∈ (0, 1) if n ≥ 2 (the case
n = 1 requires some care see [21] and [3]). In addition, defining the fractional laplacian as

(−∆)sv(x′) := cn,s P.V.

ˆ
Rn

v(x′)− v(y′)

|x′ − y′|n+2s
dy′,

for v ∈ Ḣs(Rn), the Euler-Lagrange conditions characterize w as a distributional solution to the
system of inequalities 

w(x′) ≥ ϕ(x′) for x′ ∈ Rn,
(−∆)sw(x′) = 0 for w(x′) > ϕ(x′),

(−∆)sw(x′) ≥ 0 for x′ ∈ Rn .
(1.1)
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The most challenging regularity issues are then that of w itself and that of its free boundary

Γϕ(w) := ∂
{
x′ ∈ Rn : w(x′) = ϕ(x′)

}
.

To investigate the fine properties of the solution w of (1.1) the groundbreaking paper by Caffarelli
and Silvestre [7] introduces an equivalent local counterpart for the fractional obstacle problem in
terms of the so called a-harmonic extension argument. Indeed, it is inspired by the case s = 1/2,
in which it is nothing but the harmonic extension problem. More precisely, setting a = 1− 2s for
s ∈ (0, 1) and m = |xn+1|aLn+1, it turns out that any function w satisfying (1.1) is the trace of a
function u ∈ H1(Rn+1,dm) solving

u(x′, 0) ≥ ϕ for (x′, 0) ∈ Rn × {0},
u(x′, xn+1) = u(x′,−xn+1) for x = (x′, xn+1) ∈ Rn+1,

div
(
|xn+1|a∇u(x)

)
= 0 for x ∈ Rn+1 \

{
(x′, 0) : u(x′, 0) = ϕ(x′)

}
,

div
(
|xn+1|a∇u(x)

)
≤ 0 in the sense of distribution in Rn+1.

(1.2)

Note that u is unique minimizer of the Dirichlet energyˆ
Rn+1

|∇ṽ|2|xn+1|adx

on the class Ã :=
{
ṽ ∈ H1(Rn+1,dm) : ṽ(x′, 0) ≥ ϕ(x′)

}
. Viceversa, the trace u(x′, 0) on the

hyperplane {xn+1 = 0} of a solution u to (1.2) is a solution w to (1.1).
One then is interested into regularity issues for u and for the corresponding free boundary

Γϕ(u) (with a slight abuse of notation we use the same symbol as for the analogous set for w):
the topological boundary, in the relative topology of Rn, of the coincidence set of a solution u

Λϕ(u) :=
{

(x′, 0) ∈ Rn+1 : u(x′, 0) = ϕ(x′)
}
.

The locality of the operator

La(v) := div
(
|xn+1|a∇v(x)

)
in (3.1) is the main advantage of the new formulation to perform the analysis of Γϕ(u). Indeed,
being Γϕ(u) = Γϕ(w) it permits the use of monotonicity and almost monotonicity type formulas
analogous to those introduced by Weiss and Monneau for the classical obstacle problem (cf. [5, 6,
22, 18]).

Optimal interior regularity for u has been established Caffarelli, Salsa and Silvestre in [8,
Theoren 6.7 and Corollary 6.8] for any s ∈ (0, 1). The particular case s = 1/2 had been previously
addressed by Athanasopoulos, Caffarelli and Salsa in [1]. Instead, despite all the mentioned
progresses, the current picture for free boundary regularity theory is still incomplete. In this
paper we go further on in this direction and deal with the non-zero obstacle case following the
recent achievements obtained in the zero-obstacle case in [13, 14]. Drawing a parallel with the
theory in the zero-obstacle case, the free boundary Γϕ(u) can be split as a pairwise disjoint union
of sets:

Γϕ(u) = Reg(u) ∪ Sing(u) ∪Other(u), (1.3)

termed in the existing literature as the subset of regular, singular and nonregular/nonsingular
points, respectively. These sets are defined via the infinitesimal behaviour of the rescalings of the
solution itself. More precisely, for x0 ∈ Γϕ(u) a function ϕx0

related to ϕ can be conveniently
defined (cf. (3.46) and (3.48)) in a way that if

ux0,r(y) :=
r
n+a

2

(
u(x0 + r y)− ϕx0

(x0 + r y)
)( ´

∂Br
(u− ϕx0)2 |xn+1|adHn

)1/2
,

then the family of functions {ux0,r}r>0 is pre-compact in H1
loc(Rn+1,dm) (see [8, Section 6]).

The limits are called blowups of u at x0, they are homogeneous solutions of a fractional obstacle
problem with zero obstacle. The set of all such functions is denoted by BU(x0). Their homogeneity
λ(x0) depends only on the base point x0 and not on the extracted subsequence, and it is called
infinitesimal homogeneity or frequency of u at x0. It is indeed the limit value, as the radius
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vanishes, of an Almgren’s type frequency function related to u which turns out to be non decreasing
in the radius. Given this, one defines

Reg(u) := {x ∈ Γϕ(u) : λ(x0) = 1 + s}, Sing(u) := {x ∈ Γϕ(u) : λ(x0) = 2m, m ∈ N},

Other(u) := Γϕ(u) \
(

Reg(u) ∪ Sing(u)
)
.

According to the regularity of ϕ different results are known in literature:

(i) Regular points: in [8] for ϕ ∈ C2,1(Rn) optimal one-sided C1,s regularity of solutions is
established. Moreover, Reg(u) is shown to be locally a C1,α submanifolf of codimension 2
in Rn+1 (non-optimal regularity of the solution had been previously established in [21]);

(ii) Singular points: for ϕ analytic and a = 0 it is proved in [15] that Sing(u) is (n − 1)-
rectifiable. The latter result has been very recently extended to the full range a ∈ (−1, 1)
and to ϕ ∈ Ck+1(Rn), k ≥ 2, in [16]. Furthermore, fine properties of the singular set have
been studied very recently by Fernández-Real and Jhaveri [11].

It is also worth mentioning the paper by Barrios, Figalli and Ros-Oton [3], in which the authors
study the fractional obstacle problem (1.1) with non zero obstacle ϕ having compact support
and satisfying suitable concavity assumptions. Under these assumptions, they are able to fully
characterize the free boundary, showing that Other(u) = ∅ and that at every point of Sing(u) the
blowup is quadratic, i.e. the only admissible value of m is 1. In addition, they are able to show
that the singular set Sing(u) is locally contained in a single C1-regular submanifold.

For ease of expositions we start with the simpler case in which the obstacle function ϕ is analytic,
actually the slightly milder assumption (1.4) below suffices (see Section 3 for related results in the
case ϕ ∈ Ck+1(Rn)). Indeed, after a suitable transformation (see Section 2.1) such a framework
reduces to the zero obstacle case since in this setting ϕ̃ turns out to be exactly the a-harmonic
extension of ϕ. Thus, in view of [13, Theorems 1.1-1.3] we may deduce the following result.

Theorem 1.1. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function
ϕ : Rn → R such that

{ϕ > 0} ⊂⊂ Rn, ϕ is real analytic on {ϕ > 0}. (1.4)

Then,

(i) the free boundary Γϕ(u) has finite (n−1)-dimensional Minkowski content: more precisely,
there exists a constant C > 0 such that

Ln+1
(
Tr(Γϕ(u))

)
≤ C r2 ∀ r ∈ (0, 1), (1.5)

where Tr(Γϕ(u)) := {x ∈ Rn+1 : dist(x,Γ(u)) < r};
(ii) the free boundary Γϕ(u) is (n − 1)-rectifiable, i.e. there exist at most countably many

C1-regular submanifolds Mi ⊂ Rn of dimension n− 1 such that

Hn−1
(
Γϕ(u) \ ∪i∈NMi

)
= 0. (1.6)

Moreover, there exists a subset Σ(u) ⊂ Γϕ(u) with Hausdorff dimension at most n − 2 such that
for every x0 ∈ Γϕ(u) \ Σ(u) the infinitesimal homogeneity λ of u at x0 belongs to {2m, 2m− 1 +
s, 2m+ 2s}m∈N\{0}.

The analysis is more involved in case ϕ is not analytic, since one cannot in principle avoid
contact points of infinite order between the solution and the obstacle, and the free boundary can
be locally an arbitrary compact set K ⊂ Rn (explicit examples are provided in [12]). In view of
this, we follow the existing literature and we consider only those points in the free boundary in
which u has order of contact with ϕ less than k + 1: given u a solution to the fractional obstacle
problem (1.2) and given a constant θ ∈ (0, 1) we set

Γϕ,θ(u) :=
{
x0 ∈ Γϕ(u) : lim inf

r↓0
r−(n+a+2(k+1−θ))Hux0

(r) > 0
}
, (1.7)

where Hux0
is defined in (3.16) and it is related to the L2(∂Br,dm

′) norm of ux0,r (cf. Section 3

for more details). For this subset of points of the free boundary we can still prove some of the
results stated in Theorem 1.1.
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Theorem 1.2. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function
ϕ ∈ Ck+1(Rn), k ≥ 2, and let θ ∈ (0, 1). Then, Γϕ,θ(u) is (n−1)-rectifiable. Moreover, there exists
a subset Σθ(u) ⊂ Γϕ,θ(u) with Hausdorff dimension at most n−2 such that for every x0 ∈ Γϕ,θ(u)\
Σθ(u) the infinitesimal homogeneity λ of u at x0 belongs to {2m, 2m− 1 + s, 2m+ 2s}m∈N\{0}.

2. Analytic obstacles

In this section we deal with analytic obstacles. We report first on some results related to the
Caffarelli-Silvestre a-harmonic extension argument that will be instrumental to reduce the analytic
type fractional obstacle problem to the lower dimensional obstacle problem. We provide then the
proof of Theorem 1.1.

2.1. Extension results. We start off stating a lemma in which it is proved that there exists a
canonical a-harmonic extension of a polynomial which is a polynomial itself (see [16, Lemma 5.2]).
We denote by Pl(Rn) the finite dimensional vector space of homogeneous polynomials of degree
l ∈ N.

Lemma 2.1. For every l ∈ N, there exists a unique linear extension operator El : Pl(Rn) →
Pl(Rn+1) such that for every p ∈Pl(Rn) we have

−div(|xn+1|a∇El[p]) = 0 in D ′(Rn+1),

El[p](x′, 0) = p(x′) for all x′ ∈ Rn,
El[p](x′,−xn+1) = El[p](x′, xn+1) for all x ∈ Rn+1.

Proof. Let p ∈Pl(Rn) and set

El[p](x
′, xn+1) :=

bl/2c∑
j=0

p2j(x
′)x2jn+1,

with p2j+2(x′) = − 1
4(j+1)(j+1−s)∆p2j(x

′) and p0 = p. It is then easy to verify that El satisfies all

the stated properties. �

Remark 2.2. In particular, El is a continuous operator, l ∈ N. We will use in what follows that
there exists a constant C = C(n, l) > 0 such that for every p ∈Pl(Rn) and for every r > 0

‖El[p]‖L∞(Br) ≤ C ‖p‖L∞(Br).

We provide next the main result that reduces locally the analytic case to the zero obstacle case
(cf. [16, Lemma 5.1]).

Lemma 2.3. Let ϕ : Ω → R be analytic, Ω ⊂ Rn open. Then for all K ⊂⊂ Ω× {0} there exists
r > 0 such that, for every x0 ∈ K, there exists a function Ex0

[ϕ] : Br(x0)→ R such that

(i) −div(|xn+1|a∇Ex0 [ϕ]) = 0 in D ′
(
Br(x0)

)
;

(ii) Ex0 [ϕ](x′, 0) = ϕ(x′) ∀ (x′, 0) ∈ Br(x0);
(iii) Ex0 [ϕ] is analytic in Br(x0).

Proof. For every x0 as in the statement, we can locally expand ϕ in power series as ϕ(x′) =∑
α cα(x′ − x0)α. Then, we set Ex0

[ϕ](x) :=
∑
α cαE|α|[pα](x − x0) where pα(x′) := (x′)α. From

the explicit formulas in the proof of Lemma 2.1 it is easily verified that the power series defining
Ex0

[ϕ] is converging in Br(x0) and gives an analytic a-harmonic extension in Br(x0) with r > 0
uniform on compact sets. �

2.2. Proof of Theorem 1.1. Theorem 1.1 follows straightforwardly from [13, Theorems 1.1-1.3].
As explained in the introduction w(x′) = u(x′, 0) solves the fractional obstacle problem (1.1). By
the maximum principle u(x′, 0) > 0 for all x′ ∈ Rn. Therefore, Γϕ(u) ⊂ {ϕ > 0} ⊂⊂ Rn. Let
r > 0 be the radius in Lemma 2.3 corresponding to the compact set Γϕ(u). By compactness we
cover Γϕ(u) with a finite number of balls Br(xi), with xi ∈ Rn × {0}. In each ball Br(xi) we
consider the corresponding function u−Exi [ϕ], with Exi [ϕ] provided by Lemma 2.3, and note that
it solves a zero lower dimensional obstacle problem (1.2). Hence, we can conclude by the quoted
[13, Theorems 1.1-1.3].
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3. Ck+1 obstacles

In this section we deal with the more demanding case of Ck+1 obstacles, k ≥ 2. It is convenient
to reduce the analysis of (1.2) to that of the following localized problem

u(x′, 0) ≥ ϕ(x′) for (x′, 0) ∈ B′R,
u(x′, xn+1) = u(x′,−xn+1) for x = (x′, xn+1) ∈ BR,
div
(
|xn+1|a∇u(x)

)
= 0 for x ∈ BR \

{
(x′, 0) : u(x′, 0) = ϕ(x′)

}
,

div
(
|xn+1|a∇u(x)

)
≤ 0 in D ′(BR) ,

(3.1)

for ϕ ∈ Ck+1(B′R). In what follows, we shall assume that ‖ϕ‖Ck+1(B′R) ≤ 1. This assumption can

be easily matched by a simple scaling argument (cf. the proof of Theorem 1.2).
For any x0 ∈ B′1 we denote by Tk,x0 [ϕ] the Taylor polynomial of ϕ of order k at x0:

Tk,x0
[ϕ](x′) :=

∑
|α|≤k

Dαϕ(x0)

α!
pα(x′ − x0),

where α = (α1, . . . , αn) ∈ Nn, Dα = ∂α1
x1
· · · ∂αnxn , pα(x′) := (x′)α = xα1

1 · · ·xαnn , |α| := α1+ . . .+αn
and α! := α1! · · ·αn!. In what follows we will repeatedly use that (recall ‖ϕ‖Ck+1(B′R) ≤ 1)

|Tk,x0 [ϕ](x′)− ϕ(x′)| ≤ 1

(k + 1)!
|x′ − x0|k+1. (3.2)

Let then E
[
Tk,x0 [ϕ]

]
be the a-harmonic extension of Tk,x0 [ϕ], namely

E
[
Tk,x0 [ϕ]

]
(x) :=

∑
|α|≤k

Dαϕ(x0)

α!
E|α|[pα(· − x0)](x),

where El are the extension operators in Lemma 2.1. By the translation invariance of the operator,
we point out that

E|α|[pα(· − x0)](x) = E|α|[pα](x− x0). (3.3)

Set
ϕx0

(x) := ϕ(x′)− Tk,x0
[ϕ](x′) + E

[
Tk,x0

[ϕ]
]
(x), (3.4)

and
ux0

(x) := u(x)− ϕx0
(x). (3.5)

Recalling that E
[
Tk,x0

[ϕ]
]
(x′, 0) = Tk,x0

[ϕ](x′), then Λϕ(u) = {(x′, 0) ∈ B′1 : ux0
(x′, 0) = 0}, and

thus in particular Γϕ(u) = ∂B′1{(x
′, 0) ∈ B′1 : ux0

(x′, 0) = 0}, where ∂B′1 is the relative boundary
in the hyperplane {xn+1 = 0}. We note that ux0

is not a solution of a fractional obstacle problem
as in (3.1) with null obstacle, but rather of a related obstacle problem with drift as discussed in
what follows (cf. (3.13)).

First, from the regularity assumption on ϕ and Lemma 2.1 we infer that La(ϕx0) is a function
in L1(B1,dm). Indeed, for some C = C(n, a) > 0 and for all x ∈ B1 \B′1 it holds

|La(ϕx0
(x′))| = |div

(
|xn+1|a∇(ϕ− Tk,x0

[ϕ])(x′)
)
|

= |xn+1|a|4(ϕ(x′)− Tk,x0
[ϕ](x′))| ≤ C|xn+1|a|x′ − x0|k−1. (3.6)

In turn, this yields that the distribution La(ux0
) is actually a function in L1(B1,dm) such that

for all x ∈ B1 \B′1
|La(ux0(x))| = |La(ϕx0(x′))| ≤ C|xn+1|a|x′ − x0|k−1 , (3.7)

for some constant C = C(n, a) > 0.
The following result resumes the regularity theory developed by Caffarelli, Salsa and Silvestre

in [8, Proposition 4.3].

Theorem 3.1. Let u be a solution to the fractional obstacle problem (3.1) in B1 then ∂xiu0 ∈
Cs(B1) for i = 1, . . . , n, |xn+1|a∂xn+1

u0 ∈ Cα(B1) for all α ∈ (0, 1−s), and there exists a constant
C3.1 = C3.1(n, a) > 0 such that

‖∇′u0‖Cs(B1/2) + ‖sign(xn+1) |xn+1|a∂xn+1
u0‖Cα(B1/2) ≤ C3.1 ‖u0‖L2(B1,dm), (3.8)
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where ∇′u0 = (∂x1
u0, . . . , ∂xnu0) is the horizontal gradient.

In particular, the function u is analytic in
{
xn+1 > 0

}
(see, e.g., [17]) and the following

boundary conditions holds:

lim
xn+1↓0+

xan+1∂n+1u(x′, xn+1) = 0 for (x′, 0) ∈ B′1 × {0} \ Λϕ(u), (3.9)

lim
xn+1↓0+

xan+1∂n+1u(x′, xn+1) ≤ 0 for (x′, 0) ∈ B′1, (3.10)

(u(x)− ϕ(x′)) div(|xn+1|a∇u(x)) = 0 in D ′(B1). (3.11)

More precisely, the left hand side in (3.11) is a measure supported on B′1. Furthermore, for
Br(x0) ⊂ B1 and x0 ∈ B′1, an integration by parts implies thatˆ

Br(x0)

|∇u|2|xn+1|adx−
ˆ
Br(x0)

|∇ϕx0 |2|xn+1|adx

=

ˆ
Br(x0)

|∇ux0 |2|xn+1|adx+ 2

ˆ
Br(x0)

∇ux0 · ∇ϕx0 |xn+1|adx

=

ˆ
Br(x0)

|∇ux0
|2|xn+1|adx− 2

ˆ
Br(x0)

ux0
La(ϕx0

) dx+ 2

ˆ
∂Br(x0)

ux0
∂νϕx0

|xn+1|adx ,

(3.12)

where in the second equality we have used that E [Tk,x0(ϕ)] is even with respect to the hyperplane
{xn+1 = 0} to deduce that

lim
xn+1→0

∂n+1ϕx0
(x)|xn+1|a = 0.

In particular, since the last addend in (3.12) only depends on the boundary values of ux0 , it follows
that ux0

is a minimizer of the functionalˆ
Br(x0)

|∇v|2|xn+1|adx− 2

ˆ
Br(x0)

vLa(ϕx0
) dx (3.13)

among all functions v ∈ ux0
+H1

0 (Br(x0),dm) and satisfying v(x′, 0) ≥ 0 on B′r(x0). Equivalently,
we will say that ux0

is a local minimizer of the functional in (3.13) subject to null obstacle
conditions.

Remark 3.2. We record here some bounds that shall be employed extensively in what follows. By
using the linearity and continuity of the extension operator Ek (cf. Remark 2.2), together with
estimate (3.2) we get for all z ∈ B1

|ux0(z)− ux1(z)| = |ϕx0(z)− ϕx1(z)| ≤ C
∣∣Tk,x0 [ϕ](z)− Tk,x1 [ϕ](z)

∣∣
≤ C

∣∣ϕ(z)− Tk,x0 [ϕ](z)
∣∣+ C

∣∣ϕ(z)− Tk,x1 [ϕ](z)
∣∣

≤ C (|z − x0|k+1 + |z − x1|k+1) , (3.14)

and ∣∣∇(ux0
(z)− ux1

(z))| =
∣∣∇(ϕx0

(z)− ϕx1
(z))

∣∣ ≤ C∣∣∇(Tk,x0
[ϕ](z)− Tk,x1

[ϕ](z))
∣∣

≤ C
∣∣∇(ϕ(z)− Tk,x0

[ϕ](z))
∣∣+ C

∣∣∇(ϕ(z)− Tk,x1
[ϕ](z))

∣∣
≤ C (|z − x0|k + |z − x1|k) (3.15)

for some constant C = C(n, a, k) > 0.

3.1. A frequency type function. Building upon the approach developed in [13] we consider a
quantity strictly related to Almgren’s frequency function and instrumental for developing the free
boundary analysis in the subsequent sections. Let φ : [0,+∞)→ [0,+∞) be defined by

φ(t) :=


1 for 0 ≤ t ≤ 1

2 ,

2 (1− t) for 1
2 < t ≤ 1,

0 for 1 < t,
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then given the solution u to (3.1), a point x0 ∈ B′1 and the corresponding function ux0
in (3.5),

we define for all 0 < r < 1− |x0|

Iux0 (r) :=
r Gux0 (r)

Hux0
(r)

where

Gux0 (r) := −1

r

ˆ
φ̇
(
|x−x0|
r

)
ux0

(x)∇ux0
(x) · x−x0

|x−x0| |xn+1|a dx,

and

Hux0
(r) := −

ˆ
φ̇
(
|x−x0|
r

)
u2
x0

(x)

|x−x0| |xn+1|a dx. (3.16)

Here φ̇ indicates the derivative of φ. Clearly, Iux0 (r) is well-defined as long as Hux0
(r) > 0, in

what follows when writing Iux0 (r) we shall tacitly assume that the latter condition is satisfied.
For later convenience, we introduce also the notation

Dux0
(r) :=

ˆ
φ
( |x−x0|

r

)
|∇ux0

(x)|2 |xn+1|adx,

and

Eux0 (r) :=

ˆ
−φ̇
(
|x−x0|
r

)
|x−x0|
r2

(
∇ux0(x) · x−x0

|x−x0|

)2
|xn+1|a dx.

In particular, note that for all r > 0

Hux0
(r) Eux0 (r)−G2

ux0
(r) ≥ 0 (3.17)

by Cauchy-Schwarz inequality.

Remark 3.3. In case ϕ = 0, then ux0
= u for all x0 ∈ B′1 and Gu = Du. Thus, Iux0 boils down to

the variant of Almgren’s frequency function used in [13].

Remark 3.4. If u is a solution to the fractional obstacle problem (3.1), then for every c > 0,
x0 ∈ B′1 and r > 0 such that Br(x0) ⊂ B1, the function û(y) := c u(x0 + r y) solves (3.1) on
B1 with obstacle function ϕ̂(y) := c ϕ(x0 + r y). Therefore, if x1 = x0 + ry1 ∈ B′1 we have
Tk,y1 [ϕ̂](y′) = c Tk,x1 [ϕ](x0 + ry′) and ûy1(y) = c ux1(x0 + ry). Thus, Iûy1 (ρ) = Iux1 (ρ r) for every

ρ ∈ (0, 1).
In particular, this shows that the frequency function is scaling invariant, in the sequel we will

use this property repeatedly.

3.2. Almost monotonicity of Iux0 at distinguished points. In this subsection we prove the
quais-monotonicity of Iux0 for a suitable subset of points of the free boundary. We prove first

some useful identities in a generic point x0 of B′1.

Lemma 3.5. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then, for all
x0 ∈ B′1 and t ∈ (0, 1− |x0|), it holds

Dux0
(t) = Gux0 (t)−

ˆ
φ
( |x−x0|

t

)
ux0(x)La(ux0(x))dx (3.18)

d

dt

(
Hux0

(t)
)

=
n+ a

t
Hux0

(t) + 2Gux0 (t) (3.19)

d

dt

(
Dux0

(t)
)

=
n+ a− 1

t
Dux0

(t) + 2Eux0 (t)− 2

t

ˆ
φ
( |x−x0|

t

)
∇ux0

(x) · (x− x0)La
(
ux0

(x)
)
dx.

(3.20)

Remark 3.6. Note that the last addends in (3.18) and (3.20) are well-defined thanks to (3.7).

Proof. To show (3.18), (3.19) and (3.20), we assume without loss of generality that x0 = 0.

For (3.18) we consider the vector field V (x) := φ
( |x|
t

)
ux0

(x)∇ux0
(x) |xn+1|a; clearly V has

compact support and V ∈ C∞(Rn+1 \B′1,Rn) by Theorem 3.1. Moreover, for xn+1 6= 0

V (x) · en+1 = φ
( |x|
t

)
ux0

(x) ∂n+1ux0
(x) |xn+1|a ,
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thus, limy↓(x′,0) V (y) · en+1 = 0. Indeed, if (x′, 0) ∈ Λϕ(u) it suffices to take into account the

one-sided C1 regularity of u in Theorem 3.1 and the Ck+1 regularity of ϕ to conclude. Instead, if
(x′, 0) /∈ Λϕ(u) we use (3.9) and that E [Tk,x0

(ϕ)] is even with respect to the hyperplane {xn+1 = 0}
to conclude. Thus the distributional divergence of V is the L1 function given by

divV (x) = φ
( |x|
t

)
|∇ux0

(x)|2 |xn+1|a + φ̇
( |x|
t

)
ux0

(x)∇ux0
(x) · x

t |x| |xn+1|a

+ φ
( |x|
t

)
ux0

(x)La(ux0
(x)).

Therefore, (3.18) follows from the divergence theorem by taking into account that V is compactly
supported.

Next (3.19) is a consequence of (3.18) and the direct computation

d

dt

(
Hux0

(t)
)

=
d

dt

(
−tn+a

ˆ
φ̇(|y|)

u2x0
(t y)

|y|
|yn+1|a dy

)
=
n+ a

t
Hux0

(t)− 2 tn+a
ˆ
φ̇(|y|)ux0(t y)∇ux0(t y) · y

|y|
|yn+1|a dy

=
n+ a

t
Hux0

(t) + 2Gux0 (t).

Finally, to prove (3.20) we consider the compactly supported vector field

W (x) =

(
|∇ux0

(x)|2

2
x− (∇ux0

(x) · x)∇ux0
(x)

)
φ
( |x|
t

)
|xn+1|a.

By Theorem 3.1 and Lemma 2.1 we have that W ∈ C∞(Rn+1 \ Rn,Rn). Moreover, conditions
(3.9)-(3.11) imply that limy↓(x′,0)W (y) · en+1 = 0. Thus divW has no singular part in B′1, and
we can compute pointwise the distributional divergence as follows for xn+1 6= 0

divW (x) =φ̇
( |x|
t

)
x
t |x| ·

(
|∇ux0 (x)|

2

2 x− (∇ux0
(x) · x)∇ux0

(x)
)
|xn+1|a

+ φ
( |x|
t

)
n+a−1

2 |∇ux0
(x)|2|xn+1|a − φ

( |x|
t

)
(∇ux0

(x) · x)La(ux0
(x)).

Therefore, we infer that

0 =

ˆ
divW (x) dx =

ˆ
φ̇
(
|x|
t

)
|x|
2 t |∇ux0(x)|2|xn+1|a dx+ t Eux0 (t) + n+a−1

2 Dux0
(t)

−
ˆ
φ
( |x|
t

)(
∇ux0

(x) · x
)
La
(
ux0

(x)
)
dx,

and we conclude (3.20) by direct differentiation since

d

dt

(
Dux0

(t)
)

= −
ˆ
φ̇
(
|x|
t

)
|x|
t2 |∇ux0(x)|2|xn+1|a dx. �

As a consequence we derive a first monotonicity formula for Hux0
in B1.

Corollary 3.7. Let u be a solution to the fractional obstacle problem (3.1). Then, for all x0 ∈ B′1
and 0 < r0 < r1 < 1− |x0| such that Hux0

(t) > 0 for all t ∈ (r0, r1), we have

Hux0
(r1)

rn+a1

=
Hux0

(r0)

rn+a0

e
2
´ r1
r0

Iux0
(t)

t dt
. (3.21)

In particular, if A1 ≤ Iux0 (t) ≤ A2 for every t ∈ (r0, r1), then

(r0, r1) 3 r 7→
Hux0

(r)

rn+a+2A2
is monotone decreasing, (3.22)

(r0, r1) 3 r 7→
Hux0

(r)

rn+a+2A1
is monotone increasing. (3.23)

Moreover, ˆ
Br(x0)

|ux0 |2|xn+1|a dx ≤ r Hux0
(r). (3.24)



THE FREE BOUNDARY OF THE FRACTIONAL OBSTACLE PROBLEM 9

Proof. The proof of (3.21) (and hence of (3.22) and (3.23)) follows from the differential equation
in (3.19). The proof of (3.24) is a simple consequence of a dyadic integration argument:ˆ

Br(x0)

|ux0
|2|xn+1|a dx =

∑
j∈N

ˆ
B
r/2j
\B

r/2j+1 (x0)

|ux0
|2|xn+1|a dx

≤
∑
j∈N

r

2j
Hux0

(
r/2j
)
≤ r Hux0

(r),

where in the last inequality we used that Hux0
(s) ≤ Hux0

(r) for s ≤ r by (3.23). �

We establish next an auxiliary lemma containing useful bounds for some quantities related to
the L2-norm of ux0

, for points x0 in the contact set.

Lemma 3.8. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then, there is
a positive constant C3.8 = C3.8(n, a) > 0 such that for every point x0 ∈ Λϕ(u) we have for all
r ∈ (0, 1− |x0|)

Hux0
(r) ≤ C3.8

(
r Dux0

(r) + rn+a+2(k+1)
)
, (3.25)ˆ

φ
( |x−x0|

r

)
|ux0(x)|2 |xn+1|adx ≤ C3.8

(
r2Dux0

(r) + rn+a+1+2(k+1)
)
, (3.26)

and ˆ
Br(x0)\B r

2
(x0)

|ux0
(x)|2 |xn+1|adx ≤ C3.8

(
r2Dux0

(r) + rn+a+1+2(k+1)
)
. (3.27)

Proof. By the co-area formula for Lipschitz functions we check that

Hux0
(r) = 2

ˆ r

r
2

dt

t

ˆ
∂Bt(x0)

|ux0(x)|2 |xn+1|a dHn(x), (3.28)

and

Dux0
(r) =

ˆ
B r

2
(x0)

|∇ux0
(x)|2|xn+1|a dx

+
2

r

ˆ r

r
2

dt

ˆ
∂Bt(x0)

(r − t)|∇ux0
(x)|2 |xn+1|a dHn(x).

Therefore, an integration by parts gives

Dux0
(r) =

2

r

ˆ r

r
2

dt

ˆ
Bt(x0)

|∇ux0
(x)|2 |xn+1|a dx. (3.29)

Analogously, we getˆ
φ
( |x−x0|

r

)
|ux0

(x)|2 |xn+1|adx =
2

r

ˆ r

r
2

dt

ˆ
Bt(x0)

|ux0
(x)|2 |xn+1|a dx. (3.30)

By (3.7), as x0 ∈ Λϕ(u), [8, Lemma 2.13] and [16, Lemma 6.3] yield the Poincaré inequality

1

t

ˆ
∂Bt(x0)

|ux0(x)|2 |xn+1|a dHn(x) ≤ C
ˆ
Bt(x0)

|∇ux0(x)|2 |xn+1|a dx+ Ctn+a−1+2(k+1), (3.31)

with C = C(n, a) > 0. Integrating the latter inequality we find (3.25). Instead, by first multiplying
formula (3.31) by t and then integrating over (r/2, r), we concludeˆ

Br(x0)

|ux0(x)|2 |xn+1|a dHn(x) ≤ C r2
ˆ
Br(x0)

|∇ux0(x)|2 |xn+1|a dx+ Crn+a+1+2(k+1).

Thus, (3.26) and (3.27) follow directly. �

Next we show an explicit expression for the radial derivative of Iux0 at all points x0 ∈ B′1. We

follow here [13, Proposition 2.7].



10 M. FOCARDI AND E. SPADARO

Proposition 3.9. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then, if
x0 ∈ B′1 is such that Hux0

(t) > 0 for all t ∈ [r0, r1], we have

Iux0 (r1)− Iux0 (r0) =

ˆ r1

r0

( 2 t

H2
ux0

(t)

(
Hux0

(t) Eux0 (t)−G2
ux0

(t)
)

+Rux0 (t)
)

dt (3.32)

for 0 < r0 < r1 < 1− |x0|, with

|Rux0 (t)| ≤ C3.9
tn+a+2k+1

Hux0
(t)

(( Dux0
(t)

tn+a+2k+1

)1/2

+ 1
)

(3.33)

and C3.9 = C3.9(n, a) > 0.

Proof. It is not restrictive to assume x0 = 0. We use the identities in (3.18), (3.19) and (3.20) to
compute (the lenghty details are left to the reader)

d

dt

(
Iux0 (t)

)
= Iux0 (t)

(1

t
+

d
dt

(
Gux0 (t)

)
Gux0 (t)

−
d
dt

(
Hux0

(t)
)

Hux0
(t)

)
= 2Iux0 (t)

(Eux0 (t)

Gux0 (t)
−
Gux0 (t)

Hux0
(t)

)
+Rux0 (t),

where

Rux0 (t) := − 1

Hux0
(t)

ˆ
φ
( |x|
t

)(
(n+ a− 1)ux0

(x) + 2(∇ux0
(x) · x)

)
La(ux0

(x))dx

+
1

t

ˆ
φ̇
(
|x|
t

)
|x|u(x)La(ux0(x))dx .

From this we conclude (3.32) straightforwardly.
For (3.33), we estimate separately each term appearing in the integral defining Rux0 (t). We

start with∣∣∣∣ˆ φ
( |x|
t

)
ux0

(x)La(ux0
(x))dx

∣∣∣∣ (3.7)≤ C

∣∣∣∣ˆ φ
( |x|
t

)
|ux0

(x)||x′|k−1|xn+1|adx

∣∣∣∣
≤ Ctk−1

(ˆ
Bt

|xn+1|adx

)1/2(ˆ
φ
( |x|
t

)
|ux0(x)|2|xn+1|adx

)1/2

≤ Ct
n+a+1

2 +k−1
(ˆ

φ
( |x|
t

)
|ux0

(x)|2|xn+1|adx

)1/2

(3.26)

≤ Ct
n+a−1

2 +k+1
(
D

1/2
ux0

(t) + t
n+a−1

2 +k+1
)
, (3.34)

with C3.34 = C3.34(n, a) > 0. Arguing similarly we infer∣∣∣∣ˆ φ
( |x|
t

)
(∇ux0

(x) · x)La(ux0
(x))dx

∣∣∣∣ ≤ tˆ φ
( |x|
t

)
|∇ux0

(x)||La(ux0
(x))|dx

(3.7)

≤ C tk
ˆ
φ
( |x|
t

)
|∇ux0(x)||xn+1|adx ≤ Ctn+a−1

2 +k+1D
1/2
ux0

(t), (3.35)

and ∣∣∣∣1t
ˆ
φ̇
(
|x|
t

)
|x|ux0(x)La(ux0(x))dx

∣∣∣∣ (3.7)≤ C tk−1
ˆ
Bt\Bt/2

|ux0(x)||xn+1|adx

(3.27)

≤ C t
n+a−1

2 +k+1
(
D

1/2
ux0

(t) + t
n+a−1

2 +k+1
)
. (3.36)

Therefore, (3.33) follows at once from (3.34)-(3.36). �
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Estimate (3.33) turns out to be useful to analyze the subsets of points Γϕ,θ(u) of Γϕ(u), for
every θ ∈ (0, 1) (cf. (1.7)). With fixed θ ∈ (0, 1), we then look at points of the free boundary in
the subset

Zϕ,θ,δ(u) :=
{
x0 ∈ Γϕ(u) ∩B1/2 : Hux0

(r) > δ rn+a+2(k+1−θ) ∀ r ∈ (0, 1/2)
}
, (3.37)

where δ > 0 is any.

Remark 3.10. Note that Zϕ,θ,δ(u) ⊆ Zϕ,θ,δ′(u) if δ′ ≤ δ. Hence, in what follows it is enough to
consider the values of δ small enough.

Proposition 3.11. For every δ > 0, there exist C3.11, %3.11 > 0 such that for every x0 ∈ Zϕ,θ,δ(u),

the function (0, %3.11] 3 r 7→ eC3.11r
θ

Iux0 (r) is nondecreasing. In particular, the ensuing limits exist
finite and are equal

lim
r↓0

rDux0
(r)

Hux0
(r)

= lim
r↓0

Iux0 (r) =: Iux0 (0+). (3.38)

Proof. Since x0 ∈ Zϕ,θ,δ(u), formula (3.25) yields for r ∈ (0, 1/2)

C3.8Dux0
(r) ≥ δrn+a−1+2(k+1−θ) − C3.8r

n+a−1+2(k+1) ,

therefore, for %3.11 sufficiently small, we have for all r ∈ (0, %3.11]

Dux0
(r) ≥ Crn+a−1+2(k+1−θ). (3.39)

In addition, from (3.18) and (3.34) we get for all r ∈ (0, %3.11], if %3.11 small enough,

|Gux0 (r)−Dux0
(r)| (3.18)=

∣∣∣∣ˆ φ
( |x|
r

)
u(x)La(u(x))dx

∣∣∣∣
(3.34)

≤ C3.34Dux0
(r)
(rn+a+2k+1

Dux0
(r)

+
(rn+a+2k+1

Dux0
(r)

)1/2)
(3.39)

≤ CDux0
(r)
(

2Cr2θ +
(
2Cr2θ

)1/2) ≤ CrθDux0
(r). (3.40)

Therefore, from (3.33), if %3.11 is sufficiently small, we get for all r ∈ (0, %3.11],

|Rux0 (r)| ≤ C3.9 Iux0 (r)
rn+a+2k

Gux0 (r)

(( Dux0
(r)

rn+a+2k+1

)1/2

+ 1
)

(3.40)

≤ C
Iux0 (r)

r

((rn+a+2k+1

Dux0
(r)

)1/2

+
rn+a+2k+1

Dux0
(r)

) (3.39)

≤ C rθ−1 Iux0 (r). (3.41)

Hence, from (3.17), (3.32) and (3.41) we find

d

dr

(
Iux0 (r)

)
≥ −C rθ−1Iux0 (r), (3.42)

and the monotonicity of (0, %3.11] 3 r 7→ eC3.11r
θ

Iux0 (r) follows by direct integration. In addition,

we also infer (3.38), because from (3.40) for all r ∈ (0, %3.11] we have

(1− Crθ)
rDux0

(r)

Hux0
(r)
≤ Iux0 (r) ≤ (1 + Crθ)

rDux0
(r)

Hux0
(r)

. (3.43)

�

Remark 3.12. The monotonicity for the truncated Almgren’s frequency function

r(1 + Crθ)
d

dr
log max

{
Hux0

(r), rn+a+2(k+1−θ)}
proved in [8] and [16] is essentially equivalent to Proposition 3.11.

We derive next an additive quasi-monotonicity formula for the frequency.
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Corollary 3.13. For every A, δ > 0, there exist C3.13, %3.13 > 0 with this property: if x0 ∈
Zϕ,θ,δ(u) and Iux0 (%3.13) ≤ A, then for all Λ ≥ AC3.13 the function

(0, %3.13] 3 r 7→ Iux0 (r) + Λ rθ is nondecreasing. (3.44)

Proof. Under the standing assumptions, the quasi-monotonicity of Iux0 and (3.42) yield that

d

dr

(
Iux0 (r)

)
≥ −CeC3.11 Arθ−1,

for r sufficiently small. Hence, we conclude (3.44) at once by integration. �

3.3. Lower bound on the frequency and compactness. We first show that the frequency of
a solution u to (3.1) at points in Zϕ,θ,δ(u) is bounded from below by a universal constant.

Lemma 3.14. For every δ > 0 there exists %3.14 > 0 such that, for all x0 ∈ Zϕ,θ,δ(u) and
r ∈ (0, %3.14],

Iux0 (r) ≥ 1

2C3.8
. (3.45)

Proof. In view of (3.25) and since x0 ∈ Zϕ,θ,δ(u), we have for all r sufficiently small,

1

C3.8
≤
rDux0

(r)

Hux0
(r)

+
r2θ

δ
.

Inequality (3.45) is a straightforward consequence of the latter estimate provided that %3.14 is
sufficiently small. �

For the free boundary analysis developed in [13] it is mandatory to consider the nodal set of a
solution. In the current framework, the natural subsitute for the nodal set is given by

Nϕ(u) :=
{

(x′, 0) ∈ B′1 : u(x′, 0)− ϕ(x′) = |∇′
(
u(x′, 0)− ϕ(x′)

)
| = lim

y↓0+
ta∂n+1u(x′, y) = 0

}
.

Notice that Γϕ(u) ⊆ Nϕ(u) ⊆ Λϕ(u) (the first inclusion is a consequence of (3.9)).
We can then give the following compactness result. For u : B1 → R solution of (3.1) and

x0 ∈ B′1 we introduce the rescalings

ux0,r(y) :=
r
n+a

2 ux0
(x0 + ry)

H
1/2
ux0

(r)
∀ r ∈ (0, 1− |x0|), ∀ y ∈ B 1−|x0|

r

. (3.46)

Note that ux0,r is a minimizer of the functionalˆ
B1

|∇v|2|xn+1|adx− 2

ˆ
B1

vLa(ϕx0,r) dx (3.47)

with obstacle function

ϕx0,r(y) :=
r
n+a

2 ϕx0(x0 + ry)

H
1/2
ux0

(r)
, (3.48)

among all functions v ∈ ux0,r +H1
0 (B1,dm) satisfying v(x′, 0) ≥ 0 on B′1.

Corollary 3.15. Let δ > 0 be given. Let (ul)l∈N be a sequence of solutions to the fractional obstacle
problem (3.1) in B1 with obstacle functions ϕl equi-bounded in Ck+1(B1), and let xl ∈ Zϕl,θ,δ(ul)
be such that supl I(ul)xl (%l) < +∞, for some %l ↓ 0.

Then, there exist a subsequence lj ↑ ∞ and a solution v∞ to the fractional obstacle problem
(3.1) in B1 with null obstacle function, such that on setting vj := (ulj )xlj ,%lj we have

vj → v∞ in H1(B1,dm), (3.49)

vj → v∞ in Cαloc(B1), ∀ α < min{1, 2s} (3.50)

∇′vj → ∇′v∞ in Cαloc(B1), ∀ α < s, (3.51)

sign(xn+1) |xn+1|a∂xn+1vj → sign(xn+1) |xn+1|a∂xn+1v∞ in Cαloc(B1), ∀ α < 1− s. (3.52)
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Proof. By taking into account inequality (3.43) in Proposition 3.11 we get for l large

%lD(ul)xl
(%l)

H(ul)xl
(%l)

≤ (1 + C‖ϕlj‖Ck+1(B′1)
%θl )I(ul)xl (%l).

In particular, we infer that suplD(ul)xl,%l
(1) <∞. Thus, a subsequence vj := (ulj )xlj ,%lj converges

weakly H1(B1,dm) to some function v∞. Moreover, vj is a local minimizer of

Fj(v) :=

ˆ
B1

|∇v|2|yn+1|ady − 2

ˆ
B1

vLa
(
(ϕlj )xlj ,%lj

)
dy

among all functions v ∈ vj +H1
0 (B1,dm) satisfying v(x′, 0) ≥ 0 on B′1 (cf. (3.46)-(3.47)).

By taking into account that xlj ∈ Zϕlj ,θ,δ
(ulj ), inequality (3.6) implies that for some constant

C = C(n, a, θ) > 0 and for all y ∈ B1 \B′1

|
(
La(ϕlj )xlj ,%lj

)
(y)| ≤ C

δ1/2
‖ϕlj‖Ck+1(B′1)

%θlj |yn+1|a. (3.53)

Therefore, one can easily show that the sequence (Fj)j Γ(L2(B1,dm))-converges to the functional
F∞ : L2(B1,dm)→ [0,+∞] defined by

F∞(v) :=

ˆ
B1

|∇v|2|yn+1|ady

if v ∈ v∞ + H1
0 (B1,dm) with v(x′, 0) ≥ 0 on B′1, and +∞ otherwise on L2(B1,dm). In addition,

being the Fj ’s equicoercive in L2(B1,dm), Fj(vj) → F∞(v∞), so that by (3.53) the convergence
of (vj)j to v∞ is actually strong H1(B1,dm).

Items (3.50)-(3.52) are then a straightforward consequence of Theorem 3.1 and (3.53) (cf. the
arguments in [8, Lemma 6.2]). �

A sharp lower bound on the frequency then follows.

Corollary 3.16. Let δ > 0. If x0 ∈ Zϕ,θ,δ(u), then

Iux0 (0+) ≥ 1 + s . (3.54)

Proof. Note that Iux0 (0+) = limr↓0 Iux0 (r) = limr↓0 Iux0,r (1) = Iv∞(1), for some v∞ homoge-

neous solution to the fractional obstacle problem (3.1) with null obstacle function provided by
Corollary 3.15. Thus, we conclude (3.54) by [8, Proposition 5.1] (see also [13, Corollary 2.12]). �

4. Main estimates on the frequency

In this section we prove the principal estimates on the frequency that we are going to exploit in
the sequel. We start with an elementary lemma. Recall that all obstacles functions ϕ are assumed
to satisfy the normalization condition ‖ϕ‖Ck+1(B′1)

≤ 1.

Lemma 4.1. Let A, δ > 0. Then, there exist C4.1, %4.1 > 0 such that, if u is a solution of to the
fractional obstacle problem (3.1) in B1, with 0 ∈ Zϕ,θ,δ(u) and Iu0

(2%) ≤ A, % ≤ %4.1, then for
every x ∈ B′%/2

1

C4.1
≤ Hux(%)

Hu0(%)
≤ C4.1 and

1

C4.1
≤ Dux(%)

Du0(%)
≤ C4.1, (4.1)∣∣∣Iu0

(%)− Iux(%)
∣∣∣ ≤ C4.1 . (4.2)

Remark 4.2. Note that as a byproduct of the first estimate in (4.1) in Lemma 4.1 frequencies at
the scale % are well-defined at every point x ∈ B′%/2, recalling that 0 ∈ Zϕ,θ,δ(u).

Proof. In order to prove (4.1), we argue by contradiction: we can assume that there exist A, δ > 0
and solutions uj to the fractional obstacle problem with obstacles ϕj , ‖ϕj‖Ck+1(B′1)

≤ 1, with

0 ∈ Zϕj ,θ,δ(uj), such that I(uj)0(2%j) ≤ A, for some %j ↓ 0, and there exist points xj ∈ B′%j/2
contradicting one of the sets of inequalities in (4.1).
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In particular, by almost monotonicity of the frequency function (cf. Proposition 3.11) and the

lower bound on the frequency (cf. Corollary 3.16) we infer that 1 + s ≤ I(uj)0(t) ≤ AeC3.11(2%j)
θ ≤

AeC3.11 =: A′ for all t ∈ (0, 2%j ]. By Corollary 3.15, up to a subsequence, vj := (uj)0,%j converges

strongly in H1(B2,dm) to a function u∞ solution of the fractional obstacle problem in B2 with
zero obstacle function. We assume in addition that %−1j xj → x∞ ∈ B̄′1/2.

To prove the first set of inequalities in (4.1), we compute

H(uj)xj
(%j)

H(uj)0(%j)
=

2%n+aj

H(uj)0(%j)

ˆ
B1\B1/2

(uj)
2
xj (xj + %jx)

|xn+1|a

|x|
dx

=
2%n+aj

H(uj)0(%j)

ˆ
B1\B1/2

[
uj(xj + %jx)− (ϕj)xj (xj + %jx

′)
]2 |xn+1|a

|x|
dx

=2

ˆ
B1\B1/2

[
vj(%

−1
j xj + x) +

%
(n + a)/2
j

H
1/2
(uj)0

(%)

(
(ϕj)0(xj + %jx

′)− (ϕj)xj (xj + %jx
′)
)]2 |xn+1|a

|x|
dx .

(4.3)

Moreover, by estimate (3.14) in Remark 3.2 we get for x′ ∈ B′1
|(ϕj)0(xj + %jx

′)− (ϕj)xj (xj + %jx
′)| ≤ C%k+1

j |x′|k+1 . (4.4)

Therefore, recalling that 0 ∈ Zϕj ,θ,δ(uj), from (4.4) we infer

%n+aj

H(uj)0(%j)

ˆ
B1\B 1

2

(
(ϕj)0(xj + %jx

′)− (ϕj)xj (xj + %jx
′)
)2 |xn+1|a

|x|
dx ≤ C

δ
%2θj . (4.5)

Since %j ↓ 0, by contradiction limj

H(uj)xj
(%j)

H(uj)0
(%j)

∈ {0,∞}. Moreover, by (4.3) and (4.5), by the

strong L2(B2,dm) and local uniform convergence on B2 of vj → v∞ we conclude that,

2

ˆ
B1(x∞)\B1/2(x∞)

v2∞(y)
|yn+1|a

|y − x∞|
dy = 2 lim

j

ˆ
B1(%

−1
j xj)\B1/2(%

−1
j xj)

v2j (y)
|yn+1|a

|y − %−1j xj |
dy

= 2 lim
j

ˆ
B1\B1/2

v2j (%−1j xj + x)
|xn+1|a

|x|
dx = lim

j

H(uj)xj
(%j)

H(uj)0(%j)
.

Being the left hand side finite, necessarily

2

ˆ
B1(x∞)\B1/2(x∞)

v2∞(y)
|yn+1|a

|y − x∞|
dx = lim

j

H(uj)xj
(%j)

H(uj)0(%j)
= 0 .

Hence, v∞ ≡ 0 on B1(x∞) \ B1/2(x∞), and thus v∞ ≡ 0 on the whole of B1 by analiticity. A

contradiction to Hv∞(1) = 1 that follows from strong L2(B1,dm) convergence and the equality
Hvj (1) = 1 for all j.

The second set of inequalities in (4.1) is proven by the same argument. Indeed, assuming that

limj

D(uj)xj
(%j)

D(uj)0
(%j)

∈ {0,∞} we have

D(uj)xj
(%j)

D(uj)0(%j)
=

%n+a+1
j

D(uj)0(%j)

ˆ
B1

φ(|x|)|∇
(
uj(xj + %jx)− (ϕj)xj (xj + %jx

′)
)
|2|xn+1|adx ,

and since by (3.15) in Remark 3.2 and by (3.39)

%n+a+1
j

D(uj)0(%j)

ˆ
B1

φ(|x|)|∇
(
(ϕj)0(xj + %jx

′)− (ϕj)xj (xj + %jx
′)
)
|2|xn+1|adx

≤ C
%n+a+1+2k
j

D(uj)0(%j)
≤ C

δ
%2θj ,
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we get (recall %j ↓ 0)

lim
j

D(uj)xj
(%j)

D(uj)0(%j)
= lim

j

1

4I(uj)0(%j)

ˆ
B1

φ(|x|)|∇vj(%−1j xj + x)|2|xn+1|adx.

By the strong convergence of vj to v∞ in H1(B2,dm), we infer that the left hand side is finite and
then actually 0, so that ˆ

B1

φ(|x|)|∇v∞(x∞ + x)|2|xn+1|adx = 0.

Thus, by analiticity v∞ is constant on B1, and we may conclude thatˆ
B1

φ(|x|)|∇v∞(x)|2|xn+1|adx = 0.

The latter equality contradictsˆ
B1

φ(|x|)|∇v∞(x)|2|xn+1|adx ∈ [1 + s,A′] ,

that follows from strong H1(B2,dm) convergence and recalling that Hvj (1) = 1 and 1 + s ≤
Ivj (1) = Dvj (1) ≤ A′.

Finally, (4.2) follows straightforwardly from (4.1):∣∣∣Iux0 (r)− Iux(r)
∣∣∣ =

∣∣∣Dux0
(r)

Hux(r)

( Hux(r)

Hux0
(r)
− Dux(r)

Dux0
(r)

)∣∣∣ (4.1)≤ C. �

We introduce next the following notation for the radial variation of (modified) frequency at a
point x ∈ Zϕ,θ,δ(u) of a solution u in B1: given 0 < r0 < r1 < 1− |x|, we set

∆r1
r0(x) := Iux(r1) + Λ rθ1 −

(
Iux(r0) + Λ rθ0

)
.

Note that, ∆r1
r0(x) ≥ 0 if x ∈ Zϕ,θ,δ(u), if r1 is sufficiently small and if Λ ≥ AC3.13 (cf. Corol-

lary 3.13). We do not indicate the dependence of ∆r1
r0 on Λ since such a parameter will be fixed

appropriately in the next result.

Lemma 4.3. Let A, δ > 0. Then, there exist C4.3 and %4.3 > 0 such that, if x0 ∈ Zϕ,θ,δ(u), and
Iux0 (r1) ≤ A, with 2r1 ≤ %4.3, then for every r0 ∈ (r1/8, r1) we haveˆ
Br1/2(x0)\Br0/2(x0)

(
∇ux0(z) · (z − x0)− Iux0 (r0/2)ux0(z)

)2 |zn+1|a

|z − x0|
dz ≤ C4.3Hux0

(r1) ∆r1
r0/2(x0).

(4.6)

Proof. We start off with the following computation:

2

ˆ
Bt\Bt/2

(
∇ux0(z) · z − Iux0 (t)ux0(z)

)2 |zn+1|a

|z|
dz

=

ˆ
−φ̇
( |z|
t

)(
∇ux0

(z) · z − Iux0 (t)ux0
(z)
)2 |zn+1|a

|z| dz

= t2Eux0 (t)− 2 t Iux0 (t)Gux0 (t) + I2ux0 (t)Hux0
(t)

=
t2

Hux0
(t)

(
Eux0 (t)Hux0

(t)−G2
ux0

(t)
) (3.32)

=
t

2
Hux0

(t)
( d

dt

(
Iux0 (t)

)
−Rux0 (t)

)
. (4.7)

We now use the following integral estimate (whose elementary proof is left to the readers)ˆ
Bρ1\Bρ0

f(z)dz ≤ ρ−10

ˆ 2ρ1

ρ0

ˆ
Bt\Bt/2

f(z) dz dt ∀ 0 < ρ0 ≤ ρ1, (4.8)

f ≥ 0 a measurable function, in order to deduceˆ
Br1/2\Br0/2

(
∇ux0

(z) · z − Iux0 (r0/2)ux0
(z)
)2 |zn+1|a

|z|
dz
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(4.8)

≤ 2

r0

ˆ r1

r0/2

ˆ
Bt\Bt/2

(
∇ux0(z) · z − Iux0 (r0/2)ux0(z)

)2 |zn+1|a

|z|
dz dt

≤ 4

r0

ˆ r1

r0/2

ˆ
Bt\Bt/2

[(
∇ux0

(z) · z − Iux0 (t)ux0
(z)
)2

+
(
Iux0 (t)− Iux0 (r0/2)

)2
u2x0

(z)
] |zn+1|a

|z|
dz dt

(4.7), (3.44)

≤ 2

r0

ˆ r1

r0/2

t

2
Hux0

(t)
( d

dt

(
Iux0 (t)

)
−Rux0 (t)

)
dt

+
16

r0

(
(Iux0 (r1)− Iux0 (r0/2))2 + (AC3.13)2(rθ1 − (r0/2)θ)2

) ˆ r1

r0/2

Hux0
(t) dt

≤ r1
r0
Hux0

(r1)

ˆ r1

r0/2

( d

dt

(
Iux0 (t)

)
−Rux0 (t)

)
dt

+ 16
r1
r0
Hux0

(r1)
(
(Iux0 (r1)− Iux0 (r0/2))2 + (AC3.13)2(rθ1 − (r0/2)θ)2

)
. (4.9)

In the last inequality we have used that, if %4.3 is sufficiently small, then Hux0
(t) ≤ Hux0

(r1) for

all t ≤ r1 by (3.23), and that d
dt

(
Iux0 (t)

)
−Rux0 (t) ≥ 0 thanks to (4.7). Moreover, estimate (3.41)

in Proposition 3.11, Iux0 (r1) ≤ A, the quasi-monotonicity of the frequency function and the choice
2r1 ≤ %4.3 imply ˆ r1

r0/2

|Rux0 (t)|dt ≤ AC3.11e
C3.11r

θ
1
(
rθ1 − (r0/2)θ

)
.

Hence, from (4.9) we conclude thatˆ
Br1/2\Br0/2

(
∇ux0(z) · z − Iux0 (r0/2)ux0(z)

)2 |zn+1|a

|z|
dz

≤ C Hux0
(r1)

(
Iux0 (r1) + Λ rθ1 − Iux0 (r0/2)− Λ(r0/2)θ

)
,

where we used that r1/r0 ≤ 8, and C > 0. �

4.1. Oscillation estimate of the frequency. The following lemma shows how the spatial os-
cillation of the frequency in two nearby points at a given scale is in turn controlled by the radial
variations at comparable scales.

Proposition 4.4. Let A, δ > 0. Then there exist C4.4, %4.4 > 0 such that if 0 ∈ Zϕ,θ,δ(u),
τ ∈ (0, %4.4/144) with Iu0(72τ) ≤ A, then∣∣Iux1 (10τ

)
− Iux2

(
10τ
)∣∣ ≤C4.4

[(
∆24τ

3τ (x1)
)1/2

+
(
∆24τ

3τ (x2)
)1/2]

+ C4.4τ
θ , (4.10)

for every x1, x2 ∈ B′τ ∩Zϕ,θ,δ(u).

Proof. We start off noting that by Remark 4.2 and the choice 144τ < %4.4, if the constant %4.4 is
suitably chosen, a simple scaling argument yields that Iux(10τ) is well-defined for every x ∈ B′77τ/4.

To ease the readability of the proof we divide it in several substeps.

1. With fixed x1, x2 ∈ B′τ ∩Zϕ,θ,δ(u), let xt := tx1 + (1 − t)x2, t ∈ [0, 1], and consider the map
t 7→ Iuxt (10τ). The differentiability of the functions x 7→ Hux(10τ) and x 7→ Dux(10τ) yields that

Iux1 (10τ)− Iux2 (10τ) =

ˆ 1

0

d

dt

(
Iuxt (10τ)

)
dt.

Set e := x1 − x2, then e · en+1 = 0; and set for all y ∈ Rn+1

δt(y) :=
d

dt

(
uxt(xt + y)

)
.

Recalling the very definition of uxt in (3.5), it turns out that

δt(y) = ∂eu(xt + y)− ∂eϕ(xt + y′) + Tk,xt [∂eϕ](xt + y′)− E
[
Tk,xt [∂eϕ]

]
(xt + y), (4.11)

because by linearity (the details of the elementary computations are left to the readers)

d

dt

(
Tk,xt [ϕ](xt + y′)

)
= Tk,xt [∂eϕ](xt + y′)
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and
d

dt

(
E
[
Tk,xt [ϕ]

]
(xt + y)

)
= E

[
Tk,xt [∂eϕ]

]
(xt + y).

Thus from (4.11) by direct calculation it follows that

δt(y)− ∂euxt(xt + y) =
∑
|α|=k

Dα(∂eϕ(xt))
(y′)α

α!
− E

( ∑
|α|=k

Dα(∂eϕ(xt))
pα(· − xt)

α!

)
(y).

Hence we conclude that

|δt(y)− ∂euxt(xt + y)| ≤ C|x1 − x2||y|k , (4.12)

and moreover that

∇δt(y) =
d

dt

(
∇uxt(xt + y)

)
. (4.13)

2. Thanks to the previous formulas, for all λ ∈ R we infer

d

dt

(
Huxt

(10τ)
)

= −2

ˆ
φ̇
( |y|
10τ

)
uxt(xt + y) δt(y) |yn+1|a

|y| dy

= −2

ˆ
φ̇
( |y|
10τ

) (
δt(y)− λuxt(xt + y)

)
uxt(xt + y) |yn+1|a

|y| dy + 2λHuxt
(10τ).

(4.14)

In addition, integrating by parts gives

d

dt

(
Duxt

(10τ)
) (4.13)

= 2

ˆ
φ
( |y|
10τ

)
∇δt(y) · ∇uxt(xt + y) |yn+1|a dy

=− 1

5τ

ˆ
φ̇
( |y|
10τ

)
δt(y)∇uxt(xt + y) · y |yn+1|a

|y|
dy − 2

ˆ
φ
( |y|
10τ

)
δt(y)La(uxt(xt + y)) dy

=− 1

5τ

ˆ
φ̇
( |y|
10τ

) (
δt(y)− λuxt(xt + y)

)
∇uxt(xt + y) · y |yn+1|a

|y| dy

+ 2λGuxt (10τ)− 2

ˆ
φ
( |y|
10τ

)
δt(y)La(uxt(xt + y)) dy . (4.15)

Then, by formula (3.18) together with (4.14) and (4.15), we have that

d

dt

(
Iuxt (10τ)

)
= Iuxt (10τ)

(
d
dt

(
Guxt (10τ)

)
Guxt (10τ)

−
d
dt

(
Huxt

(10τ)
)

Huxt
(10τ)

)

= − 2

Huxt
(10τ)

ˆ
φ̇
( |y|
10τ

) (
δt(y)− λuxt(xt + y)

)(
∇uxt(xt + y) · y − Iuxt (10τ)uxt(xt + y)

) dm(y)
|y|

+
10τ

Huxt
(10τ)

ˆ
φ
( |y|
10τ

) (
uxt(xt + y) d

dt

(
La(uxt(xt + y))

)
− δt(y)La(uxt(xt + y))

)
dy

=: J
(1)
t + J

(2)
t .

In what follows we estimate separately the two terms J
(i)
t .

3. We start off with J
(1)
t . With this aim, first note that Iux0 (10τ) ≤ Ae72θC3.11 by Proposition 3.11

since 144τ < %4.4, provided the latter is small enough. In turn, as xt ∈ B′τ , by (4.2) in Lemma 4.1

we infer that Iuxt (10τ) ≤ C4.1 +Ae72
θC3.11 .

We estimate separately the factors of the integrand defining J
(1)
t (setting xt + y = z). We start

off with the first one as follows∣∣δt(z − xt)− λuxt(z)∣∣ ≤ ∣∣∂euxt(z)− λuxt(z)∣∣+
∣∣δt(z − xt)− ∂euxt(z)∣∣

(4.12)

≤
∣∣∂euxt(z)− λuxt(z)∣∣+ C|x1 − x2||z − xt|k,
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with C = C(n, k) > 0. Moreover, by choosing λ := Iux2 (10τ)− Iux1 (10τ), we infer∣∣∂euxt(z)− λuxt(z)∣∣ =
∣∣∇uxt(z) · e− λuxt(z)∣∣

≤
∣∣∇uxt(z) · (z − x1)− Iux1 (10τ)uxt(z)

∣∣+
∣∣∇uxt(z) · (z − x2)− Iux2 (10τ)uxt(z)

∣∣
≤
∣∣∇ux1

(z) · (z − x1)− Iux1 (10τ)ux1
(z)
∣∣+
∣∣∇ux2

(z) · (z − x2)− Iux2 (10τ)ux2
(z)
∣∣

+
∣∣∇(uxt(z)− ux1

(z)) · (z − x1)− Iux1 (10τ) (uxt(z)− ux1
(z))

∣∣
+
∣∣∇(uxt(z)− ux2

(z)) · (z − x2)− Iux2 (10τ) (uxt(z)− ux2
(z))

∣∣ .
Using inequalities (3.14)-(3.15) in Remark 3.2, we estimate the last two addends as follows∣∣∇(uxt(z)− uxi(z)) · (z − xi)− Iuxi (10τ) (uxt(z)− uxi(z))

∣∣
≤ C τ(|z − xt|k + |z − xi|k) + C (|z − xt|k+1 + |z − xi|k+1) ≤ C τk+1 ,

for some constant C > 0, for i = 1, 2. In the last inequality we have also used that |z− xi| ≤ 12τ ,
being z ∈ B10τ (xt). Therefore, we have∣∣δt(z − xt)− λuxt(z)∣∣ ≤ ∣∣∇ux1

(z) · (z − x1)− Iux1 (10τ)ux1
(z)
∣∣

+
∣∣∇ux2(z) · (z − x2)− Iux2 (10τ)ux2(z)

∣∣+ C τk+1 =: ψ(z). (4.16)

For the second factor, we note that for i = 1, 2

|∇uxt(z) · (z − xt)− Iuxt (10τ)uxt(z)| ≤ |∇uxi(z) · (z − xt)− Iuxi (10τ)uxi(z)|
+ |∇

(
uxt(z)− uxi(z)

)
· (z − xt)|+ |Iuxt (10τ)||uxi(z)− uxt(z)|+ |Iuxi (10τ)− Iuxt (10τ)||uxi(z)|.

To estimate the last three addends we use the very definition of uxt in (3.5), formula (4.2) and
inequalities (3.14)-(3.15) in Remark 3.2, to conclude that for i = 1, 2

|∇(uxt(z)− uxi(z)) · (z − xt)|+ |Iuxi (10τ)||uxt(z)− uxi(z)|+ |Iuxi (10τ)− Iuxt (10τ)||uxi(z)|

≤C (|z − xt|k+1 + |z − xi|k+1) + C |uxi(z)| ≤ C τk+1 + C |uxi(z)|.

In the last inequality we have used again that |z − xi| ≤ 12τ . Therefore, we get

|∇uxt(z) · (z − xt)− Iuxt (10τ)uxt(z)| ≤ ψ(z) + C (|ux1
(z)|+ |ux2

(z)|) . (4.17)

By collecting (4.16) and (4.17), using Hölder inequality we conclude that there exists C > 0

J
(1)
t ≤ C

Huxt
(10τ)

ˆ
−φ̇
( |z−xt|

10τ

)
ψ(z)

(
ψ(z) + |ux1

(z)|+ |ux2
(z)|
) |zn+1|a
|z−xt| dz

≤ C

Huxt
(10τ)

( ˆ
−φ̇
( |z−xt|

10τ

)
ψ2(z) |zn+1|a

|z−xt| dz
)1/2

·

·
(ˆ
−φ̇
( |z−xt|

10τ

)(
ψ2(z) + |ux1(z)|2 + |ux2(z)|2

) |zn+1|a
|z−xt| dz

)1/2

. (4.18)

Clearly, we have thatˆ
−φ̇
( |z−xt|

10τ

)
ψ2(z) |zn+1|a

|z−xt| dz

≤ C
ˆ
B10τ (xt)\B5τ (xt)

|∇ux1
(z) · (z − x1)− Iux1 (10τ)ux1

(z)|2 |zn+1|a

|z − xt|
dz

+ C

ˆ
B10τ (xt)\B5τ (xt)

|∇ux2(z) · (z − x2)− Iux2 (10τ)ux2(z)|2 |zn+1|a

|z − xt|
dz + Cτn+1+a+2(k+1)

≤ C
ˆ
B12τ (x1)\B3τ (x1)

∣∣∇ux1
(z) · (z − x1)− Iux1 (10τ)ux1

(z)
∣∣2 |zn+1|a

|z − x1|
dz

+ C

ˆ
B12τ (x2)\B3τ (x2)

∣∣∇ux2(z) · (z − x2)− Iux2 (10τ)ux2(z)
∣∣2 |zn+1|a

|z − x2|
dz + Cτn+1+a+2(k+1)

≤ CHux1
(24τ)424τ

3τ/2(x1) + CHux2
(24τ)424τ

3τ/2(x2) + Cτn+1+a+2(k+1) .
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In the second inequality, we have used that B10τ (xt) \B5τ (xt) ⊂ B12τ (xi) \B3τ (xi) for t ∈ [0, 1],
and that |z−xi| ≤ 2|z−xt| as z ∈ B10τ (xt)\B5τ (xt), i = 1, 2. Moreover, in the third inequality we
have applied estimate (4.6) in Lemma 4.3 to x1, x2 ∈ B′τ ∩Zϕ,θ,δ(u), with r1 = 24τ and r0 = 3τ .
Furthermore, thanks to Corollary 3.7, we conclude

ˆ
−φ̇
( |z−xt|

10τ

)
ψ2(z) |zn+1|a

|z−xt| dz

≤ C Hux1
(10τ)424τ

3τ/2(x1) + C Hux2
(10τ)424τ

3τ/2(x2) + Cτn+1+a+2(k+1) . (4.19)

In addition, thanks to (3.24) and |z − xt| ≥ 5τ we get

ˆ
−φ̇
( |z−xt|

10τ

)
(|ux1

(z)|2 + |ux2
(z)|2)

|zn+1|a

|z − xt|
dz

≤ 2

5τ

(
‖ux1‖2L2(B10τ )

+ ‖ux2‖2L2(B10τ )

)
≤ 2Hux1

(10τ) + 2Hux2
(10τ) . (4.20)

By collecting (4.18)-(4.20) we conclude that for some C > 0

J
(1)
t ≤ C

Huxt
(10τ)

(
Hux1

(10τ)424τ
3τ/2(x1) +Hux2

(10τ)424τ
3τ/2(x2) + τn+1+a+2(k+1)

)
+

C

Huxt
(10τ)

(
Hux1

(10τ) +Hux2
(10τ)

)1/2

·

·
(
Hux1

(10τ)424τ
3τ/2(x1) +Hux2

(10τ)424τ
3τ/2(x2) + τn+1+a+2(k+1)

)1/2

≤C
(
424τ

3τ/2(x1) +
(
424τ

3τ/2(x1)
)1/2)

+ C
(
424τ

3τ/2(x2) +
(
424τ

3τ/2(x2)
)1/2)

+ C
τ2θ

δ
+ C

τθ

δ1/2
,

where, in the last inequality, we have used Lemma 4.1 and that x1, x2 ∈ B′τ ∩Zϕ,θ,δ(u).
Finally, in view of the very definition of the spatial oscillation of the frequency and Corol-

lary 3.13, we deduce that

J
(1)
t ≤ C

((
424τ

3τ/2(x1)
)1/2

+
(
424τ

3τ/2(x2)
)1/2)

+ C τθ . (4.21)

4. We estimate next J
(2)
t . We start off noting that

d

dt

(
La(uxt(xt + y))

)
= |yn+1|a4

((
Tk,xt [ϕ](xt + y′)− ϕ(xt + y′)

)′)
= |yn+1|a4

(
Tk−1,xt [∂eϕ](xt + y′)− ∂eϕ(xt + y′)

)
≤ C |x1 − x2||yn+1|a|y′|k−2 ≤ C τ |yn+1|a|y′|k−2. (4.22)

Then, arguing as in (4.4), thanks to estimate (3.14) in Remark 3.2, we get as k ≥ 2∣∣∣ˆ φ
( |y|
10τ

) (
uxt(xt + y)

d

dt

(
La(uxt(xt + y))

)
dy
∣∣∣

(4.22)

≤ C τk−1
ˆ
φ
( |y|
10τ

) ∣∣uxt(xt + y)
∣∣|yn+1|a dy

= C τk−1
ˆ
B10τ (xt)

φ
( |z−xt|

10τ

) ∣∣uxt(z)∣∣|zn+1|a dz

(3.14)

≤ C τn+a+2k+1 + C τk−1
ˆ
B40τ (x1)

φ
( |z−x1|

40τ

) ∣∣ux1
(z)
∣∣|zn+1|a dz

(3.26)

≤ C τn+a+2k+1 + C τ
n+a+1

2 +kD
1/2
ux1

(40τ) .
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In addition, (3.7) and (4.12) yield∣∣∣ˆ φ
( |y|
10τ

)
δt(y)La(uxt(xt + y)) dy

∣∣∣
≤ Cτn+a+2k+1 +

∣∣∣ ˆ φ
( |y|
10τ

)
∂euxt(xt + y)La(uxt(xt + y)) dy

∣∣∣
≤ Cτn+a+2k+1 + τk

ˆ
φ
( |y|
10τ

)
|∇uxt(xt + y)| |yn+1|ady

≤ Cτn+a+2k+1 + Cτ
n+a+1

2 +kD
1/2
uxt

(10τ).

Therefore, by applying repeatedly Lemma 4.1, we infer

J
(t)
2 ≤ C

Huxt
(10τ)

(
τn+a+2(k+1) + τ

n+a+1
2 +k+1D

1/2
ux1

(40τ) + τ
n+a+1

2 +k+1D
1/2
uxt

(10τ)
)

(3.37)

≤ C
(τ2θ
δ

+
τθ

δ1/2

(τDux1
(40τ))

Hux1
(10τ)

)1/2

+
τθ

δ1/2
I

1/2
uxt

(10τ)
)

(3.21)

≤ C
(
τ2θ + τθI

1/2
ux1

(40τ) + τθI
1/2
uxt

(10τ)
)
≤ Cτθ , (4.23)

since 144τ < %4.4.

The conclusion in (4.10) follows at once from estimates (4.21) and (4.23). �

5. Proof of the main result

5.1. Mean-flatness. Here we show a control of the Jones’ β-number by the oscillation of the
frequency. Given a Radon measure µ in Rn+1, for every x0 ∈ Rn and for every r > 0, we set

βµ(x, r) := inf
L

(
r−n−1

ˆ
Br(x)

dist2(y,L)dµ(y)
)1/2

, (5.1)

where the infimum is taken among all affine (n− 1)-dimensional planes L ⊂ Rn+1.
If x0 ∈ Rn+1 and r > 0 is such that µ(Br(x0)) > 0, set x̄x0,r the barycenter of µ in Br(x0), i.e.

x̄x0,r :=
1

µ(Br(x0))

ˆ
Br(x0)

xdµ(x) ,

and

Bx0(v, w) :=

ˆ
Br(x0)

(
(x− x̄x0,r) · v

) (
(x− x̄x0,r) · w

)
dµ(x) ∀ v, w ∈ Rn+1.

Then

βµ(x0, r) =
(
r−n−1

(
λn + λn+1

)) 1
2

, (5.2)

where 0 ≤ λn+1 ≤ λn ≤ · · · ≤ λ1 are the eigenvalues of the positive semidefinite bilinear form
Bx0 .

Proposition 5.1. Let A, δ > 0. Then there exist constants C5.1, %5.1 > 0 with this property.
Let 122r ≤ %5.1, 0 ∈ Zϕ,θ,δ(u) and Iu0(66r) ≤ A. Let µ be a finite Borel measure with spt (µ) ⊆
Zϕ,θ,δ(u). Then, for all points p ∈ B′r ∩Zϕ,θ,δ(u), we have

β2
µ(p, r) ≤ C5.1

rn−1

(ˆ
Br(p)

∆24 r
5/2r(x) dµ(x) + r2θµ(Br(p))

)
. (5.3)

Proof. The proof is a variant of the [13, Proposition 4.2], which in turn follows closely the original
arguments by Naber and Valtorta in [19, 20], therefore we only highlight the main differences.

Without loss of generality assume that p ∈ B′r ∩ Γϕ(u) ∩ Zϕ,θ,δ(u) is such that µ(Br(p)) > 0
(otherwise, there is nothing to prove). Let {v1, . . . , vn+1} be any diagonalizing basis for the bilinear
form Bp introduced in § 5.1, with corresponding eigenvalues 0 ≤ λn+1 ≤ λn ≤ · · · ≤ λ1.

Since spt (µ) ⊂ Γϕ(u) ⊂ Rn × {0}, we may assume that vn+1 = en+1, λn+1 = 0, so that

βµ(p, r) = (r−n−1λn)
1/2 by (5.2). Clearly, we may also assume that λn > 0.
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From the very definitions of Bp and of its barycenter we deduce

rn+1β2
µ(p, r)

ˆ
B11r(p)\B10r(p)

|∇′up(z)|2|zn+1|adz

≤ n
ˆ
Br(p)

ˆ
B12r(x)\B9r(x)

(
(z − x) · ∇up(z)− αup(z)

)2|zn+1|adz dµ(x), (5.4)

where

α :=
1

µ(Br)

ˆ
Br(p)

Iux(9r)dµ(x).

Next we estimate the two sides of (5.4).
For estimating the left hand side of (5.4), we can show by compactness that

Dup(12r) ≤ C
ˆ
B11r(p)\B10r(p)

|∇′up(z)|2|zn+1|adz. (5.5)

Here we use the same contradiction argument in [13, Proposition 4.2] using the compactness given
by Corollary 3.15.

For what concerns the right hand side of (5.4) we proceed as follows. By the triangular inequality
we have that

r.h.s. of (5.4)

≤ 4n

ˆ
Br(p)

ˆ
B12r(x)\B9r(x)

(
(z − x) · ∇ux(z)− Iux(9r)ux(z)

)2|zn+1|a dz dµ(x)

+ 4n

ˆ
Br(p)

ˆ
B12r(x)\B9r(x)

(
(z − x) · ∇(ux − up)(z)− α (ux − up)(z)

)2|zn+1|a dz dµ(x)

+ 4n

ˆ
Br(p)

ˆ
B12r(x)\B9r(x)

(
Iux(9r)− α

)2
u2x(z)|zn+1|a dz dµ(x) =: J1 + J2 + J3. (5.6)

The addends J1 and J3 can be treated as in [13, Proposition 4.2]. Indeed, for J1 we use Lemma 4.1
and Lemma 4.3 for a suitable choice of the constants to get

J1 ≤ C r
ˆ
Br(p)

Hux

(
24r
)
∆24r

9r (x) dµ(x) ≤ C rHup(12r)

ˆ
Br(p)

∆24r
9r (x) dµ(x) . (5.7)

For J3 we use Jensen’s inequality, Proposition 4.4, Fubini’s Theorem, inequality (3.24) and (4.1)
in Lemma 4.1 to get

J3 ≤ C rHup(12r)
(ˆ

Br(p)

∆22r
5/2r(x) dµ(x) + r2θµ

(
Br(p)

))
. (5.8)

Note that the extra term with respect to [13, Proposition 4.2] arises as a consequence of the
additional error term in Proposition 4.4.

To estimate J2 in (5.6) we first note that ∇
(
Tk,x[ϕ]

)
= Tk−1,x[∇ϕ]. Then, we use estimates

(3.14) and (3.15) in Remark 3.2 to deduce that for all x ∈ Br(p) and z ∈ B12r(x)\B9r(x) we have(
(z − x) · ∇(ux − up)(z)− α (ux − up)(z)

)2
≤ C

(
r2|∇

(
Tk,x[ϕ](z)− Tk,p[ϕ](z)

)
|2 + α2|Tk,x[ϕ](z)− Tk,p[ϕ]|2(z)

)
≤ C

(
r2(|z − x|2k + |z − p|2k) + α2(|z − x|2(k+1) + |z − p|2(k+1))

)
.

Therefore, integrating the last estimate we conclude that

J2 ≤ C rn+a+2k+3µ(Br(p)) . (5.9)
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We can now collect the estimates (5.5)–(5.9) and use Corollary 3.13 to get

rn+1β2
µ(p, r)Dup(12r)

≤ C rHup(12r)

ˆ
Br(p)

(
∆24r

9r (x) + ∆22r
5/2r(x)

)
dµ(x)

+ C r1+2θµ(Br(p))Hup(12r) + C rn+a+2k+3µ(Br(p))

≤ C rHup(12r)
(ˆ

Br(p)

∆24r
5/2r(x) dµ(x) +

(
r2θ +

rn+a+2(k+1)

Hup(12r)

)
µ(Br(p))

)
.

Finally, by assumption p ∈ Zϕ,θ,δ, then eC3.11‖ϕ‖(12r)θIup(12r) ≥ 1 + s (cf. Proposition 3.11,
Corollary 3.16 and the choice 122r ≤ 1), so that the upper inequality in (3.43) yields (5.3). �

5.2. Rigidity of homogeneous solutions. In this section we extend the results on the rigidity
of almost homogeneous solutions established in [13].

We denote byHλ the space of all non-zero λ-homogeneous solutions to the thin obstacle problem
(3.1) with zero obstacle,

Hλ :=
{
u ∈ H1

loc(Rn+1,dm) \ {0} : u(x) = |x|λ u
(
x/|x|

)
, u|B1

solves (3.1) with ϕ ≡ 0
}
,

and set H :=
⋃
λ≥1+sHλ. The spine S(u) of u ∈ H is the maximal subspace of invariance of u,

S(u) :=
{
y ∈ Rn × {0} : u(x+ y) = u(x) ∀ x ∈ Rn+1

}
.

As observed in [13], the maximal dimension of the spine of a function in H is at most n − 1 and
we set u ∈ Htop if u ∈ H and dimS(u) = n− 1, and Hlow := H \Htop. All functions in Htop are
classified in [13, Lemma 5.3]. Note also that by Caffarelli, Salsa and Silvestre [8]

H1+s ⊆ Htop. (5.10)

We next introduce the notion of almost homogeneous solutions. Given δ > 0 and x0 ∈ Zϕ,θ,δ

we set

Jux0 (t) := eC3.11t
θ

Iux0 (t) ∀ t ∈ (0, %3.11] .

Definition 5.2. Let η > 0 and let u : B1 → R be a solution to thin obstacle problem (3.1) with
obstacle ϕ (as usual ‖ϕ‖Ck+1(B′1)

≤ 1). Assume that 0 ∈ Zϕ,θ,δ and % ≤ %3.11, u is called η-almost
homogeneous in B% if

Ju0
(%/2)− Ju0(%/4) ≤ η.

The following lemma justifies this terminology and it is the analog of [13, Lemma 5.5].

Lemma 5.3. Let ε, A > 0. There exists η5.3 > 0 with the following property: for every δ > 0
there exists %5.3 such that, if u is a η5.3-almost homogeneous solution of (3.1) in B% with % ≤ %5.3
and obstacle ϕ, 0 ∈ Zϕ,θ,δ(u) and Iu0

(%) ≤ A, then∥∥u0,% − w∥∥H1(B1/4,dm)
≤ ε, (5.11)

for some homogeneous solution w ∈ H.

Proof. The proof follows by a contradiction argument similar to [13, Lemma 5.5]. Assume that for
some ε,A > 0 we could find sequences of numbers δl, %l and of 1/l-almost homogeneous solutions
ul of (3.1) in B%l , with %l arbitrarily small, such that 0 ∈ Zϕ,θ,δ(ul) and

inf
l

inf
w∈H

∥∥(ul)0,%l − w
∥∥
H1(B1/4,dm)

≥ ε , (5.12)

and satisfying the bounds I(ul)0(%l) ≤ A.

Consider vl := (ul)0,%l , then by Corollary 3.15 applied to vl there would be a subsequence,
not relabeled, converging in H1(B1,dm) to a solution v∞ of the thin obstacle problem with zero
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obstacle. By Proposition 3.11 there is some A′ independent of l such that I(ul)0(t) ≤ A′ for all

t ∈ (0, %l], then from (3.22) in Corollary 3.7 we would infer that

−
ˆ
φ̇( 2|x|

t ) |v∞|
2

|x| |xn+1|adx = − lim
l

ˆ
φ̇( 2|x|

t ) |vl|
2

|x| |xn+1|adx = lim
l

H(ul)0(%l/2)

H(ul)0(%l)
≥ 2−(n+a+2A′),

in turn implying that v∞ is not zero. On the other hand, we would also get

I(v∞)0(1/2)− I(v∞)0

(
1/4
)

= lim
l

(
J(vl)0(1/2)− J(vl)0(1/4)

)
= lim

l

(
J(ul)0(%l/2)− J(ul)0(%l/4)

)
= 0,

and thus we would conclude that v∞ ∈ H being a solution to the lower dimensional obstacle
problem with constant frequency (see for instance [13, Proposition 2.7]). We have thus contradicted
(5.12). �

A rigidity property of the type shown in [13, Proposition 5.6] holds for the non-zero obstacle
problem.

Proposition 5.4. Let A, τ > 0. There exists η5.4 > 0 with this property. For every δ > 0 there
exists %5.4 such that, if u is a η5.4-almost homogeneous solution of (3.1) in B% with % ≤ %5.4 and
obstacle ϕ, 0 ∈ Zϕ,θ,δ(u) and Iu0(%) ≤ A, then the following dichotomy holds:

(i) either for every point x ∈ B′%/2 ∩Zϕ,θ,δ(u) we have∣∣Jux(%/2)− Ju0
(%/2)

∣∣ ≤ τ, (5.13)

(ii) or there exists a linear subspace V ⊂ Rn × {0} of dimension n− 2 such that{
y ∈ B′%/2 ∩Zϕ,θ,δ(u),

Juy (%/8)− Juy (%/16) ≤ η5.4
=⇒ dist(y, V ) < τ%. (5.14)

Proof. The proof proceeds by contradiction and follows the strategy developed in [13, Proposi-
tion 5.6]. Let A, τ > 0 be given constants and assume that there exist δl, %l and a sequence (ul)l∈N
of 1/l-almost homogeneous solutions in B%l such that 0 ∈ Zϕl,θ,δl(ul), I(ul)0(%l) ≤ A and such that:

(i) there exists xl ∈ B′%l/4 ∩Zϕl,θ,δl(ul) for which∣∣∣J(ul)xl (%l/2)− J(ul)0(%l/2)
∣∣∣ > τ, (5.15)

(ii) for every linear subspace V ∈ Rn×{0} of dimension n−2 there exists yl ∈ B′%l/4∩Zϕl,θ,δl(ul)

(a priori depending on V ) such that

J(ul)yl (
%l/8)− J(ul)yl (%l/16) ≤ 1/l and dist

(
yl, V

)
≥ τ%l. (5.16)

We consider the rescaled functions vl := (ul)0,%l : B1 → R. By the compactness result in Corol-
lary 3.15 we deduce that, up to passing to a subsequence (not relabeled), there exists a nonzero
function v∞ solution to the thin obstacle problem (3.1) in B1 with null obstacle such that vl → v∞
in H1(B1,dm). Moreover, v∞ ∈ H thanks to Lemma 5.3.

If v∞ ∈ Htop, then (5.15) is contradicted. Indeed, up to choosing a further subsequence, we
can assume that zl := %−1l xl → z∞ ∈ B̄1/2. Note that the points zl ∈ N (vl), as xl ∈ Γϕl(ul), so
that

vl(zl) = (ul)0,%l(zl) =
%
n+a

2

l

H
1/2
(ul)0

(%l)
(ul)0(xl) = 0 .

In addition, by (3.9) and being E
[
Tk,0[ϕl]

]
even with respect to {xn+1 = 0} (cf. Lemma 2.1), for

all l we infer that

lim
t↓0

ta∂n+1vl(z
′
l, t) =

%
n+a

2

l

H
1/2
(ul)0

(%l)
lim
t↓0

ta∂n+1

(
ul(x

′
l, t)− E

[
Tk,0[ϕl]

]
(x′l, t)

)
= 0 .
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Hence, we conclude that z∞ ∈ N (v∞) in view of (3.52). Moreover, by taking into account the
very definition of vl and Remark 3.4 we get by scaling

∣∣I(v∞)z∞
(1/2)− I(v∞)0(1/2)

∣∣ =

∣∣∣∣∣∣
1/2
´
φ(2|x− z∞|)|∇v∞|2|xn+1|adx

−
´
φ̇(2|x− z∞|) |v∞|

2

|x−z∞| |xn+1|adx
−

1/2
´
φ(2|x|)|∇v∞|2|xn+1|adx

−
´
φ̇(2|x|) |v∞|

2

|x| |xn+1|adx

∣∣∣∣∣∣
= lim
l→+∞

∣∣∣∣∣∣
1/2
´
φ(2|x− zl|)|∇vl|2|xn+1|adx

−
´
φ̇(2|x− zl|) |vl|

2

|x−zl| |xn+1|adx
−

1/2
´
φ(2|x|)|∇vl|2|xn+1|adx

−
´
φ̇(2|x|) |vl|

2

|x| |xn+1|adx

∣∣∣∣∣∣
= lim
l→+∞

∣∣∣∣∣∣
%l/2
´
φ( |z−xl|%l/2

)|∇(ul)0|2|xn+1|adx

−
´
φ̇( |z−xl|%l/2

)
|(ul)0|2
|z−xl| |xn+1|adx

−
%l/2D(ul)0(%l/2)

H(ul)0(%l/2)

∣∣∣∣∣∣
= lim
l→+∞

∣∣∣∣∣%l/2D(ul)xl
(%l/2)

H(ul)xl
(%l/2)

−
%l/2D(ul)0(%l/2)

H(ul)0(%l/2)

∣∣∣∣∣ (3.43)= lim
l→+∞

∣∣∣I(ul)xl (%l/2)− I(ul)0(%l/2)
∣∣∣

= lim
l→+∞

∣∣∣J(ul)xl (%l/2)− J(ul)0(%l/2)
∣∣∣ ≥ τ,

which is a contradiction to the constancy of the frequency at nodal points of the homogeneous
solution v∞ ∈ Htop (see [13, Lemma 5.3]). The fourth equality is justifed in view of estimates
(3.14) and (3.15) in Remark 3.2 since it holds

|(ul)0(x)− (ul)xl(x)|+ |∇
(
(ul)0(x)− (ul)xl(x)

)
| ≤ C/l .

Moreover, (3.43) can be employed in the last two equalities as xl ∈ B′%l/4 ∩Zϕl,θ,δl(ul).

Instead, if v∞ ∈ Hlow, we show a contradiction to (5.16) with V any (n − 2)-dimensional
subspace containing S(v∞). Indeed, let yl be as in (5.16) for such a choice of V . By compactness,
up to passing to a subsequence (not relabeled), zl := %−1l yl → z∞ for some z∞ ∈ B̄1/2 with
dist(z∞, V ) ≥ τ . In addition, arguing as before∣∣I(v∞)z∞

(
1/8
)
− I(v∞)z∞

(
1/16
)∣∣

= lim
l→+∞

∣∣∣∣∣%l/8D(ul)yl
(%l/8)

H(ul)yl
(%l/8)

−
%l/16D(ul)yl

(%l/16)

H(ul)yl
(%l/16)

∣∣∣∣∣ (3.43)= lim
l→+∞

∣∣∣I(ul)yl (%l/8)− I(ul)yl (%l/16)∣∣∣
= lim
l→+∞

∣∣∣J(ul)yl (%l/8)− J(ul)yl (%l/16)∣∣∣ = 0 .

Again, note that (3.43) can be employed since yl ∈ B′%l/2 ∩ Zϕl,θ,δl(ul). By [13, Proposition 2.7,

Lemma 5.2] it follows that z∞ ∈ S(v∞), thus contradicting S(v∞) ⊆ V and dist(z∞, V ) ≥ τ . �

5.3. Proof of Theorem 1.2. We start off noting that it suffices to prove that Γϕ,θ(u) ∩ B̄1(x0)
satisfies all the conclusions for all x0 ∈ Γϕ,θ(u). For all R ∈ (0, 1), we can find by compactness
a finite number of balls BR/2(xi), xi ∈ Γϕ,θ(u) for i ∈ {1, . . . ,M}, whose union cover Γϕ,θ(u) ∩
B̄1(x0). We shall choose appropriately R in what follows. Moreover, with fixed i ∈ {1, . . . ,M},
by horizontal translation we may reduce to xi = 0 ∈ Γϕ,θ(u) without loss of generality.

Then, recalling the definition of Γϕ,θ(u) in (1.7) we have that

Γϕ,θ(u) ∩B′R/2 = ∪j,l∈NZ R
ϕ,θ,1/j(u) ,

where

Z R
ϕ,θ,1/j(u) :=

{
x0 ∈ Γϕ(u) ∩B′R/2 : Hux0

(r) > r
n+a+2(k+1−θ)/j ∀ r ∈ (0,R/2)

}
Hence, we may establish the result for Z R

ϕ,θ,1/j(u) with j ∈ N fixed.

Next, note that as 0 ∈ Γ(u), the function

ũ(y) := u(Ry)− u(0)

solves the fractional obstacle problem (3.1) in B1 with obstacle function ϕ̃(·) := ϕ(R·) − ϕ(0).
Moreover, Γϕ̃,θ(ũ) ∩ B′1/2 = 1

R

(
Γϕ,θ(u) ∩ B′R/2

)
, with ũz/R(·) = uz(R·) if z ∈ Γϕ,θ(u) ∩ B′R/2,
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being Tk,z/R[ϕ̃](·) = Tk,z[ϕ](R·). Thus, we get that z ∈ Z R
ϕ,θ,1/j(u) if and only if z/R ∈ B′1/2 ∩

Zϕ̃,θ,R2(k+1−θ)/j(ũ). In addition, it is easy to check that

‖ϕ̃‖Ck+1(B′1)
≤ R‖∇ϕ‖Ck(B′R,Rn) .

We choose R > 0 sufficiently small so that ‖ϕ̃‖Ck+1(B′R) ≤ 1 and the smallness conditions on the
radii in all the statements of Sections 3-5 are satisfied.

In such a case the proof, of the main results can be obtained by following verbatim [13, Sec-
tions 6–8]. Indeed, [13, Proposition 6.1], that leads both to the local finiteness of the Minkowskii
content of Zϕ̃,θ,δ(ũ) and to its (n− 1)-rectifiability, is based on a covering argument that exploits
the lower bound on the frequency in Corollary 3.16, the control of the mean oscillation via the
frequency in Proposition 5.1, the rigidity of almost homogeneous solutions in Proposition 5.4,
the discrete Reifenberg theorem by Naber and Valtorta [19, Theorem 3.4, Remark 3.9], and the
rectifiability criterion either by Azzam and Tolsa [2] or by Naber and Valtorta [19, 20]. Therefore,
the only extra-care needed in the current setting is to start the covering argument from a scale
which is small enough to validate the conclusions of the lemmas and propositions of the previous
sections.

Finally, the classification of blow-up limits is exactly that stated in [13, Theorem 1.3], and
proved in [13, Section 8], in view of Lemma 3.14 and Corollary 3.15.
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