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Abstract. We study the homogenization of a linearly elastic energy defined
on a periodic collection of disconnected sets with a unilateral condition on the
contact region between two such sets, with the model of a brick wall in mind.
Using the language of Γ-convergence we show that the limit homogenized be-
haviour of such an energy can be described on the space of functions with
bounded deformation using the masonry-type functionals studied by Anzel-
lotti, Giaquinta and Giusti. In this case, the limit energy density is given by
the homogenization formula related to the brick-wall type energy.
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1. Introduction

The modeling of ‘masonry-like materials’ can be undertaken both from a ‘macro-
scopic’ and a ‘microscopic’ standpoint. In the first case the masonry structure is
viewed as an elastic continuum sustaining compression but (little or) no tension.
The translation of this approach in mathematical terms and within a linearized
elasticity theory can be performed by introducing energies of the form

F(u) =
∫

Ω

f
(
PK⊥Eu

)
dx, (1.1)

where Ω is a reference configuration, Eu is the linearized strain of the deformation
u, K is the ‘cone of tensile strains’ (correspondingly, K⊥ is the cone of ‘compressive
strains’ defined by duality from K), and f is a linear elastic energy density. The
operator PK⊥ is the projection on the cone of compressive strains. Note that for
a uniform compressive strain, when Eu ≡ A ∈ K⊥ then f

(
PK⊥Eu

)
= f(Eu) and

the material response is linearly elastic, while for a uniform tensile strain, when
Eu ≡ A ∈ K, we have PK⊥A = 0, so that f

(
PK⊥Eu

)
≡ 0. This degeneracy

corresponds to the inability of the material to sustain tension. Note that this
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degenerate behaviour renders the problem mathematically ill-posed, so that in
order to solve some problems involving the energy F within the framework of the
direct methods of the Calculus of Variations, it is necessary to extend the definition
of F to the space BD(Ω) of functions of bounded deformations on Ω consisting of
functions whose distributional strain Eu is a measure.

Conversely, a masonry structure can be described ‘microscopically’ as a do-
main with a structure of a brick wall, with (linear) elastic elements that can be
detached from one another at the expense of no energy, but satisfy some unilateral
condition at their common boundaries. In the simplest situation, by taking as a
model the geometry in Fig. 1, we can consider a periodic 2-dimensional closed set
B (in that figure, the union of the boundary of the rectangles in the reference
configuration) that subdivides the reference configuration Ω \ B into connected
sets. On each of these subsets the material is linearly elastic; i.e., upon possibly
changing the norm on the space of symmetric matrices, the energy density of a
deformation u is simply ‖Eu‖2. If we denote by ν(x) the normal to B at a point
x (that we assume exists almost everywhere with respect to the surface measure)
and by u±(x) the traces on both sides of B at x (that exist almost everywhere since
automatically u ∈ H1(Ω \ B)) then a unilateral condition can be again expressed
by considering a cone of matrices K0 and requiring that

(u+(x)− u−(x))⊗ ν(x) ∈ K0 (1.2)

for a.e. x ∈ B. This expression includes for example the constraints 〈u+(x) −
u−(x), ν(x)〉 ≥ 0 or u+(x) − u−(x) = λν(x) with λ ≥ 0 a.e. on B, that express a
linearized condition of impenetrability.

u+

u-
B

Figure 1. Admissible deformation for a brick wall

In this paper we make a connection between the two standpoints described
above by showing that the first ‘macroscopic’ model can be obtained by homoge-
nization of the second ‘microscopic’ one. Namely, we introduce a small parameter
ε and consider the energies

Fε(u) =
∫

Ω\εB

‖Eu‖2 dx (u+ − u−)⊗ νε ∈ K0 a.e. on εB (1.3)

(νε(x) is a fixed normal to εB in x), and we show that these energies Γ-converge
as ε → 0+ to an energy Fhom of the form (1.1) (more precisely, its extension to
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BD(Ω)) that may be written as

Fhom(u) =
∫

Ω

fhom

(
PK⊥hom

Eu
)
dx, (1.4)

where the cone of homogenized tensile stresses Khom and the effective homogenized
energy density fhom depend both on the ‘microgeometry’ described by B and on the
constraint imposed by K0, and are expressed by suitable homogenization formulas.

Figure 2. A limit macroscopic discontinuity

The proof relies on the localization techniques of Γ-convergence and on results
of the BD-theory of masonry-like energies as in (1.1) by Anzellotti [4], Giaquinta
and Giusti [16], etc. It has some strong connections with a recent result by Braides,
Defranceschi and Vitali [11], where the relaxation of energies of the form

H(u) =
∫

Ω\Ju

‖Eu‖2 dx (u+ − u−)⊗ ν ∈ K0 a.e. on Ju (1.5)

is performed, where u is constrained to be a piecewise-smooth function outside a
closed set Ju (that is itself a variable of the problem). In this case the relaxed energy
is again of the form (1.4) but the effective homogenized energy density depends
solely on K0. A detailed analysis when K0 is related to a no-slip condition in
contained in [10]. A mechanical insight in the subject cam be found in [15].

2. Statement of the problem and main result

We denote by Y = [0, 1)n the unit cube of Rn; a set B ⊂ Rn is Y -periodic if
B + k = B for all k ∈ Zn Mn×n denotes the space of n×n real matrices, tA is the
transposed of the matrix A, and As := 1

2 (A + tA) its symmetric part. If a, b ∈ Rn

are vectors then a � b = 1
2 (a ⊗ b + b ⊗ a) is their symmetric tensor product (i.e.,

a�b is the symmetric part of the tensor product a⊗b) Mn×n
sym denotes the subspace

of symmetric matrices of Mn×n (i.e., such that A=tA). We fix a scalar product on
Mn×n

sym that will be denoted by 〈A,B〉 and the corresponding norm ‖A‖2 = 〈A,A〉.
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M(Ω; Mn×n) is the set of Mn×n-valued measures on Ω with finite total variation.
We will use standard notation for Lebesgue and Sobolev spaces.

The space BD(Ω) is defined by

BD(Ω) = {u ∈ L1(Ω; Rn) : Eu ∈M(Ω; Mn×n)},

where Eu is the linearized strain tensor, whose entries are defined by Eiju =
1
2 (Diuj+Djui), where Du denotes the distributional gradient of u. For the measure
Eu the Radon-Nikodym decomposition Eu = Eu dx + Esu holds. For a function
u ∈ BD(Ω) the symbol Ju denotes the set of essential discontinuity points for u;
we will denote by SBD(Ω) (special functions of bounded deformation) the set of
all functions u ∈ BD(Ω) such that |Esu|(Ω \ Ju) = 0. For such functions we have
the representation

Esu = (u+ − u−)� νuHn−1 Ju,

where Hk is the k-dimensional Hausdorff measure, νu is the normal to Ju and u±

are the traces of u on both sides of Ju (see [1], [2]).

We fix a closed rectifiable Y -periodic (n−1)-dimensional subset B of Rn and
a closed cone K0 of Mn×n

sym contained in {a � b : a, b ∈ Rn}. We suppose that K0

satisfies the following condition:

a� (b + c) ∈ K0 whenever a� b and a� c ∈ K0. (2.1)

A possible choice for K0 is the set {a� b : a, b ∈ Rn, 〈a, b〉 ≥ 0}.
Let Ω be a bounded open subset of Rn. For all ε > 0 we define

Uε(Ω) = {u ∈ SBD(Ω) : Ju ⊆ εB, (u+ − u−)� νu ∈ K0Hn−1−a.e.},

the set of all special functions with bounded deformation whose discontinuity set
is contained in εB and such that the density of their singular part belongs to the
cone K0.

In this paper we deal with the homogenization of integral functionals Fε(u) :
BD(Ω) → [0,+∞] of the form

Fε(u) =


∫

Ω

‖Eu‖2 dx if u ∈ Uε(Ω)

+∞ otherwise,
(2.2)

More precisely, we will study the asymptotic behaviour of Fε as ε → 0 in the sense
of Γ-convergence, with respect to the L2 convergence on BD(Ω) ∩ L2(Ω; Rn).

We define the homogenized energy density as

fhom(A) = inf
{∫

Y

‖Eu‖2dx : u ∈ BDloc(Rn),

Ju ⊆ B, (u+ − u−)� νu ∈ K0, u−Ax Y−periodic
}

, (2.3)

and the corresponding kernel

Khom = {A ∈ Mn×n : fhom(A) = 0}. (2.4)
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The orthogonal cone K⊥
hom is defined by

K⊥
hom = {B ∈ Mn×n

sym : 〈A,B〉 ≤ 0 for all A ∈ Khom}

We will prove the following result.

Theorem 2.1. Suppose that the function fhom satisfies

fhom(A) = fhom

(
PK⊥hom

A
)
, (2.5)

and that it is a convex function on K⊥
hom; then the family Fε Γ-converges to F

where

F (u) =


∫

Ω

fhom(Du)dx if u ∈ Uhom(Ω)

+∞ otherwise,
(2.6)

where
Uhom = {u ∈ BD(Ω) : PK⊥hom

(Esu) = 0}. (2.7)

Note that by Korn’s inequality indeed all functions in Uε(Ω) belong to H1(Ω′\
εB) for all Ω′ ⊂⊂ Ω.

Example. Our theorem applies to a number of model geometries described as
follows. For the sake of simplicity we treat the two-dimensional case only.

The simplest geometry is given by taking as B the square lattice

B1 = {(x, y) ∈ R2 : x ∈ Z or y ∈ Z}.

The usual brick-wall structure can be parameterized by

B2 = {(x, y) : 2y ∈ Z}∪{(x, y) : [2y] even, x ∈ Z}∪{(x, y) : [2y] odd, x+1/2 ∈ Z}
(see Fig.3 (a) and (b)).

Note that in both cases we have that ν ∈ {±e1,±e2} H1-a.e. on B.
We can consider the two cones of matrices

K1 = {a� b : a = λb, λ ≥ 0}
and

K2 = {a� b : 〈a, b〉 ≥ 0}.
Correspondingly, we have four cases in which fhom can be easily described.
(1) When considering the geometry given by B = B1 and K0 = K1 the

function fhom is given on symmetric matrices by

fhom

(a b
b c

)
= (a−)2 + b2 + (c−)2,

the minimum in problem (2.3) being given by the function u(x, y) = (−a−x +
by,−c−y + bx). The corresponding kernel is

Khom =
{(a 0

0 c

)
: a ≥ 0, c ≥ 0

}
.
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Y

B

Y

B

a) b)

c) d)

e)

Figure 3. The geometries of the example and related zero-energy displacements

(2) If B = B2 and K0 = K1 the function fhom is given on symmetric matrices
by

fhom

(
a b
b c

)
= a2 + b2 + (c−)2,

a minimum in problem (2.3) being given by the function u(x, y) = (ax+by,−c−y+
bx). The corresponding kernel is

Khom =
{(0 0

0 c

)
: c ≥ 0

}
.

(3) In the two remaining cases with K0 = K2 the function fhom is given on
symmetric matrices by

fhom

(a b
b c

)
= (a−)2 + (c−)2.
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The corresponding kernel is

Khom =
{(a b

b c

)
: a ≥ 0, c ≥ 0

}
.

In the case B = B1 the minimum in problem (2.3) is given by the function u(x, y) =
(−a−x,−c−y), and similarly in the case B = B2.

In Fig. 3 (c)–(e) we have pictured three displacement fields with zero energy,
related to case (1)–(3), respectively. The area with a thick contour represents the
image of Y through I + A.

3. Proof of the result

The result can be proven in part following the usual localization methods of Γ-
convergence, and in part using recent (and less recent) results on energies defined
on BD with constraints on the strain. The proof can be divided into three steps:
1) existence and representation of the Γ-limit on H1(Ω; Rn); 2) Γ-liminf inequality
by a convolution argument and translation invariance; 3) Γ-limsup inequality by
density.

Step 1. As customary, we localize the energies on open subsets U of Ω by
setting

Fε(u, U) =


∫

U\εB

‖Eu‖2 dx if u ∈ Uε(Ω)

+∞ otherwise.
(3.1)

By a density argument we may assume that the Γ-limit F (u, U) exists for all u and
for U in a dense class D of open sets (e.g. all polyrectangles with rational vertices).
The extension of such a set function F (u, ·) can be proved to be a measure (the
crucial point is to prove the subadditivity with respect to the set variable; this
can be done as in [11] Step 5 in the proof of Theorem 5.1). By comparing (the
extension of) F with the pointwise limit on H1(Ω; Rn) we have that

F (u, U) ≤
∫

U

‖Eu‖2 dx ≤ c

∫
U

|Du|2 dx;

hence we may apply the usual integral representation theorems on H1(Ω; Rn) (see
[9] Section 9,[12]) to conclude that there exists a function f such that

F (u, U) =
∫

U

f(x,Du) dx.

It is easily seen that indeed f(x,Du) does not depend on x (see e.g. [9] Proposition
14.3). Moreover, f depends only on the symmetric part of the gradient; i.e., f(A) =
f(B) whenever As = Bs. In fact, If uε → Ax is a sequence in Uε(Ω) such that

|Ω|f(A) = lim
ε→0+

Fε(uε),
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then we may set vε = uε + (B − A)x and note that vε ∈ Uε(Ω), vε → Bx and
Evε = Euε, so that

|Ω|f(B) ≤ lim inf
ε→0+

Fε(vε) = lim
ε→0+

Fε(uε) = |Ω|f(A).

Hence, we have f(B) ≤ f(A) and by symmetry f(B) = f(A).
It remains then to check that f is given by the homogenization formula (2.3).

To this end, choose U = (0, 1)n, and a sequence uε → Ax in Uε((0, 1)n) such that

f(A) = lim
ε→0+

Fε(uε). (3.2)

Fix δ > 0 and define ϕ(y) =
(

1
δ dist(y, ∂Y )

)
∧ 1 and Sδ = {y ∈ Y : dist(y, ∂Y )

)
<

δ}. Set

vε = ϕuε + (1− ϕ)Ax,

and note that

(v+
ε − v−ε )� νvε

= ϕ(u+
ε − u−ε )� νuε

on εB, so that vε ∈ Uε((0, 1)n). We extend vε to a function defined on ε[ 1ε + 1]Y
([t] is the integer part of t) by setting

wε(y) =

{
vε(y) if y ∈ Y

Ay if y ∈ ε[ 1ε + 1]Y \ Y .

The function wε is then extended to all Rn by requiring that wε(y) − Ay be
ε[ 1ε + 1]Y periodic. If we set

zε(y) =
1
ε

∑
k∈{0,...,[ 1ε ]}n

wε(εy + εk),

then zε is Y -periodic and ad admissible test function for the computation of
fhom(A). By the periodicity of wε and Jensen’s inequality we have

fhom(A) ≤
∫

Y

‖Ezε‖2 dy

=
1

εn[ 1ε + 1]n

∫
ε[ 1ε +1]Y

‖Ezε‖2 dy ≤ 1
εn[ 1ε + 1]n

∫
ε[ 1ε +1]Y

‖Ewε‖2 dy

≤
∫

Y

‖Evε‖2 + ‖As‖
(
εn[

1
ε

+ 1]n − 1
)
. (3.3)
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We then have to estimate this last term. Let η > 0; we have (for a suitable constant
cη) ∫

(0,1)n

‖Evε‖2 dy =
∫

(0,1)n\Sδ

‖Euε‖2 dy

+
∫

Sδ

‖ϕEuε + (1− ϕ)As + Dϕ� (uε −Ay)‖2 dy

≤ (1 + η)
∫

(0,1)n

‖Euε‖2 dy

+cη|Sδ|‖As‖2 + cη
1
δ2

∫
(0,1)n

|uε −Ay|2 dy.

By letting first ε → 0+, δ → 0+ and η → 0+ we get

lim sup
ε→0+

∫
(0,1)n

‖Evε‖2 dy ≤ lim sup
ε→0+

∫
(0,1)n

‖Euε‖2 dy, (3.4)

so that, by (3.3), (3.4) and (3.2),

fhom(A) ≤ lim inf
ε→0+

∫
Y

‖Ezε‖2 dy ≤ lim
ε→0+

∫
Y

‖Euε‖2 dy ≤ f(A).

The converse inequality is obtained by estimating f(A) using the liminf inequality
of Γ-convergence upon choosing uε → Ay of the form uε(x) = εu(x/ε), where u is
an admissible test function for (2.3).

Step 2. To prove the lower-bound inequality we use a convexity method
through convolutions (see [14], [9] Section 14.3.2). We first remark that, setting
uy(x) = u(x− y), we have that if the Γ-limit F (u, U) exists then we have

F (uy, y + U) = F (u, U).

Next, we choose a sequence Uk converging increasingly to Ω with Uk ⊂⊂ Ω, and
we suppose (upon subsequences) that

F (u, U) = Γ- lim
j

Fεj
(u, U)

for all U = Uk and for U = Ω (this is not restrictive upon enlarging the class D
above). By Step 1 we have that

F (u, U) =
∫

U

fhom(Eu) dx

on such U . By hypothesis (2.5) we may also write

F (u, U) =
∫

U

fhom

(
PK⊥hom

Eu
)

dx.
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Let ρj be a sequence of mollifiers with supports in B1/j(0). We then have

F#(ρj ∗ u, Uk) = F (ρj ∗ u, Uk)

≤
∫

B1/j(0)

ρj(y)F (uy, Uk) dy

≤
∫

B1/j(0)

ρj(y)F (u, Ω) dy = F (u, Ω).

By [4, 11] the functional

F#(u, U) =


∫

U

fhom

(
PK⊥hom

Eu
)

dx if PK⊥hom
Esu = 0

+∞ otherwise

is weakly lower semicontinuous on BD. We can then pass to the limit as j → +∞
to obtain

F#(u, Uk) ≤ lim inf
j

F#(ρj ∗ u, Uk) ≤ F (u, Ω).

We may then take the supremum in k to get

F#(u, Ω) ≤ F (u, Ω).

By the arbitrariness of the sequence (εj) we obtain

F#(u, Ω) ≤ Γ- lim inf
ε→0+

Fε(u, Ω).

Note in particular that F (u, Ω) = +∞ if u 6∈ U(Ω).

Step 3. To prove the upper bound we use an approximation result by Anzel-
lotti (see [4] Theorem 10.2) that states that for all u ∈ U(Ω) there exists a sequence
uk ∈ H1(Ω; Rn) converging weakly∗ to u such that

PK⊥hom
Euk → PK⊥hom

Eu

strongly in L2, and hence in particular

F#(u, Ω) = lim inf
k

F#(uk,Ω).

By the lower semicontinuity of the Γ-lim sup we then obtain

Γ- lim sup
ε→0+

Fε(u, Ω) ≤ lim inf
k

(
Γ- lim sup

ε→0+
Fε(uk,Ω)

)
= lim

k
F#(uk,Ω) = F#(u, Ω)

as desired.
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4. Perspectives

The results presented here lead to various additional questions. One is whether
assumption (2.5) on the effective energy density fhom can be altogether dropped,
or some general assumptions on the set B and the cone K0 can be found that
ensure its validity. Another direction of investigation may be adding some energy
on the discontinuity set B, and consider energies of the form

Fε(u) =
∫

Ω

‖Eu‖2 dx +
∫

Ω∩εB

ϕε(u+ − u−) dHn−1.

Referring to the sets K1 and K2 in the example the functions ϕε may satisfy
different growth conditions when u+ − u− points in the direction of ν, mimicking
a plastic or an elastic behaviour, and when it is orthogonal to ν (to mimic, e.g.,
friction). In this case the results of the present paper should be integrated with
those in [3] (see also [9] Section 18). Furthermore, most of these problems can
be rephrased in a nonlinearly elastic framework, where some of the analog of the
results in [10, 11] are still to be proved. Part of these questions will be addressed
in [8].
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