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Abstract. Under suitable regularity assumptions, the p-elastic energy of a planar set E ⊂ R2 is
defined to be

Fp(E) =

ˆ
∂E

1 + |k∂E |p dH1,

where k∂E is the curvature of the boundary ∂E. In this work we use a varifold approach to investigate
this energy, that can be well defined on varifolds with curvature. First we show new tools for the
study of 1-dimensional curvature varifolds, such as existence and uniform bounds on the density of
varifolds with finite elastic energy. Then we characterize a new notion of L1-relaxation of this energy
by extending the definition of regular sets by an intrinsic varifold perspective, also comparing this
relaxation with the classical one of [BeMu04], [BeMu07]. Finally we discuss an application to the
inpainting problem, examples and qualitative properties of sets with finite relaxed energy.
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1. Introduction

Consider p ∈ [1,∞). Let us denote by S1 the interval [0, 2π] with the identification 0 ∼ 2π. For an
immersion γ : S1 → R2 such that γ ∈W 2,p(S1) we can define the functional

(1) Ep(γ) =

ˆ 2π

0
|kγ |p|γ′| dt,
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and the p-elastic energy

(2) Fp(γ) = L(γ) + Ep(γ),

where L(γ) denotes the length of γ.

In this work we want to study the elastic properties of the boundaries of measurable sets in R2. Our
first purpose is to give a new definition of the sets which are enough regular for having finite p-elastic
energy. We want such definition to be intrinsically dependent on the given set, using immersions of
curves only as a tool for the calculation of the energy.

In order to study the functionals defined in (1) and (2) one would classically call regular set a set
E with a boundary of class C2, i.e. a set E whose ∂E is the image of closed injective immersions
γ : S1 → R2 of class C2. This would be a possible definition of set with finite classic p-elastic energy,
and it is the definition considered in [BeDaPa93], [BeMu04] and [BeMu07] indeed. But with this
classical definition it turns out that sets like the one in Fig. 1 not only have infinite energy, but they
also have infinite relaxed energy (calculated with respect to the L1-convergence of sets, see [BeMu04]).

E ∂E

Figure 1. A set of finite perimeter E with boundary ∂E that can be parametrized by
a smooth non-injective immersion.

However functionals (1) and (2) are very well defined on immersions which are not necessarily injective.
Also for many applications one would like to consider sets like the one in Fig. 1 as regular sets, or at
least as sets with finite relaxed energy (applications will also be discussed below). A good definition
of regular elastic set, i.e. a definition of set with finite energy, comes intrinsically from the geometric
properties of the boundary of sets of finite perimeter studied in the context of varifolds. In fact by De
Giorgi’s Theorem, if E is a set of finite perimeter in R2 then the reduced boundary FE is 1-rectifiable,
and therefore the integer rectifiable varifold VE = v(FE, 1) is well defined. If a 1-rectifiable varifold
V = v(Γ, θV ) has generalized curvature vector kV , the analogue of the functionals (1) and (2) in the
varifold context are defined by

(3) Ep(V ) =

ˆ
Γ
|kV |p dµV ,

(4) Fp(V ) = µV (R2) + Ep(V ).

So such elastic energies can be calculated on the varifold VE associated to a set of finite perimeter E,
thus giving elasticity properties to the set E in a pure intrinsic way.
We can introduce the class of elastic varifolds without boundary as the integer rectifiable varifolds
V = v(Γ, θV ) such that there exist a finite family of immersions γi : S1 → R2 such that

(5) V =

N∑
i=1

(γi)](v(S1, 1)),

where each (γi)](v(S1, 1)) is the image varifold of S1 induced by γi. We shall see that a representation
like (5) is not ambiguous and that the curves appearing in the formula can be used to compute the
Fp energy (Lemma 2.8).
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In this way we will eventually define that a set E is regular (in the sense that is has finite elastic
energy) if

(6) v(FE, 1) =
N∑
i=1

(γi)](v(S1, 1)),

for some C2 immersions γi : S1 → R2. In such a way the set in Fig. 1 is considered to be regular, and
it has finite elastic energy.

We have to mention that a significant attempt in order to give a good definition of the elastic energy on
sets that are not natural limits of smooth sets with bounded energy is contained in [BePa95] (see also
the references therein). Here the authors consider an interesting generalization of the elastic energy
functional whose relaxation is able to take into account the energy of angles and cusps.

Beside the study of the elastic properties of varifolds contained in Section 2, there are other funda-
mental motivations for studying this alternative notion of relaxed energy. We would like to extend
this ambient perspective and strategy (at least starting from the basic definitions) to the study of the
relaxation of functionals depending on the curvature of surfaces in R3, such as the Willmore energy.
Moreover this work is the starting point for the study of the gradient flow of the elastic energy of planar
sets using an intrinsic definition of the functional, not completely relying on immersions covering the
boundary of the set; the characterization of the relaxed energy allows us to define the gradient flow on
a huge family of sets and therefore to try to obtain a generalized flow (for example using a minimizing
movements technique in the spirit of [LuSt95], and this will be the reason of some assumptions we
will make in the following). Observe that in particular in a generalized flow one certainly wants to
consider sets like the one in Fig. 1, hence a definition in which its energy is finite is required (see also
[OkPoWh18]).

The paper is organized as follows. The first part of the work is devoted to the proof of some results
about curves and varifolds with curvature from an ambient point of view. We prove a basic inequality
concerning the elastic energy of immersed curves using a varifold perspective (Lemma 2.1), then we
show an extension to 1-dimensional varifolds with curvature in Rn together with uniform bounds on
the multiplicity function (Theorem 2.2) and a monotonicity formula for the case p = 2. This helps
us to prove the main structural properties of elastic varifolds, which are contained in Lemma 2.8 and
Lemma 2.9. Such results are stated for any p ∈ [1,∞).
In the second part we focus on the p > 1 case and we give a precise characterization of the L1-relaxation
of the energy Fp starting from our new notion (6) of regular set. The expression of the relaxed energy

Fp(E) takes the form of a minimization problem defined on a class A(E) of elastic varifolds suitably
related to the set E (Theorem 3.2).
The relaxed energy Fp has to be compared with the classical results contained in [BeDaPa93], [BeMu04]

and [BeMu07], and in Subsection 4.1 we discuss an example of a set E with finite relaxed energy Fp
which is strictly less then its relaxed energy in the sense of [BeMu04] (which is still finite however).
The last part of the work continues with an application to a minimization problem arising from the
inpainting problem in image processing ([AmMa03], [BeCaMaSa11]). The relevance of our new defini-
tion of relaxed energy Fp is particularly evident in this application. Then we conclude the work with
some comments on the qualitative properties of sets having finite relaxed energy; here we prove that
a set E with a boundary except that is smooth but at finitely many cusps has finite relaxed energy if
and only if the number fo such cusps is even (Theorem 4.6), and we show that polygons always have
infinite relaxed energy (Proposition 4.8).
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2. Elastic energy of planar sets

2.1. Notation and definitions. In the following if γ is any parametrization of a curve, we denote
by (γ) its image. The letter E will usually denote a measurable set in R2. We recall that E has
finite perimeter in an open set Ω ⊂ R2 if the characteristic function χE restricted to Ω belongs to
BV (Ω), and in such case we denote by P (E,Ω) the perimeter of E in Ω. For the theory of sets of
finite perimeter we refer to [AmFuPa00].
If E ⊂ R2 is measurable and Ω ⊂ R2 is an open set such that E has finite perimeter in Ω, we denote
by DχE the gradient measure of χE and by |DχE | the corresponding total variation measure. Then
we denote by

FE =

{
x ∈ supp|DχE | ∩ Ω

∣∣∣∣ ∃ lim
ρ↘0

DχE(Bρ(x))

|DχE(Bρ(x))|
=: νE(x), |νE(x)| = 1

}
,

and we call FE the reduced boundary of E, and νE is the generalized inner normal of E. By De
Giorgi’s Theorem the set FE is 1-rectifiable and |DχE | = H1 ¬ FE.

Let G(1, 2) be the Cartesian product between R2 and the set of 1-dimensional subspaces in R2. We
call G(1, 2) the Grassmannian of 1-dimensional spaces in R2. A point (x, v) ∈ G(1, 2) (where v ∈ R2

with |v| = 1 generates the given 1-dimensional subspace) is identified by the matrix πx,v that projects
vectors in Tx(R2) onto the subspace spanned by v; therefore G(1, 2) obtains a structure of metric space
calculating the distance between two elements as the distance between the corresponding projection
matrices. A 1-dimensional varifold in R2 is a positive finite Radon measure on G(1, 2). For the theory
of varifolds we refer to [Si84], and in this work we will always deal with integer rectifiable varifolds.
For a 1-dimensional varifold V in R2 we denote by µV the induced measure in R2. We recall that a
1-dimensional rectifiable varifold V = v(Γ, θV ) in R2 has generalized curvature vector kV ∈ L1

loc(µV )
and generalized boundary σV ∈M2(R2) if for any X ∈ C1

c (R2;R2) it holdsˆ (
divTxΓX

)
dµV (x) = −

ˆ
〈X, kV 〉 dµV +

ˆ
X dσV .

Recall that is such case the measure σV is singular with respect to µV . If f : suppV → R2 is Lipschitz
we define the image varifold f](V ) := v(f(Γ), θ̃) with θ̃(y) =

∑
x∈f−1(y)∩Γ θV (x) for any y ∈ R2.

If E has finite perimeter in R2 we denote by VE the associated varifold VE := v(FE, 1). If a varifold
V = v(Γ, θV ) has generalized curvature kV , then we define

Ep(V ) :=

ˆ
|kV |p(x) dµV (x),

while if V does not admit generalized curvature we then set Ep(V ) = +∞.
At some point we will also use for a while some very basic facts about the theory of currents; for such
definitions and results we refer to [Si84].

Here we recall with proof some basic properties of sets of finite perimeter, together with the choice of
a convention and of the notation. The following observations actually work for sets of finite perimeter
in any dimension.
If E ⊂ R2 is a measurable set, for any t ∈ [0, 1] we denote by Et the subset of t-density points, that is

(7) Et :=

{
x ∈ R2

∣∣∣∣ lim
ρ↘0

|E ∩Bρ(x)|
|Bρ(x)|

= t

}
.

The essential boundary ∂∗E is then ∂∗E := R2 \ (E0 ∪E1). Recall that for a set of perimeter E in R3

it holds that FE ⊂ E
1
2 ⊂ ∂∗E ⊂ ∂E and H1(∂∗E \ FE) = 0.

Following [LuSt95], since in BV we only consider equivalence classes of functions, for any set E with
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χE ∈ BV (R2) we will always assume we have chosen the element of the class given by

(8) E =

{
x ∈ R2

∣∣∣∣ ˆ
Bρ(x)

χE > 0 ∀ρ > 0

}
.

In this way the distance function d(·, ∂E) is well defined. Assuming (8) we also have

(9) E = E1.

In fact E1 ⊂ E and E is closed, indeed if x 6∈ E then there is ρ0 > 0 such that
´
Bρ0 (x) χE = 0 and we

can conclude that B ρ0
2

(x)∩E = ∅ (so that the complement of E is open), because if by contradiction

there is y ∈ B ρ0
2

(x) ∩ E then 0 <
´
B ρ0

2
(y) χE ≤

´
Bρ0 (x) χE = 0. In this way we have E1 ⊂ E. But

χE , χE1 are in the same equivalence class, that is |E∆E1| = 0; if x ∈ E there exists xn ∈ E1 converging
to x, otherwise |E1 ∩Bρ(x)| = 0 for some ρ > 0 and by definition |E ∩Bρ(x)| > 0, contradicting that
|E∆E1| = 0.
Moreover

(10) ∂E ≡ ∂E1 = ∂mE :=
{
x ∈ R2 | ∀ρ > 0 |Bρ(x) ∩ E| > 0, |Bρ(x) ∩ Ec| > 0

}
.

In fact if x ∈ ∂mE then there are sequences x1
n ∈ E, x2

n ∈ Ec converging to x, thus x ∈ E ∩Ec = ∂E.
Conversely if x ∈ ∂E = ∂Ec = Ec \ Ec, since Ec = {x : ∃r > 0 s.t. |E ∩ Br(x)| = 0}, then
|E ∩ Bρ(x)| =

´
Bρ(x) χE > 0 for any ρ > 0. But also |Ec ∩ Bρ(x)| =

´
Bρ(x) χEc > 0 for any ρ > 0,

indeed if by contradiction there is ρ0 > 0 with
´
Bρ0 (x) χEc = 0, since Ec is open we have that

Ec ∩Bρ0(x) = ∅, but this is impossible because x ∈ Ec.
Finally under assumption (8) we have that if E is a set of finite perimeter in R2, then the reduced
boundary is dense in the boundary of E, that is

(11) FE = ∂mE = ∂E.

In fact FE ⊂ ∂E and if by contradiction there is x ∈ ∂mE \ FE, then for some ρ0 > 0 we have
Bρ0(x) ∩ FE = ∅ and 0 < |E ∩ Bρ0(x)| < πρ2

0. Hence by relative isoperimetric inequality in the ball

Bρ0(x) we get that P (E,Bρ0(x)) > 0, but since Bρ0(x) ∩ FE = ∅ using De Giorgi’s Theorem we also
have P (E,Bρ0(x)) = H1(FE ∩Bρ0(x)) = 0, which gives a contradiction.
Observe that it also follows that diamFE = diam∂E.

2.2. Preliminary estimates. Here we prove a fundamental estimate concerning curves in R2.

Lemma 2.1. Let γ : S1 → R2 be a regular curve in W 2,p for some p ∈ [1,∞). Then

(12) 2π ≤ E1(γ) ≤ (Ep(γ))
1
p (L(γ))

1
p′ ,

where L(γ) denotes the length of the curve. Moreover for p > 1 equality holds if and only if γ
parametrizes a circumference of radius 1, while for p = 1 equality holds if and only if γ parametrizes
a circumference.

Proof. By approximation it is enough to prove the statement for γ ∈ C∞. Call σ : [0, L] → R2 the
arclength parametrization of the curve. We want to prove that

(13)

ˆ L

0
|kσ| ≥ 2π,

so that applying Holder inequality on the left, (13) will give the claim. Let T : [0, L]→ S1 be the unit
tangent vector T = σ̇. The support (σ) is compact, then there are two parallel lines {x = α}, {x = β}
such that (σ) ⊂ {α ≤ x ≤ β} and (σ) touches tangentially the two lines at points σ(0) = x0, σ(b) = xb
(up to reparametrization). Assume that T (0) = (0, 1). By continuity there exists a ∈ (0, b) such that
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T (a) = (−1, 0) and c ∈ (b, L) such that T (c) = (1, 0). Now two cases can occur: T (b) = (0, 1) or
T (b) = (0,−1). If T (b) = (0,−1), then S1 ⊂ T ([0, L]); if T (b) = (0, 1), then S1 ∩ {(x, y) | y ≥ 0} ⊂
T ([0, L]) and for any v ∈ S1 ∩ {(x, y) | y > 0} we have that ]T−1(v) ≥ 2. Therefore using the area
formula we obtain ˆ L

0
|kσ|(s) ds =

ˆ L

0
|T ′|(s) ds =

ˆ
S1

]T−1(v) dH1(v) ≥ 2π.

By the above calculations equality holds if and only if σ is convex with constant curvature |kσ| and
with ]T−1(v) = 1 for H1 almost every v ∈ S1. Hence this completes the proof. �

We mention that inequality (13) is already present in [DaNoPl18], proved with a different method in
the setting of networks, but in the following we will need the specific approach used in the proof of
Lemma 2.1. Also, we are going to prove that inequality (12) is true (up to changing the constant) in
an analogous sense in the setting of varifolds as stated in the inequality (15) in Subsection 2.3.

2.3. Monotonicity. Here we develop a monotonicity-type argument that is the direct analogue of
Simon’s Monotonicity Formula ([Si93]), which is fundamental in the study of the Willmore energy,
that in some sense is the two-dimensional energy corresponding to the functional E2. This result is of
independent interest and it will be sated in general in Rn.

Throughout this Subsection consider x0 ∈ Rn, 0 < σ < ρ < +∞, V = v(Γ, θV ) 6= 0 an integer
1-dimensional rectifiable varifold in Rn with curvature kV such that Ep(V ) < +∞ for some p ∈ [1,∞)
(for the moment µV is just locally finite on Rn). Also we are assuming that σV = 0.

Consider the field X(x) =
(

1
|x−x0|σ −

1
ρ

)
+
x, where (·)+ denotes the nonnegative part and | · |σ =

max{| · |, σ}. For any set E let Eσ = E ∩ Bσ, Eρ = E ∩ Bρ, Eρ,σ = Eρ \ Bσ. Then the tangential
divergence of X is

divTΓX(x) =

{
1
σ −

1
ρ on Γσ,

|(x−x0)⊥|2
|x−x0|3 − 1

ρ on Γρ,σ.

We want to prove the following result.

Theorem 2.2. Under the above assumptions it holds that

(14) lim sup
σ↘0

µV (Bσ(x0))

σ
≤ lim inf

ρ↗∞

µV (Bρ(x0))

ρ
+

ˆ
Bρ(x0)

|kV | dµV (x).

If also µV (Rn) < +∞, then

(15) 2 ≤ E1(V ) ≤ µV (Rn)
1
p′ Ep(V )

1
p ,

and we have the following bounds on the multiplicity function:

(16) p > 1 ⇒ θV (x) ≤ 1

2
E1(V ) ∀x ∈ Rn,

(17) p = 1 ⇒ θV (x) ≤ 1

2
E1(V ) for H1-ae x ∈ Rn.

If also µV (Rn) < +∞ and Γ is essentially bounded, i.e. H1(Γ \BR(0)) = 0 for R large enough, then

(18) p = 1 ⇒ ∃ lim
r↘0

µV (Br(x))

2r
= θV (x) ≤ 1

2
E1(V ) ∀x ∈ Rn.
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Proof. Integrating the divergence divTΓX above with respect to µV and using the first variation
formula we get

µV (Bσ(x0))

σ
+

1

σ

ˆ
Bσ(x0)

〈kV , x− x0〉 dµV (x) +

ˆ
Bρ(x0)\Bσ(x0)

|(x− x0)⊥|2

|x− x0|3
dµV (x) =

=
µV (Bρ(x0))

ρ
+

1

ρ

ˆ
Bρ(x0)

〈kV , x− x0〉 dµV (x)−
ˆ
Bρ(x0)\Bσ(x0)

〈
kV ,

x− x0

|x− x0|

〉
dµV (x).

(19)

Dropping the positive term on the left we obtain

µV (Bσ(x0))

σ
+

1

σ

ˆ
Bσ(x0)

〈kV , x− x0〉 dµV (x) ≤

≤ µV (Bρ(x0))

ρ
+

ˆ
Bρ(x0)

〈
kV ,

x− x0

ρ
− x− x0

|x− x0|
χBρ(x0)\Bσ(x0)

〉
dµV (x).

Since ∣∣∣∣ 1σ
ˆ
Bσ(x0)

〈kV , x− x0〉 dµV (x)

∣∣∣∣ ≤ ( ˆ
Bσ(x0)

|kV |p dµV
) 1
p (
µV (Bσ(x0)

) 1
p′ −−−→

σ→0
0,

and
x− x0

|x− x0|
χBρ(x0)\Bσ(x0) −−−→

σ→0

x− x0

|x− x0|
χBρ(x0) in Lp

′
(µV ),

letting σ ↘ 0 and then ρ↗∞ we get the inequality

lim sup
σ↘0

µV (Bσ(x0))

σ
≤ lim inf

ρ↗∞

µV (Bρ(x0))

ρ
+

ˆ
Bρ(x0)

〈
kV ,

(
1

ρ
− 1

|x− x0|

)
(x− x0)

〉
dµV (x) ≤

≤ lim inf
ρ↗∞

µV (Bρ(x0))

ρ
+

ˆ
Bρ(x0)

|kV |
∣∣∣∣ |x− x0|

ρ
− 1

∣∣∣∣ dµV (x) ≤

≤ lim inf
ρ↗∞

µV (Bρ(x0))

ρ
+

ˆ
Bρ(x0)

|kV | dµV (x).

that is (14).
Suppose from now on that µV (Rn) < +∞, then (14) gives

(20) lim sup
σ↘0

µV (Bσ(x0))

σ
≤ E1(V ).

Equation (20) gives us the pointwise bounds on the multiplicity function θV as follows.

If p > 1 we know that the density limσ↘0
µV (Bσ(p))

2σ exists at any p and can be used as multiplicity
function θV for V ([Si84], page 86). So in this case (20) gives

(21) θV (x) = lim
σ↘0

µV (Bσ(p))

2σ
≤ 1

2
E1(V ) ∀x ∈ Γ.

Instead in the p = 1 case we can say the following. Since Γ has generalized tangent space at H1-ae
point we have that

(22) θV (x) = lim
σ↘0

µV (Bσ(x0))

2σ
≤ 1

2
E1(V ) for H1-ae x ∈ Γ.

Therefore, since θV (x) ≥ 1 at some point x, for any p ∈ [1,∞) we can state inequality (15).
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Now assume p = 1 and without loss of generality Γ ⊂ BR0(0) is bounded, then we want to show that

the limit limσ↘0
µV (Bσ(x0))

σ does exist for any x0 ∈ Rn. In fact in Equation (19) we have∣∣∣∣ 1σ
ˆ
Bσ(x0)

〈kV , x− x0〉 dµV (x)

∣∣∣∣→ 0 as σ → 0,∣∣∣∣1ρ
ˆ
Bρ(x0)

〈kV , x− x0〉 dµV (x)

∣∣∣∣ ≤ R0

ρ

ˆ
BR0

(x0)
|kV | dµV → 0 as ρ→∞,

x− x0

|x− x0|
χBρ(x0)\Bσ(x0) →

x− x0

|x− x0|
in L1(Rn, µV ),

where the last statement follows by Dominated Convergence. Therefore there exists the limit

lim
σ↘0, ρ↗∞

ˆ 〈
kV ,

x− x0

|x− x0|
χBρ(x0)\Bσ(x0)

〉
dµV (x),

which is also finite. Hence (19) implies that

(23) sup
σ,ρ>0

ˆ
Bρ(x0)\Bσ(x0)

|(x− x0)⊥|2

|x− x0|3
dµV (x) < +∞,

thus by monotonicity the limit

lim
σ↘0, ρ↗∞

ˆ
Bρ(x0)\Bσ(x0)

|(x− x0)⊥|2

|x− x0|3
dµV (x)

exists finite. Since limρ→∞
µV (Bρ(x0))

ρ → 0 as ρ→ 0, Equation (19) implies that

(24) ∃ lim
σ↘0

µV (Bσ(x0))

σ
< +∞ ∀x0 ∈ Rn,

which completes the proof. �

We mention that the inequality (15) is probably not sharp, but still new in the context of 1-dimensional
varifolds.

We conclude with a monotonicity statement concerning the p = 2 case.

Remark 2.3. Let p = 2. For r > 0 let

A(r) =

(
1

2
+

1

r

)
µV (Br(x0)) +

1

r

ˆ
Br(x0)

〈kV , x− x0〉 dµV (x) +
1

2

ˆ
Br(x0)

|kV |2 dµV .

Then

(25) A(σ) +

ˆ
Bρ(x0)\Bσ(x0)

(
|(x− x0)⊥|2

|x− x0|3
+

1

2

∣∣∣∣kV +
x− x0

|x− x0|

∣∣∣∣2) dµV (x) = A(ρ),

in particular r 7→ A(r) is nondecreasing.

Indeed to prove (25) just insert the identity
〈
kV ,

x
|x|
〉

= 1
2

(∣∣kV + x
|x|
∣∣2 − |kV |2 − 1

)
in (19).

Moreover if we additionally require that µV (Rn) < +∞, then

1

R

ˆ
BR(x0)

〈kV , x− x0〉 dµV (x) =
1

R

ˆ
Br(x0)

〈kV , x− x0〉 dµV (x) +
1

R

ˆ
BR(x0)\Br(x0)

〈kV , x− x0〉 dµV (x) ≤

≤ 1

R

ˆ
Br(x0)

〈kV , x− x0〉 dµV (x) +

( ˆ
BR(x0)\Br(x0)

|kV |2
) 1

2 (
µV (BR(x0) \Br(x0))

) 1
2
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for any r < R. So letting first R→∞ and then r →∞ we get that 1
R

´
BR(x0)〈kV , x− x0〉 dµV (x)→ 0

as R→∞. And thus we obtain that

(26) lim
r→∞

A(r) =
1

2

(
µV (Rn) + E2(V )

)
,

for any choice of x0 ∈ Rn.

Remark 2.4. After the conclusion of the work the author became aware of the fact that Theorem
2.2 also follows from Corollary 4.8 in [Me16] (see also Theorem 3.5 in [MeSc18]).

2.4. Elastic varifolds. Here we prove some important remarks about varifolds defined through im-
mersions of elastic curves. The next definition comes from [BeMu04].

Definition 2.5. Given a family of regular C1 curves αi : (−ai, ai) → R2 for i = 1, ..., N and a point
p ∈ R2 such that αi(ti) = p for some times ti and the curves {αi} are tangent at p. Let v ∈ S1 such
that α′i(ti) and v are parallel for any i. We say that Rv(p) is a nice rectangle at p for the curves {αi}
with side parameters a, b > 0 if

Rv(p) = {z ∈ R2 : |〈z − p, v〉| < a, |〈z − p, v⊥〉| < b},
and

Rv(p) ∩
( N⋃
i=1

(αi)

)
=

M⋃
i=1

graph(fi),

for distinct C1 functions fi : [−a, a] → (−b, b), where graph(fi) denotes the graph of fi constructed
on the lower side of the rectangle.

We also give the following definition.

Definition 2.6. Let V = v(∪i∈I(γi), θV ) be a varifold defined by the C1∩W 2,p immersions γi : S1 →
R2, and assume that Fp(V ) < +∞, θV ≤ C < +∞.
For any p ∈ ∪i∈I(γi) and any v ∈ S1 denote by g1, ..., gr : [−ε, ε] ↪→ R2 arclength parametrized
injective arcs such that: gi(0) = p, ġi(0) = v, gi([−ε, 0]) 6= gj([−ε, 0]) or gi([0, ε]) 6= gj([0, ε]) for i 6= j,

and ∪ri=1(gi) ∩Bρ(p) = ∪i∈I(γi) ∩Bρ(p). Observe that for any such p, v and ρ small enough, the arcs
gi are well defined.
We say that V verifies the flux property if: ∀ p ∈ ∪i∈I(γi), ∀ v ∈ S1, and ρ small enough there exists a
nice rectangle Rv(p) ⊂ Bρ(p) for the family of arcs {gi} such that it holds that

∀|c| < a :
∑

z∈∪ri=1(gi)∩{y | 〈y−p,v〉=c}

θV (z) = M,

for a constant M ∈ N with M ≤ θV (p).

Roughly speaking, Definition 2.6 requires that the “incoming” total amount of multiplicity at p in
direction v equals the “outcoming” total amount of multiplicity at p in direction v.
Observe that if V =

∑
i∈I(γi)](v(S1, 1)) with γi ∈ C1 ∩W 2,p immersions and Fp(V ) < +∞, θV ≤

C < +∞, then V verifies the flux property.

Remark 2.7. Let E be a set of finite perimeter in R2, let Γ = ∪Ni=1(γi) with γi ∈ C1(S1;R2) and

regular for any i. Assume that VE := v(FE, 1) =
∑N

i=1(γi)](v(S1, 1)). Then H1(∂E \ FE) = 0, and
we can equivalently write VE = v(∂E, 1).
In fact by assumption H1-almost every point p ∈ Γ is contained in FE, suppVE = Γ, and Γ =
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suppVE = supp(H1 ¬ FE) = ∂E. Therefore 0 = H1(Γ \ FE) = H1(∂E \ FE).

Lemma 2.8. Assume p > 1. If an integer rectifiable varifold V = v(Γ, θV ) is such that V =∑N
i=1(γi)](v(S1, 1)) for some regular curves γi ∈ W 2,p(S1;R2) and Fp(V ) < +∞, then V has gener-

alized curvature

(27) kV (p) =
1

θV (p)

N∑
i=1

∑
t∈γ−1

i (p)

kγi(t) at H1-ae p ∈ Γ,

the generalized boundary σV = 0, and

(28) Ep(V ) =
N∑
i=1

Ep(γi).

In particular, since kV is unique, the value Ep(V ) is independent of the choice of the family of curves
{γi} defining V .

Proof. In fact suppose first that N = 1, and then call γ1 = γ. Up to rescaling, assume without
loss of generality that γ is an arclength parametrization. By assumption γ ∈ C1,α for α ≤ 1

p′ , and

clearly Γ = (γ) and µV = θVH1 ¬ (γ) = γ](H1 ¬S1) (by the arclength parametrization assumption). If
X ∈ C1

c (R2;R2) is a vector field, using the area formula and the fact that θV ≥ 1 H1-ae on Γ, we have

ˆ
divTpΓX dµV (p) =

ˆ
divTp(γ)X dγ](H1 ¬S1)(p) =

ˆ
S1

〈γ′(t), (∇X)γ(t)(γ
′(t))〉 dt =

=

ˆ
S1

〈γ′, (X ◦ γ)′〉 dt = −
ˆ
S1

〈γ′′(t), X(γ(t))〉 dt =

= −
ˆ ˆ

γ−1(p)
〈γ′′(t), X(γ(t))〉 dH0 dH1 ¬Γ(p) =

= −
ˆ 〈

X(p),

ˆ
γ−1(p)

kγ(t) dH0

〉
θV (p)

θV (p)
dH1 ¬Γ(p) =

= −
ˆ 〈

X(p),
1

θV (p)

∑
t∈γ−1(p)

kγ(t)

〉
dµV (p).

If now N > 1, by linearity of the first variation we get

ˆ
divTpΓX dµV (p) = −

N∑
i=1

ˆ 〈
X(p),

∑
t∈γ−1

i (p)

kγi(t)

〉
dH1 ¬ (γi)(p) =

= −
ˆ 〈

X(p),
1

θV (p)

N∑
i=1

∑
t∈γ−1

i (p)

kγi(t)

〉
θV (p) dH1 ¬ ( ∪ni=1 (γi)

)
=

= −
ˆ 〈

X(p),
1

θV (p)

N∑
i=1

∑
t∈γ−1

i (p)

kγi(t)

〉
dµV .

Now we want to prove (28). Let us consider the set W = {p ∈ Γ | θV (p) > 1}. Up to redefining some
γi on another circumference, we can suppose from now on that γi is an arclength parametrization. We
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can write W = T ∪X ∪ Y ∪ Z, with

T =
{
p ∈W | ∃i, j, t, τ : γi(t) = γj(τ) = p, γ′i(t) 6= αγ′j(τ) ∀α ∈ R

}
,

X =
{
p ∈W \ T | ∃i, t : γi(t) = p, t is not a Lebesgue point of γ′′i

}
,

Y =
{
p ∈W \ (T ∪X) | ∀i, j, t, τ : γi(t) = γj(τ) = p ⇒ γ′′i (t) = γ′′j (τ)

}
,

Z =
{
p ∈W \ (T ∪X) | ∃i, j, t, τ : γi(t) = γj(τ) = p, γ′′i (t) 6= γ′′j (τ)

}
.

We are going to prove that T,Z are at most countable, then since H1(X) = 0 we will get that
H1(W ) = H1(Y ). Hence by (27) one immediately gets (28).
Let p ∈ Γ and C ∈ N such that θV ≤ C . Let v1(p), ..., vk(p) ∈ S1 with k = k(p) ≤ C such that if
γi(t) = p then γ′i(t) is proportional to some vj . For any i = 1, ..., k let Rvi(p) be a nice rectangle at
p for the curves {αj}j∈J(i) which are suitable restrictions of the curves {γi}. Then let f i1, ..., f

i
l with

l = l(i) be C1 functions f is : [−ai, ai]→ (−bi, bi) given by the definition of nice rectangle.
Let q ∈ ∪ls=1graph(f is), and assume q ∈ T . If ai is chosen sufficiently small, the fact that q belongs to
T means that the transversal intersection happens between some of the curves {αj}j∈J(i). This means
that there is some δq > 0, xq ∈ (−ai, ai), r, s ∈ {1, ..., l} such that

f ir(xq) = f is(xq), (xq, f
i
r(xq)) = q, graph

(
f ir|(xq−δq ,xq+δq)

)
∩ graph

(
f is|(xq−δq ,xq+δq)

)
= {q}.

Letting Ai = {x ∈ (−ai, ai) | f ir 6= f is}, which is open, we see that xq belongs to the boundary of some

connected component of Ai. This implies that T ∩
(
∪ls=1 graph(f is)

)
is countable, and this is true for

any i = 1, ..., k(p).

For any p ∈ Γ take a ball Br(p)(p) ⊂ ∩
k(p)
i=1Rvi(p)(p) for suitable rectangles Rvi(p)(p) as above. Then

T∩Br(p)(p) is countable. Since Γ is compact, taking a finite cover of such ballsBr(p1)(p1), ..., Br(pL)(pL),
we conclude that T is countable.

Consider now q ∈ ∪ls=1graph(f is), and assume q ∈ Z. If ai is chosen sufficiently small, the fact that q
belongs to Z means that the tangential intersection happens between some of the curves {αj}j∈J(i).

Hence at some xq ∈ (−ai, ai) for some r, s ∈ {1, ..., l} we find that xq is a Lebesgue point for (f ir)
′′ and

(f is)
′′, and

f ir(xq) = f is(xq), (xq, f
i
r(xq)) = q, (f ir)

′′(xq) 6= (f is)
′′(xq).

This implies that there exists ε > 0 such that for any 0 < |t| < ε we have (f ir)
′(xq + t) 6= (f is)

′(xq + t).
By continuity of the first derivative we have that, for example, (f ir)

′(xq + t) > (f is)
′(xq + t) for any

0 < |t| < ε, and therefore f ir(xq + t) > f is(xq + t) for any 0 < |t| < ε. So we find that xq belongs to the
boundary of a connected component of an Ai defined as above as in the case of the set T . Arguing as
before we eventually get that Z is countable.

�

Lemma 2.9. Let γ1, ..., γN : S1 → R2 be Lipschitz curves and let V = v(Γ, θV ) =
∑N

i=1(γi)](v(S1, 1)).
Assume that H1({x | θV (x) > 1}) = 0, and define

(29) E =

{
p ∈ R2 \ Γ :

∣∣∣∣ N∑
i=1

Indγi(p)

∣∣∣∣ is odd

}
∪ Γ.

Then V = VE := v(FE, 1), and E is uniquely determined by V , i.e. if V =
∑N

i=1(γi)](v(S1, 1)) =∑M
i=1(σi)](v(S1, 1)) then the corresponding set E defined using (29) with the family {γi} is the same

set defined using (29) with the family {σi}.

Proof. The set E is closed and bounded, with E̊ = {p ∈ R2 \Γ : |
∑N

i=1 Indγi(p)| is odd} and ∂E = Γ,
hence E is a set of finite perimeter.
Let us first check that if V =

∑N
i=1(γi)](v(S1, 1)) =

∑M
i=1(σi)](v(S1, 1)), then the definition of E by
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(29) is independent of the choice of the family of curves. The fact that a point p ∈ R2 \ Γ belongs to
E depends on the residue class( N∑

i=1

Indγi(p)

)
mod 2, or

( M∑
i=1

Indσi(p)

)
mod 2.

Without loss of generality we think that p = 0. Since the curves {γi}, {σi} define the same varifold,
for H1-ae point q ∈ {(x, y) ∈ R2 |x2 + y2 = 1} we have that

(30)

N∑
i=1

]

(
γi
|γi|

)−1

(q) =

M∑
i=1

]

(
σi
|σi|

)−1

(q).

In the following we denote by deg(f, y) the degree of a map f at y and by deg2(f, y) the degree mod
2 of f at y (we refer to [Mi65]). Since the curves are Lipschitz almost every point q ∈ {(x, y) ∈
R2 |x2 + y2 = 1} is a regular value for γi

|γi| ,
σi
|σi| and we can perform the calculation( N∑

i=1

Indγi(p)

)
mod 2 =

( N∑
i=1

deg

(
γi
|γi|

, q

))
mod 2 =

( N∑
i=1

deg2

(
γi
|γi|

, q

))
mod 2 =

=

( N∑
i=1

]

(
γi
|γi|

)−1

(q) mod 2

)
mod 2,

that together with the same expression using the curves σi, implies that E is uniquely defined by (30).
Now we prove that V = VE . Let

X = {p ∈ Γ | θV (p) = 1, γi(t) = p ⇒ γi is differentiable at t}.

We want to prove that

(31) H1
(
FE∆X

)
= 0,

which implies that V = VE .
If γi(t) = p ∈ X, then there is ε > 0 such that γi

(
(t−ε, t+ε)

)
⊂ {θV = 1} ⊂ Γ = ∂E. By Rademacher

we therefore have that H1(X ∩ γi
(
(t− ε, t+ ε)

)
\ FE) = 0. Hence H1(X \ FE) = 0.

Now let p ∈ FE, we want to prove that H1(FE \X) = 0, and this will complete the claim (31). If
θV (p) = 1 only a curve passes (once) trough p, say γ1(t1) = p, and since p ∈ FE such curve has to be
differentiable at t1. Conversely if p = γi(ti) for some {i, ti}’s, assuming that each γi is differentiable
at ti, we want to prove that θV (p) = 1. Suppose by contradiction that θV (p) > 1, then there are
α, β : (−ε, ε) → Γ Lipschitz different arcs such that α(0) = β(0) = p and α, β are differentiable at
time 0; moreover the hypothesis H1({x | θV (x) > 1}) = 0 implies that H1

(
(α) ∩ (β)

)
= 0. Therefore

H1-ae point p ∈ (α) ∪ (β) is contained in X, and thus H1-ae point p ∈ (α) ∪ (β) is contained in FE,
since we already know that H1(X \ FE) = 0. So for any ε > 0 there is r > 0 such that

H1
(
[(α) ∪ (β)] ∩Br(p)

)
≥ (2− ε)2r,

and thus

H1(FE ∩Br(p)) ≥ H1
(
[(α) ∪ (β)] ∩Br(p)

)
≥ (2− ε)2r,

which is a contradiction with the fact that any point in FE has one dimensional density equal to 1.
So we have proved that a point p ∈ FE verifies that: if θV (p) = 1 then p ∈ X, and if any curve
passing through p at some time is differentiable at that time then p ∈ X. In any case we conclude
that H1-almost every point in FE belongs to X, and then H1(FE \X) = 0. �
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3. Relaxation

3.1. Setting and results. From now on and for the rest of Section 3 let p > 1 be fixed and for any
set of finite perimeter E assume (8). For any measurable set E ⊂ R2 we define the energy

(32) Fp(E) =


µVE (R2) + Ep(VE)

if VE =
∑
i∈I

(γi)](v(S1, 1)), γi : S1 → R2 C2-immersion,

]I < +∞,
+∞ otherwise.

We write Fp(E) understanding that Fp is defined on the set of equivalence classes of characteristic

functions endowed with L1 norm. We want to calculate the relaxed functional Fp with respect to the
L1 sense of convergence of characteristic functions.
By Remark 2.7 and Lemma 2.8, if Fp(E) <∞, we have that

H1(∂E \ FE) = 0, Fp(VE) =
∑
i∈I
Fp(γi),

if VE =
∑

i∈I(γi)](v(S1, 1)). Also up to renaming E̊c into E, we can suppose that E is bounded.

If E ⊂ R2 is measurable, we define

A(E) =

{
V = v(Γ, θV ) =

∑
i∈I

(γi)](v(S1, 1))

∣∣∣∣ γi : S1 → R2 C1 ∩W 2,p-immersion, ]I < +∞,∑
i∈I
Fp(γi) < +∞,

∂E ⊂ Γ, VE ≤ V,
FE ⊂ {x ∈ R2 | θV (x) is odd},

H1({x | θV (x) is odd} \ FE) = 0

}
,

Remark 3.1. Observe that if V ∈ A(E), then Fp(V ) < +∞, and then θV (x) = limρ↘0
µV (Bρ(x))

2ρ

exists and it is uniformly bounded on Γ. Moreover the condition ∂E ⊂ Γ and the bound on the energy
of the curves imply that H1(∂E) <∞, and then E is a set of finite perimeter.

The main result of the section is the following.

Theorem 3.2. For any measurable set E ⊂ R2 we have that

(33) Fp(E) =

{
+∞ if A(E) = ∅ or E is ess. unbounded,

min
{
Fp(V ) | V ∈ A(E)

}
otherwise,

where we say that a set E is essentially unbounded if |E \Br(0)| > 0 for any r > 0.

The proof of Theorem 3.2 will be completed in Subsection 3.3.

Remark 3.3. Choosing for a measurable set E the L1 representative defined in (8), then the set E
is essentially unbounded if and only if it is unbounded. So in the statement of Theorem 3.2 one can
actually write unbounded in place of essentially unbounded.
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Remark 3.4. The characterization of Fp given by Theorem 3.2 immediately implies the stability
property that

(34) Fp(E) < +∞ ⇒ Fp(E) = Fp(E) < +∞.

In fact if Fp(E) < +∞, then VE ∈ A(E). Consider any W = v(Γ, θW ) ∈ A(E) \ {VE}, then by
definition we have that VE ≤ V in the sense of measures and FE ⊂ {x | θW (x) is odd}, and this
implies that H1(FE \ Γ) = 0. Therefore µW (R2) ≥ H1(FE) = µVE (R2), and also Ep(W ) ≥ Ep(VE) by
locality of the generalized curvature ([LeMa09]).

We conclude this part showing some properties of varifolds V ∈ A(E) (in the following remember the
assumption (8)).

Lemma 3.5. Let E ⊂ R2 be a bounded set of finite perimeter. Let V = v(Γ, θV ) =
∑N

i=1(γi)](v(S1, 1))
with γ1, ..., γN : S1 → R2 Lipschitz curves. Suppose that FE ⊂ Γ and

H1(FE∆ {x | θV (x) is odd}) = 0.

Then

E =

{
p ∈ R2 \ Γ :

∣∣∣∣ N∑
i=1

Indγi(p)

∣∣∣∣ is odd

}
∪ Γ.

Proof. Fix p ∈ R2\Γ. In the following we suppose without loss of generality that p = 0. By hypotheses
and by the calculations in the proof of Lemma 2.9, there exists a vector v ∈ R2 \ {0} such that the
ray L = {p+ tv | t ∈ [0,∞)} verifies the properties:
i) L intersects Γ at points y such that for any i = 1, ..., N if γi(t) = y then γi is differentiable at t,
ii) L intersects FE a finite number M ∈ N of times at points z in FE ∩ {x | θV (x) is odd} where
νE(z), v are independent,
iii) L intersects Γ \ FE a finite number of times at points w in {x | θV (x) is even} where γ′i(t), v are
independent whenever γi(t) = w,
iv) ( N∑

i=1

Indγi(p)

)
mod 2 =

( N∑
i=1

∑
y∈L∩(γi)

]

(
γi
|γi|

)−1( y

|y|

)
mod 2

)
mod 2 =

=

( N∑
i=1

∑
y∈L∩(γi)∩FE

]

(
γi
|γi|

)−1( y

|y|

)
mod 2

)
mod 2,

where in iv) the second inequality follows from ii) and iii).

Now if p ∈ E̊, since E is bounded the number M has to be odd, and then
(∑N

i=1 Indγi(p)
)

mod 2 = 1.

Conversely if p ∈ Ec, then M is even, and then
(∑N

i=1 Indγi(p)
)

mod 2 = 0. �

Remark 3.6. We observe that Lemma 3.5 applies to couples E, V with V ∈ A(E).

Lemma 3.7. Let V = v(Γ, θV ) ∈ A(E) for some measurable set E. Letting Σ := Γ \ ∂E, it holds
that if Σ 6= ∅ then for any x ∈ Σ ∩ ∂E at least one of the following holds:

i) ∃y ∈ Σ ∩ ∂E, ∃ f : [0, T ]→ R2 C1 ∩W 2,p, T > 0,

f regular curve from x to y with (f) ⊂ Γ,

ii) x is not isolated in Σ ∩ ∂E.
(35)

The alternative above is not exclusive.



THE p-ELASTIC ENERGY OF PLANAR SETS 15

Proof. Write V =
∑N

i=1(σi)](v(S1, 1)). Assume Σ 6= ∅, that is equivalent to Γ\∂E =: S 6= ∅. Suppose
x ∈ Σ ∩ ∂E is isolated in Σ ∩ ∂E, then we want to prove that condition i) in (35) holds true. There
exists r0 > 0 such that Br(x)∩Σ∩∂E = {x} for any r ≤ r0. Up to reparametrization we can say that
σ1|(−ε,ε) : (−ε, ε)→ Br0(x) passes through x at time 0. Up to reparametrize σ1(t) into σ1(−t), we can
say that there exists a time T > 0 such that σ1|(0,T ) ⊂ S and y := σ1(T ) ∈ ∂S = Σ ∩ ∂E, looking at
S as topological subspace of Σ; in fact otherwise x would not be isolated in ∂S = Σ ∩ ∂E. Defining
f(t) = σ1(t) for t ∈ [0, T ] gives alternative i) in (35).

�

3.2. Necessary conditions. Here we prove that a set E ⊂ R2 with Fp(E) < +∞ has the necessary
properties that inspire formula (33).

Let En be any sequence of sets such that Fp(En) ≤ C and χEn → χE in L1(R2). Let us adopt the
notation VEn =

∑
i∈In(γi,n)](v(S1, 1)) = v(Γn, θVEn ), so that Fp(En) =

∑
i∈In H

1(γi,n) + Ep(γi,n).

Using also (12) we have that 0 < c ≤ H1(γi,n) ≤ C < ∞ for any i, n. Also Ep(γi,n) ≥ c > 0 for any
i, n, thus ]In < +∞ for large n and then we can suppose that In = I for any n. Also we can choose
En bounded and by L1 convergence we have that |E| < +∞.

Moreover we observe that in order to calculate the relaxation of Fp we can suppose that the sequence
En is actually uniformly bounded, hence getting that E is bounded.
Indeed if (up to subsequence) we have that for example γ1,n ∩ Bn(0)c 6= ∅, then by boundedness of
the length we have γ1,n ⊂ (Bn−c(0))c for any n for some c. Let Λn be the connected component of
∪i∈I(γi) containing (γ1). The component Λn is equal to some union ∪j∈Jn(γj,n). Up to relabeling we
can suppose that Jn = J for any n. Since the length of each curve is uniformly bounded, then there
exist open sets Un such that Λn ⊂ Un, Un ∩

(
∪i∈I\J (γi,n)

)
= ∅, and Un ∩ BRn(0) = ∅ for some se-

quence Rn →∞. Therefore the set E′n := En\Un still converges to E in L1(R2), and Fp(E′n) < Fp(En).

Under the above notation we have the following result.

Lemma 3.8. Suppose E ⊂ R2 verifies that Fp(E) < +∞. Let En ⊂ R2 be uniformly bounded such
that χEn → χE in L1(R2) with Fp(En) ≤ C. Suppose that for any n the set {p | θVEn (p) > 1} is finite,
then any subsequence of VEn converging in the sense of varifolds converge to an element of A(E).

Proof. The arclength parametrizations σi,n corresponding to γi,n are uniformly bounded in W 2,p for
any i ∈ In = I and for any n. Therefore, since the sequence is uniformly bounded in R2, up to
subsequence σi,n → σi strongly in C1,α for some α ≤ 1

p′ and weakly in W 2,p(R2) for any i ∈ I. Each

σi is then a closed curve parametrized by arclength, and we call γi the parametrization on S1 with
constant velocity.
Hence the varifolds VEn converge to some limit integer rectifiable varifold V = v(Γ, θV ) in the sense
of varifolds, and V =

∑
i∈I(γi)](v(S1, 1)). The multiplicity function θV is upper semicontinuous and

pointwise bounded by the discussion in Subsection 2.3. Also the sets En converge to E weakly* in

BV (R2), that is χEn → χE and DχEn
?
⇀ DχE , thus E is a set of finite perimeter. Observe that

|DχEn | = µVEn
?
⇀ µV .

From now on we call Γ = ∪i∈I(σi), Σ = Γ \ ∂E, S = Γ \ ∂E.

Let x ∈ ∂E, so that for any ρ > 0 we have

(36) lim
n

ˆ
Bρ(x)

χEn > 0, lim
n

ˆ
Bρ(x)

χEcn > 0.
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Then for ρ > 0 there is n(ρ) such that there exist ξn ∈ En ∩ Bρ(x), ηn ∈ Ecn ∩ Bρ(x) for any
n ≥ n(ρ) and thus there exists wn ∈ ∂En ∩ Bρ(x) for any n ≥ n(ρ). Taking some sequence
ρk ↘ 0, we find a sequence wn converging to x. Therefore, also by density (11), we have proved
that FE ⊂ ∂E ⊂

{
y | y = limn yn, yn ∈ FEn

}
= Γ. In particular ∂E is 1-rectifiable.

Now we prove that FE ⊂ {x | θV (x) is odd}.
So let p ∈ FE, and let {γjk | j = 1, ..., N, i = 1, ..., nj} be distinct curves which are suitable disjoint

restrictions of the γi’s such that (γjk) ⊂ (γj) for any k (up to relabeling the γi’s) and

Γ ∩Br0(p) =
⋃
j,k

(γjk).

Without loss of generality we write γjk(t
j
k) = p. We want to prove that

∑N
j=1 nj = θV (p) is odd. Since

p ∈ FE there is q ∈ E̊ ∩Br0(p) such that the segment

s(t) = q +
p− q
|p− q|

t t ∈ [0, 2|p− q|]

is such that

(37)

∣∣∣∣〈 p− q
|p− q|

, (γjk)
′(tjk)

〉∣∣∣∣ > 0,

and s|[0,|p−q|] ⊂ E, s|(|p−q|,2|p−q|] ⊂ Ec. Also since γi,n → γi strongly in C1,α, by (37) we get that s
intersects transversely γi,n for any i for n big enough, and the number of such intersections is θV (p).

Also denote b := s(2|p−q|). Moreover we can write that Brq(q) ⊂ E̊n and Brb(b) ⊂ Ecn for n sufficiently
big.
We know that for any ε > 0 there is aε ∈ Ec∗n , where (·)∗ will always denote the unbounded connected
component of (·), such that ∣∣∣∣ p− q|p− q|

− aε − b
|aε − b|

∣∣∣∣ < ε,

∑
i∈I

Indγi,n(b) mod 2 =
∑
i∈I

]

(
γi,n
|γi,n|

)−1( aε − b
|aε − b|

)
mod 2.

Hence up to a small C∞ deformation which is different from the identity only on
{
x + t p−q|p−q| | x ∈

Brb(b), t ∈ R≥0

}
\Brb(b) we can suppose that for M > 0 sufficiently big it holds that

a0 := b+M
p− q
|p− q|

∈ Ec∗n ,{
b+ R≥0

(
p− q
|p− q|

)}
∩
(⋃
i∈I

(γi,n)

)
⊂ FEn,

(38)
∑
i∈I

Indγi,n(b) mod 2 =
∑
i∈I

]

(
γi,n
|γi,n|

)−1( a0 − b
|a0 − b|

)
mod 2.

Taking into account Lemma 2.9, by construction we have that the quantity in (38) is 0 mod 2. More-
over we have that

1 mod 2 =
∑
i∈I

Indγi,n(q) mod 2 =

(
θV (p) +

∑
i∈I

Indγi,n(b)

)
mod 2,

and then θV (p) is odd.
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It remains to prove that H1({x | θV (x) odd} \ FE) = 0.
We observe that in the sense of currents we have the convergence [|En|]→ [|E|] and thus

∂[|En|] = τ

(⋃
i∈I

(σi,n), 1, ξ0

)
→ ∂[|E|]

in the sense of currents where ξ0 is the positive orientation of the boundaries with respect to R2. We
can write ∂[|En|] =

∑∞
i=0(αi,n)]([|S1|]) for countably many Lipschitz parametrizations αi,n ordered

so that L(αi+1,n) ≤ L(αi,n) for any i, n. Such immersions positively orient the boundary ∂Ein of Ein,

where Ein is one of the open connected components of E̊n, which are at most countable. The length
of each αi,n is uniformly bounded, then we can assume that the parametrizations αi,n are L-Lipschitz
with constant L independent of i, n. Since the parametrizations σi,n converge strongly in C1, the
immersions αi,n uniformly converge to L-Lipschitz curves αi : S1 → R2 as n → ∞. We can also
reparametrize each αi by constant velocity almost everywhere (in the sense of metric derivatives). In
the sense of currents we have that

∞∑
i=0

(αi,n)]([|S1|]) = ∂[|En|]→ ∂[|E|] = τ
(
FE, 1, ξ0

)
.

Let us define

T :=
∞∑
i=0

(αi)]([|S1|]).

Since each (αi,n) is contained in some (σi0,n) we have that dH(αi,n, αi) ≤ N maxi=1,...,N ‖σi,n−σi‖∞ ≤ ε
for any n ≥ nε. Since an equivalent definition of Hausdorff distance is dH(A,B) = inf

{
ε > 0 | A ⊂

Nε(B), B ⊂ Nε(A)
}

where Nε(X) = {x | d(x,X) ≤ ε}, we have that

(39) ∀ε > 0 ∃nε : dH
(
∪i (αi,n),∪i(αi)

)
< ε n ≥ nε.

Thus ∪i(αi,n) converges in Hausdorff distance to the set ∪i(αi). Moreover, writing ∪i(αi,n) = tkn1 Cjn
as a disjoint union of finitely many compact connected components, by a diagonal argument, apply-

ing Go lab Theorem on each component, we can assume kn = k for any n and that Cjn converges in
Hausdorff distance to a compact connected set Cj for any j = 1, ..., n. Therefore ∪i(αi) = ∪k1Cj = Γ,

and then H1(∪i(αi)) = H1(Γ) is finite and ∪i(αi) is closed and 1-rectifiable.

Let x ∈ R2 \ Γ. By (39) we have that there is ρ > 0 such that Bρ(x) ∩
(
∪i(αi) ∪ ∪i(αi,n)

)
= ∅ for any

n large. Then there exists nx such that for any i the index Indαi,n(x) is the same for any n ≥ nx.
In fact suppose by contradiction for any n there is in, N1, N2 ≥ n with 1 = Indαin,N1

(x) 6= Indαin,N2
(x) =

0 and in → ∞ without loss of generality. Then L(αin,N1) ≥ C(ρ) for a constant C(ρ) > 0 depending
only on ρ by isoperimetric inequality. Since L(αi+1,n) ≤ L(αi,n) for any i, n and in →∞, this implies
P (En) is arbitrarily big that for n large enough.

Now let x ∈ R2 \ Γ such that there exists limn χEn(x). Since χEn(x) =
∑

i Indαi,n(x) for n big such

that Bρ(x) ∩
(
∪i(αi) ∪ ∪i(αi,n)

)
= ∅ for some ρ > 0, from the above discussion we have that

lim
n

∑
i

Indαi,n(x) = 1 ⇔ ∀n ≥ n0 ∃i : Indαi,n(x) = 1

⇔ ∃i(x)∀n ≥ n0 Indαi(x),n
(x) = 1

⇔ ∃i(x) : Indαi(x)
(x) = 1.

Hence

x ∈ E ⇔ lim
n

∑
i

Indαi,n(x) = 1 ⇔ ∃i(x) : Indαi(x)
(x) = 1 ⇔

∑
i

Indαi(x) = 1.
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In particular

(40) E =

{
x ∈ R2 \ Γ |

∞∑
i=0

Indαi(x) = 1

}
=

{
x ∈ R2 \ Γ :

∣∣∣∣∑
i∈I

Indσi(x)

∣∣∣∣ is odd

}
,

up to L2-negligible sets, where the second equality follows by the uniform convergence of the finitely
many curves σi,n. Also for any i 6= j it holds that |{x ∈ R2 \ (αi) | Indαi(x) = 1} ∩ {x ∈ R2 \
(αj) | Indαj (x) = 1}| = 0, because the equality holds for any n for αi,n, αj,n. Therefore we have∑

i

ˆ
(αi,n)

〈ω, τi,n〉 =

ˆ
En

dω −→
n

ˆ{∑∞
i=0 Indαi (x)=1

} dω =

=
∑
i

ˆ{
Indαi (x)=1

} dω =
∑
i

ˆ
(αi)
〈ω, τi〉,

for any 1-form ω on R2. This means that

(41)
∞∑
i=0

(αi,n)]([|S1|]) = ∂[|En|]→ T =
∞∑
i=0

(αi)]([|S1|]) = ∂[|E|] = τ
(
FE, 1, ξ0

)
,

in the sense of currents. In particular we can write the multiplicity function of the current ∂[|E|] as

(42) m(x) =

∞∑
i=0

∑
y∈α−1

i (x)

S(y),

for H1-ae x ∈ R2, where S(y) = +1 if d(αi)y preserves the orientation and S(y) = −1 in the opposite

case. Note that since θV is bounded, Γ = ∪i(αi), and θV (p) ≥
∑

i ]α
−1
i (p), then the series in (42) is

actually a finite sum.
Also observe that since E is a set of finite perimeter, by Gauss-Green formula the multiplicity function
m is equal to 1 H1-ae on FE, H1({x |m(x) ≥ 1} \ FE) = 0, and m = 0 H1-ae on R2 \ FE. Also,
m(x) = 0 at H1-ae x ∈ Γ \ ∪i(αi).

Now since Γ = ∪i(αi) and H1(αi({t : 6 ∃α′i(t)})) = 0, then

(43) H1
(
{p ∈ Γ | ∃ t, i : αi(t) = p, 6 ∃α′i(t)}

)
= 0.

So let p ∈ ∪i(αi) be such that if αi(t) = p then ∃α′i(t). We want to check that θV (p) and
∑

i ]α
−1
i (p)

have the same parity. In fact if without loss of generality θV (p) >
∑

i ]α
−1
i (p), taking into account

(40), following a segment s intersecting ∪i(αi) only at p and transversally (as in the first part of the
proof) we have that:
i) s passes from E to Ec if and only if θV (p) is odd, or equivalently if and only if

∑
i ]α
−1
i (p) is odd;

ii) s passes from E to E if and only if θV (p) is even, or equivalently if and only if
∑

i ]α
−1
i (p) is even.

Hence by (42) we conclude that θ(p) is odd if and only if alternative i) above holds, if and only if the
summands in (42) are odd, if and only if m(p) is odd.
By (43) this holds for H1-ae point in ∪i(αi). Therefore H1({x |m(x) is odd}∆{x | θV (x) is odd}) = 0.
So finally since H1({x |m(x) = 1} \ FE) = 0, then

0 = H1({x |m(x) odd} \ {x |m(x) = 1}) = H1({x | θV (x) odd} \ {x |m(x) = 1}) =

= H1({x | θV (x) is odd} \ FE),

which completes the proof.
�
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3.3. Proof of Theorem 3.2. First we want to prove the following approximation result.

Proposition 3.9. Let E ⊂ R2 be measurable and bounded with A(E) 6= ∅. Then for any V ∈ A(E)
there exists a sequence En of uniformly bounded sets such that

(44) Fp(En) < +∞, χEn → χE in L1(R2), VEn → V as varifolds, lim
n
Fp(En) = Fp(V ).

Moreover for any n we have that VEn =
∑N

i=1(γi)](v(S1, 1)) = v(Γn, θVEn ) and {p | θVEn (p) > 1} is
finite.

Proof. Let V =
∑N

i=1(γi)](v(S1, 1)) ∈ A(E) with γi ∈ W 2,p regular. For any i let {γi,n}n∈N be a
sequence of analytic regular immersions such that γi,n → γi in W 2,p as n→∞. Hence the set

(45) {x ∈ R2 | ∃i, j, t 6= τ : γi(t) = γj(τ)}

is finite. Let Vn =
∑N

i=1(γi,n)](v(S1, 1)). By (45) we can define En as in Lemma 2.9, so that Vn = VEn .
Moreover we have that

Fp(En) < +∞, lim
n→∞

Fp(VEn) = lim
n→∞

Fp(En) = Fp(V ), VEn → V.

By uniform convergence of γi,n we get that for any ε > 0 there is nε such that

N⋃
i=1

(γi,n) ⊂ I ε
2

(
N⋃
i=1

(γi)

)
∀n ≥ nε,

where I ε
2

denotes the ε
2 open tubolar neighborhood. Hence up to passing to a subsequence by Riesz-

Fréchet-Kolmogorov we have that χEn converges strongly in L2(R2), and then in L1(R2) and pointwise
almost everywhere to the characteristic function of a closed set F . Using the definition of En and
Lemma 3.5 together with Remark 3.6 we have that F = E, and the proof is completed.

�

Corollary 3.10. Let E ⊂ R2 be measurable and bounded with A(E) 6= ∅. Then

∃ min
{
Fp(V ) | V ∈ A(E)

}
.

Proof. Let Vk be a minimizing sequence in A(E). Up to subsequence we can assume that Vk → V
in the sense of varifolds and the supports suppVk are uniformly bounded. By Proposition 3.9 using a
diagonal argument we find a sequence of uniformly bounded sets Ek such that

χEk → χE in L1(R2),

VEk → V as varifolds,

Fp(Ek) ≤ C < +∞,
lim
k
Fp(Ek) = lim

k
Fp(Vk) = inf

A(E)
Fp ≥ Fp(V ),

and {p | θVEk (p) > 1} is finite. Hence Ek is a possible approximating sequence of E by regular sets, i.e.

a competitor in the calculation of the relaxation Fp(E). Then by Lemma 3.8 we get that V ∈ A(E),
and therefore V minimizes Fp on A(E).

�

Now Proposition 3.9 together with Corollary 3.10 readily imply Theorem 3.2.

3.4. Comment on the p = 1 case. The characterization of the relaxed energy given by Theorem 3.2
fails in the p = 1 case. As stated in Section 1, many estimates used in the p > 1 case have an analogous
formulation in case p = 1. However, if I ⊂ R is a bounded interval, functions u ∈ W 2,1(I) do not
have good compactness properties. In fact even if u ∈ W 2,1(I) implies that u′ ∈ W 1,1(I) = AC(Ī)
and hence u ∈ C1, the immersion W 2,1(I) ↪→ C1(Ī) is not continuous.
Since W 2,1(I) ↪→W 1,p(I) for any p ∈ [1,∞), we have that W 2,1(I) compactly embeds only in C0,α(Ī)
for any α ∈ (0, 1). This implies that the convergence of the curves defining the boundary of sets En
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with F1(En) ≤ C is much weaker than in the p > 1 case.

One of the main differences is the following. As we will show in Subsection 4.3 the Fp energy of
polygons is infinite if p > 1. Instead if E is a regular polygon, i.e. a set E ⊂ R2 whose boundary is
the image of an injective piecewise C2 closed curve, it can happen that F1(E) < +∞. For instance,
consider a square Q in the plane: in small neighborhoods of the four vertices the boundary ∂Q can
be approximated by a piece of circumference of radius converging to 0 with finite bounded energy
converging to π

2 . This is ultimately due to the invariance of the energy F1 under rescaling, a property
that is absent if p > 1. This implies that a possible limit varifold does not verify the flux property
(because of the arguments in the proof of Proposition 4.8).

We believe that the presence of vertices in the boundary of the limit set is the main difference with
the p > 1 case and that sets E with F1(E) ≤ C have at most countably many vertices, each of them
giving an additional contribution to the energy equal to the angle described by the vertex.

4. Remarks and applications

4.1. Comparison with [BeMu04], [BeMu07]. In these works Bellettini and Mugnai develop a char-
acterization of the following relaxed functional. For simplicity we reduce ourselves to the case p = 2.
Let E ⊂ R2 be measurable and define the energy

(46) G(E) =

{´
∂E 1 + |k∂E |2 dH1 E is of class C2,

+∞ otherwise.

Then the functional G is the L1-relaxation of G. Clearly

G(E) < +∞ ⇒ F2(E) = G(E),

F2(E) ≤ G(E) ∀E.
The precise characterization of G is discussed in [BeMu04] and [BeMu07]; here we just want to point
out that

∃E : F2(E) < G(E) < +∞.
In fact an example is the set E0 in Fig. 2 described in the Example 4.4 in [BeMu07]. Let γ1, γ2 be as
in Fig. 2. In [BeMu07] it is proved that

G(E) > F2(γ1) + F2(γ2).

Here we want to prove that

(47) F2(E) = F2(γ1) + F2(γ2).

Observe that γ1, γ2 carry inside B1(0) a F2 energy equal to 8.

Since F2(E0) < +∞ there exists a varifold V =
∑N

i=1(γ1)](v(S1, 1)) ∈ A(E). Up to renaming and
reparametrization assume γ1(0) = (1, 0), γ′1(0) = −(1, 0), and γ1|[−T, 0] joins (0, 1) and (0, 1) having

support contained in FE0 \ B1(0). Since γ1 is C1 and closed, by the above discussion there exists a
first time τ > 0 such that γ1(τ) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}. We divide two cases.
1) If γ1(τ) ∈ {(0, 1), (0,−1)}, arguing like in the proof of inequality (12) one has

π

2
≤
[
L(γ1|(0,τ))

] 1
2
[
E2(γ1|(0,τ))

] 1
2 ≤ 1

2

(
L(γ1|(0,τ)) + E2(γ1|(0,τ))

)
,

then F2(γ1|(0,τ)) ≥ π > 2.
2)If γ1(τ) = (1, 0) by an analogous argument one gets F2(γ1|(0,τ)) ≥ 2π > 2.
Hence in any case it is convenient for the curve γ to pass first through the point (−1, 0). By the
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E0

γ2

γ1

(0, 1)

(1, 0)

(0,−1)

(−1, 0)

Figure 2. Picture of the set E0 in Example 4.4 of [BeMu07]. The curve γ1

parametrizes the left and the right components, while γ2 parametrizes the upper and
lower components. The varifold (γ1)](v(S1, 1))+(γ1)](v(S1, 1)) belongs to A(E0), and
it has multiplicity equal to 1 on ∂E0 and equal to 2 on the cross in the middle of the
picture.

characterization of Theorem 3.2 equality (47) follows.

In this sense we can look at the relaxation Fp as a generalization of the energy G, in the sense that
Fp admits a wider class of regular objects, i.e. sets E with Fp(E) < +∞, and this implies that the

relaxed energy Fp is naturally strictly less than G on some sets.

4.2. Inpainting. Here we describe a simple but significant application of the relaxed functional Fp
given by Theorem 3.2. Such application arises from the inpainting problem that roughly speaking
consists in the reconstruction of a part of an image, knowing how the remaining part of the picture
looks like. This problem as stated is quite involved ([BeCaMaSa11]). Assuming the only two colours
of the image are black and white, as already pointed out for example in [AmMa03], one can think that
the black shape contained in lost part of the image is consistent with the shape minimizing a suitable
functional depending on length and curvature of its boundary. In such a setting the known part of
the image plays the role of the boundary conditions. On different scales one can ask for the optimal
unknown shape to minimize a weighted functional like (49), where one can give more importance to
the length or to the curvature term.
Now we formalize the problem and we give a variational result.

Fix p ∈ (1,∞). In R2 consider the set H defined as follows. Let Q1, Q2 be the squares Q1 = {(x, y) :
0 ≤ x ≤ 10, 0 ≤ y ≤ 10}, Q2 = {(x, y) : −10 ≤ x ≤ 0,−10 ≤ y ≤ 0}, modify the squares in small

neighborhoods of the vertices into convex sets Q̃1, Q̃2 with smooth boundary. Finally let

(48) H =
(
Q̃1 ∪ Q̃2

)
\B1(0).

Let λ ∈ (0,∞) and Fλ,p be the functional

(49) Fλ,p(E) =


λµVE (R2) + Ep(VE)

if VE =
∑
i∈I

(γi)](v(S1, 1)), γi : S1 → R2 C2-immersion,

]I < +∞,
+∞ otherwise.
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Analogously to the functional Fp, we have a well defined characterization of the L1-relaxed functional

Fλ,p.
We want to solve the minimization problem

(50) P = min
{
Fλ,p(E)

∣∣ E ⊂ R2 measurable s.t. E \B1(0) = H
}
,

under the hypothesis of λ suitably small. The heuristic idea is that a good candidate minimizer is
given by the set

(51) E0 =
[
(Q1 ∪Q2) ∩B1(0)

]
∪H,

which has finite Fp energy. For a qualitative picture see Fig. 3.

H E0

Figure 3. Qualitative pictures of the datum H and the minimizer E0.

Remark 4.1. Observe that if G is the relaxed functional defined in [BeMu07] recalled in Subsection
4.1, then G(E0) = +∞, and hence E0 will never be detected by a minimization problem (50) analo-
gously defined with the functional G.

We have the following result.

Proposition 4.2. There exists λ0 ∈
(
0, π2

)
such that for any λ ∈ (0, λ0) the set E0 is the unique

minimizer of problem P.

Proof. Let us first observe that varifolds associated to sets with energy sufficiently close to the infimum
of the problem have mass uniformly bounded independently of λ. More precisely, suppose that E is a
competitor such that Fλ,p(E) ≤ inf P + 1, and let Fλ,p(E) = Fλ,p(V ) for some V ∈ A(E). Thenˆ

|kV |p dµV ≤ 1 + Fλ,p(E0) ≤ 1 + Fπ
2
,p(E0) =: C1.

Using (19) with σ = 1 and ρ→ +∞ on the varifold V with x0 = 0 we get

µV (B1(0)) ≤ −
ˆ
R2\B1

〈
kV ,

x

|x|

〉
dµV (x)−

ˆ
B1

〈kV , x〉 dµV (x)

≤ C(H) +

ˆ
B1

|kV | dµV

≤ C(H) + C
1
p

1 µV (B1(0))
1
p′ .
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Hence µV (R2) ≤ C(H) + µV (B1(0)) ≤ C = C(H, p,E0) and C is independent of λ.
Now let En be a minimizing sequence of problem P. By Theorem 3.2 and Lemma 2.8 we can write

Fλ,p(En) =
∑

i∈In Fλ,p(γi,n) for some curves γi,n. Up to subsequence In = I and the curves converge

strongly in C1 and weakly in W 2,p to curves γi. In particular En → E in the L1 sense, and

(52) Fλ,p(E) ≤ inf P ≤ Fλ,p(E0) = Fλ,p(E0).

by lower semicontinuity. Moreover by C1 strong convergence we have that

∀i∀p ∈
(
(γi) ∩ ∂B1(0)

)
\ {(1, 0), (0, 1), (−1, 0), (0,−1)} ⇒ (γi) is tangent to ∂B1(0) at p.

Observe that E0 carries inside B1(0) a Fλ,p energy equal to 4λ.

Arguing as in Subsection 4.1, since Fλ,p(E) < +∞ there exists a varifold V =
∑N

i=1(γ1)](v(S1, 1)) ∈
A(E). Up to renaming and reparametrization assume γ1(0) = (1, 0), γ′1(0) = −(1, 0), and γ1|[−T, 0]

joins (0, 1) and (1, 0) having support contained in FH \ B1(0). Since γ1 is C1 and closed, by the
above discussion there exists a first time τ > 0 such that γ1 intersects transversally ∂B1(0). Also such
transversal intersection can take place only at one of the points in {(1, 0), (0, 1), (−1, 0), (0,−1)}. We
divide two cases.
1) If γ1(τ) ∈ {(0, 1), (0,−1)}, observing that there is C > 0 depending only on the problem P such
that L(γi) ≤ C for any i, then arguing like in (12) we get

Fλ,p(γ1|(0,τ)) ≥ λ
√

2 +
π

2

1

L(γ1|(0,τ))
p
p′
≥ λ
√

2 +
π

2

1

C
> 2λ,

where the last inequality holds choosing λ0 small enough.
2) If γ1(τ) = (1, 0), then by the same argument leading to (12) one has

(53) π ≤
L(γ1|(0,τ))

p′
+
Ep(γ1|(0,τ))

p
.

If λp′ ≥ 1, then π ≤ Fλ,p(γ1|(0,τ)). If instead λp′ < 1, then also λp′

p < 1, and multiplying (53) by λp′

one has λp′π ≤ Fλ,p(γ1|(0,τ)). So we can write that Fλ,p(γ1|(0,τ)) ≥ min{1, λp′}π. Choosing λ0 <
π
2

then π > 2λ, and since p′ > 1 > 2
π then λp′π > 2λ; hence in any case

Fλ,p(γ1|(0,τ)) > 2λ.

By inequality (52) we conclude that γ1(τ) = (−1, 0) and ∂E0 ⊂ ∪Ni=1(γi). Hence again by the same
inequality we have that E = E0, and thus P has a unique minimizer, that is E0.

�

text

4.3. Examples and qualitative properties. In this subsection we fix p ∈ (1,∞) and we collect
some remarks about the qualitative properties of sets E having Fp(E) < +∞.

First we want to prove a result that is completely analogous to the Theorem 6.5 in [BeDaPa93]. To
this aim we need some definitions.

Definition 4.3. Let E ⊂ R2 be closed measurable. A point p ∈ ∂E is called (simple) cusp if there is
r > 0 such that up to rotation and translation the set Br(p) ∩ ∂E is the union of the graphs of two
functions f1, f2 : [0, a]→ R of class C1∩W 2,p with fi(0) = f ′i(0) = 0, f1(x) ≤ f2(x), and f1(x) = f2(x)
if and only if x = 0.

Also, we shall need the following definitions in the context of planar graphs.
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Definition 4.4. Let G ⊂ R2 be a planar finite graph, i.e. a set given by the union of finitely many
embeddings of [0, 1] of class C1∩W 2,p, called edges of G, possibly meeting only at the endpoints, called
vertices of G. The symbols EG, VG respectively denote the set of edges of G and the set of vertices of
G. Together with the topology of a graph G, it is assigned a multiplicity function m : EG → N.
For any vertex v ∈ VG there is rv > 0 such that for 0 < r < rv the set H := G ∩ Br(v) is a finite
connected graph whose edges only meet at v and with multiplicity inherited from G. In this notation,
the local density of G at v is the number ρG(v) =

∑
e∈EH m(e).

Now assume also that for any v ∈ VG and 0 < r < rv, if fi are regular parametrizations of the edges ei
of the graph H = G∩Br(v) with fi(1) = v, then for any i there is j such that the arclength derivatives

ḟi, ḟj satisfy ḟi(1) = −ḟj(1). Under this assumption, we denote by w1(v), ..., wNv(v) unit norm vectors

identifying the possible tangent directions given by {ḟi(1)}i. Hence wi(v)⊥ is the counterclockwise
rotation of wi(v) of an angle equal to π/2. Finally we define

I+(wi(v)) :=
{
ei ∈ EH | ḟi(1) = ±wi(v), (ḟi(1), wi(v)) is a negative basis of R2

}
,

I−(wi(v)) :=
{
ei ∈ EH | ḟi(1) = ±wi(v), (ḟi(1), wi(v)) is a positive basis of R2

}
,

and

ρ+
G(v, wi(v)) =

∑
ei∈I+(wi(v))

m(ei),

ρ−G(v, wi(v)) =
∑

ei∈I−(wi(v))

m(ei).

The graph G is said to be regular if for any v ∈ VG and for any wi(v) it holds that ρ+
G(v, wi(v)) =

ρ−G(v, wi(v)).

Remark 4.5. Let V =
∑N

i=1(γi)](v(S1, 1)) be a varifold in A(E) for some set E. Suppose that
Γ = ∪(γi) is a finite planar graph GΓ. To any edge e of GΓ we assign the multiplicity function
mΓ(e) = θV (p) for any p ∈ e that is not a vertex. By the flux property (Definition 2.6), the graph GΓ

with the multiplicity mΓ is regular.

We are ready to prove the following result about the energy of sets which are smooth out of finitely
many cusp points. The strategy follows ideas from [BeDaPa93], but it is different in the technical
parts.

Theorem 4.6. Let E ⊂ R2 be a closed set whose boundary is C1 ∩W 2,p smooth at every point but at
finitely many ones which are simple cusps q1, ..., qk. Then

(54) Fp(E) < +∞ ⇔ k is even.

Proof. If k is even, Theorem 6.4 in [BeDaPa93] implies that the relaxed energy G(E) studied in
[BeDaPa93] is finite. Since Fp ≤ G, we have one implication.

Now suppose that Fp(E) is finite, i.e. A(E) 6= ∅. Let V = v(Γ, θV ) =
∑N

i=1(γi)](v(S1, 1)) ∈ A(E).

We are going to construct a set Ẽ satisfying the hypotheses of the theorem and having the same
unknown number of cusps of E, together with a varifold Ṽ = v(Γ̃, θ̃Ṽ ) ∈ A(Ẽ) with the additional

property that Γ̃ is a finite graph GΓ̃ with multiplicity as given in Remark 4.5. Once the support of a

varifold in A(Ẽ) is a finite graph, we can prove that the number of cusps is even.

Step 1. Now we construct Ẽ and Γ̃ as claimed. Let C(Γ) be the set of points p ∈ Γ such that in any
neighborhood of p it is impossible to write Γ as a single graph, i.e. p is a crossing or a branching point
of two pieces of some curves γi, γj . Call K the set of accumulation points of C(Γ). Observe that K is
compact.
Also, observe that if a sequence pn ∈ C(Γ) converges to p̄, pn = γi(tn) = γj(τn) with tn → t−, τn → τ−
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or tn → t−, τn → τ+ and t 6= τ , then γ̇i(t) = ±γ̇j(τ).
Now fix ε << 1 and let q ∈ K. Let v1(q), ..., vNq(q) be unit vectors identifying the tangent directions

at q of the curves passing through q. For j = 1, ..., Nq let σj1, ..., σ
j
Mq,j

be suitable restrictions of the

curves {γi} on disjoint intervals Iji = domain(σji ) such that each σji passes through q with tangent
parallel to vj(q). Also, for i = 1, ..., Nq let Ri(q) be open rectangles with two sides parallel to vi(q).

Up to restriction we assume that each σji is contained in Rj(q) with endpoints on the boundary of the
rectangle. We can assume the following properties:
i) each rectangle contains at most one cusp and cusps do not lie on the boundary of any rectangle.

Also if q ∈ Γ \ ∂E, then Ri(q) ∩ ∂E = ∅;
ii) Ri(q)∩∂E is homeomorphic to a closed segment such that: if no cusps lie in Ri(q) then Ri(q)∩∂E
is the graph of a C1 ∩W 2,p function, if a cusp lies in Ri(q) then Ri(q)∩ ∂E is the union of the graphs
of two C1 ∩W 2,p functions as in the definition of simple cusp;

iii) each σji can be parametrized as graph inside Rj(q), and |σ̇ji (·) + vj(q)| ≤ ε or |σ̇ji (·)− vj(q)| ≤ ε;
iv) σji intersects ∂Rj(q) only on the sides perpendicular to vj(q) and transversely, and σji intersects

σlk only in the open set Rj(q) ∪Rl(q) \ (∂Rj(q) ∪ ∂Rk(q));
v) if a ∈ ∂Iji , b ∈ ∂I

j
k and σji (a) = σki (b), then σ̇ji (a) = ±σ̇jk(b);

vi) if σji (a) ∈ FE, then θV (σji (a)) = ]{k | σjk passes through σji (a)} is odd; if σji (a) ∈ Γ \ ∂E, then

θV (σji (a)) = ]{k | σjk passes through σji (a)} is even.
Property v) follows by the fact that transverse crossings of two curves are at most countable (as proved
in Lemma 2.8), and property vi) follows from the fact that V ∈ A(E) and thus θV is odd (resp. even)
at H1-ae point of FE (resp. Γ \ ∂E).
Since the set K is compact, we can extract a finite covering of rectangles corresponding to points
q1, ..., qL. By Theorem 2.2 the numbers Nqi of the rectangles of qi are uniformly bounded in terms of the
energy, which is finite. Hence we can add to the cover the possibly remaining rectangles corresponding
to each qi, yielding a covering that is still finite. For any j = 1, ..., L and i = 1, ..., Nqj we are going to

modify the curves σji in a finite number of steps. We start from the family {σ1
i }
Mq1,1

i=1 corresponding
to R1(q1), then one modifies the curves corresponding to R2(q1) and so on up to RNq1 (q1), then one
changes the curves of the families corresponding to q2 and so on up to qL. Since the procedure is the

same at any step, let us describe only the case of the family {σ1
i }
Mq1,1

i=1 corresponding to R1(q1). In

the end we will end up with the desired Ẽ, Γ̃.
We modify a σ1

i as follows, depending on the cases q1 ∈ Γ \ ∂E, or q1 ∈ FE, or q1 is a cusp.
1) Suppose q1 ∈ Γ\∂E. Fix σ1

i and split it into the two pieces divided by q1. Let us say that one such
piece of σ1

i is parametrized as graph by f : [0, α]→ R with f(0) = f ′(0) = 0 corresponding to q1. Let
u1
i be the solution of

(55)


u(x) = λx3 + µx2 + νx+ ω,

u(0) = u′(0) = 0,

u(α) = f(α), u′(α) = f ′(α),

for the suitable constants λ, µ, ν, ω. Doing the same with the other piece of σ1
i , we substitute each σ1

i

with the graphs of the obtained functions u1
i (such modification is then a change in one of the original

curves γi’s). Observe that by properties v), vi) one obtains a new varifold still in the class A(E), in
fact graphs of finitely many polynomials meet in at most finitely many points.
2) Suppose now that q ∈ FE. By construction, for example R1(q1) contains some curves with end-
points on FE ∩ ∂R1(q1). In this case we modify the curves exactly as before following the system
(55); moreover we declare that the boundary FE is modified inside R1(q1) following the new modified

curves having endpoints on FE ∩ ∂R1(q1). This leads to a new set which we already call Ẽ satisfying
the hypotheses of the theorem and having the same number of cusps of E, together with a new varifold
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already called Ṽ in the class A(Ẽ) (as before by properties v), vi), together with the fact that the
new curves are graphs of polynomials).
3) Finally suppose q1 is a cusp of ∂E. In this case we modify the curves (and the set E) exactly in

the same way of the case 2). This preserves the cusp in the new set Ẽ.

After performing these modifications in any Ri(qj) we end up with a varifold Ṽ given by curves γ̃i
such that the set C(Γ̃) of the points p ∈ Γ̃ such that in any neighborhood of p it is impossible to write

Γ̃ as a single graph is finite. In fact the points of this type belonging to the union of the closure of the
rectangles Ri(qj) are finite. So, if by contradiction there are points of C(Γ̃) accumulating to some limit
point q, this would be outside the union of the rectangles Ri(qj), and q would be a limit of a sequence in
C(Γ). Hence q would be in K, and thus in the interior of some rectangle Ri(qj), that is a contradiction.

Step 2. Now we show that, in general, if a set E is as in the hypotheses of the theorem and if
V = v(Γ, θV ) ∈ A(E) is such that Γ is a finite graph, then the number of cusps of E is even. Together
with Step 1, this gives the conclusion. Here we essentially generalize the strategy of [BeDaPa93].
Call GΓ the finite graph given by Γ with multiplicity mΓ as described in Remark 4.5 (recall that GΓ

is regular). Let us construct a new graph G with multiplicity m as follows. If e ∈ EGΓ
, then define

the multiplicity

m(e) :=

{
mΓ(e)

2 if mΓ(e) even,
mΓ(e)−1

2 if mΓ(e) odd,

with the convention that if m(e) = 0, then the edge e does not appear in G. Now let y ∈ VG. We
want to evaluate the parity of ρG(y) dividing some cases.
a) Suppose y 6∈ ∂E. Then any edge e of GΓ with endpoint at y has ρ+

GΓ
(y, wi(y)) = ρ−GΓ

(y, wi(y)) even

for any wi(y). Hence by definition we have that ρG(y) is even.
b) Suppose y ∈ FE. Then exactly two edges e1, e2 of GΓ having an endpoint at y have odd multiplicity:
mΓ(ei) = 2ki + 1 for i = 1, 2. Up to relabeling suppose that e1 ∈ I+(w1(y)) and e2 ∈ I−(w1(y)).
Every other edge of GΓ having an endpoint at y has even multiplicity. Since GΓ is regular we have
that

2k1 + 1 + 2a+
1 = ρ+

GΓ
(y, w1(y)) = ρ−GΓ

(y, w1(y)) = 2k2 + 1 + 2a−1 ,

and similarly
2a+

i = ρ+
GΓ

(y, wi(y)) = ρ−GΓ
(y, wi(y)) = 2a−i ,

for any possible i ≥ 2. Then

ρG(y) = k1 + a+
1 + k2 + a−1 +

∑
i≥2

a+
i + a−i = 2

(
k1 + a+

1 +
∑
i≥2

a+
i

)
is even.
c) Finally suppose that y is a cusp of ∂E. Then exactly two edges e1, e2 of GΓ having an endpoint at y
have odd multiplicity: mΓ(ei) = 2ki + 1 for i = 1, 2. Up to relabeling suppose that e1, e2 ∈ I+(w1(y)).
Every other edge of GΓ having an endpoint at y has even multiplicity. Since GΓ is regular we have
that

2k1 + 1 + 2k2 + 1 + 2a+
1 = ρ+

GΓ
(y, w1(y)) = ρ−GΓ

(y, w1(y)) = 2a−1 ,

and similarly
2a+

i = ρ+
GΓ

(y, wi(y)) = ρ−GΓ
(y, wi(y)) = 2a−i ,

for any possible i ≥ 2. Then

ρG(y) = k1 + k2 + a+
1 + a−1 +

∑
i≥2

a+
i + a−i = 2(k1 + k2 + a+

1 ) + 1 + 2
∑
i≥2

a+
i ,

that is odd.
It follows that the cusps of ∂E coincides with the vertices y of G having odd local density ρG(y). By
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Theorem 1.2.1 in [Or62], the vertices of a finite graph with odd local density are even. Hence the
cusps are even and the proof is completed. �

Now we turn our attention to another class of sets. Let us give the following definition.

Definition 4.7. A closed measurable set E ⊂ R2 is a p-polygon if ∂E = (γ) for a curve γ : [0, 2π]/∼ '
S1 → R2 such that:
i) γ is injective,
ii) there exist finitely many times t1 < t2 < ... < tK such that γ|(ti,ti+1) ∈ W 2,p for i = 1, ...,K (with

tK+1 = t1), and γ′(t−i ), γ′(t+i ) are linearly independent for i = 1, ...,K.

Proposition 4.8. Let E be a p-polygon, then Fp(E) = +∞.

Proof. Let γ be as in the definition of p-polygon. Without loss of generality we can assume that
0 = γ(0) is such that γ′(0−) and γ′(0+) are linearly independent. Suppose by contradiction that there

is a varifold V = v(Γ, θV ) =
∑N

i=1(γi)](v(S1, 1)) ∈ A(E). Let v = γ′(0−), then since V verifies the
flux property we find a nice rectangle Rv(p) at p with side parameters a, b for the curves {gj}rj=1 given

by the definition of flux property. We can suppose that g1|[−ε,0) ⊂ FE, g1|(0,ε] ⊂ Γ \ ∂E, and that
(gi) ∩ ∂E = {0} for i = 2, ..., r. Hence

g1|[−ε,0) ⊂ {θV odd},

H1

(( r⋃
i=2

(gi) ∪ g1

(
(0, ε]

))
\ {θV even}

)
= 0.

Then there exists c1 ∈ (−a, 0) such that ∑
z∈∪rj=1(gi)∩{y | 〈y−p,v〉=c1}

θV (z) = M1

with M1 odd, and there exists c2 ∈ (0, a) such that∑
z∈∪rj=1(gi)∩{y | 〈y−p,v〉=c2}

θV (z) = M2

with M2 even. But by the flux property M1 and M2 should be equal, thus we have a contradiction. �

Remark 4.9. More generally it follows from the proof of Proposition 4.8 that roughly speaking
Fp(E) = +∞ whenever the boundary ∂E has an angle (in the same sense of the definition of polygon).

With the strategy in the proof of Proposition 4.8 we can construct an example of a set E ⊂ R2 such
that E is a set of finite perimeter such that the associated varifold VE verifies that

σVE = 0, kVE ∈ L
2(µVE ), but Fp(E) = +∞.

Such set is discussed in the next example.

Example 4.10. Consider a positive angle θ > 0 which will be taken very small and the vectors in the
plane identified by the complex numbers

(56) e−iθ, e−i2θ, ei(−π+θ), ei(−π+2θ).

The sum of such vectors gives the point (0,−2(sin(θ) + sin(2θ))). Now let ϕ > 0 be another positive
angle and consider the vectors

(57) eiϕ, ei(π−ϕ),

so that the sum of these last vectors gives the point (0, 2 sin(ϕ)). Then for θ → 0, since sin(θ) +
sin(2θ) = 3θ + o(θ2) there exists ϕ = 3θ + o(θ2) such that the sum of the vectors in (56) and (57) is
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zero.
Given these vectors we can define a set E as in Fig. 4 whose boundary is the image of three smooth
closed immersions σi of the interval [0, 1] having σi(0) = σi(1) = 0 with derivative σ′i(0), σ′i(1) pro-
portional to the vectors in (56), (57). In such a way the varifold VE clearly verifies that σVE = 0 and

kVE ∈ L2(µVE ). However arguing as in the proof of Proposition 4.8 and assuming Fp(E) < +∞, one

immediately gets a contradiction. Hence Fp(E) = +∞.

E

ϕ

θ
2θ

Figure 4. Picture describing the set E of Example 4.10. The set is symmetric with
respect to the reflection about the vertical axis.

Finally we construct a simple example showing that there are sets E with Fp(E) <∞, but such that
H1(∂E \ FE) > 0 and ∂E is the support of a C∞ immersion σ.

Example 4.11. Let us construct a set E such that ∂E = (γ) for a C∞ immersion γ : S1 → R2,
H1(∂E \ FE) > 0, and Fp(E) < +∞.
Let {qn}n≥1 = Q∩ [0, 1] be an enumeration of the rationals in [0, 1], and define K = [0, 1] \ ∪n≥1(qn−
2−n−2, qn − 2−n−2). The set K is compact and L1(K) ≥ 1 −

∑∞
n=1 2−n−1 = 1

2 . Consider a C∞

nonincreasing function ϕ : [0,∞)→ [0, 1] such that ϕ(0) = 1, ϕ(t) = 0 for t ≥ 1 and let

f(x) =
∞∑
n=1

1

2n
ϕ

(
(x− qn)2

(2n+2)2

)
∀x ∈ [0, 1].

By construction we have that K = f−1(0). Moreover f ∈ C∞([0, 1]), in fact ϕ ≤ 1 and |ϕ(k)| ≤ ck
for any k ≥ 1 for some ck > 0, so that both the series f and the series of the derivatives totally
converge. Then we can define a C∞ parametrization σ : [0, 4] → R2 such that σ(t) = (t, f(t)) for
t ∈ [0, 1], σ(t) = (3− t,−f(t)) for t ∈ [2, 3], while σ|[1,2] and σ|[3,4] parametrize two drops with vertices
respectively at (1, 0) and (0, 0). Therefore σ parametrizes the boundary of a bounded set E which is
the planar surface enclosed by the two drops and lying between the graphs of f and −f .
By construction ∂E = (σ) and FE = (σ) \K, hence H1(∂E \ FE) ≥ 1

2 . However approximating f

with fn(x) = f(x) + 1
nψ(x), where ψ ∈ C∞([0, 1]; [0, 1]) is such that ψ(0) = ψ(1) = 0, ψ|(0,1) > 0, and

defining σn in analogy with σ, we conclude that Fp(E) < +∞.
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··
E

x y

Figure 5. An example of a set of finite perimeter E such that Fp(E) = Fp(V ) < +∞
for any p ∈ [1,∞), where V ∈ A(E) is the varifold induced by a smooth im-
mersion γ parametrizing ∂E. Here ∂E = FE t {x, y} and the strict inclusions
FE ( {x | θV (x) is odd} = FE t {y} ( ∂E occur.

En E

Figure 6. An example of a set E with finite relaxed energy such that ∂E \ FE is
a singleton. A sequence of sets En converging to E with uniformly bounded energy
is for example made of sets like in the one on the left in the picture; the dashed line
represents the corresponding ghost line given by the collapsing of the right part of the
sets En.

E

Figure 7. An example of a set E with finite relaxed energy such that, by Lemma 3.7,
the multiplicity θV is not locally constant on connected components of FE.

text
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