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Abstract. We analyze controlled mass transportation plans with free end-time that
minimize the transport cost induced by the generating function of a Lagrangian within a
bounded domain, in addition to costs incurred as export and import tariffs at entry and
exit points on the boundary. We exhibit a dual variational principle à la Kantorovich,
that takes into consideration the additional tariffs. We then show that the primal optimal
transport problem has an equivalent Eulerian formulation whose dual involves the reso-
lution of a Hamilton-Jacobi-Bellman quasi-variational inequality with non-homogeneous
boundary conditions. This allows us to prove existence and to describe the solutions for
both the primal optimization problem and its Eulerian counterpart.
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1. Introduction

Let µ+ be a positive measure on a compact domain Ω of Rd that encodes both the loca-
tion and the supply of goods produced by certain factories, and let µ− be another positive
measure on Ω that represents the location of some customers as well as their consumption
requirement for these goods. Assuming a function c(x, y) describes the transport cost of
a mass unit x to y, and subject to the mass balance condition µ+(Ω) = µ−(Ω), standard
Monge-Kantorovich theory formulates the least costly transport plan as a solution for the
following optimization problem,

(1.1) T (µ+, µ−) := inf

{∫
Ω×Ω

c(x, y) dπ(x, y) : π ∈ P(µ+, µ−)

}
,

where

P(µ+, µ−) :=

{
π ∈M+(Ω× Ω) : πx = µ+ and πy = µ−

}
,

and πx and πy are the two marginals of π on Ω. Note that if c is continuous and µ+

is non-atomic, Problem (1.1) is the relaxed Kantorovich version of the so-called Monge
1
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Problem [17],

T (µ+, µ−) = inf

{∫
Ω
c(x, T (x)) dµ+(x) : T#µ

+ = µ−
}
,

where T#µ
+ = µ− means that the transformation T pushes µ+ onto µ−, i.e., µ−(A) =

µ+(T−1(A)) for every Borel subset A. Under mild conditions on the transport cost c,
Problem (1.1) has the following dual formulation (see, for instance, [19,20]):

(1.2) D(µ+, µ−) := sup

{∫
Ω
ϕ− dµ− −

∫
Ω
ϕ+ dµ+ : ϕ± ∈ C(Ω), (−ϕ+)⊕ ϕ− ≤ c

}
.

We refer to [2,4,5,19,20] for an introduction to optimal transport theory, its history, and
its main results.

Our goal in this paper is to study a variant of this problem already considered by
several authors [9–12,16], namely the case where one considers transport plans that move
all the products in µ+ and cover all the needs of the consumers in µ− (we assume that the
measures µ+ and µ− give zero mass to the boundary ∂Ω), with the possibility of importing
and exporting products across the boundary of Ω, provided export (respect import) tariffs
are paid in addition to the transport cost: one is then charged an extra cost −ψ−(y)
for each unit that comes out from a point y ∈ ∂Ω (the export tax) and a tariff +ψ+(x)
for each unit that enters at the point x ∈ ∂Ω (the import tax). Note that the usual
balance condition on µ+, µ− is not imposed here since we can import and export through
the boundary at will, if necessary. This means that ∂Ω can be considered as an infinite
reserve/repository from which one can import as much product as need be, and to which
one can export as much mass as necessary, provided that one pays the import/export
taxes in addition to the transportation cost. To formulate the problem, one considers the
set

P0(µ+, µ−) :=

{
π ∈M+(Ω× Ω) : (πx)

|
◦
Ω

= µ+, (πy) |
◦
Ω

= µ−
}
,

and minimizes the quantity

(1.3) T1(µ±;ψ±) := inf

{∫
Ω×Ω

cdπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy : π ∈ P0(µ+, µ−)

}
.

It is important to assume the following “no arbitrage condition,” which makes sure that
there is no advantage to transporting goods from the boundary to other boundary loca-
tions:

(1.4) ψ−(y)− ψ+(x) ≤ c(x, y) for all (x, y) ∈ ∂Ω× ∂Ω.

Just like in classical Monge-Kantorovich theory, Problem (1.3) has then a dual formulation
where the Kantorovich potentials now satisfy certain boundary conditions. More precisely,
one can show that

(1.5) T1(µ±;ψ±) = D1(µ±;ψ±),

where

(1.6) D1(µ±;ψ±) := sup
ϕ±∈C(Ω)

{∫
Ω

ϕ−dµ− −
∫

Ω

ϕ+dµ+ :
ψ− ≤ ϕ− ≤ ϕ+ ≤ ψ+ on ∂Ω,
(−ϕ+)⊕ ϕ− ≤ c

}
.

In this paper, we shall consider transport costs c(x, y) given by the minimal value of
some optimal control problem between x and y. Classical Monge-Kantorovich problems
associated with such costs were considered by Agrachev and Lee [1] for trajectories with
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fixed end-times, and by Ghoussoub-Kim-Palmer [15] for the case where end-times also
need to be determined. It is the latter set-up that we shall consider here, that is when

c(x, y) = inf
τ, u

{∫ τ

0
L(t, γ(t), u(t)) dt : γ̇(t) = k(t, γ(t), u(t)), γ(0) = x, γ(τ) = y

}
,

where L is a Lagrangian, u is a control and k is a function that determines the dynamics.
This leads us to formulate an Eulerian version of the problem that dynamically describes
the movement of goods. It also calls for finding optimal stopping times for their delivery.

To give an Eulerian formulation for the primal problem (1.3), we follow ideas in [15]
and consider the set

E0(µ+, µ−) :=

{
(ρ, η) :

ρ : R+ 7→ M+(Rd × U), η ∈M+(R+ × Rd),
(ρ, η) solves (1.7)

}
,

where U ⊂ Rd and the equations for (ρ, η) are expressed formally as

(1.7)


η + ∂t

(∫
U dρ

)
+∇ ·

(∫
U k dρ

)
= 0,∫

U dρ0(·, u) = µ+ on Rd\∂Ω,∫
R+ dη(t, ·) = µ− on Rd\∂Ω.

This means that the boundary parts of
∫
U dρ0(·, u) and

∫
R+ dη(t, ·) are now unknown (in

fact, these two positive measures represent the import/export masses on the boundary
∂Ω). The Eulerian formulation of Problem (1.3) then becomes

(1.8) T2(µ±;ψ±) := inf
(ρ,η)∈E0(µ+,µ−)



∫
R+

∫
Rd×U

L(t, x, u) dρt(x, u) dt

+

∫
∂Ω×U

ψ+(x) dρ0(x, u)

−
∫
R+×∂Ω

ψ−(y) dη(t, y)


.

Similarly to [15], we then consider the dual of the Eulerian formulation (1.8), which involves
the resolution of the following Hamilton-Jacobi-Bellman quasi-variational inequality but,
now, with certain non-homogeneous boundary conditions:

(1.9)


∂tJ

+(t, x) + k(t, x, u) · ∇J+(t, x) ≤ L(t, x, u) (t, x, u) ∈ R+ × Rd × U,
ϕ−(x) ≤ J+(t, x) (t, x) ∈ R+ × Rd,
ψ−(x) ≤ ϕ−(x) x ∈ ∂Ω,

J+(0, x) ≤ ψ+(x) x ∈ ∂Ω.

The second dual problem is now,

(1.10) D2(µ±;ψ±) := sup

{∫
Ω

ϕ−dµ− −
∫

Ω

J+(0, ·) dµ+ :
ϕ− ∈ C(Rd), J+ ∈ C1(R+ × Rd),
(J+, ϕ−) solves (1.9)

}
.

The first goal of this paper is to prove that –under natural conditions– the following
equalities hold,

(1.11) T1(µ±;ψ±) = T2(µ±;ψ±) = D1(µ±;ψ±) = D2(µ±;ψ±).

We will then show, under additional hypotheses, that minimizers of T1(µ±;ψ±) and
T2(µ±;ψ±) are given by transport maps, determined by a Hamiltonian flow terminating
along the free boundary of the optimal dual potentials.



4 S. DWEIK, N. GHOUSSOUB AND A. Z. PALMER

We note that the above model is a particular case of a more general setting, where we
can consider the reserve mass is taken from a prescribed set K+ with cost ψ+, and can be
deposited in the set K− with cost −ψ−, where K+ and K− are two compact sets of Rd.
The admissible set of transport plans is then

(1.12) PK(µ+, µ−) =

{
π ∈M+(Rd × Rd) : (πx)|Rd\K+ = µ+, (πy)|Rd\K− = µ−

}
,

and the new variational problem becomes

(1.13) min

{∫
Rd×Rd

c(x, y)dπ +

∫
K+

ψ+dπx −
∫
K−

ψ−dπy : π ∈ PK(µ+, µ−)

}
.

Again, we assume that the costs ψ+ and ψ− satisfy the no arbitrage assumption (1.4),
which becomes

(1.14) ψ−(y)− ψ+(x) ≤ c(x, y), for all (x, y) ∈ K+ ×K−.
The same analysis as above can be carried out and a sketch is given in Section 6. In fact,
Problem (1.3) is the particular case where K+ = K− = ∂Ω.

Finally, in Section 7, a one-dimensional example is presented to demonstrate how the
structure of the problem can be utilized in a solution.

This paper is organized as follows. In Section 2, we introduce the control problem
needed to define the transportation cost and the conditions under which the existence of
optimal trajectories and the continuity of the transport cost are guaranteed. In Section 3,
we analyze in details the primal transportation problem with tariff costs, prove existence
of an optimal transport plan and give a proof for the first duality principle. In Section 4,
we introduce an equivalent Eulerian formulation and its dual, establish the existence of
an optimal admissible pair and show the equivalence with the primal problem. In Section
5 we identify the optimal stopping times, while in Section 6 we sketch a proof of the more
general setting where the tariff costs ψ+ (resp., −ψ−) are incurred when goods are taken
from (resp., deposited in) prescribed locations K+ (resp., K−). Section 7 presents a simple
one-dimensional example.

2. Free end-time optimal control problem: preliminaries

In this section, we consider the optimal control problem that we will use to define the
transport cost c(x, y), between two points x and y. We assume that the trajectory from
a point x to another one y is submitted to a non-autonomous control system, the time-
dependence of the dynamic comes, for instance, from the interaction between particles.
This control problem is said to be with free end time since the terminal time of the
trajectories from x to y is not fixed, but is the first time at which they reach the point y.
So, we consider control systems whose state equation is of the form

(2.1)

{
γ̇(t) = k(t, γ(t), u(t)), for a.e. t ≥ t0,
γ(t0) = x,

where γ(t) ∈ Rd is the state, the continuous function k : R+ ×Rd ×Rd → Rd is called the
dynamic of the system, t0 ∈ R+, x ∈ Rd, and u : [t0,+∞[ 7→ U is a measurable function
(which is called a control and U is the control set). We list some basic assumptions on the
dynamic k and the control set U :
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(H0) The control set U is compact,
(H1) k is bounded, i.e., |k(t, x, u)| ≤ κ for all (t, x, u) ∈ R+ × Rd × U ,
(H2) k is continuous with respect to u and is C-Lipschitz in the other variables,

i.e., ∃C > 0 such that |k(t, x, u)− k(s, x′, u)| ≤ C(|t− s|+ |x− x′|)
for all t, s ∈ R+, x, x′ ∈ Rd and u ∈ U .

Note that Assumption (H2) ensures the existence of a unique global solution to the
state equation (2.1) for any choice of t0, x and u. We shall denote such a solution of (2.1)

by γt0,xu and we call it an admissible trajectory of the system, corresponding to the initial
condition γ(t0) = x and to the control u. For a given trajectory γ = γt0,xu of (2.1), we set

τ t0,x,yu = inf{τ ≥ 0 : γt0,xu (t0 + τ) = y}, for every y ∈ Rd,

with the convention that τ t0,x,yu = +∞ if γt0,xu (t0 + τ) 6= y, for all τ ≥ 0.
Now, our optimal control problem consists of choosing the control strategy u in the

state equation (2.1) in order to minimize a cost given by a Lagrangian. For that, consider
L : R+ × Rd × Rd 7→ R+ to be a given continuous function. For every x, y ∈ Rd, we
minimize the cost

(2.2) J t0,x,y(u) =

∫ t0+τ
t0,x,y
u

t0

L(t, γt0,xu (t), u(t)) dt,

among all controls u. A control u and the corresponding trajectory γt0,xu are called optimal
from x to y if u minimizes (2.2). Note that it is not clear if for every x, y ∈ Rd, there is
always at least one admissible trajectory joining them. To avoid this situation, we assume
the following extra condition (see also [6]):

(H3) ∃α > 0 such that ∀ x, v ∈ Rd, ∃u ∈ U : k(t, x, u) · v ≤ −α|v|, for all t ∈ R+.

Lemma 2.1. Let Ω ⊂ Rd be a compact domain. Then, there exists a constant C depending
only on α, κ and diam(Ω) such that, for all t0 ∈ R+, x, y ∈ Ω, there is some control u

such that τ t0,x,yu ≤ C|x− y|.

Proof. Fix x, y ∈ Ω. By (H3), there exists a constant control u0 such that k(t, x, u0) ·
(x − y) ≤ −α|x − y|, for every t ∈ R+. Set x1 = γt0,xu0 (t1), where t1 := t0 + δ|x − y|
and δ > 0 is to be chosen later. But again, there is some constant control u1 such
that k(t, x1, u1) · (x1 − y) ≤ −α|x1 − y|, for every t ∈ R+. Set x2 = γt1,x1u1 (t2), where
t2 := t1 + δ|x1 − y|. In this way, we get three sequences (uk)k, (tk)k and (xk)k such that:

k(t, xk, uk) · (xk − y) ≤ −α|xk − y|, for every t ∈ R+, and xk+1 = γtk,xkuk (tk+1), where

tk+1 = t0 +
∑k

i=0 δ|xi − y|. Using (H1) & (H2), for every t ∈ [tk, tk+1], we have:

(|γtk,xkuk
(t)− y|2/2)′ = k(t, γtk,xkuk

(t), uk) · (γtk,xkuk
(t)− y)

= k(t, xk, uk) · (xk − y) + k(t, γtk,xkuk
(t), uk) · (γtk,xkuk

(t)− xk)
+ (k(t, γtk,xkuk

(t), uk)− k(t, xk, uk)) · (xk − y)

≤ −α|xk − y|+ κ|γtk,xkuk
(t)− xk|+ C|γtk,xkuk

(t)− xk||xk − y|
≤ −α|xk − y|+ κ(κ+ C|xk − y|)(tk+1 − tk)
= (−α+ δκ(κ+ C|xk − y|))|xk − y|.

Then, we get

|xk+1 − y|2 ≤ (1 + 2δ(−α+ δκ(κ+ C diam(Ω))))|xk − y|2.
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Set

θ :=
√

1 + 2δ(−α+ δκ(κ+ C diam(Ω))) < 1.

We then have |xk − y| ≤ θk|x− y|. Now, define

ū(t) :=

{
uk if t ∈ [tk, tk+1] , k ∈ N,
0 else.

Observe that

t̄ := lim
k→+∞

tk = t0 + lim
k→+∞

k−1∑
i=0

δ|xi − y| ≤ t0 + lim
k→+∞

k−1∑
i=0

δθi|x− y| = t0 +
δ

1− θ
|x− y|.

On the other hand, we see easily that γt0,xū (t̄) = limk→∞ γ
t0,x
ū (tk) = limk→∞ xk = y.

Consequently, we get

τ t0,x,yū ≤ δ

1− θ
|x− y|,

and we are done. �

We now introduce assumptions on the Lagrangian L that will be needed in the sequel:

(H4) There exist two constants β1, β2 > 0 such that

β1 ≥ L(t, x, u) ≥ β2, for all (t, x, u) ∈ R+ × Rd × U.

(H5) There exists a constant C such that

|L(t, x, u)− L(t, x′, u)| ≤ C|x− x′|, for all x, x′ ∈ Rd, t ∈ R+ and u ∈ U.

(H6) For any (t, x) ∈ R+ × Rd, the set

{(v, r) ∈ Rd+1 : ∃u ∈ U s.t. k(t, x, u) = v, L(t, x, u) ≤ r} is convex.

Under assumptions (H0), (H1), (H2), (H3), (H4) and (H6), we have the following existence
result. The proof is essentially based on some arguments used in [6].

Proposition 2.2. For every t0 ∈ R+ and for all x, y ∈ Ω, there exists an optimal control
u that minimizes the cost J t0,x,y defined in (2.2).

Proof. Let (uk)k be a minimizing sequence. For simplicity, set τk := τ t0,x,yuk and γk :=

γt0,xuk . By (H4), it is clear that, up to extracting subsequences, τk → τ̄ and γk → γ with
γ(t0 + τ̄) = y. We first prove that γ is an admissible trajectory. Fix t ≥ t0. By (H2), for
all s ≥ t0, we have

|k(s, γk(s), uk(s))− k(t, γ(t), uk(s))| ≤ C(|s− t|+ |γk(s)− γ(t)|)
≤ C(|s− t|+ |γk(s)− γk(t)|+ |γk(t)− γ(t)|)
≤ C(|s− t|+ ||γk − γ||∞).

Now, fix ε > 0. Then, for |s− t| << ε and k large enough, this implies that

k(s, γk(s), uk(s)) ∈ k(t, γ(t), U) + B̄(0, ε).

By using (H6), we get

γk(t+ h)− γk(t)
h

=
1

h

∫ t+h

t
k(s, γk(s), uk(s)) ds ∈ k(t, γ(t), U) + B̄(0, ε).
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Letting k →∞, we obtain

γ(t+ h)− γ(t)

h
∈ k(t, γ(t), U) + B̄(0, ε).

Letting h→ 0, we get

γ̇(t) ∈ k(t, γ(t), U) + B̄(0, ε), for a.e. t ≥ t0.

Since ε > 0 is arbitrary, we infer that γ̇(t) ∈ k(t, γ(t), U), for a.e. t ≥ t0. This is sufficient

to say that γ is an admissible trajectory, i.e. there is some control u such that γ = γt0,xu .
Now consider the augmented control system (Ũ, k̃) with state space Rd+1, where Ũ =

U × [0, 1] and k̃(t, x̃, ũ) = (k(t, x, u), β1u + L(t, x, u)(1 − u)), for all t ∈ R+, x̃ = (x,x) ∈
Rd+1 and ũ = (u,u) ∈ Ũ . Recalling (H6), one can check easily that the set k̃(t, x̃, Ũ) is
convex, for all (t, x̃) ∈ R+ × Rd+1. Let γ̃k be the trajectory which corresponds to initial
condition (x, 0) at time t0 and to the controls (uk, 0). Then, we have γ̃k = (γk,xk), where

xk(t) =

∫ t

t0

L(s, γk(s), uk(s)) ds, for every t ≥ t0.

As k̃(t, x̃, Ũ) is convex, for all (t, x̃) ∈ R+×Rd+1, then one can prove as before that there
is a control ũ = (u,u) such that (γk,xk)→ (γ,x), where (γ,x) is an admissible trajectory
which corresponds to initial condition (x, 0) at time t0 and to the control ũ. Yet, one has∫ t

t0

L(s, γ(s), u(s)) ds ≤
∫ t

t0

x′(s) ds = x(t) = lim
k→∞

xk(t) = lim
k→∞

∫ t

t0

L(s, γk(s), uk(s)) ds.

Recalling that τ t0,x,yu ≤ τ̄, τk → τ̄ and using (H4), we infer that∫ t0+τ
t0,x,y
u

t0

L(s, γ(s), u(s)) ds ≤
∫ t0+τ̄

t0

L(s, γ(s), u(s)) ds

≤ lim
k→∞

∫ t0+τ̄

t0

L(s, γk(s), uk(s)) ds

≤ lim
k→∞

∫ t0+τk

t0

L(s, γk(s), uk(s)) ds.

This completes the proof that γ is an optimal trajectory from x to y and that u is the
corresponding optimal control. �

Next, we want to give a result about the Lipschitz continuity of the transport cost. This
result is standard but we prove it for completeness (see also [6] for similar results). Set

c(x, y) := min
{
J0,x,y(u) ; u : R+ 7→ U

}
.

Proposition 2.3. Under Assumptions (H0)-(H6), the transport cost c is Lipschitz con-
tinuous in Ω× Ω.

Proof. Let x, y, y′ ∈ Ω. Suppose that c(x, y′) > c(x, y) and let u be an optimal control

from x to y starting at time 0. Set τ? = τ0,x,y
u and let u? be a control such that τ τ

?,y,y′

u? ≤
C|y − y′| (see Lemma 2.1). Set

ũ(t) :=

{
u(t) if t ∈ [0, τ?] ,

u?(t) else.
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Then, we have

c(x, y′)− c(x, y) ≤ J0,x,y′(ũ)− J0,x,y(u)

=

∫ τ?+ττ
?,y,y′

u?

τ?
L(s, γτ

?,y
u? (s), u?(s)) ds

≤ C|y − y′|.

On the other hand, let x, x′, y ∈ Ω. Suppose that c(x′, y) > c(x, y) and let u be an

optimal control from x to y, at time 0. There are two possibilities: τ0,x,y
u ≤ τ0,x′,y

u or

τ0,x,y
u > τ0,x′,y

u . First, assume that τ? := τ0,x,y
u ≤ τ0,x′,y

u . Set y? = γ0,x′
u (τ?) and let u? be

a control such that τ τ
?,y?,y

u? ≤ C|y − y?|. Set

ũ(t) :=

{
u(t) if t ∈ [0, τ?] ,

u?(t) else.

Then, we have

c(x′, y)− c(x, y) ≤ J0,x′,y(ũ)− J0,x,y(u)

≤
∫ τ?

0
(L(s, γ0,x′

u (s), u(s))− L(s, γ0,x
u (s), u(s))) ds

+

∫ τ?+ττ
?,y?,y

u?

τ?
L(s, γ0,x′

ũ (s), ũ(s)) ds

≤
∫ τ?

0
|γ0,x′
u (s)− γ0,x

u (s)| ds+ C|y − y?|.

But,

|γ0,x′
u (s)− γ0,x

u (s)| =

∣∣∣∣ ∫ s

0
k(t, γ0,x′

u (t), u(t)) dt+ x′ −
∫ s

0
k(t, γ0,x

u (t), u(t)) dt− x
∣∣∣∣

≤ |x− x′|+ C

∫ s

0
|γ0,x′
u (t)− γ0,x

u (t)|dt.

Hence, |γ0,x′
u (s)−γ0,x

u (s)| ≤ C|x−x′|, and consequently, c(x′, y)− c(x, y) ≤ C|x−x′|. The

case where τ0,x,y
u > τ0,x′,y

u can be treated in a similar fashion. �

We also have the following stability-optimality result:

Proposition 2.4. Let (xk)k and (yk)k be two sequences such that xk → x and yk → y.
If γk is an optimal trajectory from xk to yk, for every k ∈ N, then, up to a subsequence,
γk → γ, where γ is an optimal trajectory from x to y.

Proof. First, it is easy to see that there is some γ such that γk → γ uniformly. Set
τk := τ0,xk,yk

uk , where uk is the corresponding optimal control. Using (H4) & Lemma 2.1,
we infer that τk → τ̄ . Recalling the proof of Proposition 2.2, this γ is an admissible
trajectory from x to y (there is some control u such that γ = γ0,x

u with τ0,x,y
u ≤ τ̄).

Recalling Proposition 2.2 and using Proposition 2.3, one can show the following:∫ τ0,x,yu

0
L(s, γ(s), u(s)) ds ≤

∫ τ̄

0
L(s, γ(s), u(s)) ds ≤ lim

k→∞

∫ τk

0
L(s, γk(s), uk(s)) ds

= c(x, y).
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This implies that γ is optimal from x to y. Moreover, by (H4), we also get that τ̄ = τ0,x,y
u

and so, τ0,xk,yk
uk → τ0,x,y

u . �

Now consider the following multi-valued map Γ :

(x, y) 7→ Γ(x, y) := {(γ0,x,y
u , u, τ0,x,y

u ) : u is an optimal control from x to y}.

The following is a direct consequence of Proposition 2.4 and a standard selection theorem
(e.g., see [7]).

Corollary 2.5. The multi-valued map Γ has a closed graph and therefore has a Borel
selector function which will be denoted, in the sequel, by Γs.

We shall set the notation

(γx,y, ux,y, τx,y) := Γs(x, y), for all (x, y) ∈ Ω× Ω,

which will eventually be used in Section 4.

3. Kantorovich duality with boundary tariffs

In this section, we analyze Problem (1.3), its dual principle, and a decomposition of the
optimal transport plan into three components according to whether they never visit the
boundary, whether they get to it, or if they come from it.
Set

P0(µ+, µ−) :=

{
π ∈M+(Ω× Ω) : (πx)

|
◦
Ω

= µ+, (πy) |
◦
Ω

= µ−
}
,

and consider the following problems:

(3.1) T1(µ±;ψ±) := inf

{∫
Ω×Ω

cdπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy : π ∈ P0(µ+, µ−)

}
and

(3.2) D1(µ±;ψ±) := sup
ϕ±∈C(Ω)

{∫
Ω

ϕ− dµ− −
∫

Ω

ϕ+ dµ+ :
ψ− ≤ ϕ− ≤ ϕ+ ≤ ψ+ on ∂Ω,
(−ϕ+)⊕ ϕ− ≤ c

}
.

In this section, we shall assume that the cost c is Lipschitz continuous on Ω×Ω and that the two
boundary costs ψ+ and ψ− are in C(∂Ω) and satisfy the inequality:

(3.3) ψ−(y)− ψ+(x) ≤ c(x, y) for all x, y ∈ ∂Ω.

Under these assumptions, we have the following result.

Proposition 3.1. The infimum in Problem (3.1) is attained, and the following duality formula
holds:

(3.4) T1(µ+, µ−;ψ+, ψ−) = D1(µ+, µ−;ψ+, ψ−).

Proof. Set

P (π) :=

∫
Ω×Ω

cdπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy, ∀ π ∈M(Ω× Ω).

P is then continuous on P0(µ+, µ−) with respect to the weak∗ convergence of measures. Indeed, if
(πn)n is a sequence in P0(µ+, µ−) such that πn⇀π, then, for every n, there exists ξ±n ∈M+(∂Ω)
such that

πnx = µ+ + ξ+
n , πny = µ− + ξ−n and ξ±n ⇀ ξ±,

where πx = µ+ + ξ+ and πy = µ− + ξ−. As ψ+ and ψ− are continuous on ∂Ω, it follows that
P (πn)→ P (π).
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On the other hand, we observe that if π ∈ P0(µ+, µ−) and π̃ := π |(∂Ω×∂Ω)c , then π̃ also

belongs to P0(µ+, µ−). In addition, we have∫
Ω×Ω

cdπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy =

∫
∂Ω×∂Ω

(c(x, y) + ψ+(x)− ψ−(y)) dπ(x, y)

+

∫
(∂Ω×∂Ω)c

cdπ +

∫
∂Ω×Ω◦

ψ+(x) dπ(x, y)

−
∫

Ω◦×∂Ω

ψ−(y) dπ(x, y).

By (3.3), we get that∫
Ω×Ω

cdπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy ≥
∫

Ω×Ω

cdπ̃ +

∫
∂Ω

ψ+ dπ̃x −
∫
∂Ω

ψ− dπ̃y.

Now take a minimizing sequence (πn)n ⊂ P0(µ+, µ−) for (3.1). We can suppose that πn(∂Ω×∂Ω) =
0. In this case, we get

πn(Ω× Ω) ≤ πn(Ω0 × Ω) + πn(Ω× Ω0)

= µ+(Ω) + µ−(Ω).

Hence, there exist a subsequence (πnk
)nk

and a plan π ∈ P0(µ+, µ−) such that πnk
⇀π. But, the

continuity of the total cost P implies that this π is a minimizer for (3.1).

We now establish the duality formula. A proof of the duality formula for a general Lipschitz cost c
based on the Fenchel-Rockafellar duality was given in [16]. Here, we give an alternative proof based
on a perturbative argument used in [11,19]. Define the functional H : C(∂Ω)×C(∂Ω) 7→ R∪{+∞}
as follows:

H(h+, h−) = − sup

{∫
Ω

ϕ−dµ− −
∫

Ω

ϕ+dµ+ :
ψ− + h− ≤ ϕ− ≤ ϕ+ ≤ ψ+ − h+ on ∂Ω,
(−ϕ+)⊕ ϕ− ≤ c

}
.

Note that H(h+, h−) ∈ R ∪ {+∞}. This follows immediately from the fact that for a maximizing
sequence (ϕ+

k , ϕ
−
k ), we can always assume them to share the same Lipschitz constant as c. In fact,

if we replace ϕ−k by φ−k where φ−k (y) := min{c(x, y) + ϕ+
k (x) : x ∈ Ω}, for every y ∈ Ω, then the

constraints are preserved and the integrals increased. We can then assume that they are uniformly
bounded in such a way that Ascoli-Arzelà’s Theorem applies. Next, we show that H is convex and
lower semi-continuous.

For the convexity : take t ∈ (0, 1) and (h+
0 , h

−
0 ), (h+

1 , h
−
1 ) ∈ C(∂Ω)×C(∂Ω) and, let (ϕ+

0 , ϕ
−
0 )

and (ϕ+
1 , ϕ

−
1 ) be their optimal potentials. Set

h+
t := (1− t)h+

0 + th+
1 , h

−
t := (1− t)h−0 + th−1

and

ϕ+
t := (1− t)ϕ+

0 + tϕ+
1 , ϕ

−
t := (1− t)ϕ−0 + tϕ−1 .

As

ψ− + h−0 ≤ ϕ
−
0 and ψ− + h−1 ≤ ϕ

−
1 on ∂Ω,

ϕ+
0 ≤ ψ+ − h+

0 and ϕ+
1 ≤ ψ+ − h+

1 on ∂Ω,

and

(−ϕ+
0 )⊕ ϕ−0 ≤ c and (−ϕ+

1 )⊕ ϕ−1 ≤ c,
then

ψ− + h−t ≤ ϕ−t ≤ ϕ+
t ≤ ψ+ − h+

t on ∂Ω, and (−ϕ+
t )⊕ ϕ−t ≤ c.
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As a consequence of that, we infer that (ϕ+
t , ϕ

−
t ) is admissible in the max defining −H(h+

t , h
−
t )

and then,

H(h+
t , h

−
t ) ≤

∫
Ω

ϕ+
t dµ+ −

∫
Ω

ϕ−t dµ− = (1− t)H(h+
0 , h

−
0 ) + tH(h+

1 , h
−
1 ).

For the semi-continuity : take h+
k → h+ and h−k → h− uniformly on ∂Ω. Let (h+

ki
, h−ki)ki

be a subsequence such that lim infkH(h+
k , h

−
k ) = limki H(h+

ki
, h−ki) (for simplicity of notation,

we still denote this subsequence by (h+
k , h

−
k )k) and let (ϕ+

k , ϕ
−
k )k be their corresponding optimal

potentials. As ϕ+
k , ϕ

−
k have the same Lipschitz constant as the transport cost c and (h+

k )k, (h−k )k
are equibounded, then, by Ascoli-Arzelà’s Theorem, there are two continuous functions ϕ+, ϕ−

and a subsequence (ϕ+
k , ϕ

−
k )k such that ϕ+

k → ϕ+ and ϕ−k → ϕ− uniformly in Ω. As

ψ− + h−k ≤ ϕ
−
k ≤ ϕ

+
k ≤ ψ

+ − h+
k on ∂Ω, and (−ϕ+

k )⊕ ϕ−k ≤ c,

then

ψ− + h− ≤ ϕ− ≤ ϕ+ ≤ ψ+ − h+ on ∂Ω, and (−ϕ+)⊕ ϕ− ≤ c.
Consequently, the pair (ϕ+, ϕ−) is admissible in the max defining −H(h+, h−) and so, one has

H(h+, h−) ≤
∫

Ω

ϕ+ dµ+ −
∫

Ω

ϕ− dµ− = lim inf
k

H(h+
k , h

−
k ).

Since H is convex and lower semi-continuous, it is equal to its double Legendre transform, i.e.,
H?? = H, and in particular, H??(0, 0) = H(0, 0). By its definition, we have

H(0, 0) = −D1(µ+, µ−;ψ+, ψ−).

We now compute H??(0, 0). Take ξ+, ξ− in M(∂Ω), then we have

H?(ξ+, ξ−) = sup
h+, h− ∈C(∂Ω)

{∫
∂Ω

h+ dξ+ +

∫
∂Ω

h− dξ− −H(h+, h−)

}
,

which is equal to:

sup
(ϕ±,h±)


∫
∂Ω

h+dξ+ +

∫
∂Ω

h−dξ− −
∫

Ω

ϕ+dµ+ +

∫
Ω

ϕ−dµ− :
ψ− + h− ≤ ϕ− on ∂Ω,
ϕ+ ≤ ψ+ − h+ on ∂Ω,
(−ϕ+)⊕ ϕ− ≤ c

 .

If ξ+ /∈ M+(∂Ω), then there exists h+
0 ∈ C(∂Ω) such that h+

0 ≥ 0 and
∫
∂Ω
h+

0 dξ+ < 0, and
therefore

H?(ξ+, ξ−) ≥ −k
∫
∂Ω

h+
0 dξ+ +

∫
∂Ω

ψ+ dξ+ −
∫
∂Ω

ψ− dξ− −→
k→+∞

+∞.

Similarly if ξ− /∈ M+(∂Ω). Now suppose that ξ± ∈ M+(∂Ω). As ψ− + h− ≤ ϕ− and ϕ+ ≤
ψ+ − h+ on ∂Ω, we should choose the largest possible h+ and h−, i.e. h+(x) = ψ+(x) − ϕ+(x)
and h−(y) = ϕ−(y)− ψ−(y), for all x, y ∈ ∂Ω. Hence, we get

H?(ξ+, ξ−) = sup

{∫
Ω

ϕ−d(µ− + ξ−)−
∫

Ω

ϕ+d(µ+ + ξ+) : (−ϕ+)⊕ ϕ− ≤ c
}

+

∫
∂Ω

ψ+dξ+ −
∫
∂Ω

ψ−dξ−,

and therefore,

H?(ξ+, ξ−) = inf

{∫
Ω×Ω

c(x, y) dπ : π ∈ P(µ+ + ξ+, µ− + ξ−)

}
+

∫
∂Ω

ψ+dξ+ −
∫
∂Ω

ψ−dξ−

= inf
π∈P(µ++ξ+,µ−+ξ−)

{∫
Ω×Ω

c(x, y) dπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy

}
.
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Consequently, we get

H??(0, 0) = sup

{
−H?(ξ+, ξ−) : ξ+, ξ− ∈M+(∂Ω)

}
= − inf

{∫
Ω×Ω

c(x, y) dπ +

∫
∂Ω

ψ+ dπx −
∫
∂Ω

ψ− dπy : π ∈ P0(µ+, µ−)

}
. �

Our aim now is to decompose the transport problem (3.1) into three subproblems: the first one
will be for transporting mass from the interior of the domain to the interior, making it a standard
Monge-Kantorovich transport; the second transports mass from the interior to the boundary and
the last one moves mass from the boundary to the interior.
To do that, we fix a minimizer π for (3.1) and denote by ξ+ and ξ− the two positive measures
concentrated on the boundary of Ω such that πx = µ+ + ξ+ and πy = µ− + ξ− (this means that
ξ+, ξ− encode the import/export masses). Set

πii := π |Ω◦×Ω◦ , πib := π |Ω◦×∂Ω, π
bi := π |∂Ω×Ω◦ , πbb := π |∂Ω×∂Ω

and
ν+ := πibx , ν

− := πbiy .

Recalling the proof of Proposition 3.1, we can assume that the boundary-boundary part πbb = 0
(this is always possible thanks to our assumption (1.4)). Now, let T ib (resp., T bi) be a Borel
selector function of the following possibly multivalued set of minimizers

T ib(x) ∈ argmin
{
c(x, y)− ψ−(y), y ∈ ∂Ω

}
, for all x ∈ Ω.

(resp.,
T bi(y) ∈ argmin

{
c(x, y) + ψ+(x), x ∈ ∂Ω

}
, for all y ∈ Ω.)

Note that such a selector exists since their graph is closed and so one can use a selection theorem,
such as in [7]. The following proposition is straightforward.

Proposition 3.2. Consider the following three transport problems:

(3.5) inf

{∫
Ω×Ω

c(x, y) dΛ : Λ ∈ P(µ+ − ν+, µ− − ν−)

}
,

(3.6) inf

{∫
Ω×Ω

c(x, y) dΛ −
∫
∂Ω

ψ− dχ− : Λ ∈ P(ν+, χ−), spt(χ−) ⊂ ∂Ω

}
,

and

(3.7) inf

{∫
Ω×Ω

c(x, y) dΛ +

∫
∂Ω

ψ+ dχ+ : Λ ∈ P(χ+, ν−), spt(χ+) ⊂ ∂Ω

}
.

Then, πii, (πib, T ib# ν
+) and (πbi, T bi# ν

−) solve (3.5), (3.6) and (3.7), respectively. Moreover, the

optimal transport plan from the interior to the boundary πib = (Id, T ib)#ν
+ and solves

(3.8) min

{∫
Ω×Ω

c(x, y) dπ : π ∈ P(ν+, T ib# ν
+)

}
.

Similarly, the optimal transport plan from the boundary to the interior πbi = (T bi, Id)#ν
− and

solves

(3.9) min

{∫
Ω×Ω

c(x, y) dπ : π ∈ P(T bi# ν
−, ν−)

}
.

We finish this section by the following result.

Proposition 3.3. Let (ϕ+, ϕ−) be a maximizer of the dual problem (1.6) and let π be an optimal
transport plan for (1.3). Let ξ+ and ξ− be the two positive measures on ∂Ω such that πx = µ+ +ξ+

and πy = µ− + ξ−. Then, we have the following

ϕ+ = ψ+ on spt(ξ+), ϕ− = ψ− on spt(ξ−).
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Proof. First, it is clear that π solves

(3.10) min

{∫
Ω×Ω

c(x, y) dΛ : Λ ∈ P(µ+ + ξ+, µ− + ξ−)

}
.

Now, let (φ+, φ−) be a maximizer for the dual problem of (3.10):

(3.11) sup

{∫
Ω

φ− d[µ− + ξ−]−
∫

Ω

φ+ d[µ+ + ξ+] : φ± ∈ C(Ω), (−φ+)⊕ φ− ≤ c
}
.

We have ∫
Ω

ϕ− d[µ− + ξ−]−
∫

Ω

ϕ+ d[µ+ + ξ+] ≤
∫

Ω

φ− d[µ− + ξ−]−
∫

Ω

φ+ d[µ+ + ξ+].

But, ψ− ≤ ϕ− ≤ ϕ+ ≤ ψ+ on ∂Ω. Then, we get∫
Ω

ϕ− dµ− +

∫
Ω

ψ− dξ− −
∫

Ω

ϕ+ dµ+ −
∫

Ω

ψ+ dξ+

≤
∫

Ω

φ− d[µ− + ξ−]−
∫

Ω

φ+ d[µ+ + ξ+] =

∫
Ω×Ω

c(x, y) dπ.

From the duality result T1(µ+, µ−;ψ+, ψ−) = D1(µ+, µ−;ψ+, ψ−) (see Proposition 3.1), we con-
clude the proof (we note that this shows at the same time that the pair (ϕ+, ϕ−) solves (3.11)). �

4. Eulerian formulation for transports involving tariffs

In this section, our aim is to find an equivalent Eulerian formulation for (3.1). We shall assume
that all assumptions (H0)-(H6) hold and so, by Section 2, for every (x, y) ∈ Ω×Ω, we can associate
an optimal trajectory γx,y, an optimal control ux,y, and an end time τx,y to get from x to y, in
such a way that the three maps (x, y) 7→ γx,y, (x, y) 7→ ux,y and (x, y) 7→ τx,y are chosen to be
measurable. We first introduce the following:

Definition 4.1. Say that ρ : R+ 7→ M+(Rd×U) is a density process and η ∈M+(R+×Rd) is a
stopping distribution between two given finite positive measures χ+ and χ− on Rd, if they satisfy
the following:

(4.1)

∫
Rd

∫
R+

ψ(x) dη(t, x) =

∫
Rd

ψ(x) dχ−(x), for all ψ ∈ C(Rd),

and ∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρt(x, u) dt(4.2)

=

∫
R+

∫
Rd

ξ(t, x) dη(t, x)−
∫
Rd

ξ(0, x) dχ+(x), for all ξ ∈ C1(R+ × Rd).

The set of such pairs (ρ, η) will be denoted by E(χ+, χ−).

Consider now the transport subproblems (3.5), (3.6) & (3.7). Our goal is to construct, for each
of these subproblems, an admissible pair of density process and stopping distributions (ρii, ηii) ∈
E(µ+ − ν+, µ− − ν−) (resp. (ρib, ηib) ∈ E(ν+, T ib# ν

+) and (ρbi, ηbi) ∈ E(T bi# ν
−, ν−)) from the

optimal transport plan πii (resp. πib and πbi). More precisely, we have the following:

Lemma 4.1. There exists an admissible pair (ρii, ηii) ∈ E(µ+ − ν+, µ− − ν−) such that∫
R+

∫
U

∫
Rd

L(t, x, u) dρiit (x, u) dt =

∫
Ω×Ω

c(x, y) dπii(x, y).
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Proof. Let πii be an optimal transport plan between µ+ − ν+ and µ− − ν− and define the pair
(ρii, ηii) as follows:∫

R+

∫
Rd

ξ(t, x) dηii(t, x) =

∫
Ω×Ω

ξ(τx,y, y) dπii(x, y), for all ξ ∈ C(R+ × Rd),

and for all ζ ∈ C(Rd × U),∫
U

∫
Rd

ζ(x, u) dρiit (x, u) =

∫
{(x,y)∈Ω×Ω : t≤τx,y}

ζ(γx,y(t), ux,y(t)) dπii(x, y).

One can easily check that the pair (ρii, ηii) ∈ E(µ+ − ν+, µ− − ν−). Indeed, for every ψ ∈ C(Rd)
and ξ ∈ C1(R+ × Rd), we have∫

R+

∫
Rd

ψ(x) dηii(t, x) =

∫
Ω×Ω

ψ(y) dπii(x, y) =

∫
Ω

ψ(y) d(µ− − ν−)(y),

and ∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρiit (x, u) dt

=

∫
Ω×Ω

∫ τx,y

0

[∂tξ(t, γ
x,y(t)) + k(t, γx,y(t), ux,y(t)) · ∇ξ(t, γx,y(t))] dtdπii(x, y)

=

∫
Ω×Ω

∫ τx,y

0

∂t [ξ(t, γx,y(t))] dtdπii(x, y) =

∫
Ω×Ω

ξ(τx,y, y) dπii(x, y)−
∫

Ω

ξ(0, x) d(µ+ − ν+)(x)

=

∫
R+

∫
Rd

ξ(t, x) dηii(t, x)−
∫

Ω

ξ(0, x) d(µ+ − ν+)(x).

Moreover, we have∫
R+

∫
U

∫
Rd

L(t, x, u) dρiit (x, u) dt =

∫
Ω×Ω

∫ τx,y

0

L(t, γx,y(t), ux,y(t)) dtdπii(x, y) =

∫
Ω×Ω

cdπii.

�

Lemma 4.2. There exists an admissible pair (ρib, ηib) ∈ E(ν+, T ib# ν
+) such that the following holds∫

R+

∫
U

∫
Rd

L(t, x, u) dρibt (x, u) dt−
∫
∂Ω

∫
R+

ψ−(x) dηib(t, x)

=

∫
Ω×Ω

c(x, y) dπib(x, y)−
∫
∂Ω

ψ−(y) d
[
T ib# ν

+
]

(y).

Proof. Define the pair consisting of a density process and a stopping distribution (ρib, ηib) ∈
E(ν+, T ib# ν

+) as follows:∫
R+

∫
Rd

ξ(t, x) dηib(t, x) =

∫
Ω

ξ(τx,T
ib(x), T ib(x)) dν+(x), for all ξ ∈ C(R+ × Rd),

while, for all ζ ∈ C(Rd × U),∫
U

∫
Rd

ζ(x, u) dρibt (x, u) =

∫
{x∈Ω : t≤τx,Tib(x)}

ζ(γx,T
ib(x)(t), ux,T

ib(x)(t)) dν+(x).

We have∫
R+

∫
Rd

ψ(x) dηib(t, x) =

∫
Ω

ψ(T ib(x)) dν+(x) =

∫
Ω

ψ(y) d
[
T ib# ν

+
]

(y), for every ψ ∈ C(Rd),

and, for every ξ ∈ C1(R+ × Rd),∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρibt (x, u) dt
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=

∫
Ω

∫ τx,Tib(x)

0

(
∂tξ(t, γ

x,T ib(x)(t)) + k(t, γx,T
ib(x)(t), ux,T

ib(x)(t)) · ∇ξ(t, γx,T
ib(x)(t))

)
dtdν+

=

∫
R+

∫
Rd

ξ(t, x) dηib(t, x)−
∫

Ω

ξ(0, x) dν+(x).

On the other hand, we have∫
R+

∫
U

∫
Rd

L(t, x, u) dρibt (x, u) dt−
∫
∂Ω

∫
R+

ψ−(x) dηib(t, x)

=

∫
Ω

∫ τx,Tib(x)

0

L(t, γx,T
ib(x)(t), ux,T

ib(x)(t)) dtdν+(x)−
∫
∂Ω

ψ−(y) d
[
T ib# ν

+
]

(y)

=

∫
Ω

c(x, T ib(x)) dν+(x)−
∫
∂Ω

ψ−(y) d
[
T ib# ν

+
]

(y).

This completes the proof. �

Lemma 4.3. There exists an admissible pair (ρbi, ηbi) ∈ E(T bi# ν
−, ν−) such that we have∫

R+

∫
U

∫
Rd

L(t, x, u) dρbit (x, u) dt+

∫
∂Ω

∫
U

ψ+(x) dρbi0 (x, u)

=

∫
Ω×Ω

c(x, y) dπbi(x, y) +

∫
∂Ω

ψ+(x) d
[
T bi# ν

−] (x).

Proof. Define the pair consisting of a density process and a stopping distribution (ρbi, ηbi) ∈
E(T bi# ν

−, ν−) as follows:∫
R+

∫
Rd

ξ(t, x) dηbi(t, x) =

∫
Ω

ξ(τT
bi(y),y, y) dν−(y), for all ξ ∈ C(R+ × Rd),

while, for all ζ ∈ C(Rd × U),∫
U

∫
Rd

ζ(x, u) dρbit (x, u) =

∫
{y∈Ω : t≤τTbi(y),y}

ζ(γT
bi(y),y(t), uT

bi(y),y(t)) dν−(y).

One has ∫
R+

∫
Rd

ψ(x) dηbi(t, x) =

∫
Ω

ψ(y) dν−(y), for every ψ ∈ C(Rd),

and ∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρbit (x, u) dt

=

∫
Ω

∫ τTbi(y),y

0

[
∂tξ(t, γ

T bi(y),y(t)) + k(t, γT
bi(y),y(t), uT

bi(y),y(t)) · ∇ξ(t, γT
bi(y),y(t))

]
dtdν−

=

∫
R+

∫
Rd

ξ(t, x) dηbi(t, x)−
∫

Ω

ξ(0, T bi(y)) dν−(y)

=

∫
R+

∫
Rd

ξ(t, x) dηbi(t, x)−
∫

Ω

ξ(0, x) d
[
T bi# ν

−] (x), for every ξ ∈ C1(R+ × Rd).

Moreover, we have ∫
R+

∫
U

∫
Rd

L(t, x, u) dρbit (x, u) dt+

∫
∂Ω

∫
U

ψ+(x) dρbi0 (x, u)

=

∫
Ω

∫ τTbi(y),y

0

L(t, γT
bi(y),y(t), uT

bi(y),y(t)) dtdν−(y) +

∫
∂Ω

ψ+(x) d
[
T bi# ν

−] (x)
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=

∫
Ω

c(T bi(y), y) dν−(y) +

∫
∂Ω

ψ+(x) d
[
T bi# ν

−] (x). �

Now, let us introduce the set of admissible pair of density process and stopping distribution for
our Eulerian problem.

Definition 4.2. We say that a pair (ρ, η) belongs to E0(µ+, µ−) if and only if the following holds:
for all ψ ∈ C(Rd) such that ψ = 0 on ∂Ω,∫

Rd

∫
R+

ψ(x) dη(t, x) =

∫
Ω

ψ(y) dµ−(y),

and, for all ξ ∈ C1(R+ × Rd) such that ξ(0, ·) = 0 on ∂Ω, one has∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρt(x, u) dt =

∫
R+

∫
Rd

ξ(t, x) dη(t, x)−
∫

Ω

ξ(0, x) dµ+(x).

In other words, we have

E0(µ+, µ−) :=

{
(ρ, η) ∈ E(µ+ + χ+, µ− + χ−) : χ+, χ− ∈M+(∂Ω)

}
.

So, we have the following result.

Proposition 4.4. There exists an admissible pair (ρ, η) ∈ E0(µ+, µ−) such that∫
R+

∫
U

∫
Rd

L(t, x, u) dρt(x, u) dt+

∫
∂Ω

∫
U

ψ+(x) dρ0(x, u)−
∫
∂Ω

∫
R+

ψ−(x) dη(t, x)

=

∫
Ω×Ω

c(x, y) dπ(x, y) +

∫
∂Ω

ψ+(x) dπx −
∫
∂Ω

ψ−(y) dπy.

Consequently,

(4.3) T2(µ+, µ−;ψ+, ψ−) ≤ T1(µ+, µ−;ψ+, ψ−).

Proof. Set ρ := ρii + ρib + ρbi and η := ηii + ηib + ηbi. From Lemmas 4.1, 4.2 & 4.3, we have for
all ψ ∈ C(Rd) such that ψ = 0 on ∂Ω,∫

Rd

∫
R+

ψ(x) dη(t, x) =

∫
Rd

∫
R+

ψ(x) dηii(t, x) +

∫
Rd

∫
R+

ψ(x) dηib(t, x) +

∫
Rd

∫
R+

ψ(x) dηbi(t, x)

=

∫
Ω

ψ(y) dµ−(y),

while, for all ξ ∈ C1(R+ × Rd) such that ξ(0, ·) = 0 on ∂Ω, one has∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] dρt(x, u) dt

=

∫
R+

∫
U

∫
Rd

[∂tξ(t, x) + k(t, x, u) · ∇ξ(t, x)] d
[
ρiit + ρibt + ρbit

]
(x, u) dt

=

∫
R+

∫
Rd

ξ(t, x) dηii(t, x)−
∫

Ω

ξ(0, x) d(µ+ − ν+)(x) +

∫
R+

∫
Rd

ξ(t, x) dηib(t, x)

−
∫

Ω

ξ(0, x) dν+(x) +

∫
R+

∫
Rd

ξ(t, x) dηbi(t, x)−
∫

Ω

ξ(0, x) d
[
T bi# ν

−] (x)

=

∫
R+

∫
Rd

ξ(t, x) dη(t, x)−
∫

Ω

ξ(0, x) dµ+(x).
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On the other hand, by Lemmas 4.1, 4.2 & 4.3, we get∫
R+

∫
U

∫
Rd

L(t, x, u) dρt(x, u) dt+

∫
∂Ω

∫
U

ψ+(x) dρ0(x, u)−
∫
∂Ω

∫
R+

ψ−(x) dη(t, x)

=

∫
Ω×Ω

c(x, y) dπii(x, y) +

∫
Ω

c(T bi(y), y) dν−(y) +

∫
∂Ω

ψ+(x) d
[
T bi# ν

−] (x)

+

∫
Ω

c(x, T ib(x)) dν+(x)−
∫
∂Ω

ψ−(y) d
[
T ib# ν

+
]

(y)

=

∫
Ω×Ω

c(x, y) dπ(x, y) +

∫
∂Ω

ψ+(x) dπx −
∫
∂Ω

ψ−(y) dπy.

This completes the proof. �

We now recall the Eulerian dual problem

(4.4) D2(µ±;ψ±) := sup

{∫
Ω

ϕ−dµ− −
∫

Ω

J+(0, ·) dµ+ :
ϕ− ∈ C(Rd), J+ ∈ C1(R+ × Rd),
(J+, ϕ−) solves (4.5)

}
,

where

(4.5)


∂tJ

+(t, x) + k(t, x, u) · ∇J+(t, x) ≤ L(t, x, u) for all (t, x, u) ∈ R+ × Rd × U,
ϕ−(x) ≤ J+(t, x) for all (t, x) ∈ R+ × Rd,
ψ− ≤ ϕ− ≤ J+(0, ·) ≤ ψ+ on ∂Ω,

and prove the following.

Proposition 4.5. Under the above assumptions, we have

(4.6) D1(µ+, µ−;ψ+, ψ−) ≤ D2(µ+, µ−;ψ+, ψ−).

Proof. Set for all (t, x) ∈ R+ × Rd,

J+
ϕ−(t, x) = −min

u, τ

{∫ τ

t

L(s, γt,xu (s), u(s)) ds − ϕ−(γt,xu (τ))

}
.

It is well known that J+
ϕ− is a viscosity solution of the following Hamilton-Jacobi-Bellman quasi-

variational inequality (see, for instance, [3]):

(4.7)


∂tJ +H(t, x,∇J) ≤ 0 on R+ × Rd,
ϕ− ≤ J on R+ × Rd,
∂tJ +H(t, x,∇J) = 0 on {ϕ− < J},

where

H(t, x, p) := max
u
{k(t, x, u) · p− L(t, x, u)}, for every (t, x, p) ∈ R+ × Rd × Rd.

Let (ϕ+, ϕ−) be an admissible pair of the dual problem D1(µ±;ψ±) in (1.6). By the definition of
J+
ϕ− , it is clear that we have

J+
ϕ−(0, ·) ≤ ϕ+ and

[
−J+

ϕ−(0, ·)
]
⊕ ϕ− ≤ c.

On the other hand, it is also known [3] that the viscosity solution J+
ϕ− is the infimum of all

supersolutions J to
∂tJ(t, x) + k(t, x, u) · ∇J(t, x) ≤ L(t, x, u) for all (t, x, u) ∈ R+ × Rd × U,
ϕ−(x) ≤ J(t, x) for all (t, x) ∈ R+ × Rd,
ψ−(x) ≤ ϕ−(x) x ∈ ∂Ω,

J+(0, x) ≤ ψ+(x) x ∈ ∂Ω.
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As a consequence, we get

D1(µ±;ψ±) ≤ sup
ϕ−

{∫
Ω

ϕ− dµ− −
∫

Ω

J+
ϕ−(0, ·) dµ+ : ψ− ≤ ϕ− ≤ J+

ϕ−(0, ·) ≤ ψ+ on ∂Ω

}
≤ D2(µ±;ψ±). �

On the other hand, we have the following:

Proposition 4.6. The following inequality holds:

(4.8) D2(µ+, µ−;ψ+, ψ−) ≤ T2(µ+, µ−;ψ+, ψ−).

Proof. For an admissible (ρ, η) ∈ E0(µ+, µ−), there are two nonnegative measures χ+ and χ−

which are concentrated on the boundary such that (ρ, η) ∈ E(µ+ + χ+, µ− + χ−). Let (J+, ϕ−)
satisfy (4.5) with ϕ− ∈ C(Rd) and J+ ∈ C1(R+ × Rd). Then, we have∫

Ω

ϕ−(y) dµ−(y)−
∫

Ω

J+(0, x) dµ+(x)

=

∫
R+

∫
Rd

ϕ−(x) dη(t, x)−
∫

Ω

ϕ−(y) dχ−(y) +

∫
Ω

J+(0, x) dχ+(x)−
∫

Ω

J+(0, x) d
[
µ+ + χ+

]
≤
∫
R+

∫
Rd

J+(t, x)dη(t, x)−
∫

Ω

ϕ−(y)dχ−(y) +

∫
Ω

J+(0, x)dχ+(x)−
∫

Ω

J+(0, x)d
[
µ+ + χ+

]
=

∫
R+

∫
U

∫
Rd

[
∂tJ

+(t, x) + k(t, x, u) · ∇J+(t, x)
]

dρt(x, u)dt−
∫

Ω

ϕ−dχ− +

∫
Ω

J+(0, ·)dχ+

≤
∫
R+

∫
U

∫
Rd

L(t, x, u) dρt(x, u) dt+

∫
∂Ω

∫
U

ψ+(x) dρ0(x, u)−
∫
∂Ω

∫
R+

ψ−(x) dη(t, x).

This implies that

sup

{∫
Ω

ϕ− dµ− −
∫

Ω

J+(0, ·) dµ+ :
ϕ− ∈ C(Rd), J+ ∈ C1(R+ × Rd),
(J+, ϕ−) satisfies (4.5)

}

≤ min
(ρ,η)∈E0(µ+,µ−)

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ +

∫
∂Ω

∫
U

ψ+(x) dρ0 −
∫
∂Ω

∫
R+

ψ−(x) dη

}
.

This concludes the proof. �

Finally, we obtain the following.

Theorem 4.7. Under the above assumptions on L, c, ψ+ and ψ−,

(1) The following equalities hold:

(4.9) T1(µ±;ψ±) = D1(µ±;ψ±) = D2(µ±;ψ±) = T2(µ±;ψ±).

(2) Let π be an optimal plan for T1 and its associated decomposition π = πii + πib + πbi.
Then, (ρii, ηii), (ρib, ηib, πiby ) and (ρbi, ηbi, πbix ) are, respectively, solutions for the Eulerian
problems:

(4.10) min

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ : (ρ, η) ∈ E(µ+ − ν+, µ− − ν−)

}
,

(4.11) min

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ −
∫
∂Ω

ψ− dχ− : (ρ, η) ∈ E(ν+, χ−), spt(χ−) ⊂ ∂Ω

}
,

and

(4.12) min

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ +

∫
∂Ω

ψ+ dχ+ : (ρ, η) ∈ E(χ+, ν−), spt(χ+) ⊂ ∂Ω

}
.
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(3) The pair (ρ, η), where ρ = ρii+ρib+ρbi and η = ηii+ηib+ηbi, solves the Eulerian problem

min
(ρ,η)∈E0(µ+,µ−)

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ +

∫
∂Ω

∫
U

ψ+(x) dρ0 −
∫
∂Ω

∫
R+

ψ−(x) dη

}
.

Proof. For (4.9) it suffices to combine (3.4), (4.3), (4.6) and (4.8). The rest follows directly from
the optimality of the transport plan π = πii + πib + πbi, the optimalities of πii, πib and πbi in
problems 3.5, 3.6 & 3.7, respectively, the equalities in (4.9), as well as Lemmas 4.1, 4.2 & 4.3 and
Proposition 4.4. �

5. Uniqueness of optimal transport plans and associated stopping times

In this section, we show that, under additional assumptions on the Hamiltonian H, the optimal
transport plan (resp. stopping plan) (from interior to interior) πii (resp. ηii) is a transport
map (resp. a stopping time). More precisely, we prove that the optimal transport plan πii is
concentrated on a graph y = T ii(x) and the optimal stopping distribution ηii will be concentrated
on a graph (t, y) = (τ, T ii)(x), as soon as the source measure µ+ is absolutely continuous with
respect to the Lebesgue measure Ld. The map is constructed by solution to the Hamiltonian flow
with the end time determined by the Pontryagin transversality condition. The argument will be
sketched as this is a straight forward extension of the result of [15]. We also show that the maps
T ib and T bi are unique under these assumptions, and given by similar constructions.

Let (J+(0, ·) , ϕ−) be a solution for the dual problem (1.8) between µ+ − ν+ and µ− − ν−.
Recall that the potential J+ is given by the following formula (for more details about the following
optimal control problem with free stopping time, we refer to [3]):

J+(t, x) = −min
u, τ

{∫ τ

t

L
(
s, γt,xu (s), u(s)

)
ds − ϕ−(γt,xu (τ))

}
, ∀ (t, x) ∈ R+ × Rd.

Let γ := γx,y be an optimal trajectory from a point x to another one y, u := ux,y be the corre-
sponding optimal control and τ := τx,y be the corresponding stopping time. First, assume that:

(H7) The Hamiltonian H is C1,1
loc (R+ × Rd × Rd),

(H8) u 7→ k(t, x, u) · p− L(t, x, u) has a unique maximizer for all (t, x, p) ∈ R+ × Rd × Rd.

From the Pontryagin maximum principle (see, for instance, [8, 18]), for any u, γ, τ that minimize
the cost ∫ τ

0

L
(
s, γ(s), u(s)

)
ds− ϕ−

(
γ(τ)

)
+ J+

(
0, γ(0)

)
,

there is a Lipschitz continuous arc p : [0, τ ] 7→ Rd that solves:

ṗ(t) = −p(t)T∇xk
(
t, γ(t), u(t)

)
+∇xL

(
t, γ(t), u(t)

)
, for a.e. t ∈ (0, τ),

and satisfies the maximum principle:

H
(
t, γ(t), p(t)

)
= p(t) · k(t, γ(t), u(t))− L

(
t, γ(t), u(t)

)
,

with boundary conditions at points of differentiability of J+(0, ·) and ϕ− (see, for instance, [6]):

p(0) = ∇J+
(
0, γ(0)

)
, p(τ) = ∇ϕ−

(
γ(τ)

)
,

and the transversality condition:

H
(
τ, γ(τ), p(τ)

)
= 0.



20 S. DWEIK, N. GHOUSSOUB AND A. Z. PALMER

It follows that for a.e. t ∈ [0, τ ]

d

dt
H
(
t, γ(t), p(t)

)
= p(t) · ∂tk

(
t, γ(t), u(t)

)
+ p(t) · ∇xk

(
t, γ(t), u(t)

)
γ̇(t)

− ∂tL
(
t, γ(t), u(t)

)
−∇xL

(
t, γ(t), u(t)

)
· γ̇(t)

+ ṗ(t) · k
(
t, γ(t), u(t)

)
= p(t) · ∂tk

(
t, γ(t), u(t)

)
− ∂tL

(
t, γ(t), u(t)

)
.

In addition, we suppose that

(H9) ∂tk = 0 on R+ × Rd × U.
Then, we get

d

dt
H
(
t, γ(t), p(t)

)
= −∂tL

(
t, γ(t), u(t)

)
, for a.e. t ∈ [0, τ ] .

Now, let us assume the following monotonicity condition on the running cost L with respect to
time:

(H10) ∂tL > 0 or ∂tL < 0 on R+ × Rd × U.
Then, this implies that along an optimal trajectory γ, we have, under the assumption (H10), the
following:

(5.1) H
(
t, γ(t), p(t)

)
= 0⇔ t = τ.

On the other hand, we have that, for initial points γ(0) = x where J+(0, ·) is differentiable, the
pair (γ, p) is the unique solution for the following Hamiltonian system:

(5.2)


γ̇(t) = ∇pH(t, γ(t), p(t)),

ṗ(t) = −∇xH(t, γ(t), p(t)),

γ(0) = x,

p(0) = ∇J+(0, x).

Hence, the stopping time τ is uniquely determined by x (almost everywhere): τ = τ(x) while the
endpoint y of the trajectory γ is given by y = γ(τ(x)). This constructs the maps T+(x) = γ(τ(x))
(depending on ∇J+(0, x) through the initial condition of p), where T ii(x) = T+(x) whenever

T+(x) ∈
◦
Ω and T ib(x) = T+(x) when T+(x) ∈ ∂Ω.

In other words, the optimal transport plan πii is concentrated on a graph y = T ii(x) as soon
as the source measure µ+ is absolutely continuous with respect to the Lebesgue measure (for
the case ∂tL < 0 we also require that µ+ and µ− are disjoint to handle the mass stopping at
τ = 0). Moreover, the optimal stopping distribution ηii is concentrated on the graph (t, y) =

(τx,T
ii(x), T ii(x)) = (τ(x), T ii(x)). Then, we have∫

Ω×Ω

c(x, y) dπii(x, y) =

∫
Ω

c(x, T ii(x)) d(µ+ − ν+)(x),

and ∫
R+

∫
Rd

ξ(t, y) dηii(t, y) =

∫
Ω

ξ(τx,T
ii(x), T ii(x)) d(µ+ − ν+)(x), for all ξ ∈ C0(R+ × Rd).

Now, we may assume that

ϕ−(y) = inf{J+
ϕ−(t, y) : t ≥ 0}, for every y ∈ Rd,

because replacing ϕ− with this infimum can only increase the dual value. First, let us suppose that
∂tL > 0 on R+×Rd×U . In this case, it is easy to see that {J+

ϕ−(t, y)}t∈R+ is strictly decreasing.

Then, we define the free boundary function τ [−1] as follows:

τ [−1](y) = inf
{
t ≥ 0 : J+

ϕ−(t, y) = ϕ−(y)
}
, for every y ∈ Rd.
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Let γ be an optimal trajectory with γ(τ) = y and suppose that ϕ− is differentiable at y (which is
the case for a.e. y). Then, one can show that the following holds (see [15] for more details):

H
(
τ [−1](y), y,∇ϕ−(y)

)
= 0.

But, recalling (5.1) and the terminal condition from the Pontryagin maximum principle that p(τ) =
∇ϕ−(y), we infer that τ [−1](y) = τ. In this way, the pair (γ, p), where p is the associated dual arc
with γ, turns out to be the unique solution of the following system (with reverse time):

(5.3)


γ̇(t) = ∇pH

(
t, γ(t), p(t)

)
,

ṗ(t) = −∇xH(t, γ(t), p(t)),

γ
(
τ [−1](y)

)
= y,

p
(
τ [−1](y)

)
= ∇ϕ−(y).

We may now define the map T−(y) = γ(0), which is the inverse of T ii when T−(y) ∈
◦
Ω, and

is the unique map T bi(y) when T−(y) ∈ ∂Ω. In other words, the optimal transport plan πii is
concentrated on a graph x = [T ii]−1(y) and the optimal stopping distribution ηii is concentrated
on a graph t = τ [−1](y), provided that the target measure µ− � Ld. Similarly, one can prove the
same result in the case where ∂tL < 0 on R+ × Rd × U . The only difference is that, now, the free
boundary function τ [−1] becomes

τ [−1](y) = sup{t ≥ 0 : J+
ϕ−(t, y) = ϕ−(y)}, for every y ∈ Rd.

In order to disregard any transport of goods from boundary onto boundary consumers, we
suppose now that

(5.4) ψ−(y)− ψ+(x) < c(x, y), for all x, y ∈ ∂Ω.

Then, we have the following:

Theorem 5.1. Suppose that µ+, µ− � Ld and that (5.4) holds along with (H0)-(H10) with
∂tL > 0. Then, Problem (1.3) has a unique optimal transport plan, where πii+πib is supported on
the set {(x, T+(x))}x∈Ω and πii + πbi is supported on {(T−(y), y)}y∈Ω. In the case that ∂tL < 0,
the result holds where the unique optimal transport plan stops all overlapping mass of µ+ ∧ µ−
along the diagonal, and the remainder is supported on the graphs of T+ and T− as above.

Proof. The proof has essentially been done in the discussion leading up to the theorem. If (x, y)
is in the support of πii then we have that ϕ−(y)− J+(0, x) = c(x, y) and since

0 ≤
∫ τ

0

L
(
s, γ(s), u(s)

)
− ϕ−

(
γ(τ)

)
+ J+

(
0, γ(0)

)
for all (u, γ, τ), we find that there is an optimal trajectory with γ(0) = x and γ(τ) = y. When τ > 0,
we have from the Pontryagin maximum principle a dual arc p satisfying p(0) = ∇J+(0, x) and
p(τ) = ∇ϕ−(y) at points of differentiabiltiy of J+(0, ·) and ϕ−, which occur almost everywhere by
Rademacher’s theorem. As discussed above, this allows identifying (γ, p) with the unique solution
to the Hamiltonian system, either forward in time (5.2) or with reverse time (5.3). In the first case
we have realized the support of πii + πib as a graph, and in the second case we realize the support
of πii + πbi as a graph.

To handle the possibility of τ = 0, we note this implies that J+(0, x) = ϕ−(x). For the case
that ∂tL > 0, J+(t, x) = ϕ−(x) for all t and thus H(0, x,∇J+(0, x)) ≤ 0. Since the Hamiltonian
can only decrease along the trajectory the only solution is with τ(x) = 0. In the case that ∂tL < 0,
there is the possibility that H(0, x,∇J+(0, x)) < 0 and there is τ(x) > 0. In fact, in this case, if
there is overlapping mass of µ+ and µ− it most stop at τ = 0 and the remainder will stop at τ(x).
If the overlapping mass does not stop, then there (y, x) in the support of π with y 6= x. We can
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acheive the same transport with lower cost by swapping the values of π at (y, x) and (x, T+(x))
with (y, T+(x)) and (x, x). Indeed, with the concatenated trajectory from y to T+(x) we have∫ τ(y)+τ(x)

0

L
(
s, γy(s), u(s)

)
ds <

∫ τ(x)

0

L
(
s, γx(s), u(s)

)
ds+

∫ τ(y)

0

L
(
s, γy(s), u(s)

)
ds,

showing that the optimizer must stop all overlapping mass at τ = 0.
We have now characterized the support of πii + πib as living on the graph of a function, from

which it follows that these measures are unique from the fact that the functional in (1.3) is linear
with convex constraints. Uniqueness of πbi follows similarly. �

6. The general import/export case.

In this section, we briefly consider the variation of the problem where the reserve mass is taken
from a set K+ with cost ψ+ and deposited in the set K− with cost −ψ− (here, we assume that
µ±(K±) = 0), where K+ and K− are two compact sets of Rd. This variation is directly equivalent
to the problem we have studied for K+ = K− = ∂Ω. We define the admissible set of transport
plans for this variant to be

PK(µ+, µ−) =

{
π ∈M+(Rd × Rd) : (πx)|Rd\K+ = µ+, (πy)|Rd\K− = µ−

}
.

Then, we consider the following variant of (3.1)

min

{∫
Rd×Rd

c(x, y)dπ +

∫
K+

ψ+dπx −
∫
K−

ψ−dπy : π ∈ PK(µ+, µ−)

}
.

Again, we assume that the costs ψ+ and ψ− satisfy the no arbitrage assumption (1.4), which
becomes

ψ−(y)− ψ+(x) ≤ c(x, y), for all (x, y) ∈ K+ ×K−.

Recalling the proposition 3.1, one can prove, under this assumption, the following duality result:

min

{∫
Ω×Ω

c(x, y) dπ +

∫
K+

ψ+ dπx −
∫
K−

ψ− dπy : π ∈ PK(µ+, µ−)

}
= sup

ϕ±∈C(Ω)

{∫
Ω

ϕ−dµ− −
∫

Ω

ϕ+dµ+ :
ψ− ≤ ϕ− on K−, ϕ+ ≤ ψ+ on K+,
(−ϕ+)⊕ ϕ− ≤ c

}
.

On the other hand, one can also find an Eulerian formulation which becomes:

min
(ρ,η)∈EK(µ+,µ−)

{∫
R+

∫
U

∫
Rd

L(t, x, u) dρ +

∫
K+

∫
U

ψ+(x) dρ0 −
∫
K−

∫
R+

ψ−(x) dη

}
,

where

EK(µ+, µ−) :=

{
(ρ, η) ∈ E(µ+ + χ+, µ− + χ−) : χ+ ∈M+(K+) and χ− ∈M+(K−)

}
.

Finally, the dual of the Eulerian problem can be expressed as:

sup

{∫
Rd

ϕ−dµ− −
∫
Rd

J+(0, ·)dµ+ :
ϕ− ∈ C(Rd), J+ ∈ C1(R+ × Rd),
ψ− ≤ ϕ− on K−, J+(0, ·) ≤ ψ+ on K+,
(J+, ϕ−) solves (4.7)

}
.
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7. An example

We consider a simple one dimensional example where the particles move at unit speed and the
cost depends only on the end time. We let Ω = (0, 2), k(t, x,±1) = ±1, and L(t, x,±1) = g′(t),
where g(0) = 0 and g is increasing. Let us consider the case where µ+ is the uniform distribution
on [0, 1] to µ− is uniform on [1, 2]. We suppose that

ψ−(y) =

{
−p− y = 0,

−M y = 2,
ψ+(x) =

{
+M x = 0,

p+ x = 2,

(where M > 0 is a sufficiently large finite number). To satisfy the no-arbitrage condition, we
require that

p− + p+ ≥ −g(2).

The Hamiltonian is

H(t, x, p) = |p| − g′(t),
and the unique solution is easily found in the cases when either g is strictly convex or g is strictly
concave.

Strictly increasing Lagrangian. Here, we assume that g is strictly convex so that t 7→ L(t, x, u)
is strictly increasing. A simple ansatz for an optimal map is

T ib(x) = 0, 0 ≤ x < x1;

T ii(x) = x+ 1− x1, x1 ≤ x ≤ 1;

T bi(y) = 2, 2− x1 < y ≤ 2.

We have made the decomposition so that ν+ has density 1 on [0, x1) and ν− has density 1 on
(2− x1, 2]. The free boundary (end time) on [1, 2] is

τ [−1](y) =

{
1− x1, 1 ≤ y ≤ 2− x1;

2− y, 2− x1 ≤ y ≤ 2.

Now, we can solve ϕ− from the equations,{
0 = |∇ϕ−(y)| − g′

(
τ [−1](y)

)
, 1 ≤ y ≤ 2;

−p− − g(x1) = ϕ−(1)− g(1− x1),

to get

ϕ−(y) =

{
−p− − g(x1) + g(1− x1) + g′(1− x1)(y − 1), 1 ≤ y ≤ 2− x1;

−p− − 2g(x1) + g(1− x1) + g′(1− x1)(1− x1) + g(2− y), 2− x1 ≤ y ≤ 2.

The total cost is

x1(p− + p+) + 2

∫ x1

0

g(x)dx+ (1− x1)g(1− x1),

which we differentiate with respect to x1 to obtain the following optimality criteria

ϕ−(2) = p+,

which concurs with ψ+(2) because the point 2 happens to be in the support of µ−.
It is now straightforward to calculate J+(t, x) and verify that this is indeed the optimal solution.

In Figure 1 we illustrate the primal and dual solutions for the case that g(t) = 1
2 t

2, p− = p+ = 1
16 ,

in which case x1 = 1
2 . Note that the continuation of ϕ− outside of the support of µ− is arbitrary

so long as it is sufficiently small.
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Figure 1. The optimal trajectories are green on the left, which stop
upon hitting the free boundary τ [−1] in blue. The shaded region shows
where ϕ−(x) = J+(t, x). On the right ϕ− is in blue and J+(t, ·) is in red,
decreasing as t ∈ {0, 0.1, 0.2, 0.3, 0.4}.

Strictly decreasing Lagrangian. We now assume that g is strictly concave so that t 7→ L(t, x, u)
is strictly decreasing. The ansatz for an optimal map is similar, except the interior map reverses
orientation, 

T ib(x) = 0, 0 ≤ x < x1;

T ii(x) = 2− x, x1 ≤ x ≤ 1;

T bi(y) = 2, 2− x1 < y ≤ 2.

We find the free boundary to be

τ [−1](y) =

{
2y − 2 1 ≤ y ≤ 2− x1;

2− y 2− x1 ≤ y ≤ 2;

and ϕ− is solved on [1, 2] to be

ϕ−(y) =

{
−p− − g(x1) + g(2− 2x1) + 0.5 g(2y − 2)− 0.5 g(2− 2x1), 1 ≤ y ≤ 2− x1;

−p− − 2g(x1) + g(2− 2x1) + g(2− y), 2− x1 < y ≤ 2.

Similarly, we find optimality occurs when

ϕ−(2) = p+.

In Figure 2, we plot the solutions for g(t) = 1− e−t, and p− = 0, p+ ≈ −0.15 (so that x1 = 0.5).
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