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Abstract. This paper studies a mean field game inspired by crowd motion in which agents
evolve in a compact domain and want to reach its boundary minimizing the sum of their
travel time and a given boundary cost. Interactions between agents occur through their
dynamic, which depends on the distribution of all agents.

We start by considering the associated optimal control problem, showing that semi-
concavity in space of the corresponding value function can be obtained by requiring as time
regularity only a lower Lipschitz bound on the dynamics. We also prove differentiability of
the value function along optimal trajectories under extra regularity assumptions.

We then provide a Lagrangian formulation for our mean field game and use classical tech-
niques to prove existence of equilibria, which are shown to satisfy a MFG system. Our main
result, which relies on the semi-concavity of the value function, states that an absolutely con-
tinuous initial distribution of agents with an Lp density gives rise to an absolutely continuous
distribution of agents at all positive times with a uniform bound on its Lp norm. This is
also used to prove existence of equilibria under fewer regularity assumptions on the dynamics
thanks to a limit argument.
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1. Introduction

Mean field games (MFGs for short) are differential games with a continuum of rational
players, assumed to be indistinguishable, individually neglectable, and influenced only by
the average behavior of other players through a mean-field type interaction. Introduced
independently around 2006 by Jean-Michel Lasry and Pierre-Louis Lions [54–56] and by Peter
E. Caines, Minyi Huang, and Roland P. Malhamé [46–48], these models have since been
studied from several perspectives, including approximation of games with a large number of
players by MFGs [21, 52], numerical methods for approximating MFG equilibria [1, 2, 27, 41],
games with large time horizon [18, 23], variational mean field games [9, 24, 59, 61], games
on graphs or networks [13, 14, 37, 42], or the characterization of equilibria using the master
equation [10, 22, 28]. We refer to [19, 38, 43] for more details and further references on mean
field games. The words “player” and “agent” are used interchangeably in this paper to refer
to those taking part in a game.

This paper continues the analysis of the mean field game model introduced in [58], which
considers players evolving in a compact domain Ω ⊂ Rd, their goal being to reach the boundary
∂Ω. The distribution of players at time t ≥ 0 is described by a Borel probability measure
ρt ∈ P(Ω) and, as in [58], we assume that the interaction between players occur through their
dynamics, the trajectory γ : [0,+∞) → Ω of a given player being described by the control
system γ′(t) = k(ρt, γ(t))u(t), where the control u : [0,+∞)→ Rd satisfies |u(t)| ≤ 1 for every
t ≥ 0 and the function k : P(Ω)×Ω→ [0,+∞) describes the maximal speed k(µ, x) an agent
may have when their position is x and agents are distributed according to µ. A player chooses
their control u in order to minimize the sum of their travel time to ∂Ω with a boundary
cost g(z) on their arrival position z ∈ ∂Ω, which is a generalization of the time-minimization
criterion of [58].

The above mean field game is proposed as a simple model for crowd motion, in which the
crowd, modeled macroscopically by the measures ρt ∈ P(Ω), evolves in Ω and wishes to leave
this domain through its boundary ∂Ω while optimizing exit time and position. Crowd motion
has been extensively studied from a mathematical point of view, with a wide range of models
being used to describe crowd behavior, ranging from Maxwell–Boltzmann models [45], particle
systems [44], granular media [35], scalar conservation laws [29], time-varying measures [60],
or models based on gradient flows [57]. Several works also address the question of controlling
crowd behavior [4,31]. Mean field games have already been used to model crowd motion, for
instance in [9,12,24,53], however these models differ from ours since they consider a fixed final
time, identical for all agents, and no constraints on the control, which is instead penalized
on the cost function. As detailed in [58], the model we consider here is also closely related
to Hughes’ model for crowd motion [49, 50] and our notion of equilibrium is related to the
standard notion of Wardrop equilibria in non-atomic congestion games [25,26,30,64].

The function k in our model is intended to represent congestion, i.e., the difficulty of moving
in high-density areas. Several mean field games with congestion have been previously consid-
ered [3, 34, 36, 39, 42, 61], their common feature being to model congestion as a penalization
in the cost function of each agent when passing through crowded regions. The penalization
term is usually chosen as a negative power of the density, which introduces a singularity in the
Hamilton–Jacobi equation of the corresponding optimal control problem. Our model consid-
ers instead that, in some crowd motion situations, an agent may not be able to move faster by
simply paying some additional cost, since the congestion provoked by other agents may work
as a physical barrier for the agent to increase their speed. Hence, we model congestion as a
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constraint on the maximal speed, given by k. Singularities on the Hamilton–Jacobi equation
are avoided by assuming that k is upper bounded.

In order to properly model congestion, k should compute k(µ, x) by evaluating µ at or
around x and giving as a result some non-increasing function of this evaluation, meaning that
the maximal speed of an agent is a non-increasing function of some “average density” around
x. This is the case, for instance, when k is given by

(1.1) k(µ, x) = V

(∫
Ω
χ(x− y)ψ(y) dµ(y)

)
,

where χ : Rd → [0,+∞) is a convolution kernel, ψ : Rd → [0,+∞) may serve as a weight
on Ω or as a cut-off function to discount some part of Ω, and the non-increasing function
V : [0,+∞)→ [0,+∞) provides the maximal speed in terms of the average density computed
by the integral. Even though the results of this paper do not assume a particular form for k,
we make use of (1.1) to justify some of our assumptions in Section 4 and we also verify that
our main results apply when k is given by (1.1) and V , χ, and ψ satisfy suitable regularity
assumptions.

We are interested in describing equilibria of the above mean field game, which correspond,
roughly speaking, to evolutions t 7→ ρt for which almost every agent satisfies their optimization
criterion. Contrarily to the classical approach for mean field games consisting on describing
equilibria in terms of ρt, we adopt here a Lagrangian approach, which amounts to describing
the motion of agents as a measure on the set of all possible trajectories. This classical approach
in optimal transport [7, 62, 63] has been used in some recent works on mean field games
[9, 15,20,24,58].

In order to analyze the above mean field game, we start by considering the corresponding
optimal control problem. Assuming that k is a given function depending on time instead of
the measure ρt, we start by obtaining some properties of optimal trajectories using classical
optimal control techniques, such as Pontryagin Maximum Principle. We then prove our two
main results for the value function ϕ of this optimal control problem: if the time derivative
of k is lower bounded, then ϕ is semi-concave in space (Theorem 3.23) and, if k is C1,1, then
ϕ is differentiable along optimal trajectories (Theorem 3.31).

After this preliminary study of the optimal control problem, we turn to the analysis of the
mean field game itself. We start by proving existence of equilibria in a Lagrangian setting
and obtaining the corresponding MFG system of PDEs on ρt and the value function ϕ using
arguments similar to [58]. We then prove that an absolutely continuous initial distribution of
agents with an Lp density gives rise to an absolutely continuous distribution of agents at all
positive times with a uniform bound on its Lp norm (Theorem 4.13) and use this result and
a limit procedure to obtain existence of equilibria and the corresponding MFG system for a
less regular model to which the arguments of [58] do not apply (Theorem 4.17).

The paper is organized as follows. Useful notations and definitions used throughout the
paper are provided in Section 2. Section 3 considers the optimal control problem corresponding
to our mean field game, remarking first on Sections 3.1 and 3.2 that classical results for
autonomous systems can be easily extended to a time-dependent framework with very few
assumptions on the time regularity of the dynamics, before proving our main results in Sections
3.3 and 3.4. The mean field game is finally considered in Section 4, with existence of equilibria
and the MFG system being considered in Section 4.1, before the Lp estimates of Section 4.2
and the ensuing results for a less regular mean field game in Section 4.3.
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2. Notations and definitions

Let us set the main notation used in this paper. We let R+ = [0,+∞) and denote the usual
Euclidean scalar product and norm in Rd by x · y and |x|, respectively, for x, y ∈ Rd. The

closure, interior, convex hull, and diameter of a set A ⊂ Rd are denoted by A,
◦
A, convA, and

diam(A), respectively, with
◦
A also denoted by intA. The open and closed Euclidean balls of

center x and radius r in Rd are denoted respectively by B(x, r) and B̄(x, r).
For A ⊂ B, the function 1A : B → {0, 1} denotes the characteristic function of A, i.e.,

1A(x) = 1 if and only if x ∈ A. Given two sets A,B, the notation f : A⇒ B indicates that f
is a set-valued map from A to B, i.e., f maps a point x ∈ A to a subset f(x) ⊂ B. The maps
Πt : R× Rd → R and Πx : R× Rd → Rd denote the canonical projections into the factors of
the product R× Rd.

If f is a function defined on (a subset of) R × Rd, we use the notations Df , ∂tf , and
∇f to denote its differential with respect to, respectively, both variables, its first variable,
and its second variable. Similar notations are used for related notions, such as super and
subdifferentials.

For a given metric space X,M(X) denotes the set of all Borel nonnegative measures on X
endowed with the topology of weak convergence of measures, and P(X) ⊂M(X) denotes the
subset of probability measures. The support of a measure η ∈ M(X) is denoted by spt(η).
For η ∈ M(X) and Y ⊂ X a Borel set, we denote by η|Y ∈ M(Y ) the restriction of η to Y .
When X ⊂ Rd is Borel and η ∈M(X) is absolutely continuous with respect to the Lebesgue
measure, we use the same notation η for its density.

Let Ω ⊂ Rd be a compact domain. We denote by C(R+,Ω) the space of all continuous
curves from R+ to Ω, equipped with the topology of uniform convergence on compact sets,
with respect to which C(R+,Ω) is a Polish space (see, for instance, [11, Chapter X]). Whenever
needed, we fix a metric d on C(R+,Ω). Recall that, if L > 0 is fixed, the set of all L-Lipschitz
continuous curves in C(R+,Ω) is compact thanks to Arzelà–Ascoli Theorem.

We recall that, for B ⊂ Rd, a function u : B → R is called semi-concave if it is continuous
in B and there exists C ≥ 0 such that, for every x, h ∈ Rd with [x− h, x+ h] ⊂ B, one has

u(x− h) + u(x+ h)− 2u(x) ≤ C|h|2.
The constant C is called a semi-concavity constant for u. When A ⊂ R, B ⊂ Rd, and
ϕ : A×B → R, we say that ϕ is semi-concave with respect to x, uniformly in t, if x 7→ ϕ(t, x)
is semi-concave for every t ∈ A with a semi-concavity constant independent of t.

We shall also need in this paper the classical notions of generalized gradients and some of
their elementary properties, which we now recall, following the presentation from [17, Chapter
3].

Definition 2.1. Let A ⊂ R, B ⊂ Rd, ϕ : A×B → R, and (t, x) ∈ A×B. The sets

D+ϕ(t, x) :=

{
(h, p) ∈ R× Rd : lim sup

(s,y)→(t,x)

ϕ(s, y)− ϕ(t, x)− (h, p) · (s− t, y − x)

|(s− t, y − x)|
≤ 0

}
,

D−ϕ(t, x) :=

{
(h, p) ∈ R× Rd : lim inf

(s,y)→(t,x)

ϕ(s, y)− ϕ(t, x)− (h, p) · (s− t, y − x)

|(s− t, y − x)|
≥ 0

}
,

are called, respectively, the superdifferential and subdifferential of ϕ at (t, x). We also define
the superdifferential and subdifferential of ϕ with respect to x by

∇+ϕ(t, x) :=

{
p ∈ Rd : lim sup

y→x

ϕ(t, y)− ϕ(t, x)− p · (y − x)

|y − x|
≤ 0

}
,
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∇−ϕ(t, x) :=

{
p ∈ Rd : lim inf

y→x

ϕ(t, y)− ϕ(t, x)− p · (y − x)

|y − x|
≥ 0

}
,

respectively. Finally, we say that a vector (h, p) ∈ R × Rd is a reachable gradient of ϕ at
(t, x) ∈ A × B if there is a sequence {(tk, xk)}k in A × B such that ϕ is differentiable at
(tk, xk) for every k ∈ N, and

lim
k→∞

(tk, xk) = (t, x), lim
k→∞

Dϕ(tk, xk) = (h, p).

The set of all reachable gradients of ϕ at (t, x) is denoted by D?ϕ(t, x).

As a simple consequence of the definitions of D+ϕ, D−ϕ, ∇+ϕ, and ∇−ϕ, we have the
inclusions Πx(D+ϕ(t, x)) ⊂ ∇+ϕ(t, x) and Πx(D−ϕ(t, x)) ⊂ ∇−ϕ(t, x). Moreover, if ϕ is
Lipschitz continuous, then D?ϕ(t, x) is a compact set: it is closed by definition and it is
bounded since ϕ is Lipschitz. From Rademacher’s theorem it follows that D?ϕ(t, x) 6= ∅
for every (t, x) ∈ int(A×B). We gather in the next proposition some classical additional
properties for semi-concave functions (see, e.g., [17, Propositions 3.3.1 and 3.3.4, Theorem
3.3.6, and Lemma 3.3.16]).

Proposition 2.2. Let A ⊂ R, B ⊂ Rd, ϕ : A × B → R be semi-concave, and (t, x) ∈
int(A×B). Then

(a) D?ϕ(t, x) ⊂ ∂D+ϕ(t, x);
(b) D+ϕ(t, x) 6= ∅;
(c) if D+ϕ(t, x) is a singleton, then ϕ is differentiable at (t, x);
(d) D+ϕ(t, x) = convD?ϕ(t, x);
(e) Πx(D+ϕ(t, x)) = ∇+ϕ(t, x);
(f) if C > 0 is a semiconcavity constant for ϕ, a vector p ∈ Rd belongs to ∇+ϕ(t, x) if and

only if

ϕ(t, y)− ϕ(t, x)− p · (y − x) ≤ C|y − x|2

for every y ∈ B such that [x, y] ⊂ B.

3. Exit-time optimal control problem

As a preliminary step for the study of our mean field game model, we consider in this
section the optimal control problem solved by each agent of the game. We assume that each
agent is submitted to a non-autonomous control system, the time-dependence of the dynamic
being a consequence of the interaction between agents. The optimization criterion takes into
account the time to reach a certain target set, considered as an exit, and a cost on the position
at which the agent reaches the exit. For this reason, our optimal control problem is qualified
as “exit-time”. In our setting, all agents evolve in a given compact set Ω ⊂ Rd and the exit
is assumed to be ∂Ω. Notice that the particular case where the cost on the exit position is
identically zero corresponds to the problem of reaching the target set in minimal time.

We start the section by providing a precise definition of our optimal control problem and
recalling some well-known facts, in particular concerning its value function, while also ex-
ploiting the consequences of the first order optimality conditions from Pontryagin Maximum
Principle. We then turn to the two main results of this section. The first one concerns the
semi-concavity of the value function with respect to the space variable x under weak as-
sumptions on the smoothness of the dynamic with respect to time. Our second main result
shows that the value function is differentiable along optimal trajectories, except possibly their
endpoints.
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3.1. Definition, existence and first properties. We consider control systems whose state
equation is of the form

(3.1)

{
γ′(t) = k(t, γ(t))u(t), for a.e. t ≥ t0,
γ(t0) = x0,

where γ(t) ∈ Rd is the state, the continuous function k : R+×Rd → R+ is called the dynamic
of the system, t0 ∈ R+, x0 ∈ Rd, and u : [t0,∞)→ B̄(0, 1) is a measurable function (which is
called a control).

We list some basic assumptions on the dynamic k:

(H1) 0 < kmin := inf k ≤ kmax := sup k < +∞,

(H2) ∃Lx > 0 such that |k(t, x1)− k(t, x2)| ≤ Lx|x1 − x2| for all x1, x2 ∈ Rd and t ∈ R+.

Notice that (H2) ensures the existence of a unique global solution to the state equation (3.1)
for any choice of t0, x0 and u. We denote the solution of (3.1) by γt0,x0,u and we call it an
(admissible) trajectory of the system, corresponding to the initial condition γ(t0) = x0 and to
the control u.

Let Ω be a compact domain in Rd: for a given trajectory γ = γt0,x0,u of (3.1), we set

τ t0,x0,u = inf{τ ≥ 0 : γt0,x0,u(t0 + τ) ∈ ∂Ω},
with the convention τ t0,x0,u = +∞ if γt0,x0,u(t0 + τ) /∈ ∂Ω for all τ ∈ R+. This means that we
consider ∂Ω as the target set. We call τ t0,x0,u the exit time of the trajectory. If τ t0,x0,u < +∞,
we set for simplicity

γt0,x0,uτ := γt0,x0,u(t0 + τ t0,x0,u)

to denote the point where the trajectory reaches the target ∂Ω. As kmin > 0, one can see easily
that, for every (t0, x0) ∈ R+ × Ω, there is always some control u such that τ t0,x0,u < +∞.

An optimal control problem consists of choosing the control strategy u in the state equation
(3.1) in order to minimize a given functional. Let g : ∂Ω→ R+ be a given continuous function.
For every (t0, x0) ∈ R+ × Ω, we minimize the cost

(3.2) τ t0,x0,u + g(γt0,x0,uτ )

among all controls u. A control u and the corresponding trajectory γt0,x0,u are called optimal
for the point x0 at time t0 if u minimizes (3.2). Remark that optimal controls u : [t0,∞) →
B̄(0, 1) are arbitrary for t > t0 + τ t0,x0,u and so, as a convention and unless otherwise stated,
we choose u(t) = 0 for t > t0 + τ t0,x0,u. Now, suppose that

(H3) ∃λ ∈
(

0,
1

kmax

)
s.t. |g(x)− g(y)| ≤ λ|x− y| for all x, y ∈ ∂Ω.

This is a standard assumption in exit-time optimal control problems with boundary costs (see,
e.g., [17, (8.6) and Remark 8.1.5] and [33]), its importance being the following property.

Lemma 3.1. Let g : ∂Ω→ R+ satisfy (H3) and γ : R+ → Ω be kmax-Lipschitz. If t1, t2 ∈ R+

are such that t1 < t2 and γ(t1), γ(t2) ∈ ∂Ω, then

t1 + g(γ(t1)) < t2 + g(γ(t2)).

Proof. We have

g(γ(t1))− g(γ(t2)) ≤ λ|γ(t1)− γ(t2)| ≤ λkmax(t2 − t1) < t2 − t1,
yielding the result. �
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Under assumptions (H1), (H2) and (H3), we have the following existence result.

Proposition 3.2. For every (t0, x0) ∈ R+ ×Ω, there exists an optimal control u for the cost
(3.2).

Proof. Let (un)n be a minimizing sequence. We set for simplicity τn := τ t0,x0,un , γn := γt0,x0,un

and zn := γt0,x0,unτn . It is clear that, up to extracting subsequences, τn → τ̄ and γn → γ, where
γ = γt0,x0,u is an admissible trajectory. On the other hand, we have

zn → γ(t0 + τ̄),

which implies that γ(t0 + τ̄) ∈ ∂Ω and τ := τ t0,x0,u ≤ τ̄ . Yet, it is not possible to have τ < τ̄ .
Indeed, since (un)n is a minimizing sequence, one has

lim
n
τn + g(zn) = τ̄ + g(γ(t0 + τ̄)) ≤ τ + g(γ(t0 + τ)),

which is a contradiction thanks to Lemma 3.1. Thus, we have τ = τ̄ and this completes the
proof that γ is an optimal trajectory and u is the associated optimal control. �

We note that the condition (H3) is crucial for this result. Without this condition, one
should replace the cost in (3.2) by inf{t+ g(γ(t0 + t)) : γ(t0 + t) ∈ ∂Ω}.

Another easily obtained property is that the restriction of an optimal control is still optimal.

Proposition 3.3. Let (t0, x0) ∈ R+×Ω, u be an optimal control for x0, at time t0, γ = γt0,x0,u,
and τ0 = τ t0,x0,u. Then, for every t ∈ [t0, t0 + τ0), u|[t,t0+τ0] is an optimal control for γ(t), at
time t.

Proof. Let ū = u|[t,t0+τ0] and notice that γt0,x0,uτ = γ
t,γ(t),ū
τ and τ t0,x0,u = τ t,γ(t),ū + t − t0. If

ū is not optimal for γ(t), at time t, one can find a control v for γ(t), at time t, such that

τ t,γ(t),ū + g(γt,γ(t),ū
τ ) > τ t,γ(t),v + g(γt,γ(t),v

τ ).

By concatenating u|[t0,t] with v, one obtains a control ũ for x0, at time t0, such that

τ t0,x0,ũ + g(γt0,x0,ũτ ) = t− t0 + τ t,γ(t),v + g(γt,γ(t),v
τ )

< t− t0 + τ t,γ(t),ū + g(γt,γ(t),ū
τ ) = τ t0,x0,u + g(γt0,x0,uτ ),

contradicting the optimality of u. �

The value function ϕ : R+ × Ω→ R+ of the above optimal control problem is defined by

(3.3) ϕ(t, x) = min{τ t,x,u + g(γt,x,uτ ) : u is a control}, t ∈ R+, x ∈ Ω.

The first important fact is that the value function ϕ satisfies the so-called dynamic program-
ming principle stated in the next lemma, which can be proved by standard techniques in
optimal control (see, for instance, [17, (8.4)]):

Lemma 3.4. For any t0 ∈ R+, x0 ∈ Ω and any control u : [t0,∞)→ B̄(0, 1), we have

ϕ(t0, x0) ≤ t− t0 + ϕ(t, γt0,x0,u(t)), for all t ∈ [t0, t0 + τ t0,x0,u],

with equality if u is optimal.

One can also use standard techniques in optimal control, similar to those, e.g., in [17,
Theorem 8.1.8], to show that the value function ϕ is a viscosity solution of a suitable partial
differential equation.
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Proposition 3.5. The value function ϕ is a viscosity solution of the following Hamilton–
Jacobi equation

(3.4) − ∂tϕ(t, x) + k(t, x)|∇ϕ(t, x)| − 1 = 0, (t, x) ∈ R+ ×
◦
Ω.

Moreover, one has ϕ(t, x) = g(x) for every (t, x) ∈ R+ × ∂Ω.

Our next result shows that, if we consider points along optimal trajectories different from
the endpoints, we can prove that the elements of D+ϕ also satisfy (3.4).

Proposition 3.6. Let γ : [t0, t0 + τ0]→ Ω be an optimal trajectory for x0, at time t0, where
τ0 = τ t0,x0,u and u is the associated optimal control. Then, for every t ∈ (t0, t0 + τ0), we have

−pt + k(t, γ(t))|px| − 1 = 0, for all (pt, px) ∈ D+ϕ(t, γ(t)).

Proof. Let us take t ∈ (t0, t0 + τ0). Since ϕ is a viscosity subsolution of (3.4), we have

−pt + k(t, γ(t))|px| − 1 ≤ 0, for all (pt, px) ∈ D+ϕ(t, γ(t)).

So, it suffices to prove that the converse inequality also holds. First, we observe that, by the
dynamic programming principle,

ϕ(t, γ(t)) = ϕ(t− h, γ(t− h))− h, 0 ≤ h ≤ t− t0.

On the other hand, if (pt, px) ∈ D+ϕ(t, γ(t)), we have

ϕ(t− h, γ(t− h))− ϕ(t, γ(t)) ≤ −pth− px · (γ(t)− γ(t− h)) + o(h).

Therefore, we find that

0 ≤ −pth− px · (γ(t)− γ(t− h))− h+ o(h)

= −pth−
∫ t

t−h
k(s, γ(s))px · u(s) ds− h+ o(h)

≤ h(−pt + sup
s∈[t−h,t]

k(s, γ(s))|px| − 1) + o(h),

which yields the conclusion. �

We now want to provide an upper bound on the optimal exit time τ t0,x0,u, where u is an
optimal control for x0, at time t0. To do so, we compare τ t0,x0,u with the minimal time needed
to reach ∂Ω from x0 at time t0. Let us introduce the minimal-time function T : R+×Ω→ R+

defined by

(3.5) T (t, x) = inf{τ t,x,u : u is a control}, (t, x) ∈ R+ × Ω,

which corresponds to taking g = 0 in (3.2). An optimal control u for the optimization problem
of T (t, x) is called a minimal-time control. We then have the following result.

Proposition 3.7. For every (t, x) ∈ R+ ×Ω, one has T (t, x) ≤ k−1
mind(x, ∂Ω). Moreover, if u

is an optimal control for (3.2) for x at time t, then one has

τ t,x,u ≤ 1 + λkmax

1− λkmax
T (t, x).

In particular,

τ t,x,u ≤
k−1

min(1 + λkmax)

1− λkmax
d(x, ∂Ω).
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Proof. Let γ : [0, d(x, ∂Ω)] → Ω be a segment from x to the closest point from x on the
boundary ∂Ω with |γ′| = 1. Set γ̃(s) = γ(kmin(s − t)), for all s ∈ [t, t + k−1

mind(x, ∂Ω)]. It
is clear that there is a control v̄ such that γ̃ = γt,x,v̄. Hence, by definition of T , one has
T (t, x) ≤ τ t,x,v̄ = k−1

mind(x, ∂Ω).
Now, let u be an optimal control for (3.2) and v be a minimal-time control for (t, x). Then,

we have
τ t,x,u + g(γt,x,uτ ) ≤ τ t,x,v + g(γt,x,vτ )

and so,

τ t,x,u ≤ τ t,x,v + λ|γt,x,vτ − γt,x,uτ | ≤ τ t,x,v + λ
(
|γt,x,vτ − x|+ |γt,x,uτ − x|

)
≤ τ t,x,v + λkmax(τ t,x,v + τ t,x,u).

Consequently, we get

τ t,x,u ≤ 1 + λkmax

1− λkmax
τ t,x,v =

1 + λkmax

1− λkmax
T (t, x). �

Now, we want to give a result about the Lipschitz continuity of the value function ϕ.

Proposition 3.8. Let our system satisfy properties (H1), (H2), & (H3). Then the value
function ϕ is Lipschitz continuous in R+ × Ω.

Proof. Following the same lines of the proof of Proposition 8.2.5 in [17], one can check that the
value function ϕ is Lipschitz w.r.t. x as soon as k is Lipschitz in x with a Lipschitz constant
c > 0 independent of t. Now, to prove Lipschitz continuity with respect to t, take t0 ∈ R+,
x ∈ Ω and let u be an optimal control for x, at time t0. Let δ ∈ (0, τ t0,x,u). Then, using
Lemma 3.4, one has

|ϕ(t0 + δ, x)− ϕ(t0, x)|
≤ |ϕ(t0 + δ, x)− ϕ(t0 + δ, γt0,x,u(t0 + δ))|+ |ϕ(t0 + δ, γt0,x,u(t0 + δ))− ϕ(t0, x)|

≤ c|γt0,x,u(t0 + δ)− x|+ δ

≤ (1 + ckmax)δ. �

The last preliminary result we present in this subsection provides a lower bound on the
variation in time of ϕ.

Proposition 3.9. Assume that (H1), (H2), and (H3) hold. Then there exists c > 0 depending
only on kmin, kmax, diam(Ω), λ, and Lx such that, for every x ∈ Ω and t0, t1 ∈ R+ with t0 6= t1,

(3.6)
ϕ(t1, x)− ϕ(t0, x)

t1 − t0
≥ c− 1.

Proof. Suppose, without loss of generality, that t0 < t1. Let γ1 be an optimal trajectory for
x, at time t1, and u1 be the associated optimal control. Define φ : [t0,+∞) → [t1,+∞) as a
function satisfying

(3.7)

 φ′(t) =
k(t, γ1(φ(t)))

k(φ(t), γ1(φ(t)))
,

φ(t0) = t1.

Notice that, since k is only continuous with respect to its first variable, φ is not unique a
priori. Set γ0(t) = γ1(φ(t)) for all t ≥ t0. By construction of φ, it is clear that there is a
control u0 such that γ0 = γt0,x,u0 (more precisely, u0(t) = u1(φ(t)) for t ≥ t0). Moreover,
we have τ0 := τ t0,x,u0 = φ−1(t1 + τ1) − t0, where τ1 := τ t1,x,u1 . So, φ(t0 + τ0) = t1 + τ1 and
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φ(t0 + τ0) + g(γ0(t0 + τ0)) = t1 + ϕ(t1, x). On the other hand, from (3.7), it is easy to see
that, for all t, t̄ ≥ t0, one has∫ φ(t̄)

φ(t)
k(s, γ1(s)) ds =

∫ t̄

t
k(s, γ1(φ(s))) ds.

Now, set

G(θ) =

∫ φ(t̄)

θ
k(s, γ1(s)) ds, ∀θ ∈ R+,

where we extend γ1 to R+ by setting γ1(s) = γ1(t1) for s ∈ [0, t1). Then, using that G is
bi-Lipschitz, we have

|φ(t)− t| =
∣∣∣∣G−1

(∫ t̄

t
k(s, γ1(φ(s))) ds

)
−G−1

(∫ φ(t̄)

t
k(s, γ1(s)) ds

)∣∣∣∣
≤ C

∣∣∣∣∫ t̄

t
k(s, γ1(φ(s))) ds−

∫ φ(t̄)

t
k(s, γ1(s)) ds

∣∣∣∣
≤ C

(
|φ(t̄)− t̄|+

∫ t̄

t
|k(s, γ1(φ(s)))− k(s, γ1(s))|ds

)
≤ C|φ(t̄)− t̄|+ C

∫ t̄

t
|φ(s)− s| ds,

where C > 0 denotes a constant depending only on kmin, kmax, and Lx, whose value may
change from one line to the other. Using the fact that φ(t0) = t1 > t0, we infer that φ(t) > t
for all t ≥ t0. Now, if t̄ = t0 + τ0, we get, using Gronwall’s inequality, that

φ(t)− t ≤ CeC|t0+τ0−t|(φ(t0 + τ0)− (t0 + τ0)).

Setting t = t0, one has

c(t1 − t0) ≤ φ(t0 + τ0)− (t0 + τ0) = t1 + ϕ(t1, x)− g(γ0(t0 + τ0))− t0 − τ0,

where we use Proposition 3.7 to provide an upper bound on τ0 and c > 0 only depends on
kmin, kmax, diam(Ω), λ, and Lx. Then

(c− 1)(t1 − t0) ≤ ϕ(t1, x)− g(γ0(t0 + τ0))− τ0 = ϕ(t1, x)− ϕ(t0, x),

as required. �

Remark 3.10. The analogue of Proposition 3.9 was already proved in [58, Proposition 4.5]
for the minimal-time function T . Even though the proof of [58] could be easily adapted to
our setting, it would require Lipschitz continuity of k with respect to t. Our proof refines
that of [58] and does not require such an assuption. The fact that c does not depend on any
Lipschitz behavior of k with respect to t will be a key property for the results in Sections 4.2
and 4.3.

Proposition 3.9 yields a lower bound on the time derivative of the value function ϕ, which
can be used to obtain information on the gradient of ϕ thanks to the Hamilton–Jacobi equation
(3.4).

Corollary 3.11. There exists c > 0 (which only depends on kmin, kmax, diam(Ω), λ, and Lx)
such that ∂tϕ(t, x) ≥ c− 1 and |∇ϕ(t, x)| ≥ c for all (t, x) ∈ R+×Ω where ϕ is differentiable.
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3.2. Pontryagin Maximum Principle and its consequences. In this subsection, we
use the necessary optimality conditions of Pontryagin Maximum Principle to obtain further
properties of optimal trajectories and the value function ϕ. In addition to (H1), (H2), and
(H3), we also assume that

(H4) ∂Ω is of class C1,1,

(H5) ∇k ∈ C(R+ × Ω),

(H6) g ∈ C1(∂Ω).

In order to state a version of Pontryagin Maximum Principle, we start with a preliminary
result (see [17, Lemma 8.4.2]).

Lemma 3.12. Given z ∈ ∂Ω, let n be the outer normal to ∂Ω at z. Then, for every t ∈ R+,
there exists a unique µ > 0 such that k(t, z)|∇g(z)− µn| − 1 = 0.

We are now ready to state Pontryagin Maximum Principle for this control problem.

Proposition 3.13. Let properties (H1), (H2), (H3), (H4), (H5), and (H6) hold, let (t0, x0) ∈
R+ × Ω and let ū be an optimal control for x0, at time t0. Set for simplicity

γ := γt0,x0,ū, τ0 := τ t0,x0,ū, z := γt0,x0,ūτ ,

and denote by n the outer normal to ∂Ω at z. Let µ > 0 be such that k(t0 + τ0, z)|∇g(z) −
µn| − 1 = 0 (µ is uniquely determined by the previous lemma). Let p : [t0, t0 + τ0] → Rd be
the solution to the system

(3.8)

{
p′(t) = −∇k(t, γ(t))ū(t) · p(t),
p(t0 + τ0) = ∇g(z)− µn.

Then, for a.e. t ∈ [t0, t0 + τ0],

−p(t) · ū(t) = max
u∈B̄(0,1)

−p(t) · u.

We refer the reader to [17, Lemma 8.4.2 and Theorem 8.4.3] for proofs of the above results.
Even though the proofs in [17] only consider the case of autonomous dynamics, their extension
to our non-autonomous setting is straightforward.

As a consequence of Proposition 3.13, we get the following.

Proposition 3.14. Let (t0, x0) ∈ R+ × Ω and ū, γ, τ0, and p be as in the statement of

Proposition 3.13. Then p is non-zero in [t0, t0 + τ0], ū(t) = − p(t)
|p(t)| for every t ∈ [t0, t0 + τ0],

ū is Lx-Lipschitz continuous on [t0, t0 + τ0] and satisfies

ū′(t) = −∇k(t, γ(t)) + ū(t) · ∇k(t, γ(t))ū(t) for a.e. t ∈ [t0, t0 + τ0],

and γ is C1 on [t0, t0 + τ0]. Moreover, γ ∈ C1,1([t0, t0 + τ0],Ω) as soon as k is Lipschitz in t.

Remark 3.15. Similar results have been obtained for the minimal-time problem (3.5) in [58,
Lemma 4.13 and Corollary 4.14]. Proposition 3.14 can be obtained using analogous arguments.
Since the proof is short, we provide it here for the reader’s convenience.
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Proof. From (3.8), one obtains that, for every t ∈ [t0, t0 + τ0], |p′(t)| ≤ Lx|p(t)|. Hence, we get

|p(t)| ≤ |p(s)|eLx|t−s|

for every s, t ∈ [t0, t0 + τ0]. Thus, if there exists s ∈ [t0, t0 + τ0] such that p(s) = 0, one
concludes that p(t) = 0 for every t ∈ [t0, t0 + τ0], which is a contradiction as p(t0 + τ0) =
∇g(γ(t0 + τ0)) − µn 6= 0, thanks to Lemma 3.12. Since p(t) 6= 0 for every t ∈ [t0, t0 + τ0], it

follows immediately from Proposition 3.13 that ū(t) = − p(t)
|p(t)| . Hence,

ū′(t) = −
|p(t)|p′(t)− p(t)·p′(t)

|p(t)| p(t)

|p(t)|2

= −∇k(t, γ(t)) + ū(t) · ∇k(t, γ(t))ū(t).

In particular, ū is Lx-Lipschitz continuous. The conclusions on γ follow immediately from
(3.1). �

From now on, we suppose also that

(H7) ∃Lxx > 0 such that |∇k(t, x0)−∇k(t, x1)| ≤ Lxx|x0 − x1| for all x0, x1 ∈ Ω, t ∈ R+.

Then, under the assumptions of Proposition 3.14 and (H7), (γ, ū) is the unique solution on
[t0, t0 + τ0] of

(3.9)


γ′(t) = k(t, γ(t))u(t),

u′(t) = −∇k(t, γ(t)) + u(t) · ∇k(t, γ(t))u(t),

γ(t0) = x0,

u(t0) = ū(t0).

Now, let us introduce the following lemma, which shows that the uniform limit of optimal
trajectories is an optimal trajectory.

Lemma 3.16. Assume that (H1)—(H6) hold. Let (tn, xn)n be a sequence in R+ × Ω such
that tn → t and xn → x. For each n, let γn be an optimal trajectory for xn, at time tn, and
un be the associated optimal control. Then, up to extracting subsequences, there exist γ and
u such that γn → γ and un → u uniformly, where γ is an optimal trajectory for x, at time t,
and u is its associated optimal control.

Proof. The fact that γn → γ and un → u follows immediately using Proposition 3.14. Yet,
for every n, we have

γ′n(s) = k(s, γn(s))un(s), for a.e. s > tn.

Passing to the limit as n→ +∞, we get

(3.10) γ′(s) = k(s, γ(s))u(s), for a.e. s > t.

Moreover, γn(tn) = xn implies, at the limit, that γ(t) = x. Hence, γ is an admissible
trajectory for x, at time t, and u is its associated control. Now, set τn = τ tn,xn,un and
zn = γn(tn + τn) ∈ ∂Ω. From Proposition 3.7, we have that, up to extracting subsequences,
τn → τ̄ for some τ̄ ∈ R+. In addition, zn → γ(t + τ̄) ∈ ∂Ω. Hence, τ := τ t,x,u ≤ τ̄ and, one
has

ϕ(tn, xn) = τn + g(zn)→ τ̄ + g(γ(t+ τ̄)).

Yet, by the continuity of the value function ϕ, we infer that

ϕ(t, x) = τ̄ + g(γ(t+ τ̄)) ≤ τ + g(γ(t+ τ))

and then, thanks to Lemma 3.1, τ̄ = τ . �
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On the other hand, we have the following result about the uniqueness of optimal control at
any interior point of an optimal trajectory.

Proposition 3.17. Assume that (H1)—(H7) hold. Let γ be an optimal trajectory for x0 at
time t0, and set τ0 = τ t0,x0,u, where u is the associated optimal control. Then, for every
t ∈ (t0, t0 + τ0), u is the unique optimal control for γ(t), at time t.

Proof. Fix t ∈ (t0, t0 + τ0) and let v be an optimal control for x := γ(t), at time t. Set

ũ(s) =

{
u(s), if s < t,

v(s), if s ≥ t.

Then ũ is an optimal control for x0, at time t0. Indeed, using the optimality of v, we have

ϕ(t0, x0) ≤ τ t0,x0,ũ + g(γt0,x0,ũτ ) = t− t0 + ϕ(t, x). On the other hand, since u is optimal, one

obtains from Lemma 3.4 that ϕ(t0, x0) = t−t0 +ϕ(t, x). Then ϕ(t0, x0) = τ t0,x0,ũ+g(γt0,x0,ũτ ),
and so the control ũ is optimal. Hence, by Proposition 3.14, ũ is continuous, which proves
that u(t) = v(t) := q. The fact that u(s) = v(s), for all s ≥ t, follows from the uniqueness of
solutions to the system (3.9) with initial conditions γ(t) = x and u(t) = q. �

Given an optimal trajectory γ for x0 at time t0, we will say that p is a dual arc associated
with γ if it satisfies the properties of Proposition 3.13, that is, if it solves (3.8). Our next
result states that the dual arc p is included in the superdifferential of the value function ϕ
with respect to x, ∇+ϕ.

Proposition 3.18. Under the assumptions of Proposition 3.13, the arc p solution of (3.8)
satisfies

p(t) ∈ ∇+ϕ(t, γ(t)), for all t ∈ [t0, t0 + τ0).

The proof of Proposition 3.18 can be obtained by easily adapting the proof of [17, Theo-
rem 8.4.4] to our non-autonomous setting, and is omitted here for simplicity. Similarly, one
can obtain an analogous property for the subdifferential by an immediate adaptation of the
techniques from [17, Theorem 7.3.4].

Proposition 3.19. Let u be an optimal control for (t0, x0) ∈ R+ ×Ω and γ be its associated
optimal trajectory. Let p : [t0, t0 + τ0]→ Rd be any solution of the adjoint equation

(3.11) p′(t) = −∇k(t, γ(t))u(t) · p(t), t ∈ [t0, t0 + τ0],

where τ0 = τ t0,x0,u. Suppose that p(t0) ∈ ∇−ϕ(t0, x0), then p(t) ∈ ∇−ϕ(t, γ(t)), for all
t ∈ [t0, t0 + τ0).

As a consequence of the previous results, we can show that the existence of ∇ϕ at some
point (t0, x0) is sufficient to ensure uniqueness of the optimal trajectory for x0, at time t0.

Proposition 3.20. Let (t0, x0) ∈ R+ × Ω and assume that ∇ϕ(t0, x0) exists. Then there
exists a unique trajectory γ which is optimal for x0, at time t0.

Proof. Assume that γ1, γ2 are optimal trajectories for x0, at time t0, and denote the respective
optimal controls by u1, u2. For i ∈ {1, 2}, write τi = τ t0,x0,ui and let pi : [t0, t0 + τi] → Rd
be a dual arc associated with γi. By Proposition 3.14, pi is non-zero and ui is Lipschitz

continuous on [t0, t0 + τi], with ui(t) = − pi(t)
|pi(t)| for every t ∈ [t0, t0 + τi]. By Proposition 3.18,

pi(t) ∈ ∇+ϕ(t, γi(t)) for every t ∈ [t0, t0 + τi). In particular, since ∇ϕ(t0, x0) exists, one has

p1(t0) = p2(t0) = ∇ϕ(t0, x0), yielding that ∇ϕ(t0, x0) 6= 0 and u1(t0) = u2(t0) = ∇ϕ(t0,x0)
|∇ϕ(t0,x0)| .

This means that both (γ1, u1) and (γ2, u2) solve (3.9) with the same initial conditions γ1(t0) =
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γ2(t0) = x0 and u1(t0) = u2(t0) = ∇ϕ(t0,x0)
|∇ϕ(t0,x0)| , yielding, by uniqueness of the solutions of (3.9),

that γ1 = γ2. �

To conclude this subsection, we prove that, when optimal trajectories are close enough to
the boundary, they always move towards the boundary, in the sense that the scalar product
between the direction of the trajectory and some normal direction is lower bounded by a
positive constant. To do so, we make use of the signed distance to ∂Ω, which is the function
d± : Rd → R defined for x ∈ Rd by

(3.12) d±(x) =

{
d(x, ∂Ω), if x /∈ Ω,

−d(x, ∂Ω), otherwise.

Recall that, thanks to (H4), d± is 1-Lipschitz on Rd, C1,1 in a neighborhood of the boundary,
and, if x ∈ ∂Ω, then ∇d±(x) is the outer normal to ∂Ω at x (see, e.g., [32]).

Proposition 3.21. There exist c > 0 (depending only on kmin, kmax, and λ) and δ > 0
(depending only on kmin, kmax, λ, diam(Ω), and the curvature of ∂Ω) such that, for every

(t0, x0) ∈ R+×
◦
Ω, if u is an optimal control for x0, at time t0, γ := γt0,x0,u is the corresponding

optimal trajectory, and τ0 := τ t0,x0,u, then, for every t ∈ [t0, t0 + τ0] such that d(γ(t), ∂Ω) ≤ δ,
one has

(3.13) ∇d±(γ(t)) · u(t) ≥ c.

In particular, if d(x0, ∂Ω) ≤ δ and ∇ϕ(t0, x0) exists, then ∇ϕ(t0, x0) 6= 0 and

(3.14) −∇d±(x0) · ∇ϕ(t0, x0)

|∇ϕ(t0, x0)|
≥ c.

Proof. Let p : [t0, t0 +τ0]→ Rd be a dual arc associated with γ. By Proposition 3.14, p is non-

zero and u is Lipschitz continuous on [t0, t0 + τ0], with u(t) = − p(t)
|p(t)| for every t ∈ [t0, t0 + τ0].

In particular, u(t0 +τ0) = µn−∇g(z)
|µn−∇g(z)| , where z, n, and µ are as in the statement of Proposition

3.13.

We first prove (3.13) at the final time t0 + τ0. Recalling that k(t0 + τ0, z)|∇g(z)− µn| = 1,
one has

1

k(t0 + τ0, z)2
= |∇g(z)− µn|2 = |∇g(z)|2 − 2µ∇g(z) · n + µ2,

and thus

(3.15) 2µ(µ−∇g(z) · n) =
1

k(t0 + τ0, z)2
− |∇g(z)|2 + µ2.

On the other hand, one also has that

1

k(t0 + τ0, z)
= |∇g(z)− µn| ≥ µ− |∇g(z)|,

and thus

µ ≤ 1

k(t0 + τ0, z)
+ |∇g(z)|.
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Combining this with (3.15), one gets that

µ−∇g(z) · n =

1
k(t0+τ0,z)2

− |∇g(z)|2 + µ2

2µ
>

1
k(t0+τ0,z)2

− |∇g(z)|2

2
(

1
k(t0+τ0,z)

+ |∇g(z)|
)

=
1

2

(
1

k(t0 + τ0, z)
− |∇g(z)|

)
≥ 1

2

(
1

kmax
− λ

)
> 0.

Hence, recalling that |µn−∇g(z)| = 1
k(t0+τ0,z)

≤ 1
kmin

, one obtains that

(3.16) ∇d±(z) · u(t0 + τ0) = n · µn−∇g(z)

|µn−∇g(z)|
=
µ−∇g(z) · n
|µn−∇g(z)|

≥ kmin

2

(
1

kmax
− λ

)
,

which corresponds to (3.13) at the final time t0 + τ0.

Now, let δ0 > 0 be such that d± is C1,1 on the set {x ∈ Rd : d(x, ∂Ω) ≤ δ0} and Ld > 0 be
a Lipschitz constant for ∇d± on this set. By Proposition 3.14, u is Lx-Lipschitz on [t0, t0 +τ0].
Take

c =
kmin

4

(
1

kmax
− λ

)
,

δ = min

{
δ0,

k2
min(1− λkmax)2

4kmax(1 + λkmax)(Ldkmax + Lx)

}
.

Let t ∈ [t0, t0 + τ0) be such that d(γ(t), ∂Ω) ≤ δ. By Proposition 3.3, u|[t,t0+τ0] is an optimal
control for γ(t), at time t, and thus, by Proposition 3.7, one obtains that

t0 + τ0 − t = τ t,γ(t),u|[t,t0+τ0] ≤ (1 + λkmax)δ

(1− λkmax)kmin
≤ kmin(1− λkmax)

4kmax(Ldkmax + Lx)
.

Hence, by the previous inequality and (3.16), one has

∇d±(γ(t)) · u(t) = ∇d±(z) · u(t0 + τ0) +
(
∇d±(γ(t))−∇d±(z)

)
· u(t)

+∇d±(z) · (u(t)− u(t0 + τ0))

≥ kmin

2

(
1

kmax
− λ

)
− Ld|γ(t)− z| − Lx|t0 + τ0 − t|

≥ kmin

2

(
1

kmax
− λ

)
− (Ldkmax + Lx)(t0 + τ0 − t)

≥ kmin

4

(
1

kmax
− λ

)
= c,

concluding the proof of (3.13).
Concerning the last part of the statement, notice that, as a consequence of Proposition

3.18 and the fact that ∇ϕ(t0, x0) exists, one deduces that p(t0) = ∇ϕ(t0, x0), yielding that

∇ϕ(t0, x0) 6= 0 and u(t0) = − ∇ϕ(t0,x0)
|∇ϕ(t0,x0)| . Hence (3.14) follows from (3.13). �

3.3. Sharp semi-concavity. In this subsection, we investigate the hypotheses under which
the value function ϕ of our exit-time optimal control problem is semi-concave with respect
to x. A semi-concavity result for autonomous exit-time optimal control problems is provided
in [17, Theorem 8.2.7] and, up to performing a classical state augmentation technique to
regard (3.1) as an autonomous system (which consists of considering z(t) = (t, γ(t)) as the
state), one can readily obtain the semi-concavity of ϕ with respect to (t, x) provided that
k ∈ C1,1(R+ × Ω).
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By looking at the proof of [17, Theorem 8.2.7], one can also notice that immediate adap-
tations of the proof allow one to obtain semi-concavity of ϕ with respect to x as soon as k is
C1,1 with respect to x and Lipschitz continuous in t. It turns out that, in our setting, we can
refine the proof of [17, Theorem 8.2.7] to show that semi-concavity of ϕ with respect to x can
be obtained under a weaker assumption on the behavior of k with respect to t, namely that
∂tk is lower bounded. This is the main result of this subsection, proved in Theorem 3.23.

We note that semi-concavity of ϕ is related not only to the regularity of k, but also to
the smoothness of the target ∂Ω. We also make use of the fact that the distance function

d(·,Rd \ Ω) is semi-concave in Ω, which is a consequence of (H4) (or more generally, a uniform
exterior ball condition on Ω). Notice that this distance function coincides with the value
function ϕ in the particular case k ≡ 1 and g ≡ 0, justifying the importance of its properties
in the proof of Theorem 3.23.

We first introduce the following estimates on the trajectories, which will be repeatedly used
in our analysis.

Proposition 3.22. Assume that (H2) and (H7) hold and let t0, t ∈ R+. Then there exists
c > 0, depending only on t− t0, Lx, and Lxx, such that, for every x0, x1 ∈ Ω and every control
u : [t0,∞)→ B̄(0, 1), one has

|γt0,x0,u(t)− γt0,x1,u(t)| ≤ c|x0 − x1|

and ∣∣∣γt0,x0,u(t) + γt0,x1,u(t)− 2γt0,
x0+x1

2
,u(t)

∣∣∣ ≤ c|x0 − x1|2.

Proposition 3.22 can be proved exactly as in [17, Lemma 7.1.2] and thus its proof is omitted
here.

To prove the semi-concavity of ϕ, we need to assume that (H1), (H2), (H3), (H4), (H5),
(H6), and (H7) are satisfied. In addition, we suppose that there exists a constant `t > 0 such
that, for every x ∈ Ω, t 7→ k(t, x) is absolutely continuous and, almost everywhere in t ∈ R+,

(H8) ∂tk ≥ −`t.

Moreover, we assume that

(H9) g is semi-concave on ∂Ω.

Then, we have the following result.

Theorem 3.23. The value function ϕ is semi-concave w.r.t. x, and its semi-concavity con-
stant depends only on λ, kmin, kmax, κ, Lx, Lxx, M , and `t, where κ is a bound on the
curvatures of ∂Ω and M is the semi-concavity constant of g.

Proof. Along this proof, c is used to denote positive constants depending only on λ, kmin,
kmax, κ, Lx, Lxx, M , and `t, and the value of these constants may change from one expression
to another. Some parts of this proof, in particular Case 1 and the first arguments in Case 2,
are treated exactly as in the corresponding parts of the proof of [17, Theorem 8.2.7], and we
only detail them here for the sake of completeness.

Let (t0, x) ∈ R+ × Ω. For simplicity of exposition, we suppose that t0 = 0. Let h ∈ Rd be
such that x − h, x + h ∈ Ω and u be an optimal control for x, at time 0. We consider the
trajectories γ0,x,u, γ0,x−h,u, and γ0,x+h,u, and split the proof into cases according to which of
these trajectories arrives first at ∂Ω.
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• Case 1: τ0 := τ0,x,u ≤ min{τ0,x−h,u, τ0,x+h,u}.
Since u is optimal for x, at time 0, it follows from Lemma 3.4) that

(3.17) ϕ(0, x− h) + ϕ(0, x+ h)− 2ϕ(0, x) ≤ ϕ(τ0, x
−) + ϕ(τ0, x

+)− 2g(γ0,x,u
τ ),

where

x+ := γ0,x+h,u(τ0) and x− := γ0,x−h,u(τ0).

Let u+, u− be two optimal controls for x+ and x−, at time τ0, respectively, and define

y± = γτ0,x
±,u±

τ and τ± := τ τ0,x
±,u± . Then

(3.18) ϕ(τ0, x
−) + ϕ(τ0, x

+)− 2g(γ0,x,u
τ ) = τ− + g(y−) + τ+ + g(y+)− 2g(γ0,x,u

τ ).

Yet, by Proposition 3.7, we have

(3.19) τ± ≤ cd(x±,Rd \ Ω).

As the distance function d(·,Rd \ Ω) is 1-Lipschitz, semi-concave in Ω̄, and its semi-concavity

constant is bounded by κ, and taking into account that γ0,x,u
τ ∈ ∂Ω, we obtain that

(3.20)

d(x+,Rd \ Ω) + d(x−,Rd \ Ω) = d(x+,Rd \ Ω) + d(x−,Rd \ Ω)− 2d

(
x+ + x−

2
,Rd \ Ω

)
+ 2

(
d

(
x+ + x−

2
,Rd \ Ω

)
− d(γ0,x,u

τ ,Rd \ Ω)

)
≤ c|x+ − x−|2 + |x+ + x− − 2γ0,x,u

τ | ≤ c|h|2,

where the last inequality follows from Proposition 3.22. On the other hand, from the assump-
tions on g, we have

g(y+) + g(y−)− 2g(γ0,x,u
τ ) = g(y+) + g(y−)− 2g

(
y+ + y−

2

)
+ 2

(
g

(
y+ + y−

2

)
− g(γ0,x,u

τ )

)
≤ c
(
|y+ − y−|2 + |y+ + y− − 2γ0,x,u

τ |
)
.

(3.21)

Yet,

|y+ − y−| ≤ |y+ − x+|+ |x+ − x−|+ |x− − y−| ≤ |y+ − x+|+ |x− − y−|+ c|h|.

In addition, we have

|y± − x±| =
∣∣∣∣∫ τ0+τ±

τ0

k(s, γτ0,x
±,u±(s))u±(s) ds

∣∣∣∣ ≤ kmaxτ
± ≤ c|h|2,

which implies that

(3.22) |y+ − y−| ≤ c|h|.

For the second term in (3.21), we have

(3.23) |y+ + y− − 2γ0,x,u
τ | ≤ |y+ − x+|+ |x+ + x− − 2γ0,x,u

τ |+ |x− − y−| ≤ c|h|2.

Consequently, inserting (3.22) and (3.23) into (3.21) and combining this with (3.17), (3.18),
(3.19), and (3.20), we conclude that

ϕ(0, x− h) + ϕ(0, x+ h)− 2ϕ(0, x) ≤ c|h|2.
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• Case 2: τ0 := τ0,x−h,u ≤ min{τ0,x,u, τ0,x+h,u}.
It suffices to treat this case to conclude the proof, since the other remaining case τ0,x+h,u ≤

min{τ0,x,u, τ0,x−h,u} is identical up to exchanging h and −h. Let

x0 = γ0,x−h,u(τ0), x1 = γ0,x,u(τ0), x2 = γ0,x+h,u(τ0).

By Lemma 3.4, we have

(3.24) ϕ(0, x− h) + ϕ(0, x+ h)− 2ϕ(0, x) ≤ ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0),

By Proposition 3.3, u is also an optimal control starting from x1, at time τ0, with τ1 :=
τ τ0,x1,u = τ0,x,u − τ0. As x0 ∈ ∂Ω, then, by Propositions 3.7 and 3.22, we get that

(3.25) τ1 ≤ cd(x1,Rd \ Ω) ≤ c|x1 − x0| ≤ c|h|.
Let u? be the control defined for t ≥ τ0 by u?(t) := u( t+τ02 ) and consider the trajectory

γτ0,x2,u
?
. We split the remainder of the proof into two cases requiring separate analyses.

• Case 2(a): τ1 <
ττ0,x2,u

?

2 .
By Lemma 3.4,

(3.26) ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0) ≤ ϕ(τ0 + 2τ1, z2) + g(x0)− 2g(z1),

where z1 = γτ0,x1,uτ ∈ ∂Ω and z2 = γτ0,x2,u
?
(τ0 + 2τ1). Let v be an optimal control for z2, at

time τ0 + 2τ1, and set w2 = γτ0+2τ1,z2,v
τ . Then, by Proposition 3.7, we have

ϕ(τ0 + 2τ1, z2) + g(x0)− 2g(z1) = τ τ0+2τ1,z2,v + g(w2) + g(x0)− 2g(z1)

≤ cd(z2,Rd \ Ω) + g(w2) + g(x0)− 2g(z1)

= cd(z2,Rd \ Ω) + g(w2) + g(x0)

− 2g

(
x0 + w2

2

)
+ 2

(
g

(
x0 + w2

2

)
− g(z1)

)
.

From (H3) & (H9), we infer that

(3.27) ϕ(τ0 + 2τ1, z2) + g(x0)− 2g(z1) ≤ c
[
d(z2,Rd \ Ω) + |w2 − x0|2 + |x0 + w2 − 2z1|

]
.

Yet, using Proposition 3.22, we have

(3.28) |w2 − x0| ≤ |w2 − z2|+ |z2 − x2|+ |x2 − x0| ≤ |w2 − z2|+ |z2 − x2|+ c|h|.
In addition, by Proposition 3.7, one has

(3.29)
|w2 − z2| =

∣∣∣∣∫ τ0+2τ1+ττ0+2τ1,z2,v

τ0+2τ1

k

(
s, γτ0+2τ1,z2,v(s)

)
v(s) ds

∣∣∣∣
≤ kmaxτ

τ0+2τ1,z2,v ≤ cd(z2,Rd \ Ω).

In the same way, we have, using (3.25), that

(3.30) |z2 − x2| =
∣∣∣∣∫ τ0+2τ1

τ0

k

(
s, γτ0,x2,u

?
(s)

)
u?(s) ds

∣∣∣∣ ≤ 2kmaxτ1 ≤ c|h|.

Moreover,

(3.31) |x0 + w2 − 2z1| ≤ |x0 + z2 − 2z1|+ |w2 − z2|.
Hence, inserting (3.29) and (3.30) into (3.28), and again (3.29) into (3.31), it follows from
(3.24), (3.26), and (3.27) that the proof of Case 2(a) is completed if one shows that

(3.32) d(z2,Rd \ Ω) + |x0 + z2 − 2z1| ≤ c|h|2.
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Note that

(3.33) d(z2,Rd \ Ω) ≤ |z2 − 2z1 + x0|+ d(2z1 − x0,Rd \ Ω).

Yet,

d(2z1 − x0,Rd \ Ω) = d(2z1 − x0,Rd \ Ω) + d(x0,Rd \ Ω)− 2d(z1,Rd \ Ω),

as x0, z1 ∈ ∂Ω. Hence, by the semi-concavity of the distance function d(·,Rd \ Ω) in Ω̄,

d(2z1 − x0,Rd \ Ω) ≤ c|z1 − x0|2.

Now, using Proposition 3.22, we have

(3.34) |z1 − x0| ≤ |z1 − x1|+ |x1 − x0| ≤ c|h|

since, by (3.25), we have

(3.35) |z1 − x1| =
∣∣∣∣∫ τ0+τ1

τ0

k

(
s, γτ0,x1,u(s)

)
u(s) ds

∣∣∣∣ ≤ kmaxτ1 ≤ c|h|.

Then d(2z1−x0,Rd \ Ω) ≤ c|h|2. Hence, by (3.33), in order to prove (3.32), it suffices to show
that

(3.36) |z2 − 2z1 + x0| ≤ c|h|2.

Let n be the unit outward normal vector at z1 and let w := u(τ0 + τ1) = − ∇g(z1)−µn
|∇g(z1)−µn| be

the unit optimal control vector at z1, at time τ0 + τ1 (where µ is the unique constant so that
k(τ0 + τ1, z1)|∇g(z1)− µn| = 1; see Lemma 3.12). If d = 1, then there exists α ∈ R such that
2z1 − x0 − z2 = αn. Otherwise, for d ≥ 2, notice that, by Proposition 3.21, n · w ≥ c > 0,
which shows that n and w are not orthogonal, and thus there exists a unit vector e orthogonal
to w such that

(3.37) 2z1 − x0 − z2 = αn + βe.

We also write (3.37) when d = 1 using the convention e = 0 for this case. Notice that

|n|2 ≥ |n · w|2 + |n · e|2, and thus

(3.38) 1− |n · e|2 ≥ c.

We have

(2z1 − x0 − z2) · n = α+ βe · n,
(2z1 − x0 − z2) · e = αe · n + β.

Then, (
(2z1 − x0 − z2) · n
(2z1 − x0 − z2) · e

)
=

(
1 e · n

e · n 1

)(
α
β

)
or equivalently, (

α
β

)
=

(
1 e · n

e · n 1

)−1(
(2z1 − x0 − z2) · n
(2z1 − x0 − z2) · e

)
.

Thus

(3.39) |2z1 − x0 − z2| ≤ |α|+ |β| ≤
2

1− (e · n)2

(
|(2z1 − x0 − z2) · n|+ |(2z1 − x0 − z2) · e|

)
,
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where the denominator can be estimated thanks to (3.38). We note that

z2 − 2z1 + x0

= x0 + x2 − 2x1 +

∫ τ0+2τ1

τ0

k(s, γτ0,x2,u
?
(s))u?(s) ds− 2

∫ τ0+τ1

τ0

k(s, γτ0,x1,u(s))u(s) ds

= x0 + x2 − 2x1 +

∫ τ0+2τ1

τ0

k(s, γτ0,x2,u
?
(s))u

(
s+ τ0

2

)
ds− 2

∫ τ0+τ1

τ0

k(s, γτ0,x1,u(s))u(s) ds

= x0 + x2 − 2x1 + 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds.

Hence,

(z2 − 2z1 + x0) · e = (x0 + x2 − 2x1) · e

+ 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · eds.(3.40)

Yet, from Proposition 3.22, we have

|(x0 + x2 − 2x1) · e| ≤ |x0 + x2 − 2x1| ≤ c|h|2.
To estimate the second term in (3.40), we first observe that, since u is Lx-Lipschitz continuous
by Proposition 3.14, we have, for all s ∈ [τ0, τ0 + τ1],

(3.41) |u(s)− w| = |u(s)− u(τ0 + τ1)| ≤ c(τ0 + τ1 − s) ≤ c|h|
using (3.25). This implies that

|u(s) · e| = |(u(s)− w) · e| ≤ c|h|.
Hence, using again (3.25), we get∣∣∣∣∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · eds

∣∣∣∣
≤ 2kmax

∫ τ0+τ1

τ0

|u(s) · e| ds ≤ c|h|τ1 ≤ c|h|2.

Consequently,

|(z2 − 2z1 + x0) · e| ≤ c|h|2.
To complete the proof of (3.36), it now suffices, by (3.39), to show that

|(2z1 − x0 − z2) · n| ≤ c|h|2.
We have

(2z1 − x0 − z2) · n = (z1 − x0) · n + (z1 − z2) · n.
Let d± be defined by (3.12) and recall that d± is C1,1 in a neighborhood of ∂Ω. Hence, we
have

d±(x0) = d±(z1) +∇d±(z1) · (x0 − z1) +O(|z1 − x0|2).

As x0, z1 ∈ ∂Ω and ∇d±(z1) = n, we get

(x0 − z1) · n = O(|z1 − x0|2).

Yet, by (3.34), |z1 − x0| ≤ c|h|. Then

|(z1 − x0) · n| ≤ c|h|2.
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Moreover, notice that

(3.42) |z2 − z1| ≤ |z2 − x2|+ |x2 − x1|+ |x1 − z1| ≤ c|h|
by (3.30), Proposition 3.22, and (3.35). We have

d±(z2) = d±(z1) +∇d±(z1) · (z2 − z1) +O(|z2 − z1|2).

As z2 ∈ Ω and z1 ∈ ∂Ω, we get

−n · (z2 − z1) +O(|z2 − z1|2) ≥ 0.

Then (3.42) implies that

(z1 − z2) · n ≥ −c|h|2.
Consequently,

|(2z1 − x0 − z2) · n| ≤ (2z1 − x0 − z2) · n + c|h|2.
To complete the proof of Case 2(a), we are now left to prove that

(2z1 − x0 − z2) · n ≤ c|h|2.
As in (3.40),

(2z1 − x0 − z2) · n = − (x0 + x2 − 2x1) · n

− 2

∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · n ds.

From Proposition 3.22, we get again that

−(x0 + x2 − 2x1) · n ≤ |x0 + x2 − 2x1| ≤ c|h|2.
For the second term, we have

(3.43) −
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · n ds

= −
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(s) · n ds

−
∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · n ds.

From (H2), we have

(3.44)

∣∣∣∣∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · n ds

∣∣∣∣
≤ c

∫ τ0+τ1

τ0

|γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)| ds.

Yet, by Proposition 3.22, one has

(3.45)

∣∣∣∣γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)

∣∣∣∣
=

∣∣∣∣x2 +

∫ 2s−τ0

τ0

k(t, γτ0,x2,u
?
(t))u?(t) dt− x1 −

∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

∣∣∣∣
≤ |x2 − x1|+

∫ 2s−τ0

τ0

k(t, γτ0,x2,u
?
(t)) dt+

∫ s

τ0

k(t, γτ0,x1,u(t)) dt

≤ c|h|+ 3kmax(s− τ0).
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Hence, we get by (3.25) that∣∣∣∣∫ τ0+τ1

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) · n ds

∣∣∣∣
≤ c

∫ τ0+τ1

τ0

(|h|+ (s− τ0)) ds ≤ c|h|2.

We are left to consider the first term of the right-hand side of (3.43). Recalling that w ·n ≥ c
by Proposition 3.21, we finally obtain, using (H8), (3.25), and (3.41), that

−
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(s) · n ds

= −
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
w · n ds

−
∫ τ0+τ1

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
(u(s)− w) · n ds

≤
∫ τ0+τ1

τ0

∫ 2s−τ0

s
−kt(t, γτ0,x2,u

?
(2s− τ0))w · n dtds+ c|h|2 ≤ c(τ2

1 + |h|2) ≤ c|h|2.

• Case 2(b): τ2 := τ τ0,x2,u
? ≤ 2τ1.

Set

z1 := γτ0,x1,uτ , z2 := γτ0,x2,u
?

τ ∈ ∂Ω.

Recall that, by (3.24), it suffices to estimate ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0). Using Lemma 3.4
and (H9), we have

(3.46)

ϕ(τ0, x2)− 2ϕ(τ0, x1) + g(x0)

≤ τ2 + g(z2)− 2τ1 − 2g(z1) + g(x0)

= τ2 − 2τ1 + 2

(
g

(
x0 + z2

2

)
− g(z1)

)
+ g(z2) + g(x0)− 2g

(
x0 + z2

2

)
≤ τ2 − 2τ1 + 2

(
g

(
x0 + z2

2

)
− g(z1)

)
+ c|z2 − x0|2.

Using Proposition 3.22, we obtain that

(3.47) |z2 − x0| ≤ |z2 − x2|+ |x2 − x0| ≤ |z2 − x2|+ c|h|.

Yet, using (3.25),

(3.48) |z2 − x2| =
∣∣∣∣∫ τ0+τ2

τ0

k(s, γτ0,x2,u
?
(s))u?(s) ds

∣∣∣∣ ≤ 2kmaxτ1 ≤ c|h|.

On the other hand, using (H9), we have

(3.49) g

(
x0 + z2

2

)
− g(z1) ≤ 1

2
∇g(z1) · (x0 + z2 − 2z1) +O(|x0 + z2 − 2z1|2).
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But it is clear that

|x0 + z2 − 2z1| ≤ |x0 + x2 − 2x1|+ 2

∫ τ0+τ1

τ0

|k(s, γτ0,x1,u(s))u(s)| ds

+

∫ τ0+τ2

τ0

|k(s, γτ0,x2,u
?
(s))u?(s)|ds,

which implies, using Proposition 3.22 and (3.25), that

(3.50) |x0 + z2 − 2z1| ≤ c|h|2 + 4kmaxτ1 ≤ c|h|.

So, inserting (3.48) into (3.47) and (3.50) into (3.49), we conclude from (3.24) and (3.46) that
the proof of Case 2(b) is completed if one shows that

τ2 − 2τ1 +∇g(z1) · (x0 + z2 − 2z1) ≤ c|h|2.

Let n be the unit outward normal vector at z1. If d = 1, there exists α ∈ [−λ, λ] such that
∇g(z1) = αn. Otherwise, for d ≥ 2, there exist a unit vector e orthogonal to n and α, β ∈ R
such that

(3.51) ∇g(z1) = αn + βe.

We write (3.51) also when d = 1 by setting e = 0 in this case. Notice that α2 + β2 =

|∇g(z1)|2 ≤ λ2. We have

∇g(z1) · (x0 + z2 − 2z1) = (αn + βe) · (x0 + z2 − 2z1)

= αn · (x0 + z2 − 2z1) + βe · (x0 + z2 − 2z1).

Similarly to (3.34) and (3.42) from Case 2(a), one can show that

|x0 − z1|+ |z1 − z2| ≤ c|h|.

From (H4) and the fact that x0, z1, z2 ∈ ∂Ω, we infer that

αn · (x0 + z2 − 2z1) ≤ c|h|2.

We are now left to prove that

τ2 − 2τ1 + βe · (x0 + z2 − 2z1) ≤ c|h|2.

Set

z := γτ0,x1,u
(
τ0 +

τ2

2

)
.

Then, one has

τ2 − 2τ1 + βe · (x0 + z2 − 2z1) = τ2 − 2τ1 + βe · (x0 + z2 − 2z) + 2βe · (z − z1).

Let us observe that

|z − z1| =
∣∣∣∣∫ τ0+τ1

τ0+
τ2
2

k(s, γτ0,x1,u(s))u(s) ds

∣∣∣∣ ≤ kmax

(
τ1 −

τ2

2

)
.

Using kmax|β| ≤ kmaxλ < 1, we infer that

τ2 − 2τ1 + βe · (x0 + z2 − 2z) + 2βe · (z − z1) ≤ βe · (x0 + z2 − 2z).

So, the aim, now, is to prove that

(3.52) βe · (x0 + z2 − 2z) ≤ c|h|2.
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Let us observe that

(3.53) x0 + z2 − 2z

= x0 + x2 − 2x1 − 2

∫ τ0+
τ2
2

τ0

k(s, γτ0,x1,u(s))u(s) ds+

∫ τ0+τ2

τ0

k(s, γτ0,x2,u
?
(s))u?(s) ds

= x0 + x2 − 2x1 − 2

∫ τ0+
τ2
2

τ0

k(s, γτ0,x1,u(s))u(s) ds+

∫ τ0+τ2

τ0

k(s, γτ0,x2,u
?
(s))u

(
s+ τ0

2

)
ds

= x0 + x2 − 2x1 + 2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds

= x0 + x2 − 2x1 + 2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(s) ds

+ 2

∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds.

Recall that, by Proposition (3.22),

(3.54) |x2 + x0 − 2x1| ≤ c|h|2.

From (H2) and proceeding as in (3.44) and (3.45), we infer that∣∣∣∣∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds

∣∣∣∣
≤ c

∫ τ0+
τ2
2

τ0

∣∣∣∣γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)

∣∣∣∣ ds,
and, by Proposition 3.22, ∣∣∣∣γτ0,x2,u?(2s− τ0)− γτ0,x1,u(s)

∣∣∣∣
=

∣∣∣∣x2 +

∫ 2s−τ0

τ0

k(t, γτ0,x2,u
?
(t))u?(t) dt− x1 −

∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

≤ |x2 − x1|+
∣∣∣∣∫ 2s−τ0

τ0

k(t, γτ0,x2,u
?
(t))u?(t) dt

∣∣∣∣+

∣∣∣∣∫ s

τ0

k(t, γτ0,x1,u(t))u(t) dt

∣∣∣∣
≤ c|h|+ 3kmax(s− τ0).

Consequently, we get

(3.55)

∣∣∣∣∫ τ0+
τ2
2

τ0

(
k(s, γτ0,x2,u

?
(2s− τ0))− k(s, γτ0,x1,u(s))

)
u(s) ds

∣∣∣∣ ≤ c|h|2.
On the other hand, using the fact from Proposition 3.14 that u is Lx-Lipschitz continuous,
we get that

(3.56)

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(s) ds
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=

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(τ0 + τ1) ds

+

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
(u(s)− u(τ0 + τ1)) ds

≤
∫ τ0+

τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(τ0 + τ1) ds+ c|h|2.

We recall that

u(τ0 + τ1) = − ∇g(z1)− µn

|∇g(z1)− µn|
and k(τ0 + τ1, z1)|∇g(z1)− µn| = 1,

and so, using (H8) and (3.25), we get
(3.57) ∫ τ0+

τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
u(τ0 + τ1) · βeds

= − k(τ0 + τ1, z1)β2

∫ τ0+
τ2
2

τ0

(
k(2s− τ0, γ

τ0,x2,u?(2s− τ0))− k(s, γτ0,x2,u
?
(2s− τ0))

)
ds

= k(τ0 + τ1, z1)β2

∫ τ0+
τ2
2

τ0

∫ 2s−τ0

s
−kt(t, γτ0,x2,u

?
(2s− τ0)) dt ds ≤ c|h|2.

We then obtain (3.52) by combining (3.53), (3.55), (3.56), and (3.57). �

We finish this section by a remark on the importance of assuming (H8).

Remark 3.24. One can give an example showing that a lower bound on the derivative of
the dynamic k with respect to t is a sharp condition to obtain semi-concavity of ϕ. To see
that, let Ω be the unit ball in Rd. Let κ be a differentiable real function with 0 < κmin ≤ κ ≤
κmax < +∞. Set k(t, x) := κ(t), for every (t, x) ∈ R+ × Ω. For a given x ∈ Ω, the optimal
trajectory for x, at time 0, will be given by

γ′(s) = k(s, γ(s))e(x) = κ(s)e(x),

where e(x) := x/|x|. Let ϕ be the value function associated with this optimal control problem.
We observe easily that ∫ ϕ(0,x)

0
κ(s) ds = 1− |x|.

Now, set

G(T ) :=

∫ T

0
κ(s) ds, for all T ≥ 0

and H := G−1. This yields that

ϕ(0, x) = H(1− |x|).
Consequently, we have

∇2ϕ(0, x) = H ′′(1− |x|)e(x)⊗ e(x)− H ′(1− |x|)
|x|

(I − e(x)⊗ e(x)),

where

H ′ =
1

κ
◦H and H ′′ = − κ

′

κ3
◦H.

This shows that ∇2ϕ cannot be bounded from above unless κ′ is bounded from below.
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3.4. Differentiability of the value function. We prove in this section an extra result on
our exit-time optimal control problem, namely that the value function ϕ is differentiable along
optimal trajectories. This kind of result is classical (see [17]) and one can even obtain more
(for instance, in [16] smoothness of the value function in a neighborhood of optimal trajectories
is proven under some suitable conditions). Yet, most of the literature is concerned with the
autonomous case (see in particular [17]), which motivates us to provide a detailed proof here
dealing with the subtleties of our non-autonomous setting.

The results of this subsection will be of use in Section 4.1 in order to obtain the con-
tinuity equation in (4.7). They require a result stronger than Theorem 3.23, namely the
semi-concavity of ϕ on both variables (t, x), and not only on x. We then need the stronger
assumption that

(H10) k ∈ C1,1(R+ × Ω).

Remark 3.25. The sharper assumption (H8) will be of use in Section 4.3 when studying
a less regular MFG model. Its study is carried out by an approximation procedure, with
approximated dynamics kε ∈ C1,1(R+ × Ω) for ε > 0 but with no uniform bounds on their
C1,1 behavior, except for an uniform lower bound on ∂tkε, which is the motivation for (H8).
Since the differentiability of ϕ along optimal trajectories plays no particular role in this ap-
proximation procedure, one may assume the stronger assumption (H10) for the purposes of
this section.

Our first result concerns the semi-concavity of ϕ on (t, x).

Proposition 3.26. Under assumptions (H1), (H3), (H4), (H9), and (H10), the value function
ϕ is semi-concave on R+ × Ω.

Proof. We apply the classical semi-concavity result from [17, Theorem 8.2.7] to the augmented

system z′ = k̃(z, u), where z = (t, γ) and k̃ is given by k̃(z, u) = (1, k(z)u). �

As a consequence of the semi-concavity of ϕ on R+ × Ω and the standard properties of
semi-concave functions recalled in Proposition 2.2, one obtains the following result.

Proposition 3.27. Let c > 0 be the constant from Corollary 3.11. Let (t0, x0) ∈ R+×
◦
Ω and

assume that ∇ϕ(t0, x0) exists. Then |∇ϕ(t0, x0)| ≥ c.

Notice that this improves the result of Corollary 3.11 concerning ∇ϕ, since one does not
assume differentiability of ϕ on (t0, x0) in the statement of Proposition 3.27, but only the
existence of ∇ϕ.

Proof. By Proposition 3.8, ϕ is Lipschitz continuous on R+×Ω, and hence it is differentiable
almost everywhere. Then there exists sequences (tn)n∈N∗ in R+ and (xn)n∈N∗ in Ω such that
ϕ is differentiable at (tn, xn) for every n ∈ N∗ and tn → t0 and xn → x0 as n → ∞. In
particular, one has |∇ϕ(tn, xn)| ≥ c for every n ∈ N.

Let pn = Dϕ(tn, xn). Since ϕ is Lipschitz continuous, pn is bounded, and hence, up to the
extraction of a subsequence, pn converges to some p = (pt, px) ∈ R×Rd. Then p ∈ D?ϕ(t0, x0)
and thus px ∈ Πx(D?ϕ(t0, x0)) ⊂ Πx(D+ϕ(t0, x0)) ⊂ ∇+ϕ(t0, x0) = {∇ϕ(t0, x0)}. Hence
|∇ϕ(t0, x0)| = |px| = limn→∞|∇ϕ(tn, xn)| ≥ c, as required. �

Another consequence of the semi-concavity of ϕ is the following.

Proposition 3.28. Let γ be an optimal trajectory for x0, at time t0, and u be the associated
optimal control. If ϕ is differentiable at (t0, x0), then ϕ is differentiable at (t, γ(t)), for all
t ∈ [t0, t0 + τ0), where τ0 = τ t0,x0,u.
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Proof. Fix t ∈ [t0, t0 +τ0). If ϕ is differentiable at (t0, x0), then the subdifferential ∇−ϕ(t0, x0)
is a singleton, say ∇−ϕ(t0, x0) = {p0}. Now, let p be a solution of (3.11) with initial condition
p(t0) = p0. By Proposition 3.19, p(t) ∈ ∇−ϕ(t, γ(t)), which implies, in particular, that
∇−ϕ(t, γ(t)) 6= ∅. On the other hand, as ϕ is semi-concave, then D+ϕ(t, γ(t)) 6= ∅ and
so, ∇+ϕ(t, γ(t)) 6= ∅. Hence, ϕ is differentiable with respect to x at (t, γ(t)). Now, take
(pt, px) ∈ D+ϕ(t, γ(t)). Then, px = ∇ϕ(t, γ(t)). Yet, by Proposition 3.6, we have

(3.58) − pt + k(t, γ(t))|px| = 1,

which implies that pt is uniquely determined by ∇ϕ(t, γ(t)). Consequently, D+ϕ(t, γ(t)) is
a singleton and so, ϕ is differentiable at (t, γ(t)) (thanks again to the semi-concavity of the
value function ϕ). �

Remark 3.29. The proof of Proposition 3.28 cannot be extended to include the final time
t0 + τ0 as (3.58) does not hold a priori at the endpoint of an optimal trajectory.

Proposition 3.30. Let t0, x0, γ, u, τ0, and p be as in Proposition 3.19. Fix t1 ∈ (t0, t0 + τ0)
and set x1 := γ(t1). Suppose that p(t1) ∈ Πx(D?ϕ(t1, x1)), then p(t) ∈ Πx(D?ϕ(t, γ(t))), for
all t ∈ [t1, t0 + τ0].

Proof. If p(t1) ∈ Πx(D?ϕ(t1, x1)), then there is a sequence (t1,n, x1,n) ∈ R+ × Ω such that
t1,n → t1, x1,n → x1 and ϕ is differentiable at (t1,n, x1,n) with ∇ϕ(t1,n, x1,n) → p(t1). As
ϕ is differentiable at (t1,n, x1,n), then, by Proposition 3.28, ϕ is differentiable at (t, γn(t)),
for all t ∈ [t1,n, t1,n + τ1,n), where γn is an optimal trajectory for x1,n, at time t1,n, and
τ1,n = τ t1,n,x1,n,un , un being the optimal control associated with γn. Let pn be the solution of

(3.59)

{
p′n(t) = −∇k(t, γn(t))un(t) · pn(t), t ∈ [t1,n, t1,n + τ1,n],

pn(t1,n) = ∇ϕ(t1,n, x1,n).

By Proposition 3.19, we have pn(t) = ∇ϕ(t, γn(t)) for all t ∈ [t1,n, t1,n + τ1,n). Yet, it is clear,
from Lemma 3.16 & Proposition 3.17, that un → u and γn → γ uniformly, where u is the
unique optimal control for x1, at time t1, and γ is its associated optimal trajectory. So, we
also have pn → p uniformly. Now, fix t ∈ [t1, t0 + τ0] and let (tn)n be any sequence such
that tn ∈ (t1,n, t1,n + τ1,n), for all n, and tn → t. As pn(tn) = ∇ϕ(tn, γn(tn)), we get that
p(t) = limn∇ϕ(tn, γn(tn)), which means that p(t) ∈ Πx(D?ϕ(t, γ(t))). �

We are now ready to prove the main result of this subsection.

Theorem 3.31. Given (t0, x0) ∈ R+ × Ω, let γ : [t0, t0 + τ0] → Ω be an optimal trajectory
for x0, at time t0, where τ0 = τ t0,x0,u; u being the associated optimal control. Then, ϕ is
differentiable at all points (t, γ(t)), with t ∈ (t0, t0 + τ0).

Proof. Let us argue by contradiction and suppose that D+ϕ(t, γ(t)) is not a singleton for some
t ∈ (t0, t0 + τ0). Then, thanks to Proposition 2.2, D?ϕ(t, γ(t)) contains at least two elements,
say (pt,0, px,0) and (pt,1, px,1). Yet, from Proposition 3.6, we see that different elements of
D?ϕ(t, γ(t)) have different space components, i.e. px,0 6= px,1. For any θ ∈ (0, 1), we have
(1− θ)(pt,0, px,0) + θ(pt,1, px,1) ∈ D+ϕ(t, γ(t)) and so, recalling again Proposition 3.6, one has

−pt,0 + k(t, γ(t))|px,0| − 1 = 0,

−pt,1 + k(t, γ(t))|px,1| − 1 = 0,

and

−(1− θ)pt,0 − θpt,1 + k(t, γ(t))|(1− θ)px,0 + θpx,1| − 1 = 0.
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Hence, we have

(3.60) |(1− θ)px,0 + θpx,1| = (1− θ)|px,0|+ θ|px,1|,
which implies that px,1 = αpx,0, for some α > 0, α 6= 1. Now, let p0 and p1 be the solutions of
(3.11), associated with the optimal (γ, u), with initial condition p0(t) = px,0 and p1(t) = px,1,
respectively. Then p1 = αp0. In particular, we have p1(t0 + τ0) = αp0(t0 + τ0). Yet, by
Proposition 3.30, we know that both p0(t0+τ0) and p1(t0+τ0) belong to Πx(D?ϕ(t0+τ0, γ(t0+
τ0))). As ϕ(t, x) = g(x) at every (t, x) ∈ R+ × ∂Ω, then ϕ is differentiable with respect to t
on R+ × ∂Ω and, ∂tϕ = 0. This implies that Πt(D

?ϕ(t0 + τ0, γ(t0 + τ0))) = {0}. Hence, we
obtain, using Proposition 3.6, that if q0, q1 ∈ Πx(D?ϕ(t0 + τ0, γ(t0 + τ0))), then |q0| = |q1|.
This implies that |p0(t0 + τ0)| = |p1(t0 + τ0)| = α|p0(t0 + τ0)|, which is a contradiction as
α 6= 1. Hence, ϕ is differentiable at (t, γ(t)), for all t ∈ (t0, t0 + τ0). �

Remark 3.32. Contrarily to other classical results on the differentiability of the value func-
tion along optimal trajectories such as [17, Theorem 8.4.6], we cannot conclude the proof of
Theorem 3.31 using only local information on the superdifferential at the point (t, γ(t)). The
main conclusion we obtain from local information is (3.60), which allows us to deduce that
px,0 and px,1 are colinear and point to the same direction. In order to obtain the desired
contradiction, we need to propagate this information to the boundary, using Proposition 3.30,
and exploit the additional information that ∂tϕ vanishes on ∂Ω in order to conclude.

As a consequence of Propositions 3.13 & 3.18 and Theorem 3.31, one can characterize an
optimal control u in terms of the normalized gradient, with respect to x, of the value function
ϕ.

Corollary 3.33. Let (t0, x0) ∈ R+ × Ω and γ = γt0,x0,u be an optimal trajectory for x0,
at time t0, where u is the associated optimal control. Then, for all t ∈ (t0, t0 + τ0), where
τ0 := τ t0,x0,u, one has

(3.61) γ′(t) = −k(t, γ(t))
∇ϕ(t, γ(t))

|∇ϕ(t, γ(t))|
.

Our final result of this section provides a converse to Corollary 3.33, proving that any
solution of (3.61) is an optimal trajectory, and also that such solutions are unique for almost
every initial condition.

Proposition 3.34. Fix (t0, x0) ∈ R+ × Ω and let γ : [t0,+∞)→ Rd be an absolutely contin-
uous function satisfying, for almost every t ∈ [t0,+∞),

(3.62)
γ′(t) =

−k(t, γ(t))
∇ϕ(t, γ(t))

|∇ϕ(t, γ(t))|
, if γ(t) ∈

◦
Ω,

0, otherwise,

γ(t0) = x0.

Then γ is an optimal trajectory for x0 at time t0. Moreover, for every t0 ∈ R+ and for a.e.
x0 ∈ Ω, (3.62) admits a unique solution γ.

Proof. Let t ≥ t0 be such that (3.62) holds at t. So, this implies, in particular, that ϕ is
differentiable with respect to x at (t, γ(t)). Thanks to Proposition 3.26, we infer that ϕ is also
differentiable with respect to t. This follows from the fact that if (pt, px) ∈ D?ϕ(t, γ(t)) then,
using Proposition 3.5, pt is uniquely determined by px = ∇ϕ(t, γ(t)). Then D?ϕ(t, γ(t)) is a
singleton, which implies, by Proposition 2.2, that D+ϕ(t, γ(t)) is also a singleton.
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Hence, we have

− d

dt
ϕ(t, γ(t)) = −∂tϕ(t, γ(t))−∇ϕ(t, γ(t)) · γ′(t) = −∂tϕ(t, γ(t)) + k(t, γ(t))|∇ϕ(t, γ(t))| = 1.

Integrating the above inequality over [t0, t0 + τ t0,x0,u] we finally obtain, since ϕ(t0 + τ t0,x0,u,

γt0,x0,uτ ) = g(γt0,x0,uτ ) where u is the control associated with γ,

ϕ(t0, x0) = τ t0,x0,u + g(γt0,x0,uτ ).

Therefore u is optimal.

For a given t0 ∈ R+, x 7→ ϕ(t0, x) is Lipschitz continuous by Proposition 3.8, and then
∇ϕ(t0, x0) exists for almost every x0 ∈ Ω. The last statement of the proposition is then a
direct consequence of Proposition 3.20. �

4. Optimal-exit mean field games

After the preliminary study of the corresponding optimal control problem in Section 3, we
are ready to consider in this section the mean field game model treated in this paper, which
we briefly recall. Let Ω ⊂ Rd be compact and k : P(Ω) × Ω → R+ and g : ∂Ω → R+ be
continuous (recall that P(Ω) is endowed with the topology of weak convergence of measures).
We consider the mean field game in which agents evolve in Ω, their distribution at time t
being given by a probability measure ρt ∈ P(Ω). We assume the initial distribution ρ0 to be
known. The goal of each agent is to leave Ω through its boundary ∂Ω minimizing the sum
of their exit time with the cost g(z) at their exit position z ∈ ∂Ω. The speed of an agent at
the position x at time t is assumed to be bounded by k(ρt, x), which means that, for a given
agent, their trajectory γ satisfies |γ′(t)| ≤ k(ρt, γ(t)), and thus depends on the distribution
of all agents ρt. On the other hand, the distribution of the agents ρt itself depends on how
agents choose their trajectories γ. We are interested here in equilibrium situations, i.e., in
situations where, starting from a time evolution of the density of agents ρ : R+ → P(Ω), the
trajectories γ chosen by agents induce an evolution of the initial distribution of agents ρ0 that
is precisely given by ρ.

In this section, we first provide a precise definition of equilibrium and prove existence of
equilibria, obtaining as well a system of PDEs, called the MFG system, satisfied by the time-
dependent measure ρt and the value function of the corresponding optimal control problem.
We then prove that, if ρ0 is absolutely continuous with Lp density, the same holds for ρt for
t ≥ 0, with a control on its Lp norm. Finally, thanks to these Lp estimates, we extend the
result of existence of equilibria and the corresponding MFG system to a case where k is less
regular.

4.1. Existence of equilibria and the MFG system. In order to provide the definition
of equilibrium used in this paper, let us introduce some notation. Let Γ = C(R+,Ω). For a
given γ ∈ Γ, we define its arrival time at ∂Ω by

τγ := inf{s ≥ 0 : γ(s) ∈ ∂Ω},
and, if τγ < +∞, we write

γτ := γ(τγ) ∈ ∂Ω.

Given ρ : R+ → P(Ω) and x ∈ Ω, we define the set Γ[ρ, x] of admissible trajectories from x by

Γ[ρ, x] :=
{
γ ∈ Γ : γ(0) = x, |γ′(s)| ≤ k(ρs, γ(s)) for a.e. s ∈ (0, τγ),

and γ′(s) = 0 for every s > τγ
}
.
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With these definitions, one can write the optimal control problem solved by each agent of the
mean field game as

(4.1) inf{J(γ) : γ ∈ Γ[ρ, x]},

where

J(γ) =

{
τγ + g(γτ ) if τγ < +∞,

+∞ otherwise.

Remark 4.1. If γ ∈ Γ[ρ, x], then there is a measurable control u : R+ → B̄(0, 1) such that

(4.2)

{
γ′(t) = k(ρt, γ(t))u(t), for a.e. t,

γ(0) = x.

System (4.2) can be seen as a control system under the form (3.1) where the dynamic is given

by k̃(t, x) = k(ρt, x) for every (t, x) ∈ R+ × Ω. This point of view allows one to formulate
(4.1) as an optimal control problem when ρ is fixed.

Remark 4.2. Due to the interaction between agents stemming from k, which may be non-
local, the behavior of players who have not yet arrived at ∂Ω may be influenced by the players
who already arrived. However, after arriving at ∂Ω, players are no longer submitted to the
minimization criterion (4.1), and thus their trajectory γ might in principle be arbitrary after
their arrival time τγ . The condition that γ′(s) = 0 for every s > τγ is imposed on admissible
trajectories γ in order to avoid ambiguity.

The above choice leads to a concentration of agents on the boundary, which is quite artificial
from a modeling point of view. For this reason, one may consider, for modeling purposes,
that, for k given by (1.1), the function ψ is a cut-off function, equal to 1 everywhere on Ω
except on a neighborhood of ∂Ω and vanishing at ∂Ω together with all its derivatives. In
this way, the interaction term does not take into account agents who already left Ω. Notice,
however, that such assumptions on k are not necessary for the results proved in this paper.

We use in this paper a relaxed notion of MFG equilibrium based on a Lagrangian for-
mulation, following the ideas in [9, 15, 20, 24, 58], for which we give existence result. Such a
formulation consists of replacing curves of probability measures on Ω with measures on arcs
in Ω. For any t ∈ R+, we denote by et : Γ→ Ω the evaluation map defined by

et(γ) = γ(t), for all γ ∈ Γ.

For any η ∈ P(Γ), we define the curve ρη of probability measures on Ω as

ρη(t) = (et)#η, for all t ∈ R+.

Since et : Γ→ Ω is continuous, we observe that, if ηn, η ∈ P(Γ), n ≥ 1, are such that ηn ⇀ η,
then ρηn(t) ⇀ ρη(t) for all t ∈ R+. For any fixed ρ0 ∈ P(Ω), we denote by Pρ0(Γ) the set of
all Borel probability measures η on Γ such that (e0)#η = ρ0. Notice that Pρ0(Γ) is nonempty,
since it contains j#ρ0, where j : Ω → Γ is the continuous map defined by j(x)(t) = x for all
t ∈ R+. For all x ∈ Ω and η ∈ Pρ0(Γ), we define the set Γ′[ρη, x] of optimal trajectories from
x by

Γ′[ρη, x] :=

{
γ ∈ Γ[ρη, x] : J(γ) = min

Γ[ρη ,x]
J

}
.

We also find it useful to introduce the set Γkmax of kmax-Lipschitz trajectories γ ∈ Γ, i.e.,

Γkmax = {γ ∈ Γ : |γ′(t)| ≤ kmax for a.e. t ∈ R+}.
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Recall that Γkmax is a compact subset of Γ, and, for every η ∈ P(Γ) and x ∈ Ω, one has
Γ′[ρη, x] ⊂ Γ[ρη, x] ⊂ Γkmax .

The definition of equilibrium used in this paper is the following.

Definition 4.3. Let ρ0 ∈ P(Ω). We say that η ∈ Pρ0(Γ) is a MFG equilibrium for ρ0 if

spt(η) ⊂
⋃
x∈Ω

Γ′[ρη, x].

Let us state the assumptions used to guarantee existence of equilibria. The function k :
P(Ω)× Ω → R+ is assumed to be continuous. It is reasonable to suppose that k is bounded
from above, since it is not natural to assume that an agent’s speed might approach +∞. For
simplicity, and in order to affirm that there is at least one admissible trajectory γ starting
from a point x that reaches the boundary in finite time, we also suppose that k is bounded
from below. Hence, as in Section 3, we assume that k satisfies (H1). We also suppose that
the counterpart of (H2) holds, namely,
(H11)
∃Lx > 0 such that |k(µ, x0)− k(µ, x1)| ≤ Lx|x0 − x1| for all x0, x1 ∈ Ω, µ ∈ P(Ω).

Notice that (H1) and (H11) are satisfied for (1.1) if V : R+ → (0,+∞) and χ : Rd → R+ are
Lipschitz continuous and ψ : Rd → R+ is continuous. Moreover, we suppose, as in Section
3, that g : ∂Ω → R+ satisfies (H3). In particular, from Proposition 3.2, we infer that (4.1)
reaches a minimum.

We can now state our result on the existence of equilibria.

Theorem 4.4. Let ρ0 ∈ P(Ω), k : P(Ω)×Ω→ R+ be continuous, g : ∂Ω→ R+, and assume
that (H1), (H3), and (H11) hold. Then there exists a MFG equilibrium for ρ0.

The proof of Theorem 4.4 is based on the same fixed-point strategy used in [15,58]. Notice
that the above theorem is slightly stronger than [58, Theorem 5.1] since existence of equilibria
is obtained under weaker assumptions. For this reason, and also for the sake of completeness,
we provide a detailed proof of Theorem 4.4. The first step is the following property of the
map (η, x) 7→ Γ′[ρη, x].

Lemma 4.5. Let ρ0, k, and g be as the statement of Theorem 4.4. Let (ηn)n be a sequence
in Pρ0(Γ), (xn)n a sequence in Ω, and (γn)n a sequence in Γ such that γn ∈ Γ′[ρηn , xn] for
every n ∈ N and ηn ⇀ η, xn → x, and γn → γ̄ for some η ∈ Pρ0(Γ), x ∈ Ω, and γ̄ in Γ. Then
γ̄ ∈ Γ′[ρη, x]. Consequently, (η, x) 7→ Γ′[ρη, x] has a closed graph.

Proof. We set, for simplicity, τn := τγn and zn := γn(τn). Using Proposition 3.7, (τn)n is
bounded and, up to extracting a subsequence, τn converges to some τ̄ . On the other hand,
we see easily that γ̄ is kmax-Lipschitz continuous. In addition, for a.e. t ∈ (0, τn), we have
|γ′n(t)| ≤ k(ρηn(t), γn(t)). Letting n → +∞, we get that |γ̄′(t)| ≤ k(ρη(t), γ̄(t)) for a.e.
t ∈ (0, τ̄). In the same way, one can prove that γ̄′(t) = 0 for all t > τ̄ . Moreover, we have
zn → γ̄(τ̄), which implies that γ̄(τ̄) ∈ ∂Ω and τ := τγ̄ ≤ τ̄ . Notice that γ̄ ∈ Γ[ρη, x] if and
only if τ = τ̄ .

Define the trajectory γ ∈ Γ[ρη, x] by

γ(t) =

{
γ̄(t), if t ≤ τ,
γ̄(τ), if t > τ.

Notice that, by Lemma 3.1, J(γ) ≤ τ̄ + g(γ̄(τ̄)), with a strict inequality if and only if τ < τ̄ .
Suppose, to obtain a contradiction, that γ̄ /∈ Γ′[ρη, x]. Then there exists a trajectory γ̂ ∈
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Γ′[ρη, x] such that J(γ̂) < τ̄ + g(γ̄(τ̄)); indeed, this follows by the definition of Γ′[ρη, x] if
τ = τ̄ or by the fact that γ ∈ Γ[ρη, x] and J(γ) < τ̄ + g(γ̄(τ̄)) if τ < τ̄ .

For each n ∈ N, let γ̃n : [0, |xn − x|]→ Rd be the segment from xn to x with |γ̃′n(t)| = 1 for
every t ∈ [0, |xn − x|]. Let φn : [k−1

min|xn − x|,+∞)→ R+ be a function satisfying

(4.3)

φ
′
n(t) =

k(ρηn(t), γ̂(φn(t)))

k(ρη(φn(t)), γ̂(φn(t)))
,

φn(k−1
min|xn − x|) = 0.

Define γ̂n : R+ → Rd by

γ̂n(t) =

{
γ̃n(kmint) if t ∈ [0, k−1

min|xn − x|],
γ̂(φn(t)) otherwise.

One has γ̂n(φ−1
n (τγ̂)) = γ̂(τγ̂), and thus τγ̂n ≤ φ−1

n (τγ̂). Hence, by Lemma 3.1,

(4.4) τγ̂n + g
(
γ̂n(τγ̂n)

)
≤ φ−1

n (τγ̂) + g
(
γ̂n
(
φ−1
n (τγ̂)

))
= φ−1

n (τγ̂) + g(γ̂τ ).

We modify γ̂n on the interval (τγ̂n ,+∞) by setting γ̂n(t) = γ̂n(τγ̂n) for t > τγ̂n . This modifi-
cation does not change τγ̂n and one has now γ̂n ∈ Γ[ρηn , xn]. In particular, (4.4) reads

(4.5) J(γ̂n) ≤ φ−1
n (τγ̂) + g(γ̂τ ).

Since (φn)n and (φ−1
n )n are equi-Lipschitz sequences, it follows from Arzelà–Ascoli Theorem

that, up to extracting subsequences, there exists a bi-Lipschitz function φ : R+ → R+ such
that φn → φ and φ−1

n → φ−1 uniformly on compact sets of R+. In addition, it is easy to check
by integrating (4.3) that, for all t ∈ [k−1

min|xn − x|,+∞),∫ φn(t)

0
k(ρη(s), γ̂(s)) ds =

∫ t

k−1
min|xn−x|

k(ρηn(s), γ̂(φn(s))) ds.

So, letting n→ +∞, we get, for all t ∈ R+,∫ φ(t)

0
k(ρη(s), γ̂(s)) ds =

∫ t

0
k(ρη(s), γ̂(φ(s))) ds.

Set

G(θ) =

∫ θ

0
k(ρη(s), γ̂(s)) ds, ∀θ ∈ R+.

Then G : R+ → R+ is a bi-Lipschitz bijection and, for t ∈ R+,

|φ(t)− t| =
∣∣∣∣G−1

(∫ t

0
k(ρη(s), γ̂(φ(s))) ds

)
−G−1

(∫ t

0
k(ρη(s), γ̂(s)) ds

)∣∣∣∣
≤ C

∫ t

0
|k(ρη(s), γ̂(φ(s)))− k(ρη(s), γ̂(s))| ds

≤ C
∫ t

0
|φ(s)− s|ds.

By Grönwall’s lemma, we get that φ(t) = t for all t ∈ R+. Passing to the limit in (4.5), we
get

(4.6) lim sup
n

J(γ̂n) ≤ τγ̂ + g(γ̂τ ) = J(γ̂) < τ̄ + g(γ̄(τ̄)).
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Yet,
lim
n
J(γn) = lim

n
τn + g(zn) = τ̄ + g(γ̄(τ̄)).

Using (4.6), we infer that, for n large enough,

J(γ̂n) < J(γn),

which is a contradiction, as γ̂n ∈ Γ[ρηn , xn] and γn ∈ Γ′[ρηn , xn]. Then γ̄ ∈ Γ′[ρη, x]. �

Remark 4.6. As a consequence of Lemma 4.5, for a given η ∈ Pρ0(Γ), the graph G of the map
x 7→ Γ′[ρη, x] is closed in Ω×Γ. Since Γ′[ρη, x] ⊂ Γkmax , G is compact, since it is a closed subset
of the compact set Ω×Γkmax . Hence, the set

⋃
x∈Ω Γ′[ρη, x], which is the projection of G onto

Γ, is also compact, and, in particular, a measure η̃ ∈ P(Γ) satisfies spt(η̃) ⊂
⋃
x∈Ω Γ′[ρη, x] if

and only if η̃
[⋃

x∈Ω Γ′[ρη, x]
]

= 1.
In particular, one can reformulate Definition 4.3 in an equivalent way by saying that η ∈

Pρ0(Γ) is a MFG equilibrium for ρ0 if

η

[⋃
x∈Ω

Γ′[ρη, x]

]
= 1,

i.e., if for η-a.e. γ̄ ∈ Γ, we have

J(γ̄) ≤ J(γ), for all γ ∈ Γ[ρη, γ̄(0)].

We now reformulate the notion of equilibrium as a fixed point problem, in order to prove
Theorem 4.4 using a fixed-point argument. We introduce the set-valued map E : Pρ0(Γ) ⇒
Pρ0(Γ) given, for η ∈ Pρ0(Γ), by

E(η) =

{
η̃ ∈ Pρ0(Γ) : spt(η̃) ⊂

⋃
x∈Ω

Γ′[ρη, x]

}
.

It follows immediately that η ∈ Pρ0(Γ) is a MFG equilibrium for ρ0 if and only if η ∈ E(η),
which is precisely the definition of fixed point for a set-valued map. We will therefore prove
Theorem 4.4 by showing that E admits a fixed point using Kakutani’s Theorem (see, e.g., [40,
§7, Theorem 8.6], [51]), whose assumptions we verify in the next lemma.

Lemma 4.7. Let ρ0, k, and g be as the statement of Theorem 4.4. Then

(a) for any η ∈ Pρ0(Γ), E(η) is a nonempty convex set; and
(b) E : Pρ0(Γ) ⇒ Pρ0(Γ) has a closed graph.

Proof. To prove (a), fix η ∈ Pρ0(Γ). Using Remark 4.6, one immediately verifies that E(η)
is convex. To see that it is nonempty, notice that, by Lemma 4.5 and [8, Theorem 8.1.3],
the map x 7→ Γ′[ρη, x] has a Borel measurable selection γγγη : x 7→ γηx ∈ Γ′[ρη, x], and one
immediately verifies that γγγη#ρ0 ∈ E(η).

Now, to prove (b), let (ηn)n and (η̂n)n be sequences in Pρ0(Γ) and η, η̂ ∈ Pρ0(Γ) such
that η̂n ∈ E(ηn) for every n ∈ N, ηn ⇀ η, and η̂n ⇀ η̂. For k ∈ N?, let Vk := {γ ∈ Γ :
d(γ,

⋃
x Γ′[ρη, x]) ≤ 1

k}. Notice that the graph G of the set-valued map η̃ 7→
⋃
x Γ′[ρη̃, x] is

the projection onto Pρ0(Γ) × Γ of the graph of the set-valued map from Lemma 4.5, and
thus, since Ω is compact, G is closed. Then, using [8, Proposition 1.4.8], it follows that there
exists a neighborhood W of η such that

⋃
x Γ′[ρη̃, x] ⊂ Vk for every η̃ ∈W . Then, for n large

enough,
⋃
x Γ′[ρηn , x] ⊂ Vk. Since η̂n(

⋃
x Γ′[ρηn , x]) = 1, one obtains that η̂n(Vk) = 1, for large

n. Yet, η̂n ⇀ η̂ and Vk is closed, hence it follows that η̂(Vk) ≥ lim supn η̂n(Vk) = 1 and thus,
η̂(Vk) = 1. As this holds for every k ∈ N?, one concludes that η̂(

⋃
x Γ′[ρη, x]) = 1. Hence

η̂ ∈ E(η), which proves that the graph of E is closed. �
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Remark 4.8. The set Pρ0(Γkmax) is a compact convex subset of Pρ0(Γ). Indeed, the convexity
of Pρ0(Γkmax) follows immediately. As for compactness, if (ηk)k is a sequence in Pρ0(Γkmax),
then, since Γkmax is compact, (ηk)k is tight, and so, by Prokhorov’s Theorem, one finds a
subsequence which converges weakly to some probability measure η ∈ Pρ0(Γkmax).

Notice that, by the definition of E, we have

E(η) ⊂ Pρ0(Γkmax), for all η ∈ Pρ0(Γ).

In particular, any fixed point of E belongs to Pρ0(Γkmax). We will thus restrict our domain
of interest to Pρ0(Γkmax) with no loss of generality, denoting hereafter by E the restriction
E|Pρ0 (Γkmax ). Notice that Lemma 4.7 still holds for this restriction. One can now complete
the proof of Theorem 4.4.

Proof of Theorem 4.4. Lemma 4.7 guarantees that the set-valued map E has a closed graph
and E(η) is a nonempty convex set for any η ∈ Pρ0(Γkmax). Since, by Remark 4.8, Pρ0(Γkmax)
is a nonempty compact convex set, all assumptions of Kakutani’s Theorem are satisfied and
thus there exists η ∈ Pρ0(Γkmax) such that η ∈ E(η), i.e., η is a MFG equilibrium for ρ0. �

Now that existence of a MFG equilibrium η ∈ Pρ0(Γ) has been established, we wish to prove
that, similarly to most mean field game models, the corresponding time-dependent measure
ρt = ρη(t) satisfies, together with the value function ϕ of the corresponding optimal control
problem, a system of PDEs, known as MFG system, composed of a continuity equation under
the form ∂tρ +∇ · (ρv) = 0 for some velocity field v and a Hamilton–Jacobi equation on ϕ.
The Hamilton–Jacobi equation on ϕ is the one from Proposition 3.5, and one can easily obtain
that ρ satisfies some continuity equation (for instance, by proving that t 7→ ρt is Lipschitz
continuous with respect to the Wasserstein distance Wp for p > 1, as in [58, Proposition
5.2(a)], and then applying [7, Theorem 8.3.1]). The main point here is to identify the velocity
field of the continuity equation. To do so, we shall use the results from Section 3.4, which in
particular require assumption (H10). We then introduce the following notion.

Definition 4.9. Let k : P(Ω)×Ω→ R+ be continuous, g : ∂Ω→ R+, ρ0 ∈ P(Ω), and assume
that (H1), (H3), and (H11) hold. We say that k is C1,1 on MFG equilibria for ρ0 if, for every
MFG equilibrium η ∈ Pρ0(Γ) for ρ0, the function (t, x) 7→ k(ρη(t), x) is C1,1 on R+ × Ω.

To motivate this definition, we prove that the function k given by (1.1) is C1,1 on MFG
equilibria under suitable regularity assumptions on V , χ, ψ, ∂Ω, and g.

Proposition 4.10. Let V ∈ C1,1(R+, (0,+∞)) be Lipschitz continuous, χ ∈ C1,1(Rd,R+),
ψ ∈ C1,1(Rd,R+), k : P(Ω)×Rd → R+ be given by (1.1), kmax = supR+×Ω k, and ρ0 ∈ P(Ω).
Suppose that ψ(x) = 0 and ∇ψ(x) = 0 for every x ∈ ∂Ω, (H4) holds, and g : ∂Ω → R+

satisfies (H3) and (H6). Then k is C1,1 on MFG equilibria for ρ0.

Proof. Notice first that k : P(Ω)× Rd → R+ is continuous and satisfies (H1) and (H11). Let
ρ0 ∈ P(Ω), η ∈ Pρ0(Γkmax) be a MFG equilibrium for ρ0, and ρt = ρη(t) for t ≥ 0. Let

κ : R+ × Rd → R+ be given by

κ(t, x) =

∫
Ω
χ(x− y)ψ(y) dρt(y).

Since V ∈ C1,1(R+, (0,+∞)), it suffices to prove that κ ∈ C1,1(R+ × Rd,R+).
Set Γ′ =

⋃
x∈Ω Γ′[ρη, x] ⊂ Γkmax . Since η is a MFG equilibrium, one has η(Γ′) = 1. Notice

that

κ(t, x) =

∫
Γ′
χ(x− γ(t))ψ(γ(t)) dη(γ),
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and, since every γ ∈ Γ′ is kmax-Lipschitz, one obtains that (t, x) 7→ k(ρt, x) is Lipschitz
continuous.

For (t, x) ∈ R+ × Rd,

∇κ(t, x) =

∫
Ω
∇χ(x− y)ψ(y) dρt(y) =

∫
Γ′
∇χ(x− γ(t))ψ(γ(t)) dη(γ),

and this function can be easily seen to be Lipschitz continuous on R+×Rd. In particular, the
function (t, x) 7→ k(ρt, x) satisfies (H5) and (H7). Hence, the results of Section 3.2 apply to
the optimal control problem (4.1), and, in particular, by Proposition 3.14, one obtains that
γ ∈ C1,1([0, τγ ],Ω) for every γ ∈ Γ′.

For every γ ∈ Γ′, the function t 7→ χ(x − γ(t))ψ(γ(t)) is differentiable everywhere on R+,
except possibly at t = τγ , with

d

dt

[
χ(x− γ(t))ψ(γ(t))

]
= −∇χ(x− γ(t)) · γ′(t)ψ(γ(t)) + χ(x− γ(t))∇ψ(γ(t)) · γ′(t).

Since ψ(x) = 0 and ∇ψ(x) = 0 for x ∈ ∂Ω and γ(t) ∈ ∂Ω for t = τγ , one can also prove
that the above function is differentiable and its derivative is zero at t = τγ . Moreover, its
derivative is Lipschitz continuous and upper bounded, and thus ∂tκ(t, x) exists, with

∂tκ(t, x) =

∫
Γ′

[
−∇χ(x− γ(t)) · γ′(t)ψ(γ(t)) + χ(x− γ(t))∇ψ(γ(t)) · γ′(t)

]
dη(γ),

and one immediately verifies using the previous assumptions that ∂tκ is Lipschitz continuous
in R+×Rd. Together with the corresponding property for ∇κ, we obtain that κ ∈ C1,1(R+×
Rd,R+). �

We now show that, for every MFG equilibrium η, ρη and the corresponding value function
satisfy a MFG system.

Theorem 4.11. Let k : P(Ω)×Ω→ R+ be continuous, g : ∂Ω→ R+, ρ0 ∈ P(Ω), and assume
that (H1), (H3), (H4), (H9), and (H11) hold. Suppose that k is C1,1 on MFG equilibria for
ρ0. Let η ∈ Pρ0(Ω) be a MFG equilibrium for ρ0, ρ = ρη, and ϕ be the value function of
the optimal control problem (4.1) with dynamic (t, x) 7→ k(ρt, x). Then (ρ, ϕ) solve the MFG
system

(4.7)



∂tρ(t, x)−∇ ·
(
ρ(t, x)k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|

)
= 0, (t, x) ∈ (0,∞)×

◦
Ω,

− ∂tϕ(t, x) + k(ρt, x)|∇ϕ(t, x)| − 1 = 0, (t, x) ∈ R+ × Ω,

ϕ(t, x) = g(x), (t, x) ∈ R+ × ∂Ω,

ρ(0, x) = ρ0(x), x ∈ Ω,

where the first and second equations are satisfied, respectively, in the sense of distributions
and in the viscosity sense.

Proof. The second equation in (4.7) and the corresponding boundary condition have already
been established in Proposition 3.5. We are left to prove that ρ satisfies the continuity equation
in (4.7).

Let φ ∈ C∞c ((0,∞) ×
◦
Ω) and set Γ′ =

⋃
x∈Ω Γ′[ρη, x]. Then, recalling Theorem 3.31 and

Corollary 3.33, we have

−
∫ +∞

0

∫
Ω
∂tφ(t, x) dρt(x) dt+

∫ +∞

0

∫
Ω
k(ρt, x)∇φ(t, x) · ∇ϕ(t, x)

|∇ϕ(t, x)|
dρt(x) dt
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= −
∫ +∞

0

∫
Γ′
∂tφ(t, γ(t)) dη(γ) dt+

∫ +∞

0

∫
Γ′
k(ρt, γ(t))∇φ(t, γ(t)) · ∇ϕ(t, γ(t))

|∇ϕ(t, γ(t))|
dη(γ) dt

= −
∫ +∞

0

∫
Γ′
∂tφ(t, γ(t)) dη(γ) dt−

∫ +∞

0

∫
Γ′
∇φ(t, γ(t)) · γ′(t) dη(γ) dt

= −
∫

Γ′

∫ +∞

0

d

dt

[
φ(t, γ(t))

]
dtdη(γ) = 0. �

4.2. Lp estimates. Recall that our motivation for the mean field game model in this paper
comes from crowd motion, where a reasonable expression for k is (1.1). In order to apply the
existence result from Theorem 4.4 to this setting, one should require the function ψ in (1.1)
to be at least continuous. On the other hand, as stated in Remark 4.2, agents concentrate on
the boundary. A reasonable feature of our model would be to assume that agents do not take
into account in their congestion term other agents that have already left the domain, which
can be done by assuming that ψ(x) = 0 for x ∈ ∂Ω. However, due to the continuity of ψ,
this implies that agents that are too close to the boundary, but have not yet left, will also be
somehow discounted.

From a modeling point of view, an interesting choice would be to take ψ = 1 ◦
Ω

, but this yields

a function k that is discontinuous on measures µ such that µ(∂Ω) > 0, and the arguments used
in the proof of Theorem 4.4 do not apply. On the other hand, one may still expect to have
existence of equilibria, at least when ρ0 is absolutely continuous with respect to the Lebesgue
measure. The goal of this section and the following is to establish a result on the existence of
equilibria in this setting. We first prove that, as soon as ρ0 is absolutely continuous and with
an Lp density, ρt| ◦

Ω
is also absolutely continuous and with an Lp density, with a control on

the Lp norm that is, in some sense, independent of ψ. This will be a key result for the proof
of existence of an equilibrium with ψ = 1 ◦

Ω
in Section 4.3, which is based on a limit argument

on a sequence ψε converging to 1 ◦
Ω

as ε→ 0.

The control of the Lp norm we prove in this section depends essentially on the semi-
concavity constant of the value function ϕ at equilibrium. On the other hand, for k given
by (1.1), it follows from Theorem 3.23 that, for uniformly bounded functions ψ, the semi-
concavity constant of ϕ may depend on ψ only through a lower bound on ∂tk. We then start
by proving that, for reasonable choices of ψ, one can obtain a lower bound on ∂tk independent
of ψ. We shall consider as reasonable choices of ψ those belonging to the class Ψδ defined for
δ > 0 by

Ψδ = {ψ : Rd → [0, 1] | ∃α ∈ C1,1(R, [0, 1]) such that α is non-increasing,

α(x) = 0 for x ≥ 0, α′(0) = 0, α(x) = 1 for x ≤ −δ,
and ψ(x) = α(d±(x))}.

Proposition 4.12. Let V ∈ C1,1(R+, (0,+∞)) be Lipschitz continuous and non-increasing,
χ ∈ C1,1(Rd,R+) be Lipschitz continuous, and g : ∂Ω→ R+ satisfy (H3) and (H6). Suppose
also that (H4) holds. Then there exist C, δ > 0 such that, for every ψ ∈ Ψδ, if k is given by

(1.1) and η is a MFG equilibrium, defining k̃ by k̃(t, x) = k(ρη(t), x), one has

∂tk̃(t, x) ≥ −C, ∀(t, x) ∈ R+ × Ω.

Proof. Notice first that, for every δ > 0 small enough, d± is C1,1 in a closed δ-neighborhood
of ∂Ω, and thus one has ψ ∈ C1,1(Rd,R+) for every ψ ∈ Ψδ. Then, by Proposition 4.10, k is
C1,1 on MFG equilibria.



SHARP SEMI-CONCAVITY AND Lp ESTIMATES IN AN OPTIMAL-EXIT MFG 37

Let M > 0 be such that supx,y∈Ω χ(x − y) ≤ M and supx,y∈Ω|∇χ(x − y)| ≤ M . Let

V ′ = − infx∈[0,M ] V
′(x) ≥ 0 and V = supx∈[0,M ] V (x) > 0. Let c > 0 and δ > 0 be as in the

statement of Proposition 3.21. Notice that, for every δ > 0, ψ ∈ Ψδ, x ∈ Ω, and µ ∈ P(Ω),
one has

∫
Ω χ(x− y)ψ(y) dµ(y) ≤M , and then k(µ, x) ≤ V .

Let ψ ∈ Ψδ, k be given by (1.1), η be a MFG equilibrium, and k̃ be defined from k as in
the statement. Let κ : R+ × Rd → R+ be given by

κ(t, x) =

∫
Ω
χ(x− y)ψ(y) dρt(y).

Notice that k̃(t, x) = V (κ(t, x)) and κ(t, x) ∈ [0,M ] for every (t, x) ∈ R+ × Ω. Since V is
non-increasing and V ′(κ(t, x)) ≥ −V ′ for every (t, x) ∈ R+ × Ω, the proposition is proved if
one obtains an upper bound on ∂tκ(t, x).

Let α ∈ C1,1(R, [0, 1]) be a non-increasing function with α(x) = 0 for x ≥ 0, α(x) = 1 for
x ≤ −δ, α′(0) = 0, and ψ(x) = α(d±(x)) for x ∈ Rd. As in the proof of Proposition 4.10, κ is
C1,1 and

(4.8) ∂tκ(t, x) =

∫
Γ′

[
−∇χ(x− γ(t)) · γ′(t)ψ(γ(t)) + χ(x− γ(t))∇ψ(γ(t)) · γ′(t)

]
dη(γ),

where Γ′ =
⋃
x∈Ω Γ′[ρη, x] ⊂ Γkmax . For every γ ∈ Γ′, one has |γ′(t)| ≤ V . On the other hand,

denoting by u the optimal control associated with γ, one has

(4.9) ∇ψ(γ(t)) · γ′(t) = k(t, γ(t))∇ψ(γ(t)) · u(t) = k(t, γ(t))α′(d±(γ(t)))∇d±(γ(t)) · u(t).

If d(γ(t), ∂Ω) > δ, then α′(d±(γ(t))) = 0 and thus ∇ψ(γ(t)) · γ′(t) = 0. Otherwise, by
Proposition 3.21, one has ∇d±(γ(t)) · u(t) ≥ c, and, since α′(x) ≤ 0 for every x ∈ R, one has
∇ψ(γ(t)) · γ′(t) ≤ 0. It then follows from (4.8) and (4.9) that

∂tκ(t, x) ≤MV ,

providing the required upper bound. �

Our main result of this section is the following.

Theorem 4.13. Let p ∈ (1,+∞], k : P(Ω) × Ω → R+ be continuous, g : ∂Ω → R+,
and assume that (H1), (H3), (H4), (H9), and (H11) hold. Suppose that k is C1,1 on MFG
equilibria. Let ρ0 ∈ P(Ω), η ∈ Pρ0(Ω) be a MFG equilibrium for ρ0, ρ = ρη, and ϕ be the
value function of the optimal control problem (4.1) with dynamic (t, x) 7→ k(ρt, x). There

exists C > 0 such that, if ρ0 is absolutely continuous and ρ0 ∈ Lp(
◦
Ω), then, for every t ≥ 0,

ρt| ◦
Ω

is absolutely continuous, ρt ∈ Lp(
◦
Ω), and

(4.10) ‖ρt‖
Lp(
◦
Ω)
≤ C‖ρ0‖

Lp(
◦
Ω)
.

Moreover, C depends only on λ, kmin, kmax, diam(Ω), a bound κ on the curvature of ∂Ω, Lx,
Lxx, `t, the semi-concavity constant of g, and the semi-concavity constant w.r.t. x of the value
function ϕ.

Before proving Theorem 4.13, we need the following auxiliary results.

Lemma 4.14. Let O ⊂ Rd be a bounded open set, α : O → R be a semi-concave function with
semi-concavity constant C ≥ 0, and β : Rd → R be a C2 convex function with ∇β Lipschitz
continuous and bounded by some constant C ′ ≥ 0. Then ∇β ◦ ∇α is a function of locally
bounded variation and ∇ · (∇β ◦ ∇α) ≤ CC ′ in the sense of distributions.
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Proof. Since α is semi-concave with semi-concavity constant C, ∇α : O → Rd is a function of
locally bounded variation and ∇2α ≤ C in the sense of measures (see, e.g., [17, Proposition
1.1.3 and Theorem 2.3.1]). Then, by [6, Theorem 3.96], ∇β ◦ ∇α is a function of locally
bounded variation, with

∇(∇β ◦ ∇α) = ξ∇2α

and ξ : O →Md(R) given by

ξ(x) =

∫ 1

0
∇β(t∇α+(x) + (1− t)∇α−(x)) dt,

where ∇α+ and ∇α− have their usual definitions at jump points (see, e.g., [6, Section 3.6])
and are defined at points x ∈ O where ∇α is approximately continuous by setting ∇α+(x) =
∇α−(x) = ∇α(x). In particular, since β is convex, ∇β(y) is a positive semidefinite matrix
for every y ∈ Rd, and then ξ(x) is also positive semidefinite for every x ∈ O and bounded by

C ′. Then ξ(x) admits a positive semidefinite square root
√
ξ(x), bounded by

√
C ′, and one

has, in the sense of distributions,

∇ · (∇β ◦ ∇α) = Tr(ξ∇2α) = Tr(
√
ξ∇2α

√
ξ) ≤ CC ′,

as required. �

Lemma 4.15. Let β ∈ C∞(Rd,R+) be such that spt(β) ⊂ B(0, 1), infx∈B(0,1/2) β(x) > 0, and∫
Rd β(x) dx = 1. For ε > 0, let βε ∈ C∞(Rd,R+) be defined by βε(x) = ε−dβ(xε ). Then

inf
x∈Ω
ε∈(0,1]

∫
B(x,ε)∩Ω

βε(x− y) dy > 0.

Proof. Let β = infx∈B(0,1/2) β(x) > 0. Notice that, for every ε > 0, if x ∈ Rd is such that

|x| < ε/2, then βε(x) ≥ ε−dβ. Hence, for every x ∈ Ω and ε > 0, one has∫
B(x,ε)∩Ω

βε(x− y) dy ≥
∫
B(x, ε

2
)∩Ω

βε(x− y) dy ≥ βε−d Leb
(
B
(
x,
ε

2

)
∩ Ω

)
,

where Leb denotes the Lebesgue measure in Rd. Thus, it suffices to prove that

(4.11) inf
x∈Ω
ε∈(0,1]

ε−d Leb
(
B
(
x,
ε

2

)
∩ Ω

)
> 0.

Let (xn)n∈N and (εn)n∈N be sequences in Ω and (0, 1], respectively, such that

lim
n→∞

ε−dn Leb
(
B
(
xn,

εn
2

)
∩ Ω

)
= inf

x∈Ω
ε∈(0,1]

ε−d Leb
(
B
(
x,
ε

2

)
∩ Ω

)
.

Up to extracting subsequences, there exist x∗ ∈ Ω and ε∗ ∈ [0, 1] such that xn → x∗ and
εn → ε∗ as n→∞.

Let us consider first the case x∗ ∈
◦
Ω. If ε∗ > 0, then

lim
n→∞

ε−dn Leb
(
B
(
xn,

εn
2

)
∩ Ω

)
= ε−d∗ Leb

(
B
(
x∗,

ε∗
2

)
∩ Ω

)
,

and there exists ε′ ∈ (0, ε∗] such that B(x∗, ε
′/2) ⊂ Ω, in which case

ε−d∗ Leb
(
B
(
x∗,

ε∗
2

)
∩ Ω

)
≥ ε−d∗ Leb

(
B

(
x∗,

ε′

2

))
> 0,
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and (4.11) holds. If ε∗ = 0, then, for n large enough, B(xn, εn/2) ⊂ Ω, and thus

lim
n→∞

ε−dn Leb
(
B
(
xn,

εn
2

)
∩ Ω

)
= lim

n→∞
ε−dn Leb

(
B
(
xn,

εn
2

))
= 2−dvd > 0,

where vd is the volume of the d-dimensional unit ball. Hence (4.11) holds.
Consider now the case x∗ ∈ ∂Ω. For x ∈ Rd, r > 0, and ω ∈ Sd−1, let

P (x, r, ω) =

{
y ∈ B(x, r) : (y − x) · ω > 1

2
|y − x|

}
.

Notice that Leb(P (x, r, ω)) = rd Leb(P (0, 1, ω′)) for every x ∈ Rd, r > 0, and ω, ω′ ∈ Sd−1.
Let v′d = Leb(P (0, 1, ω)), which is positive and independent of ω ∈ Sd−1. If ε∗ = 0, we claim
that, for n large enough,

(4.12) P
(
xn,

εn
2
,−∇d±(xn)

)
⊂ Ω.

Indeed, let U be a neighborhood of ∂Ω such that d± is C1,1 on U . For n large enough,
one has B(xn, εn/2) ⊂ U , and in particular ∇d±(y) exists (and is a unit vector) for every
y ∈ B(xn, εn/2). Let Ld be a Lipschitz constant for ∇d±. For y ∈ P (xn,

εn
2 ,−∇d

±(xn)), one
has

d±(y) ≤ d±(xn) +∇d±(xn) · (y − xn) + Ld|y − xn|2

≤ −1

2
|y − xn|+ Ld|y − xn|2

≤ −1

2
(1− Ldεn)|y − xn|.

For n large enough, one has 1−Ldεn > 0, and thus d±(y) ≤ 0, i.e., y ∈ Ω. Hence (4.12) holds.
Then, since P (xn, εn/2,−∇d±(xn)) ⊂ B(xn, εn/2), one has

lim
n→∞

ε−dn Leb
(
B
(
xn,

εn
2

)
∩ Ω

)
≥ lim sup

n→∞
ε−dn Leb

(
P
(
xn,

εn
2
,−∇d±(xn)

))
= 2−dv′d > 0,

yielding (4.11). Finally, if ε∗ > 0, one can prove similarly that P (x∗, ε
′/2,−∇d±(x∗)) ⊂ Ω for

some ε′ ∈ (0, ε∗], yielding that the infimum in (4.11) is lower bounded by (ε′/ε∗)
dv′d, and thus

(4.11) holds. �

Proof of Theorem 4.13. Let T = 1+λkmax
1−λkmax

k−1
min supx∈Ω d(x, ∂Ω). It follows from Proposition 3.7

that ρt| ◦
Ω

= 0 for t ≥ T , and thus it suffices to prove (4.10) for t ∈ [0, T ].

For t ∈ [0, T ], define the vector field vt : Rd → Rd by

vt(x) =

−k(ρt, x)
∇ϕ(t, x)

|∇ϕ(t, x)|
, if x ∈

◦
Ω,

0, otherwise.

Notice that vt is well-defined almost everywhere since x 7→ ϕ(t, x) is Lipschitz continuous
and, by Proposition 3.27, ∇ϕ(t, x) 6= 0 wherever it exists. Let c > 0 be the constant from
Corollary 3.11 and let F : Rd → R be a convex C2 function such that F (x) = |x| for every
x ∈ Rd with |x| ≥ c. Notice that F can be chosen in such a way that ∇F is bounded by some

constant c′ depending only on c. It follows from Proposition 3.27 that, for almost every x ∈
◦
Ω,

one has vt(x) = −k(ρt, x)∇F (∇ϕ(t, x)). Since x 7→ k(ρt, x) is Lipschitz continuous, it follows
from [6, Proposition 3.2(b)] that vt is of locally bounded variation and that its divergence
satisfies, in the sense of distributions,

∇ · vt = −∇k · (∇F ◦ ∇ϕ)− k∇ · (∇F ◦ ∇ϕ).
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It then follows from (H1), (H11), and Lemma 4.14 that there exists C > 0 depending on c,
the constant kmax from (H1), the constant Lx from (H11), and the semi-concavity constant
of ϕ such that

(4.13) ∇ · vt ≥ −C

in the sense of distributions.

For ε > 0, let β, βε ∈ C∞(Rd,R+) be defined as in the statement of Lemma 4.15, so that
spt(βε) ⊂ B(0, ε) and

∫
Rd βε(x) dx = 1. Let Ωε = {x ∈ Ω : d(x, ∂Ω) > ε}. For t ∈ [0, T ],

define vεt : Rd → Rd by vεt = vt ∗ βε. It then follows from (4.13) and [6, Proposition 3.2(c)]
that

(4.14) ∇ · vεt (x) ≥ −C ∀(t, x) ∈ [0, T ]× Ωε.

Notice also that, for every qt, qx ∈ [1,+∞), one has vε → v in Lqt([0, T ], Lqx(Rd)) as ε → 0.
Let d± : Rd → R be the signed distance to ∂Ω defined in (3.12).

Claim 1. There exists c̄ > 0 and ε̄ > 0 such that, for every ε ∈ (0, ε̄], t ∈ [0, T ], and x ∈ Ω
with d(x, ∂Ω) ≤ ε, one has

(4.15) ∇d±(x) · vεt (x) ≥ c̄.

Proof. Let c > 0 and δ > 0 be as in the statement of Proposition 3.21. Up to reducing δ > 0,
d± is C1,1 on the set of all points at a distance at most δ > 0 from ∂Ω. Let Ld be a Lipschitz
constant for ∇d± on this set and define

c′ = inf
x∈Ω
ε∈(0,1]

∫
B(x,ε)∩Ω

βε(x− y) dy,

which is positive by Lemma 4.15. By (3.14), one deduces that, for every t ∈ [0, T ], one has

∇d±(x)·vt(x) ≥ ckmin for almost every x ∈ Ω with d(x, ∂Ω) ≤ δ. Let ε̄ = min
{
δ/2, 1, cc′kmin

2Ldkmax

}
and fix ε ∈ (0, ε̄], t ∈ [0, T ], and x ∈ Ω with d(x, ∂Ω) ≤ ε. Then

∇d±(x) · vεt (x) = ∇d±(x) ·
∫
B(x,ε)∩Ω

vt(y)βε(x− y) dy

=

∫
B(x,ε)∩Ω

∇d±(y) · vt(y)βε(x− y) dy

+

∫
B(x,ε)∩Ω

[
∇d±(x)−∇d±(y)

]
· vt(y)βε(x− y) dy

≥ cc′kmin − Ldkmaxε ≥
1

2
cc′kmin.

Hence (4.15) holds with c̄ = 1
2cc
′kmin. �

Let Xε : R+ × Rd → Rd satisfy

(4.16)

{
∂tXε(t, x) = vεt (Xε(t, x)), (t, x) ∈ [0, T ]× Rd,

Xε(0, x) = x, x ∈ Rd,

i.e., Xε is the flow of the differential equation γ′ = vεt (γ) restricted to the fixed initial time 0.
By standard properties of flows, for every t ∈ [0, T ], the map Xε(t, ·) : Rd → Rd is invertible,
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and, with a slight abuse of notation, we denote its inverse by X−1
ε (t, ·). Since vεt ∈ C∞(Rd,Rd),

one has Xε(t, ·) ∈ C∞(Rd,Rd) and, in particular,{
∂t∇Xε(t, x) = ∇vεt (Xε(t, x))∇Xε(t, x), (t, x) ∈ [0, T ]× Rd,

∇Xε(0, x) = I, x ∈ Rd.

Let Jε : R+ × Rd → R be given by Jε(t, x) = det(∇Xε(t, x)). Then Jε satisfies{
∂tJε(t, x) = ∇ · vεt (Xε(t, x))Jε(t, x), (t, x) ∈ [0, T ]× Rd,

Jε(0, x) = 1, x ∈ Rd,

which yields

Jε(t, x) = exp

(∫ t

0
∇ · vεs(Xε(s, x)) ds

)
.

Let ρεt = Xε(t, ·)#ρ0. Then ρε satisfies, in the sense of distributions in [0, T )× Rd,

(4.17)

{
∂tρ

ε +∇ · (ρεvε) = 0,

ρε0 = ρ0.

Moreover, since ρ0 is absolutely continuous with respect to the Lebesgue measure, so is ρεt ,
and their densities (also denoted by ρ0 and ρεt for simplicity) satisfy

ρεt (x) =
ρ0(X−1

ε (t, x))

Jε(t,X
−1
ε (t, x))

.

Let K ⊂
◦
Ω be compact. For t ∈ [0, T ] and ε > 0, set

Kε
t =

{
Xε(s, x) : s ∈ [0, t], x ∈ Rd and Xε(t, x) ∈ K

}
,

i.e., Kε
t is the set of all points which belong to some trajectory of (4.16) passing through K

at time t.

Claim 2. There exists ε0 > 0 such that, for every t ∈ [0, T ] and ε ∈ (0, ε0), one has Kε
t ⊂ Ωε.

Proof. Assume, to obtain a contradiction, that there exist sequences (tn)n∈N and (εn)n∈N
with εn → 0 as n → ∞ such that tn ∈ [0, T ] and Kεn

tn 6⊂ Ωεn for every n ∈ N. Then, for

every n ∈ N, there exists sn ∈ [0, tn] and xn ∈ Rd such that, setting zn = Xεn(sn, xn), one has
zn /∈ Ωεn . Notice that d(xn,Ω) ≤ εn, for otherwise one would have vεns (xn) = 0 for every s ≥ 0

and then Xεn(s, xn) = xn for every s ≥ 0, contradicting the fact that Xεn(tn, xn) ∈ K ⊂
◦
Ω.

For the same reason, one must have d(zn,Ω) ≤ εn, and, since zn /∈ Ωεn , this implies that
d(zn, ∂Ω) ≤ εn.

Let ε̄ > 0 and c̄ > 0 be such that (4.15) holds for every ε ∈ (0, ε̄], t ∈ [0, T ], and x ∈ Ω with
d(x, ∂Ω) ≤ ε. Up to reducing ε̄, one may assume that d(K, ∂Ω) > ε̄.

Fix n ∈ N such that εn ≤ ε̄. Let α : [0, T ] → R be defined for s ∈ [0, T ] by α(s) =
d±(Xεn(s, xn)). Then α′(s) = ∇d±(Xεn(s, xn)) · vεns (Xεn(s, xn)). In particular, by (4.15),
α′(s) ≥ c̄ > 0 whenever α(s) ∈ [−εn, 0] (i.e., whenever Xεn(s, xn) ∈ Ω and d(Xεn(s, xn), ∂Ω) ≤
εn). Since d(zn, ∂Ω) ≤ εn, one has α(sn) = d±(zn) ∈ [−εn, εn], and thus α(s) ≥ −εn for every
s ∈ [sn, T ]. This is a contradiction, since α(tn) = d±(Xεn(tn, xn)) < −εn due to the fact that

Xεn(tn, xn) ∈ K ⊂
◦
Ω and d(K, ∂Ω) > ε̄ ≥ εn. �
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Let ε0 > 0 be as in the statement of Claim 2. We consider here only the case p ∈ (1,∞),
the remaining case p =∞ following from the fact that our constants do not depend on p. For
t ∈ [0, T ] and ε ∈ (0, ε0), one has

‖ρεt‖
p
Lp(K) =

∫
K

ρ0(X−1
ε (t, x))p

Jε(t,X
−1
ε (t, x))p

dx =

∫
K0

ρ0(x)p

Jε(t, x)p−1
dx

=

∫
K0

ρ0(x)p
[
exp

(∫ t

0
∇ · vεs(Xε(s, x)) ds

)]1−p
dx,

where K0 = {x ∈ Rd : Xε(t, x) ∈ K}. For every x ∈ K0 and s ∈ [0, t], one has Xε(s, x) ∈
Kε
t ⊂ Ωε, and thus one obtains from the above expression and (4.14) that

(4.18) ‖ρεt‖
p
Lp(K) ≤ e

C(p−1)T ‖ρ0‖p
Lp(
◦
Ω)
.

Let (Kn)n∈N be an increasing sequence of compact subsets of
◦
Ω such that

◦
Ω =

⋃
n∈NKn.

For i ∈ N, we construct by induction on i a sequence (εin)n∈N such that εin → 0 as n → ∞.
Let K = K0 and take ε0 > 0 as in the statement of Claim 2. Since, by (4.18), (ρε)ε∈(0,ε0]

is bounded in L∞([0, T ], Lp(K0)), there exists a sequence (ε0
n)n∈N in (0, ε0] with ε0

n → 0 as

n→∞ such that (ρε
0
n)n∈N converges weakly-∗ in L∞([0, T ], Lp(K0)). Now, assume that i ∈ N

is such that (εin)n∈N is constructed and εin → 0 as n → ∞. Since, by (4.18), (ρε
i
n)n∈N is

bounded in L∞([0, T ], Lp(Ki+1)), there exists a subsequence (εi+1
n )n∈N of (εin)n∈N such that

(ρε
i+1
n )n∈N converges weakly-∗ in L∞([0, T ], Lp(Ki+1)).
For n ∈ N, let εn = εnn. Then (ρεn)n∈N converges weakly-∗ in L∞([0, T ], Lp(Ki)) for every

i ∈ N. Let ρ̄ ∈ L∞([0, T ], Lploc(
◦
Ω)) denote the weak-∗ limit of (ρεn)n∈N. One deduces from the

weak convergence of (ρεn)n∈N and (4.18) that, for every i ∈ N and almost every t ∈ [0, T ],

‖ρ̄t‖pLp(Ki)
≤ eC(p−1)T ‖ρ0‖p

Lp(
◦
Ω)
,

and thus

‖ρ̄t‖
Lp(
◦
Ω)

= lim
i→∞
‖ρ̄t‖Lp(Ki)

≤ eC
(

1− 1
p

)
T ‖ρ0‖

Lp(
◦
Ω)

for almost every t ∈ [0, T ]. In particular, one obtains that ρ̄ ∈ L∞([0, T ], Lp(
◦
Ω)).

Since vε → v in L1([0, T ], Lp
′
(Rd)) as ε→ 0, one obtains from (4.17) that ρ̄ satisfies, in the

sense of distributions in [0, T )×
◦
Ω, {

∂tρ̄+∇ · (ρ̄v) = 0,

ρ̄0 = ρ0.

On the other hand, the measure ρ = ρη obtained from the MFG equilibrium η also satisfies the
continuity equation ∂tρ +∇ · (ρv) = 0 with initial condition ρ0. It follows from Proposition
3.34 and [5, Theorem 3.1] that solutions to this equation are unique, and thus ρ̄ = ρ. In
particular,

(4.19) ‖ρt‖p
Lp(
◦
Ω)
≤ eC(p−1)T ‖ρ0‖p

Lp(
◦
Ω)

for almost every t ∈ [0, T ]. To conclude that (4.19) holds for every t ∈ [0, T ], let t̄ ∈ [0, T ]
and (tn)n∈N be a sequence in [0, T ] such that tn → t as n → ∞ and (4.19) holds at tn for

every n ∈ N. The sequence (ρtn)n∈N is bounded in Lp(
◦
Ω), and thus, up to the extraction of

a subsequence, it admits a weak limit ρ̃. On the other hand, t 7→ ρt = (et)#η is continuous
with respect to the weak convergence of measures, and thus ρ̃ = ρt̄. One concludes that (4.19)
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holds for t̄ by the Lp-weak convergence of (ρtn)n∈N to ρt̄ and the weak lower semi-continuity
of the Lp norm. �

4.3. Equilibria in a less regular model. In this section, we use the Lp estimates on ρt
from Theorem 4.13 to study equilibria of the MFG model with k given by (1.1) and ψ = 1 ◦

Ω
,

i.e.,

(4.20) k(µ, x) = V

(∫
Ω
χ(x− y)1 ◦

Ω
(y) dµ(y)

)
, for all (µ, x) ∈ P(Ω)× Ω.

Notice that the lack of continuity of the dynamic k with respect to µ prevents us from using
the result of Section 4.1. So, the idea is to consider a sequence of cut-off functions (ψε)ε>0

taken in Ψδ, for δ as in Proposition 4.12, and converging as ε → 0 to 1 ◦
Ω

in Lq(Rd) for all

q ∈ [1,+∞), and to replace the dynamic k with kε defined from ψε as in (1.1), i.e.,

(4.21) kε(µ, x) = V

(∫
Ω
χ(x− y)ψε(y) dµ(y)

)
, for all (µ, x) ∈ P(Ω)× Ω.

Our first result of this section shows that, under some suitable convergence assumptions on
kε as ε→ 0, one has uniform convergence of the value functions of the corresponding optimal
control problems and that the limit of MFG equilibria is a MFG equilibrium for the limiting
model.

Proposition 4.16. Let ρ0 ∈ P(Ω). For n ∈ N, let kn, k : P(Ω) × Ω → R+ be such that
kn is continuous on P(Ω) × Ω and Lipschitz continuous with respect to the second variable.
Let ηn be a MFG equilibrium for ρ0 associated with the control problem with dynamic kn. In
addition, assume the following:

• As n→∞, (ηn)n∈N converges weakly in P(Γ) to some measure η.
• There exist two constants kmin and kmax such that 0 < kmin ≤ kn ≤ kmax < +∞.
• There exists a constant M independent of n such that |∇kn| ≤M .
• For every (t, x) ∈ R+ × Ω, we have kn((et)#ηn, x)→ k((et)#η, x) as n→∞.
• For every x ∈ Ω, t 7→ k((et)#η, x) is continuous on R+.

For n ∈ N, let ϕn (resp. ϕ) be the value function associated with the control problem with
dynamic kn (resp. k). Then

(a) ϕn → ϕ as n→∞ uniformly in R+ × Ω, and
(b) η is a MFG equilibrium for ρ0 with dynamic k.

Proof. Let us first prove (a). Notice that, up to extracting a subsequence, (ϕn)n∈N converges
uniformly to some function ϕ̃ on R+ × Ω. Indeed, from Proposition 3.7, the sequence (ϕn)n
is equibounded. Moreover, by Proposition 3.8, the value function ϕn is Lipschitz in R+ × Ω
with a Lipschitz constant depending only on the Lipschitz constant of the dynamic kn with
respect to x, which is independent of n. Then, by Arzelà–Ascoli Theorem, (ϕn)n∈N admits a
uniform limit ϕ̃ up to the extraction of a subsequence.

We now prove that the limit of (ϕn)n∈N is ϕ. Fix (t, x) ∈ R+ × Ω. For every n ∈ N, let γn
be an optimal trajectory for x, at time t, in the control problem with dynamic kn. It is easy to
observe that, up to extracting a subsequence, γn → γ uniformly for some γ ∈ Γkmax . Yet, this
γ is, in fact, an admissible trajectory for x, at time t, in the control problem with dynamic k.
Indeed, for a.e. s ∈ (t,∞), we have |γ′n(s)| ≤ kn((es)#ηn, γn(s)). So, letting n→∞, we get

|γ′(s)| ≤ k((es)#η, γ(s)), for a.e. s ∈ (t,∞).
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Let un be the optimal control associated with γn and u the control associated with γ. Set

τn := τ t,x,un , τγ := τ t,x,u, zn := γn(t+ τn) ∈ ∂Ω.

It is clear that there exist τ̄ ≥ 0 and z ∈ ∂Ω such that, up to extracting subsequences, τn → τ̄
and zn → z as n → ∞. In particular, we have z = γ(t + τ̄) and then τγ ≤ τ̄ . Consequently,
by Lemma 3.1, ϕ(t, x) ≤ τ̄ + g(z) = limn→∞ ϕn(t, x) = ϕ̃(t, x).

To prove the converse inequality, let γ be an optimal trajectory for x, at time t, in the
control problem with dynamic k, and u be the associated optimal control with γ. For n ∈ N,
let φn be a solution of

(4.22)

φ
′
n(s) =

kn((es)#ηn, γ(φn(s)))

k((eφn(s))#η, γ(φn(s)))
,

φn(t) = t.

Set

γn(s) = γ(φn(s)), for all s ∈ [t,∞).

It is clear that γn is admissible for x, at time t, in the control problem with dynamic kn, and
its corresponding control un is given by un(s) = u(φn(s)) for s ≥ t. Let τn = τ t,x,un . Hence,
we have

(4.23) ϕn(t, x) ≤ τn + g(γn(t+ τn)).

Yet, we observe easily that τn = φ−1
n (t+ τ)− t, where τ := τ t,x,u. From (4.22), we have∫ φn(s)

t
k((er)#η, γ(r)) dr =

∫ s

t
kn((er)#ηn, γ(φn(r))) dr.

Set

Ψ(θ) =

∫ θ

t
k((er)#η, γ(r)) dr, for all θ ∈ [t,∞).

Then Ψ is a bijective map from [t,+∞) to [0,+∞), whose inverse is k−1
min-Lipschitz continuous.

We have

|φn(s)− s| =
∣∣∣∣Ψ−1

(∫ s

t
kn((er)#ηn, γ(φn(r))) dr

)
−Ψ−1

(∫ s

t
k((er)#η, γ(r)) dr

)∣∣∣∣
≤ k−1

min

∫ s

t
|kn((er)#ηn, γ(φn(r)))− k((er)#η, γ(r))| dr

≤ k−1
min

∫ s

t

(
|kn((er)#ηn, γ(φn(r)))− k((er)#η, γ(φn(r)))|

+ |k((er)#η, γ(φn(r)))− k((er)#η, γ(r))|
)

dr

≤ k−1
min

(∫ s

t
|kn((er)#ηn, γ(φn(r)))− k((er)#η, γ(φn(r)))|dr

+Mkmax

∫ s

t
|φn(r)− r| dr

)
.
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Yet,

|kn((er)#ηn, γ(φn(r)))− k((er)#η, γ(φn(r)))|

≤
∣∣∣∣(kn((er)#ηn, γ(φn(r)))− kn((er)#ηn, γ(r))

)
−
(
k((er)#η, γ(φn(r)))− k((er)#η, γ(r))

)∣∣∣∣
+

∣∣∣∣kn((er)#ηn, γ(r))− k((er)#η, γ(r))

∣∣∣∣
≤ 2Mkmax|φn(r)− r|+

∣∣∣∣kn((er)#ηn, γ(r))− k((er)#η, γ(r))

∣∣∣∣.
Hence, one has

|φn(s)− s| ≤ C
(∫ s

t

∣∣∣∣kn((er)#ηn, γ(r))− k((er)#η, γ(r))

∣∣∣∣ dr +

∫ s

t
|φn(r)− r|dr

)
,

where C > 0 depends only on M , kmax, and kmin. Using Gronwall’s inequality, we get

|φn(s)− s| ≤ CeC(s−t)
∫ s

t

∣∣∣∣kn((er)#ηn, γ(r))− k((er)#η, γ(r))

∣∣∣∣ dr.
Consequently, for every s ≥ t, φn(s)→ s as n→∞. In particular, we have τn = φ−1

n (t+ τ)−
t→ τ . So, passing to the limit in (4.23), we get

ϕ̃(t, x) ≤ τ + g(γ(t+ τ)) = ϕ(t, x).

This concludes the proof of (a).

To prove (b), we define, for k ∈ N∗, the set Vk := {γ ∈ Γ : d(γ,
⋃
x Γ′[ρη, x]) ≤ 1

k}. We
claim that, for every k ∈ N∗, there is some N0 ∈ N such that

(4.24)
⋃
x∈Ω

Γ′[ρηn , x] ⊂ Vk for every n ≥ N0.

Indeed, if this is not the case, then there exists k ∈ N∗ and sequences (nj)j∈N, (xj)j∈N, and
(γj)j∈N with nj → ∞ as j → ∞ and, for every j ∈ N, xj ∈ Ω and γj ∈ Γ′[ρηnj , xj ] \ Vk. Up
to extracting subsequences, there exist x ∈ Ω and γ ∈ Γkmax such that, as j → ∞, xj → x
and γj → γ on Γ. For j ∈ N, set τj = τ0,xj ,uj , where uj is the control corresponding to γj .
Then, using Proposition 3.7, we infer that, up to extracting subsequences, there exists τ̄ ≥ 0
such that τj → τ̄ and γj(τj)→ γ(τ̄) ∈ ∂Ω, which implies that τγ ≤ τ̄ . Moreover, it is easy to
check that γ is admissible in the control problem with dynamic k. Yet, we have

ϕnj (0, xj) = τj + g(γj(τj)).

Then, passing to the limit when j →∞, we obtain from (a) and Lemma 3.1 that

ϕ(0, x) = τ̄ + g(γ(τ̄)) ≥ τγ + g(γ(τγ)).

This implies that γ ∈ Γ′[ρη, x], which is a contradiction.

As a consequence of (4.24) and the fact that Vk is a closed subset of Γ, we have, for every
k ∈ N∗,

η(Vk) ≥ lim sup
n→∞

ηn(Vk) ≥ lim sup
n→∞

ηn

(⋃
x

Γ′[ρηn , x]

)
= 1.

Hence, η(Vk) = 1 and, since k is arbitrary and
⋂
k∈N∗ Vk =

⋃
x Γ′[ρη, x], we infer that

η

(⋃
x Γ′[ρη, x]

)
= 1, concluding the proof of (b). �
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One can now use Proposition 4.16 to obtain the existence of an equilibrium to the less
regular dynamic k defined in (4.20).

Theorem 4.17. Let k be given by (4.20) and ρ0 ∈ Lp(
◦
Ω) for some p ∈ (1,+∞]. Then there

exists a MFG equilibrium η for ρ0. Moreover, letting ρ = ρη and ϕ be the value function of
the optimal control problem (4.1), then (ρ, ϕ) solves the MFG system (4.7).

Proof. For ε > 0, let kε be given by (4.21) and ηε be a MFG equilibrium for ρ0 associated with
the control problem with dynamic kε. Then there exists η ∈ P(Γ) and a sequence (εn)n∈N
with εn → 0 as n→∞ such that ηεn ⇀ η as n→∞. To prove that η is a MFG equilibrium
for ρ0, it suffices to show that the hypotheses of Proposition 4.16 are verified for the sequences
(kεn)n∈N and (ηεn)n∈N. For t ≥ 0, let ρεt = (et)#ηε.

One easily obtains from (4.21) and Proposition 4.12 that there exist kmin, kmax,M,C >
0 such that, for every ε > 0, 0 < kmin ≤ kε ≤ kmax < +∞, |∇kε| ≤ M , and ∂tkε ≥
−C. As a consequence of that, by Theorem 3.23, the value function ϕε, associated with the
control problem with the dynamic kε, is semi-concave with respect to x, and its semi-concavity
constant is independent of ε. Then, Theorem 4.13 implies that

‖ρεt‖Lp(
◦
Ω)
≤ C‖ρ0‖

Lp(
◦
Ω)
, for all t ∈ R+, ε > 0,

where the constant C > 0 is independent of t and ε.

Since ηεn ⇀ η in P(Γ) as n → ∞, one deduces from the above uniform Lp estimate that
ρεnt ⇀ ρt in Lp. In addition, ψε → 1 ◦

Ω
in Lq as ε→ 0, for all q ∈ [1,+∞). Using these facts,

we get, for every (t, x) ∈ R+ × Ω, that, as n→∞,

kεn((et)#ηεn , x) = V

(∫
Ω
χ(x−y)ψεn(y)ρεnt (y) dy

)
→ V

(∫
◦
Ω
χ(x−y)ρt(y) dy

)
= k((et)#η, x).

Moreover, for any x ∈ Ω, the function t 7→ k((et)#η, x) is continuous on R+. Indeed, if (tn)n∈N
is a sequence with tn → t, then ρtn ⇀ ρt in Lp and so we have

k((etn)#η, x) = V

(∫
◦
Ω
χ(x− y)ρtn(y) dy

)
→ V

(∫
◦
Ω
χ(x− y)ρt(y) dy

)
= k((et)#η, x).

Hence the hypotheses of Proposition 4.16 are satisfied, and then η is a MFG equilibrium for
ρ0.

To obtain the MFG system (4.7) for this equilibrium, notice first that (t, x) 7→ k(ρt, x)
is continuous and satisfies (H1) and (H2), and thus it follows from Proposition 3.5 that ϕ
satisfies the Hamilton–Jacobi equation in (4.7) in the viscosity sense.

By Theorem 4.11, for every ε > 0, ρε satisfies the continuity equation in (4.7) with dynamic

kε and the corresponding value function ϕε. This means that, for every φ ∈ C∞c ((0,+∞)×
◦
Ω),

one has

−
∫ ∞

0

∫
◦
Ω
∂tφ(t, x)ρεt (x) dx dt+

∫ ∞
0

∫
◦
Ω
ρεt (x)kε(ρ

ε
t , x)

∇ϕε(t, x)

|∇ϕε(t, x)|
· ∇φ(t, x) dx dt = 0.

Recall that, by Proposition 3.7, one has ρεt | ◦Ω = 0 for every ε > 0 and t ≥ T , where T =
1+λkmax
1−λkmax

k−1
min supx∈Ω d(x, ∂Ω). Hence,

(4.25) −
∫ T

0

∫
◦
Ω
∂tφ(t, x)ρεt (x) dx dt+

∫ T

0

∫
◦
Ω
ρεt (x)kε(ρ

ε
t , x)

∇ϕε(t, x)

|∇ϕε(t, x)|
· ∇φ(t, x) dx dt = 0
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for every φ ∈ C∞c ((0, T )×
◦
Ω). Recall that, for every t ∈ R+, one has ρεnt ⇀ ρt in Lp, and thus

(4.26) lim
n→∞

∫
◦
Ω
∂tφ(t, x)ρεnt (x) dx =

∫
◦
Ω
∂tφ(t, x)ρt(x) dx.

Moreover, kεn(ρεnt , x)→ k(ρt, x) for every (t, x) ∈ R+×Ω. On the other hand, for every t ∈ R+

and ε > 0, x 7→ ϕε(t, x) is semi-concave and its semi-concavity constant C is independent of ε.
Then, by Proposition 4.16(a), x 7→ ϕ(t, x) is also semi-concave with the same semi-concavity

constant. For every t ∈ R+, n ∈ N, and almost every x ∈
◦
Ω, ∇ϕεn(t, x) and ∇ϕ(t, x) exist.

Then, for every h > 0 small enough, one has

ϕεn(t, x+ h)− ϕεn(t, x)−∇ϕεn(t, x) · h ≤ C|h|2.

Letting n → ∞, up to extracting a subsequence, ∇ϕεn(t, x) converges to some p ∈ Rd, and
then

ϕ(t, x+ h)− ϕ(t, x)− p · h ≤ C|h|2.
This means that p ∈ ∇+ϕ(t, x) and, since ∇ϕ(t, x) exists, one concludes that ∇ϕεn(t, x) →
∇ϕ(t, x) as n→∞. Moreover, by Proposition 3.27, there exists c > 0 such that |∇ϕεn(t, x)| ≥
c, implying that ∇ϕεn (t,x)

|∇ϕεn (t,x)| →
∇ϕ(t,x)
|∇ϕ(t,x)| as n→∞. One then concludes that, for every t ≥ 0,

(4.27)

lim
n→∞

∫
◦
Ω
ρεnt (x)kεn(ρεnt , x)

∇ϕεn(t, x)

|∇ϕεn(t, x)|
· ∇φ(t, x) dx =

∫
◦
Ω
ρt(x)k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|
· ∇φ(t, x) dx.

Combining (4.26) and (4.27), one obtains from (4.25) that

−
∫ T

0

∫
◦
Ω
∂tφ(t, x)ρt(x) dx dt+

∫ T

0

∫
◦
Ω
ρt(x)k(ρt, x)

∇ϕ(t, x)

|∇ϕ(t, x)|
· ∇φ(t, x) dx dt = 0,

yielding the conclusion. �
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[8] J.-P. Aubin and H. Frankowska. Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc.,
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at https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf, 2013.

[20] P. Cardaliaguet. Weak solutions for first order mean field games with local coupling. In Analysis and ge-
ometry in control theory and its applications, volume 11 of Springer INdAM Ser., pages 111–158. Springer,
Cham, 2015.

[21] P. Cardaliaguet. The convergence problem in mean field games with local coupling. Applied Mathematics
& Optimization, 76(1):177–215, jun 2017.

[22] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the convergence
problem in mean field games. Preprint arXiv:1509.02505.

[23] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta. Long time average of mean field games with a
nonlocal coupling. SIAM J. Control Optim., 51(5):3558–3591, 2013.

[24] P. Cardaliaguet, A. R. Mészáros, and F. Santambrogio. First order mean field games with density con-
straints: pressure equals price. SIAM J. Control Optim., 54(5):2672–2709, 2016.

[25] G. Carlier, C. Jimenez, and F. Santambrogio. Optimal transportation with traffic congestion and Wardrop
equilibria. SIAM J. Control Optim., 47(3):1330–1350, 2008.

[26] G. Carlier and F. Santambrogio. A continuous theory of traffic congestion and Wardrop equilibria. Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390(Teoriya Predstavlenĭı, Dinamicheskie
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[38] D. A. Gomes and J. Saúde. Mean field games models—a brief survey. Dyn. Games Appl., 4(2):110–154,
2014.

[39] D. A. Gomes and V. K. Voskanyan. Short-time existence of solutions for mean-field games with congestion.
J. Lond. Math. Soc. (2), 92(3):778–799, 2015.

[40] A. Granas and J. Dugundji. Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag,
New York, 2003.
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[48] M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst., 6(3):221–251,
2006.

[49] R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Method-
ological, 36(6):507–535, jul 2002.

[50] R. L. Hughes. The flow of human crowds. Annu. Rev. Fluid Mech., 35:169–182, 2003.
[51] S. Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Math. J., 8:457–459, 1941.
[52] V. N. Kolokoltsov, M. Troeva, and W. Yang. On the rate of convergence for the mean-field approximation

of controlled diffusions with large number of players. Dyn. Games Appl., 4(2):208–230, 2014.
[53] A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling congestion and aversion in

pedestrian crowds. Transportation Research Part B: Methodological, 45(10):1572–1589, dec 2011.
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