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Abstract. We study the higher gradient integrability of distributional solutions u to
the equation div(σ∇u) = 0 in dimension two, in the case when the essential range of
σ consists of only two elliptic matrices, i.e., σ ∈ {σ1, σ2} a.e. in Ω. In [9], for ev-
ery pair of elliptic matrices σ1 and σ2, exponents pσ1,σ2

∈ (2,+∞) and qσ1,σ2
∈ (1, 2)

have been found so that if u ∈ W 1,qσ1,σ2 (Ω) is solution to the elliptic equation then
∇u ∈ Lpσ1,σ2weak (Ω) and the optimality of the upper exponent pσ1,σ2 has been proved. In
this paper we complement the above result by proving the optimality of the lower expo-
nent qσ1,σ2

. Precisely, we show that for every arbitrarily small δ, one can find a particular
microgeometry, i.e., an arrangement of the sets σ−1(σ1) and σ−1(σ2), for which there
exists a solution u to the corresponding elliptic equation such that ∇u ∈ Lqσ1,σ2−δ, but
∇u /∈ Lqσ1,σ2 . The existence of such optimal microgeometries is achieved by convex in-
tegration methods, adapting to the present setting the geometric constructions provided
in [2] for the isotropic case.
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1. Introduction

Let Ω ⊂ R2 be a bounded open domain and let σ ∈ L∞(Ω;R2×2) be uniformly elliptic,
i.e.,

σξ · ξ ≥ λ|ξ|2 for every ξ ∈ R2 and for a.e. x ∈ Ω,

for some λ > 0. We study the gradient integrability of distributional solutions u ∈ W 1,1(Ω)
to

(1.1) div(σ(x)∇u(x)) = 0 in Ω,

in the case when the essential range of σ consists of only two matrices, say σ1 and σ2. It is
well-known from Astala’s work [1] that there exist exponents q and p, with 1 < q < 2 < p,
such that if u ∈ W 1,q(Ω;R) is solution to (1.1), then ∇u ∈ Lpweak(Ω;R). In [9] the optimal
exponents p and q have been characterised for every pair of elliptic matrices σ1 and σ2.
Denoting by pσ1,σ2 and qσ1,σ2 such exponents, whose precise formulas are recalled in Section
2, we summarise the result of [9] in the following theorem.

Theorem 1.1. [9, Theorem 1.4 and Proposition 4.2] Let σ1, σ2 ∈ R2×2 be elliptic.

i) If σ ∈ L∞(Ω; {σ1, σ2}) and u ∈ W 1,qσ1,σ2 (Ω) solves (1.1), then ∇u ∈ Lpσ1,σ2weak (Ω;R2).

ii) There exists σ̄ ∈ L∞(Ω; {σ1, σ2}) and a weak solution ū ∈ W 1,2(Ω) to (1.1) with
σ = σ̄, satisfying affine boundary conditions and such that ∇ū /∈ Lpσ1,σ2 (Ω;R2).

Theorem 1.1 proves the optimality of the upper exponent pσ1,σ2 . The objective of this
paper is to complement this result by proving the optimality of the lower exponent qσ1,σ2 .
As shown in [9] (and recalled in Section 2), there is no loss of generality in assuming that

(1.2) σ1 = diag(1/K, 1/S1), σ2 = diag(K,S2),

with

(1.3) K > 1 and
1

K
≤ Sj ≤ K , j = 1, 2 .

Thus it suffices to show optimality for this class of coefficients, for which the exponents
pσ1,σ2 and qσ1,σ2 read as

(1.4) qσ1,σ2 =
2K

K + 1
, pσ1,σ2 =

2K

K − 1
.

Our main result is the following

Theorem 1.2. Let σ1, σ2 be defined by (1.2) for some K > 1 and S1, S2 ∈ [1/K,K].
There exist coefficients σn ∈ L∞(Ω, {σ1;σ2}), exponents pn ∈

[
1, 2K

K+1

]
, functions un ∈

W 1,1(Ω;R) such that
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{
div(σn(x)∇un(x)) = 0 in Ω ,

un(x) = x1 on ∂Ω ,
(1.5)

∇un ∈ Lpnweak(Ω;R2), pn →
2K

K + 1
,(1.6)

∇un /∈ L
2K
K+1 (Ω;R2).(1.7)

In particular un ∈ W 1,q(Ω;R) for every q < pn, but
∫

Ω
|∇un|

2K
K+1 dx =∞.

Theorem 1.2 was proved in [2] in the case of isotropic coefficients, namely for σ1 = 1
K
I

and σ2 = KI. More precisely, in [2] the authors obtain a slightly stronger result by
constructing a single coefficient σ ∈ {KI, 1

K
I} and a single function u that satisfies the

associated elliptic equation and is such that ∇u ∈ L
2K
K+1

weak, but ∇u /∈ L
2K
K+1 . We follow the

method developed in [2], which relies on convex integration as used in [8], and provides an
explicit construction of the sequence un. The adaptation of such method to the present
context turns out to be non-trivial due to the anisotropy of the coefficients (see Remark
5.8). It is not clear how to modify the construction in order to get a stronger result as in
[2].

2. Connection with the Beltrami equation and explicit formulas for the
optimal exponents

For the reader’s convenience we recall in this section how to reduce to the case (1.2)
starting from any pair σ1, σ2. We will also give the explicit formulas for pσ1,σ2 and qσ1,σ2 .

It is well-known that a solution u ∈ W 1,q
loc , q ≥ 1, to the elliptic equation (1.1) can be

regarded as the real part of a complex map f : Ω 7→ C which is a W 1,q
loc solution to a

Beltrami equation. Precisely, if v is such that

(2.1) RT
π
2
∇v = σ∇u, Rπ

2
:=

(
0 −1
1 0

)
,

then f := u+ iv solves the equation

(2.2) fz̄ = µ fz + ν fz a.e. in Ω ,

where the so called complex dilatations µ and ν, both belonging to L∞(Ω;C), are given
by

(2.3) µ =
σ22 − σ11 − i(σ12 + σ21)

1 + Tr σ + detσ
, ν =

1− detσ + i(σ12 − σ21)

1 + Tr σ + detσ
,

and satisfy the ellipticity condition

(2.4) ‖|µ|+ |ν|‖L∞ < 1 .
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The ellipticity (2.4) is often expressed in a different form. Indeed, it implies that there
exists 0 ≤ k < 1 such that ‖|µ|+ |ν|‖L∞ ≤ k < 1 or equivalently that

(2.5) ‖|µ|+ |ν|‖L∞ ≤
K − 1

K + 1
,

for some K > 1. Let us recall that weak solutions to (2.2), (2.5) are called K-quasiregular
mappings. Furthermore, we can express σ as a function of µ, ν inverting the algebraic
system (2.3),

(2.6) σ =


|1−µ|2−|ν|2
|1+ν|2−|µ|2

2=(ν−µ)
|1+ν|2−|µ|2

−2=(ν+µ)
|1+ν|2−|µ|2

|1+µ|2−|ν|2
|1+ν|2−|µ|2

 .

Conversely, if f solves (2.2) with µ, ν ∈ L∞(Ω,C) satisfying (2.4), then its real part is
solution to the elliptic equation (1.1) with σ defined by (2.6). Notice that ∇f and ∇u
enjoy the same integrability properties. Assume now that σ : Ω→ {σ1, σ2} is a two-phase
elliptic coefficient and f is solution to (2.2)-(2.3). Abusing notation, we identify Ω with a
subset of R2 and f = u+ iv with the real mapping f = (u, v) : Ω→ R2. Then, as shown
in [9], one can find matrices A,B ∈ SL(2) (with SL(2) denoting the set of invertible
matrices with determinant equal to one) depending only on σ1 and σ2, such that, setting

(2.7) f̃(x) := A−1f(Bx),

one has that the function f̃ solves the new Beltrami equation

f̃z̄ = µ̃ fz + ν̃ f̃z a.e. in B−1(Ω),

and the corresponding σ̃ : B(Ω)→ {σ̃1, σ̃2} defined by (2.6) is of the form (1.2):

σ̃1 = diag(1/K, 1/S1), σ̃2 = diag(K,S2), K > 1, S1, S2 ∈ [1/K,K] .

The results in [1] and [12] imply that if f̃ ∈ W 1,q, with q ≥ 2K
K+1

, then ∇f̃ ∈ L
2K
K−1

weak;
in particular, f̃ ∈ W 1,p for each p < 2K

K−1
. Clearly ∇f̃ enjoys the same integrability

properties as ∇f and ∇u.
Finally, we recall the formula for K which will yield the optimal exponents. Denote by

d1 and d2 the determinant of the symmetric part of σ1 and σ2 respectively,

di := det
(σi + σTi

2

)
, i = 1, 2 ,

and by (σi)jk the jk-entry of σi. Set

m : =
1√
d1d2

[
(σ2)11(σ1)22 + (σ1)11(σ2)22 −

1

2

(
(σ2)12 + (σ2)21

)(
(σ1)12 + (σ1)21

)]
,

n : =
1√
d1d2

[
detσ1 + detσ2 −

1

2

(
(σ1)21 − (σ1)12

)(
(σ2)21 − (σ2)12

)]
.
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Then

(2.8) K =

(
m+

√
m2 − 4

2

) 1
2
(
n+
√
n2 − 4

2

) 1
2

.

Thus, for any pair of elliptic matrices σ1, σ2 ∈ R2×2, the explicit formula for the optimal
exponents pσ1,σ2 and qσ1,σ2 are obtained by plugging (2.8) into (1.4).

3. Preliminaries

3.1. Conformal coordinates. For every real matrix A ∈ R2×2,

A =

(
a11 a12

a21 a22

)
,

we write A = (a+, a−), where a+, a− ∈ C denote its conformal coordinates. By identifying
any vector v = (x, y) ∈ R2 with the complex number v = x + iy, conformal coordinates
are defined by the identity

(3.1) Av = a+v + a−v .

Here v denotes the complex conjugation. From (3.1) we have relations

(3.2) a+ =
a11 + a22

2
+ i

a21 − a12

2
, a− =

a11 − a22

2
+ i

a21 + a12

2
,

and, conversely,

(3.3)
a11 = <a+ + <a− , a12 = −=a+ + =a− ,
a21 = =a+ + =a− , a22 = <a+ −<a− .

Here <z and =z denote the real and imaginary part of z ∈ C respectively. We recall that

(3.4) AB = (a+b+ + a−b−, a+b− + a−b+) ,

and TrA = 2<a+. Moreover

(3.5)

det(A) = |a+|2 − |a−|2 ,
|A|2 = 2 |a+|2 + 2 |a−|2 ,
‖A‖ = |a+|+ |a−| ,

where |A| and ‖A‖ denote the Hilbert-Schmidt and the operator norm, respectively.
We also define the second complex dilatation of the map A as

(3.6) µA :=
a−
a+

,

and the distortion

(3.7) K(A) :=

∣∣∣∣1 + |µA|
1− |µA|

∣∣∣∣ =
‖A‖2

|det(A)|
.

The last two quantities measure how far A is from being conformal. Following the notation
introduced in [2], we define

(3.8) E∆ := {A = (a, µ a) : a ∈ C, µ ∈ ∆}
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for a set ∆ ⊂ C ∪ {∞}; namely, E∆ is the set of matrices with the second complex
dilatation belonging to ∆. In particular E0 and E∞ denote the set of conformal and
anti-conformal matrices respectively. From (3.4) we have that E∆ is invariant under
precomposition by conformal matrices, that is

(3.9) E∆ = E∆A for every A ∈ E0 r {0} .

3.2. Convex integration tools. We denote byM(R2×2) the set of signed Radon mea-
sures on R2×2 having finite mass. By the Riesz’s representation theorem we can identify
M(R2×2) with the dual of the space C0(Rm×n). Given ν ∈M(R2×2) we define its barycen-
ter as

ν :=

∫
R2×2

Adν(A) .

We say that a map f ∈ C(Ω;R2) is piecewise affine if there exists a countable family of
pairwise disjoint open subsets Ωi ⊂ Ω with |∂Ωi| = 0 and∣∣∣∣∣Ω r

∞⋃
i=1

Ωi

∣∣∣∣∣ = 0 ,

such that f is affine on each Ωi. Two matrices A,B ∈ R2×2 such that rank(B − A) = 1
are said to be rank-one connected and the measure λδA + (1 − λ)δB ∈ M(R2×2) with
λ ∈ [0, 1] is called a laminate of first order (see also [7], [8], [11]).

Definition 3.1. The family of laminates of finite order L(R2×2) is the smallest family of
probability measures inM(R2×2) satisfying the following conditions:

(i) δA ∈ L(R2×2) for every A ∈ R2×2 ;
(ii) assume that

∑N
i=1 λiδAi ∈ L(R2×2) and A1 = λB + (1 − λ)C with λ ∈ [0, 1] and

rank(B − C) = 1. Then the probability measure

λ1(λδB + (1− λ)δC) +
N∑
i=2

λiδAi

is also contained in L(R2×2).

The process of obtaining new measures via (ii) is called splitting. The following propo-
sition provides a fundamental tool to solve differential inclusions by means of convex
integration (see e.g. [2, Proposition 2.3] or [8, Lemma 3.2] for a proof).

Proposition 3.2. Let ν =
∑N

i=1 αiδAi ∈ L(R2×2) be a laminate of finite order with
barycenter ν = A, that is A =

∑N
i=1 αiAi with

∑N
i=1 αi = 1. Let Ω ⊂ R2 be a bounded

open set, α ∈ (0, 1) and 0 < δ < min |Ai − Aj| /2. Then there exists a piecewise affine
Lipschitz map f : Ω→ R2 such that

(i) f(x) = Ax on ∂Ω,
(ii) [f − A]Cα(Ω) < δ ,
(iii) |{x ∈ Ω : |∇f(x)− Ai| < δ}| = αi |Ω|,
(iv) dist(∇f(x), spt ν) < δ a.e. in Ω.
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3.3. Weak Lp spaces. We recall the definition of weak Lp spaces. Let f : Ω → R2 be a
Lebesgue measurable function. Define the distribution function of f as

λf : (0,∞)→ [0,∞] with λf (t) := |{x ∈ Ω : |f(x)| > t}| .
Let 1 ≤ p <∞, then the following formula holds

(3.10)
∫

Ω

|f(x)|p dx = p

∫ ∞
0

tp−1λf (t) dt .

Define the quantity

[f ]p :=

(
sup
t>0

tpλf (t)

)1/p

and the weak Lp space as

Lpweak(Ω;R2) :=
{
f : Ω→ R2 : f measurable, [f ]p <∞

}
.

Lpweak is a topological vector space and by Chebyshev’s inequality we have [f ]p ≤ ‖f‖Lp .
In particular this implies Lp ⊂ Lpweak. Moreover Lpweak ⊂ Lq for every q < p.

4. Proof of Theorem 1.2

For the rest of this paper, σ1 and σ2 are as in (1.2)-(1.3). We start by rewriting (1.1)
as a differential inclusion. To this end, define the sets

(4.1) T1 :=

{(
x −y

S−1
1 y K−1 x

)
: x, y ∈ R

}
, T2 :=

{(
x −y
S2 y K x

)
: x, y ∈ R

}
.

Let σ ∈ L∞(Ω; {σ1, σ2}). It is easy to check (see for example [2, Lemma 3.2]) that u solves
(1.1) if and only if f solves the differential inclusion

(4.2) ∇f(x) ∈ T1 ∪ T2 a.e. in Ω ,

where f := (u, v) and v is the stream function of u, which is defined, up to an addictive
constant, by (2.1).

In order to solve the differential inclusion (4.2), it is convenient to use (3.2) and write
our target sets in conformal coordinates:

(4.3) T1 = {(a, d1(a)) : a ∈ C} , T2 = {(a,−d2(a)) : a ∈ C} ,
where the operators dj : C→ C are defined as

(4.4) dj(a) := k<a+ i sj =a , with k :=
K − 1

K + 1
and sj :=

Sj − 1

Sj + 1
.

Conditions (1.3) imply

(4.5) 0 < k < 1 and − k ≤ sj ≤ k for j = 1, 2 .

Introduce the quantities

s :=
s1 + s2

2
=

S1S2 − 1

(1 + S1)(1 + S2)
(4.6)

S :=
1 + s

1− s
=
S1 + S2 + 2S1S2

2 + S1 + S2

.(4.7)
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By (4.5) we have

(4.8) −k ≤ s ≤ k and
1

K
≤ S ≤ K .

We distinguish three cases.
1. Case s > 0 (corresponding to S > 1). We study this case in Section 5, where we

generalise the methods used in [2, Section 3.2]. Observe that this case includes the one
studied in [2]. Indeed, for s = k one has that s1 = s2 = k and the target sets (4.3) become

T1 = Ek = {(a, ka) : a ∈ C} , T2 = E−k = {(a,−ka) : a ∈ C} ,

where E±k are defined in (3.8). We remark that, in this particular case, the construction
provided in Section 5 coincides with the one given in [2, Section 3.2].

2. Case s < 0 (corresponding to S < 1). This case can be reduced to the previous
one. Indeed, if we introduce ŝj := −sj, ŝ := (ŝ1 + ŝ2)/2 > 0 and the operators d̂j(a) :=
k<a+ i ŝj =a then the target sets (4.3) read as

T1 = {(a, d̂1(a)) : a ∈ C}, T2 = {(a,−d̂2(a)) : a ∈ C}.

This is the same as the previous case, since the absence of the conjugation does not affect
the geometric properties relevant to the constructions of Section 5.

We notice that this case includes s = −k for which the target sets become

T1 = {(a, ka) : a ∈ C} , T2 = {(a,−ka) : a ∈ C} .

We remark that in this case, (4.2) coincides with the classical Beltrami equation (see also
[2, Remark 3.21]).

3. Case s = 0 (corresponding to s1 = −s2, S1 = 1/S2). This is a degenerate case,
in the sense that the constructions provided in Section 5 for s > 0 are not well defined.
Nonetheless, Theorem 1.2 still holds true. In fact, as already pointed out in [9, Section
A.3], by an affine change of variables, the existence of a solution can be deduced by [2,
Lemma 4.1,Theorem 4.14], where the authors prove the optimality of the lower critical
exponent 2K

K+1
for the solution of a system in non-divergence form. We remark that in this

case Theorem 1.2 actually holds in the stronger sense of exact solutions, namely, there
exists u ∈ W 1,1(Ω;R) solution to (1.5) and such that

∇u ∈ L
2K
K+1

weak(Ω;R2) , ∇u /∈ L
2K
K+1 (Ω;R2) .

5. The case s > 0

In the present section we prove Theorem 1.2 under the hypothesis that the average s
is positive, namely that

(5.1)
0 < k < 1 and − s2 < s1 ≤ s2 , with 0 < s2 ≤ k , or
0 < k < 1 and − s1 < s2 ≤ s1 , with 0 < s1 ≤ k .
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From (5.1), recalling definitions (4.4), (4.6), (4.7), we have

0 < s ≤ k , 1 < S ≤ K ,(5.2)
1/S2 < S1 ≤ S2 , 1 < S2 ≤ K , or 1/S1 < S2 ≤ S1 , 1 < S1 ≤ K .(5.3)

In order to prove Theorem 1.2, we will solve the differential inclusion (4.2) by adapting
the convex integration program developed in [2, Section 3.2] to the present context. As
already pointed out in the Introduction, the anisotropy of the coefficients σ1, σ2 poses
some technical difficulties in the construction of the so-called staircase laminate, needed
to obtain the desired approximate solutions. In fact, the anisotropy of σ1, σ2 translates
into the lack of conformal invariance (in the sense of (3.9)) of the target sets (4.3), while
the constructions provided in [2] heavily rely on the conformal invariance of the target set
E{−k,k}. We point out that the lack of conformal invariance was a source of difficulty in
[9] as well, for the proof of the optimality of the upper exponent.

This section is divided as follows. In Section 5.1 we establish some geometrical proper-
ties of rank-one lines in R2×2, that will be used in Section 5.2 for the construction of the
staircase laminate. For every sufficiently small δ > 0, such laminate allows us to define
(in Proposition 5.9) a piecewise affine map f that solves the differential inclusion (4.2) up
to an arbitrarily small L∞ error. Moreover f will have the desired integrability properties
(see (5.59), that is,

∇f ∈ Lpweak(Ω;R2×2) , p ∈
(

2K

K + 1
− δ, 2K

K + 1

]
, ∇f /∈ L

2K
K+1 (Ω;R2×2) .

Finally, in Theorem 5.10, we remove the L∞ error introduced in Proposition 5.9, by means
of a standard argument (see, e.g., [9, Theorem A.2]).

Throughout this section cK > 1 will denote various constants depending on K,S1 and
S2, whose precise value may change from place to place. The complex conjugation is
denoted by J := (0, 1) in conformal coordinates, i.e., Jz = z for z ∈ C. Moreover,
Rθ := (eiθ, 0) ∈ SO(2) denotes the counter clockwise rotation of angle θ ∈ (−π, π]. Define
the the argument function

arg z := θ , where z = |z|eiθ , with θ ∈ (−π, π] .

Abusing notation we write argRθ = θ. For A = (a, b) ∈ R2×2 \ {0} we set

(5.4) θA := − arg(b− d1(a)) .

5.1. Properties of rank-one lines. In this Section we will establish some geometrical
properties of rank-one lines in R2×2. Lemmas 5.2, 5.3 are generalizations of [2, Lemmas
3.14, 3.15] to our target sets (4.3). In Lemmas 5.4, 5.5 we will study certain rank-one lines
connecting T to E∞, that will be used in Section 5.2 to construct the staircase laminate.

Lemma 5.1. Let Q ∈ Tj with j ∈ {1, 2} and Tj as in (4.3). Then

detQ > 0 for Q 6= 0 ,(5.5)
|sj| ≤ |µQ| ≤ k ,(5.6)

max{Sj, 1/Sj} ≤ K(Q) ≤ K .(5.7)
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Proof. Let Q = (q, d1(q)) ∈ T1. By (4.5) we have |s1||q| ≤ |d1(q)| ≤ k|q| which readily
implies (5.6) and

(1− k2) |q|2 ≤ det(Q) ≤ (1− s2
1) |q|2 .

The last inequality implies (5.5). Finally K(Q) is increasing with respect to |µQ| ∈ (0, 1),
therefore (5.7) follows from (5.6). The proof is analogous if Q ∈ T2. �

Lemma 5.2. Let A,B ∈ R2×2 with detB 6= 0 and det(B − A) = 0, then

(5.8) |B| ≤
√

2K(B) |A| .
In particular, if A ∈ R2×2 and Q ∈ Tj, j ∈ {1, 2}, are such that det(A−Q) = 0, then

dist(A, Tj) ≤ |A−Q| ≤ (1 +
√

2K) dist(A, Tj) .

Proof. The first part of the statement is exactly like in [2, Lemma 3.14]. For the second
part, one can easily adapt the proof of [2, Lemma 3.14] to the present context taking
into account (5.5) and (5.7). For the reader’s convenience we recall the argument. Let
A ∈ R2×2, Q ∈ T1 and Q0 ∈ T1 such that dist(A, T1) = |A−Q0|. By (5.5), we can apply
the first part of the lemma to A−Q0 and Q−Q0 to get

|Q−Q0| ≤
√

2K(Q−Q0)|A−Q0| ≤
√

2K|A−Q0| ,
where the last inequality follows from (5.7), since Q−Q0 ∈ T1. Therefore

|A−Q| ≤ |A−Q0|+ |Q−Q0| ≤ (1 +
√

2K)|A−Q0| = (1 +
√

2K) dist(A, T1) .

The proof for T2 is analogous. �

Lemma 5.3. Every A = (a, b) ∈ R2×2r{0} lies on a rank-one segment connecting T1 and
E∞. Precisely, there exist matrices Q ∈ T1r{0} and P ∈ E∞r{0}, with det(P−Q) = 0,
such that A ∈ [Q,P ]. We have P = tJRθA for some t > 0 and θA as in (5.4). Moreover,
there exists a constant cK > 1, depending only on K,S1, S2, such that

(5.9)
1

cK
|A| ≤ |P −Q| , |P | , |Q| ≤ cK |A| .

Proof. The proof can be deduced straightforwardly from the one of [2, Lemma 3.15]. We
decompose any A = (a, b) as

A = (a, d1(a)) +
1

t
(0, tb− td1(a)) = Q+

1

t
Pt ,

with Q ∈ T1 and Pt ∈ E∞. The matrices Q and Pt are rank-one connected if and only if
|a| = |d1(a) + t(b− d1(a))|. Since detQ > 0 for Q 6= 0, it is easy to see that there exists
only one t0 > 0 such that the last identity is satisfied. We then set ρ := 1 + 1/t0 so that

A =
1

ρ
(ρQ) +

1

t0ρ
(ρPt0) .

The latter is the desired decomposition, since ρQ ∈ T1, ρPt0 ∈ E∞ are rank-one connected,
ρ > 0 and ρ−1 + (t0ρ)−1 = 1. Also notice that ρPt0 = ρt0|b− d1(a)|JRθA as stated.

Finally let us prove (5.9). Remark that

dist(A, T1) + dist(A,E∞) ≤ |A− P |+ |A−Q| = |P −Q| .
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By the linear independence of T1 and E∞, we get
1

cK
|A| ≤ |P −Q| .

Using Lemma 5.2, (5.5) and (5.7) we obtain

|P | ≤ cK |A|, |Q| ≤ cK |A|, |Q| ≤ cK |P |, |P | ≤ cK |Q|.

By the triangle inequality,

|P −Q| ≤ |P |+ |Q| ≤ (1 + cK) min(|P |, |Q|),

and (5.9) follows. �

We now turn our attention to the study of rank-one connections between the target set
T and E∞.

Lemma 5.4. Let R = (r, 0) with |r| = 1 and a ∈ Cr {0}. For j ∈ {1, 2} define

Q1(a) := λ1(a, d1(a)) ∈ T1 , Q2(a) := λ2(−a, d2(a)) ∈ T2 ,

λj(a) :=
1√

B2
j (a) + Aj(a) +Bj(a)

,(5.10)

{
Aj(a) := det(a, dj(a)) = |a|2 − |dj(a)|2 ,
Bj(a) := < (r dj(a)) .

(5.11)

Then λj > 0, Aj > 0 and det(Qj − JR) = 0. Moreover there exists a constant cK > 1
depending only on K,S1, S2 such that

(5.12)
1

cK
≤ |Qj(a)| ≤ cK ,

for every a ∈ Cr {0} and R ∈ SO(2).

Proof. Condition det(Qj − JR) = 0 is equivalent to |λja| = |λjdj(a)− r|, that is

(5.13) Aj(a)λ2
j + 2Bj(a)λj − 1 = 0

with Aj, Bj defined by (5.11). Notice that Aj > 0 by (5.5). Therefore λj defined in (5.10)
solves (5.13) and satisfies λj > 0.

We will now prove (5.12). Since a 6= 0, we can write a = tω for some t > 0 and ω ∈ C,
with |ω| = 1. We have Aj(a) = t2Aj(ω) and Bj(a) = tBj(ω) so that λj(a) = λj(ω)/t.
Hence

(5.14) Q1(a) = λ1(ω)(ω, d1(ω)) , Q2(a) = λ2(ω)(−ω, d2(ω)) .

Since λj is continuous and positive in (Cr {0})× SO(2), (5.12) follows from (5.14). �

Notation. Let θ ∈ (−π, π]. For Rθ = (eiθ, 0) ∈ SO(2), define x := cos θ, y := sin θ and

(5.15) a(Rθ) :=
x

k
+ i

y

s
,
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where s is defined in (4.6). Identifying SO(2) with the interval (−π, π], for j = 1, 2, we
introduce the function

(5.16) λj : (−π, π]→ (0,+∞) defined by λj(Rθ) := λj(a(Rθ))

with λj(a(Rθ)) as in (5.10). Furthermore, for n ∈ N set

(5.17)

Mj(Rθ) :=
λj

λ1 + λ2

2
− λ1λ2

, l(Rθ) :=
M1 +M2

2
− 1 , m := min

θ∈(−π,π]

M2

2−M2

L(Rθ) :=
1 + l

1− l
, βn(Rθ) := 1− 1 + l

n
, p(Rθ) :=

2L

L+ 1
.

Lemma 5.5. For j = 1, 2, the functions

λj : (−π, π]→
[

s

1 + sj
,

k

1 + k

]
, l : (−π, π]→ [s, k] ,

L : (−π, π]→ [S,K] , p : (−π, π]→
[

2S

S + 1
,

2K

K + 1

]
,

are even, surjective and their periodic extension is C1. Furthermore, they are strictly
decreasing in (0, π/2) and strictly increasing in (π/2, π), with maximum at θ = 0, π and
minimum at θ = π/2. Finally

0 < Mj < 2 , m > 0 ,(5.18)
n∏
j=1

βj(Rθ) =
1

np(Rθ)
+O

(
1

n

)
,(5.19)

where O(1/n)→ 0 as n→∞ uniformly for θ ∈ (−π, π].

Proof. Let us consider λj first. By definitions (5.11), (5.15) and by recalling that x2 +y2 =
1, we may regard Aj, Bj and λj as functions of x ∈ [−1, 1]. In particular,

(5.20) Aj(x) =

(
1− k2

k2
−

1− s2
j

s2

)
x2 +

1− s2
j

s2
, Bj(x) =

(
1− sj

s

)
x2 +

sj
s
.

By symmetry we can restrict to x ∈ [0, 1]. We have three cases:
1. Case s1 = s2. Since s1 = s2 = s, from (5.20) we compute

λ1(x) = λ2(x) =

(
1 +

√(
1

k2
− 1

s2

)
x2 +

1

s2

)−1

.

By (5.1),(5.2) this is a strictly increasing function in [0, 1], and the rest of the thesis for
λj readily follows.

2. Case s1 < s2. By (5.1) we have

(5.21) −s2 < s1 < s and 0 < s < s2 .
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Relations (5.20) and (5.21) imply that

A′j(0) = 0 , A′j(x) < 0 , for x ∈ (0, 1] ,(5.22)
B′1(0) = 0 , B′1(x) > 0 , for x ∈ (0, 1] ,(5.23)
B′2(0) = 0 , B′2(x) < 0 , for x ∈ (0, 1] .(5.24)

We claim that

(5.25) λ′j(0) = 0 , λ′j(x) > 0 , for x ∈ (0, 1] .

Before proving (5.25), notice that λj(0) =
s

1 + sj
and λj(1) =

k

1 + k
, therefore the sur-

jectivity of λj will follow from (5.25). Let us now prove (5.25). For j = 2 condition (5.25)
is an immediate consequence of the definition of λ2 and (5.22), (5.24). For j = 1 we have

(5.26) λ′1(x) = − 1

λ2
1

(
A′1 + 2B1B

′
1

2
√
B2

1 + A1

+B′1

)
and we immediately see that λ′1(0) = 0 by (5.22) and (5.23). Assume now that x ∈ (0, 1].
By (5.23) and (5.26), the claim (5.25) is equivalent to

A′1
2

+ 4A′1B1B
′
1 − 4A1B

′
1

2
> 0 , for x ∈ (0, 1] .

After simplifications, the above inequality is equivalent to

(5.27)
4f(s1, s2)

k4(s1 + s2)4 x
2 > 0 , for x ∈ (0, 1] ,

where f(s1, s2) = abcd, with

a = −2k + (1 + k)s1 + (1− k)s2 , b = 2k + (1 + k)s1 + (1− k)s2 ,

c = −2k − (1− k)s1 − (1 + k)s2 , d = 2k − (1− k)s1 − (1 + k)s2 .

We have that a, c < 0 since s1 < s2 and b, d > 0 since s1 > −s2. Hence (5.27) follows.
3. Case s2 < s1. In particular we have

(5.28) −s1 < s2 < s and 0 < s < s1 .

This is similar to the previous case. Indeed (5.22) is still true, but for Bj we have

B′1(0) = 0 , B′1(x) < 0 , for x ∈ (0, 1] ,(5.29)
B′2(0) = 0 , B′2(x) > 0 , for x ∈ (0, 1] .(5.30)

This implies (5.25) with j = 1. Similarly to the previous case, we can see that (5.25) for
j = 2 is equivalent to

(5.31)
4f(s2, s1)

k4(s1 + s2)4 x
2 > 0 , for x ∈ (0, 1] .

Notice that f is symmetric, therefore (5.31) is a consequence of (5.27).
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We will now turn our attention to the function l. Notice that

(5.32) l =
1

1−H
− 1 , where H :=

2λ1λ2

λ1 + λ2

= 2

(
1

λ1

+
1

λ2

)−1

is the harmonic mean of λ1 and λ2. Therefore H is differentiable and even. By direct
computation we have

H ′ = 2
λ′1λ

2
2 + λ2

1λ
′
2

(λ1 + λ2)2 .

Since λj > 0, by (5.25) we have

(5.33) H ′(0) = 0 , H ′(x) > 0 , for x ∈ (0, 1] .

Moreover H(0) =
s

1 + s
and H(1) =

k

1 + k
. Then from (5.32) we deduce l(0) = s, l(1) = k

and the rest of the statement for l.
The statements for L and p follow directly from the properties of l and from the fact

that t → 1 + t

1− t
, t → 2t

t+ 1
are C1 and strictly increasing for 0 < t < 1 and t > 1,

respectively.
Next we prove (5.18). By (5.1) and the properties of λj, we have in particular

(5.34) 0 < λj <
1

2
, 0 < H <

1

2
,

where H is defined in (5.32). Since λj > 0, the inequality Mj > 0 is equivalent to H < 1,
which holds by (5.34). The inequality M2 < 2 is instead equivalent to λ1(1 − 2λ2) > 0,
which is again true by (5.34). The case M1 < 2 is similar. Finally m > 0 follows from
0 < M2 < 2 and the continuity of λj.

Finally we prove (5.19). By definition we have 1 + l =
2L

L+ 1
= p. By taking the

logarithm of
∏n

j=1 βj(Rθ), we see that there exists a constant c > 0, depending only on
K,S1, S2, such that

(5.35)

∣∣∣∣∣log

(
n∏
j=1

βj(Rθ)

)
+ p(Rθ) log n

∣∣∣∣∣ < c , for every θ ∈ (−π, π] .

Estimate (5.35) is uniform because βj and p are π-periodic and uniformly continuous. �

5.2. Weak staircase laminate. We are now ready to construct a staircase laminate in
the same fashion as [2, Lemma 3.17]. We remark that the construction of this type of
laminates, first introduced in [5], has also been used in [3] and [4] in connection with the
problem of regularity for rank-one convex functions and in [6] and [10] for constructing
Sobolev homeomorphisms with gradients of law rank.

The steps of our staircase will be the sets

Sn := nJSO(2) =
{

(0, neiθ) : θ ∈ (−π, π]
}
, n ≥ 1 .

For 0 < δ < π/2 we introduce the set

Eδ
∞ := {(0, z) ∈ E∞ : | arg z| < δ} , Sδn := Sn ∩ Eδ

∞ .
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E∞

E0

T1

T2

A

Q

tJRθA

Q1

Q2

P̃
(n+ 1)JRθA

Figure 1. Weak staircase laminate.

Lemma 5.6. Let 0 < δ < π/4 and 0 < ρ < min{m, 1
2
}, with m > 0 defined in (5.17).

There exists a constant cK > 1 depending only on K,S1, S2, such that for every A =
(a, b) ∈ R2×2 satisfying

(5.36) dist(A,Sn) < ρ ,

there exists a laminate of third order νA, such that:
(i) νA = A,
(ii) spt νA ⊂ T ∪ Sn+1 ,

(iii) spt νA ⊂ {ξ ∈ R2×2 : c−1
K n < |ξ| < cK n} ,

(iv) spt νA ∩ Sn+1 = {(n+ 1)JR}, with R = RθA as in (5.4).
Moreover

(5.37)
(

1− cK
ρ

n

)
βn(R) ≤ νA(Sn+1) ≤

(
1 + cK

ρ

n

)
βn+2(R) ,

where βn is defined in (5.17). If in addition n ≥ 2 and

(5.38) dist(A,Sδn) < ρ ,

then

(5.39) | argR| = |θA| < δ + ρ .

In particular spt νA ⊂ T ∪ Sδ+ρn+1.
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Proof. Let us start by defining νA. From Lemma 5.3 there exist cK > 1 and non zero
matrices Q ∈ T1, P ∈ E∞, such that det(P −Q) = 0,

A = µ1Q+ (1− µ1)P , for some µ1 ∈ [0, 1] ,(5.40)
1

cK
|A| ≤ |P −Q| , |P | , |Q| ≤ cK |A| .(5.41)

Moreover P = tJR with R = RθA = (r, 0) as in (5.4) and t > 0. We will estimate t. By
(5.36), there exists R̃ ∈ SO(2) such that |A−nJR̃| < ρ. Applying Lemma 5.2 to A−nJR̃
and P − nJR̃ yields

(5.42) |P − nJR̃| <
√

2ρ ,

since P − nJR̃ ∈ E∞. Hence from (5.42) we get

(5.43) |t− n| < ρ ,

since |JR| = |JR̃| =
√

2. We also have

(5.44) µ1 =
|A−Q|
|P −Q|

≥ 1− |P − A|
|P −Q|

≥ 1− cK
ρ

n
,

since |P − A| < 3ρ and |P −Q| > n/cK , by (5.38), (5.41), (5.42).
Next we split P in order to “climb” one step of the staircase (see Figure 1). Define

x := cos θA, y := sin θA and

a :=
x

k
+ i

y

s
,

as in (5.15). Moreover set

Q1 := λ1(a, d1(a)) , Q2 := λ2(−a, d2(a)) .

Here λ1, λ2 are chosen as in (5.10), so that Qj ∈ Tj and, by Lemma 5.4, det(Qj−JR) = 0.
Furthermore, set

(5.45)


µ2 :=

M2 − (t− n)M2

2n+M2 + (t− n)(2−M2)
,

µ3 :=
M1 − (t− n)M1

2(n+ 1)
,

with Mj as in (5.17). With the above choices we have

(5.46)

{
tJR = µ2tQ1 + (1− µ2)P̃ ,

P̃ = µ3(n+ 1)Q2 + (1− µ3)(n+ 1)JR ,

and µ2, µ3 ∈ [0, 1] by (5.18). In order to check (5.46), we solve the first equation in P̃ to
get

(5.47) γ2tJR + (1− γ2)tQ1 = γ3(n+ 1)Q2 + (1− γ3)(n+ 1)JR ,
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with µ2 = 1− 1/γ2 and µ3 = γ3. Equating the first conformal coordinate of both sides of
(5.47) yields

(5.48) γ2 = 1 + γ3
n+ 1

t

λ2

λ1

.

Substituting (5.48) in the second component of (5.47) gives us

(5.49) γ3

(
λ1 + λ2 − λ1λ2 (d1(a) + d2(a)) r−1

)
=

1− (t− n)

n+ 1
λ1 .

By (5.15), d1(a) + d2(a) = 2r and equation (5.49) yields

(5.50) γ3 =
1− (t− n)

n+ 1

λ1

λ1 + λ2 − 2λ1λ2

=
1− (t− n)

2(n+ 1)
M1 .

Equations (5.48) and (5.50) give us (5.45). Therefore, by (5.40) and (5.46), the measure

νA := µ1δQ + (1− µ1)
(
µ2δtQ1 + (1− µ2)

(
µ3δ(n+1)Q2 + (1− µ3)δ(n+1)JR

))
defines a laminate of third order with barycenter A, supported in T1 ∪T2 ∪Sn+1 and such
that spt νA ∩ Sn+1 = {(n+ 1)JR} with R = RθA . Moreover

spt νA ⊂ {ξ ∈ R2×2 : c−1
K n < |ξ| < cK n} ,

since c−1
K n < |Q| < cKn by (5.36),(5.41) and

c−1
K n < |tQ1|, |(n+ 1)Q2| < cKn

by (5.43), (5.12). Next we prove (5.37) by estimating

(5.51) νA(Sn+1) = µ1(1− µ2)(1− µ3) .

Notice that νA(Sn+1) depends on R. For small ρ, we have

µ2 =
M2

2n
+ ρO

(
1

n

)
, µ3 =

M1

2n
+ ρO

(
1

n

)
,

so that

(1− µ2)(1− µ3) = 1− M1 +M2

2n
+ ρO

(
1

n2

)
= 1− 1 + l

n
+ ρO

(
1

n2

)
,

with l as in (5.17). Although this gives the right asymptotic, we will need to estimate
(5.51) for every n ∈ N. By direct calculation

(1− µ2)(1− µ3) =
n+ (t− n)

n+ 1

2n+ 2−M1 + (t− n)M1

2n+M2 + (t− n)(2−M2)
,

so that

(5.52) (1−µ2)(1−µ3) =

(
1 +

t− n
n

)(
1− 1

n+ 1

)(
1− 2l (1− (t− n))

2n+M2 + (t− n)(2−M2)

)
.
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Let us bound (5.52) from above. Recall that t− n < ρ < 1 and 2−M2 > 0, by (5.18), so
the denominator of the third factor in (5.52) is bounded from above by 2(n+ 1) and

(5.53)
(1− µ2)(1− µ3) ≤

(
1 +

ρ

n

)(
1− 1

n+ 1

)(
1− l

n+ 1
+ l

ρ

n+ 1

)
≤
(

1 + cK
ρ

n

)(
1− 1

n+ 1

)(
1− l

n+ 1

)
,

where cK > 1 is such that

l
ρ

n+ 1

(
1 +

ρ

n

)
≤ (cK − 1)

ρ

n

(
1− l

n+ 1

)
.

Moreover

(5.54)
(

1− 1

n+ 1

)(
1− l

n+ 1

)
= 1− 1 + l

n+ 1
+

l

(n+ 1)2 ≤ 1− 1 + l

n+ 2
= βn+2(R) .

The upper bound in (5.37) follows from (5.53) and (5.54).
Let us now bound (5.52) from below. We can estimate from below the denominator in

the third factor of (5.52) with 2n, since t − n > −ρ by (5.43) and the assumption that
ρ < m with m as in (5.17). Therefore

(5.55)
(1− µ2)(1− µ3) ≥

(
1− ρ

n

)(
1− 1

n+ 1

)(
1− l

n
− l ρ

n

)
≥
(

1− cK
ρ

n

)(
1− 1

n+ 1

)(
1− l

n

)
,

if we choose cK > 1 such that(
1− ρ

n

)
l ≤ (cK − 1)

(
1− l

n

)
.

Finally

(5.56)
(

1− 1

n+ 1

)(
1− l

n

)
≥ 1− 1 + l

n
= βn(R) .

The lower bound in (5.37) follows from (5.55) and (5.56).
Finally, the last part of the statement follows from a simple geometrical argument,

recalling that argR = θA = − arg(b− d1(a)) and using hypothesis (5.38). �

Remark 5.7. By iteratively applying Lemma 5.6, one can obtain, for every Rθ ∈ SO(2),
a sequence of laminates of finite order νn ∈ L(R2×2) that satisfies νn = JRθ, spt νn ⊂
T1 ∪ T2 ∪ Sn+1, and

(5.57) lim
n→∞

∫
R2×2

|λ|p(Rθ) dνn(λ) =∞ ,

where p(Rθ) ∈
[

2S
S+1

, 2K
K+1

]
is the function defined in (5.17). Indeed, setting A = JRθ and

iterating the construction of Lemma 5.6, yields νn ∈ L(R2×2) such that νn = JRθ and
spt νn ⊂ T1 ∪ T2 ∪ Sn+1. Notice that νn contains the term

∏n
j=1(1− µj2)(1− µj3)δ(n+1)JRθ ,
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with µj2, µ
j
3 as defined in (5.45). Therefore, using (5.19) and (5.37) (with ρ = 0), we

obtain

(5.58)
n∏
j=1

(1− µj2)(1− µj3) ≈
n∏
j=1

βj(Rθ) ≈
1

np(Rθ)

which implies (5.57).

Remark 5.8. In the isotropic case S = K, the laminate νA provided by Lemma 5.6
coincides with the one in [2, Lemma 3.16]. In particular, the growth condition (5.37) is
independent of the initial point A, and it reads as(

1− cK
ρ

n

)
βn(I) ≤ νA(Sn+1) ≤

(
1 + cK

ρ

n

)
βn+2(I) , βn(I) = 1− 1 + k

n
.

Moreover, by Remark 5.7, for every Rθ ∈ SO(2), JRθ is the center of mass of a sequence
of laminates of finite order such that (5.57) holds with p(Rθ) ≡ 2K

K+1
, which gives the

desired growth rate.
In contrast, in the anisotropic case 1 < S < K, the growth rate of the laminates explic-

itly depends on the argument of the barycenter JRθ. The desired growth rate corresponds
to θ = 0, that is, the center of mass has to be J .

In constructing approximate solutions with the desired integrability properties, it is then
crucial to be able to select rotations whose angle lies in an arbitrarily small neighbourhood
of θ = 0.

We now proceed to show the existence of a piecewise affine map f that solves the
differential inclusion (4.2) up to an arbitrarily small L∞ error. Such map will have the
integrability properties given by (5.59).

Proposition 5.9. Let Ω ⊂ R2 be an open bounded domain. Let K > 1, α ∈ (0, 1),
ε > 0, 0 < δ0 <

2K
K+1
− 2S

S+1
, γ > 0. There exist a constant cK,δ0 > 1, depending only on

K,S1, S2, δ0, and a piecewise affine map f ∈ W 1,1(Ω;R2) ∩ Cα(Ω;R2), such that
(i) f(x) = Jx on ∂Ω,
(ii) [f − Jx]Cα(Ω) < ε,
(iii) dist(∇f(x), T ) < γ a.e. in Ω.

Moreover

(5.59)
1

cK,δ0
t−

2K
K+1 <

|{x ∈ Ω : |∇f(x)| > t}|
|Ω|

< cK,δ0 t
−p ,

where p ∈
(

2K
K+1
− δ0,

2K
K+1

]
. That is, ∇f ∈ Lpweak(Ω;R2×2) and ∇f /∈ L

2K
K+1 (Ω;R2×2). In

particular f ∈ W 1,q(Ω;R2) for every q < p, but
∫

Ω
|∇f(x)|

2K
K+1 dx =∞.

Proof. By Lemma 5.5 the function p : (−π, π]→
[

2S
S+1

, 2K
K+1

]
is uniformly continuous. Let

α : [0,∞]→ [0,∞] be its modulus of continuity. Fix 0 < δ < π/4 such that

(5.60) α(δ) < δ0 .
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Let {ρn} be a strictly decreasing positive sequence satisfying

(5.61) ρ1 <
1

4
min{m, c−1

K , dist(S1, T ), γ} , ρn <
δ

4
2−n ,

where m > 0 and cK > 1 are the constants from Lemma 5.6. Define {δn} as

(5.62) δ1 := 0 and δn :=
n−1∑
j=1

ρn for n ≥ 2 .

In particular from (5.61),(5.62) it follows that

(5.63) δn <
δ

2
, for every n ∈ N .

Step 1. Similarly to the proof of [2, Proposition 3.17], by repeatedly combining Lemma
5.6 and Proposition 3.2, we will prove the following statement:

Claim. There exist sequences of piecewise constant functions τn : Ω → (0,∞) and piece-
wise affine Lipschitz mappings fn : Ω→ R2, such that

(a) fn(x) = Jx on ∂Ω,
(b) [fn − Jx]Cα(Ω) < (1− 2−n)ε,

(c) dist(∇fn(x), T ∪ Sδnn ) < τn(x) a.e. in Ω,
(d) τn(x) = ρn in Ωn,

where
Ωn := {x ∈ Ω : dist(∇fn(x), T ) ≥ ρn} .

Moreover

(5.64)
n−1∏
j=1

(
1− cK

ρj
j

)
βj(R0) ≤ |Ωn|

|Ω|
≤

n−1∏
j=1

(
1 + cK

ρj
j

)
βj+2(Rδ) .

Proof of the claim. We proceed by induction. Set f1(x) := Jx and τ1(x) := ρ1 for every
x ∈ Ω. Since J ∈ S0

1 , then f1 satisfies (a)-(c). Also, ρ1 < dist(T,S1)/4 by (5.61), so
Ω1 = Ω and (d), (5.64) follow.

Assume now that fn and τn satisfy the inductive hypothesis. We will first define fn+1

by modifying fn on the set Ωn. Since fn is piecewise affine we have a decomposition of
Ωn into pairwise disjoint open subsets Ωn,i such that

(5.65)

∣∣∣∣∣Ωn r
∞⋃
i=1

Ωn,i

∣∣∣∣∣ = 0 ,

with fn(x) = Aix+ bi in Ωn,i, for some Ai ∈ R2×2 and bi ∈ R2. Moreover

(5.66) dist(Ai,Sδnn ) < ρn
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by (c) and (d). Since (5.66) and (5.61) hold, we can invoke Lemma 5.6 to obtain a
laminate νAi and a rotation Ri = RθAi

satisfying, in particular, νAi = Ai,

| argRi| = |θAi | < δn+1 ,(5.67)

spt νAi ⊂ T ∪ Sδn+1

n+1 ,(5.68)

since δn+1 = δn + ρn by (5.62). By applying Proposition 3.2 to νAi and by taking into
account (5.68), we obtain a piecewise affine Lipschitz mapping gi : Ωn,i → R2, such that

(e) gi(x) = Aix+ bi on ∂Ωn,i,
(f) [gi − fn]Cα(Ωn,i)

< 2−(n+1+i)ε,

(g) c−1
K n < |∇gi(x)| < cKn a.e. in Ωn,i,

(h) dist(∇gi(x), T ∪ Sδn+1

n+1 ) < ρn+1 a.e. in Ωn,i.

Moreover

(5.69)
(

1− cK
ρn
n

)
βn(Ri) ≤ |ωn,i|

|Ωn,i|
≤
(

1 + cK
ρn
n

)
βn+2(Ri) ,

with
ωn,i :=

∣∣∣{x ∈ Ωn,i : dist(∇gi(x),Sδn+1

n+1 ) < ρn+1

}∣∣∣ .
Set

fn+1(x) :=

{
fn(x) if x ∈ Ω r Ωn ,

gi(x) if x ∈ Ωn,i .

Since Ωn+1 is well defined, we can also introduce

τn+1(x) :=

{
τn(x) for x ∈ Ω r Ωn+1 ,

ρn+1 for x ∈ Ωn+1 ,

so that (d) holds. From (e) we have fn+1(x) = Jx on ∂Ω. From (f) we get [fn+1−fn]Cα(Ω) <

2−(n+1)ε so that (b) follows. (c) is a direct consequence of (d), (h), and the fact that ρn is
strictly decreasing. Finally let us prove (5.64). First notice that the sets ωn,i are pairwise
disjoint. By (5.61), in particular we have ρn+1 < dist(T,S1)/4, so that

(5.70)

∣∣∣∣∣Ωn+1 r
∞⋃
i=1

ωn,i

∣∣∣∣∣ = 0 .

By (5.67) and (5.63) we have | argRi| < δ. Then by the properties of βn (see Lemma 5.5),

(5.71) βn(Ri) ≥ βn(R0) and βn+2(Ri) ≤ βn+2(Rδ) .

Using (5.71), (5.65), (5.70) in (5.64) yields

|Ωn|
(

1− cK
ρn
n

)
βj(R0) ≤ |Ωn+1| ≤ |Ωn|

(
1 + cK

ρn
n

)
βj+2(Rδ) ,

and (5.64) follows.
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Step 2. Notice that on Ω r Ωn we have that ∇fn+1 = ∇fn almost everywhere, so
Ωn+1 ⊂ Ωn. Therefore {fn} is obtained by modification on a nested sequence of open
sets, satisfying

n−1∏
j=1

(
1− cK

ρj
j

)
βj(R0) ≤ |Ωn|

|Ω|
≤

n−1∏
j=1

(
1 + cK

ρj
j

)
βj+2(Rδ) .

By (5.61) we have ρn < min{2−n δ, c−1
K }/4, so that

∞∏
j=1

(
1− cK

ρj
j

)
= c1 ,

∞∏
j=1

(
1 + cK

ρj
j

)
= c2 ,

with 0 < c1 < c2 < ∞, depending only on K,S1, S2, δ (and hence from δ0, by (5.60)).
Moreover, from Lemma 5.5,

n∏
j=1

βj(Rθ) = n−p(Rθ) +O

(
1

n

)
, uniformly in (−π, π] .

Therefore, there exists a constant cK,δ0 > 1 depending only on K,S1, S2, δ0, such that

(5.72)
1

cK,δ0
n−

2K
K+1 ≤ |Ωn| ≤ cK,δ0 n

−pδ0 ,

since p(R0) =
2K

K + 1
. Here pδ0 := p(Rδ). Notice that, by (5.60), pδ0 ∈

(
2K
K+1
− δ0,

2K
K+1

]
,

since p is strictly decreasing in [0, π/2].
From (5.72), in particular we deduce |Ωn| → 0. Therefore fn → f almost everywhere

in Ω, with f piecewise affine. Furthermore f satisfies (i)-(iii) by construction.
We are left to estimate the distribution function of ∇f . By (g) we have that

|∇f(x)| > n

cK,δ0
in Ωn and |∇f(x)| < cK,δ0 n in Ω r Ωn .

For a fixed t > cK,δ0 , let n1 := [cK,δ0t] and n2 := [c−1
K,δ0

t], where [·] denotes the integer part
function. Therefore

Ωn1+1 ⊂ {x ∈ Ω : |∇f(x)| > t} ⊂ Ωn2

and (5.59) follows from (5.72), with p = pδ0 . Lastly, (5.59) implies that ∇fn is uniformly
bounded in L1, so that f ∈ W 1,1(Ω;R2) by dominated convergence. �

We remark that the constant cK,δ0 in (5.59) is monotonically increasing as a function
of δ0, that is cK,δ1 ≤ cK,δ2 if δ1 ≤ δ2.

We now proceed with the construction of exact solutions to (4.2). We will follow a
standard argument (see, e.g., [5, Remark 6.3], [9, Thoerem A.2]).

Theorem 5.10. Let σ1, σ2 be defined by (1.2) for some K,S1, S2 as in (5.3) and S as in
(4.7). There exist coefficients σn ∈ L∞(Ω; {σ1, σ2}), exponents pn ∈

[
2S
S+1

, 2K
K+1

]
, functions
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un ∈ W 1,1(Ω;R), such that{
div(σn(x)∇un(x)) = 0 in Ω ,

un(x) = x1 on ∂Ω ,
(5.73)

∇un ∈ Lpnweak(Ω;R2), pn →
2K

K + 1
,(5.74)

∇un /∈ L
2K
K+1 (Ω;R2).(5.75)

In particular un ∈ W 1,q(Ω;R) for every q < pn, but
∫

Ω
|∇un|

2K
K+1 dx =∞.

Proof. By Proposition 5.9 there exist sequences fn ∈ W 1,1(Ω;R2) ∩ Cα(Ω;R2), γn ↘ 0,
pn ∈

[
2S
S+1

, 2K
K+1

]
, such that, fn(x) = Jx on ∂Ω,

dist(∇fn(x), T1 ∪ T2) < γn a.e. in Ω ,(5.76)

∇fn ∈ Lpnweak(Ω;R2×2) , pn →
2K

K + 1
, ∇fn /∈ L

2K
K+1 (Ω;R2×2) .(5.77)

In euclidean coordinates, condition (5.76) implies that

(5.78)
(
∇f 1

n(x)
∇f 2

n(x)

)
=

(
En(x)

Rπ
2
σn(x)En(x)

)
+

(
an(x)
bn(x)

)
a.e. in Ω

with fn = (f 1
n, f

2
n), σn := σ1χ{∇f∈T1} + σ2χ{∇f∈T2}, En : Ω→ R2, Rπ

2
=

(
0 −1
1 0

)
and

(5.79) an, bn → 0 in L∞(Ω;R2) .

The boundary condition fn = Jx reads f 1
n = x1 and f 2

n = −x2. We set un := f 1
n + vn,

where vn ∈ H1
0 (Ω,R) is the unique solution to

div(σn∇v) = − div(σnan −RT
π
2
bn) .

Notice that vn is uniformly bounded in H1 by (5.79). Since (5.78) holds, it is immediate
to check that div(σn∇un) = div(RT

π
2
∇f 2

n) = 0, so that un is a solution of (5.73). Finally,
the regularity thesis (5.74), (5.75), follows from the definition of un and the fact that
vn ∈ H1

0 (Ω;R) and f 1
n satisfies (5.77) with 1 < pn < 2. �
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