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Abstract. In this paper we address the problem of continuous dependence on initial and
boundary data for a one-dimensional debonding model describing a thin film peeled away from
a substrate. The system underlying the process couples the weakly damped wave equation with
a Griffith’s criterion which rules the evolution of the debonded region. We show that under
general convergence assumptions on the data the corresponding solutions converge to the limit
one with respect to different natural topologies.
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Introduction

The interest of the physical and engineering community on dynamic debonding models in-
volving one spatial dimension originates in the ’70s from the works of Hellan [8, 9, 10], Burridge
& Keller [1] and carries on in the ’90s with the ones of Freund collected in [7]. The importance
of this kind of models relies on the fact that they possess deep similarities to the theory of
dynamic crack growth based on Griffith’s criterion, but at the same time they are much eas-
ier to treat, allowing an exhaustive comprehension of the involved physical processes. More
recently debonding models have been resumed by several authors, see for instance Dumouchel
and others [5, 6, 12], but only in the last few years a rigorous mathematical formulation has
been adopted: we are referring to [3, 13, 15, 16], in which existence and uniqueness results are
stated, or to [13, 14], where the so-called quasistatic limit problem is addressed. Nevertheless
we are not aware of the presence in literature of continuous dependence results for debonding
models, despite the importance of the issue and despite partial achievements in this direction
have already been obtained in the more complicated framework of Fracture Dynamics, see for
istance [2, 4]. Therefore the aim of our paper is filling this gap, giving a positive answer to the
question of continuous dependence in a general version of dynamic debonding model.
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To describe the model we are going to analyse let us consider a perfectly flexible and inextensi-
ble thin film partially glued to a flat rigid substrate. In an orthogonal coordinate system (x, y, z),
in which the substrate is identified with the half plane {(x, y, z) | x ≥ 0, z = 0}, we assume the
deformation of the film at time t ≥ 0 is parametrized by (x, y, 0) 7→ (x+h(t, x), y, u(t, x)), where
the scalar functions h and u represent the horizontal and the vertical displacement, respectively.
Since the second component y is assumed to be constant it will be ignored in the rest of the pa-
per; this means that the debonding process takes place in the vertical half plane {(x, z) | x ≥ 0}.
At every time t ≥ 0 the debonded part of the film is the segment {(x, 0) | x ∈ [0, `(t))}, where
` is a nondecreasing function representing the debonding front. This in particular implies that
the displacement (h(t, x), u(t, x)) is identically zero on the half line {(x, 0) | x ≥ `(t)}. As in [3]
and [16] in this work we make the crucial assumption that `0 := `(0) > 0, namely at the initial
time t = 0 the film is already debonded in the segment {(x, 0) | x ∈ [0, `0)}; see instead [15] for
the analysis of the singular case in which initially the film is completely glued to the substrate.
At the endpoint x = 0 we finally prescribe a boundary condition for the vertical displacement
u(t, 0) = w(t). By linear approximation, inextensibility of the film provides an explicit formula
for the horizontal displacement:

h(t, x) =
1

2

∫ `(t)

x
u2
x(t, ξ) dξ.

The vertical displacement u and the debonding front ` instead solve the system:

utt(t, x)− uxx(t, x) + νut(t, x) = 0, t > 0 , 0 < x < `(t),

u(t, 0) = w(t), t > 0,

u(t, `(t)) = 0, t > 0,

u(0, x) = u0(x), 0 < x < `0,

ut(0, x) = u1(x), 0 < x < `0,

(0.1a)

+ Energy criteria satisfied by u and `, (0.1b)

where the initial conditions u0 and u1 are given functions, and the parameter ν ≥ 0 takes into
account the friction produced by air resistence.

The paper is organised as follows: in Section 1 we first give a rigorous mathematical presen-
tation of the debonding model and we introduce the energy criteria appearing in (0.1b) that
the pair (u, `) has to satisfy (see Griffith’s criterion (1.4)). We then state the result of existence
and uniqueness for solutions to problem (0.1) proved in [16]. Finally we present the continuous
dependence problem: we consider sequences of data converging in the natural topologies to some
limit, see (1.12), and we wonder whether and in which sense the sequence of solutions to (0.1)
corresponding to these data, denoted by {(uk, `k)}, converges to the solution corresponding to
the limit ones, denoted by (u, `).

Section 2 is devoted to the analysis of the convergence of the sequence of vertical displacements
{uk} assuming a priori that the sequence of debonding fronts {`k} converges to ` in some suitable
topology. The main outcomes of this Section are collected in (2.4), see also Remark 2.12.

In Section 3 we finally state and prove our continuous dependence result, see Theorem 3.6,
showing that the convergence of the sequence of debonding fronts we postulated in Section 2
actually happens. The strategy of the proof strongly relies on a representation formula for
solutions to (0.1a) proved in [16], see (1.9) and (3.1). Furthermore the argument exploits the
idea used in [16] that a certain operator is a contraction with respect to a suitable distance, see
(3.3) and Propositions 3.3 and 3.4.
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Notations

In this Section we collect some notations and some definitions that we will use several times
during the paper. They have already been introduced and used in [3] and [16], so we refer to
them for a wide and more complete explanation.

Remark 0.1. Throughout the paper every function in W 1,p(a, b), for −∞ < a < b < +∞ and
p ∈ [1,+∞], is always identified with its continuous representative on [a, b].

Furthermore the derivative of any function of real variable is always denoted by a dot (i.e. ḟ ,
˙̀, ϕ̇, v̇0), regardless of whether it is a time or a spatial derivative.

Fix `0 > 0 and consider a function ` : [0,+∞) → [`0,+∞), which will play the role of the
debonding front, satisfying:

` ∈ C0,1([0,+∞)), (0.2a)

`(0) = `0 and 0 ≤ ˙̀(t) < 1 for a.e. t ∈ [0,+∞). (0.2b)

Given such a function we define the sets:

Ω := {(t, x) | t > 0 , 0 < x < `(t)},
Ω′1 := {(t, x) ∈ Ω | t ≤ x and t+ x ≤ `0},
Ω′2 := {(t, x) ∈ Ω | t > x and t+ x < `0},
Ω′3 := {(t, x) ∈ Ω | t < x and t+ x > `0},
Ω′ := Ω′1 ∪ Ω′2 ∪ Ω′3,

ΩT := {(t, x) ∈ Ω | t < T},
Ω′T := {(t, x) ∈ Ω′ | t < T},
(Ω′i)T := {(t, x) ∈ Ω′i | t < T}, for i = 1, 2, 3,

and the spaces:

H̃1(Ω) := {u ∈ H1
loc(Ω) | u ∈ H1(ΩT ) for every T > 0},

H̃1(Ω′) := {u ∈ H1
loc(Ω

′) | u ∈ H1(Ω′T ) for every T > 0}.

Moreover, for t ∈ [0,+∞), we introduce the functions:

ϕ(t) := t−`(t) , ψ(t) := t+`(t), (0.3)

and we define:

ω : [`0,+∞)→ [−`0,+∞), ω(t) := ϕ ◦ ψ−1(t). (0.4)

Remark 0.2. By (0.2b) ψ turns out to be a bilipschitz function (1 ≤ ψ̇ < 2), while ϕ turns out
to be Lipschitz with 0 < ϕ̇(t) ≤ 1 for a.e. t ∈ [0,+∞). Hence ϕ is invertible with absolutely
continuous inverse. As a byproduct we get that ω is Lipschitz too and for a.e. t ∈ [`0,+∞) it
holds true:

0 < ω̇(t) =
1− ˙̀(ψ−1(t))

1 + ˙̀(ψ−1(t))
≤ 1.

So ω is invertible with absolutely continuous inverse too.

For (t, x) ∈ Ω′ we also introduce the set:

R(t, x) = {(τ, σ) ∈ Ω′ | 0 < τ < t, γ1(τ ; t, x) < σ < γ2(τ ; t, x)}, (0.5)
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where

γ1(τ ; t, x) =


x−t+τ, if (t, x) ∈ Ω′1,

|x−t+τ |, if (t, x) ∈ Ω′2,

x−t+τ, if (t, x) ∈ Ω′3,

γ2(τ ; t, x) =


x+t−τ, if (t, x) ∈ Ω′1,

x+t−τ, if (t, x) ∈ Ω′2,

τ−ω(t+x), if (t, x) ∈ Ω′3 and τ ≤ ψ−1(t+x),

x+t−τ, if (t, x) ∈ Ω′3 and τ > ψ−1(t+x),

(0.6)

are the left and the right boundary of R(t, x), respectively.
Finally let us define the spaces:

H̃1(0,+∞) := {u ∈ H1
loc(0,+∞) | u ∈ H1(0, T ) for every T > 0},

C̃0,1([`0,+∞)) := {u ∈ C0([`0,+∞)) | u ∈ C0,1([`0, X]) for every X > `0}.
Remark 0.3. We warn the reader that, for the sake of clarity, during the whole paper we shall
not write Ω`, Ω′`, R`(t, x), ϕ` or ω`, even if all of the sets and the functions introduced in this
Section depend explicitely on the function `.

1. Statement of the problem

1.1. The debonding model. In this Section we make the definition of solution to (0.1) precise.
We fix ν ≥ 0, `0 > 0 and we assume that the boundary and initial data satisfy:

w ∈ H̃1(0,+∞), (1.1a)

u0 ∈ H1(0, `0), u1 ∈ L2(0, `0). (1.1b)

u0(0) = w(0), u0(`0) = 0. (1.1c)

To fix the ideas let us assume for the moment that the debonding front ` : [0,+∞)→ [`0,+∞)
is assigned and it satisfies (0.2).

Definition 1.1. We say that a function u ∈ H̃1(Ω) (resp. in H1(ΩT )) is a solution of (0.1a) if
utt−uxx+νut = 0 holds in the sense of distributions in Ω (resp. in ΩT ), the boundary conditions
are intended in the sense of traces and the initial conditions u0 and u1 are satisfied in the sense
of L2(0, `0) and H−1(0, `0), respectively.

To establish the rules governing the evolution of the debonding front ` we need to introduce
for t ∈ [0,+∞) the internal energy of a solution u:

E(t) :=
1

2

∫ `(t)

0

(
u2
t (t, x) + u2

x(t, x)
)

dx,

the energy dissipated by the friction of air:

A(t) := ν

∫ t

0

∫ `(τ)

0
u2
t (τ, σ) dσ dτ,

and the work of the external loading:

W(t) := −
∫ t

0
ẇ(s)ux(s, 0) ds.

Remark 1.2. The internal energy E(t) is well defined for every t ∈ [0,+∞) since u turns out to
be in C0([0,+∞);H1(0,+∞)) and in C1([0,+∞);L2(0,+∞)), see Theorem 1.5. The expression
ux(s, 0) makes instead sense due to the representation formula for solutions to (0.1a), see (1.9),
(1.10), (1.11) and (2.3).
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Moreover we assume that the energy dissipated during the debonding process in the time
interval [0, t] is given by the formula ∫ `(t)

`0

κ(x) dx,

where κ : [`0,+∞) → (0,+∞) is a measurable function representing the local toughness of the
glue between the substrate and the film.

In our model we postulate that the debonding front ` has to evolve following two principles,
which will replace the vague condition (0.1b). The first one, called energy-dissipation balance,
simply states that during the evolution the following equality between internal energy, dissipated
energy and work of the external loading has to be satisfied:

E(t) +A(t) +

∫ `(t)

`0

κ(x) dx = E(0) +W(t), for every t ∈ [0,+∞). (1.2)

The second one, called maximum dissipation principle, states that ` has to grow at the maximum
speed which is consistent with the energy-dissipation balance (see also [11]):

˙̀(t) = max{α ∈ [0, 1) | κ(`(t))α = Gα(t)α}, for a.e. t ∈ [0,+∞), (1.3)

where Gα(t) is the so-called dynamic energy release rate, a quantity which measures the amount
of energy spent by the debonding process. It is obtained as a sort of partial derivative of the
total energy with respect to the elongation of the debonding front; we refer to [3], [7] or [16] for
more details, since in this work we do not need its rigorous definition.

In [3] and [16] it has been shown that the two principles (1.2) and (1.3) together are equivalent
to the following system, called Griffith’s criterion:

0 ≤ ˙̀(t) < 1,

G ˙̀(t)(t) ≤ κ(`(t)),[
G ˙̀(t)(t)− κ(`(t))

]
˙̀(t) = 0,

for a.e. t ∈ [0,+∞), (1.4)

which in turn is equivalent to an ordinary differential equations for the debonding front `:

˙̀(t) = max

{
G0(t)− κ(`(t))

G0(t) + κ(`(t))
, 0

}
, for a.e. t ∈ [0,+∞). (1.5)

Remark 1.3. The dynamic energy release rate Gα(t) depends on the solution u of problem
(0.1a) and on the debonding front ` itself, so equation (1.5) only makes sense if coupled with
problem (0.1a).

We are now in the position to give the following Definition:

Definition 1.4. Assume ` : [0,+∞) → [`0,+∞) satisfies (0.2); let u : [0,+∞)2 → R be such

that u ∈ H̃1(Ω) (resp. in H1(ΩT )). We say that the pair (u, `) is a solution of the coupled
problem (resp. in [0, T ]) if:

i) u solves problem (0.1a) in Ω (resp. in ΩT ) in the sense of Definition 1.1,
ii) u ≡ 0 outside Ω (resp. in ([0, T ]×[0,+∞)) \ ΩT ),
iii) (u, `) satisfies Griffith’s criterion (1.4) for a.e. t ∈ [0,+∞) (resp. for a.e. t ∈ [0, T ]).

In [16] it has been proved that under suitable assumptions on the toughness κ coupled problem
(0.1a)&(1.4) admits a unique solution. The result is the following:

Theorem 1.5. Fix ν ≥ 0, `0 > 0 and consider u0, u1 and w satisfying (1.1). Assume that the
measurable function κ : [`0,+∞)→ (0,+∞) fulfills the following property:

for every x ∈ [`0,+∞) there exists ε = ε(x) > 0 such that κ ∈ C0,1([x, x+ ε]). (1.6)
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Then there exists a unique pair (u, `) solution of the coupled problem in the sense of Defini-
tion 1.4. Moreover u has a continuous representative on Ω and it holds:

u ∈ C0([0,+∞);H1(0,+∞)) ∩ C1([0,+∞);L2(0,+∞)).

The strategy of the proof relies in a representation formula (Duhamel’s principle) valid for
small times for the solution u of (0.1a) and for an auxiliary function v defined as v(t, x) :=

eνt/2u(t, x). Since later on we will widely exploit it, we now want to say something more about
this formula: to present it we first introduce the boundary and initial data of v, namely

z(t) = eνt/2w(t),

v0(x) = u0(x) and v1(x) = u1(x) +
ν

2
u0(x).

(1.7)

Remark 1.6. The functions z, v0 and v1 satisfies (1.1) if and only if w, u0 and u1 do the same.

Then we recall that v solves (in the sense of Definition 1.1) the following problem:

vtt(t, x)− vxx(t, x)− ν2

4
v(t, x) = 0, t > 0 , 0 < x < `(t),

v(t, 0) = z(t), t > 0,

v(t, `(t)) = 0, t > 0,

v(0, x) = v0(x), 0 < x < `0,

vt(0, x) = v1(x), 0 < x < `0.

(1.8)

Thanks to the fact that v solves (1.8), in [16] it has been shown that, given T < `0
2 , the pair

(u, `) is a solution of the coupled problem in [0, T ] if and only if the pair (v, `) satisfies:
v(t, x) = A(t, x) +

ν2

8

∫∫
R(t,x)

v(τ, σ) dσ dτ, for every (t, x) ∈ ΩT ,

`(t) = `0 +

∫ t

0
max {Γv,`(s), 0} ds, for every t ∈ [0, T ].

(1.9)

where R(t, x) is as in (0.5), and the functions A and Γv,` are defined as follows:

A(t, x) =



1

2
v0(x−t) +

1

2
v0(x+t) +

1

2

∫ x+t

x−t
v1(s) ds, if (t, x) ∈ Ω′1,

z(t−x)− 1

2
v0(t−x) +

1

2
v0(t+x) +

1

2

∫ t+x

t−x
v1(s) ds, if (t, x) ∈ Ω′2,

1

2
v0(x−t)− 1

2
v0(−ω(x+t)) +

1

2

∫ −ω(x+t)

x−t
v1(s) ds, if (t, x) ∈ Ω′3,

(1.10)

and

Γv,`(t) =

[
v̇0(`(t)−t)− v1(`(t)−t)− ν2

4

∫ t
0 v(τ, τ−t+`(t)) dτ

]2
− 2eνtκ(`(t))[

v̇0(`(t)−t)− v1(`(t)−t)− ν2

4

∫ t
0 v(τ, τ−t+`(t)) dτ

]2
+ 2eνtκ(`(t))

.

We want to recall that, as proved in [16], Lemmas 1.10 and 1.11, the functions A in (1.10)

and H(t, x) :=
∫∫
R(t,x) v(τ, σ) dσ dτ are both continuous on Ω′, they belong to H̃1(Ω′) and

furthermore, setting them to be identically zero outside Ω, they belong to C0([0, `02 ];H1(0,+∞))

and to C1([0, `02 ];L2(0,+∞)). Moreover explicit expressions for the partial derivatives ofH, valid
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for every t ∈
[
0, `02

]
and for a.e. x ∈ (0, `(t)), are:

Ht(t, x) =



∫ t

0
v(τ, x+t−τ) dτ +

∫ t

0
v(τ, x−t+τ) dτ, Ω′1,∫ t

0
v(τ, x+t−τ) dτ −

∫ t−x

0
v(τ, t−x−τ) dτ +

∫ t

t−x
v(τ, x−t+τ) dτ, Ω′2,∫ t

0
v(τ, x−t+τ) dτ−ω̇(x+t)

∫ ψ−1(x+t)

0
v(τ, τ−ω(x+t)) dτ+

∫ t

ψ−1(x+t)
v(τ, x+t−τ) dτ, Ω′3,

(1.11a)

Hx(t, x) =



∫ t

0
v(τ, x+t−τ) dτ −

∫ t

0
v(τ, x−t+τ) dτ, Ω′1,∫ t

0
v(τ, x+t−τ) dτ +

∫ t−x

0
v(τ, t−x−τ) dτ −

∫ t

t−x
v(τ, x−t+τ) dτ, Ω′2,

−
∫ t

0
v(τ, x−t+τ) dτ−ω̇(x+t)

∫ ψ−1(x+t)

0
v(τ, τ−ω(x+t)) dτ+

∫ t

ψ−1(x+t)
v(τ, x+t−τ) dτ, Ω′3,

(1.11b)

Remark 1.7. The function A depends on ` via the function ω (see (0.3) and (0.4)) and the
function H depends on ` via the set R (see (0.5) and (0.6)) and depends on v explicitely, so one
should write A` and Hv,`. However in the whole paper we shall write only A and H to avoid
too heavy notations.

Remark 1.8. As already said, in the whole paper the solution u (and hence v) and the functions
A and H are extended to zero outside Ω.

1.2. Convergence assumptions on the data. Now that we have precised all the notations
and properties of solutions of the coupled problem (0.1a)&(1.4) we can state the issue we want
to address in this paper.

Let us fix ν ≥ 0, `0 > 0, functions u0, u1, w satisfying (1.1), and a measurable function

κ : [`0,+∞)→ (0,+∞) which belongs to C̃0,1([`0,+∞)) and so in particular it fulfills property
(1.6). Let us consider a sequence of positive real numbers {`k0}, a sequence of non negative real
numbers {νk}, sequences of functions {uk0}, {uk1} and {wk} satisfying (1.1) replacing `0 by `k0
and a sequence of functions {κk} such that κk : [`k0,+∞) → (0,+∞) belongs to C̃0,1([`k0,+∞))
for every k ∈ N (and hence it fulfills property (1.6), replacing `0 by `k0). We extend u0, u

k
0, u1, u

k
1

to the whole [0,+∞) setting them to be identically zero outside their original domains (notice
that by compatibility condition (1.1c) both u0 both uk0 belong to H1(0,+∞)) and we extend
κ and κk to [0,+∞) setting κ(x) = κ(`0) for x ∈ [0, `0] and κk(x) = κk(`k0) for x ∈ [0, `k0]. As
k → +∞ we assume:

`k0 → `0 and νk → ν; (1.12a)

uk0 → u0 in H1(0,+∞), uk1 → u1 in L2(0,+∞) and wk → w in H̃1(0,+∞); (1.12b)

κk → κ in C0([0, X]) for every X > 0. (1.12c)

Let now (u, `) and (uk, `k) be the solutions of the coupled problems given by Theorem 1.5
corresponding to the data without and with the apex k respectively. Our goal is to understand
whether the pair (uk, `k) converges to (u, `) under assumptions (1.12), and more important which
kind of convergence is fulfilled.

To this aim we will exploit the sequence of auxiliary functions vk(t, x) = eν
kt/2uk(t, x), whose

boundary and initial data are the functions vk0 , vk1 and zk given by (1.7). We recall that for

T < `0
2 they can be expressed using representation formula (1.9) as

vk(t, x) = Ak(t, x) +
νk

2

8
Hk(t, x), for every (t, x) ∈ [0, T ]× [0,+∞), (1.13)
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where the function Ak is as in (1.10) with the obvious changes, while Hk(t, x)=

∫∫
Rk(t,x)
vk(τ, σ) dσ dτ .

As stressed in Remark 1.8 they both are extended to zero outside Ωk.

Remark 1.9. By (1.7) it is easy to see that convergence hypothesis (1.12a) and (1.12b) yield
the same kind of convergence for the functions vk0 , vk1 and zk.

In the next two Sections we analyse the convergence of the pair (vk, `k) instead of the one of
the pair (uk, `k) itself. Indeed by (1.13) it is easier than (uk, `k) to handle with. Of course, since

the two functions are linked via the equality vk(t, x) = eν
kt/2uk(t, x), the convergence we will

get about vk will be enough to infer the same kind of convergence result for the proper solution
uk of the coupled problem, see Theorem 3.6.

Remark 1.10 (Notations). From now on during all the estimates the symbol C is used to
denote a constant, which may change from line to line, which does not depend on k. The symbol
εk is instead used to denote the kth term of a generic infinitesimal sequence.

2. A priori convergence of the debonding front

In this Section we prove that if we assume a priori the validity of certain convergence on
the sequence of debonding fronts {`k} in a time interval [0, T ], then the sequence of auxiliary
functions {vk} converges to v in the natural spaces. First of all we prove an equiboundedness
result for the sequence {vk}:

Proposition 2.1. Assume (1.12a), (1.12b) and let us denote by N the maximum value of νk.

If T < min
{
`0
2 ,

2
N2`0

}
, then the functions vk are uniformly bounded in C0([0, T ]× [0,+∞)).

Proof. We exploit representation formula (1.13) and we estimate:

‖vk‖C0([0,T ]×[0,+∞)) ≤ ‖Ak‖C0([0,T ]×[0,+∞)) +
νk

2

8
‖Hk‖C0([0,T ]×[0,+∞))

≤ ‖Ak‖C0([0,T ]×[0,+∞)) +
N2

8
|Ωk
T |‖vk‖C0([0,T ]×[0,+∞))

≤ ‖Ak‖C0([0,T ]×[0,+∞)) +
N2`0T

4
‖vk‖C0([0,T ]×[0,+∞)).

Since by hypothesis T ≤ 2
N2`0

we deduce that:

‖vk‖C0([0,T ]×[0,+∞)) ≤ 2‖Ak‖C0([0,T ]×[0,+∞)).

By the explicit expression of Ak given by (1.10) and using (1.12b) it is easy to get the equi-
boundedness of Ak in C0([0, T ]× [0,+∞)) and so we conclude. �

Before starting the analysis of the convergence of the sequence {Ak} we state several Lem-
mas regarding the convergence of the sequence {ωk} appearing in formulas (0.6), (1.10) and
(1.11).

Lemma 2.2. Let fk : [a, b] → R be a sequence of continuous and invertible functions and
assume fk uniformly converges to a continuous and invertible function f : [a, b] → R. Then

lim
k→+∞

max
y∈Dkf (a,b)

|fk−1
(y)− f−1(y)| = 0, where Dk

f (a, b) := fk([a, b]) ∩ f([a, b]).

Proof. For y ∈ Dk
f (a, b) it holds:

|fk−1
(y)− f−1(y)| = |f−1(f(fk

−1
(y)))− f−1(y)|. (2.1)



CONTINUOUS DEPENDENCE FOR A 1D DEBONDING MODEL 9

Since f is continuous, f−1 is uniformly continuous on the compact interval f([a, b]) and so by

(2.1) to conclude it is enough to prove that max
y∈fk([a,b])

|f(fk
−1

(y)) − y| → 0 as k → +∞. So let

us take y ∈ fk([a, b]) and reason as follows:

|f(fk
−1

(y))− y| = |f(fk
−1

(y))− fk(fk−1
(y))| ≤ ‖fk − f‖C0([a,b]).

Since by hypothesis fk uniformly converges to f in [a, b] the proof is complete. �

As we did in Lemma 2.2 we now introduce the following notation: given a time T > 0 we
define Dk

ψ(0, T ) := ψk([0, T ]) ∩ ψ([0, T ]) and Dk
ϕ(0, T ) := ϕk([0, T ]) ∩ ϕ([0, T ]). We notice that

we can rewrite them as

Dk
ψ(0, T ) = [`k0 ∨ `0, ψk(T ) ∧ ψ(T )] and Dk

ϕ(0, T ) = [−(`0 ∧ `k0), ϕ(T ) ∧ ϕk(T )].

Lemma 2.3. If `k uniformly converges to ` in [0, T ], then lim
k→+∞

max
t∈Dkψ(0,T )

|ωk(t)− ω(t)| = 0. If

(1.12a) holds and ˙̀k → ˙̀ in L1(0, T ), then lim
k→+∞

∫
Dkψ(0,T )

|ω̇k(t)− ω̇(t)| dt = 0.

Proof. Assume that `k → ` uniformly in [0, T ], then obviously ψk → ψ uniformly in [0, T ] and

so by Lemma 2.2 we get lim
k→+∞

max
t∈Dkψ(0,T )

|ψk−1
(t)− ψ−1(t)| = 0. Take now t ∈ Dk

ψ(0, T ), then

|ωk(t)− ω(t)| ≤ |ϕk(ψk−1
(t))− ϕ(ψk

−1
(t))|+ |ϕ(ψk

−1
(t))− ϕ(ψ−1(t))|

≤ ‖`k − `‖C0([0,T ]) + |ψk−1
(t)− ψ−1(t)|,

and hence we deduce lim
k→+∞

max
t∈Dkψ(0,T )

|ωk(t)− ω(t)| = 0.

Now assume that ˙̀k → ˙̀ in L1(0, T ). Notice that by (1.12a) this implies `k → ` uniformly in
[0, T ], and so we have:∫
Dkψ(0,T )
|ω̇k(t)− ω̇(t)|dt =

∫
Dkψ(0,T )

∣∣∣∣∣1− ˙̀k(ψk
−1

(t))

1 + ˙̀k(ψk
−1

(t))
− 1− ˙̀(ψ−1(t))

1 + ˙̀(ψ−1(t))

∣∣∣∣∣ dt

≤ 2

∫
Dkψ(0,T )

∣∣∣ ˙̀k(ψk−1
(t))− ˙̀(ψ−1(t))

∣∣∣ dt

≤ 2

(∫
Dkψ(0,T )
| ˙̀k(ψk−1

(t))− ˙̀(ψk
−1

(t))|dt+

∫
Dkψ(0,T )
| ˙̀(ψk−1

(t))− ˙̀(ψ−1(t))|dt

)

≤ 2

(
2

∫ T

0

∣∣∣ ˙̀k(s)− ˙̀(s)
∣∣∣ ds+

∫
Dkψ(0,T )

∣∣∣ ˙̀(ψk−1
(t))− ˙̀(ψ−1(t))

∣∣∣ dt

)
.

By assumption the first term in the last line goes to zero as k → +∞, while for the second term
we reason as follows. We fix ε > 0 and we consider fε ∈ C0([0, T ]) such that ‖ ˙̀− fε‖L1(0,T ) ≤ ε,
so we can estimate:∫

Dkψ(0,T )

∣∣∣ ˙̀(ψk−1
(t))− ˙̀(ψ−1(t))

∣∣∣ dt

≤
∫
Dkψ(0,T )

∣∣∣ ˙̀(ψk−1
(t))− fε(ψk

−1
(t))
∣∣∣ dt+

∫
Dkψ(0,T )

∣∣∣fε(ψk−1
(t))− fε(ψ−1(t))

∣∣∣ dt

+

∫
Dkψ(0,T )

∣∣∣fε(ψ−1(t))− ˙̀(ψ−1(t))
∣∣∣ dt
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≤ 2‖ ˙̀− fε‖L1(0,T ) +

∫
Dkψ(0,T )

∣∣∣fε(ψk−1
(t))− fε(ψ−1(t))

∣∣∣ dt+ 2‖ ˙̀− fε‖L1(0,T )

≤ 4ε+

∫
Dkψ(0,T )

∣∣∣fε(ψk−1
(t))− fε(ψ−1(t))

∣∣∣ dt.

By dominated convergence the last integral goes to zero as k → +∞ and so by the arbitrariness
of ε we get the result. �

Lemma 2.4. Let fk be a sequence of L2(R) functions converging to f strongly in L2(R). If

(1.12a) holds and ˙̀k → ˙̀ in L1(0, T ), then

lim
k→+∞

∫
Dkψ(0,T )

|fk(−ωk(s))ω̇k(s)− f(−ω(s))ω̇(s)|2 ds = 0.

Proof. It is enough to estimate:∫
Dkψ(0,T )

|fk(−ωk(s))ω̇k(s)− f(−ω(s))ω̇(s)|2 ds

≤ 2

∫
Dkψ(0,T )
|fk(−ωk(s))ω̇k(s)− f(−ωk(s))ω̇k(s)|2 ds+ 2

∫
Dkψ(0,T )
|f(−ωk(s))ω̇k(s)− f(−ω(s))ω̇(s)|2 ds

≤ 2‖fk − f‖2L2(R) + 2

∫
Dkψ(0,T )

|f(−ωk(s))ω̇k(s)− f(−ω(s))ω̇(s)|2 ds.

By assumption the first term in the last line vanishes as k → +∞, while for the second integral
we reason as in the proof of Lemma 2.3: for ε > 0 fixed let us consider fε ∈ C0

c (R) satisfying
‖f − fε‖2L2(R) ≤ ε, then we have:∫

Dkψ(0,T )
|f(−ωk(s))ω̇k(s)− f(−ω(s))ω̇(s)|2 ds

≤ 3

∫
Dkψ(0,T )
|f(−ωk(s))ω̇k(s)− fε(−ωk(s))ω̇k(s)|2 ds+ 3

∫
Dkψ(0,T )
|fε(−ωk(s))ω̇k(s)− fε(−ω(s))ω̇(s)|2 ds

+ 3

∫
Dkψ(0,T )
|fε(−ω(s))ω̇(s)− f(−ω(s))ω̇(s)|2 ds

≤ 3

∫
R
|f(x)− fε(x)|2 dx+ 3

∫
Dkψ(0,T )
|fε(−ωk(s))ω̇k(s)− fε(−ω(s))ω̇(s)|2 ds+ 3

∫
R
|f(x)− fε(x)|2 dx

≤ 6ε+ 3

∫
Dkψ(0,T )

|fε(−ωk(s))ω̇k(s)− fε(−ω(s))ω̇(s)|2 ds.

By dominated convergence the last integral goes to zero as k → +∞ (exploit Lemma 2.3) and
so by the arbitrariness of ε we get the result. �

Now that we have established some convergence results of the sequence {ωk} we can start to
study how the sequence {Ak} behaves under different convergence assumptions on {`k}.

Proposition 2.5. Assume (1.12b) and let T < `0
2 . If `k uniformly converges to ` in [0, T ], then

Ak uniformly converges to A in [0, T ]× [0,+∞).

Proof. We assume without loss of generality that `0 < `k0, the other cases being analogous. As
in the whole paper we exploit explicit formula (1.10), so we need to consider some different cases
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separately. If (t, x) ∈ (Ω′1)T =: Λk1, then

|Ak(t, x)−A(t, x)| ≤ ‖vk0 − v0‖C0([0,+∞)) +

√
`0
2
‖vk1 − v1‖L2(0,+∞).

If (t, x) ∈ (Ω′2)T =: Λk2, then

|Ak(t, x)−A(t, x)| ≤ ‖zk − z‖C0([0,T ]) + ‖vk0 − v0‖C0([0,+∞)) +

√
`0
2
‖vk1 − v1‖L2(0,+∞).

If (t, x) ∈ (Ω′k1 )T ∩ (Ω′3)T =: Λk3, we first notice that v0(x+t) = 0 and that −ω(`k0) ≤ −ω(x+t) ≤
`0 ≤ x+t ≤ `k0, then we estimate:

|Ak(t, x)−A(t, x)|

≤ 1

2
|vk0 (x−t)− v0(x−t)|+ 1

2
|vk0 (x+t) + v0(−ω(x+t))|+ 1

2

∣∣∣∣∣
∫ x+t

x−t
vk1 (s) ds−

∫ −ω(x+t)

x−t
v1(s) ds

∣∣∣∣∣
≤ ‖vk0 − v0‖C0([0,+∞)) +

√
`0 +

√
`k0

2
‖vk1 − v1‖L2(0,+∞) +

1

2
|v0(−ω(x+t))|+ 1

2

∣∣∣∣∣
∫ x+t

−ω(x+t)
v1(s) ds

∣∣∣∣∣
≤ ‖vk0 − v0‖C0([0,+∞)) + C‖vk1 − v1‖L2(0,+∞) +

∫ `0

−ω(`k0)
(|v̇0(s)|+ |v1(s)|) ds.

If (t, x) ∈ (Ω′k1 )T \ΩT =: Λk4, we notice that −ω(`k0) ≤ x−t ≤ x+t ≤ `k0 and hence we get:

|Ak(t, x)−A(t, x)| = |Ak(t, x)| ≤
∫ `k0

−ω(`k0)
|v̇k0 (s)| ds+

1

2

∫ `k0

−ω(`k0)
|vk1 (s)| ds

≤ C‖v̇k0 − v̇0‖L2(0,+∞) + C‖vk1 − v1‖L2(0,+∞) +

∫ `0

−ω(`k0)
(|v̇0(s)|+ |v1(s)|) ds.

If (t, x) ∈ (Ω′k3 )T ∩ (Ω′3)T =: Λk5, then

|Ak(t, x)−A(t, x)|

≤ 1

2
‖vk0 − v0‖C0([0,+∞)) +

1

2
|vk0 (−ωk(x+t))− v0(−ω(x+t))|+ 1

2

∣∣∣∣∣
∫ −ωk(x+t)

x−t
vk1 (s) ds−

∫ −ω(x+t)

x−t
v1(s) ds

∣∣∣∣∣
≤ ‖vk0 − v0‖C0([0,+∞)) +

1

2
|v0(−ωk(x+t))− v0(−ω(x+t))|+ C‖vk1 − v1‖L2(0,+∞)

+
1

2

∣∣∣∣∣
∫ −ωk(x+t)

−ω(x+t)
|v1(s)|ds

∣∣∣∣∣
≤ ‖vk0 − v0‖C0([0,+∞)) + max

r∈Dkψ(0,T )
|v0(−ωk(r))− v0(−ω(r))|+ C‖vk1 − v1‖L2(0,+∞)

+ max
r∈Dkψ(0,T )

∣∣∣∣∣
∫ −ωk(r)

−ω(r)
|v1(s)|ds

∣∣∣∣∣ .
If (t, x) ∈ (Ω′k3 )T \ΩT =: Λk6, we notice that −ω(x+t) ≤ x−t ≤ −ωk(x+t) and hence we get:

|Ak(t, x)−A(t, x)| = |Ak(t, x)| ≤ 1

2
|vk0 (x−t)− vk0 (−ωk(x+t))|+ 1

2

∫ −ωk(x+t)

x−t
|vk1 (s)| ds

≤ 1

2

∫ −ωk(x+t)

x−t
(|v̇k0 (s)|+ |vk1 (s)|) ds
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Figure 1. The partition of the set [0, T ] × [0,+∞) via the sets Λki , for i =
1, . . . , 8, in the case `0 < `k0.

≤ C‖v̇k0 − v̇0‖L2(0,+∞) + C‖vk1 − v1‖L2(0,+∞) +

∫ −ωk(x+t)

x−t
(|v̇0(s)|+ |v1(s)|) ds

≤ C‖v̇k0 − v̇0‖L2(0,+∞)+C‖vk1 − v1‖L2(0,+∞)+ max
r∈Dkψ(0,T )

∫ −ωk(r)

−ω(r)
(|v̇0(s)|+ |v1(s)|) ds.

If (t, x) ∈ (Ω′3)T \Ωk
T =: Λk7 one reasons just as above.

We conclude exploiting Lemma 2.3 and using (1.12b). �

Proposition 2.6. Assume (1.12a), (1.12b) and let T < `0
2 . If ˙̀k → ˙̀ in L1(0, T ), then Ak → A

in H1((0, T )× (0,+∞)).

Proof. First of all we notice that our hypothesis imply `k uniformly converges to ` in [0, T ] and
hence by Proposition 2.5 we deduce that Ak → A in L2((0, T ) × (0,+∞)), so we only have to
prove that the same kind of convergence holds true for Akt and Akx. We assume without loss of
generality that `0 < `k0, the other cases being analogous. We then split the set [0, T ]× [0,+∞)
into eight parts, denoted by Λki for i = 1, . . . , 8, where the first seven pieces are as in the proof

of Proposition 2.5 while Λk8 is simply the relative complement of

7⋃
i=1

Λki in [0, T ] × [0,+∞), see

also Figure 1. So we have:

‖Akt −At‖2L2((0,T )×(0,+∞)) =

7∑
i=1

∫∫
Λki

|Akt (t, x)−At(t, x)|2 dx dt.

By (1.12b) the integrals over Λk1 and Λk2 goes to zero as k → +∞. For the others we start to
estimate from Λk3:∫∫

Λk3

|Akt (t, x)−At(t, x)|2 dx dt

≤ C
∫∫

Λk3

(|v̇k0 (x−t)− v̇0(x−t)|2 + |vk1 (x−t)− v1(x−t)|2) dx dt
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+ C

∫∫
Λk3

(∣∣∣v̇k0 (x+t)− v̇0(−ω(x+t))ω̇(x+t)
∣∣∣2 +

∣∣∣vk1 (x+t) + v1(−ω(x+t))ω̇(x+t)
∣∣∣2) dx dt

≤ C

(
‖v̇k0 − v̇0‖2L2(0,+∞)+‖vk1 − v1‖2L2(0,+∞)+

∫∫
Λk3

(
(|v̇0|2 + |v1|2)(−ω(x+t))

)
ω̇(x+t)2 dx dt

)

≤ C

(
‖v̇k0 − v̇0‖2L2(0,+∞) + ‖vk1 − v1‖2L2(0,+∞) +

∫ `0

−ω(`k0)
(|v̇0(s)|2 + |v1(s)|2) ds

)
.

As regards Λk4 we have:∫∫
Λk4

|Akt (t, x)−At(t, x)|2 dx dt =

∫∫
Λk4

|Akt (t, x)|2 dx dt

≤ C

(∫∫
Λk4

(|v̇k0 (x−t)|2 + |vk1 (x−t)|2) dx dt+

∫∫
Λk4

(|v̇k0 (x+t)|2 + |vk1 (x+t)|2) dx dt

)

≤ C

(∫ `k0

−ω(`k0)
(|v̇k0 (s)|2 + |vk1 (s)|2) ds+

∫ `k0

`0

(|v̇k0 (s)|2 + |vk1 (s)|2) ds

)

≤ C

(
‖v̇k0 − v̇0‖2L2(0,+∞) + ‖vk1 − v1‖2L2(0,+∞) +

∫ `0

−ω(`k0)
(|v̇0(s)|2 + |v1(s)|2) ds

)
.

We then consider Λk6 ∪ Λk7, so that:∫∫
Λk6∪Λk7

|Akt (t, x)−At(t, x)|2 dx dt =

∫∫
Λk6

|Akt (t, x)|2 dx dt+

∫∫
Λk7

|At(t, x)|2 dx dt.

Since by assumptions `k → ` uniformly in [0, T ], we deduce Λk7 → ∅, and so the second integral
goes to zero as k → +∞, while for the first one we estimate:∫∫

Λk6

|Akt (t, x)|2 dx dt

≤ C

(∫∫
Λk6

(|v̇k0 (x−t)|2 + |vk1 (x−t)|2) dx dt+

∫∫
Λk6

(
(|v̇k0 |2 + |vk1 |2)(−ωk(x+t))

)
|ω̇k(x+t)|2 dx dt

)

≤ C max
r∈Dkϕ(0,T )

|ϕk−1
(r)− ϕ−1(r)|

∫ `k0

0
(|v̇k0 (s)|2 + |vk1 (s)|2) ds

+ C max
r∈Dkψ(0,T )

|ωk(r)− ω(r)|
∫ `k0

−ωk(ψ(T )∧ψk(T ))
(|v̇k0 (s)|2 + |vk1 (s)|2) ds

≤ C

(
max

r∈Dkϕ(0,T )
|ϕk−1

(r)− ϕ−1(r)|+ max
r∈Dkψ(0,T )

|ωk(r)− ω(r)|

)
(‖v̇k0‖2L2(0,+∞) + ‖vk1‖2L2(0,+∞))

≤ C

(
max

r∈Dkϕ(0,T )
|ϕk−1

(r)− ϕ−1(r)|+ max
r∈Dkψ(0,T )

|ωk(r)− ω(r)|

)
.

Appling Lemma 2.2 for the sequence of functions {ϕk} and Lemma 2.3 we deduce that this last
integral vanishes as k → +∞. The last term to treat is the integral over Λk5:∫∫

Λk5

|Akt (t, x)−At(t, x)|2 dx dt
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≤ C
∫∫

Λk5

|v̇k0 (x−t)− v̇0(x−t)|2 dx dt+ C

∫∫
Λk5

|vk1 (x−t)− v1(x−t)|2 dx dt

+ C

∫∫
Λk5

∣∣∣((v̇k0 − vk1 )(−ωk(x+t))
)
ω̇k(x+t)−

(
(v̇0 − v1)(−ω(x+t)

)
ω̇(x+t)

∣∣∣2 dx dt

≤ C‖v̇k0 − v̇0‖2L2(0,+∞) + C‖vk1 − v1‖2L2(0,+∞)

+ C

∫
Dkψ(0,T )

∣∣∣((v̇k0 − vk1 )(−ωk(s))
)
ω̇k(s)−

(
(v̇0 − v1)(−ω(s))

)
ω̇(s)

∣∣∣2 ds.

Applying Lemma 2.4 to this last integral and putting together all the previous estimates, by
(1.12a) and (1.12b) we finally conclude that Akt → At in L2((0, T ) × (0,+∞)). Reasoning
exactly in the same way one also gets Akx → Ax in L2((0, T )×(0,+∞)) and so the Proposition is
proved. �

Now we can deal with the convergence of the sequence of auxiliary functions {vk}. We only
need a short Lemma:

Lemma 2.7. Let T < `0
2 and assume `k uniformly converges to ` in [0, T ], then the map

(t, x) 7→ |(Rk4R)(t, x)| uniformly converges to zero in [0, T ]× [0,+∞).

Proof. We assume without loss of generality that `0 < `k0, the other cases being analogous.
We then consider again the partition of [0, T ] × [0,+∞) given by the sets Λki , for i = 1, . . . , 8,
introduced in the proof of Proposition 2.5.
If (t, x) ∈ Λk1 ∪ Λk2, then (Rk4R)(t, x) = ∅ and so |(Rk4R)(t, x)| = 0.
If (t, x) ∈ Λk3 ∪ Λk4, then (Rk4R)(t, x) ⊆ [0, ψ−1(`k0)]× [−ω(`k0), `k0] and so

|(Rk4R)(t, x)| ≤ ψ−1(`k0)(`k0 + ω(`k0)).

If finally (t, x) ∈ Λk5 ∪ Λk6 ∪ Λk7, then

|(Rk4R)(t, x)| ≤ T max
r∈Dkψ(0,T )

|ωk(r)− ω(r)|.

We conclude recalling that ω(`0) = −`0 and exploiting Lemma 2.3. �

Proposition 2.8. Assume (1.12a), (1.12b) and let T be as in Proposition 2.1. If `k uniformly
converges to ` in [0, T ], then vk uniformly converges to v in [0, T ]× [0,+∞).

Proof. Exploiting representation formula (1.13) we deduce that:

‖vk − v‖C0([0,T ]×[0,+∞))

≤ ‖Ak −A‖C0([0,T ]×[0,+∞)) +
|νk2 − ν2|

8
‖H‖C0([0,T ]×[0,+∞)) +

νk
2

8
‖Hk −H‖C0([0,T ]×[0,+∞))

≤ ‖Ak −A‖C0([0,T ]×[0,+∞)) +
|νk2 − ν2|

8
‖H‖C0([0,T ]×[0,+∞))

+
N2

8

∥∥∥∥∫∫
Rk
|vk − v|+

∫∫
Rk4R

|v|
∥∥∥∥
C0([0,T ]×[0,+∞))

≤ ‖Ak −A‖C0([0,T ]×[0,+∞)) +
|νk2 − ν2|

8
‖H‖C0([0,T ]×[0,+∞)) +

N2

8
|Ωk
T |‖vk − v‖C0([0,T ]×[0,+∞))

+
N2

8
‖|Rk4R|‖C0([0,T ]×[0,+∞))‖v‖C0([0,T ]×[0,+∞))

≤ ‖Ak −A‖C0([0,T ]×[0,+∞)) +
|νk2 − ν2|

8
‖H‖C0([0,T ]×[0,+∞)) +

1

2
‖vk − v‖C0([0,T ]×[0,+∞))
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+
N2

8
‖|Rk4R|‖C0([0,T ]×[0,+∞))‖v‖C0([0,T ]×[0,+∞)),

and so we get:

‖vk − v‖C0([0,T ]×[0,+∞)) ≤ 2‖Ak −A‖C0([0,T ]×[0,+∞)) +
|νk2 − ν2|

4
‖H‖C0([0,T ]×[0,+∞))

+
N2

4
‖|Rk4R|‖C0([0,T ]×[0,+∞))‖v‖C0([0,T ]×[0,+∞)).

Letting k → +∞ we deduce that by Proposition 2.5 the first term goes to zero, by (1.12a)
the second one goes trivially to zero and by Lemma 2.7 the third one goes to zero too. So we
conclude. �

Proposition 2.9. Assume (1.12a), (1.12b) and let T be as in Proposition 2.1. If ˙̀k → ˙̀ in
L1(0, T ), then vk → v in H1((0, T )× (0,+∞)).

Proof. First of all we notice that our hypothesis imply `k → ` uniformly in [0, T ] and hence by
Proposition 2.8 we get vk → v uniformly in [0, T ]× [0,+∞) and so in particular in L2((0, T )×
(0,+∞)). To get the same result for the sequence of time derivatives {vkt } we estimate:

‖vkt − vt‖L2((0,T )×(0,+∞))

≤ ‖Akt −At‖L2((0,T )×(0,+∞)) +
|νk2 − ν2|

8
‖Ht‖L2((0,T )×(0,+∞)) +

N2

8
‖Hk

t −Ht‖L2((0,T )×(0,+∞)).

By Proposition 2.6 we deduce that the first term goes to zero as k → +∞, by (1.12a) the second
term goes trivially to zero, while for the third one one gets the same result exploiting the explicit
formulas for Hk

t and Ht given by (1.11a), the fact that vk → v uniformly in [0, T ] × [0,+∞),
and reasoning as in the proof of Proposition 2.6.

With the same argument one can show that also vkx → vx in L2((0, T )× (0,+∞)) and so the
result is proved. �

Proposition 2.10. Assume (1.12a), (1.12b) and let T be as in Proposition 2.1. If ˙̀k → ˙̀ in
L1(0, T ), then vk → v in C0([0, T ];H1(0,+∞)) and in C1([0, T ];L2(0,+∞)).

Proof. By Proposition 2.8 we know that vk → v uniformly in [0, T ]× [0,+∞), so to conclude it
is enough to prove that

lim
k→+∞

max
t∈[0,T ]

‖vkt (t)− vt(t)‖L2(0,+∞) = 0 and lim
k→+∞

max
t∈[0,T ]

‖vkx(t)− vx(t)‖L2(0,+∞) = 0.

We actually prove only the validity of the first limit, the other one being analogous. So we fix
t ∈ [0, T ] and we assume that `(t) < `k(t), being the other cases even easier to deal with, then
we estimate:

‖vkt (t)− vt(t)‖L2(0,+∞) =

∫ `(t)

0
|vkt (t, x)− vt(t, x)|2 dx+

∫ `k(t)

`(t)
|vkt (t, x)|2 dx

≤ 2

∫ `(t)

0
|Akt (t, x)−At(t, x)|2 dx+ 2

∫ `k(t)

`(t)
|Akt (t, x)|2 dx (2.2)

+ 2

∫ `(t)

0
|Hk

t (t, x)−Ht(t, x)|2 dx+ 2

∫ `k(t)

`(t)
|Hk

t (t, x)|2 dx.

Exploiting the explicit formulas (1.11a) and Proposition 2.1 it is easy to see that the second
term in the last line is bounded by C‖`k − `‖C0([0,T ]); always by (1.11a) we deduce that also
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the first term in the last line goes uniformly to zero in [0, T ]. We want to remark that the only
difficult part to estimate is the following:∫ `(t)

`k0−t

∣∣∣∣∣ω̇k(x+t)

∫ ψk
−1

(x+t)

0
vk(τ, τ − ωk(x+t)) dτ − ω̇(x+t)

∫ ψ−1(x+t)

0
v(τ, τ − ω(x+t)) dτ

∣∣∣∣∣
2

dx

=

∫ `(t)

`k0−t

∣∣∣∣ω̇k(x+t)

∫ T

0
vk(τ, τ − ωk(x+t)) dτ − ω̇(x+t)

∫ T

0
v(τ, τ − ω(x+t)) dτ

∣∣∣∣2 dx

=

∫ ψ(t)

`k0

∣∣∣∣ω̇k(s) ∫ T

0
vk(τ, τ − ωk(s)) dτ − ω̇(s)

∫ T

0
v(τ, τ − ω(s)) dτ

∣∣∣∣2 ds,

which goes uniformly to zero applying Lemma 2.4 and recalling that vk → v uniformly in
[0, T ]× [0,+∞).

The first term in the second line in (2.2) is estimated just as above using hypothesis (1.12b),
while for the second term we reason as follows:∫ `k(t)

`(t)
|Akt (t, x)|2 dx ≤ 2

∫ `k(t)

`(t)
|(v̇k0 + vk1 )(x−t)|2 dx+ 2

∫ `k(t)

`(t)

∣∣((v̇k0 + vk1 )(−ωk(x+t))
)
ω̇k(x+t)

∣∣2 dx

≤ 2

∫ −ϕk(t)

−ϕ(t)
|(v̇k0 + vk1 )(s)|2 ds+ 2

∫ −ωk(ψ(t))

−ϕk(t)
|(v̇k0 + vk1 )(s)|2 ds

≤ 2‖v̇k0 + vk1 − v̇0 − v1‖2L2(0,+∞) + 2

∫ −ωk(ψ(t))

−ϕ(t)
|(v̇0 + v1)(s)|2 ds,

which goes uniformly to zero since −ωk ◦ ψ → −ϕ uniformly.
So we have proved that lim

k→+∞
max
t∈[0,T ]

‖vkt (t)− vt(t)‖L2(0,+∞) = 0 and we conclude. �

Proposition 2.11. Assume (1.12a), (1.12b) and let T be as in Proposition 2.1. If ˙̀k → ˙̀ in

L1(0, T ), then vkx(·, 0)→ vx(·, 0) and
√

1− ˙̀k(·)vkx(·, `k(·))→
√

1− ˙̀(·)vx(·, `(·)) in L2(0, T ).

Proof. By the explicit formulas (1.10) and (1.11b) and using representation formula (1.13) we
know that for a.e. t ∈ (0, T ) the following equality holds true:

vkx(t, 0) = −żk(t) + v̇k0 (t) + vk1 (t) +
νk

2

4

∫ t

0
vk(τ, t−τ) dτ, (2.3)

and so using (1.12b) and Propositions 2.1 and 2.8 it is easy to deduce vkx(·, 0) → vx(·, 0) in
L2(0, T ).
Moreover we know that for a.e. t ∈ (0, T ) it holds:

vkx(t, `k(t)) =
1

1 + ˙̀k(t)

[
v̇k0 (`k(t)−t)− vk1 (`k(t)−t)− νk

2

4

∫ t

0
vk(τ, τ + `k(t)−t) dτ

]

=
1

1 + ˙̀k(t)

[
v̇k0 (`k(t)−t)− vk1 (`k(t)−t)− νk

2

4

∫ T

0
vk(τ, τ + `k(t)−t) dτ

]
.

We denote by gk(t−`k(t)) the expression within the square brackets, i.e. gk(t−`k(t)) = (1 +
˙̀k(t))vkx(t, `k(t)), and we estimate:∫ T

0

∣∣∣∣√1− ˙̀k(t)vkx(t, `k(t))−
√

1− ˙̀(t)vx(t, `(t))

∣∣∣∣2 dt
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=

∫ T

0

∣∣∣∣∣∣
√

1− ˙̀k(t)

1 + ˙̀k(t)
gk(t−`k(t))−

√
1− ˙̀(t)

1 + ˙̀(t)
g(t−`(t))

∣∣∣∣∣∣
2

dt

≤ 2

∫ T

0

∣∣∣∣ 1

1 + ˙̀k(t)

(√
1− ˙̀k(t)gk(t−`k(t))−

√
1− ˙̀(t)g(t−`(t))

)∣∣∣∣2 dt

+ 2

∫ T

0

∣∣∣∣ 1

1 + ˙̀k(t)
− 1

1 + ˙̀(t)

∣∣∣∣2 (1− ˙̀(t))g(t−`(t))2 dt

≤ 2

∫ T

0

∣∣∣∣√1− ˙̀k(t)gk(t−`k(t))−
√

1− ˙̀(t)g(t−`(t))
∣∣∣∣2 dt

+ 2

∫ T

0

∣∣∣ ˙̀k(t)− ˙̀(t)
∣∣∣ (1− ˙̀(t))g(t−`(t))2 dt.

By dominated convergence the last integral vanishes when k → +∞, so we conclude if we

prove that
√

1− ˙̀k(t)gk(t−`k(t))→
√

1− ˙̀(t)g(t−`(t)) in L2(0, T ). To this aim we continue to

estimate:∫ T

0

∣∣∣∣√1− ˙̀k(t)gk(t−`k(t))−
√

1− ˙̀(t)g(t−`(t))
∣∣∣∣2 dt

≤ 2

∫ T

0
(1− ˙̀k(t))

∣∣∣(gk−g)(t−`k(t))∣∣∣2 dt+ 2

∫ T

0

∣∣∣∣√1− ˙̀k(t)g(t−`k(t))−
√

1− ˙̀(t)g(t−`(t))
∣∣∣∣2 dt.

By (1.12a), (1.12b) and exploiting Proposition 2.8 it is easy to see that gk → g in L2(−∞, 0)
and so reasoning as in the proof of Lemma 2.4 we get both terms go to zero as k → +∞. Hence
we conclude. �

Summarising, in this Section we have obtained the following result: if we assume (1.12a),

(1.12b) and if for some T < min
{
`0
2 ,

2
N2`0

}
we know that ˙̀k → ˙̀ in L1(0, T ) (and hence `k

uniformly converges to ` in [0, T ]), then the sequence of auxiliary functions {vk} converges to v
in the following ways:

− vk → v uniformly in [0, T ]× [0,+∞);

− vk → v in H1((0, T )× (0,+∞));

− vk → v in C0([0, T ];H1(0,+∞)) and in C1([0, T ];L2(0,+∞));

− vkx(·, 0)→ vx(·, 0) and

√
1− ˙̀k(·)vkx(·, `k(·))→

√
1− ˙̀(·)vx(·, `(·)) in L2(0, T ).

(2.4)

Remark 2.12. We recall that by the formula uk(t, x) = e−ν
kt/2vk(t, x) we deduce that all the

convergences in (2.4) still remains true replacing vk and v by the real solutions of the coupled
problem uk and u respectively.

3. The continuous dependence result

The goal of this Section is proving that under assumptions (1.12) there exists a small time

T > 0 such that ˙̀k → ˙̀ in L1(0, T ). In this case, by what we proved in Section 2, we will deduce
as a byproduct that all the convergences in (2.4) hold true in [0, T ]. This will lead us to the
main Theorem of the paper, namely Theorem 3.6.
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To this aim, as in [3] and [16], we introduce the functions λk and λ as the inverse of ϕk and

ϕ, respectively. By (1.9) we deduce that for T < `0
2 we can write:

λk(y) =
1

2

∫ y

−`k0

(
1 + max

{
Λkvk,λk(s), 1

})
ds, for every y ∈ [−`k0, ϕk(T )], (3.1)

where for a.e. y ∈ [−`k0, ϕk(T )] we considered the function:

Λkvk,λk(y) =

[
v̇k0 (−y)− vk1 (−y)− νk

2

4

∫ λk(y)
0 vk(τ, τ−y) dτ

]2

2eνkλk(y)κk(λk(y)−y)
. (3.2)

Obviously the same formulas without apexes k hold true also for λ.
Furthermore let us define the set:

Qk :=
{

(t, x) ∈ R2 | t ∈ [0, T ] and x ∈ [t− (ϕ(T ) ∧ ϕk(T )), t+ (`0 ∧ `k0)]
}
,

and let us introduce the distance:

d
(

(vk, λk), (v, λ)
)

:= max
{
‖vk − v‖L2(Qk), max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|

}
. (3.3)

Remark 3.1. This distance is the analogue in our context of the one used in [16] to show that
a certain operator (the right-hand side of representation formulas for vk and λk, see (1.13) and
(3.1)) is a contraction in a suitable space. This will help us to reach our goal.

First of all let us prove that Dk
ϕ(0, T ) = [−(`0 ∧ `k0), ϕ(T ) ∧ ϕk(T )] is definitively nonempty.

Lemma 3.2. Assume (1.12) and let T be as in Proposition 2.1. Then there exists K ∈ N such
that for every k ≥ K the set Dk

ϕ(0, T ) is a nonempty closed interval.

Proof. We argue by contradiction. Let us assume that there exists a subsequence (not relabelled)
such that Dk

ϕ(0, T ) is empty or it is a singleton for every k ∈ N. This means that for every k ∈ N
we have −`k0 < ϕk(T ) ≤ −`0 .
We claim that in this case lim

k→+∞
max

y∈[−`k0 ,ϕk(T )]
|λk(y)| = 0.

If the claim is true we conclude; indeed by definition λk(ϕk(T )) = T and hence we get a
contradiction.
To prove the claim we fix y ∈ [−`k0, ϕk(T )] and we estimate:

λk(y) ≤ 1

2

∫ ϕk(T )

−`k0

(
1 + max

{
Λkvk,λk(s), 1

})
ds ≤

∫ ϕk(T )

−`k0

(
1 +

1

2
Λkvk,λk(s)

)
ds

= ϕk(T ) + `k0 +
1

4

∫ ϕk(T )

−`k0

[
v̇k0 (−s)− vk1 (−s)− νk

2

4

∫ λk(s)
0 vk(τ, τ−s) dτ

]2

eνkλk(s)κk(λk(s)−s)
ds.

Since −`k0 < ϕk(T ) ≤ −`0, by (1.12a) we deduce that ϕk(T ) + `k0 → 0 as k → +∞. Then we
estimate the integral in the last line exploiting Proposition 2.1 and hypothesis (1.12c):∫ ϕk(T )

−`k0

[
v̇k0 (−s)− vk1 (−s)− νk

2

4

∫ λk(s)
0 vk(τ, τ−s) dτ

]2

eνkλk(s)κk(λk(s)−s)
ds

≤ C
∫ ϕk(T )

−`k0

(
v̇k0 (−s)2 + vk1 (−s)2 +N4M2T 2

)
ds = C

∫ `k0

−ϕk(T )

(
v̇k0 (s)2 + vk1 (s)2 + 1

)
ds.

By hypothesis (1.12b) and since ϕk(T ) + `k0 → 0 we conclude. �
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To make next Proposition clearer let us introduce the functions jk(y) := |v̇k0 (−y)|+ |vk1 (−y)|+
χ[0,2`0](−y) and notice that by (1.12b) the sequence {jk} is equibounded in L2(−∞, 0). For

the sake of clarity we also define ρk(y) := v̇k0 (−y)− vk1 (−y)− νk
2

4

∫ λk(y)

0
vk(τ, τ−y) dτ and using

Proposition 2.1 we observe that |ρk(y)| ≤ Cjk(y) for a.e. y ∈ Dk
ϕ(0, T ) if the time T is sufficiently

small. In the same way we define the functions j and ρ. Finally we introduce the nonnegative
quantity:

ηk := ‖j‖2L2(Dkϕ(0,T )) + ‖jk‖L2(Dkϕ(0,T )) + ‖j‖L2(Dkϕ(0,T )).

Proposition 3.3. Assume (1.12), let T be as in Proposition 2.1 and let K be given by Lemma
3.2. Then there exists a constant C1 ≥ 0 independent of k and an infinitesimal sequence {εk}
such that for every k ≥ K the following estimate holds true:

max
y∈Dkϕ(0,T )

|λk(y)− λ(y)| ≤ εk + C1η
k d
(

(vk, λk), (v, λ)
)
. (3.4)

Proof. We assume `0 < `k0, being the other cases even easier, and we estimate:

max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|

≤
∫ −`0
−`k0

λ̇k(s) ds+
1

4

∫
Dkϕ(0,T )

∣∣∣∣ ρk(s)2

eνkλk(s)κk(λk(s)−s)
− ρ(s)2

eνλ(s)κ(λ(s)−s)

∣∣∣∣ ds.
(3.5)

The first term goes to zero as k → +∞ reasoning as in the proof of Lemma 3.2. For the second
one, denoted by Ik, we estimate exploiting assumption (1.12c):

Ik ≤ C
∫
Dkϕ(0,T )
eνλ(s)κ(λ(s)−s)

∣∣∣ρk(s)2−ρ(s)2
∣∣∣ds+ C

∫
Dkϕ(0,T )
ρ(s)2

∣∣∣eνkλk(s)κk(λk(s)−s)−eνλ(s)κ(λ(s)−s)
∣∣∣ds

≤ C
∫
Dkϕ(0,T )

∣∣∣ρk(s)2 − ρ(s)2
∣∣∣ ds+ C

∫
Dkϕ(0,T )

ρ(s)2
∣∣∣e(νk−ν)λk(s) − 1

∣∣∣ ds

+ C max
y∈[0,`0+T ]

|κk(y)− κ(y)|
∫
Dkϕ(0,T )

ρ(s)2 ds+ C max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|
∫
Dkϕ(0,T )

ρ(s)2 ds.

By dominated convergence and by (1.12a) and (1.12c) the second and the third term go to zero
as k → +∞, while for the first term we estimate:∫

Dkϕ(0,T )

∣∣∣ρk(s)2 − ρ(s)2
∣∣∣ ds

≤
∫
Dkϕ(0,T )
|v̇k0 (−s)− v̇0(−s)t|

(
|ρk(s)|+ |ρ(s)|

)
ds+

∫
Dkϕ(0,T )
|vk1 (−s)− v1(−s)|

(
|ρk(s)|+ |ρ(s)|

)
ds

+
1

4

∫
Dkϕ(0,T )

(|ρk(s)|+ |ρ(s)|)

∣∣∣∣∣νk2
∫ λk(s)

0
vk(τ, τ−s) dτ − ν2

∫ λ(s)

0
v(τ, τ−s) dτ

∣∣∣∣∣ ds

≤ C
(
‖v̇k0 − v̇0‖L2(0,+∞) + ‖vk1 − v1‖L2(0,+∞)

)(
‖jk‖L2(−∞,0) + ‖j‖L2(−∞,0)

)
+ C

∫
Dkϕ(0,T )

(|jk(s)|+ |j(s)|)

∣∣∣∣∣νk2
∫ λk(s)

0
vk(τ, τ−s) dτ − ν2

∫ λ(s)

0
v(τ, τ−s) dτ

∣∣∣∣∣ ds.

To deal with the last integral we first notice that for every s ∈ Dk
ϕ(0, T ) we have:∣∣∣∣∣νk2

∫ λk(s)

0
vk(τ, τ−s) dτ − ν2

∫ λ(s)

0
v(τ, τ−s) dτ

∣∣∣∣∣
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Figure 2. The partition of the set Qk via the sets Qki , for i = 1, . . . , 7, in the
case `0 < `k0 and ϕ(T ) < ϕk(T ).

≤ |νk2 − ν2|

∣∣∣∣∣
∫ λk(s)

0
vk(τ, τ−s) dτ

∣∣∣∣∣+ ν2

∣∣∣∣∣
∫ λk(s)

0
(vk − v)(τ, τ−s) dτ

∣∣∣∣∣+ ν2

∣∣∣∣∣
∫ λk(s)

λ(s)
v(τ, τ−s) dτ

∣∣∣∣∣
≤ C

(
|νk2 − ν2|+

∣∣∣∣∫ T

0
(vk − v)(τ, τ−s) dτ

∣∣∣∣+ max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|

)
,

and so we deduce:

max
y∈Dkϕ(0,T )

|λk(y)− λ(y)| ≤ εk + Ik

≤ εk + C
(
‖j‖2L2(Dkϕ(0,T )) + ‖jk‖L2(Dkϕ(0,T )) + ‖j‖L2(Dkϕ(0,T ))

)
d
(

(vk, λk), (v, λ)
)

= εk + Cηk d
(

(vk, λk), (v, λ)
)
,

and we conclude. �

Proposition 3.4. Assume (1.12), let T be as in Proposition 2.1 and let K be given by Lemma
3.2. Then there exists a constant C2 ≥ 0 independent of k and an infinitesimal sequence {εk}
such that for every k ≥ K the following estimate holds true:

‖vk − v‖L2(Qk) ≤ εk + C2

√
|Dk

ϕ(0, T )| d
(

(vk, λk), (v, λ)
)
. (3.6)

Proof. We use again formula (1.13) and we estimate:

‖vk − v‖L2(Qk) ≤ ‖Ak −A‖L2(Qk) +
νk

2

8
‖Hk −H‖L2(Qk) +

|νk2 − ν2|
8

‖H‖L2(Qk)

≤ εk + ‖Ak −A‖L2(Qk) +
N2

8
‖Hk −H‖L2(Qk).

(3.7)

Then we split Qk into seven parts, denoted by Qki for i = 1, . . . , 7, as in Figure 2, so that:

‖Ak −A‖2L2(Qk) =

∫∫
Qk1∪Qk2∪Qk4
|Ak(t, x)−A(t, x)|2dx dt+

∫∫
Qk3∪Qk5
Ak(t, x)2dx dt+

∫∫
Qk6

A(t, x)2dx dt, (3.8)

and we estimate all of the terms.
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The integrals over Qk1, Qk2, Qk3 goes easily to zero as k → +∞: indeed in Qk1 we use (1.12b),
while for the integrals over Qk2 and Qk3 we exploit the equiboundedness of the sequence {Ak} in
C0([0, T ]× [0,+∞) (see Proposition 2.1) and the fact that Qk2 ∪Qk3 converges to the empty set.
To estimate the remaining terms we reason as in [16], Proposition 4.5. In that work the validity
of the following estimates is proved:

|ωk(x+t)− ω(x+t)| ≤ 2 max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|, if (t, x) ∈ Qk4, (3.9a)

|(t−x)− ωk(x+t)| ≤ 2 max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|, if (t, x) ∈ Qk5, (3.9b)

|(t−x)− ω(x+t)| ≤ 2 max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|, if (t, x) ∈ Qk6. (3.9c)

Moreover they also show that:

|Qk5 ∪Qk6| ≤ |Dk
ϕ(0, T )| max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|. (3.10)

Exploiting (3.9b), (3.9c), (3.10) and reasoning as in the proof of Proposition 4.5 in [16] one can
deduce that:∫∫

Qk5

Ak(t, x)2 dx dt+

∫∫
Qk6

A(t, x)2 dx dt ≤ C|Dk
ϕ(0, T )| max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|2.

To estimate the integral over Qk4 we first of all notice that for (t, x) ∈ Qk4 we have:

|Ak(t, x)−A(t, x)|2 =
1

4

∣∣∣∣∣
∫ −ωk(x+t)

x−t
(vk1 (s)− v̇k0 (s)) ds−

∫ −ω(x+t)

x−t
(v1(s)− v̇0(s)) ds

∣∣∣∣∣
2

≤ C
(
‖vk1 − v1‖2L2(0,+∞) + ‖v̇k0 − v̇0‖2L2(0,+∞)

)
+

1

2

∣∣∣∣∣
∫ −ωk(x+t)

−ω(x+t)
(v1(s)− v̇0(s)) ds

∣∣∣∣∣
2

≤ εk +
1

2
|ωk(x+t)− ω(x+t)|

∣∣∣∣∣
∫ −ωk(x+t)

−ω(x+t)
(v1(s)− v̇0(s))2 ds

∣∣∣∣∣ .
Using (3.9a) we then deduce that for (t, x) ∈ Qk4 the following estimate holds true:

|Ak(t, x)−A(t, x)|2 ≤ εk + max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|

∣∣∣∣∣
∫ −ωk(x+t)

−ω(x+t)
(v1(s)− v̇0(s))2 ds

∣∣∣∣∣ .
From this inequality, reasoning as in the proof of Proposition 4.5 in [16], we conclude that:∫∫

Qk4

|Ak(t, x)−A(t, x)|2 dx dt ≤ εk + C|Dk
ϕ(0, T )| max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|2.

Putting all the previous estimates together we deduce:

‖Ak −A‖2L2(Qk) ≤ ε
k + C|Dk

ϕ(0, T )| max
y∈Dkϕ(0,T )

|λk(y)− λ(y)|2

≤ εk + C|Dk
ϕ(0, T )| d

(
(vk, λk), (v, λ)

)2
.

(3.11)

Now we estimate ‖Hk−H‖L2(Qk). As in (3.8) we split its square into six integrals and we estimate

all of them. With the same argument used before we deduce the integral over Qk2 ∪Qk3 goes to
zero as k → +∞, while the integral over Qk1 is trivially bounded by C|Dk

ϕ(0, T )|‖vk − v‖2
L2(Qk)

.
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More work is needed to treat the other three integrals. Exploiting Proposition 2.1 we estimate
the integrals over Qk5 and Qk6 together:∫∫

Qk5

Hk(t, x)2 dx dt+

∫∫
Qk6

H(t, x)2 dx dt

≤ C

(∫∫
Qk5

|Rk(t, x)|2 dx dt+

∫∫
Qk6

|R(t, x)|2 dx dt

)

≤ C

(∫∫
Qk5

|(t−x)− ωk(x+t)|2 dx dt+

∫∫
Qk6

|(t−x)− ω(x+t)|2 dx dt

)
.

So, using (3.9b) and (3.9c) we deduce:∫∫
Qk5

Hk(t, x)2 dx dt+

∫∫
Qk6

H(t, x)2 dx dt ≤ C|Dk
ϕ(0, T )| max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|2.

For the integral over Qk4 we use (3.9a) and we reason as follows:∫∫
Qk4

|Hk(t, x)−H(t, x)|2 dx dt

≤
∫∫

Qk4

(∫∫
Rk(t,x)

|vk(τ, σ)− v(τ, σ)|dσ dτ +

∫∫
Rk(t,x)4R(t,x)

|v(τ, σ)|dσ dτ

)2

dx dt

≤ C
∫∫

Qk4

(
|Rk(t, x)|‖vk − v‖2L2(Qk) + |Rk(t, x)4R(t, x)|2

)
dx dt

≤ C

(
|Dk

ϕ(0, T )|‖vk − v‖2L2(Qk) +

∫∫
Qk4

|ωk(x+t)− ω(x+t)|2 dx dt

)

≤ C|Dk
ϕ(0, T )|

(
‖vk − v‖2L2(Qk) + max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|2

)
.

Putting together the previous estimates we conclude that:

‖Hk −H‖2L2(Qk) ≤ ε
k + C|Dk

ϕ(0, T )|

(
‖vk − v‖2L2(Qk) + max

y∈Dkϕ(0,T )
|λk(y)− λ(y)|2

)

≤ εk + C|Dk
ϕ(0, T )| d

(
(vk, λk), (v, λ)

)2
,

(3.12)

and so by (3.7), (3.11) and (3.12) the Proposition is proved. �

Putting together (3.4) and (3.6) we deduce that there exists a constant C ≥ 0 independent of k
such that for every k large enough it holds:

d
(

(vk, λk), (v, λ)
)
≤ εk + C max

{
ηk, |Dk

ϕ(0, T )|
}

d
(

(vk, λk), (v, λ)
)
. (3.13)

By (3.13) and reasoning as in the proof of Lemma 3.2 one can prove that the set Dk
ϕ(0, T )) does

not vanish when k → +∞. To be precise one gets the existence of a positive number δ such that
for every k large enough the nonempty closed interval Jkδ = [−(`k0 ∧ `0),−`0 + δ] is contained in

Dk
ϕ(0, T ). So, repeating the proofs of Propositions 3.3 and 3.4 we deduce that (3.13) still holds

true replacing Dk
ϕ(0, T ) by Jkδ , replacing ηk by ηkδ := ‖j‖2

L2(Jkδ )
+ ‖jk‖L2(Jkδ ) + ‖j‖L2(Jkδ ) and
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replacing Qk by Qkδ :=
{

(t, x) ∈ R2 | t ∈ [0, T ] and x ∈ [t+ `0 − δ, t+ (`0 ∧ `k0)]
}

. This means
that, choosing δ small enough, for every k large enough we have:

dδ

(
(vk, λk), (v, λ)

)
≤ εk +

1

2
dδ

(
(vk, λk), (v, λ)

)
, (3.14)

where the new distance dδ is simply as in (3.3) replacing Dk
ϕ(0, T )) by Jkδ and Qk by Qkδ . By

(3.14) we finally deduce that:

lim
k→+∞

dδ

(
(vk, λk), (v, λ)

)
= 0. (3.15)

Furthermore by (3.15) we get:

lim
k→+∞

∫ −`0+δ

−(`k0∧`0)
|λ̇k(y)− λ̇(y)|dy = 0. (3.16)

To justify the validity of (3.16) we reason as follows: in the estimate (3.5) at the beginning of

the proof of Proposition 3.3 we can replace max
y∈Jkδ

|λk(y) − λ(y)| by

∫ −`0+δ

−(`k0∧`0)
|λ̇k(y) − λ̇(y)| dy,

obtaining that: ∫ −`0+δ

−(`k0∧`0)
|λ̇k(y)− λ̇(y)| dy ≤ εk + C1η

k
δ dδ

(
(vk, λk), (v, λ)

)
,

and so by (3.15) we conclude the argument. This leads to the following Corollary:

Corollary 3.5. Assume (1.12). Then there exists a small time T > 0 such that ˙̀k → ˙̀ in
L1(0, T ).

Proof. Let us take any T ∈
(
0, λ(−`0 + δ)

)
and for the sake of clarity let us consider the value

mk := (λk ∨ λ)(−(`k0 ∧ `0)). Then we have:

‖ ˙̀k − ˙̀‖L1(0,T ) =

∫ mk

0
| ˙̀k(s)− ˙̀(s)|ds+

∫ T

mk
| ˙̀k(s)− ˙̀(s)|ds

≤ 2mk +

∫ T

mk

∣∣∣∣∣ 1

λ̇k(λk
−1

(s))
− 1

λ̇(λ−1(s))

∣∣∣∣∣ ds.

By uniform convergence of λk to λ and by (1.12a) the first term goes to zero as k → +∞, while
for the second one, denoted by Ik, we estimate:

Ik ≤
∫ T

mk

∣∣∣∣∣ λ̇k(λk
−1

(s))− λ̇(λk
−1

(s))

λ̇k(λk
−1

(s))

∣∣∣∣∣ ds+

∫ T

mk

∣∣∣∣∣ λ̇(λk
−1

(s))− λ̇(λ−1(s))

λ̇k(λk
−1

(s))λ̇(λ−1(s))

∣∣∣∣∣ ds

≤
∫ −`0+δ

−(`k0∧`0)

∣∣∣λ̇k(y)− λ̇(y)
∣∣∣ dy +

∫ T

mk

∣∣∣∣∣ λ̇(λk
−1

(s))− λ̇(λ−1(s))

λ̇k(λk
−1

(s))λ̇(λ−1(s))

∣∣∣∣∣ ds.

By (3.16) the first term goes to zero as k → +∞; for the second one, denoted by IIk, we reason

as follows: we fix ε > 0 and we take fε ∈ C0([−`0,−`0 + δ]) such that ‖λ̇− fε‖L1(−`0,−`0+δ) ≤ ε.
Then we estimate:

IIk ≤
∫ T

mk

∣∣∣∣∣ λ̇(λk
−1

(s))− fε(λk
−1

(s))

λ̇k(λk
−1

(s))

∣∣∣∣∣ ds+

∫ T

mk
|fε(λk

−1
(s))− fε(λ−1(s))|ds

+

∫ T

mk

∣∣∣∣∣fε(λ−1(s))− λ̇(λ−1(s))

λ̇(λ−1(s))

∣∣∣∣∣ ds
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≤ 2

∫ −`0+δ

−`0

∣∣∣λ̇(y)− fε(y)
∣∣∣ dy +

∫ T

mk
|fε(λk

−1
(s))− fε(λ−1(s))| ds

≤ 2ε+

∫ T

mk
|fε(λk

−1
(s))− fε(λ−1(s))|ds.

By Lemma 2.2 and dominated convergence this last integral vanishes as k → +∞, hence by the
arbitrariness of ε we conclude. �

We are now in a position to state and prove the main result of the paper:

Theorem 3.6. Assume (1.12). Then the sequence of pairs {(uk, `k)} converges to the pair (u, `)
in the following sense: for every T > 0

− ˙̀k → ˙̀ in L1(0, T );

− uk → u uniformly in [0, T ]× [0,+∞);

− uk → u in H1((0, T )× (0,+∞));

− uk → u in C0([0, T ];H1(0,+∞)) and in C1([0, T ];L2(0,+∞));

− ukx(·, 0)→ ux(·, 0) and

√
1− ˙̀k(·)ukx(·, `k(·))→

√
1− ˙̀(·)ux(·, `(·)) in L2(0, T ).

(3.17)

Proof. As already remarked previously it is enough to prove that (3.17) holds true for the

sequence of auxiliary functions vk(t, x) = eν
kt/2uk(t, x). By Corollary 3.5 and by the results

presented in Section 2 we know there exists a small time T > 0 such that all the convergences
in (3.17) hold true in [0, T ] for the sequence of pairs {(vk, `k)}. So we can consider:

T ∗ := sup{T > 0 | (vk, `k)→ (v, `) in the sense of (3.17) in [0, T ]}.

If T ∗ = +∞ we conclude. So let us argue by contradiction assuming that T ∗ is finite. This means
there exists an increasing sequence of times {T j} converging to T ∗ and for which (vk, `k)→ (v, `)

in the sense of (3.17) in [0, T j ] for every j ∈ N. Since ˙̀k → ˙̀ in L1(0, T j) for every j ∈ N and
˙̀k(t) < 1 and ˙̀(t) < 1 for a.e. t > 0 it follows that ˙̀k → ˙̀ in L1(0, T ∗) and hence `k uniformly
converges to ` in [0, T ∗] by (1.12a). Moreover, reasoning as in Section 2 we also get that vk → v
in the sense of (3.17) in the whole time interval [0, T ∗], and hence T ∗ is a maximum. Now we
can repeat the proofs of Propositions 3.3 and 3.4 starting from time T ∗(notice that by (3.17) the
convergence hypothesis (1.12b) is fulfilled by uk(T ∗, ·) and ukt (T

∗, ·), while (1.12a) is replaced

by `k(T ∗) → `(T ∗)) deducing the existence of a time T̂ > T ∗ for which (3.17) holds true. This
is absurd being T ∗ the supremum, so we conclude. �

Remark 3.7. Since ˙̀k(t) < 1 for a.e. t ∈ [0,+∞), by (3.17) we actually deduce that for every

p ≥ 1 it holds ˙̀k → ˙̀ in Lp(0, T ) for every T > 0. However this convergence cannot be improved
to the case p = +∞. Indeed let us consider `k0 = `0 = 1, νk = ν = 2, wk ≡ w ≡ 0 in [0,+∞),
κk ≡ κ ≡ 1/2 in [`0,+∞), uk0 ≡ u0 ≡ u1 ≡ 0 and uk1(x) = 3χ[1−1/k,1](x) in [0, 1], so that

uk1 → 0 in L2(0, 1) but not in L∞(0, 1). Under these assumptions we have (v, `) ≡ (0, 1), so by
Theorem 3.6 we know that vk → 0 uniformly in [0, T ] × [0,+∞) for every T > 0. This means
that for every k large enough there exists a small time Tk > 0 such that for a.e. t ∈ (0, Tk) we
have:

˙̀k(t) = max

0,

[
uk1(`k(t)−t)) +

∫ t
0 v

k(τ, τ−t+`k(t)) dτ
]2
− e2t[

uk1(`k(t)−t)) +
∫ t

0 v
k(τ, τ−t+`k(t)) dτ

]2
+ e2t


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= max

0,

[
3 +

∫ t
0 v

k(τ, τ−t+`k(t)) dτ
]2
− e2t[

3 +
∫ t

0 v
k(τ, τ−t+`k(t)) dτ

]2
+ e2t


≥ [3− 1]2 − e

[3 + 1]2 + e
=

4− e
16 + e

> 0,

and so ˙̀k does not converge to ˙̀ ≡ 0 in L∞(0, T ) for any T > 0.

Remark 3.8 (Presence of a forcing term). If in the debonding model we take into account
the presence of an external force f , then the equation the vertical displacement u has to satisfy
becomes:

utt(t, x)− uxx(t, x) + νut(t, x) = f(t, x), t > 0 , 0 < x < `(t),

while the energy-dissipation balance reads as:

E(t) +A(t) +

∫ `(t)

`0

κ(x) dx = E(0) +W(t) + F(t), for every t ∈ [0,+∞),

where F(t) :=

∫ t

0

∫ `(τ)

0
f(τ, σ)ut(τ, σ) dσ dτ . In [16], Remark 4.12, the authors proved that if

the forcing term satisfies:

f ∈ L∞loc((0,+∞)2) such that f ∈ L∞((0, T )2) for every T > 0, (3.18)

then Theorem 1.5 still holds true, namely the coupled problem admits a unique solution (u, `).
If now we consider, besides all the assumptions given in Section 2 in (1.12), a sequence of

functions {fk} satisfying (3.18) and we assume that:

fk → f in L∞((0, T )2), for every T > 0, (3.19)

then we can repeat all the proofs of the paper, obtaining even in this case the continuous
dependence result (3.17) stated in Theorem 3.6. Indeed in this case the representation formula

for the auxiliary function vk, fixed T < `0
2 , reads as:

vk(t, x) = Ak(t, x) +
νk

2

8
Hk(t, x) +

1

2

∫∫
Rk(t,x)

gk(τ, σ) dσ dτ, for every (t, x) ∈ Ωk
T , (3.20)

where gk(t, x) := eν
kt/2fk(t, x). As a byproduct we obtain that for a.e. y ∈ [−`k0, ϕk(T )] the

function Λk
vk,λk

introduced in (3.2) becomes:

Λkvk,λk(y) =

[
v̇k0 (−y)− vk1 (−y)− νk

2

4

∫ λk(y)
0 vk(τ, τ−y) dτ −

∫ λk(y)
0 gk(τ, τ−y) dτ

]2

2eνkλk(y)κk(λk(y)−y)
. (3.21)

Using (3.20), (3.21) and exploiting (3.19) one can perform again the proofs of Sections 2 and 3,
concluding that Theorem 3.6 still holds true even in this case.
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