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Abstract. In the existing language for tensor calculus on RCD spaces, tensor fields are only

defined m-a.e.. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’

and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-

continuous representative.
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Introduction

The theory of differential calculus on RCD spaces as proposed in [9, 10] is built around the

notion of L0(m)-normed L0(m)-module, which provides a convenient abstraction of the concept

of ‘space of measurable sections of a vector bundle’. In this sense, one thinks at such a module

as the space of measurable sections of some, not really given, measurable bundle over the given

metric measure space (X, d,m). More precisely, given that elements of L0(m) are ‘Borel functions

identified up to equality m-a.e.’, elements of such modules are, in a sense, ‘measurable sections

identified up to equality m-a.e.’. Notice that this interpretation is fully rigorous in the smooth

case, where given a normed vector bundle, the space of its Borel sections identified up to m-a.e.

equality is a L0(m)-normed L0(m)-module. We also remark that in [9, 10] the emphasis is more on

the notion of L∞(m)-module rather than on L0(m) ones, but this is more a choice of presentation

rather than an essential technical point, and given that for the purposes of this manuscript to

work with L0 is more convenient, we shall concentrate on this.

In particular, all the tensor fields on a metric measure space which are considered within the

theory of L0(m)-modules are only defined m-a.e.. While this is an advantage in some setting, e.g.

because a rigorous first order differential calculus can be built on this ground over arbitrary metric

measure structures, in others is quite limiting: there certainly might be instances where, say, one
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is interested in the behaviour of a vector field on some negligible set. For instance, the question

of whether the critical set of a harmonic function has capacity zero simply makes no sense if the

gradient of such function only exists as element of a L0(m)-normed module.

Aim of this paper is to create a theoretical framework which allows to speak about ‘Borel

sections identified up to equality Cap-a.e.’ and to show that Sobolev vector fields on RCD spaces,

which are introduced via the theory of L0(m)-modules, in fact can be defined up to Cap-null sets

and turn out to be continuous (in a sense to be made precise) outside sets of small capacities.

Here the analogy is with the well-known case of Sobolev functions on the Euclidean space: these

are a priori defined in a distributional-like sense, and thus up to equality Ld-a.e., but once the

concept of capacity is introduced one quickly realizes that a Sobolev function has a uniquely-

defined representative up to Cap-null sets which is continuous outside sets of small capacities.

More in detail, in this paper we do the following:

o) We start recalling how to integrate w.r.t. an outer measure and that such integral is

sublinear iff the outer measure is submodular, which is the case of capacity. This will allow

to put a natural complete distance on the space L0(Cap) of real-valued Borel functions on

X identified up to Cap-null sets. Given that Cap-null sets are m-null, L0(m) can be seen

as quotient of L0(Cap); we shall denote by Pr : L0(Cap)→ L0(m) the quotient map.

We then recall the concept of quasi-continuous function which, being invariant un-

der modification on Cap-null sets, is a property of (equivalence classes of) functions in

L0(Cap). The space QC(X) of quasi-continuous functions is actually a closed subspace

of L0(Cap) and coincides with the L0(Cap)-closure of continuous functions (then by ap-

proximation in the uniform norm one easily sees that in proper spaces one could also take

the completion of the space of locally Lipschitz functions and, in Rd, of smooth ones); we

believe that this characterization of quasi-continuity is well-known in the literature but

have not been able to find a reference – in any case, for completeness in the preliminary

section we provide full proofs of all the results we need. In connection with the concept

of capacity the space QC(X) is relevant for at least two reasons:

a) The restriction of the projection operator Pr : L0(Cap)→ L0(m) to QC(X) is injective.

b) Any Sobolev function f ∈ W 1,2(X) ⊂ L0(m) has a (necessarily unique, by a) above)

quasi-continuous representative f̃ ∈ QC(X), i.e. Pr(QC(X)) ⊃W 1,2(X).

i) We propose the notion of L0(Cap)-normed L0(Cap)-modules (L0(Cap)-modules, in short),

defined by properly imitating the one of L0(m)-module. At the technical level an important

difference between the two notions is that the capacity is only an outer measure: while in

some cases this is only a nuisance (see e.g. the proof of the fact that the natural distance

on L0(Cap)-modules satisfies the triangle inequality), in others it creates problems whose

solution is unclear to us (e.g. in defining the dual of a L0(Cap)-module – see Remark 2.3).

We then see that, much like starting from L0(Cap) and quotienting out up to m-null

sets we find L0(m), starting from an arbitrary L0(Cap)-module M and quotienting via

the relation

(0.1) v ∼ w provided Pr
(
|v − w|

)
= 0 m-a.e.,

we produce a canonical L0(m)-module Mm and projection operator PrM : M →Mm (see

Proposition 2.2).

ii) The main construction that we propose in this manuscript is that of tangent L0(Cap)-

module L0
Cap(TX) on an RCD space X. Specifically, in such setting we prove that there

is a canonical couple
(
L0

Cap(TX), ∇̄
)
, where L0

Cap(TX) is a L0(Cap)-module and ∇̄ :
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Test(X) → L0
Cap(TX) is a linear map whose image generates L0

Cap(TX) and such that

|∇̄f | coincides with the unique quasi-continuous representative of the minimal weak upper

gradient |Df | of f , see Theorem 2.6. Here the space Test(X) of test functions is made, in

some sense, of the smoothest functions available on RCD spaces; this regularity matters

in the definition of L0
Cap(TX) to the extent that |Df | belongs to W 1,2(X) whenever f ∈

Test(X) (and this fact is in turn highly depending on the lower Ricci curvature bound:

it seems hard to find many functions with this property on more general metric measure

spaces).

The relation between (L0
Cap(TX), ∇̄) and the already known L0(m)-tangent module

L0
m(TX) and gradient operator ∇ is the fact that L0

m(TX) can be seen as the quotient of

L0
Cap(TX) via the equivalence relation (0.1), where the projection operator sends ∇̄f to

∇f for any f ∈ Test(X) (see Propositions 2.9, 2.10 for the precise formulation).

iii) We define the notion of ‘quasi-continuous vector field’ in L0
Cap(TX). Here a relevant

technical point is that there is no topology on the ‘tangent bundle’ or, to put it differently, it

is totally unclear what it means for a tangent vector field to be continuous or continuous at

a point (in fact, not even the value of a vector field at a point is defined in our setting!). In

this direction we also remark that the recent result in [7] suggests that it might be pointless

to look for ‘many’ continuous vector fields already on finite dimensional Alexandrov spaces,

thus a fortiori on RCD ones.

Thus, much like in Rd quasi-continuous functions are the L0(Cap)-closure of smooth

ones, we define the space of quasi-continuous vector fields QC(TX) as the L0
Cap(TX)-closure

of the space of the ‘smoothest’ vector fields available, i.e. linear combinations of those of

the form g∇̃f for f, g ∈ Test(X). The choice of terminology is justified by the fact that

the analogue of a), b) above hold (see Proposition 2.13 and Theorem 2.14) and, moreover:

c) for v ∈ QC(TX) we have |v| ∈ QC(X) (see Proposition 2.12).

We conclude by pointing out that, while the concept of L0(Cap)-module makes sense for any

p-capacity, for our purposes only the case p = 2 is relevant. This is due to the fact that the natural

Sobolev space to which |Df | belongs for f ∈ Test(X) is W 1,p(X) with p = 2. Also, we remark that,

albeit the definitions proposed in this paper are meant to be used in actual problems regarding

the structure of RCD spaces (like the already mentioned one concerning the size of {∇f = 0} for f

harmonic - see Example 2.17 for comments in this direction), in this manuscript we concentrate on

building a solid foundation of the theoretical side of the story. The added value here is in providing

what we believe are the correct definitions: once these are given, proofs of relevant results will

come out rather easily.
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1. Preliminaries

1.1. Integration w.r.t. outer measures. Let X be a given set and µ an outer measure on X.

Then for every function f : X→ [0,+∞] (no measurability assumption is made here) it holds that

the function [0,∞) 3 t 7→ µ
(
{f > t}

)
∈ [0,+∞] is non-increasing and thus Lebesgue measurable.
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Hence the following definition (via Cavalieri’s formula)

(1.1)

∫
f dµ :=

∫ +∞

0

µ
(
{f > t}

)
dt.

is well-posed. For an arbitrary set E ⊂ X we shall also put

(1.2)

∫
E

f dµ :=

∫
χE f dµ.

In the next result we collect the basic properties of the above-defined integral:

Proposition 1.1 (Basic properties of µ and integrals w.r.t. it). The following properties hold:

a) Let f, g : X→ [0,+∞] be fixed. Then the following holds:

i)
∫
f dµ ≤

∫
g dµ provided f ≤ g.

ii)
∫
λf dµ = λ

∫
f dµ for every λ > 0.

iii)
∫
f dµ = 0 if and only if µ

(
{f 6= 0}

)
= 0.

iv)
∫
f dµ =

∫
g dµ provided µ

(
{f 6= g}

)
= 0.

v) Čebyšëv’s inequality. It holds that

µ
(
{f ≥ λ}

)
≤ 1

λ

∫
{f≥λ}

f dµ for every λ > 0.

In particular, if
∫
f dµ < +∞ then µ

(
{f = +∞}

)
= 0.

b) Monotone convergence. Let f, fn : X→ [0,+∞], n ∈ N, be such that

µ
(
{x ∈ X : fn(x) 6 ↑ f(x)}

)
= 0.

Then
∫
fn dµ→

∫
f dµ as n→∞.

c) Borel-Cantelli. Let (En)n∈N be subsets of X satisfying
∑
n∈N µ(En) < +∞. Then it holds

that µ
(⋂

n∈N
⋃
m≥nEm

)
= 0.

Proof.

(a) (i) is trivial and (ii) follows by a change of variables. The ‘if’ implication in (iii) is trivial,

for the ‘only if’ recall that t 7→ µ
(
{f > t}

)
is non-increasing to conclude that if

∫
f dµ = 0

it must hold µ
(
{f > t}

)
= 0 for every t > 0. Then use the countable subadditivity of µ and

the identity {f > 0} =
⋃
n{f > 1/n} to deduce that µ

(
{f > 0}

)
= 0. To prove (iv) notice

that {g > t} ⊂ {f > t} ∪ {f 6= g}, hence taking into account the subadditivity of µ and the

assumption we get
∫
g dµ ≤

∫
f dµ. Inverting the roles of f, g we conclude. In order to prove (v),

call Eλ := {f ≥ λ} and notice that Eλ ⊂ {χEλf > t} for all t ∈ (0, λ), whence∫
Eλ

f dµ ≥
∫ λ

0

µ
(
{χEλf > t}

)
dt ≥ λµ(Eλ),

which proves µ(Eλ) ≤ λ−1
∫
Eλ
f dµ. For the last statement, notice that if

∫
f dµ < +∞ then

µ
(
{f = +∞}

)
≤ lim
λ→+∞

µ(Eλ) ≤ lim
λ→+∞

1

λ

∫
f dµ = 0,

so that µ
(
{f = +∞}

)
= 0, as required.

(b) Assume for a moment that fn(x) ↑ f(x) for every x ∈ X. Then the sequence of sets {fn > t} is

increasing with respect to n and satisfies
⋃
n{fn > t} = {f > t}. Hence the monotone convergence

theorem (for the Lebesgue measure) gives∫
f dµ =

∫ +∞

0

µ
(
{f > t}

)
dt = lim

n→∞

∫ +∞

0

µ
(
{fn > t}

)
dt = lim

n→∞

∫
fn dµ.

The general case follows taking into account point (iv).
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(c) The standard proof applies: let us put E :=
⋂
n∈N

⋃
m≥nEm, then µ(E) ≤ µ

(⋃
m≥nEm

)
for

all n ∈ N, so that

µ(E) ≤ lim
n→∞

µ
( ⋃
m≥n

Em

)
≤ lim
n→∞

∑
m≥n

µ(Em) = 0,

as required. �

Example 1.2. Consider the closed interval S := [0, 1] in R (equipped with Euclidean distance and

Lebesgue measure). Given any n ≥ 1, denote by Pn ⊆ S the singleton {1/n}. One can check that

0 < Cap(Pn) < Cap(S), but Cap(S \ Pn) = Cap(S). In other words,
∫
χS\Pn dCap =

∫
χS dCap

and Cap
(
{χS\Pn 6= χS}

)
> 0. This shows that – even for µ := Cap and f ≤ g – the converse of

item iv) of Proposition 1.1 fails. �

Remark 1.3. An analogue of the dominated convergence theorem cannot hold, as shown by the

following counterexample. For any n ≥ 1, consider the singleton Pn in R defined in Example 1.2.

Since the capacity in the space R is translation-invariant, one has that Cap(Pn) = Cap(P1) > 0

for all n ≥ 1. Moreover, we have limn χPn(x) = 0 for all x ∈ R and χPn ≤ χ[0,1] for all n ≥ 1,

with
∫
χ[0,1] dCap = Cap

(
[0, 1]

)
< +∞. Nevertheless, it holds that

∫
χPn dCap ≡ Cap(P1) does

not converge to 0 as n→∞, thus proving the failure of the dominated convergence theorem. To

provide such a counterexample, we exploited the fact that the capacity is not σ-additive; indeed,

we built a sequence of pairwise disjoint sets, with the same positive capacity, which are contained

in a fixed set of finite capacity. The lack of a result such as the dominated convergence theorem

explains the technical difficulties we will find in the proofs of Proposition 1.10 and Theorem 1.11.

�

Let us now introduce a crucial property of outer measures:

Definition 1.4 (Submodularity). We say that µ is submodular provided

(1.3) µ(E ∪ F ) + µ(E ∩ F ) ≤ µ(E) + µ(F ) for every E,F ⊂ X.

The importance of the above notion is due to the following result (we refer to [8, Chapter 6]

for a detailed bibliography):

Theorem 1.5 (Subadditivity theorem). It holds that µ is submodular if and only if the integral

associated to µ is subadditive, i.e.

(1.4)

∫
(f + g) dµ ≤

∫
f dµ+

∫
g dµ for every f, g : X→ [0,+∞).

Proof. The ‘if’ trivially follows by taking f := χE and g := χF , so we turn to the ‘only if’. Notice

that, up to a monotone approximation argument based on point (b) of Proposition 1.1, it suffices to

consider the case in which f, g assume only a finite number of values and µ
(
{f > 0}∪{g > 0}

)
<∞.

Then up to replacing X with {f > 0} ∪ {g > 0} we can also assume that µ is finite.

Thus assume this is the case and let A be the (finite) algebra generated by f, g, i.e. the one

generated by the sets {f = a} and {g = b}, a, b ∈ R. Let A1, . . . , An ∈ A be minimal with

respect to inclusion among non-empty sets in A and ordered in such a way that ai ≥ ai+1 for

every i = 1, . . . , n− 1, where ai := (f + g)(Ai) (i.e. ai is the value of f + g on Ai).

Define a finite measure ν on A by putting

(1.5) ν(A1 ∪ . . . ∪Ai) := µ(A1 ∪ . . . ∪Ai) for every i = 1, . . . , n

and notice that (since µ is finite) the measure ν is well-defined. We claim that for a A-measurable

function h : X→ [0,+∞] it holds

(1.6)

∫
hdµ ≥

∫
hdν with equality if h(Ai) ≥ h(Ai+1) for every i = 1, . . . , n− 1.
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Notice that once such claim is proved the conclusion easily follows from
∫

(f + g) dµ =
∫

(f + g) dν

(from the equality case of the claim (1.6) and the choice of enumeration of the Ai’s), the inequalities∫
f dν ≤

∫
f dµ,

∫
g dν ≤

∫
g dµ (from the claim (1.6)) and the linearity of the integral w.r.t. ν.

Also, notice that the equality case in (1.6) is a direct consequence of Cavalieri’s formula for both

µ, ν, the defining property (1.5) and the fact that for h as stated it holds {h > t} = A1 ∪ . . . ∪Ai
for some i = i(t).

Let us now assume that for some ī it holds h(Aī) =: bī ≤ bī+1 := h(Aī+1) and let us define

another finite measure ν̃ as in (1.5) with the sets (Ai)i replaced by (Ãi)i, where Ãi := Ai for

i 6= ī, ī+ 1, Ãī := Aī+1 and Ãī+1 := Aī. We shall prove that

(1.7)

∫
hdν ≤

∫
hdν̃

and notice that this will give the proof, as with a finite number of such permutations the sets

(Ai)i get ordered as in the equality case in (1.6). Using Cavalieri’s formula and noticing that by

construction it holds ν
(
{h > t}

)
= ν̃

(
{h > t}

)
for t /∈ [bī, bī+1) we reduce to prove that

(bī+1 − bī) ν
(
B ∪Aī+1

)
=

∫ bī+1

bī

ν
(
{h > t}

)
dt ≤

∫ bī+1

bī

ν̃
(
{h > t}

)
dt = (bī+1 − bī) ν̃(B ∪Aī+1)

where B := A1 ∪ . . . ∪ Aī−1. Given that bī+1 − bī ≥ 0, the conclusion would follow if we showed

that ν(B ∪Aī+1) ≤ ν̃(B ∪Aī+1). Since

ν(B ∪Aī+1) = ν(B ∪Aī ∪Aī+1) + ν(B)− ν(B ∪Aī)
(1.5)
= µ(B ∪Aī ∪Aī+1) + µ(B)− µ(B ∪Aī),

ν̃(B ∪Aī+1) = ν̃(B ∪ Ãī)
(1.5)
= µ(B ∪ Ãī) = µ(B ∪Aī+1),

we know from the submodularity of µ that ν(B ∪Aī+1) ≤ ν̃(B ∪Aī+1), as required. �

1.2. Capacity on metric measure spaces. We shall be interested in a specific outer measure:

the 2-capacity (to which we shall simply refer as capacity) on a metric measure space (X, d,m).

For the purposes of the current manuscript, by metric measure space we shall always mean a

triple (X, d,m) such that

(X, d) is a complete and separable metric space,

m ≥ 0 is a Borel measure on (X, d), finite on balls.
(1.8)

In this setting, starting from [6] (see also [16, 2]) there is a well-defined notion of Sobolev space

W 1,2(X, d,m) (or, briefly, W 1,2(X)) of real-valued functions on X, and to any f ∈ W 1,2(X, d,m)

is associated a function |Df | ∈ L2(m), called minimal weak upper gradient, which plays the role

of the modulus of the distributional differential of f . For our purposes, it will be useful to recall

that W 1,2(X, d,m) is a lattice (i.e. f ∨ g and f ∧ g are in W 1,2(X) provided f, g ∈W 1,2(X)), that

the minimal weak upper gradient is local, i.e.

(1.9) |Df | = |Dg| m-a.e. on {f = g},

that if f : X→ R is Lipschitz with bounded support, then

(1.10) |Df | ≤ lip(f) m-a.e.,

where we set lip(f)(x) := limy→x
∣∣f(y)− f(x)

∣∣/d(x, y) if x is not isolated, 0 otherwise.

Finally, the norm on W 1,2(X) is defined as

‖f‖2W 1,2(X) := ‖f‖2L2(m) +
∥∥|Df |∥∥2

L2(m)
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and with this norm W 1,2(X) is always a Banach space whose norm is L2-lower semicontinuous,

i.e.

(1.11) fn ⇀ f in L2(m) =⇒ ‖f‖W 1,2(X) ≤ lim
n→∞

‖fn‖W 1,2(X),

where as customary ‖f‖W 1,2(X) is set to be +∞ if f /∈W 1,2(X).

Even if in general W 1,2(X) is not Hilbert (and thus the map f 7→ 1
2

∫
|Df |2 dm is not a Dirichlet

form), the concept of capacity is well-defined as the definition carries over quite naturally (see e.g.

[3], [12] and references therein for the metric setting, and [4] for the more classical framework of

Dirichlet forms):

Definition 1.6 (Capacity). Let E be a given subset of X. Let us denote

(1.12) FE :=
{
f ∈W 1,2(X)

∣∣ f ≥ 1 m-a.e. on some open neighbourhood of E
}
.

Then the capacity of the set E is defined as the quantity Cap(E) ∈ [0,+∞], given by

(1.13) Cap(E) := inf
f∈FE

‖f‖2W 1,2(X) = inf
f∈FE

∫
|f |2 + |Df |2 dm,

with the convention that Cap(E) := +∞ whenever the family FE is empty.

In the following result we recall the main properties of the set-function Cap:

Proposition 1.7. The capacity Cap is a submodular outer measure on X, which satisfies the

following properties:

i) m(E) ≤ Cap(E) for every Borel subset E of X,

ii) Cap(B) <∞ for any bounded set B ⊂ X.

Proof. We start claiming that for any f, g ∈W 1,2(X) it holds

(1.14) ‖f ∨ g‖2W 1,2(X) + ‖f ∧ g‖2W 1,2(X) = ‖f‖2W 1,2(X) + ‖g‖2W 1,2(X).

Indeed, the set
{

(f ∨ g)(x), (f ∧ g)(x)
}

coincides with the set
{
f(x), g(x)

}
for m-a.e. x and thus

|f ∨ g|2(x) + |f ∧ g|2(x) = |f |2(x) + |g|2(x)

and, similarly, by the locality property (1.9) the set
{
|D(f ∨ g)|(x), |D(f ∧ g)|(x)

}
coincides with

the set
{
|Df |(x), |Dg|(x)

}
for m-a.e. x and thus∣∣D(f ∨ g)
∣∣2(x) +

∣∣D(f ∧ g)
∣∣2(x) = |Df |2(x) + |Dg|2(x).

Adding up these two identities and integrating we obtain (1.14).

Now let E1, E2 ⊂ X be given and notice that for fi ∈ FEi , i = 1, 2, it holds that f1∨f2 ∈ FE1∪E2

and f1 ∧ f2 ∈ FE1∩E2
, thus

Cap(E1∪E2)+Cap(E1∩E2) ≤ ‖f1∨f2‖2W 1,2(X) +‖f1∧f2‖2W 1,2(X)

(1.14)
= ‖f1‖2W 1,2(X) +‖f2‖2W 1,2(X).

Hence passing to the infimum over fi ∈ FEi we conclude that

(1.15) Cap(E1 ∪ E2) + Cap(E1 ∩ E2) ≤ Cap(E1) + Cap(E2).

In particular, this shows that Cap is finitely subadditive and thus to conclude that it is a sub-

modular outer measure it is sufficient to show that if (En)n is an increasing sequence of subsets

of X it holds that Cap
(⋃

nEn
)

= supn Cap(En). Since trivially Cap(E) ≤ Cap(F ) if E ⊂ F , it is

sufficient to prove that Cap
(⋃

nEn
)
≤ supn Cap(En) and this is obvious if supn Cap(En) = +∞.

Thus assume that S := supn Cap(En) < +∞ and assume for the moment also that the En’s

are open. Let fn ∈ FEn be such that ‖fn‖2W 1,2(X) ≤ Cap(En) + 2−n ≤ S + 1. Thus in particular

such sequence is bounded in L2(m) and thus for some nk ↑ +∞ we have that fnk ⇀ f in L2(m)
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for some f ∈ L2(m). Passing to the (weak) limit in k in the inequality fnk ≥ χEnk ≥ χEn` valid

for k ≥ `, we conclude that f ≥ χEn` for every `, hence f ≥ χ⋃
n En

. Since the En’s are open,

this means that f ∈ F⋃
n En

. Therefore taking into account the semicontinuity property (1.11) we

deduce that

Cap
(⋃

nEn
)
≤ ‖f‖2W 1,2(X) ≤ lim

k→∞
‖fnk‖2W 1,2(X) ≤ lim

k→∞
Cap(Enk) +

1

2nk
= lim
n→∞

Cap(En).

Now let us drop the assumption that the En’s are open. Let ε > 0. We use the submodularity

property (1.15) and an induction argument to find an increasing sequence (Ωn)n of open sets such

that Ωn ⊃ En and Cap(Ωn) ≤ Cap(En) + ε
∑
i≤n 2−i. Then taking into account what already

proved for open sets we deduce that

Cap
(⋃

nEn
)
≤ Cap

(⋃
nΩn

)
= lim
n→∞

Cap(Ωn) ≤ lim
n→∞

Cap(En) + ε
∑
i≤n

1

2i
= lim
n→∞

Cap(En) + ε

and the conclusion follows from the arbitrariness of ε > 0.

The inequality in (i) trivially follows noticing that for f ∈ FE it holds f ≥ 1 m-a.e. on E, thus∫
|f |2 + |Df |2 dm ≥

∫
E

1 dm = m(E),

so that the conclusion follows taking the infimum over f ∈ FE . For the statement (ii) it is sufficient

to recall that for any B ⊂ X bounded there is f Lipschitz with bounded support that is ≥ 1 on a

neighbourhood of B and that such f belongs to W 1,2(X). �

1.3. The space L0(Cap). We have just seen that Cap is a submodular outer measure and in

Subsection 1.1 we recalled how integration w.r.t. outer measures is defined. It makes therefore

sense to consider the integral associated to Cap and that such integral is subadditive by Proposition

1.7 and Theorem 1.5. In light of this observation, the following definition is meaningful:

Definition 1.8 (The space L0(Cap)). Given any two functions f, g : X → R, we will say that

f = g in the Cap-a.e. sense provided Cap
(
{f 6= g}

)
= 0. We define L0(Cap) as the space of all

the equivalence classes – up to Cap-a.e. equality – of Borel functions on X.

We endow L0(Cap) with the following distance: pick an increasing sequence (Ak)k of open

subsets of X with finite capacity such that for any B ⊂ X bounded there is k ∈ N with B ⊂ Ak
(for instance, one could pick Ak := Bk(x̄) for some x̄ ∈ X), then let us define

(1.16) dCap(f, g) :=
∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|f − g| ∧ 1 dCap for every f, g ∈ L0(Cap).

Notice that the integral
∫
Ak
|f − g| ∧ 1 dCap is well-defined, since its value does not depend on

the particular representatives of f and g, as granted by item (iv) of Proposition 1.1. Moreover,

we point out that the fact that dCap satisfies the triangle inequality is a consequence of the

subadditivity of the integral associated with the capacity.

Remark 1.9. We point out that if Cap(X) < +∞ then the choice Ak := X for all k ∈ N is

admissible in Definition 1.8. �

The next result shows that, even if the choice of the particular sequence (Ak)k might affect the

distance dCap, its induced topology remains unaltered.

Proposition 1.10 (Convergence in L0(Cap)). The following holds:

• Characterization of Cauchy sequences. Let (fn)n ⊆ L0(Cap) be given. Then the following

conditions are equivalent:

i) limn,m dCap(fn, fm) = 0,
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ii) limn,m Cap
(
B ∩

{
|fn − fm| > ε

})
= 0 for any ε > 0 and any bounded set B ⊂ X.

• Characterization of convergence. Let f ∈ L0(Cap) and (fn)n ⊆ L0(Cap). Then the fol-

lowing conditions are equivalent:

i) limn dCap(fn, f) = 0,

ii) limn Cap
(
B ∩

{
|fn − f | > ε

})
= 0 for any ε > 0 and any bounded set B ⊂ X.

Proof. We shall only prove the characterization of Cauchy sequences, as the other claim follows

by similar means.

i) =⇒ ii) Fix any 0 < ε < 1 and a bounded set B ⊂ X. Choose k ∈ N such that B ⊂ Ak. Given

that dCap(fn, fm)
n,m−→ 0, we have limn,m

∫
Ak
|fn − fm| ∧ 1 dCap = 0. Therefore we conclude that

lim
n,m→∞

εCap
(
B ∩

{
|fn − fm| > ε

})
≤ lim
n,m→∞

εCap
(
Ak ∩

{
|fn − fm| > ε

})
≤ lim
n,m→∞

∫
Ak

|fn − fm| ∧ 1 dCap = 0.

ii) =⇒ i) Let ε > 0 be fixed. Choose k ∈ N such that 2−k ≤ ε. By our hypothesis, there is n̄ ∈ N
such that Cap

(
Ai ∩

{
|fn− fm| > ε

})
≤ εCap(Ai) for every n,m ≥ n̄ and i = 1, . . . , k. Let us call

Bnmi := Ai ∩
{
|fn − fm| > ε

}
and Cnmi := Ai \Bnmi . Therefore for any n,m ≥ n̄ it holds that

dCap(fn, fm) ≤
k∑
i=1

1

2i Cap(Ai)

∫
Ai

|fn − fm| ∧ 1 dCap +

∞∑
i=k+1

1

2i

≤
k∑
i=1

1

2i Cap(Ai)

[∫
Bnmi

|fn − fm| ∧ 1 dCap +

∫
Cnmi

|fn − fm| ∧ 1 dCap

]
+ ε

≤
k∑
i=1

1

2i Cap(Ai)

[
Cap(Bnmi ) + εCap(Ai)

]
+ ε ≤ 3 ε,

proving that limn,m dCap(fn, fm) = 0, as required. �

Theorem 1.11. The metric space
(
L0(Cap), dCap

)
is complete.

Proof. Let (fn)n be a dCap-Cauchy sequence of Borel functions fn : X → R. Fix any k ∈ N. Let

(fni)i be an arbitrary subsequence of (fn)n. Up to passing to a further (not relabeled) subsequence,

it holds that

(1.17) Cap
(
Ak ∩

{
|fni − fni+1 | > 2−i

})
≤ 2−i for every i ∈ N.

Let us call Fi := Ak ∩
{
|fni − fni+1

| > 2−i
}

for every i ∈ N and F :=
⋂
i∈N
⋃
j≥i Fj . Given that∑

i∈N Cap(Fi) < +∞ by (1.17), we deduce from item c) of Proposition 1.1 that Cap(F ) = 0. Notice

that if x ∈ Ak \F =
⋃
i∈N
⋂
j≥iAk \Fj , then there is i ∈ N such that

∣∣fnj (x)−fnj+1
(x)
∣∣ ≤ 2−j for

all j ≥ i, which grants that
(
fni(x)

)
i
⊆ R is a Cauchy sequence for every x ∈ Ak \ F . Therefore

we define the Borel function gk : Ak → R as

gk(x) :=

{
limi fni(x)

0

if x ∈ Ak \ F,
if x ∈ F.

Now fix any ε > 0. Choose ī ∈ N such that
∑
i≥ī 2−i ≤ ε. If i ≥ ī and x ∈

⋂
j≥iAk \ Fj (thus

in particular x /∈ F ), hence one has
∣∣fni(x)− gk(x)

∣∣ ≤∑j≥i
∣∣fnj (x)− fnj+1(x)

∣∣ ≤∑j≥i 2−j ≤ ε.
This implies that

(1.18) Ak ∩
{
|fni − gk| > ε

}
⊆
⋃
j≥i

Fj for every i ≥ ī.



10 CLÉMENT DEBIN, NICOLA GIGLI, AND ENRICO PASQUALETTO

Then Cap
(
Ak ∩

{
|fni − gk| > ε

})
≤
∑
j≥i Cap(Fj) ≤

∑
j≥i 2−j holds for every i ≥ ī, thus

(1.19) lim
i→∞

Cap
(
Ak ∩

{
|fni − gk| > ε

})
= 0 for every ε > 0.

We proved this property for some subsequence of a given subsequence (fni)i of (fn)n, hence this

shows that

(1.20) lim
n→∞

Cap
(
Ak ∩

{
|fn − gk| > ε

})
= 0 for every ε > 0.

Now let us define the Borel function f : X → R as f :=
∑
k∈N χAk g

k. Notice that the identity

Ak ∩
{
|fn − f | > ε

}
= Ak ∩

{
|fn − gk| > ε

}
and (1.20) yield

lim
n→∞

Cap
(
Ak ∩

{
|fn − f | > ε

})
= 0 for every k ∈ N and ε > 0.

Since any bounded subset of X is contained in the set Ak for some k ∈ N, we immediately deduce

that limn Cap
(
B ∩

{
|fn − f | > ε

})
= 0 whenever ε > 0 and B ⊂ X is bounded. This grants that

limn dCap(fn, f) = 0 by Proposition 1.10, thus proving that
(
L0(Cap), dCap

)
is a complete metric

space and accordingly the statement. �

We conclude this section with some other basic properties of the metric space
(
L0(Cap), dCap

)
:

Proposition 1.12. Let fn → f in L0(Cap). Then there exists a subsequence nj ↑ +∞ such that

for Cap-a.e. x it holds that fnj (x)→ f(x).

Moreover, the space Sf(X) of simple functions, which is defined as

(1.21) Sf(X) :=

{ ∞∑
n=1

αn χEn

∣∣∣∣ (αn)n ⊂ R and (En)n is some

partition of X into Borel sets

}
,

is dense in
(
L0(Cap), dCap

)
.

Proof. As for the standard case of measures, let the subsequence satisfy dCap(fnj , fnj+1) ≤ 2−j

for all j ∈ N. By the very definition of dCap, we deduce that for every j, k ∈ N one has

(1.22)

∫
Ak

|fnj − fnj+1
| ∧ 1 dCap ≤ ck

2j
, where ck := 2k

(
Cap(Ak) ∨ 1

)
.

Calling gj(x) :=
∑j−1
i=1

∣∣fni(x)−fni+1
(x)
∣∣∧1 for every j ∈ N and x ∈ X, we see that gj(x) ↑ g∞(x)

for some g∞ : X→ [0,+∞]. Given any k ∈ N, we know from item b) of Proposition 1.1 (and the

subadditivity of the integral associated to Cap) that

∫
Ak

g∞ dCap = lim
j→∞

∫
Ak

gj dCap ≤ lim
j→∞

j−1∑
i=1

∫
Ak

|fni − fni+1
| ∧ 1 dCap

(1.22)

≤ ck lim
j→∞

j−1∑
i=1

1

2i
= ck.

Therefore item v) of Proposition 1.1 ensures that g∞(x) < +∞ for Cap-a.e. x ∈ Ak, whence also

for Cap-a.e. x ∈ X by arbitrariness of k ∈ N. Now observe that for all j′ ≥ j and Cap-a.e. x ∈ X

it holds that

(1.23)
∣∣fnj′ (x)−fnj (x)

∣∣∧1 ≤
j′−1∑
i=j

∣∣fni(x)−fni+1
(x)
∣∣∧1 = gj′(x)−gj(x) ≤ g∞(x)−gj(x) < +∞.
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By letting j, j′ → ∞ in (1.23) we deduce that
(
fnj (x)

)
j
⊂ R is Cauchy for Cap-a.e. x ∈ X, thus

it admits a limit f̃(x) ∈ R. Again by item b) of Proposition 1.1 we know for every k ∈ N that∫
Ak

(g∞ − gj) dCap = lim
j′→∞

∫
Ak

j′∑
i=j

|fni − fni+1 | ∧ 1 dCap

≤ lim
j′→∞

j′∑
i=j

∫
Ak

|fni − fni+1 | ∧ 1 dCap

(1.22)

≤ ck lim
j′→∞

j′∑
i=j

1

2i
=

ck
2j−1

j−→ 0.

(1.24)

By letting j′ →∞ in (1.23) we get |f̃ − fnj | ∧ 1 ≤ g∞− gj Cap-a.e., whence for any k ∈ N it holds∫
Ak

|f̃ − f | ∧ 1dCap ≤ lim
j→∞

[ ∫
Ak

|f̃ − fnj | ∧ 1 dCap +

∫
Ak

|fnj − f | ∧ 1 dCap

]
≤ lim
j→∞

[ ∫
Ak

(g∞ − gj) dCap + ck dCap(fnj , f)

]
(1.24)

= 0.

This means that
∫
Ak
|f̃ − f | ∧ 1 dCap = 0 for every k ∈ N, thus accordingly f̃ = f holds Cap-a.e.

by item iii) of Proposition 1.1. We then finally conclude that fnj (x)→ f(x) for Cap-a.e. x ∈ X.

For the second statement we argue as follows. Fix f ∈ L0(Cap) and ε > 0. Choose a Borel

representative f̄ : X→ R of f . For any integer i ∈ Z, let us define Ei := f̄−1
(
[i ε, (i+1) ε)

)
. Then

(Ei)i∈Z constitutes a partition of X into Borel sets, so that ḡ :=
∑
i∈Z i ε χEi is a well-defined

Borel function that belongs to Sf(X). Finally, it holds that
∣∣f̄(x) − ḡ(x)

∣∣ < ε for every x ∈ X,

which grants that dCap(f, g) ≤ ε, where g ∈ L0(Cap) denotes the equivalence class of ḡ. Hence

the statement follows. �

Remark 1.13. In general, Cap-a.e. convergence does not imply convergence in L0(Cap), as shown

by the following counterexample. Consider Pn as in Example 1.2 for any n ≥ 1. We have that the

functions fn := χPn pointwise converge to 0 as n→∞. However, it holds that

Cap
(
[0, 1] ∩

{
|fn| > 1/2

})
= Cap(Pn) ≡ Cap(P1) > 0

does not converge to 0, thus we do not have limn dCap(fn, 0) = 0 by Proposition 1.10. �

1.4. Quasi-continuous functions and quasi-uniform convergence. Here we quickly recall

the definition and main properties of quasi-continuous functions associated to Sobolev functions

(see [3], [13], [4] for more on the topic and detailed bibliography).

Definition 1.14 (Quasi-continuous functions). We say that a function f : X → R is quasi-

continuous provided for every ε > 0 there exists a set E ⊂ X with Cap(E) < ε such that the

function f |X\E : X \ E → R is continuous.

It is clear that if f, f̃ agree Cap-a.e. and one of them is quasi-continuous, so is the other. Also,

by the very definition of capacity, in defining quasi-continuity one could restrict to sets E which are

open. In particular, if f is quasi-continuous there is an increasing sequence (Cn)n of closed subsets

of X with limn Cap(X \Cn) = 0 such that f is continuous on each Cn. Then N :=
⋂
n X \Cn is a

Borel set with null capacity – in particular, we have m(N) = 0 by item i) of Proposition 1.7 – and

f is Borel on X\N . This proves that any quasi-continuous function is m-measurable and Cap-a.e.

equivalent to a Borel function.
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We shall denote by QC(X) the collection of all equivalence classes – up to Cap-a.e. equality – of

quasi-continuous functions on X. What we just said ensures that QC(X) ⊂ L0(Cap). It is readily

verified that QC(X) is an algebra.

Let us now discuss a notion of convergence particularly relevant in relation with QC(X):

Definition 1.15 (Local quasi-uniform convergence). Let fn : X → R, n ∈ N ∪ {∞} be Borel

functions. Then we say that fn locally quasi-uniformly converges to f∞ as n → ∞ provided for

any B ⊂ X bounded and any ε > 0 there exists a set E ⊂ X with Cap(E) < ε such that fn → f∞

uniformly on B \ E. In this case, we shall write fn
QU→ f∞.

As before, nothing changes if one even requires the set E to be open in the above definition

and the notion of local quasi-uniform convergence is invariant under modification of the functions

in Cap-null sets. Local quasi-uniform convergence is (almost) the convergence induced by the

following distance:

(1.25) dQU(f, g) := inf
E⊂X

∑
k∈N

(
Cap(E ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup

x∈Ak\E

∣∣f(x)− g(x)
∣∣ ∧ 1

)
,

where (Ak)k is any sequence as in Definition 1.8. Indeed, it is trivial to verify that dQU is actually

a distance (notice that dQU ≤ 1, as one can see by picking E = X in (1.25)), moreover we have:

Proposition 1.16. Let fn : X→ R, n ∈ N ∪ {∞} be Borel functions. Then

i) If fn
QU→ f∞, then dQU(fn, f∞)→ 0.

ii) If dQU(fn, f∞) → 0, then any subsequence nk has a further subsequence, not relabeled,

such that fnk
QU→ f∞.

Proof.

(i) Let ε > 0 and use the definition of local quasi-uniform convergence to find some subsets

(Ek)k∈N of X such that Cap(Ek) < ε/2k and fn → f∞ uniformly on Ak \ Ek for any k ∈ N.

Choosing the set E :=
⋃
k∈NEk in (1.25) yields (for k̄ ∈ N sufficiently big)

lim
n→∞

dQU(fn, f∞) ≤ ε+ lim
n→∞

k̄∑
k=1

(
Cap(E ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup

x∈Ak\E

∣∣fn(x)− f∞(x)
∣∣ ∧ 1

)

≤ ε+ lim
n→∞

k̄∑
k=1

(
ε

2k
+ sup
x∈Ak\Ek

∣∣fn(x)− f∞(x)
∣∣)

≤ 2 ε+

k̄∑
k=1

lim
n→∞

sup
x∈Ak\Ek

∣∣fn(x)− f∞(x)
∣∣ = 2 ε,

and the conclusion follows by the arbitrariness of ε.

(ii) We shall prove that if
∑
n dQU(fn, f∞) < +∞ then fn

QU→ f∞. First, choose a sequence (En)n
of subsets of X such that

(1.26)
∑
n∈N

∑
k∈N

(
Cap(En ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup
Ak\En

|fn − f∞| ∧ 1

)
< +∞.

Let ε > 0 and B ⊂ X bounded be fixed. Pick k̄ ∈ N such that B ⊂ Ak̄. Then (1.26) grants the

existence of n̄ ∈ N with
∑
n≥n̄ Cap(En ∩Ak̄) < ε, thus E :=

⋃
n≥n̄En ∩Ak̄ satisfies Cap(E) < ε.

Therefore we have that∑
n≥n̄

sup
B\E
|fn − f∞| ∧ 1 ≤

∑
n≥n̄

sup
Ak̄\En

|fn − f∞| ∧ 1 = 2k̄
∑
n≥n̄

1

2k̄
sup
Ak̄\En

|fn − f∞| ∧ 1
(1.26)
< +∞,

whence accordingly fn → f∞ uniformly on B \ E. This grants that fn
QU→ f∞, as required. �
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Proposition 1.17. The following properties hold:

i) The metric space
(
QC(X), dQU

)
is complete.

ii) It holds that dCap(f, g) ≤ dQU(f, g) ≤ 2
√

dCap(f, g) for every f, g ∈ QC(X). In particular,

the canonical embedding of QC(X) in L0(Cap) is continuous and has closed image.

iii) QC(X) is the closure in L0(Cap) of the space of (equivalence classes up to Cap-null sets

of) continuous functions.

Proof.

(i) To prove completeness, fix a dQU-Cauchy sequence (fn)n of quasi-continuous functions. Up to

passing to a (not relabeled) subsequence, we can suppose that dQU(fn, fn+1) < 2−n for all n. For

any n ∈ N we can pick a set En ⊂ X such that the function fn is continuous on X \ En and

(1.27)
∑
k∈N

(
Cap(En ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup
Ak\En

|fn − fn+1| ∧ 1

)
<

1

2n
.

Now define Fk,m :=
⋃
n≥mEn ∩Ak and Fk :=

⋂
m∈N Fk,m for every k,m ∈ N. Hence one has∑

n≥m

sup
Ak\Fk,m

|fn − fn+1| ∧ 1 ≤
∑
n≥m

sup
Ak\En

|fn − fn+1| ∧ 1
(1.27)
< 2k

∑
n≥m

1

2n
< +∞

for any given k,m ∈ N, so that fn
n→ gm uniformly on the set Ak \ Fk,m for some continuous

function gk,m : Ak \ Fk,m → R. Let us set

f∞(x) :=

{
gk,m(x)

0

if x ∈ Ak \ Fk,m for some k,m ∈ N,
if x ∈ X \

(⋃
k∈NAk \ Fk

)
.

Clearly f∞ is well-defined as gk,m = gk′,m′ on (Ak \ Fk,m) ∩ (Ak′ \ Fk′,m′) for all k, k′,m,m′ ∈ N.

Moreover, we know from (1.27) that
∑
n∈N Cap(En ∩ Ak) ≤ 2k

(
Cap(Ak) ∨ 1

)∑
n∈N 2−n < +∞

holds for every k ∈ N, whence item c) of Proposition 1.1 ensures that Cap(Fk) = 0 for all k ∈ N.

By item b) of Proposition 1.1 we see that

Cap
(
X \

(⋃
k∈NAk \ Fk

))
= lim
j→∞

Cap
(
Aj \

(⋃
k∈NAk \ Fk

))
≤ lim
j→∞

Cap
(
Aj \ (Aj \ Fj)

)
= lim
j→∞

Cap(Fj) = 0,

which shows that the function f∞ is quasi-continuous. We claim that fn
QU→ f∞, which is enough

to conclude by item i) of Proposition 1.16. Given any ε > 0 and any bounded set B ⊂ X, we can

pick k̄, n̄ ∈ N such that B ⊂ Ak̄ and Cap(E) < ε, where we set E := En̄ ∩Ak̄. Therefore we have

sup
B\E
|fn − f∞| ≤ sup

Ak̄\En̄
|fn − gk̄,n̄|

n−→ 0,

which implies that fn
QU→ f∞, as desired.

(ii) Fix f, g ∈ QC(X) and take (Ak)k as in Definition 1.8. Given any E ⊂ X, it holds that∫
Ak

|f − g| ∧ 1 dCap ≤
∫
E∩Ak

|f − g| ∧ 1 dCap +

∫
Ak\E

|f − g| ∧ 1 dCap

≤ Cap(E ∩Ak) + Cap(Ak) sup
Ak\E

|f − g| ∧ 1,

whence accordingly

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|f − g| ∧ 1 dCap ≤ Cap(E ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup
Ak\E

|f − g| ∧ 1

for every k ∈ N. By summing over k ∈ N and then passing to the infimum over E ⊂ X, we

conclude that dCap(f, g) ≤ dQU(f, g).



14 CLÉMENT DEBIN, NICOLA GIGLI, AND ENRICO PASQUALETTO

On the other hand, let us consider the set Eλ :=
{
|f − g| ∧ 1 > λ

}
for any λ > 0. Therefore for

every k ∈ N one has that Cap(Eλ ∩ Ak) ≤ λ−1
∫
Ak
|f − g| ∧ 1 dCap by item v) of Proposition 1.1

and that supAk\Eλ |f − g| ∧ 1 ≤ λ, thus accordingly

dQU(f, g) ≤
∑
k∈N

(
Cap(Eλ ∩Ak)

2k
(
Cap(Ak) ∨ 1

) +
1

2k
sup

x∈Ak\Eλ

∣∣f(x)− g(x)
∣∣ ∧ 1

)
≤ λ+

1

λ

∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|f − g| ∧ 1 dCap = λ+
dCap(f, g)

λ
.

By letting λ ↓
√
dCap(f, g) we conclude that dQU(f, g) ≤ 2

√
dCap(f, g), as required.

(iii) Let f : X → R be a Borel function whose equivalence class up to Cap-null sets belongs to

QC(X) and ε > 0. Then by definition there is an open set Ω with Cap(Ω) < ε and f |X\Ω is

continuous. By the Tietze extension theorem there is g ∈ C(X) which agrees with f on X \Ω, and

– since this latter condition ensures that dQU(f, g) < ε – the proof is achieved. �

We now turn to the relation between quasi-continuity and Sobolev functions, and to do so it is

useful to emphasise whether we speak about functions up to Cap-null sets or up to m-null sets. We

shall therefore write [f ]Cap (resp. [f ]m) for the equivalence class of the Borel function f : X→ R
up to Cap-null (resp. m-null) sets.

We start noticing that – since m is absolutely continuous with respect to Cap, i.e. Cap-null sets

are also m-null (recall (i) of Proposition 1.7) – there is a natural projection map

Pr : L0(Cap) −→ L0(m),

[f ]Cap 7−→ [f ]m.
(1.28)

Since in general there are m-null sets which are not Cap-null, such projection operator is typically

non-injective. This is why the following result is interesting:

Proposition 1.18 (Uniqueness of quasi-continuous representative). Let f, g : X → R be quasi-

continuous functions. Then f = g m-a.e. implies f = g Cap-a.e.. In other words,

Pr |QC(X)
: QC(X) −→ L0(m)

is an injective map.

Proof. Let N := {f 6= g}. Let Ω ⊂ X open be such that f, g are continuous on X \ Ω. Thus N is

open in X \ Ω and therefore Ω̃ := N ∪ Ω is open in X. By assumption we know that m(N) = 0

and thus the very definition of capacity yields Cap(Ω) = Cap(Ω̃). Hence

Cap(N) ≤ Cap(Ω̃) = Cap(Ω)

and the quasi-continuity assumption gives the conclusion. �

Proposition 1.19. Let f, g ∈ C(X) be such that [f ]m, [g]m ∈W 1,2(X). Then

dQU

(
[f ]Cap, [g]Cap

)
≤ 3

∥∥[f ]m − [g]m
∥∥ 2

3

W 1,2(X)
.

Proof. For any λ > 0 let Ωλ :=
{
|f − g| > λ

}
, so that by definition of dQU we have

(1.29) dQU

(
[f ]Cap, [g]Cap

)
≤ λ+

∑
k∈N

Cap(Ωλ ∩Ak)

2k
(
Cap(Ak) ∨ 1

) .
Notice that Ωλ is an open set by continuity of |f − g|. Moreover, λ−1

[
|f − g|

]
m

is a Sobolev

function satisfying λ−1
[
|f −g|

]
m
≥ 1 m-a.e. on Ωλ. Hence Cap(Ωλ∩Ak) ≤ λ−2

∥∥[f − g]m
∥∥2

W 1,2(X)
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holds for all k ∈ N. Plugging this estimate in (1.29) we obtain that

dQU

(
[f ]Cap, [g]Cap

)
≤ λ+ 2

∥∥[f ]m − [g]m
∥∥2

W 1,2(X)

λ2
,

then by choosing λ :=
∥∥[f ]m − [g]m

∥∥ 2
3

W 1,2(X)
we get the conclusion. �

Collecting these last two propositions we obtain the following result:

Theorem 1.20 (Quasi-continuous representative of Sobolev function). Suppose that (equivalence

classes up to m-a.e. equality of) continuous functions in W 1,2(X) are dense in W 1,2(X). Then

there exists a unique continuous map

(1.30) QCR : W 1,2(X) −→ QC(X)

such that the composition Pr ◦QCR is the inclusion map W 1,2(X) ⊂ L0(m).

Moreover, QCR is linear and satisfies

(1.31)
∣∣QCR(f)

∣∣ = QCR
(
|f |
)

Cap-a.e. for every f ∈W 1,2(X).

Finally, if [fn]m → [f ]m in W 1,2(X), then any subsequence has a further subsequence converging

locally quasi-uniformly.

Proof. For f ∈ C(X) with [f ]m ∈ W 1,2(X) the requirements for QCR(f) are that it must belong

to QC(X) and satisfy Pr
(
QCR(f)

)
= [f ]m. Thus Proposition 1.18 forces it to be equal to [f ]Cap.

Proposition 1.19 ensures that such assignment is Lipschitz as map from W 1,2(X)∩C(X) to QC(X),

and thus can be uniquely extended to a continuous map on the whole W 1,2(X).

Since QCR is linear on continuous functions, by continuity it is linear on the whole W 1,2(X).

(1.31) is trivial for continuous functions, thus its validity for general ones follows by continuity.

The last statement is a direct consequence of what already proved and Proposition 1.16. �

2. Main result

2.1. L0(Cap)-normed L0(Cap)-modules. The language of L0(m)-normed L0(m)-modules over

a metric measure space (X, d,m) has been proposed and investigated by the second author in [9],

with the final aim of developing a differential calculus on RCD spaces. In the present paper, we

assume the reader to be familiar with such language. We shall use the term L0(m)-module in place

of L0(m)-normed L0(m)-module and we will typically denote by Mm any such object. We refer to

[9, 10] for a detailed account about this topic. Here we introduce a new notion of normed module,

called L0(Cap)-normed L0(Cap)-module or, more simply, L0(Cap)-module, in which the measure

under consideration is the capacity Cap instead of the reference measure m.

Let (X, d,m) be a metric measure space as in (1.8) and (Ak)k a sequence as in Definition 1.8.

Definition 2.1 (L0(Cap)-normed L0(Cap)-module). We say that a quadruple
(
M , τ, · , | · |

)
is a

L0(Cap)-normed L0(Cap)-module over (X, d,m) provided:

i) (M , τ) is a topological vector space.

ii) The bilinear map · : L0(Cap) ×M → M satisfies f · (g · v) = (fg) · v and 1 · v = v for

every f, g ∈ L0(Cap) and v ∈M .

iii) The map | · | : M → L0(Cap), called pointwise norm, satisfies

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v|+ |w| for every v, w ∈M ,

|f · v| = |f ||v| for every v ∈M and f ∈ L0(Cap),
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where all equalities and inequalities are intended in the Cap-a.e. sense.

iv) The distance dM on M , given by

dM (v, w) :=
∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|v − w| ∧ 1 dCap for all v, w ∈M ,

is complete and induces the topology τ .

Much like starting from L0(Cap) and passing to the quotient up to m-a.e. equality we obtain

L0(m), in the same way by passing to an appropriate quotient starting from an arbitrary L0(Cap)-

module we obtain a L0(m)-module. Let us describe this procedure.

Let M be a L0(Cap)-module and define an equivalence relation on it by declaring

v ∼m w ⇐⇒ |v − w| = 0 m-a.e. in X.

Then we consider the quotient Mm := M / ∼m, the projection map PrM : M →Mm sending v

to its equivalence class [v]m and define the following operations on Mm:

[v]m + [w]m := [v + w]m ∈Mm,

[f ]m · [v]m :=
[
[f ]Cap · v

]
m
∈Mm,∣∣[v]m

∣∣ := Pr
(
|v|
)
∈ L0(m),

for every v, w ∈M and f : X→ R Borel, where Pr : L0(Cap)→ L0(m) is the projection operator

defined in (1.28). Routine verifications show that with these operations Mm is a L0(m)-module.

For a given L0(Cap)-module M , the couple (Mm,PrM ) is characterized by the following uni-

versal property:

Proposition 2.2 (Universal property of (Mm,PrM )). Let M be a L0(Cap)-module and let

(Mm,PrM ) be defined as above. Also, let Nm be a L0(m)-module and T : M → Nm be a linear

map satisfying

(2.1)
∣∣T (v)

∣∣ ≤ Pr
(
|v|
)

m-a.e. for every v ∈M .

Then there is a unique L0(m)-linear and continuous map TPr : Mm → Nm such that the diagram

(2.2)

M Mm

Nm

PrM

TPr
T

commutes.

In particular, for any other couple (M ′
m,Pr′M ) with the same property there is a unique iso-

morphism Φ : Mm →M ′
m (i.e. bijection which preserves the whole structure of L0(Cap)-module)

such that Φ ◦ PrM = Pr′M .

Proof. The latter statement is an obvious consequence of the former, so we concentrate on this

one. Let v, w ∈M be such that v ∼m w and notice that∣∣T (v)− T (w)
∣∣ =

∣∣T (v − w)
∣∣ (2.1)

≤ Pr
(
|v − w|

)
= 0 holds m-a.e..

Thus T passes to the quotient and defines a map TPr : Mm → Nm making the diagram (2.2)

commute. It is clear that TPr is linear and continuous (the latter being a consequence of (2.1)

and the definition), thus to conclude it is sufficient to prove L0(m)-linearity. By linearity and
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continuity this will follow if we show that TPr

(
[χE ]m[v]m

)
= [χE ]m TPr

(
[v]m

)
for any Borel set

E ⊂ X; in turn, this will follow if we prove that

T
(
[χE ]Cap v

)
= [χE ]m T (v) for every v ∈M and E ⊂ X Borel.

To show this, notice that from (2.1) it follows
∣∣T ([χEc ]Cap v)

∣∣ ≤ [χEc ]m Pr
(
|v|
)
, thus multiplying

both sides by [χE ]m we obtain

(2.3) [χE ]m T
(
[χEc ]Cap v

)
= 0 and symmetrically [χEc ]m T

(
[χE ]Cap v

)
= 0.

Therefore

T
(
[χE ]Cap v

)
=
(
[χE ]m + [χEc ]m

)
T
(
[χE ]Cap v

)
(2.3)
= [χE ]m T

(
[χE ]Cap v

)
(2.3)
= [χE ]m

(
T ([χE ]Cap v) + T ([χEc ]Cap v)

)
= [χE ]m T (v)

and the conclusion follows. �

Remark 2.3. In analogy with the case of L0(m)-modules, one could be tempted to define the dual

of a L0(Cap)-module MCap as the space of L0(Cap)-linear continuous maps L : MCap → L0(Cap)

and to declare that the pointwise norm |L| of any such L is the minimal element of L0(Cap) (where

minimality is intended in the Cap-a.e. sense) such that the inequality |L| ≥ L(v) holds Cap-a.e.

for any v ∈MCap that Cap-a.e. satisfies |v| ≤ 1.

Technically speaking, for L0(m)-modules this can be achieved by using the notion of essential

supremum of a family of Borel functions. Nevertheless, it seems that this tool cannot be adapted

to the situation in which we want to consider the capacity instead of the reference measure, as

suggested by Example 1.2. �

Definition 2.4. Let H be a L0(Cap)-module over (X, d,m). Then we say that H is a Hilbert

module provided

(2.4) |v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 holds Cap-a.e. in X

for every v, w ∈H .

By polarisation, we define a pointwise scalar product 〈·, ·〉 : H ×H → L0(Cap) as

(2.5) 〈v, w〉 :=
|v + w|2 − |v|2 − |w|2

2
Cap-a.e. in X.

Then the operator 〈·, ·〉 is L0(Cap)-bilinear and satisfies∣∣〈v, w〉∣∣ ≤ |v||w|
〈v, v〉 = |v|2

Cap-a.e. for every v, w ∈H .(2.6)

2.2. Tangent L0(Cap)-module. Let (X, d,m) be an RCD(K,∞) space, for some K ∈ R. A

fundamental class of Sobolev functions on X is that of test functions, denoted by Test(X) (cf. [9]).

We point out that we are in a position to apply Theorem 1.20 above, since Lipschitz functions with

bounded support are dense in W 1,2(X), as proven in [1]. Moreover, a fact that is fundamental for

our discussion (see [15]) is the following:

(2.7) 〈∇f,∇g〉 ∈W 1,2(X) for every f, g ∈ Test(X).

In particular, by taking g = f in (2.7) we get |Df |2 ∈W 1,2(X) for every f ∈ Test(X).

Let us use the notation L0
m(TX) to indicate the tangent L0(m)-module over (X, d,m). Recall

that TestV(X) ⊆ L0
m(TX) denotes the class of test vector fields on X, while H1,2

C (TX) is the closure
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of TestV(X) in the Sobolev space W 1,2
C (TX). We know from [10, Proposition 2.19] that for any

v ∈ H1,2
C (TX) ∩ L∞m (TX) one has that |v|2 ∈W 1,2(X) and

(2.8) d|v|2(w) = 2 〈∇wv, v〉 m-a.e. for every w ∈ L0
m(TX),

whence in particular
∣∣D|v|2∣∣ ≤ 2 |∇v|HS |v| holds m-a.e.. This in turn implies the following:

Lemma 2.5. Let (X, d,m) be an RCD(K,∞) space, for some K ∈ R. Let v ∈ H1,2
C (TX) be fixed.

Then |v| ∈W 1,2(X) and

(2.9)
∣∣D|v|∣∣ ≤ |∇v|HS holds m-a.e. in X.

Proof. First of all, we prove the statement for v ∈ TestV(X). Given any ε > 0, let us define the

Lipschitz function ϕε : [0,+∞) → R as ϕε(t) :=
√
t+ ε for any t ≥ 0. Hence by applying the

chain rule for minimal weak upper gradients we see that ϕε ◦ |v|2 ∈ S2(X) (cf. [2] for the notion of

Sobolev class S2(X)) and∣∣D(ϕε ◦ |v|2)
∣∣ = ϕ′ε ◦ |v|2

∣∣D|v|2∣∣ =

∣∣D|v|2∣∣
2
√
|v|2 + ε

≤ |v|√
|v|2 + ε

|∇v|HS ≤ |∇v|HS.

This grants the existence of G ∈ L2(m) and a sequence εj ↘ 0 such that
∣∣D(ϕεj ◦ |v|2)

∣∣ ⇀ G

weakly in L2(m) as j → ∞ and G ≤ |∇v|HS in the m-a.e. sense. Since ϕεj ◦ |v|2 → |v| pointwise

m-a.e. as j →∞, we deduce from the lower semicontinuity of minimal weak upper gradients that

|v| ∈W 1,2(X) and that
∣∣D|v|∣∣ ≤ |∇v|HS holds m-a.e. in X.

Now fix v ∈ H1,2
C (TX). Pick a sequence (vn)n ⊆ TestV(X) that W 1,2

C (TX)-converges to v.

In particular, |vn| → |v| and |∇vn|HS → |∇v|HS in L2(m). By the first part of the proof we

know that |vn| ∈ W 1,2(X) and
∣∣D|vn|∣∣ ≤ |∇vn|HS for all n ∈ N, thus accordingly (up to a not

relabeled subsequence) we have that
∣∣D|vn|∣∣⇀ H weakly in L2(m), for some H ∈ L2(m) such that

H ≤ |∇v|HS holds m-a.e. in X. Again by lower semicontinuity of minimal weak upper gradients we

conclude that |v| ∈W 1,2(X) with
∣∣D|v|∣∣ ≤ |∇v|HS in the m-a.e. sense, proving the statement. �

We now introduce the so-called tangent L0(Cap)-module L0
Cap(TX) over X, which is a L0(Cap)-

module in the sense of Definition 2.1.

Theorem 2.6 (Tangent L0(Cap)-module). Let (X, d,m) be an RCD(K,∞) space. Then there

exists a unique couple
(
L0

Cap(TX), ∇̄
)
, where L0

Cap(TX) is a L0(Cap)-module over X and the

operator ∇̄ : Test(X)→ L0
Cap(TX) is linear, such that the following properties hold:

i) For any f ∈ Test(X) we have that the equality |∇̄f | = QCR
(
|Df |

)
holds Cap-a.e. on X

(note that |Df | ∈W 1,2(X) as a consequence of Lemma 2.5).

ii) The space of
∑
n∈N χEn∇̄fn, with (fn)n ⊆ Test(X) and (En)n Borel partition of X, is

dense in L0
Cap(TX).

Uniqueness is intended up to unique isomorphism: given another couple (MCap, ∇̄′) with the same

properties, there exists a unique isomorphism Φ : L0
Cap(TX)→MCap with Φ ◦ ∇̄ = ∇̄′.

The space L0
Cap(TX) is called tangent L0(Cap)-module associated to (X, d,m), while its ele-

ments are said to be Cap-vector fields on X. Moreover, the operator ∇̄ is called gradient.

Proof.

Uniqueness. Consider any simple vector field v ∈ L0
Cap(TX), i.e. v =

∑
n∈N χEn∇̄fn for some

(fn)n ⊆ Test(X) and (En)n Borel partition of X. We are thus forced to set

(2.10) Φ(v) :=
∑
n∈N

χEn∇̄′fn ∈MCap.



QUASI-CONTINUOUS VECTOR FIELDS ON RCD SPACES 19

Such definition is well-posed, as granted by the Cap-a.e. equalities∣∣∣∣∣∑
n∈N

χEn∇̄′fn

∣∣∣∣∣ =
∑
n∈N

χEn |∇̄′fn| =
∑
n∈N

χEn |Dfn| =
∑
n∈N

χEn |∇̄fn| = |v|,

which also show that Φ preserves the pointwise norm of simple vector fields. In particular, the

map Φ is linear and continuous, whence it can be uniquely extended to a linear and continuous

operator Φ : L0
Cap(TX) →MCap by density of simple vector fields in L0

Cap(TX). It follows from

Proposition 1.12 that Φ preserves the pointwise norm. Moreover, we know from the definition

(2.10) that Φ(fv) = f Φ(v) is satisfied for any simple f and v, whence also for all f ∈ L0(Cap)

and v ∈ L0
Cap(TX) by Proposition 1.12. To conclude, just notice that the image of Φ is dense in

MCap by density of simple vector fields in MCap, thus accordingly Φ is surjective (as its image is

closed, being Φ an isometry). Therefore we proved that there exists a unique module isomorphism

Φ : L0
Cap(TX)→MCap such that Φ ◦ ∇̄ = ∇̄′, as required.

Existence. We define the ‘pre-tangent module’ Ptm as the set of all sequences (En, fn)n, where

(fn)n ⊆ Test(X) and (En)n is a Borel partition of X. We now define an equivalence relation ∼ on

Ptm: we declare that (En, fn)n ∼ (Fm, gm)m provided

QCR
(
|D(fn − gm)|

)
= 0 Cap-a.e. on En ∩ Fm for every n,m ∈ N.

The equivalence class of (En, fn)n will be denoted by [En, fn]n. Moreover, let us define

α [En, fn]n + β [Fm, gm]m := [En ∩ Fm, α fn + β gm]n,m

for every α, β ∈ R and [En, fn]n, [Fm, gm]m ∈ Ptm/ ∼, so that Ptm/ ∼ inherits a vector space

structure; well-posedness of these operations is granted by the locality property of minimal weak

upper gradients and by Theorem 1.20. We define the pointwise norm of any given element

[En, fn]n ∈ Ptm/ ∼ as

(2.11)
∣∣[En, fn]n

∣∣ :=
∑
n∈N

χEnQCR
(
|Dfn|

)
∈ L0(Cap).

Then we define L0
Cap(TX) as the completion of the metric space

(
Ptm/ ∼ , dL0

Cap(TX)

)
, where

(2.12) dL0
Cap(TX)(v, w) :=

∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|v − w| ∧ 1 dCap for all v, w ∈ Ptm/ ∼,

while we set ∇̄f := [X, f ] ∈ L0
Cap(TX) for every test function f ∈ Test(X), thus obtaining a linear

operator ∇̄ : Test(X) → L0
Cap(TX). Item i) of the statement is thus clearly satisfied. Observe

that [En, fn]n =
∑
n∈N χEn∇̄fn for every [En, fn]n ∈ Ptm/ ∼, so that also item ii) is verified, as a

consequence of the density of Ptm/ ∼ in L0
Cap(TX). Now let us define the multiplication operator

· : Sf(X)× (Ptm/ ∼)→ Ptm/ ∼ as follows:

(2.13)

(∑
m∈N

αm χFm

)
· [En, fn]n := [En ∩ Fm, αm fn]n,m ∈ Ptm/ ∼ .

Therefore the maps defined in (2.11) and (2.13) can be uniquely extended by continuity to a

pointwise norm operator | · | : L0
Cap(TX) → L0(Cap) and a multiplication by L0(Cap)-functions

· : L0(Cap)× L0
Cap(TX)→ L0

Cap(TX), respectively. It also turns out that the distance dL0
Cap(TX)

is expressed by the formula in (2.12) for any v, w ∈ L0
Cap(TX), as one can readily deduce from

Proposition 1.12. Finally, standard verifications show that L0
Cap(TX) is a L0(Cap)-module over

(X, d,m), thus concluding the proof. �
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Remark 2.7. An analogous construction has been carried out in [9] to define the cotangent L0(m)-

module L0
m(T ∗X), while the tangent L0(m)-module L0

m(TX) was obtained from the cotangent one

by duality. However, since we cannot consider duals of L0(Cap)-modules (as pointed out in Remark

2.3), we opted for a different axiomatisation. We just underline the fact that, since RCD spaces

are infinitesimally Hilbertian, the modules L0
m(T ∗X) and L0

m(TX) can be canonically identified

via the Riesz isomorphism. �

Proposition 2.8. The tangent L0(Cap)-module L0
Cap(TX) is a Hilbert module.

Proof. Given any f, g ∈ Test(X), we deduce from item i) of Theorem 2.6 and the last statement

of Theorem 1.20 that

|∇̄f + ∇̄g|2 + |∇̄f − ∇̄g|2 = QCR
(
|D(f + g)|2 + |D(f − g)|2

)
= QCR

(
2 |Df |2 + 2 |Dg|2

)
= 2 |∇̄f |2 + 2 |∇̄g|2.

This grants that the pointwise parallelogram identity (2.4) is satisfied whenever v, w are L0(Cap)-

linear combinations of elements of
{
∇̄f : f ∈ Test(X)

}
, whence also for any v, w ∈ L0

Cap(TX) by

approximation. This proves that L0
Cap(TX) is a Hilbert module, as required. �

We now investigate the relation that subsists between tangent L0(Cap)-module and tangent

L0(m)-module. We start with the following result, which shows the existence of a natural projec-

tion operator P̄r sending ∇̄f to ∇f :

Proposition 2.9. There exists a unique linear continuous operator P̄r : L0
Cap(TX) → L0

m(TX)

that satisfies the following properties:

i) P̄r(∇̄f) = ∇f for every f ∈ Test(X).

ii) P̄r(gv) = Pr(g) P̄r(v) for every g ∈ L0(Cap) and v ∈ L0
Cap(TX).

Moreover, the operator P̄r satisfies

(2.14)
∣∣P̄r(v)

∣∣ = Pr
(
|v|
)

m-a.e. for every v ∈ L0
Cap(TX).

Proof. Given a Borel partition (En)n∈N of X and (vn)n∈N ⊆ L0
Cap(TX), we are forced to set

(2.15) P̄r

(∑
n∈N

[χEn ]Cap∇̄fn
)

:=
∑
n∈N

[χEn ]m∇fn.

The well-posedness of such definition stems from the following m-a.e. equalities:∣∣∣∣∑
n∈N

[χEn ]m∇fn
∣∣∣∣ =

∑
n∈N

[χEn ]m |Dfn| =
∑
n∈N

Pr
(
[χEn ]Cap

)
Pr
(
QCR

(
|Dfn|

))
= Pr

(∑
n∈N

[χEn ]Cap QCR
(
|Dfn|

))
= Pr

(∑
n∈N

[χEn ]Cap |∇̄fn|
)

= Pr

(∣∣∣∑
n∈N

[χEn ]Cap∇̄fn
∣∣∣).

(2.16)

Moreover, we also infer that such map P̄r – which is linear by construction – is also continuous,

whence it admits a unique linear and continuous extension P̄r : L0
Cap(TX)→ L0

m(TX). Property

i) is clearly satisfied by (2.15). From the linearity of ∇ and ∇̄, we deduce that property ii) holds

for any simple function g ∈ L0(Cap), thus also for any g ∈ L0(Cap) by approximation. Finally,

again by approximation we see that (2.14) follows from (2.16). �

The fact that L0
Cap(TX) can be thought of as a natural ‘refinement’ of the already known

L0
m(TX) is now encoded in the following proposition, which shows that

(
L0
m(TX), P̄r

)
is the cano-

nical quotient of L0
Cap(TX) up to m-a.e. equality (recall Proposition 2.2):
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Proposition 2.10. Let Nm be a L0(m)-module and T : L0
Cap(TX)→ Nm linear and such that

(2.17)
∣∣T (v)

∣∣ ≤ Pr
(
|v|
)

m-a.e. for every v ∈ L0
Cap(TX).

Then there is a unique L0(m)-linear and continuous map S : L0
m(TX)→ Nm such that the diagram

(2.18)

Test(X) L0
Cap(TX)

L0
m(TX) Nm

∇̄

∇ T

S

commutes.

Proof. By (2.17) it follows that
∣∣T (∇̄f)− T (∇̄g)

∣∣ ≤ ∣∣D(f − g)
∣∣ holds m-a.e. and thus

(2.19) f, g ∈ Test(X),
∣∣D(f − g)

∣∣ = 0 m-a.e. on E ⊂ X =⇒ T (∇̄f) = T (∇̄g) m-a.e. on E.

Now let V ⊂ L0
m(TX) be the space of finite sums of the form

∑
i[χEi ]m∇fi for (Ei)i Borel subsets

of X and (fi)i ⊂ Test(X), and define S : V → Nm as:

S(v) :=
∑
i

[χEi ]m T (∇̄fi) ∈ Nm for every v =
∑
i

[χEi ]m∇fi ∈ V.

The implication in (2.19) grants that this is a good definition, i.e. the value of S(v) depends only

on v and not on how it is written as finite sum of the form
∑
i[χEi ]m∇fi. It is clear that S is

linear and that, by (2.17) and item i) of Theorem 2.6, it holds

(2.20)
∣∣S(v)

∣∣ ≤ |v| m-a.e. for every v ∈ V.

In particular, S is 1-Lipschitz from V (with the L0
m(TX)-distance) to Nm. Since V is dense in

L0
m(TX), S can be uniquely extended to a continuous map – still denoted by S – from L0

m(TX) to

Nm. Clearly such extension is linear and, by (2.20), it also satisfies S
(
[χE ]mv

)
= [χE ]mS(v) (e.g.

by mimicking the arguments used in the proof of Proposition 2.2). These two facts easily imply

L0(m)-linearity, thus showing existence of the desired map S. For uniqueness simply notice that

the value of S on the dense subspace V of L0
m(TX) is forced by the commutativity of the diagram

in (2.18). �

2.3. Quasi-continuity of Sobolev vector fields on RCD spaces. Let (X, d,m) be an

RCD(K,∞) space, for some K ∈ R. The aim of this conclusive subsection is to prove that

any element of the space H1,2
C (TX) admits a quasi-continuous representative, in a suitable sense.

We begin with the definition of quasi-continuous vector field on X:

Definition 2.11 (Quasi-continuity for vector fields). We define the set TestV̄(X) ⊆ L0
Cap(TX) as

(2.21) TestV̄(X) :=

{ n∑
i=0

QCR(gi) ∇̄fi
∣∣∣∣ n ∈ N, (fi)

n
i=1, (gi)

n
i=1 ⊆ Test(X)

}
.

Then the space QC(TX) of quasi-continuous vector fields on X is defined as the dL0
Cap(TX)-closure

of TestV̄(X) in L0
Cap(TX). It clearly holds that QC(TX) is a vector subspace of L0

Cap(TX).

Proposition 2.12. Let v ∈ QC(TX) be given. Then it holds that |v| ∈ QC(X).
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Proof. First of all, if v =
∑n
i=0 QCR(gi) ∇̄fi ∈ TestV̄(X) then

|v|2 =

n∑
i,j=0

QCR(gi)QCR(gj) 〈∇̄fi, ∇̄fj〉

=

n∑
i,j=0

QCR(gi)QCR(gj)

∣∣∇̄(fi + fj)
∣∣2 − |∇̄fi|2 − |∇̄fj |2

2

=

n∑
i,j=0

QCR(gi)QCR(gj)
QCR

(
|D(fi + fj)|2

)
− QCR

(
|Dfi|2

)
− QCR

(
|Dfj |2

)
2

∈ QC(X).

For general v ∈ QC(TX) we proceed by approximation: chosen any sequence (vn)n ⊂ TestV̄(X)

such that dL0
Cap(TX)(vn, v)→ 0, or equivalently dCap

(
|vn−v|, 0

)
→ 0, we have that |vn| → |v| with

respect to dCap, whence accordingly |v| ∈ QC(X) by Proposition 1.17. �

Proposition 2.13. It holds that the map P̄r|QC(TX)
: QC(TX)→ L0

m(TX) is injective.

Proof. Let v, w ∈ QC(TX) be such that P̄r(v) = P̄r(w). In other words, we have that

Pr
(
|v − w|

) (2.14)
=

∣∣P̄r(v − w)
∣∣ = 0 holds m-a.e. in X,

whence Proposition 1.18 grants that |v−w| = 0 holds Cap-a.e. in X. This shows that v = w, thus

proving the claim. �

We are ready to state and prove the main result of the paper: any element of H1,2
C (TX) admits

a quasi-continuous representative in QC(TX). This is a generalisation of Theorem 1.20 to vector

fields over an RCD space.

Theorem 2.14 (Quasi-continuous representative of a Sobolev vector field). Let us fix any

RCD(K,∞) space (X, d,m), for some K ∈ R. Then there exists a unique map

(2.22) ¯QCR : H1,2
C (TX) −→ QC(TX)

such that P̄r ◦ ¯QCR : H1,2
C (TX) → L0

m(TX) coincides with the inclusion H1,2
C (TX) ⊂ L0

m(TX).

Moreover, ¯QCR is linear and
∣∣ ¯QCR(v)

∣∣ = QCR
(
|v|
)

holds for every v ∈ H1,2
C (TX).

Proof. Fix v ∈ H1,2
C (TX). Pick (v̄n)n ⊆ TestV̄(X) such that vn := P̄r(v̄n) → v in W 1,2

C (TX). We

know from Lemma 2.5 that |vn − v| ∈ W 1,2(X) and
∣∣D|vn − v|∣∣ ≤ ∣∣∇(vn − v)

∣∣
HS

m-a.e. for all

n ∈ N, thus accordingly |vn−v| → 0 in W 1,2(X) as n→∞. Proposition 1.19 grants that – up to a

(not relabeled) subsequence – we have that QCR
(
|vn− v|

)
→ 0 locally quasi-uniformly as n→∞,

whence QCR
(
|vn − vm|

)
→ 0 locally quasi-uniformly as n,m→∞. Thus Proposition 1.17 yields

dL0
Cap(TX)(v̄n, v̄m) = dCap

(
QCR

(
|vn − vm|

)
, 0
)
−→ 0 as n,m→∞.

This shows that (v̄n)n ⊆ L0
Cap(TX) is Cauchy, thus it converges to some v̄ ∈ L0

Cap(TX). Hence one

has P̄r(v̄) = P̄r
(

limn v̄n
)

= limn P̄r(v̄n) = limn vn = v, so that we define ¯QCR(v) := v̄. Proposition

2.13 grants that the map ¯QCR : H1,2
C (TX)→ QC(TX) is well-defined and is the unique map such

that P̄r ◦ ¯QCR coincides with the inclusion H1,2
C (TX) ⊂ L0

m(TX). Finally, the last two statements

follow from linearity of P̄r, Theorem 1.20 and Proposition 2.13. �

Remark 2.15. From the defining property of ¯QCR and Propositions 2.9, 2.13 we see that
¯QCR(∇f) = ∇̄f for every f ∈ Test(X). Then it is easy to see that ¯QCR

(
TestV(X)

)
= TestV̄(X).

�
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Remark 2.16 (Alternative notion of quasi-continuous vector field). It is well-known that a vector

field v : Rn → Rn in the Euclidean space is quasi-continuous if and only if Rn 3 x 7→
∣∣v(x)−∇f(x)

∣∣
is quasi-continuous for every smooth function f : Rn → R. This would suggest an alternative

definition of quasi-continuous vector field on the RCD(K,∞) space X:

(2.23) Q̃C(TX) :=
{
v ∈ L0

Cap(TX)
∣∣ |v − ∇̄f | ∈ QC(X) for every f ∈ Test(X)

}
.

The well-posedness of the previous definition follows from the fact that quasi-continuity is pre-

served under modification on Cap-negligible sets. As we are going to show, it holds that

(2.24) QC(TX) ⊂ Q̃C(TX).

In order to prove it, let us fix v ∈ QC(TX). Given any f ∈ Test(X) and (vn)n ⊂ TestV̄(X) such that

vn → v in L0
Cap(TX), we see (by arguing as in the proof of Lemma 2.12) that |vn − ∇̄f | ∈ QC(X)

holds for every n ∈ N, therefore also |v − ∇̄f | ∈ QC(X) as an immediate consequence of the fact

that |vn − ∇̄f | → |v − ∇̄f | in L0(Cap). Since f ∈ Test(X) is arbitrary, the claim (2.24) is proven.

Notice that due to the non-linearity of the defining condition (2.23) it is not clear if Q̃C(TX) is

a vector space or not. In particular, it is not clear if the inclusion in (2.24) can be strict. �

We conclude giving a simple and explicit example to which the definitions and constructions

presented in the paper can be applied:

Example 2.17 (The case X = [0, 1]). Let us see how the definitions we gave work in the case X

is the Euclidean segment [0, 1] equipped with its natural distance and measure. It is well known

and easy to check that in this space every singleton has positive capacity. It follows that the

space L0(Cap) coincides, as a set, with the space of all real valued Borel functions on X and

similarly the space QC(X) coincides with the space of continuous functions on X. In particular,

the quasi-continuous representative of a Sobolev function is, in fact, its continuous representative.

A direct verification of the definitions then shows that for f ∈ D(∆) ⊂ W 1,2(X) we have

f ′ ∈ W 1,2(X) as well and, identifying f, f ′ with their continuous representatives, it also holds

f ′(0) = f ′(1) = 0. In particular, for any f ∈ Test(X) we have that (the continuous representative

of) f ′ is continuous and equal to 0 in {0, 1}.
We now claim that L0

Cap(TX) is (=can be identified with) the space of Borel functions on [0, 1]

which are 0 on {0, 1}, the corresponding gradient map ∇̄ being the one which assigns to any

f ∈ Test(X) the continuous representative of f ′, which shall hereafter be denoted by f ′. The

verification of this claim follows from the above discussion and the uniqueness part of Theorem

2.6.

It is then clear that QC(TX) consists of continuous elements in L0
Cap(TX), i.e. of continuous

functions which are zero on {0, 1}, and that QC(TX) coincides with the space Q̃C(TX) introduced

in the previous remark.

This simple example shows that:

a) The constant dimension property of RCD(K,N) spaces recently obtained in [5], which is

known to carry over to the ‘standard’ tangent module L0
m(TX), does not carry over to the

module L0
Cap(TX) introduced in this manuscript: adapting the definitions in [9], one can

see that in our example the dimension of L0
Cap(TX) over {0, 1} is 0 and over (0, 1) is 1.

b) The estimates obtained in [14] from which one can deduce that the capacity of the critical

set of solutions of elliptic PDEs is 0, do not carry over to the RCD setting, and in fact

not even in the setting of non-collapsed RCD spaces. Indeed, in our example the critical

set of any function on X whose Laplacian is also a function (and not a measure) contains
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{0, 1}: the problem seems to be the presence of the ‘boundary’, see also [11] for further

comments about the definition of boundary of a ncRCD space.

�
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