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Abstract

In this note we introduce a new model for the mailing problem in branched transportation in
order to allow the cost functional to take into account the orientation of the moving particles. This
gives an e�ective answer to [1, Problem 15.9]. Moreover we de�ne a convex relaxation in terms of
recti�able currents with group coe�cients. With such approach we provide the problem with a
notion of calibration. Using similar techniques we de�ne a convex relaxation and a corresponding
notion of calibration for a variant of the Steiner tree problem in which a connectedness constraint
is assigned only among a certain partition of a given set of �nitely many points.
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1. Introduction

A common feature of some natural transportation problems is the tendency to group the mass
particles during the transportation, which leads to the formation of branched structures. Several
equivalent models for the so�called branched transportation problem have been proposed (see e.g.
[1, 2, 3, 4, 5, 6]). Via an Eulerian formulation ([5]) one can describe the �ow of particles and via
a Lagrangian one ([3]) one can describe the trajectory of each particle. The mailing problem is a
branched transportation problem with the additional constraint that, for every mass particle, an
initial position and a target destination are prescribed. Only the Lagrangian formulation provides
a suitable description of the problem. In the classical models, the cost functional is obtained
integrating a concave function � depending on the total amount of mass passing through each
point � on the network created by the particles' trajectories. This is not satisfactory for many
concrete problems, since it is reasonable to treat di�erently the particles �owing in one direction
on a stretch of the network and the particles �owing in the opposite direction. The necessity of a
model taking into account this feature was remarked in [1, Problem 15.9]. In this note we describe
such a model for discrete transportation networks.

The main idea is to give a label to each particle, containing the information on its origin
and destination. In this way, we can observe a �labeled� �ow of particles and therefore on each
stretch of the network we can identify a group of particles which �ows in one direction and
a group which �ows in the opposite one and we take this into account when we compute the
cost of such transportation. This way of distinguishing the particles �ts in a recent variational
formulation of the so�called multi�commodity �ow problem (see [7]), for which a convex relaxation
was proposed in [8]. Such approach was initiated in [9] and [10] in the framework of the Steiner
tree problem and the Gilbert-Steiner problem, respectively, in order to tackle the di�cult task of
proving the optimality of a concrete con�guration. Similar approaches were recently presented
in [11, 12, 13, 14]. This strategy allowed to de�ne a notion of calibration, which proved to be an
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e�cient tool to validate the minimality both from the theoretical ([8, 9, 10, 15, 16]) and from the
numerical point of view ([11, 12, 13, 17]).

In the last section of the paper, we employ similar techniques to de�ne a convex relaxation of
a variant of the Steiner tree problem. Given a set of points S = {p1, . . . , pn} ⊂ Rd and a partition
S1, . . . , Sk of S, we seek a compact set K of minimal length with the property that for every
i = 1, . . . , k the points of Si are connected in K. We call this the partitioned Steiner tree problem.
The minimizers can have k connected components or less, depending on the position of the given
points and the partition. We show with a simple example that the existence of a calibration is
not a necessary condition for minimality, but it is only su�cient.

2. Preliminaries

In this note we deal with discrete multi�material transportation networks. This section aims at
�xing the essential notation. We refer the reader to [7, Section 3] for a fully detailed introduction.
Most of the paper can be understood modeling a multi�material network as a weighted oriented
graph G in Rd, with a �nite set of vertices V (G) ⊂ Rd, a set of straight edges E(G), and a vector�

valued multiplicity function m : E(G)→ Rm. Being oriented, each edge e has an initial vertex e−

and a �nal vertex e+. For every edge e ∈ E(G) with multiplicity me its boundary is represented
by the Rm�valued measure

∂e := meδe+ −meδe− ,

where δx is the Dirac delta at the point x. Therefore the boundary of G is the Rm�valued measure

∂G :=
∑

e∈E(G)

∂e .

Observe that every Rm�valued measure µ can be naturally associated to an array of m real�
valued measures µ1, . . . , µm. For every real�valued measure ν we denote by ν+, ν− respectively
its positive and negative part, namely the positive measures ν+ := 1

2(|ν| + ν), ν− := 1
2(|ν| − ν),

where |ν| is the total variation measure of ν.
It is immediate to check that if µ = ∂G for some graph G in Rd with multiplicities in Rm, then

the measures µ+i and µ−i have the same total mass, for every i = 1, . . . ,m. Indeed the graph G
can be thought as a superposition of m graphs G1, . . . ,Gm with real valued multiplicities which
are discrete mass �uxes between µ−i and µ+i (see [18]).

The main novelty of the multi�material setting is that with vector�valued multiplicities we are
allowed to consider a cost C : Rm → [0,+∞) which distinguishes among di�erent contributions
and registers possibly di�erent interactions between m di�erent materials, represented by the
di�erent coordinates of Rm. More precisely, we de�ne the energy of a graph G as the weighted
sum

E(G) :=
∑

e∈E(G)

C(m(e))Length(e) .

Under suitable assumptions on the cost functional C, it is reasonable to consider the variational
problem of minimizing E(G) among all graphs with given boundary ∂G. As it is common in
Calculus of Variations it is more convenient to look for solutions in a larger class, which enjoys
compactness properties. Therefore we introduce the more general notion of recti�able 1�current
with coe�cients in Zm. We summarize below the necessary tools. We refer to [7, 8, 9] for a
detailed presentation of the topic.

2.1. Recti�able currents with coe�cients in Zm

Consider Rm endowed with a norm ‖ · ‖ and call ‖ · ‖∗ the dual norm. Let k ≤ d. For the
purposes of this paper it su�ces to consider the cases k = 0, 1, 2. We denote Λk(Rd) the space of
k�vectors in Rd.
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De�nition 2.1 (Rm�valued k�covectors). An Rm�valued k�covector on Rd is a bilinear map

ω : Λk(Rd)× Rm → R .

We denote by ΛkRm(Rd) the space of Rm�valued k�covectors on Rd and we endow it with the norm

|ω|c := sup{‖ω(τ, ·)‖∗ : τ ∈ Λk(Rd) is simple, |τ | ≤ 1} .

An Rm�valued di�erential form is a map

ω : Rd → ΛkRm(Rd) .

We denote by C∞c (Rd,ΛkRm(Rd)) the space of smooth and compactly supported Rm�valued di�er-
ential forms. On this space one can consider the comass norm

‖ω‖c := sup
x∈Rd

|ω(x)|c .

The space C∞c (Rd,ΛkRm(Rd)) is naturally endowed with a locally convex topology, built in
analogy with the topology on the space of test functions with respect to which distributions are
dual.

De�nition 2.2 (k�dimensional currents with coe�cients in Rm). A k�dimensional current with
coe�cients in Rm is a linear map

T : C∞c (Rd,ΛkRm(Rd))→ R ,

which is continuous with respect to the topology mentioned above.

• For k > 0, the boundary of a k�current T is a (k − 1)�dimensional current with coe�cients
in Rm, de�ned through the relation

∂T (ϕ) := T (dϕ) ∀ϕ ∈ C∞c (Rd,ΛkRm(Rd)) .

• The mass of a k�current T is the quantity

M(T ) := sup
‖ω‖c≤1

T (ω) .

We de�ne a k�recti�able current with coe�cients in Zm as a k�current with coe�cients in Rm
that admits the following representation:

(1) T (ω) =

ˆ
M
ω(τ, θ) dHk ,

whereM is a k�recti�able set on Rd, τ ∈ Λk(Rd) is a simple unit vector orienting the approximate
tangent space to M and θ : M → Zm is the multiplicity. We denote such a current by T =
[M, τ, θ].

Remark 2.3 (Mass of recti�able k�currents with coe�cients in Zm). When T is a recti�able k�
current with coe�cients in Zm and is represented as in (1), one can check that

(2) M(T ) =

ˆ
M
‖θ‖ dHk .

As mentioned above, the setting of recti�able currents with coe�cients in Zm with equi�
bounded masses and masses of the boundaries is closed. We refer to [8, Theorem 1.10] for further
details.
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2.2. Calibrations

Following again [9] we introduce a notion of calibration.

De�nition 2.4 (Calibration). Given T = [M, τ, θ] a 1�recti�able current with coe�cients in Zm,
a calibration for T is a 1�form ω ∈ C∞c (Rd,Λ1

Rm(Rd)) that satis�es the following properties:

i) dω = 0;

ii) ‖ω‖c ≤ 1;

iii) ω(τ(x), θ(x)) = ‖θ(x)‖ for every x ∈M.

If ω is a calibration for T = [M, τ, θ], then T is a solution of the mass-minimization problem
with prescribed boundary ∂T (see [9, Proposition 3.2]). Moreover, T minimizes the mass among
all 1�currents with coe�cients in Rm with the same boundary.

3. Oriented mailing problem

Let S be a �nite collection of points {p1, . . . , pn} ⊂ Rd. We prescribe the �amount of mass�
that has to be transported from pi to pj (and from pj to pi) by a matrix G, that is a matrix in
Nn×n where gij represents the mass �owing from the the point pi to the point pj for every i 6= j
(and we set gii = 0).

In order to introduce a transport cost that takes into account the presence of paths going in
the two opposite directions, for t = 1, . . . , n we introduce the matrices Gt = gtij , where

gtij :=


−gij for i = t
gij for j = t
0 in all other cases

and we de�ne the 0-dimensional recti�able current with coe�cients in Zm

(3) B =
n∑
t=1

Gtδpt .

Remark 3.1 (Interpretation of the constraint). For each t ∈ {1, . . . , n}, in the tth row of the matrix
Gt, we are keeping track of the mass which is �owing from pt towards the other points. More
precisely, in the jth entry of the tth row one can �nd the amount of mass which is supposed to
�ow from pt to pj . Similarly, in the ith entry of the tth column of Gt one reads the incoming mass
from pi to pt. Since a current with coe�cients in Zn×n can be regarded as a superposition of n2

classical integral currents with di�erent labels (see the de�nition of components of a current in
[8]), then every recti�able 1-current T with coe�cients in Zn×n, which satis�es ∂T = B, is the
superposition of n2 labelled mass �uxes Tij (in the sense of [18]). Each Tij transports the measure
gijδpi onto the measure gijδpj .

We denote | · |φ a symmetric, monotone norm on R2 (i.e. |(x, y)|φ = |(y, x)|φ and |(x, y)|φ ≤
|(z, w)|φ, whenever 0 ≤ x ≤ z and 0 ≤ y ≤ w). For α ∈ [0, 1] we de�ne the cost functional

C : Zn×n → R as

C(θ) :=

∣∣∣∣∣∣
( ∑

θij>0

θij

)α
,
∣∣∣ ∑
θij<0

θij

∣∣∣α
∣∣∣∣∣∣

φ

.

We consider a 1�recti�able current with coe�cients in Zn×n T = [M, τ, θ], with ∂T = B, and we
de�ne the (α, φ)�energy of T as

(4) Eφα(T ) :=

ˆ
M
C(θ) dH1 .

We consider the following problem.
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Problem 3.2 (Oriented mailing problem). Let B be as in (3). Find a 1�recti�able current T̃
with coe�cients in Zn×n such that ∂T̃ = B and

Eφα(T̃ ) = min{Eφα(T ) : T is a 1�recti�able currents with coe�cients in Zn×n and ∂T = B} .

Remark 3.3 (Multi�material transport problems). Observe that C is a multi-material cost, in the
sense of [8, De�nition 2.1], namely it is an even, increasing and subadditive function of θ. Hence
Problem 3.2 is a multi�material transport problem in the sense of [8].

The existence of solutions to Problem 3.2 is proved in [8, Theorem 2.3] and it is obtained
via a direct method in the Calculus of Variation. Indeed the proof is a standard application of
the Closure Theorem for classical integral currents and the lower semicontinuity of the energy Eφα
(see [7, 19]).

Remark 3.4 (Versatility of the cost functional). The energy that we de�ned is su�ciently �exible
to �t several models. For example the choice α ∈ (0, 1) and | · |φ = ‖ · ‖p, with p = α−1, recovers
the notion of α�mass typical of the classical (non�oriented) mailing problem. Instead, | · |φ = ‖·‖1
is particularly interesting to model the transportation of goods on trucks or post mails: indeed, in
this case it is convenient to group di�erent goods when they travel in the same direction, but there
is no convenience in grouping goods �owing in one direction and goods �owing in the opposite
one. Even though this problem is very realistic, the previous attempts to express it with other
mathematical tools failed. Trying to model it with the standard Lagrangian formulation for the
mailing problem, for instance, one lacks of a �label� keeping track of the orientation of the curves.
Instead, trying to model it with genuinely real-valued currents, besides losing the information on
the trajectories, one would also face cancellations due to the two directions of movement.

4. Convex relaxation

In this section we show how to rephrase the problem as a mass�minimization problem, that is,
the minimization of a convex functional. This is described in [8, Theorem 2.4]. In the following
we only explain how to to de�ne the mass�minimization problem associated to Problem 3.2, and
we refer the reader to [8] for the proof of the equivalence.

Let N :=
∑

(i,j) gij . We will de�ne as boundary datum a 0�current B with coe�cients in ZN .
Firstly we choose an ordering for the pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n}. In order to keep the
notation short, we denote by I1, . . . , In2 such pairs. For every I = (i, j) we denote µI the signed
atomic measure µI := δpj − δpi . Then we associate to every I = I1, . . . , In2 an element θI of ZN
as follows. For I = (i, j), we denote gI := gij . We take θI1 the sum of the �rst gI1 elements
of the basis (e1, . . . , eN ), then we take θI2 the sum of the next gI2 elements of the basis, and so
on. . . Lastly, we de�ne

(5) B :=
n2∑
`=1

θI`µI` .

Now we de�ne the following monotone norm on RN , where we denote p := 1
α :

‖(t1, . . . , tN )‖φ,α :=

∣∣∣∣∣
(∥∥∥∑

tι>0

tιeι

∥∥∥
Lp
,
∥∥∥∑
tι<0

tιeι

∥∥∥
Lp

)∣∣∣∣∣
φ

.

We consider the following problem, where the mass of a current with coe�cients in ZN is computed
with respect to the norm ‖ · ‖φ,α.
Problem 4.1 (Convex relaxation of the oriented mailing problem). Let B be as in (5). Find a
1�recti�able current S̃ with coe�cients in ZN such that ∂S̃ = B and

M(S̃) = min{M(S) : S is a 1�recti�able currents with coe�cients in ZN and ∂S = B} .
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Remark 4.2 (A key property of the norm). Observe that if |tι| ∈ {0, 1} for every ι, then

‖(t1, . . . , tN )‖φ,α = |(]{ι : tι = 1}α, ]{ι : tι = −1}α)|φ.

Notice that this implies the validity of [8, (3.1)], which is the crucial identity to ensure the validity
of the forthcoming Theorem 4.3, stating the equivalence between Problem 3.2 and Problem 4.1.
Observe that it is not necessary to verify that C satis�es property (iii)′ of [8, De�nition 2.1].
Indeed such property was used only in [8, Theorem 3.2] to prove the existence of a monotone
norm satisfying [8, (3.1)], for which we already gave an explicit formula.

Theorem 4.3 (Equivalence between Problem 3.2 and Problem 4.1). There is a canonical way to

associate to a boundary B as in (3) a boundary B as in (5) such that the following holds. For

every T = [E, τ, θ], minimizer of Problem 3.2 for the boundary B, there is a canonical current

ST = [E′, τ ′, θ′] which is a minimizer of Problem 4.1 for the boundary B. Conversely, for every

S = [E′, τ ′, θ′] minimizer of Problem 4.1 for the boundary B, there is a canonical current TS =
[E, τ, θ] which is a minimizer of Problem 4.1 for the boundary B. Moreover it holds H1(E4E′) = 0
and C(θ(x)) = ‖θ′(x)‖φ,α for H1-a.e. x ∈ E. In particular the minimal values of Problem 3.2 and

Problem 4.1 are the same.

Remark 4.4 (Calibrations for the oriented mailing problem). Reformulating Problem 3.2 as a
mass minimization problem allows to introduce a related notion of calibration as described in
Section 2.2. This gives a useful tool to certify the minimality of a given candidate minimizer.
It also provides a numerical method to estimate the energy gap between any competitor and a
minimizer, as one can see in [17, De�nition 2.9 and Proposition 2.11]. We refer to [17] also for the
details and the description of the numerical implementation.

Remark 4.5 (Continuous model). We described Problem 3.2 and Problem 4.1 only when the given
datum is discrete. The mailing problem, instead, is naturally de�ned for general (possibly di�use)
measures. In this case one could approximate the problem with discrete problems for which we can
de�ne the convex relaxation described in the present paper. Clearly one expects that solutions to
the discrete problems converge to a solution of the original problem. This is in general a delicate
issue. For more details on this, we refer the reader to [20, 21]. We believe that the general version
of the oriented mailing problem can be rephrased in terms of recti�able currents with coe�cients
in an in�nite dimensional Banach space and a corresponding convex relaxation is available in a
similar framework. However, this goes beyond the purposes of the present note.

5. Partitioned Steiner tree problem

We consider a �nite family S := {p1, . . . , pn} of points in Rd and a partition of S denoted by
S1, . . . , Sk. Without loss of generality we assume that in the partition there are no singletons. We
de�ne the following problem, which we call the partitioned Steiner tree problem

Problem 5.1. Find a compact set K of minimal H1�measure that contains S and such that for
i ∈ {1, . . . , k} the points of Si are in the same connected component of K.

If K is a competitor for Problem 5.1, then the number of its connected components is bounded
from above by k. Then it is not di�cult to prove existence of minimizers by a direct method
in the Calculus of Variations: compactness comes from Blaschke Selection Theorem and lower
semicontinuity of the 1�dimensional Hausdor� measure for sequences of compact sets with an
equi�bounded number of connected components comes from Goª¡b Theorem.

Remark 5.2. Notice that the solutions of Problem 5.1 are union of h disjoint minimal Steiner
trees (h ≤ k) connecting some sets Sj , j = 1 . . . , h, where S1, . . . ,Sh is a partition of S with
the property that each Si (i = 1, . . . , k) is contained in some Sj . Nevertheless the partition
S1, . . . ,Sh (and therefore the number of connected components of a minimizer K) is not known
a priori; it depends on the relative positions of the points of S.
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We rephrase now Problem 5.1 as a mass minimization problem among a family of 1�recti�able
currents with coe�cients in Zn−k. We set n0 := 0 and for i ∈ {1, . . . , k} we denote by ni the cardi-
nality of Si. Up to reordering, we may assume that S1 = {p1, . . . , pn1}, S2 = {pn1+1, . . . , pn1+n2},
and so on. . . For i ∈ {1, . . . , k}, we denote Ii := [ai, bi] ∩ N, where

ai := n0 + · · ·+ ni−1 + 1, bi := n0 + · · ·+ ni − 1.

We denote (eι)ι=1,...,n−k the canonical basis of Rn−k. For ` = 1, . . . , n we de�ne

(6) g` :=

{
e`−i+1 if ` ∈ Ii, for some i ∈ {1, . . . , k}
−
∑bi

ι=ai
eι if ` = bi + 1, for some i ∈ {1, . . . , k} .

We set

B =

n∑
`=1

g`δp` .

We want to solve the following minimization problem, where the mass of a current with
coe�cients in Zn−k is computed with respect to the L∞�norm on Rn−k.

Problem 5.3. Find a 1�recti�able current T̄ with coe�cients in Zn−k such that ∂T̄ = B and

M(T̄ ) = min{M(T ) : T is a 1�recti�able current with coe�cients in Zn−k and ∂T = B} .

The existence of minimizers for Problem 5.3 is granted by a direct method in the Calculus
of Variations: the lower semicontinuity of the mass is an immediate consequence of its de�nition
and the compactness in the space of 1�recti�able currents with coe�cients in Zn−k is a simple
consequence of the Closure Theorem for classical integral currents (see [9] and [8, Theorem 1.10]
for the details).

It is then possible to prove the following equivalence result:

Theorem 5.4. Given a set K which is a minimizer for Problem 5.1, there exists a 1�recti�able
current TK = [K, τK , θK ] with coe�cients in Zn−k with ‖θK‖ = 1 H1�a.e. on K and T is

minimizer for Problem 5.3. On the other hand, given T = [M, τ, θ] a mass minimizing current

for Problem 5.3, its support is a minimizer for Problem 5.1. In particular M(T ) = H1(K).

This result can be obtained with minor changes from [9, Theorem 2.4]. For the reader's con-
venience, we give a sketch of the proof.

Sketch of the Proof

Given K a minimizer for Problem 5.1, we construct TK exploiting one crucial property of the
solutions to the Steiner tree problem, namely the absence of loops in their support. We begin
with the group of points S1 = {p1, . . . , pn1}. For every point pj , j = 1, . . . , n1 − 1, we consider
the (unique) path Kj in K, oriented by τj , connecting pn1 to pj . We denote Tj := [Kj , τj , gj ] and
we let T 1

K :=
∑n1−1

j=1 Tj . One can see immediately that ∂T 1
K = ∂T S1.

Analogously we construct T 2
K , . . . , T

k
K and we de�ne TK :=

∑k
i=1 T

i
K . By construction we

have that the support of TK is contained in K, and by the choice of the norm on Rn−k we have
‖θK‖ = 1 H1�a.e. on K and therefore, by (2), we have

(7) M(TK) ≤ H1(K).

Now �x any competitor Z for Problem 5.3. By the structure of the boundary B, the support
of Z contains a connected path from each point of S1 \ {pn1} to pn1 , and the same is true for the
groups S2, . . . , Sk. Hence the support of Z is a competitor for Problem 5.1. Considering that the
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norm of each non�zero element of Zn−k is at least one, we deduce that

M(Z) ≥ H1(K),

hence, by (7), TK is a solution to Problem 5.3.

The other implication is more technical. Via an operation which heuristically consists in
removing all cycles from a classical integral current, we can show that for every competitor Z =
[MZ , τZ , θZ ] (with θZ 6= 0 on MZ) for Problem 5.3, one can �nd another competitor Z ′ =
[MZ′ , τZ′ , θZ′ ] with MZ′ ⊂ MZ and ‖θZ′‖ = 1 H1�a.e. on MZ′ , and in particular H1(MZ′) =
M(Z ′) ≤M(Z), with strict inequality unless H1(MZ \MZ′) = 0 and ‖θZ‖ = 1 a.e. onMZ . This
implies in particular that M(T ) = H1(M). The procedure is described in [9, Lemma 2.3].

Assume by contradiction that M is not a minimizer for Problem 5.1 and hence there exists
a competitor N for Problem 5.1 such that H1(N ) < H1(M). With the procedure described in
the �rst part of the proof we can construct a competitor TN = [N , τN , θN ] for Problem 5.3 with
‖θN ‖ = 1 H1�a.e. on N . This would lead to the contradiction

H1(N ) = M(TN ) ≥M(T ) = H1(M).

As an example, we propose here a simple partitioned Steiner tree problem. This also gives us
the opportunity to remark that a calibration, in the sense of De�nition 2.4, does not always exist.

Example 5.5. Let S = {p1, . . . , p4} with p1 = (1, 1), p2 = (1,−1), p3 = (−1,−1) and p4 = (−1, 1)
and S1 = {p1, p3}, S2 = {p2, p4}. We want to minimize the mass among all 1�recti�able currents
T with coe�cients in Z2 such that ∂T = B :=

∑
i giδpi where gi are de�ned according to (6).

A priori the competitors of this simple problem have two connected components, but it is more
convenient if the two components �interact�. Hence the supports of the minimizers T1 and T2 are
the minimal Steiner networks connecting the four points depicted in Figure 1 (notice that the
orientations represented in Figure 1 match the construction explained in the proof of Theorem
5.4). We have M(Ti) = 2 + 2

√
3.

We will show that there exists a 1�current Z with coe�cients in R2 such that ∂Z = B
and M(Z) < M(Ti), i ∈ {1, 2}. Denote by Mj the oriented segment joining pj to pj+1 with
j ∈ {1, 2, 3, 4} (cyclically identi�ed) and its unit tangent vector τj . We de�ne a current Z with
coe�cients in R2 with support the four edges of the square as

∑4
j=1 Zj with

Z1 = [M1, τ1,
1
2(e2 − e1)], Z2 = [M2, τ2,−1

2(−e1 − e2)],
Z3 = [M3, τ3,

1
2(e1 − e2)], Z4 = [M4, τ4,

1
2(e1 + e2)]

(see Figure 1). Then 4 = M(Z) < M(Ti). This contradicts the existence of a calibration for Ti,
because, as observed in Section 2.2, if a calibration for Ti existed, then Ti would minimize the
mass among recti�able currents with coe�cients in R2 having the same boundary.

g1 := e1

g2 := e2g3 := −e1

g4 := −e2 g1

g2g3

g4 g1

g2g3

g4 g1

g2g3

g4

Figure 1: On the left the boundary datum B. In the middle the two minimizers T1 and T2. On the right the

current Z.
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