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ABSTRACT. A variational model to simultaneously treat Stress-Driven Re-
arrangement Instabilities, such as boundary discontinuities, internal cracks,
external filaments, edge delamination, wetting, and brittle fractures, is intro-
duced. The model is characterized by an energy displaying both elastic and
surface terms, and allows for a unified treatment of a wide range of settings,
from epitaxially-strained thin films to crystalline cavities, and from capillarity
problems to fracture models.

Existence of minimizing configurations is established by adopting the direct
method of the Calculus of Variations. Compactness of energy-equibounded
sequences and energy lower semicontinuity are shown with respect to a proper
selected topology in a class of admissible configurations that extends the classes
previously considered in the literature. In particular, graph-like constraints
previously considered for the setting of thin films and crystalline cavities are
substituted by the more general assumption that the free crystalline interface
is the boundary, consisting of an at most fixed finite number m of connected
components, of sets of finite perimeter.

Finally, it is shown that, as m — oo, the energy of minimal admissible
configurations tends to the minimum energy in the general class of configura-
tions without the bound on the number of connected components for the free
interface.
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1. INTRODUCTION

Morphological destabilizations of crystalline interfaces are often referred to as
Stress-Driven Rearrangement Instabilities (SDRI) from the seminal paper [40]
(see also Asaro-Grinfeld-Tiller instabilities [4, 21]). SDRI consist in various mech-
anisms of mass rearrangements that take place at crystalline boundaries because
of the strong stresses originated by the mismatch between the parameters of ad-
jacent crystalline lattices. Atoms move from their crystalline order and different
modes of stress relief may co-occur, such as deformations of the bulk materials
with storage of elastic energy, and boundary instabilities that contribute to the
surface energy.

In this paper we introduce a variational model displaying both elastic and
surface energy that simultaneously takes into account the various possible SDRI,
such as boundary discontinuities, internal cracks, external filaments, wetting and
edge delamination with respect to a substrate, and brittle fractures. In particular,
the model provides a unified mathematical treatment of epitaxially-strained thin
films [22, 31, 33, 42, 48], crystal cavities [30, 47, 49], capillary droplets [11, 24, 26],
as well as Griffith and failure models [9, 13, 14, 39, 50], which were previously
treated separately in the literature. Furthermore, the possibility of delamination
and debonding, i.e., crack-like modes of interface failure at the interface with the
substrate [27, 41], is treated in accordance with the models in [5, 43, 44|, that
were introduced by revisiting in the variational perspective of fracture mechanics
the model first described in [50]. Notice that as a consequence the surface energy
depends on the admissible deformations and cannot be decoupled from the elastic
energy. As a byproduct of our analysis, we extend previous results for the existence
of minimal configurations to anisotropic surface and elastic energies, and we relax
constraints previously assumed on admissible configurations in the thin-film and
crsytal-cavity settings. For thin films we avoid the reduction considered in [22,
23, 31] to only film profiles parametrizable by thickness functions, and for crystal
cavities the restriction in [30] to cavity sets consisting of only one connected
starshaped void.

The class of interfaces that we consider is given by all the boundaries, that con-
sists of connected components whose number is arbitrarily large but not exceeding
a fixed number m, of sets of finite perimeter A. We refer to the class of sets of
finite perimeter associated to the free interfaces as free crystals and we notice that
free crystals A may present an infinite number of components. The assumption on
the number of components for the boundaries of free crystals is needed to apply an
adaptation to our setting of the generalization of Golab’s Theorem proven in [36]
that allows to establish in dimension 2, to which we restrict, compactness with
respect to a proper selected topology. To the best of our knowledge presently no
variational framework able to guarantee the existence of minimizers in dimension
3 in the settings of thin films and crystal cavities is available in the literature.

Furthermore, also the class of admissible deformations is enlarged with respect
to [22, 23, 30, 31] to allow debonding and edge delamination to occur along the
contact surface X := SNOS? between the fixed substrate .S and the fixed bounded
region 2 containing the admissible free crystals (see Figure 1). In the following we
refer to 2 as the container in analogy with capillarity problems. Notice that the
obtained results can be easily applied also for unbounded containers in the setting
of thin films with the graph constraint (see Subsection 2.2). Mathematically this
is modeled by considering admissible deformations u that are Sobolev functions
only in the interior of the free crystals A and the substrate S, and GSBD, i.e.,
generalized special functions of bounded deformation (see [19] for more details),
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on AUSUX. Thus, jumps J, that represent edge delamination can develop at
the contact surface X, i.e., J, C X.

FIGURE 1. An admissible free (disconnected) crystal A is dis-
played in light blue in the container {2, while the substrate S is
represented in dark blue. The boundary of A (with the cracks)
is depicted in black, the container boundary in green, the contact
surface ¥ in red (thicker line) while the delamination region .J,
with a white dashed line.

The energy F that characterizes our model is defined for every admissible con-
figuration (A, w) in the configurational space Cp, of free crystals and deformations
by

F(A u) :=S(Au) + W(A, u),

where S denotes the surface energy and W the bulk elastic energy. The bulk
elastic energy is given by

W(A,u) = s W(z,e(u) — Ep)dz

for an elastic density W (z, M) := C(z)M : M defined with respect to a positive-

definite elasticity tensor C and a mismatch strain Fy. The mismatch strain is
introduced to represent the fact that the lattice of the free crystal generally does
not match the substrate lattice. We notice that the tensor C is assumed to be
only L>(QU.S), therefore not only allowing for different elastic properties between
the material of the free crystals in 2 and the one of the substrate, but also for
non-constant properties in each material extending previous results. The surface
energy S is defined as

S(A,u) = U(z,u, v)dH!
0A
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with surface tension v defined by

w(z,v4(2)) z € QNI*A,
20(z,v4(2)) 2eQn(AD U AN oA,
V(z,u,v) =< o(z,v5(2)) + B(z) LNADNHA, (1.1)
B(z) z€XNI*AN Jy,
o (z,vs(2) Ju

where ¢ € C(Q x R%[0,+00)) is a Finsler norm representing the material
anisotropy with c1/¢] < p(z,£) < c2f€| for some ci1,c2 > 0, B € L*™(X) is the

relative adhesion coefficient on ¥ with

1B(2)] < 0(z,vs(2)) (1.2)

for z € %, v is the exterior normal on the reduced boundary 9*A, and A®
denotes the set of points of A with density ¢ € [0,1]. Notice that the anisotropy
¢ is counted double on the sets AN NIANQ and A© NHANQ, that represent
the set of cracks and the set of external filaments, respectively. On the free profile
0* A the anisotropy is weighted the same as on the delamination region .J,, since
delamination involves debonding between the adjacent materials by definition.
Furthermore, the adhesion coefficient 8 is considered on the contact surface X,
alone on the reduced boundary X N0*A\ J,, and together with ¢ on those external
filaments A® NHAN X, to which we refer as wetting layer-

We refer the Reader to Subsection 2.3 for the rigorous mathematical setting and
the main results of the paper, among which we recall here the following existence
result:

Main Theorem. Ifv € (0,|Q|) or S = 0, then for every m > 1 the volume-
constrained minimum problem

inf F(A,u)
(Au)ECm, |Al=v

admits a solution and

inf F(A,u) = lim inf F(A,u). (1.3)
(Au)ec, |Al=v m—00 (A,u)€ECm, |Al=v
This existence result is accomplished in Theorem 2.6, where we also solve the re-
lated unconstraint problem with energy F* given by F plus a volume penalization
depending on the parameter A > 0.

The proof is based on the direct method of the Calculus of Variations, i.e., it
consists in determining a suitable topology 7¢ in C,, sufficiently weak to estab-
lish the compactness of energy-equibounded sequences in Theorem 2.7 and strong
enough to prove that the energy is lower semicontinuous in Theorem 2.8. We
notice here, that Theorem 2.7 and Theorem 2.8 can also be seen as an extension,
under the condition on the maximum admissible number m of connected compo-
nents for the boundary, of the compactness and lower semicontinuity results in
[15] to anisotropic surface tensions and to the other SDRI settings.

The topology 7¢ selected in C corresponds, under the uniform bound on the
length of the free-crystal boundaries, to the convergence of both the free crystals
and the free-crystal complementary sets with respect to the Kuratowski conver-
gence and to the pointwise convergence of the displacements. In [22, 23, 31] the
weaker convergence 7/, consisting of only the Kuratowski convergence of comple-
mentary sets of free-crystals (together with the S) was considered, which in our
setting without graph-like assumptions on the free boundary is not enough be-
cause not closed in C,,. Working with the topology 7¢ also allows to maintain



A UNIFIED MODEL FOR SDRI 5

track in the surface energy of the possible external filaments of the admissible
free crystals, which were in previous results not considered. However, to estab-
lish compactness with respect to 7¢ the Blaschke Selection Theorem employed
in [22, 23, 30, 31] is not enough, and a version for the signed distance functions
from the free boundaries is obtained (see Proposition 3.1). Furthermore, in or-
der to take in consideration the situation in which connected components of Ay
separates in the limit in multiple connected components of A, e.g., in the case of
neckpinches, we need to introduce extra boundary in A in order to divide their
components accordingly (see Proposition 3.6). Otherwise, adding to wuy different
rigid displacements with respect to the components in A (which are needed for
compactness of ug) would results in jumps for the displacements in Ay, which
are not allowed in our setting with Hlic—displacements. Therefore, we pass from
the sequence Aj to a sequence Dj with such extra boundary for which we can
prove compactness. Passing to Dy is not a problem in the existence in view of
property (2.9) that relates the liminf of the energy with respect to Ay to the one
with respect to Dy. However, in case S # (), in order to prove (2.9), we need to
further modify the sequence Dy from the original A by cutting out the portion
converging to delamination regions (e.g., portion containing accumulating cracks
and voids at the boundary with S) using Proposition 3.9, and, in order to main-
tain the volume constraint, by replacing them with an extra set that does not
contribute to the overall elastic energy.

The lower semicontinuity of the energy with respect to 7¢ is established for the
elastic energy as in [31] by convexity, and for the surface energy in Proposition 4.1
in several steps by adopting a blow-up method (see, e.g., [1, 8]). More precisely,
given a sequence of configurations (Ag,ug) € Cp, converging to (A,u) € Cp, we
consider a converging subsequence of the Radon measures p associated to the
surface energy and (Ag,ur), and we estimate from below the Radon-Nikodym
derivative of their limit denoted by pg with respect to the Hausdorff measure
restricted to the 5 portions of A that appear in the definition of the surface
anisotropy ¢ in (1.1). We overcome the fact that in general 0 is not a nonnegative
measure due to the presence of the contact term in the energy with 8, by adding
to py and pg the positive measure

s (B) = /B _pla (@)’

defined for every Borel set B C R? and using (1.2). The estimates for the Radon-
Nikodym derivative related to the free boundary 2N 9*A and the contact region
(XN 0*A)\ Jy, follow from [1, Lemma 3.8]. For the estimates related to exterior
filaments and interior cracks we first separately reduce to the case of flat filaments
and cracks, and then we adapt some arguments from [36]. Extra care is needed
to treat the exterior filament lying on ¥ to which we refer as wetting layer in
analogy to the thin-film setting. The estimate related to the delamination region
on X follows by blow-up under condition (4.2) that ensures that the delamination
regions between the limiting free crystal A and the substrate S can be originated
from delamination regions between Ay and S and from portions of free boundaries
0* Ay or interior cracks collapsing on %, as well as from accumulation of interior
cracks starting from (X N 0*Ag) \ Ju, -

A challenging point is to prove that condition (4.2) is satisfied by (Ag,ug). In
order to do that, in Theorem 2.8 we first extend the displacements uy to the set
Q\ (Ax U S) using Lemma 4.8. The extension of the wy is performed without
creating extra jump at the interface on the exposed surface of the substrate, i.e.,
the jump set of the extensions is approximately J,, U(Q2N0AL). We point out that
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as a consequence we obtain also in Proposition 4.9 the lower semicontinuity, with
respect to the topology 7/, of a version of our energy without exterior filaments
(but with wetting layer) extending the lower semicontuity results of [22, 30, 31].

Finally, we prove (1.3), that in particular entails the existence of a minimizing
sequence (A, up) € Cp, for the minimum problem of F in C. This is obtained
by considering a minimizing sequence (A.,u.) € C for F*, and then by modifying
it into a new minimizing sequence (E; x, v x) € Cp, such that FMAc us) + 6. >
]:)‘(Eaj)\,vaj)\) for some 6. — 0 as € — 0. The construction of (. ,v: ) € Cpy
requires 2 steps. In the first step we eliminate the external filaments, we remove
sufficiently small connected components of A., and we fill in sufficiently small
holes till we reach a finite number of connected components with a finite number
of holes (see Figure 2). In the second step we redefine the deformations in the free
crystal by employing [14, Theorem 1.1] in order to obtain a deformation with jump
set consisting of at most finitely many components, and such that the difference
in the elastic energy and the length of the jump sets with respect to u. remains
small.

The paper is organized as follows. In Section 2 we introduce the model and
the topology 7¢, we refer to various SDRI settings from the literature that are
included in our analysis, and we state the main results. In Section 3 we prove
sequential compactness for the free crystals with the bound m on the boundary
components in Proposition 3.3 and for C,, in Theorem 2.7. In Section 4 we prove
the lower semicontinuity of the energy (Theorem 2.8) by first considering only
the surface energy S under the condition (4.2) (see Proposition 4.1), and we
conclude the section by showing the lower semicontinuity of the energy without
the external filament and wetting-layer terms with respect to the topology 7 (see
Proposition 4.9). In Section 5 we prove the existence results (Theorems 2.6 and
2.9) and property (1.3). The paper is concluded with an Appendix where results
related to rectifiable sets and Kuratowski convergence are recalled for Reader’s
convenience.

2. MATHEMATICAL SETTING

We start by introducing some notation. Since our model is two-dimensional,
unless otherwise stated, all sets we consider are subsets of R2. We choose the
standard basis {e; = (1,0),e2 = (0,1)} in R? and denote the coordinates of
x € R? with respect to this basis by (21, z2). We denote by Int(A) the interior of
A C R?. Given a Lebesgue measurable set E, we denote by xf its characteristic
function and by |F| its Lebesgue measure. The set

Elo) . {x cR?: lim M _ a},

1
"5 B, (@) o €[0,1],

where B, (x) denotes the ball in R? centered at x of radius r > 0, is called the set
of points of density « of E. Clearly, E(®) C 9E for any a € (0,1), where
OF :={x € R?: B.(z)NE # () and B.(x)\ E # 0 for any r > 0}

is the topological boundary. The set E() is the Lebesgue set of E and \E(I)AE\ =
0. We denote by 0*E the reduced boundary of a finite perimeter set E [3, 37], i.e.,

IE = {m cR?: Jvp(x) = — lim Dxr(B:(z))

70 | Dy g|(By(z))’ ve(x)| = 1}. (2.1)

The vector vg(z) is called the measure-theoretic normal to OFE.
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The symbol H?®, s > 0, stands for the s-dimensional Hausdorff measure. An
H'-measurable set K with 0 < H!(K) < oo is called H' -rectifiable if 0*(K,z) =
0.(K,z) =1 for H'-a.e. x € K, where

Y(B, K Y(B, K

0" (K, z) := limsup/H (B,(z) N K) 0.(K,x) := liminf/H (Br(x) 0 )

r—0+ 2r ’ r—0+ 2r

By [29, Theorem 2.3] any H!-measurable set K with 0 < H!(K) < oo satisfies
0*(K,x) =1 for Hl-a.e. v € K.
Remark 2.1. If F is a finite perimeter set, then
(a) O*E = OEW (see, e.g., [37, Theorem 4.4] and [46, Eq. 15.3]);
(b) 9*FE € EA/2) and HY(E(/2)\ 9*E) = 0 (see, e.g., [3, Theorem 3.61] and
[46, Theorem 16.2]);
(¢c) P(E,B) = HY(BNO*E) = H(B N EWY/?) for any Borel set B.

The notation dist(-, ) stands for the distance function from the set E C R?
with the convention that dist(-,)) = +oc. Given a set A C R?, we consider also
signed distance function from 0A, negative inside, defined as
dist(z, A) if z € R?\ A,

dist(x,0A) :=
sdist(z, 94) {—dist(:zr:,R2 \A) ifzeA

Remark 2.2. The following assertions are equivalent:
(a) sdist(x, 0Ey) — sdist(z, OF) locally uniformly in R?;

(b) Ej K E and R? \ Ek K re \ Int(F), where K-Kuratowski convergence of
sets [18, Chapter 4].

Moreover, either assumption implies 0Fy K oE.

2.1. The model. Given two open sets  C R? and S C R?\ Q, we define the
family of admissible regions for the free crystal and the space of admissible con-
figurations by

A:={ACQ: 0Ais H'rectifiable and H'(9A) < oo}
and
C:= {(A,u) A e A,

u € GSBD*(Int(AU S U X); R?) N Hyp (Int(4) U S;R?) },
respectively, where ¥ := 95 N 9Q and GSBD?(E,R?) is the collection of all gen-
eralized special functions of bounded deformation [15, 19]. Given a displacement
field w € GSBD*(Int(AU S U X); R?) N H (Int(A) US;R?) we denote by e(u(-))
the density of e(u) = (Du + (Du)T)/2 with respect to Lebesgue measure £2 and

by J, the jump set of u. Recall that e(u) € L2(AU S) and J, is H -rectifiable.
Notice also that assumption v € H;} (Int(A) U S;R?) implies J, C £ N J*A. We

loc
denote the boundary trace of a function u : A — R™ by tra (if exists).

Remark 2.3. For any A € A:

(a) 0A = NU(QNo*A)U(0QN2A)UQNADNJA)UQNADNJA), where
N is an H'-negligible set (see, e.g., [46, page 184]);

(b) QNI*A=QNIAD (see Remark 2.1 (a) above);

(c) H'(0*A\ 0*A) = 0 (since 0*A C OA is H'-rectifiable);
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(d) up to a H'-negligible set, the trace of A € A on 9Q is defined as QN O* A
(see, e.g., [1, Lemma 2.10]).

Unless otherwise stated, in what follows Q and S C R?\Q are bounded Lipschitz
open sets with finitely many connected components satisfying H!(9S5)+H!(09Q) <
oo and X C 01 is a Lipschitz 1-manifold.

We introduce in A the following notion of convergence.

Definition 2.4 (74-Convergence). A sequence {A} C A is said to 74-converge
to A C R? and is written A, 2 A if
— sup HY(OAx) < oo;
k>1
— sdist(-, 0Ay) — sdist(-, 0A) locally uniformly in R? as k — oo.

We endow C with the following notion of convergence.

Definition 2.5 (7¢-Convergence). A sequence {(A,,u,)} C C is said to 7¢-
converge to (A,u) € C, and is written (A, u,) % (A, u) if

~ A, 3 A,

~ Uy — u a.e. in' Int(A) U S.

The energy of admissible configurations is given by the functional F : C —
[—OO, +OO]7
F=84+W,
where § and W are the surface and elastic energies of the configuration, respec-
tively. The surface energy of (A4,u) € C is defined as

S(A,u) := Ama*Aw(m,uA(x))dHI(x)

1
* /Qﬁ(A(l)UA(O))maA (¢(z,va(®)) + o(z, —va(x)))dH' (z)

+/ (e(z,vs(2)) + B(z))dH! (z)
SNAONHA

! —vy(x Lig .
+/2306*A\Ju Bla)dH (z) +/u o(x, —vs(z)) dH (), (2.2)

where ¢ : Q x S — [0,+00) and 8 : ¥ — R are Borel functions denoting
the anisotropy of crystal and the relative adhesion coefficient of the substrate,
respectively, and vy, := vg. In the following we refer to the first term in (2.2)
as the free-boundary energy, to the second as the energy of internal cracks and
external filaments, to the third as the wetting-layer energy, to the fourth as the
contact energy, and to the last as the delamination energy. In applications instead
of ¢(x,-) it is more convenient to use its positively one-homogeneous extension
1€]o(x,£/|€]). With a slight abuse of notation we denote this extension also by .

The elastic energy of (A,u) € C is defined as

W(A,u) = ", W(z,e(u(x)) — Eo(z))dz,

where the elastic density W is determined as the quadratic form

W(x,M) :=C(x)M : M, (2.3)

I1f R2\ Ay ERr \ Int(A), then for any = € Int(A) one has x € Int(A,) for all large n.
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by the so-called stress-tensor, a measurable function z € Q U S — C(z), where
C(x) is a nonnegative fourth-order tensor in the Hilbert space ngxlfl of all 2 x 2-
symmetric matrices with the natural inner product

2
M: N = Z MijNij

ij=1
for M = (Mjj)1<ij<2, N = (Nij)r<ij<o € M.
The mismatch strain x € QU S — Ey(x) € ngﬁg is given by
E() — e(UO) 1n Q’
0 in S,

for a fixed up € H1(Q).

Given m > 1, let A,, be a collection of all subsets A of Q such that 9A
has at most m connected components. Recall that since A is closed, it is H!-
measurable. By Proposition A.2, 0A is H!-rectifiable so that A,, C A. We call
the set

Con = {(A,u) cC: AeAm}

the set of constrained admissible configurations. We also consider a volume con-
straint with respect to v € (0, |Q]], i.e.,

Al = v
for every A € A.

2.2. Applications. The model introduced in this paper includes the settings of
various free boundary problems, some of which are outlined below.

— Epitazially-strained thin films [10, 22, 23, 31, 35]: Q := (a,b) x (0, +00), S :=
(a,b) x (—00,0) for some a < b, free crystals in the subfamily

Agubgraph := {A C Q: 3h € BV(%;[0,00)) and Ls.c. such that A = A,} C A,

where Ay, == {(2',2%) : 0 < 2% < h(2!)}, and admissible configurations in the
subspace

Csubgraph = {(A, ’LL) A€ -Asubgrapha RS Hlloc(lnt(A usu E);RZ)} C Cl

(see also [6, 38]). Notice that the container 2 is not bounded, however, we can
reduce to the situation of bounded containers where we can apply Theorem
2.9 since every energy equibounded sequence in Agupgraph is contained in an
auxiliary bounded set (see also Remark 2.10).

— Crystal cavities [30, 34, 47, 49]: Q C R? smooth set containing the origin,
S :=R?\ €, free crystals in the subfamily

Astarshaped := {A C 2 : open, starshaped w.r.t. (0,0), and 0Q C 0A} C A,
and the space of admissible configurations
Cstarshaped = {(A4,u) 1 A € Agtarshaped, U € Hﬁ)C(Int(A Usu E);RQ)} C Cq.

See Remark 2.10.
— Capillarity droplets, e.g., [11, 24, 26]: Q C R? is a bounded open set (or a
cylinder), C =0, S = (), and admissible configurations in the collection

Ccapillary = {(A, 0) A€ .A} cC.
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— Griffith fracture model, e.g., [12, 13, 16, 17]: S =X =0 Ey = 0, and the space
of configurations

Carimitn == {(Q\ K,u) : K closed, H!-rectifiable, u € HL_(Q\ K;R*)} c C.
— Mumford-Shah model (without fidelity term), e.g., [3, 20, 45]: S = X = 0,

Ey = 0, C is such that the elastic energy W reduces to the Dirichlet energy,
and the space of configurations

CMumfard—Shah := {(Q2\ K, u) € Carigmth : u = (u1,0)} C C.

— Boundary delaminations [5, 27, 41, 43, 44, 50]: the setting of our model finds
applications to describe debonding and edge delaminations in composites [50].
We notice that our perspective differs from [5, 43, 44] where reduced models for
the horizontal interface between the film and the substrate are derived, since
instead we focus on the 2-dimensional film and substrate vertical section.

2.3. Main results. In this subsection we state the main results of the paper. Let
us formulate our main hypotheses:

(H1) ¢ € C(Q2 x R%; [0, +00)) and is a Finsler norm, i.e., there exist c2 > ¢; > 0
such that for every = € Q, (z,-) is a norm in R? satisfying

c1l€] < p(x,€) < ep|é|  for any z € Q and € € R?; (2.4)
(H2) g € L*™°(X) and satisfies
—o(z,vs(x)) < B(x) < p(z,vs(T)) for Hl-a.e. z € 3; (2.5)
(H3) W is of the form (2.3) with C € L>®(Q U S) such that
C(z)M : M >2c3 M : M for any M € M2 (2.6)

for some c3 > 0.

Theorem 2.6 (Existence). Assume (H1)-(H3). Let either v € (0,|92]) or S = 0.
Then for every m > 1, A > 0 both the volume-constrained minimum problem

inf F(A CP
et (A, u), (CP)

and the unconstrained minimum problem

inf A A UP
(A,erecmf( , ), (UP)

have a solution, where F : Cp, — R is defined as

FMAu) = F(A,u) + N|A| - v].
Furthermore, there exists A\g > 0 such that for every v € (0, |Q|] and A > A,
F(Au) = (Ai,ﬂ)fec FMA,u) = lim inf F(Awu). (2.7)

inf
(A)eC, |Al=v M=500 (A,u)ECm, |Al=v

We notice that for A > Ay solutions of (CP) and (UP) coincide (see the proof
of Theorem 2.6) for any |v| € (0,|Q2|] and m > 1. Moreover, (2.7) shows that a
minimizing sequence for F in C can be chosen among the sets whose boundary
have finitely many connected components.

The proof of the existence part of Theorem 2.6 is given mainly by the following
two results in which we show that C,, is 7¢-compact and F is 7¢-lower semi-
continuous. Recall that an (infinitesimal) rigid displacement in R™ is an affine
transformation a(x) = Mz + b, where M is a skew-symmetric (i.e., M1 = —M)
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n x n-matrix and b € R". Given B € A with Int(B) = U;E;, where {E};} are all
connected components of Int(B), we say the function

a=" (Mx+b;)xg,,
i>1

a piecewise rigid displacement associated to B, here Mjx + b; is a rigid displace-
ment in R2.

Theorem 2.7 (Compactness of C,,). Assume (H1)-(H3). Let either v € (0,|9])
or S =10. Let {(Ag,ux)} C Cp, be such that

sup F(Ag, ug) < 00
k>1

and
|Ak| <v (2.8)
for every k > 1. Then there exist (A,u) € Cy,, of finite energy, a subsequence
{(Ag,,ur,)} and a sequence {(Dpn,v,)} C Cp such that A, 3 A, (Dp,v,) 5
(A, u), |Dn| = [Ag, |,
Up = (Uk, + An)XD,NAg, T UOXD,\A,,

for some piecewise rigid displacements a, associated to Dy, and

lilginf F(Ag,,uk,) > lirginf F(Dy,,vy). (2.9)

Theorem 2.8 (Lower semicontinuity of F). Assume (H1)-(H3) and let
{(Ag,ur)} C Cp and (A, u) € Cpy be such that (Ag,ui) S (A, u). Then

lim inf F(Ag, ux) > F(A,u).
k—o0

As a byproduct of our methods we obtain the following existence result in a
subspace of C,, with respect to a weaker topology previously used in [22, 30, 31]
for thin films and crystal cavities.

Theorem 2.9 (Existence for weaker topology). Assume (H1)-(H3) and fix
m > 1 and v € (0,|Q|]. The functional F': C — R defined as

F(Aju) == F(Au) — 2/ o(x,va)dH
QNAOINGA

- / (6(z,va) + B)dH! — / B,
SNAONHA >

admits a minimizer (A,u) in every 7/-closed subset of
Croi={(A,u) €C: A open, |A|=v, and AUY € Ay, },
where {(Ag,ux)} C C converges to (A,u) € C in 7/-sense if

— sup HY(0AL) < o,
k>1
- R2\ 4 S R2)\ 4,
- up — u a.e. in Int(A) U S.
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Remark 2.10. The sets Csupgraph and Csiarshaped defined in Subsection 2.2 are
To-closed in C}, (see e.g., [31, Proposition 2.2]). In the thin-film setting, we define
¢ and 3 as ¢ := vy and

B = —max { min{vys, vs — Vs 7},
where ¢, 75, and 7y, denote the surface tensions of the film-vapor, substrate-
vapor, and film-substrate interfaces, respectively. The energy F’ coincides (apart
from the presence of delamination) with the thin-film energy in [22, 23] in the case
Yfs Yss Vfs are constants, vs — vrs > 0, s > 0, and 4 > 0. Therefore, Theorem
2.9 extends the existence results in [22, 31] to all values of vs and v, — v¢5, as well
as to anisotropic surface tensions and anisotropic elastic densities.

Remark 2.11. All the results contained in this subsection hold true with essen-
tially the same proofs by replacing (H3) with the more general assumption:

(H3') W : (QU S) x M2X2 — [0,00) is a function such that M ~ W (z, M) is

Sym
convex for any x € QU S and

CIMP < W(w, M) < "|MIP + f(x)
for some p>2, ¢ > >0and f € LY(QUS).

3. COMPACTNESS

In this section we prove Theorem 2.7. Convergence of sets with respect to the
signed distance functions has the following compactness property.

Proposition 3.1 (Blaschke-type selection principle). For every sequence
{Ar} of subsets R? there exist a subsequence {Ay,} and A C R? such that
sdist(-, 0Ag,) — sdist(-, 0A) locally uniformly in R* as | — oo.

Proof. Without loss of generality we suppose Ay ¢ {R? (}. By the Blaschke se-
lection principle [3, Theorem 6.1}, there exists a not relabelled subsequence { Ay}
and a closed set K C R? such that 0A;, converges to K in the Kuratowski sense
as k — oo. Notice that by Proposition A.1,

|sdist (-, 0A)| — dist(-, K) (3.1)
locally uniformly as k — oo since [sdist(-, 0Ax)| = dist(-,0Ag). As sdist(-,0Ag)
is 1-Lipschitz, by the Arzela-Ascoli Theorem, passing to a further not relabelled
subsequence one can find f : R? — [—00, +00] such that

sdist(-,0A;) = f

locally uniformly in R? as k — oo. By (3.1), |f(-)| = dist(-, K
may have nonempty interior. Fix a countable set @ C Int(K)
and define

). Recall that K
dense in Int(K),

A={f<0}u(Int({f >0} NIK)UQ.
By construction, Int(A4) = {f <0}, A={f <0}UK and 04 = {f =0} = K.
Finally we show that
f(z) = sdist(x,0A).
If x € A, by the definition of A and K, f(x) < 0 so that
f(z) = —dist(z, K) = —dist(z, 9A) = —dist(z,R? \ A).
Analogously, if z ¢ A, then f(z) > 0 and hence
f(z) = dist(z, K) = dist(z, 0A) = dist(z, A).



A UNIFIED MODEL FOR SDRI 13

In general, the collection A is not closed under 74-convergence. Indeed, let
E := {z}} be a countable dense set in By(0) and Ej := {z1,...,2;} € A. Then

HY(OE) = 0, and E, 3 E as k — oo, but E ¢ A since OE = B;(0). However,
A, is closed with respect to the 74-convergence.

Lemma 3.2. Let A C Q and {A} C Ay, be such that Ay, = A.Then:
(a) Ae A, and

H(9A) < lim inf H (0 Ay); (3.2)
—00
(b) Ax — A in LY(R?) as k — oo.

Proof. (a) By Remark 2.2, 0 Ay, K 04 as k — oo Thus, by [36, Theorem 2.1] 0A
has at most m-connected components, and (3.2) holds.

(b) As 0Ag X OA, for any x € Int(A) resp. = € R?\ A, there exists k, > 0
such that @ € Ay, resp. © € R?\ Ay, for all k > k. Finally, by (3.2), |0A| = 0, and
therefore,

XA, — XA a.e. ¢ € R%

Now (b) follows from the uniform boundedness of {A} and the Dominated Con-
vergence Theorem. O

Furthermore, sequences {Ax} C A, with equibounded boundary lengths are
compact with respect to the 74-convergence.

Proposition 3.3 (Compactness of A,,). Suppose that {Ar} C Ay, is such that

sup H' (0A}) < oo.
k>1

Then there exists a subsequence {Ag,} and A € Ay, such that H'(0A) < oo and
sdist(-, 0Ag,) — sdist(-, 0A) locally uniformly in R? as | — oo.

Proof. By Proposition 3.1 there exists a not relabelled subsequence {Ay} and a

set A such that 0Ay K 94 and sdist(-, 0A;) — sdist(-,0A) locally uniformly in
R? as k — co. By Lemma 3.2, A € A, and H!'(0A) < . O

Proposition 3.4. Let {A;} C A, be such that Ay A A as k — co. Suppose that
It(A) = | Bs, F=|JE ad G=|JE,
hel 1ely J€El2
where Ey, are disjoint connected components of Int(A), Iy and Iy are disjoint

finite subsets of 1. Then there exist a subsequence {Ay,} and a sequence {7y} of
H!-rectifiable sets in R? such that

(a) v C Int(Ay,) and lim H!(y) = 0;
l—o00

(b) sdist(-, 0(Ax, \ 7)) — sdist(-,dA) as | — oo locally uniformly in R?;

(c¢) for any connected open sets D' CC F and D" CC G there exists I such
that D' and D" belong to different connected components of Int(Ayg, \ )
for anyl >1'.

We postpone the proof after the following lemma. Before we need to introduce
some notation. Let ng > 1 be such that Ej, N {dist(-,04) > 1} # 0 for every
h € Iy Uly and n > ng. Given h € Iy Uy, let {E}'},,>p, be an increasing sequence
of connected open sets satisfying Fj N {dist(-,0A) > %} C K} CC Ej, and

E), = U En. (3.3)

n>ng
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By the sdist-covergence and the finiteness of I; U Iy, for any n > ng there exist
kY > 0 such that E7' CC Int(Ag) for all k > kO and h € I; U I5. Let

2d, ;== min {dist(E}, E7),dist(E]", 0A),dist(E",0A)}. (3.4)
i€lh, j€l J J
Note that 0 < d,, < ﬁ

The idea of the proof of Proposition 3.4 is to “partition” the connecting com-
ponents of Int(Ax) which in the limit break down into connected components
{Ep}her of Int(A) such that I' N I; # 0 and I' N Iy # (), for example in the
case of neckpinches. More precisely, we cut out at most m-circles from Int(Ay)
such that for any n > ng, for all sufficiently large k& (depending only on n), any
curve v C Int(Aj) connecting a point of E', i € I;, to a point of EJ’-L, j € I,
intersects at least one of these circles. The following lemma consists in perfoming
this argument for fixed 7 € I1 and j € Is.

Lemma 3.5. Under the assumptions of Proposition 3.4, let ¢ € Iy, j € Iz, and
n > ng be such that the set

Y =Y = {k € N: 3Dy CC Int(Ay) closed, connected,

and such that Dy, N E', D, N E} # @}
(3.5)

s infinite. Then, there exists kY > kO such that for any k € Y with k > ki
there exists a collection {Bri(z,lf)}l of at most m balls contained in Ay such that
7“2 < d, and any curve v CC Int(Ay), connecting a point of E* to a point of E?,
intersects at least one of B, ().

Proof. We divide the proof into four steps.

Step 1: for any k € Y, let C, CC Int(Ag) be any closed connected set inter-
secting both E}" and E7°. Then

lim diSt(Ck,aAk) =0.

keY, k—oo
By contradiction, assume that there exists € > 0 such that
diSt(Ck, 8Ak) > € (36)

for infinitely many k£ € Y. By the Kuratowski-compactness of closed sets there exist
a closed connected set C' and a not relabelled subsequence {C}}recy satisfying

(3.6) for all k& € Y such that Cj K Cas k — oco. Since A;, % A, in view
of Remark 2.2 0A; K 94 and D ¢ A. Let 2 € C and y € OA be such that
|z — y| = dist(C,0A). Then by the definition of the Kuratowski convergence,

there exist sequences zp € C and yi € A such that x; — = and y, — y. Since
|z — y| > dist(Ck, 0Ag) > €, it follows that

dist(C,04) = |z —y| = klim |z — Ykl > €. (3.7)
—00

Thus, C CC Int(A). In particular, (3.7) implies that the non-empty connected
open set {dist(-,C') < {} is compactly contained in Int(A) and intersects both
B and E} so that E}' U {dist(-,C) < 7} U E} C Int(A) is connected. But this
is a contradiction since Ej' and E7' belong to different connected components of
Int(A).
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Step 2: for every k € Y there exists a path-connected closed set Ly CC Int(Ay)
intersecting both E;' and E7 such that

dist(Ly, 0Ag) = O := sup dist(D, 0Ag), (3.8)
where sup is taken over all closed connected sets D CC Int(Ay), intersecting both
B and ET° (such sets exist by definition of Y). Moreover, there exists kL >0
such that Ly contains E' U EY and 0y < d,, for any k > kL.

Indeed, in view of the Kuratowski-compactness of closed sets and from the
Kuratowski-continuity of dist(-,0Ax), (3.8) has a maximizer Lj. Applying Step
1 with Ay and Cy = Lj, we get 0 — 0 as kK — oo. Let Lj be the connected
component of {dist(-,0Ax) > dx} containing Lj. Since E}' U E? CC Int(A), the
sdist-convergence and Remark 2.2, Ej' U E? CC Int(Ag) for all large k. More
precisely, by the definition (3.4) of d,,, there exists k} > 0 such that

min{dist(E;", 0Ay), dist(E}, 0Ag)} > dy, (3.9)

for all & > k.. By construction, dist(Ly, dAy) = 0k, and since d; — 0, there exists
kL > kL such that &, < d,, for any k > kl. Note that by (3.9) for such k we have
also E;* U E]” C Lg.

Let us show that Lj is also path-connected. Indeed, given x € L, consider the
ball B,(z) for small » < d;. Then Lj N B,(z) is path-connected, otherwise there
would exist a curve in B, (z) with endpoints in Lj containing a point z € B,.(x)\ L
such that dist(z,0A) > d; contradicting to the definition of Lj. Thus, Lj is
locally path-connected. Now the compactness and the connectedness of L imply
its path-connectedness.

Step 3: given ¥ € E}"* and y € E7°, let v, C Ly be a curve connecting z to

y. Then for any k > k? there exists 2, € v \ EI° U EZ° such that any curve

~v CC Int(Ag) homotopic in Int(Ag) to 7% (with same endpoints) intersects the
ball ng (Zk)

Indeed, otherwise slightly perturbing the curve «; around the points of the
compact set 7' = {z € 75 : dist(z,0A4;) = 0} we would get a new curve
i CC Int(Ag) connecting z to y for which dist(z, ;) > oy for all x € 4. Now the
compactness of 7y implies dist(7x, 0Ax) > 0, which contradicts to the definition
(3.8) of Ly.

Step 4: now we prove the lemma.

Applying Steps 1-3 with Ay, we find an integer k) > kY, a curve v} connecting
a point of E"® to a point E;LO such that

dist(y},0Ay) = ri = supdist(D, 0A;) < d, (3.10)

where sup is taken over all connected and closed D CC Int(Ag) intersecting
both EI'* and EY°, and a ball B (21) C Ay with 2} € 7} such that any curve
v CC Int(Ax) homotopic to v}, intersects BT}C(zi) for any k € Y with k > k..

For k € Y with k > k! set

AL = A\ (Int(A) N OB,y (1),

Now consider the set Y7 of all £ € Y for which there exists a closed connected
set C, CC Int(Ay) intersecting both E;" and EJ°. If Y1 is finite, we set kil =
max{max Y7, k}} and we are done.

Assume that Y7 is infinite. Note that for any k € Y7, 8BT11€ (21) touches at least
two different connected components of A4, and thus, A} € A,,—1. Applying Steps
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1-3 with A,lC and Y7, we find an integer k2 > k!, a curve 'y,g connecting a point of
E; to a point ET° such that

dist(vZ, 0AL) = r2 = supdist(D, DA},
where sup is taken over all connected and closed D CC Int(A}) intersecting
both E;* and E7°, and a ball B2 (22) C A} with 22 € 42 such that any curve
v CC Int(Ay) homotopic to 77 intersects Bri(zg) for any k € Y7 with k > k2. By
(3.10), 1 > 3.
For k € Y7 with k > k2 set

A = A\ (In6(Ay) 0 (9B, (24) U 0B,2(22)))

and consider the set Y5 of all £ € Y7 for which there exists a closed connected
set C CC Int(A7) intersecting both E!'® and E7°. Note that Y5 is finite, setting

4 .= max{max Y5, k2} and we are done. If Y, is infinite, then A3 € Am—2, and
we repeat the same procedure above. After at most m steps we obtain ky > kY
such that for any k > k7 there is a collection {BTL (1)} of at most m balls, which

satisfy the assertion of the lemma. O

The assertions of Proposition 3.4 follow by applying Lemma 3.5 with all pairs
(Z,j) € ) x I.

Proof of Proposition 3.4. Given ¢ € I, j € Iy and n > ng, let Y;7 be given by
(3.5). If Y/ is infinite, let kY be given by Lemma 3.5, otherwise set kY =
1 +maxY;7. Let ky := 1+ max ki and

Z’J

’ Int(Ag,) NUOBY (2,), if kn €Y,
Wi = Lo
0, if k, ¢ Y7,

where {B" (2L)} is the collection of balls given by Lemma 3.5. Without loss of
vt (2

generality we assume that {k,}, is strictly increasing and set
Tn = U Vi -
2%

Being a union of at most NjNom circles, 7, is H'-rectifiable, here N; is the
cardinality of I;. By Lemma 3.5,

H () <Y HYOBY (%4,)) < 27N Namdy,. (3.11)
i o
Then lim H!(v,) = 0 and therefore, ,, converges in the Kuratowski sense to at
n—oo
most N1 Nom points on 0A.

We claim that the sequences {Ay, } and {~,} satisfy assertions (a)-(b) of the
proposition. Indeed, by (3.11), {~,} satisfy (a). Since 7, converges to at most
N1 Nom points on A in the Kuratowski sense, (c¢) follows. To prove (b), we take
any connected open sets D' CcC E and D” CC F. By connectedness and the
definitions of Ej, and Ej}', there exist « € Iy and j € Iy and i > ng such that
D' cc E} and D" CC E} for all n > f. By the construction of 7, the sets
E} and E7 (and hence, D" and D") belong to different connected components of
Int(Ag,) \ v for all n > n. O
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By inductively applying Proposition 3.4 and by means of a diagonal argument
we modify a sequence {Ag} T4-converging to a set A into a sequence { By} with
same 74-limit and whose (open) connected components “vanish” or “converge to
the corresponding” connected components of A. This construction will be used
in Step 1 of the proof of Theorem 2.7. We notice here that if S = (), then the
sequence {D,} from Theorem 2.7 coincides with the sequence {By,}. Actually, if
S =0, it would be enough to take D,, = En, where En is constructed in the Step
1 of the proof of the next proposition, since in this case we do not need properties
(e) and (f) of the statement of the next proposition.

Proposition 3.6. Let A € A, and {Ax} C A, be such that sdist(-,0A;) —
sdist(-, 0A) locally uniformly in R?. Then there exist a subsequence {Ay,} and a
sequence {B;} C Ay, such that

(a) 0Ay, C OBy and zhm HY (OB, \ OA,) = 0;
—00

(b) sdist(-,0B;) — sdist(-, 0A) locally uniformly in R
(c) if {E;} is the set of all connected components of Int(A), we can choose
a subfamily {E'} of connected components of Int(B;) such that for any
G CC E; there exists l; ¢ > 0 with G CC E! for every | > l; &;
(@) [Bil = | Ag,| for cvery > 1
(e)
lim sup dist(z, E;) =0
=00 pe BN\ E;
and
Jim HL(OQ N (DEL\ OE;)) = 0.

(f) the boundary of every connected component of Int(By) \ |J; E! intersects
the boundary of at most one connected component of S.

Proof. Given N,n > 1, we define the index set IV by
1
1Y = {i> N B0 {dist(,04) > ~} # 0}.

We notice that I2 is finite since A is bounded.

Step 1: Construction of {B;} and {Ay,} satisfying (a)-(d). This is done by
using Proposition 3.4 iteratively in N € N and a diagonal argument.

Substep 1: Base of iteration. By Proposition 3.4 applied with {Ag},cyo with
Y% := N, I; = {1}, and I, = I! inductively with respect to n € N, we find a
decreasing sequence Y? O Y! O ... of infinite subsets of N such that for the
subsequence {Aj}reyn» there exists a sequence {77 }reyn of H!'-rectifiable sets
such that for any n > 1:

— ¢ C Int(Ay) for any k € Y™ and keylgfr]g_)OOHl(vg) = 0;

— for any connected open sets D CC E; and D' CC Ujer B there exists
k" > 0 such that D and D’ belong to different connected components of
A \ v for any k € Y™ with k > K/

— sdist (-, d(Ag \ 7)) — sdist(-,0A4) as Y™ 3 k — oo locally uniformly in R2.

Then by a diagonal argument, we choose an increasing sequence n € N — k! € Y
such that B
Bl,n = Akn \’YZ}La ne N7

satisfies

ain: 0Ag, C (‘?El,n and ”Hl(aél,n \ 0A,) = ”Hl(%’%) < 27" for any n > 1;



18 SH. KHOLMATOV AND P. PIOVANO

bin: sdist(-, BELn) — sdist(+, 0A) as n — oo locally uniformly in R?;

c1p: for any connected open set D CC FEj there exist n}) > 1 and a unique
connected component denoted by E;™ of Int(B ) such that D cC E;"
for all n > n},.

Substep 2: Iterative argument. Repeating §ubstep 1 and applying Proposition
3.4 inductively in N = 1,2,..., with Ay := By, I1 == {1,...,N} and I := IY
for n € N, we obtain {BN+17n}n C A, and and increasing sequence n € N — kflv +1

with {kN1},, D {kN*1}, such that for any N > 1:
ANp: 814;%\1 C ({')ENm7 6§N7n C 8§N+17n and H1(8§N+17n \ 8§N7n) < 27(N+1)n

for any n > 1;
bnn: sdist(-, 0By ,) — sdist(-, 0A) as n — oo locally uniformly in R?;
cnp: for any connected open set D CC E; for some i € {1,..., N} there exist

n%, > 1 and a unique connected component denoted by EZN " of Int(é N.n)
such that D CcC EiN’" for all n > n’,.

By condition by, in Substep 2 and by the uniform boundedness of {EN,n}a
there exists an increasing sequence N € N — ny € N such that the sequence
By = B/N,,LN satisfies sdist(-, 0By) — sdist(-,04) as N — oo locally uniformly
in R2. By condition ayy,, of Substep 2,

OAy C OBiny C ... C BN,y = 0By

and
~ N ~ ~ N .
H'(0BN \ 04y ) < > HY OBiny \ 0Bi1my) < Y 27N <2l
=1 =1
where EO,nN = AN .

nnN

Furthermore, given ¢ € N, if D CC E; is any connected open set, then by

. . . = N
condition cnp,, there exists a unique connected component EzN = FE; TN of

Int(é ~) such that D cC E¥ for all sufficiently large N (depending only D and
i). Moreover, it is clear that |By| = |Ay | for any N. Hence, the sequence
N

{Bn}n and the subsequence {AWN } v satisfy assertions (a)-(d).

Step 2: Construction of {B} and {Ay,} satisfying (a)-(e). Notice that
Int(By) C Int(Agy ) and by By ™ A and Lemma 3.2 (b), Jim_ |IBNAA| — 0.
In particular, for any i,

lim |ENAE;| =0. (3.12)
N—o00

By the Area Formula applied with dist(-, E;) we have
~ o ~
BYAE| = [ W (EY\E) 0 (dist(, B) = 1)ds
0

for any 7. From this, (3.12) and a diagonal argument, there exists a not relabelled
subsequence {By} for which

lim H'((EN \ E;) 0 {dist(-, E;) = t}) =0

N—00
for any ¢ and a.e. t > 0. Thus, we can choose t5; \, 0 for which

Jim A (BN ) 0 {dist (-, Ey) = t.}) =0
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for any s € N and ¢, and thus, by a diagonal argument we find a further subse-
quence {Bp, }sen such that

HL (BN \ B;) N {dist(-, B;) = t,}) < 27 (3.13)
for any i and s. Let ¢f := (BN \ E;) N {dist(-, E;) = t,}, and let

Es = ENS \ Csa
where (s := (J($. Note that (s is H!-rectifiable and by (3.13), H!((s) < 217,
i
Denote by Ef the connected component of Es satisfying Ef C EZN s and Ef NE; #

(. By construction, sup dist(z, E;) < ts, thus,
xGE:\El

limsup sup dist(z, E;) =0, (3.14)

5700 peES\E;

and since aAst Cc OB N, C 8§S, and
NN

lim sup H' (0B, \ 04, x, ) < limsup <7—[1(Cs) + H' (0B, \ OA, N )) = 0.
TLNS

s—»00 "Ns s—»00
Moreover, since 02N (8Ef\8EZ) C {0 < dist(+, E;) < ts} for any s and 4, we have

limsup #' (90 N (O3 \ 9E;)) < lim #'(92 N {0 < dist(-, B;) < ts}) =0 (3.15)

S§—00

for any ¢ since t; N\, 0. If D CC Ej, then D ccC Es prov1ded that s is large.
This, and the relations R\ By, = R2 \ B and Int(B) C Int(By,) imply the
local uniform convergence of sdist(-, dB;) to sdist(-, dA) in R2. Thus, {B,} and
{Ak_NS } satisfy (a)-(e).

Step 3: Construction of {By} and {Ay,} satisfying (a)-(f). Consider Cs

Int(B,)\ U; ES Since |[EfAE;| — 0 and |Int(B;s)Alnt(A)] — 0 as s — 0o, we have
|Cs| — 0. Therefore applying the Area Formula with dist(:,S), we have

Cs| = /OOO HY(Cy N {dist(-, S) = t})dt

so that, passing to further not relabelled subsequence if necessary, we can choose

t' € (0,dp/4) such that lim HY(Cs N {dist(-,S) = t.}) = 0, where dp is the
S5—00

minimal distance between connected components of S. Now the sequence

B = Es \ (Cs n {diSt('7 S) = t;}>

and the subsequence {A, ~, } satisfy all assertions of the proposition. O
NN

Proposition 3.7. Let Q C R™ be a connected open set and {ux} C H} (Q;R™)
be such that

sup/ le(ug)|?dz < +oo. (3.16)
ko JQ
Then either |ug| — oo a.e. in Q or there exist u € H} (Q;R™) N GSBD?(Q;R™)

and a subsequence {ug,} such that ug, — u in HL_(Q;R™), and hence, uy, — u
a.e. in Q.

Proof. Indeed, suppose that there exists a ball B CC @, a measurable function
@ : Be — R™ and a not relabelled subsequence {uy} such that u; — u a.e. in some
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subset E of B. with positive measure. Since u; € H'(B;R"), by the Poincaré-
Korn inequality, there exists a rigid displacement a; : R™ — R™ such that

o+ auliysny < © [ Jet)lPds
Be

for some C' > 1 independent of k. In particular, by the Rellich-Kondrachov The-
orem, there exists v € H'(B¢;R") such that ug + ax — v in H'(B;;R") (up to
a subsequence) and a.e. in B,. Since uy — w a.e. in E, ap — v —u a.e. in E as
k — oo. Thus, v — u is a restriction in E of some rigid displacement a : R™ — R".
By linearity of rigid displacements, a; — a pointwise in R™. Therefore, ux — v—a
in H'(B¢;R"), hence a.e. in B.. In view of (3.16), {ux} € GSBD?*(Q;R"™) with
Ju, = 0. Hence, by [15, Theorem 1.1], there exist a further not relabelled subse-
quence {ug} for which the set

F:={ze€Q: |ug(x) — oo}

has a finite perimeter in Q and u € GSBD?*(Q;R") such that ux — v a.e. in Q\ F
and

H Y I N\OF) +H"HQNI'F) < n]gglfyluuk) = 0. (3.17)

Thus, P(F,Q) = 0, i.e., either F = 0 or F' = Q. Since uy, — u = v — a a.e. in
B. C Q, the case F' = @ is not possible. Thus, F' = (). By (3.17), H'(J,) = 0.

Now we show that u;, — w in H} (Q;R") and v € HL _(Q;R™). Let D; CC
Dy CC ... be an increasing sequence of connected Lipschitz open sets such that
Dy := B, and @ = U;D;. Applying Poincaré-Korn inequality D; we find a rigid
displacement aj, such that

112 2
s+ al By < 5 [ letun)Pa,
i
where ¢; is independent on k. Then by the Rellich-Kondrachov Theorem, every
subsequence {uy, } admits further not relabelled subsequence such that wuy, +ail -
vin H'(D;;R") and a.e. in D; for some v € H*(D;; R"). Since uy, — u a.e. in Dj,
it follows that ail — v—u a.e. in D; and hence, v —u is also a rigid displacement.

Since a.e.-convergence of linear functions implies the local strong H'-convergence,
ug, — w in HY(Dj;R"), and thus, u € H'(D;j;R"). Since the subsequence {uy, }
is arbitrary, ux — u in H'(D;; R"). By the choice of D, up — u in H} _(Q;R")
and u € HL (Q;R"). O

loc
The following corollary of Proposition 3.7 is used in the proof of Theorem 2.7.

Corollary 3.8. Let P,P, C R"™ be connected bounded open sets such that for
any G CC P there exists kg such that G CC Py for all k > kg, and let up €
HL (P R™) be such that

sup/ le(up) [2dz < oo. (3.18)
k Jp,

Then there existu € HL (P;R")NGSBD?(P;R"), a subsequence {(Py,,ur,)} and

a sequence {b;} of rigid displacements such that ug, + b, — u a.e. in P.

Proof. Let B. CC P be any ball. By assumption, B, CC P for all large k. By
the Poincaré-Korn inequality, for all such k there exists a rigid displacement by
such that

o+ bl < Cc [ letun) P,
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This, (3.18) and the Rellich-Kondrachov Theorem imply that there exist a not
relabelled subsequence {uy + by} and v € H'(B¢;R"™) such that uy, + by — v in
H'(B;R"), hence, a.e. in B.. Now applying Proposition 3.7 with an increasing
sequence {G;} of connected open sets satisfying G; = B¢, G; CC P and P = U;G;
we find u € H} (P;R") N GSBD?(P;R") with v = v in B, and a not relabelled
subsequence {uy + by} such that uy + by — u a.e. in P. O

Proposition 3.9. Assume (H1)-(H2) and let 29 € ¥, § € (0,3) and r € (0,1) be
such that vy := vs(xg) exists,

(. &) — (@0, §)| <6 (3.19)
for any y € Uy, (z0) and &€ € S, U,y (0) N'X is a graph of a Lipchitz function

over tangent line Uy, (x0) N Ty, in direction vy and

[ 1) - Bl <K U (w) 1D (320)
Ur,vg (zo)NX

Let A € Ay, be such that xg € XN0*A, Uy, (z0) N{dist(-, Ty,) > or} C Int(A)US,
and let {(Ay,ux)} C Cmy and u € HL _(Int(A); R?) be such that A, 3 A and

sup le(ug) 2dx + H (U, (x0) N OAg) < 00

k /UT,VO(:UO)O(A;CUS)
and up, = u a.e. in Uy, (x0) NInt(A) and |ug| = 400 a.e. in SNU, ,(x0). Then
there exists ks > 1 for which

p(x,va,)dH + 2/ P, va,)dH!

/UM0 (20)NQNI* Ay, Urvo (@0)NQN (ALY UAM N0 A,

+ / (go(x, vs) + ﬂ)d?—[l
Ur,g (20)NENAL N0A,,
o(x,vs) dH?
o

<.

Ur
1

> 5 / o(z,vs)dH! — 6 oz, vs)dH'. (3.21)

L+ & JUr vy (2o)nEno- A Upuo (20)NE

BdH' + /
(xo)ﬂzﬂa*Ak\Juk UT',VO (l‘o)ﬂJuk

for any k > ks.

We postpone the proof after the following lemma.

Lemma 3.10. Let ¢ be a norm in R?, A € A,, be such that 0 € X N 0*A,
U, N {dist(-,{z2 = 0}) > 5} C Int(A) U S, and {(Ag,ux)} C Cm, and u €
H! (Int(A);R?) be such that

loc

sup/ le(ug) [*dz + H (U, N 0A) < o0 (3.22)
k UrNAg

and Ay 3 A and uy — u a.e. in U, NInt(A) and |ug| — 400 a.e. in SNU,. Then
for every € > 0 there exists ke > 0 such that for any k > ke,

/ Sa)dn! +2 [ B4, ) IH?
U,NQNO* Ay,

U-nNALMNoA,

> 2/ P(vs)dH' — . (3.23)
UrNEN(0* A\ Ju,,)



22 SH. KHOLMATOV AND P. PIOVANO

Proof. Since (A,(cl) N OAg) U Jy, is Hl-rectifiable, by [3, pp. 80] there exists at
most countably many Cl-curves {I'¥};>; such that

W (((A,(j’ NoA) U T\ rf) —0.
i>1
Selecting closed arcs inside curves if necessary, we suppose that Ff C U, and

1 1 1
/U Ao P(va,)dH! + / S(va)dH +e> > /F , S (vpr)dH

UrNJu,, =1

for any k. Since each I‘f is C', we can choose a Lipschitz open set Vzk C U, such
that TF C VF, |VF| <2717k

€

P(vyr)dH! < 2/Fk S(vps)dH! + S

oV

and disty (¥, 0VF) < 27%, where disty is the Hausdorff distance (see e.g., (A.1)
for the definition). Let V¥ := U, \ Int(4;) U S be the “voids”. By the definition
of {V/},

/ d(va, )dH' + / P(vs)dH + 2 / P(va,)dH?
U,-NQNO* A, Urﬁ(z\a*Ak.) UTﬂJuk
€
+2/ H(va, )dH! > / AV )dH — =, (3.24
U,nnAYNo A, va0) ; ovF o) p (B2

In particular, by (3.22), sup 3. H'(0V}¥) < oo, and hence, by [46, Proposition
k i>0

2.6, there exists £ € R? such that the set {z € |J; 0V} : try, oy (w)(z) = ¢} is
H!-negligible. Define

Then wy, € GSBD?(U,; R?), Jy, = J; OV} and by (3.22),
sup/ le(wy) 2dx + H (Ju,,) < 0.
k Ju,

Since Y |V¥| < 27% by assumption on {u;} and {4},
i>1

u a.e.in U, NInt(A),

Wk — i i

¢ ae.inQNU.N\A

and |wg| = +o0 a.e. in U, N S.
We show that
2/ d(ve)dH' < liminf d(v,,, )dH'. (3.25)
U,NS

k—00 Jw 1

By assumption, U, N3 C (—1,1) X (—€,¢) and U, NOA C (—1,1) X (—¢,¢€), thus,
by the convergence Ay 4 A and Remark 2.2, U, N 9A; C (—1,1) x (—¢,€) for all
large k. In particular, for such k, Jy,, C (—1,1) X (—€,¢€).

Under the notation of [15], given ¢ € S! let me be the orthogonal projection
onto the line Il¢ := {n € R? : ¢-7n = 0}, perpendicular to &; given a Borel set
F C R? and y € I, let Fyg ={teR: y+t& € F} be the one-dimensional slice
of F, and given u € GSBD(U,;R?) and y € II¢, let uAgy(t) = u(y + t€) - € be the
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one-dimensional slice of u. Since wj, — w a.e. in U, \ S, by [15, Eq. 3.23], for any
€ > 0 and Borel set F C U,,
HO((F\S)ENT o)+ HO (U, NE)S) < lim inf (HO(F%J _ g)+eff(wk)) (3.26)
Yy Yy k—00 Y (Wr)y Y

for a.e. £ € S! and a.e. y € Il¢, where the integral of ff(wk) over Il¢ is uniformly
bounded independent on £ and k (see also (4.21) below).

Let

o~

A= {yen(U.nT): lminf HO(J g 1) = 0} € T

Then F := U, N wgl(ﬁ) is Borel and, thus, integrating (3.26) over A and using

the definition of A and Fatou’s Lemma we get
H (me(U, NE) N A) < ligninfe/Afy&(vk)dy < Me
— 00 A

for some M > 0 independent of e. Thus, letting ¢ — 0 we get 7—[1(21\) = 0. In
particular,
limsup H' (me(Ur NE) \ me(Juw,)) = 0. (3.27)

k—o00
Note that by construction, .J,, is a union of open sets, thus, for a.e. y € m¢(Jy, ),
the line Te 1(y) passing through y and parallel to & crosses J,, at least at two
points. Thus,

0 _ 9440
H (S i) = 2= 2K (U N 2)y) (3.28)
for H'-a.e. y € me(Ju,) N7e(Ur NE), where o(1) — 0 as k — oo. Now we choose
arbitrary pairwise disjoint open sets Fi, Fy,... CC U, and repeating the same

argument of Step 1 in the proof of Proposition 4.6 (by using (3.28) in place of
(4.20) and using (3.27)) we obtain (3.25).

From (3.25) and (3.24) it follows that there exists ke > 0 such that

/ sa)dn! + [ Ss)dt! +2 [ olwa )i
U,-NQNO* Ay, Um(E\a*Ak) UTﬁJuk
+2 / S(va )AH! > 2 / S(vs)dH — e (3.29)
U-neNAnoA, U,NE
for any k > k.. Now (3.23) follows from (3.29). O

We anticipate here that in Lemma 4.7 below we establish a similar result.

Proof of Proposition 3.9. For simplicity, assume that o = 0, v = e and ¢(§) =
©(0,&). Denote the left-hand side of (3.21) by a. By (3.19) and (2.5),

o >0 — 2(57‘{1([]7« NN 8Ak), (3.30)

where

Qg ::/ (b(VAk)dHl + 2/ o (Z)(I/Ak)d?'[l
U-NQNO* Ay, U-neNn(APuAD)noA,

+/ Bd?—l1+/ oz, vs) dH.
UrNENO* A\ Ju,, UrNJu,,

By Lemma 3.10 applied with ¢ and € := ¢ fUTﬁE o(z,vs)dH?, there exists ks such
that

ay > 2/ ¢(y2)d”+z1+/ 5d%1+/ p(vs) dH! —€
UrnEN(8* Ap\Juy,) UrNENO* A\ Ju,, UrNJu,,
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for all k > ks. Then by (3.19)

P(vs)dH! > / o(x, vs)dH?
UpnSN(0* A\, )

—0HY U NN (0% AR\ Juy)),

/UmEm(a*Ak\Juk)

and therefore,

ay > / (2p(z,vs) + B)dH* + / o(vs) dH
UrNEN(0* A\ Ty, ) UrNJuy,,
—e— H (U, N2 N (0" Ak \ Ju,))
Applying (2.5) in the first integral we get
ay > / o(x,vs)dH! — e — SHY (U, N2 N O*Ay)
Uy NSNo* Ay
so that
o > / o, vs)dHY — € — 25HY (U, N DAL). (3.31)
U,NZNO* Ag

By (2.4) and (2.5)

MU, N OAR) < ap + / ol vs)dH.
UiNnx

and hence, (3.31) and the definition of € imply

) )
(1 + —) a > / o(z,vs)dH" — 5(1 + —) / o(x,vs)dH? .
€1 UrNENO* Ay, €1’ Ju.nx

and (3.21) follows. O
Finally we prove compactness of C,,.

Proof of Theorem 2.7. Let R := sup F(Ag,ux) and, by passing to a further not
k
relabelled subsequence if necessary, we assume that
liminf F(Ag, ur) = lim F(Ag, ug).
k—o00 k—o00

By (H1)-(H3) we have

sup (cﬂ-[l(Q NOAx) + 263/ \e(uk)Ide) <R +/ |BldH"
k 2

AUS
and hence,
R dH!
HY(OAR) < HN QN OAR) +HH (99N OAL) < B+ [ Bl +HH(09Q) (3.32)
C1

and .

R dH
[ Jetwpa < THEPOE (333)

AUS 203

for any £ > 1. In view of (3.32) and Proposition 3.3, there exists A € A, with
H1(DA) < oo and a not relabelled subsequence {A;} such that sdist(-, 0Ag) —
sdist (-, 0A) locally uniformly in R?. Now we construct the sequence {(By,v,)} in
three steps. In the first step we apply Proposition 3.6 and Corollary 3.8 to obtain
a (not relabelled) subsequence and to construct a sequence { By} C A, with asso-
ciated piecewise rigid displacements {ay} such that both By M Aand up+ar — u
a.e. in Int(A)US for some u € H} (Int(4)US,R*)NGSBD?(Int(AU S UX); R?).
In the second step we take care of the fact that adding different rigid motions in
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By and in S can create extra jump at ¥ making difficult to satisfy (2.9). More pre-
cisely, by Proposition 3.9 we modify { By} and {uy} so that the modified sequence
{(BS,u)} C Cp, satisfies (2.9) with some small error of order § > 0. Finally, in
Step 3 we construct the sequence {(Dy,,v,)} C Cp, by means of {(B2,u2)} and a
diagonal argument.

Step 1: Defining a first modification {By} of {Ax}. By Proposition 3.6 there
exist a not relabelled subsequence { A} and a sequence {By} C A,, such that

(al) 0Ay C 0B) and khm Hl(aBk \ 8Ak) =0
—00
(a2) By 3 A as k — oo;

(a3) if {E;}ier is all connected components of Int(A), there exists connected
components of Int(By) enumerated as {E¥};c; such that for any i and
G CC E; one has G CC EF for all large k (depending only on i and G);

(ad) ZHl(aﬁ N (OEF\ OE;)) — 0 as k — oo;
(ab) |Bg| = |Ak| for all k > 1;

(a6) the boundary of every connected component of Int(By) \ J; EF intersects
the boundary of at most one connected component of S.

Notice that by condition (al),
lim \S(Ak,uk) - S(Bk, uk)] =0
k—o0

and
W(Ag, ux) = F (B, uk).
Thus,
khj& ’.F(Ak, uk) - .F(Bk, ’U,k)‘ =0. (3.34)

Now we define the piecewise rigid displacements aj associated to Bj. Let
{S;}jey be the set of connected components of S for some index set Y. We define
I, C I and Y,, C Y as, respectively, the set of all indices ¢ and the set of all
indices j such that Corollary 3.8 holds with P, = EZ’“ and P = E; and also with
P, = P = S; with the same rigid displacements independent of ¢ and j. More
precisely, we define I, C I and Y,, C Y inductively in n.

Let I = Yy = 0. Given the sets I, .. In 1and Yi,...,Y,_ 1 forn > 1, we
consider the smallest element j, of Y \ U Y;. By Corollary 3.8 applied with

P, =P =§j,, we find a not relabelled subsequence {(Bk,ur)}, a sequence {a}}
of rigid displacements and w,, € H} .(S;,; R?) such that ug +a} — wy, a.e. in S,

Let I,, and Y,, be such that there exists a not relabelled subsequence {(Bk,uk)}
such that the sequence (uj + GZ)XEZ?“ converges a.e. in E; for i € I, and the

sequence (ug + aj)xs; converges a.e. in S; for j € Y,,. Recall that j, € Y;,. Let
F,’j;:(UEf)u( U Sj) and Fn::(U ) (U S)
i€l JEY i€l JEY,
By the definition of I,, and Y}, the sequence (ux + a}})x Fk CONVErges a.e. in F}, to
some function in H._(F,;R?), which we still denote by wy,.

Note that for large n, Y, is empty since Y is finite by assumption. Notice also
that by definition of I, and Y,, and Proposition 3.7 applied in connected open
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sets P CC E; U S, we have |uj + al| = +o00 a.e in E; U S; for every i € I'\ I,
and j € Y \ Yy,

We now define the rigid displacements in Ef for i € I\ JI,. By a diagonal

argument and by Corollary 3.8 applied with P, = Ezk and P = E; for any i €
I\U I, we find a further not relabelled sequence { By, u}, sequence {a:} of rigid

displacements and w' € H} (E;;R?) such that (uy + ai)xgr — w' a.e. E; as
k — oo. '

Finally, we define rigid displacements in connected components C’Z-k of B \
U, Ef whose interior in the limit becomes empty, i.e., Cf turns into an external
filament. Recall that |C¥| — 0 as k — oo. If H1(0CFNY) = 0, we define null-rigid
displacement in CF. If H1(OCF N'X) > 0, then by condition (a6), dCF intersects
the boundary of unique Sj,, in which we have defined rigid displacement a .In

this case we define the same a?; in C¥ so that |J,0CF N J

; ie., w
uk+a§;C‘]“k’ e., we do

not create extra jump set.

Let
o n ~q Ji
Ak == Z“k Z Xprus; T Z a;ﬂfo + Z ay Xck
n i€ln,j€Yn i€\Un I, i, H1(0C*NE)>0
and
u—an D, Xpus, D, wXg
ZGIn,]EYn ZEI\UnIn

By construction, aj is a piecewise rigid displacement associated to By, u €
H (Int(A)US; R?) and ug+ag — v a.e. in Int(A)US. Note that e(ug+ag) = e(ug).
Hence, by convergence Aj M A and by (3.33), for any Lipschitz open set
D ccInt(A)US,

R+ dH!
[ et e < TN
D 2c3

for all large k (depending only D). Since uy + ax — u a.e. in D, by the Ponicaré-
Korn inequality, e(uy+ay) — e(u) weakly in L?(D; M2X2). Then by the convexity

Sym
of v = [ |e(v)|*dz, we get

_ R+ dH
/ le(u)] d:c<hm1nf/ le(ur + ax) %c‘m
3

Hence, letting D Int(A) U S we get u € GSBD?*(Int(A U S U X); R?). Conse-
quently, (A, u) € Cp, and (By, ug, + ax) % (A, u) as k — oo.
We observe that if S = (), the terms of the surface energy S(Ayg,uy) related to
¥ disappears, and hence, using e(uy + a) = e(uy) and property (al),
F(Ag, u) = F(Bg, ug + ax) + o(1),
where o(1) — 0 as n — oo, and so we can define D,, = B,,.

Step 2: Further modification of {By}. Without loss of generality we assume
v < [Q|. It remains to control J,, 14, at ¥ since, as mentioned above, adding
different rigid displacements to u in connected components of the substrate and
the free crytal whose closures intersect can result in a larger jump set Jy, 14, than
Ju, - Recall that by condition (a4) and (a6),

lim H'(Juy 10, \ 0FA) = 0. (3.35)
k—oo

Hence, we need only to control J,, N 0*A. The idea here is to remove a “small”
subset Ry, of By, containing almost all points z € ¥ N9*AN (0" Ay \ Ju, ) which in
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the limit becomes jump for u. In order to keep volume constraint, we will insert a
square Uy of volume |Ry| in © \ Aj. This is possible since |Ry| — 0 and |Ag| < v
for all k.

More precisely, we prove that for any § € (0,1/16), there exist ks > 0 and
(B2, ul) € Cp, with |Bi| = | BY| such that (B2, u{) and
f(Bk, uk) + 45(1 + CQ)H:[(E) + 4cd > ./T(Bg, Uug + ak) (3.36)
for any k > ks.
We divide the proof into four steps.

Substep 2.1. By assumptions of the theorem, conditions (a2) and (a5) and
Lemma 3.2 (b), |A| < v. Hence, we can choose a square U CC 2\ A. By (a2)
and the definition of 74-convergence, there is no loss of generality in assuming

U cc Q\ By for any k. Let
e0 = V/|U]. (3.37)

Without loss of generality, we assume ¢y € (0, %)
First we observe that for any § € (0,1) :

(b1) since ¥ is Lipschitz, for H!-a.e. x € ¥, there exist a unit normal vx(z) to
and 7 > 0 such that for any 7 € (0,75), U, ,,(z)(2) N ¥ can be represented
as a graph of a Lipschitz function over tangent line U, , () (7) N T} at x
in the direction vg(z);

(b2) since ¢ is uniformly continuous, for any z € Q there exists 79 > 0 such
that for any y € Uys . (2)(®) and § € St

lo(y, &) — e(x,8)] < 0

(b3) since Hl-ae. x € ¥ is the Lebesgue point of 8, there exists 78 > 0 such
that for any r € (0,79),

/ 1B(y) — B)|dH ) < SHM (U, o) (1) N D)
UT,VZ(Z) (:E)ﬁz

(b4) for H'-a.e. z € ¥ N I*A one has
0" (3, x) =0,.(3,2) =0"(XNIJ*A,x) =0, (XN0"A,z) =1,
thus, there exists 7, > 0 such that for any r € (0,7;),
H Uy (@) 1 (207 A) < 207
(b5) by Proposition A.4 applied with a connected component of 9A, for a.e.
x € LNI*A, mﬂop,w(ﬁfl) X, mﬂ (T, —x) as p — 0,
where 0, ,(y) == % is the blow up map and 7T, — x is the straight line

passing through the origin and parallel to the tangent line T, of 0*A (and

of ¥) at z. Thus, there exists 70 > 0 such that for any r € (0,79),
Ur sy (@) () N {dist(-, T;) > dr} C Int(A) U S.

By (3.35), there exists ks > 0 such that
H (Juprap \O*A) <6 (3.38)

for any k > k.
Fix 6 € (0, ) and let t5 > 0 be such that

16
{z € Q: dist(z,%) < t5}| < 6%, (3.39)

where € is given in (3.37).
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We now consider connected components F; and S; such that the associated rigid
displacements are different. Let I’ be the set of all s € I such that H'(0*E;NdS) >
0 and li’gn inf HY(OEF N AS) > 0, and there exists a connected component S; of S

—00

such that ug +b% — v a.e. in E; and |uy, + bi| — +00 a.e. in S; for the associated
sequence {b } of rigid displacements in F;.
Set
L:=%nN U O E;.
iel’
Note that L C ¥ and by (b1)-(b5), for a.e. x € L for which vg(z) and v4(x) exist
and vy (z) = va(z) there is

t
re =19 € (0, gé) (3.40)

such that properties (b1)-(b5) holds with « and r = r,. Note that for any such

x:

(c1) since B, % A, by property (b5), there exists l?g >7l_€5 such that
U () (@) N {dist (-, T;) > or} C Int(By) U S for any k > kS;

(c2) by Proposition 3.9 applied with uy, + ai, there exists k:ig > ks such that

oy, va,)dH' + 2/ o(y,va, )dH!

/U,«,V0 (2)NQNI* Ay, Urvo @)N2N(APUA ) N0 A,

+/ o (elyvs) + B)aH
Ur,vo (@)N=NAP N0 A,

+/ BdH' +/ o(y,vs) dH'
Ur,vo (£)NBNO* Ap\Juy, Ur,uo ()N,

1
= 3 / o(y,vs) dH' =6 oy, vs)dH . (3.41)
L+ & JUn(@)nsno- A Uro (2)NS

for any k > 1?2, where r :=r, and vy := vy (z).

Substep 2.2. Let x € L be with properties (c1)-(c2) and let U, := U, . (4)(7)
and @, C QN be the open set whose boundary consists of I'y := U, N Y, two
segments 'y, I's C OU, of length at most 207, parallel to vs(z), and the segment
Iy :=QnNU, N {dist(-, ;) = 6} of length 2r. Given k > kS let

B) := B\ Q.) U (QNau,).
Clearly, (Eg, ug + ag) € Ap,. We claim that
S(By,ug) > S(BY, ug) — 46(1 + o) HY (U, N X). (3.42)

Indeed, without loss of generality, we assume that z = 0 and vy (z) = ez. By the
anisotropic minimality of segments,

/ @(O,yg)d”z'-[l—i—/ @(O,eg)d%IZ/ ©(0, ez)dH? . (3.43)
Iy T'oUl's Iy

Since H!(I'1) > 2r = HY(T4) and H!(T'3),H!(I's) < 267 and, also by property
(b2), we have

/ (0, vs)dH! < / oy, ve)dHY + 6HA(Ty), (3.44)
Fl l—‘1

and
/ (0, e2)dH! < 255(0, e2)H (1) (3.45)
IaUl's
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and
/ (0, e2)dH! > / oy, e2)dH" — SHL(TY), (3.46)
Ty Ty
hence, using (2.4) in (3.45), from (3.43) and (3.44)-(3.46) we obtain
/ oy, es)dH! < / o(y, vs)dH + 26(1 + co)HY(T). (3.47)
F4 1_‘1

Denoting by «ay the left-hand side of (3.41), by condition (al) and the definition
of Bg, we have

S(Bevur) — S(BLug) oy, — 2 / oy, v, )M
OB\OA

[ omgant - Oy, vg)dH,
[',UlsUTy k (B3)(0N(I'yUT's) k
thus, using I'1 = U, N X, from (3.41), (3.47), (3.45), (3.38) and (2.4) we obtain

1
: / w(y,vz)dﬂl—/ oy, vs)dH!
1+ 5 Ju.nsnosa U-N%

—36(1 + c)H' (U, N X).

S(Bkv uk) - S(E;za uk) >

>1- % and inequality (2.4) once more we deduce

In the last inequlity using 1+1 5

€2

S(By,up) > S(BL,uy,) — / oy, vs)dH! —5(4 4 3c)H (U, NX). (3.48)
(Z\o~4)
Now condition (b4) and (2.4) and the inequality #*(I'1) > 2r imply
/ o(y,vs)dH' < ceH' (U, N (Z\ 0*A)) < 20cor < deaH (U, NX).
(2\0* A)

Inserting this in (3.48) we get (3.42).

Substep 2.3. Now we choose finitely many points z1 ...,y € L with cor-
responding 71, ...,ry satisfying (b1)-(b5) and (cl1)-(c2) such that the squares
{Ur; s m])(azj)}évzl are pairwise disjoint and

N
7‘[1 (L\ U Urj,ug(xj)(xj)> < 6. (3.49)
j=1

Recalling the definition of k¥ in condition (c2) and the definition ks in (3.38), let
ks = max{l;:(;,@, .., kgN} and let Qu; C QﬂUTr,,E(wj)(xj) be as in Substep 2.2.
Set

N N
Bg = <Bk\ UQ%) U(QﬂaUr] VE($j)<$j))‘
j=1 j=1
Then, as in the proof of (3.42),

N
S(Br,ug) — S(B,up) > —46(1+ 2) > H Uy, s 0y (25) N E)
J=1

so that by the pairwise disjointness of {U,; ,y.(2,) (%)},

S(By, ug) — S(BL, ug) > —45(1 + co)HL(D). (3.50)
Recalling (3.49) and (3.38) and using (2.4) we estimate
S(By, uk + ax) — S(BY, ux)
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§/ o(y, vs)dH? +/ oy, vs)dH < 2¢y0,
LU, Ur; vg (o) (25) Jup+ay, \O* A
hence, from (3.50) we get
S(By, ug) — S(BL, up + ag) > —46(1 + co)HL(Z) — 2¢20. (3.51)
On the other hand, since Int(é,‘z) C Int(Bg) and e(ug) = e(uy + ax),
W(Bg, uz) > W(BY, ux + ax). (3.52)

From (3.51) and (3.52) we deduce

F(By,ug) > F(BY,up, + ap) — 40(1 + c2)H ' (Z) — 2¢96.

~ ~ N
However, by construction, |By| > |BJ| since BY € By U U (Qn Uy, vs(2,)(T5))-
j=1

Thus, Ry := By \ Eg satisfies |Ry| = ]BkAEgL Since (J; Qz; C Q2N {dist(-,¥) <
%}, thus, by (3.39), |Rk| < §%¢o. Hence, we choose a square U, C U (see (3.37))
such that |Ug| = |Rg|. For k > kj set

Bg = Eg U Ug.
In order not to increase the number of connected components of B,‘g, we translate
Uy in Q\ By, until it touches to aB,‘z. Define

ui = Ungg + uoXxuy, -
Then {(B2,ul)} C Cp, and for any k > ks by (3.51) and (3.52)
F(By,ug) > F(BY, 1) — S(Up, ug) — 46(1 + c2)HY(T) — 2¢26.
By the choice of Uy, its sidelength is less that deg, hence, using ey < % and (2.4),
S(Uk,up) < 2¢29 so that
F(By,ug) > F(Bj,uf) — 45(1 + c2)H (Z) — 4ead.

Step 3: Construction of (Dp,vy,). Notice that the sequence {(BY,u?)} in gen-

eral does not need to satisfy B,‘z ™4 A, since we removed “something” from B

and added a square Uj. To overcome this problem, we take § = ¢, := ﬁ and

(Dp,vp) = (Bg:,ui’;), where k,, := k;, + 1, and there is no loss of generality in
assuming n — kj is increasing. Denote 7} := rfc’;_, where the latter is defined in
Substep 2.3 and notice that by (3.39) and (3.40) r} — 0 as n — oo In particular,
oD, K 94 as n — . Thus, D, 4 A. Since |D,AA| — 0, v, — u a.e. in AUS.

By (3.36)

1 I
f(Bkn,ukn)Jr( “2)71”( ) e > F(Dyp,uy), (3.53)

thus (2.9) follows from (3.53) and (3.34). O

4. LOWER SEMICONTINUITY

In this section we consider more general surface energies. For every A € A and
Ja € Ja, where
Ta = {J CYXnNo*A: Jis Hl—measurable}

is the collection of all possible delaminations on 3, we define

S Taivg)i= [ plavaint vz (@, va)dH!
QNo* A QN(AMDUA©)NGA
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—I—/ g(z, O)dH1 + / (cp(:L‘, vy) + g(x, 1))d7—[1
S\0A YNAONHA

+ / o, )dH! + / (e, vs) + g(x, 0)) dH,
Zﬂa*A\JA Ja

where g : ¥ x {0,1} — R is a Borel function. We remark that S(A,u) =
S(A, Ju; 0, 9) with g(z,s) = f(x)s and Jy4 = J,,.

The main result of this section is the following.

Proposition 4.1 (Lower-semicontinuity of S). Suppose that g : ¥ x {0,1} —
R is a Borel function such that g(-,s) € LY(X) for s = 0,1 and

l9(z,1) — g(2,0)] < o(z,va(z)) (4.1)
for H'-a.e. x € . Let A, € A, Ja, € Ja,, A€ Ay and Jo € Ja be such that
(a) A B A as k — oo;
(b) Hl-a.e. x € J4 there exist r = 1, > 0, w,wp € GSBD?*(B,.(x);R?) and
relatively open subset Ly of ¥ with HY(Ly) < 1/k for which
Jw,, C Br(x) N (Ja, U(QNOAL) U L) and Ja C Jy;

wr — w a.e. in By(x) as k — oo; (4.2)

sup fBr(m) le(wy)|?dz < oo
k>1

Then
likminfS(Ak,JAk;w,g) > S(A, Ja;0,9). (4.3)
—00

We prove Proposition 4.1 using a blow-up around the points of the boundary
of A. Given 7, € R? and p > 0, the blow-up map Opyo R? — R? is defined as
_Y—Y

oY) = = (4.4)

When y, = 0 we write o, instead of 0,,. Given v € S, U, (z) is an open square
of sidelength 2p > 0 centered at x whose sides are either perpendicular or parallel
tov; if v = ez and x = 0, we write U, ,(0) := U, = (—p, p)?, U} = (—p, p) % (0, p),
and I, := [—p, p] x {0}. Observe that 0, (U, (z)) = U1,,(0) and 0, (U, (x)) =
U1,,(0). We denote by 7 the projection onto xj-axis i.e.,

m(x) = (x1,0). (4.5)

The following auxiliary results will be used in the proof of Proposition 4.1.

Lemma 4.2. Let U be any open square, K C U be a nonempty closed set and
Ey C U be such that sdist(-,0FE)) hoee dist(-, K) uniformly in U. Then Ej KK

k—o0

as k — oo. Analogously if sdist(-,0Ey) — —dist(-, K) uniformly in U, then
U\EkgK as k — oc.
Proof. We prove only the first assertion, the second being the same. If x, € Ej
is such that zr — x, then by assumption,
dist(z, K) = lim sdist(xg, 0F;) <0
k—o00
so that x € K. On the other hand, given x € K suppose that there exists r > 0

such that B,(z) N Ey = 0 for infinitely many k. Then for such k, sdist(z, 0E)) =
dist(z, E) > r > 0, which contradicts to the assumption. O
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In the next lemma we observe that the endpoints of every curve I' contained
in the boundary of any bounded set A with connected boundary are still arcwise

connected if we remove the boundary of Int(A) belonging to I'.

Lemma 4.3. Let A C R? be a bounded set such that OA is connected and has
finite H' measure. Suppose that x,y € OA are such that x # y and I' C 0A

is a curve connecting x to y. Then there exists a curve I" C A\ (I' N Olnt(A))
connecting x to y.

Proof. Without loss of generality we assume G := Int(A) # (), otherwise we simply
take I'" = I". Note that

G = {z € 9A: B,(x) NInt(A), By(z) \ A # 0 for every r > 0}. (4.6)
Since connected compact sets of finite length are arcwise connected (see Proposi-
tion A.2), it suffices to show that  and y belong to the same connected component

of DA\ (I N OG). Suppose that there exist two open sets P, Q C R? with disjoint
closures such that

IA\ (T NOG) = (PNIA\ (FNIGQ))U(QNIA\ (T'NIG)), (4.7)
where z € PNOA\ (I'NOG) andy € QNIA\ (I'NOG). Then '\ PUQ # ) and
'\PUuQQ=0G\PUQ. (4.8)

Since PN Q = ) and H!(T") < oo, the number of connected components {L;}?,
of '\ P U Q connecting both P and @ is at most finite. Moreover, since I has no
self-intersections (see Subsection A.2 for the definition of the curve in our setting)
and the endpoints of I" belong to P and @), respectively, n must be odd. However,
by (4.8) L; C 0G, and hence, by (4.6), every neighborhood of L; contains points
belonging to both Int(A4) and R? \ A. We reached a contradiction since in this
case Int(A) would be unbounded. O

Notice that if A € A,,, then 9*A = A = 9lnt(A).

Lemma 4.4 (Creation of external filament energy). Let ¢ be a norm in R>
satisfying
c1 < o(v) < e, vesh (4.9)
for some ca > ¢1 > 0, and let {Ey} be a sequence of subsets of Uy such that
(a) Ekgll as k — oo;

(b) there exists m, € Ng such that the number of connected components of
OF} lying strictly inside Uy does not exceed m,.

Then for every ¢ € (0,1) there exists ks > 1 such that for any k > kg,

/ o(vg,) dH" + 2/ d(vg,)dH' > 2 [ ¢lez)dH' — 6.
U1nd* By, nin(ENUED)NoE, I
(4.10)

Proof. Let us denote the left hand side of (4.10) by a. We may suppose supy, o <
oo. By assumption (a), for every § € (0,1) there exists kj 5 > 1 such that

0 0
E.C[-1,1 ( _ : )
kCl > 16com, 16cam,

for all & > Ky 5.

Step 1. Assume that for some k& > ki s, OF) has a connected component
K! intersecting both {z; = 1} and {z; = —1}. In this case by Lemma 4.3,

OB \ (K N dInt(A)) is also connected and contains a path K? connecting {71 =
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1} to {#;1 = —1}. Note that K' and K? may coincide on (E,(Cl) U E,go)) N OF.
Let R} and R?, i = 1,2, be the segments along the vertical lines {z; = +1}
connecting the endpoints of K! and K? to (£1,0), respectively. Since K Nd*E},
and K2 N 0*E), are disjoint up to a H'-negligible set

2
1 1
Z(/Kma*Ek (e ) dH +/Kj\a*Ek qb(yEk)d/H)
2
=3 [ ot - Y R
j=1 Vi

4,j=1
where v, := R{ U KJ U Rg is the curve connecting (—1,0) to (1,0). By the
(anisotropic) minimality of segments [30, Lemma 6.2],
o) dH > [ blez) dH! (1.12)
Vi I
for any 4,7 = 1,2, by (4.11), (4.12) and (2.4)

Moreover, since H!(R!) <
we obtain

— lﬁcm

1 462(5 1 1)
ap > 2 N ¢(e2) dH 1602m0 = I ¢(82) dH 4m0,
which implies (4.10).

Step 2. Assume now that every connected component of U; N OFE}) intersects
at most one of {x; = 1} and {1 = —1}. In this case, let K!,..., K™* stand for
the connected components of OEj lying strictly inside of U; (i.e., not intersecting
{x1 = £1}); by (b), mi < m,. Since ay < oo, the connected components {L'} of
Uy N OE), intersecting {x; = £1} is at most countable. If {L?: L' N {x; = 1} #
0} =0, we set K™+1 = () otherwise let K™+ be such that m(K™ 1) contains
all 7(L?) with L' N {x; = 1} # 0, where 7 is given by (4.5). Analogously, we
define K™+2 ¢ {L*: L' N {z; = —1} # 0} U {0}. By the connectedness of K7,
for each j = 1,...,mg +2, m(K7) (if non-empty) is a segment [at, bi] x {0}. Then
assumption (a) and the bound my < m, imply that

(4.13)

my+2
011 ) -
Jim (13 U m(K7)
7j=1
Hence there exists ky s > ki s such that
mg—+2 S

”H1<I1\ U W(Kj)) < s (4.14)
i=1 °

for any k > ko 5. Then repeating the proof of (4.13) with K7 in (aj,b;) x (—1,1),
for every j =1,...,mp + 2 we find

0

[ otz [ N O
Kinog*E,, Kin(EDUE)naE, r(K7) 4m,

Therefore, by (4.14) and (2.4),
my+2

ap > / o(vg,) d?‘[l + 2/ o(vp )d?‘[l
Z Kind*Ey, g Kin(EXWUE)noE, *

m+2
. 0

2)6
> )d 1 > 9 dHL — (mL
Z / Plez) dHt 4mo> B /UW(KJ') Hlea) o 4my
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o+ 2
>2 [ ¢lez)dH' — 2 0 _ (mo+2)

I 8com, 4my,
+3)6
=92 dH! — (moi
: ¢(ez) dH T
Since m, > 1, this implies (4.10). O

Lemma 4.5 (Creation of internal crack energy). Let ¢ be as in Lemma 4./
and let {Ey} be a sequence of subsets of Uy such that

(a) Uy \ Eg K= [—1,1] x {0} as k — oo;
(b) there exists m, € Ny such that the number of connected components of
each OF), lying strictly inside Uy does not exceed m,.

Then for every ¢ € (0,1) there exists ks > 1 such that for any k > kg,

/ o(vg,) dH" + 2/ d(vg,)dH' > 2 | ¢(ez)dH' — 4.
U1No* By, nnEDUE)NoE, I
Proof. The assertion follows from applying Lemma 4.5 to U; \ E. 0

The following result extends the lower semicontinuity result of [15, Theorem
1.1] to the anisotropic case.

Proposition 4.6. Let D C R% be a bounded open set and let ¢ € C(D x
R%; [0, +00) be a Finsler norm in R, d > 2, satisfying

o < x,v) <o (w,v) €D xS, (4.15)
for some ca > ¢1 > 0. Consider {wy,} C GSBD?*(D;R?) such that

Sup/ le(wy)|?dx + H (Jw,) < M (4.16)
k>1JD

for some M > 0 and the set
E :={z € D: liminf |w,(z)| = +oo}
h—00

has finite perimeter. Suppose that wp — w a.e. in D\ E as h — oo (so that by
[15, Theorem 1.1] w € GSBD?*(D \ E;R%)). Then

/ Pz, v Lop)dHIT! < liminf/ oz, vy, YAH (4.17)
JwUO*E Juy, "

h—o0

Proof. We divide the proof into two steps.

Step 1. First we prove the (il?) assuming that ¢ is independent on = € D,
ie., ¢(v) = ¢(z,v) for any € D x R%.
Let W = {¢° < 1} be the Wulff shape of ¢, i.e., the unit ball for the dual norm

°(€) = max [£-n|.
(&) = max [&-|
Note that ¢°° = ¢ and by (4.15),
1 . 1
— €] < ¢°(§) < — €] (4.18)
C2 C1
for any ¢ € R2. Let {£,} C OW be a countable dense set. Then since

¢(v) = sup[&n - v
neN
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from [25, Lemma 6] it follows that for every bounded open set G and u €
GSBD?(G;R%),

d—1 _ ) d—1
/iju P(vy, )dH* " = sup Z/nm ) |&n - vy, [dHY T, (4.19)

where sup is taken over finite disjoint open sets {Fn}f:/:l whose closures are con-
tained in G.

Now we prove (4.17). Under the notation of [7, 15], for any € € (0,1), open set
F C D with F C D and for H'-a.e. £ € OW we have

€l | [HO(FS 01 5 01 (F\ B)S) + HO(FS 00ES) | an™!
3

.. 0/ € —-1_r& d—1
< yguﬂgf/ng [H (F§ N g6) + € efy(wh)]d”;'-[ . (4.20)

where Il¢ := {y € R?: y-& = 0}, is the hyperplane passing through the origin
and orthogonal to &, given y € RY, Fy5 ={teR: y+t& € F} is the section of
the straight line passing through y € R% and parallel to &, given u : F — R? and
y € RY, ﬁg : Ff — R is defined as u’{y(t) =u(y +t§) -, and

F5(wp) = IS (wp) + 11 (wy), (4.21)
with
/ Ig(wh)d'Hl S/ le(wp(2))2dz, h>1,

e F

and
[ 1wt < De(rtwn- O, h=1,

¢

for 7(t) := tanh(t) (see [15, Eq.s 3.10 and 3.11] applied with F' in place of ).
By [2, Theorem 4.10] and (4.18), (4.20) can be rewritten as

/ vy, 008 ﬂd?—[d_l < liminf/ vy, .g‘dyd—l
FN(J,U8*E) h FJu, h

— 00

e / e(wn(2))2dz + e|De(r(wy - ©)|(F).  (4.22)
F

Fix any finite family {F,}?_, of pairwise disjoint open sets whose closures are
contained in D. Since (4.22) holds for H!-a.e. ¢ € OW, we can extract a countable
dense set {&,} C OW satisfying (4.22) with £ = & and F = Fj for all 7, j. Now
taking F' = F,, and £ =&, in (4.22) and summing over n = 1,..., N, we get

al N
v . f d'Hd—l < lim inf / v . é‘ de_l
; /m(qua*E) Vw0 - &l oo nz:l ‘ Ty, 60l

N
+6/N \e(wh(x))|2da:+6|D§n T(wp - &n)) (U Fn)

L.:Jan n=1

Recall that by (4.19),

Z/ vy, - EnldH! g/ p(vy, YHT,
nm wh h th h
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and by (4.16),

/N le(wn () [2dz < / le(wn ()P < M
L_:Jan D

and

N
[De, (r(wn - &) (| ) < Dg, (r(wn - £))I(D) < M

n=1

for any h > 1. Therefore,

N
Z/ vy or - EnldHT! <2Me—i—hm1nf/ o(v Hd L
= JFn(Jw00 )

Now taking sup over {F,} and letting ¢ — 0 we obtain (4.17).

Step 2. Now we prove (4.17) in general case. Without loss of generality we
suppose that the liminf in (4.17) is a finite limit. Consider the sequence {up }r>0
of positive Radon measures in D defined at Borel subsets of B C D as

pn(B) = / P(x, vy, YAHY, h>1,
BNJu,), "

and
po(B) = [ oy, )i
BNJy

Since supy, un(D) < 0o, by compactness, there exist a positive Radon measure p
and a not relbelled subsequence {up, },>1 such that pp — *p as h — co. We prove
that

in particular from (D) > uo(D) (4.17) follows. Since py is absolutely continuous
with respect to H? 1L .J,, to prove (4.23) we need only to show

dp
dHI-1L T,

For this aim fix € € (0,¢1). By the uniform continuity of ¢, there exists r. > 0
such that

(x) > ¢(z,vy,) for Hi l-a.e. © € J,. (4.24)

|p(z,v) — (y,v)| < e (4.25)
for any v € S~! and x,y € D with |z — y| < r.. In particular, given x € .J,, and
for a.e. r € (0,r),

H(B(w0)) = Jim pun(B,(z0))

> lim inf / B0, v, JAHT — elimsup HE (B (20) 1 ),
BT(Z‘o)ﬂth

h—o00 h—o00

where in the equality we use the weak™ convergence of {yu;} and in the inequality
(4.25) with y = g and « € B,(zo) N Jy, By Proposition 4.6 applied with ¢(zo,-),

liminf/ oo, v, )AHI! 2/ oo, vy, )dHI !
h—00 (@), " Br(20)NJuw

>p1o(Br(20)) — €M (Br(20) N Juw),
where in the second equality we again used (4.25). Moreover, by (4.15),

thup’Hd_l<Br(xO) N th) < cl lim sup /’I’h(BT(xO)> = M

h—00 1 h—oo C1
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and
M (B, (20) 11 J,) < PP )]
1
thus,
Cl — €

p(Br(a0) = 2

po(Br(20))-

Since € and r € (0, r) are arbitrary, (4.24) follows from the Besicovitch Derivation
Theorem. O

Lemma 4.7 (Creation of delamination energy). Let ¢ be as in Lemma 4./
and suppose that Q, C Uy is a sequence of Lipschitz sets, Ey, C Q, Jg, € Jg,,
and go, g1 € [0,+00), up € GSBD*(Uy; R?) and u* € R? with ut # u™ are such
that

(a) sdist(-, Uy N OYy,) — sdist(-, OU,") uniformly in Us/a;

(b) Xk := Uy N O is a graph of a Lipschitz function ly : Iy — R such that
1£(0) =0 and |I}| < 1;

(c) sdist(-, Uy NOER) — sdist(-, 0U;") uniformly in Us o;

(d) there exists my, € Ng such that the number of connected components of
each OFy lying strictly inside Uy, does not exceed my;

(e) g1 — go| < ¢(e2);

(f) Ju, C (QNOEL) U Jg, ULy, where Ly, C Xy, is a relatively open subset of
Yk with HY (L) < 1/k;

(g) sup [y, le(ur) [Pz < oo;

(h) up — vt a.e. in U and u, — u™ a.e. in Uy \ Uy

Then for every 6 € (0,1) there exists ks > 1 for which

/ O, )dH! +2 / o(v, ) dH!
U1NQNo* By,

NN (BN UE)NIE,

+/ godﬁ;"[1 + / (¢(Vg) + gl)d”Hl
U1 \OEy nsLNEYNoE,

+ / grdM' + / (6(vs) + go) dH'
UlﬂEkﬂﬁ*Ek\JEk UlmJEk

> / (¢(e2) +go) dH' — 6 (4.26)
Iy

for any k > ks.
Proof. Denote the left-hand-side of (4.26) by aj. We suppose that supy, |ax| < oo

so that by (4.9)
supH' (0F),) < M (4.27)

k

for some M > 0. Moreover, passing to a not relabelled subsequence if neccessary,

we assume that

liminf o, = lim .
k—o0 k—o00
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By assumption (b), ¥ is “very close” Io, hence, by the area formula [3, Theorem
2.91] for any K} C X one has

lim sup )/ p(eg)dH' — gb(ugk)d’Hl‘
m(Kk) Ky

k—o0

< limsup/ |b(e2) — ¢, 1)|dH" < limsup/ |b(e2 — (I}, 1))|dH!
7(Kp) m(Kk)

k—o0 k—o0
_ limsup/ 6(0,1) |14 dH! =0,
k—o0 W(Kk)

where in the last inequality and in the first equality we used that ¢ is a norm,
and the last equality follows from |I}| < 1. Hence,

k—o0

lim ’ / plex)dH' — [ ¢(vs,)dH'| =0. (4.28)
(Kk) Ky

We divide the proof into two steps.

Step 1. For shortness, let Ji := Jg, and Cj := X \ 0*E). We claim that for
any ¢ € (0,1) there exists k§ > 0 such that for any k > kj,

/ o, )dH +2 / o(vp,)dH!
U1NQNO* Ey,

U1nn(ELVUE)noE,
> 2 / o(vs, )dH + / P(vs, )dH! — 6. (4.29)
UmEk\(JkUCk) U1NCy

Indeed, by adding to both sides of (4.29) the quantity 2fUka (v, )dH! +
Joine, ¢(vs, )dH!, (4.29) is equivalent to

/ ¢(V6EkUCk)dH1 + 2/ ) 0 ¢<VEk)dH1
UL N((Q2400* By, )UCK) U1nQn (D UE)naE, UL
>2 / d(vs, )dH' — 6, (4.30)
UiNXg

and hence, we will prove (4.30).

Note that since J; C ¥ is H!-rectifiable, given § € (0,1) there exists a finite
union Ry of intervals of ¥; such that

)
JoUL, C R, and  HYRp\ (JpULg)) < B (4.31)

)
where ¢y > 0 is given in (4.9). Possibly slightly modifying u; around the (ap-
proximate) continuity points of Ry and around the boundary of the voids Us \ E
we assume that Jy = Ry, Ly = 0 and J,, = ( N IE,) U C, U Ji (up to a

H!-negligible set).

Let K = Uy N (Q NOE U Ji UCy). By relative openness of Cj = ¥y, \ O*E},
and J in ¥j and assumption (d), K}, is a union |J K 7 of at most countably many

pairwise disjoint connected rectifiable sets Kj relatively closed in Uy.

Let co(Ki) denote the closed convex hull of K,i Observe that if K,]c is not a
segment, then the interior of co(K3) is non-empty and

S(vic ) AH! +2 / b (vic, )AH!

KIN((BEXPUE)NoEL)UIL)

/f(gm(a*Ekuck)

> d(v_ i )dHE. 4.32
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Now we define the minimal union of disjoint closed convex sets containing K
as follows. For every k > 1 let us define the sequences {DF}; of pairwise disjoint
subsets of N and {V/*}; of pairwise disjoint closed convex subsets of U; as follows.
Let D§ := {1} and V{ := (). Suppose that for some i > 1 the sets DE, .. Df 1

and V{F,..., V¥ are defined and let j, be the smallest element of N \ U Dk
20

Define
i—1
= {h e N\ U Df : CO(KZO) Neco(KN) # @}
§=0
and

RS CO(UheDf K.

)

Note that j, € D¥. As in (4.32) we observe that

2/ (ka)dH1+2/ D (v, JaH!
heDh KI0\(8* E,UCK) Krn((ELPUE)NOEL)UTL)

> P(vy)dH' . (4.33)
8‘/11@ 7

Then K, C [V} and by (4.33)

st )i+ [ By, )dH!
Kpn((BVUE)naE,) Uy

>Z d) Vyk d?‘[lJrQZ/ o( deHl

€T

/Kﬁ(a*EkUCk)

where T is the set of all indices i for which V¥ is a line segment. For every i € T
we replace the segment Vzk with a closed rectangle (); containing Vzk and not
intersecting any V;k , J # i, such that

)
2 dH' > NdH — ,
/Vﬁ P = Qs )i =155
Therefore, redefining V¥ := Q; we obtain
/ H(vie, )dH! +2 / O(vie, )JdH!
KN(8* E,UCy) Ken((EPUEL)NOEL)UTL)
)
> p)dH — 4.34
Z avk z 7_[ 5 ( )

Note that Uy \ U V¥ is a Lipschitz open set and J,,, N (U1 \ U VF) = ), and hence,
by the Pomcare Korn inequality, uy € H*(Uy \ U k). Moreover (4.27), (4.9) and
(4.34) imply ¢; S HYH(OVF) < M + 1, thus, there exists 7 € R? such that the set

{zelin U OVE : trace of uk’Ul\UVik is equal to n}

is H!'-negligible (see [46, Proposition 2.6]). Therefore, vy, := UkXgr\ovr T IX Gy
belongs to GSBD?*(Uy;R?), J,, = Uy NU;0VF. By assumptions (a), (c) and (h),
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VU — U= quXUl+ +uT Xy vt and by assumption (g) and inequalities (4.9), and
(4.27),

M+1
sup [ le(vp)’dz +H' () <sup [ |e(ur)Pde +
E JUu; k Juy C1

< 00.

Repeating the same arguments of the proof of (3.25) we obtain
p(ex)dH! < liminf [ g(v 7, )JAH'. (4.35)
11 —0 Jvk

Note that the direct application of Proposition 4.6 would not be enough since we
would obtain the estimate:

p(eg)dH! < hm inf QZ)(I/Jvk)dHl
Il —0 Jvk
without coefficient 2 on the left.
From (4.34) and (4.35) it follows that there exists k} > 0 such that

/ ¢(V6Ekuck)d7{1+2/ ) P(vg, )dH'
U1N((QN0* Ex,)UCK) Uin((EVUE) o B ) UTk)
20
P(ex)dH! — (4.36)
n 5

for any k > k(}. By (4.28) we may suppose that for such &,

1)
dlez)dH! > / p(vs )M — L,
I UiNXy 5

thus, in view of (4.31), from (4.36) we get (4.30).
Step 2. Finally we prove (4.26). Let ké/z be given by Step 1 with §/2 in place
of 0. From (4.29) for k > k:;/2 we have

/ o(vp, )dH! + 2/ o(vp, )dH!
U1NQNO* Ey,

U1n2(ELVUE)noE,

+/ godH' +/ (¢(vsy) + g1)dH!
UiNS,\OE;, UiNELNEY NOE;,

+/ grdH? +/ (¢(vs,) + g0) dH'
UlmZkOB*Ek\JEk U1r‘IJE,C

> / (p(vs,) + go)dH? +/ (2¢(vs,) + g1)dH'
U1NS4\OEy hnsenEO NoE,
0
/ (26(vs,) + g1)dH? +/ (p(vs,) + go) dH' — 5 (437)
UiNZNo* Ek\JEk UlmJEk
Thus, (4.28) implies that there exists ks > ki 5/2 such that

/ $(vs,) + go)dH' + / o (20(rs,) + gr)dH!
1ﬂEk\6Ek UlﬂzkﬂEé >ﬂ8Ek

(26(vs,) + g1 )dH" + / (6(vs,) + g0) dH!
U1ﬂJEk

_|_

Lﬂjxm’]@ Ek\JEk

>/ (ofea) + gn)ar' + [ O (26(ea) + g1 )an?
LN (SK\OER) Lm(SenEY NoE,)

+ (26(e2) + g1)dH + /] e v ant - O

/Ilmw(EkQB*Ek\JEk) 2
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> [ (olex) + m)ar’ - 3.

I
where we used also that go and ¢; are constants. Now (4.26) follows from (4.37)
and the last inequality. O

Proof of Proposition 4.1. Without loss of generality, we suppose that the limit in
the left-hand side of (4.3) is reached and finite. Define
g+(x,5) = g(z,5) — g(x,0) + ¢z, vs(z)).
Then g, is Borel, g4 (-, s) € L}(X) for s = 0,1, and by (4.1), g+ > 0 and
|9+ (2,1) = g4(2,0)] < p(z,va(z)) (4.38)

for H!-a.e. 2 € X. Consider the sequence u; of Radon measures in R?, associated
to S(Ak, Ja,; ¥, g), defined at Borel sets B C R? by

pi(B) ::/ cp(:c,l/Ak)dH1+2/ oo @(x,uAk)dHl
BAQNO* Ay, Bran(ALPuAD)No4,

n / g (z, 0)dH" + / (o2, o) + go(x, 1)) dH!
BNS\0Ay BnznAYnoA,

+f gelo DA + [ (plas) + g4 (0,0)) dH.
BmEﬂE)*Ak,\JAk BﬁJAk

Analogously, we define the positive Radon measure g in R? associated to
S(A, Ja;,9), writing A in place of A in the definition of ug. By (2.4), as-
sumption A, 4 A and the nonnegativity of g,

1
sup g (R?) < 2¢9 sup H (0 AR) + Z/ g+ (x, s)dH" < oco.
k>1 k>1 >

Thus, by compactness there exists a (not relabelled) subsequence {u;} and a

nonnegative bounded Radon measure g in R? such that jy, — uo as k — oo. We
claim that

=y (4.39)

which implies the assertion of the proposition. In fact, (4.3) follows from (4.39),
the weak*-convergence of pg, and the equalities

pe(R?) = S(Ap, Ja,;0,9) + /E (¢(z,vs) — g(x,0))dH'
and

H(R?) = (A, Jas 0.9) + / (e, ) — g(a, 0))dH.
>

Since po and p are nonnegative, and u << H!'L(0AUY), by Remark 2.3 to prove
(4.39) it suffices to establish the following lower-bound estimates for densities of
o with respect to H! restricted to various parts of A :

dpo

dHIL(Q N 0% A) (x) > p(x,va(x)) for H'-a.e. z € QN I*A, (4.40a)
dH1 L(j/(f)(; NoA) (z) = 2¢(z,va(z)) for H'-a.e. 2 € QN AQ NHA, (4.40b)
dpo

1 1
dH1 L(A(l) N aA) (x) > 2¢(x,va(x)) for Hl-ae. 2 € QN AD N0 OA, (4.40c)

d o N 1
LS\ 0A) (x) = g4+(z,0) for H -a.e. x € X\ 04, (4.40d)
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dpo
dHIL(Z N A0 NoA)

() > p(z,vs(z)) + g4 (2,1)

for H'-a.e. 2 € N AQ NHA, (4.40e)
d:U’O 1 *
> -a.e. .
JH(Z N0 A) > g4 (z,1) for H-a.e. x € ¥ NO*A, (4.401)
d,u() 1
_— > f -a.e. . 4.4
TH LT (z) > o(z,v(x)) + g4 (z,0) or H-a.e. z € Jy (4.40g)

We separately outline below the proofs of (4.40a)-(4.40g).
Proof of (4.40a). Consider points = € QN J* A such that

(al) va(zx) exists;
(a2) z is a Lebesgue point of y € 0*A — ¢(y,va(y)), i.e.,

1

timon [ e va() = e va@)ld ) =0

exists and is finite.

(a3) L?g(r)wa*A) ()

By the definiton of 0*A, continuity of ¢, the Borel regularity of y € 9*A —
©(y,va(y)), and the Besicovitch Derivation Theorem, the set of points z € QNJ* A
not satisfying these conditions is H!-negligible, hence we prove (4.40a) for = €
QN 0*A satisfying (al)-(a3). Without loss of generality we suppose z = 0 and
va(r) = es. By Lemma 3.2, A, — A in L'(R?), therefore, Dy 4, X Dy, and
hence, by the Besicovitch Derivation Theorem [3, Theorem 2.22] and the definition
(2.1) of the reduced boundary,

va, H'L(QN 0" A) > vaH L(Q N O A).

Then for a.e. r > 0 such that U, CC Q and H!(0U, N DA) = 0, the Reshetnyak
Lower-semicontinuity Theorem [3, Theorem 2.38] implies

k—o00

po(Uy) =liminf pg(U,) > liminf/ o(y,va,)dH" > / o(y,va) dH*
ko0 UrNd* Ag Urnd* A

Therefore, by [32, Theorem 1.153] and assumption (a2),

dpo po(Ur) o1 / .
= 1im 22 S fim nf — _ ,
A nea O =l 2 liminf o ) ) i = o(0.e2)

Proof of (4.40b). Consider points z € QN A® N JA such that

(bl) 0*(0A,z) = 0.(0A,x) = 1;

(b2) va(z) exists;

(b3) U1 No,.(0A) K U1 NT,, where T, is the approximate tangent line to 0 A
and o, is given by (4.4);

(b4) m exists and finite.

By the H!-rectifiability of A, Proposition A.4 (applied with the closed connected
component K of OA containing x) and the Besicovitch Derivation Theorem, the
set of points 2 € A NHA not satisfying these conditions is # -negligible, hence

we prove (4.40b) for 2 € A(®) NI A satisfying (b1)-(b4). Without loss of generality
we assume x = 0, v4(z) = e and T, = T is the x;-axis.

Let us choose a sequence p,, \, 0 such that

po(U,,) =0 and  lm (U, ) = no(Up,) (4.41)
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and

dpo . 1o(Up,)
0) = lim ——. 4.42
dHL(AO) N OA) (0) nsoo 2pn, ( )

By Proposition A.5 (a), (b2) and (b3) imply that sdist(-,0,,(0A)) — dist(-, Tp)
uniformly in U;. Since for any n > 1, sdist(-,dAy) — sdist(-, 0A) uniformly in
Up,, as k — oo, by a diagonal argument, we find a subsequence {4y, } such that

sdist(-, 0, (0Ag,)) — dist(-,Tp) uniformly in Uy,
as n — oo and
pk, (Up,) < p0(Up,) + P2 (4.43)
for any n. By Lemma 4.2, Uy No,, (Ay,) KL =tinm.
From (2.4), (4.43), the definition of j, (4.42) and (b4) it follows that

CHATN0A) (T - djio
1 ———f T <] L 0). (444
T e S e, ST w0 o 44
By the uniform continuity of ¢, for every € > 0 there exists n, > 0 such that
ey, ) = ¢(0,8) — e (4.45)

for every y € U, . Moreover, since {A;} C A,,, the number of connected com-
ponents of Gapn(Akn) lying strictly inside Uy, does not exceed from m. Hence,
applying Lemma 4.4 with ¢ = ¢(0,-), m, = m and § = €, we find n.. > n, such
that for any n > n.,

/ @(07 Vopn(Akn))dHl
UiNo*opy, (Ak,, )

+2 /
U1 ((0pn (A ) O U0, (Ar, ) ) M0y, (A

> 2/ ©(0,e2) dH' — e = 4p(0,e3) — €.
I

90(07 Vopm (Akn)) dHl

Therefore, by the definition of uyg, for such n one has

tirn (Up,) 2/ oy, va,, ) dH! +2/ o o
Up 0" Ay, U (A0 UAM ) n0Ay,

2/ p(0,v4,,) dH' + 2/ p(0,v4,,) dH’
T, N0* Ay, Tpnn(AP0AN )AL,

—eH (U, N0A})

=Pn / @(07 Vs, (A )dHl
( Ulﬁa*o'pn(Akn) Pn( kn)

90(:% I/Akn) dH'

+ 2/ (P(anapn(Akn))dHl>
Ui ((0pn (Ar)) QU0 (Ar, ) D) N30, (A,

— eH (U, NOAy,)
>4p,0(0,e2) — epp — e H (U, NOA,), (4.46)
and thus, by (4.42)-(4.44),

(0 S
dHIL(AO NPA)" "~ mooo  2p,

YU, noA
>20(0, e3) — % — ¢ limsup H (Up, N0AK)

n—00 2pn
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_f -1 dpo
22¢(0,e2) =5 — ¢y CAHIL(AO® N 9A) (0)-

Now using assumption (b4) and letting ¢ — 0T we obtain (4.40b).

Proof of (4.40c). We repeat the same arguments of the proof of (4.40b) using
Lemma 4.5 in place of Lemma 4.4 and Proposition A.5 (a) in place of Proposition
A5 (b).

Proof of (4.40d). Given z € ¥\ 0A, there exists r, > 0 such that B, (r)N0A =

(. Since 0A;, X OA, there exists k, such that B, (r) N 0Ay =0 for all k > k.
Thus, for any r € (0,r,/2),

11(B, () = /E 0

so that J
1o .

for H!-a.e. Lebesgue points z € ¥\ A of g,.
Proof of (4.40¢). Consider points z € ¥ N A® N JA such that
(el) (X N0A,x) =0.,(XN0A, x) =1;
e2) vs(z) and va(z) exist (clearly, either vs(z) = va(z) or vs(z) = —va(x));

(e2)
(e3) U1 N 0p,z(0A) LSy U NT,, where T}, is the approximate tangent line to 0 A;
(e4) z is a Lebesgue point of g4 (-, 1), i.e.,

. 1
lim — / 104 (9, 1) — g (. D|dH (y) = 0;
U,

(@)

(eb) z is a Lebesgue point of y € X N p(y,vs(y)), i.e.,

. 1
lim / oy, v2(y)) — (e, ve(@))|dH () = 0
p—0 2/) EHUP,VE(I)

(e6) d’i—(ﬁtﬁz (x) exists and is finite.

By the H!-rectifiability of OA, the Lipschitz continuity of 3, the Borel regularity
of vy (+), Proposition A.4 (applied with closed connected component K of A con-
taining x),the continuity of ¢, assumptions on g4 and the Besicovitch Derivation
Theorem, the set of z € ¥ N JA not satisfying these conditions is H!-negligible.
Hence, we prove (4.40e) for x satisfying (el)-(e6). Without loss of generality we
assume x = 0, vy(x) = va(x) = eg and T, = T is the zq-axis. Let r, \, 0 be
such that
po(0U;,) = H' (U, NX) =0

and

dAHIL(ENA® A 9A) 7~ aBse 2r,

By the weak™-convergence, for any h > 1 we have

dMO ( ): lim NO(Urn) (4.47)

lim pi(Up,) = po(Ur,)-

k—o0
By Proposition A.5 (b), (e2) and (e3) imply sdist(-, o, (0A)) — dist(-,Tp) uni-
formly in U;. Since for any n, sdist(-, o, (0Ag)) — sdist(-, o, (0A)) uniformly in
U; as k — oo, by a diagonal argument, we can find a subsequence {k,} and not
relabelled subsequence {r,} such that

pi, (Ur,) < po(Ur,) + 77 (4.48)
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for any n > 1 and sdist(-, 0, (Ax)) — o (-, Tp) uniformly in Uy as k — oo, thus,
by Lemma 4.2,

UiNoy, (Akn) E) L :=UiNTy (4.49)
as n — oo. Notice also that by (e2) and Proposition A.4 (applied with the closed
connected component K of ¥), Uy Noy, (X) K1 asn— o

By (4.38),
ey, ve(z)) + 9+, 0) 2 g+ (y,1)
for H'-a.e. on ¥, in particular on J A, hence, by Remark 2.3 and the definition
of pug,

11, (Ur,,) 2/ oy, vay, )M + 2/

Urn NQN* Ay, Tranan (A0 ua) ) noAy,

+[ g+ | oy, vs)dH!
Uy, NS Ur, NENAL N0 A,

+/ (9+(y,0) — g4+ (y,1))dH*
Ur,, NE\O Ay,

o(y,va,, )dH'

Adding and subtracting fWﬂEma*Ak o(y, I/Akn)d”;’-[l to the right and using (4.38)
once more in the integral over U,,, N X\ 0A, we get

Hkn(Urn) = / go(y, VAkn )dHl +2 / (0) 4 (1)
U 0" Ap, Uran (AQUAD ) P9 AL,

o(y, VA, )dHl

+ / oy, )M — / oy, vs(y))dH! (4.50)
Uy NS Uy, NS

By the uniform continuity of ¢, given € € (0,1) there exists n > 0 such that

lp(y,v) —(0,v)] <€

for all y € U,.,, v € S' and n > n.. We suppose also that Lemma 4.4 holds with
ne when § = e. Since the number of conected components of 0Ay, lying strictly
inside U,,, is not greater than m, in view of (4.49) and the nonnegativity of ¢,
as in (4.46) for all n > n, we obtain

i, (Uy,) >4r,0(0,es) — ery, — eH (U, N DAy,)
w ] ewna = [ st (451)
Uy, NS Uy, NS

By the nonnegativity of g, (2.4) and (4.48),

HY (T, N0AL,) <HNU,, NnQNNIAL,) + H (U, NZNNOAL,)
Ur
<”’“"i )y HY U, NE) < po(Uy,) + 72 + HY(U,,, ND)
1

thus again using (4.48), also (4.47), (4.50) and (4.51), as well as (el) and (e3)-(eb)
we establish

d,u() . ,UO(UT ) . M (UT )
= lim — "% >1 Flenttn/
THIL(E N A® gy () = m =, = 2 limsup =20
3e d
> 2p(0,ep) — Al (0) + g1 (0, AH' — (0, v5(0)).

2 “GHIL(ZNAD NaA)
Now letting € — 0 and using vx(0) = e2 we obtain (4.40e).

Proof of (4.40f). Since g4 is nonnegative and x4, — x4 in L'(R?), the in-
equality directly follows from [1, Lemma 3.8].
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Proof of (4.40g). Consider points = € J4 for which

(gl) 0*(Ja,z) = 0.(Ja,x) = 0*(0A,z) = 0, (0A,x) = 0" (X, x) = 0.(X,x) = 1;

(g2) assumption (b) of Proposition 4.1 holds with some r = r; > 0;

(g3) X is differentiable at x and vy (z) exists;

(g4) one-sided traces wt(z) # w™ (z) of w, given by assumption (b) of Propo-
sition 4.1, exists;

(g5) = is a Lebesgue point of g1 (-, s) and |g4+(z,0) — g4 (z,1)| < ¢(vu(z));

(g6) del’f - (x) exists and finite.

By the H!-rectifiability of J4, A and ¥, assumption (b) of Proposition 4.1 (recall
that J4 C Jy), the definition of the jump set of GSBD-functions, (4.38), and the
Besicovitch Derivation Theorem, the set of points z € J4 not satisfying these
conditions is H!'-negligible. Hence we prove (4.40g) for x € J, satisfying (gl)-
(g6). Without loss of generality, we assume x = 0 and vy (z) = e2. Let 79 = 1,
and wp € GSBD?(B,,(0);R?) be given by assumption (b) of Proposition 4.1.
Note that by the weak*-convergence of juy,

Jim . (Ur) = po(Uy)- (4.52)

for a.e. r € (0,7), and by (gl), (g3), and Proposition A.4 (applied with connected
components of ¥ and dA intersecting at x) and also by the definition of blow-up,

Uno, (D)5 1, and  HLU Non(8) = HILL, (4.53)
and
Usno,(0A) 51, and  H'LUNoy, (04) 2 HILL (4.54)
as r — 0. Since J4 C ¥, in view of (4.53),
UsNor(Ja) S 1. (4.55)
Moreover, since J4 has a generalized normal at x = 0,
HUL(UsNop(Ja)) = HILL (4.56)
as r — 0. In particular, from (4.53) and (4.54),
sdist (-, Uy N 0,-(0)) — sdist(-,0U, 1) (4.57)
and
sdist (-, Uy N 0,(0A)) — sdist(-,0U4T) (4.58)

locally uniformly in U/ as r — 0.

Letting ¢ = ¢(0,+), we claim that there exist sequences r, \, 0 and kj, oo
such that the sets

Qy, = U4ﬂ(7rh(Q), Y= U4ﬂ0'rh(2)7
and
Ey :=UsNoy, (Ag,), Jg, =UsN O-Th(JAkh)’

the functions up(z) = wy, (rpz) € GSBD?*(Uy; R?), the numbers g5 = g1 (0,s) €
[0, +00) and the vectors u™ = w*(0) satisfy assumptions (a)-(h) of Lemma 4.7.

Indeed, let 7 be any homeomorphism between R? and a bounded subset of R?;
for example, one can take 7(x1,z2) = (tanh(z;), tanh(z2)). By (4.2), wg(rz) —

w(rz) as k — oo for a.e. x € Uy and for any r € (0,79/4), so that by the Dominated
Convergence Theorem,

lim |7 (wi(rz)) — T(w(re))|de = 0. (4.59)

k—o0 U
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Moreover, by (g4), the definition [19, Definition 2.4] of the (approximate) jump
of the function w and [19, Remark 2.2],

lim /U1 |T(w(rz)) — (t(u(z))|dx =0, (4.60)

r—0

where u(zr) := w+(O)XU1+ (x) +w™ (0)xy,\y+ (). We use (4.59) and (4.60) to ex-
tract sequences k;, — oo and r, — 0 such that wy, (rpz) = u(x) a.e. in Uy. By

assumption A;, = A and the relations (4.58), (4.52), (4.60) and (4.59), there exist
k} > 1 and a decreasing sequence rj, € (0, %) such that for any A > 1 and k > kj,

. . 1
[sdist (-, o, (Usp, N OAg)) — sdist(-, o, (Usr,, 01 0A))| oo (v, ) < 7 (4.61a)
1

Isdist (-, o, (Usr, NOA)) = sdist(-, AU )| oo () < m (4.61b)
pi(Try) < po(Us,) + 17 (4.61c)
i (w(rna)) — (u(@))dz < - (4.61d)
v, h
| irtanr) — r(wtna) i < % (4.61¢)
For every h > 1, we choose kj > k,ll such that
khlrh < % (4.62)

Now up(z) := wy, (rpr) € GSBD?(Usy; R?), and:

— by (4.57), sdist(-, UsNdQy,) — sdist(-, OU;") locally uniformly in Us /o as h — oc;

— by assumption (g3) and the Lipschitz property of ¥, Us,, N X is a graph of a
L-Lipschitz function [ : [—4rp,4r,] — R so that X, = Uy N 0Qy, is the graph of
In(t) := U(rpt), where t € [—4,4], so that [;(0) = 0 and |I},| < £ by choice (4.62)
of ry;

~ by (4.61a) and (4.61b), sdist(-, Uy N OE},) — sdist(-, U, ) as h — +oc;

— by assumption A € A,,, the number of connected components of OF} lying
strictly inside U4 does not exceed m;

= by (85), |91 — go| < ¢(e2); R R

— by (4.2), Ju,, C (Q,NOER) U JE, U Ly, where by (4.62), Ly, := Urh(U4rh N Lkh)
satisfies H1 (L) < +

— since

|e(uh)\2d:1; < /

U41"h

]e(wkh)|2da: < / |e(fwkh)\2da:,

Uy Br, (0)

by (4.2), we have sup |e(up)|?dz < oo;
h>1

~ by (4.61d)-(4.61¢e),

lim [ [7(up(2)) — 7(u(z))|dz = 0,

h—o0 Uy

thus, possibly passing to further not relabelled subsequence, uj, — u = u™ Xu =+
u_XUl\Uj a.e. in Uj.

This implies the claim.
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Now we prove (4.40g). Given 6 € (0,1), by the continuity of ¢, (gb) and (g6),
there exists h} > 1 such that

by (Try) = fin, (Try) — 201Uy, 1 (DAU D)) (4.63)

for all h > h%, where [i, is defined exactly the same as i with ¢ and g5 in place
of ¢ and g4 (z,s), here we used (gb) as

0
[ e = gn0 9l < {0, 0%)
Th

provided h is large enough. By Lemma 4.7, there exists h?; > h(% such that for any
h > h2,

|

. Hi, (Ur,) > 2¢(e2) + 2g0 — 20.

Moreover, by (2.4) and nonnegativity of g,

HL(U,, N(0AUY) = HY (U, NONIA)+H (U, NENIA) < W+H1(Urhmz).
1

Thus, by (4.63) for any h > h2,

(Hi) P (Ury )

1
g MU D)

> — 0.
5 S > p(e2) + go

From here and (4.61c) we get

Y

p(e2) +go <+ (1 + é) <“0(Urh)

1
LY 42 MU 0D)
C1

27’h 2 27’h
therefore, first letting h — oo, then § — 0, and using (g6) we obtain (4.40g). O

Now we address the lower semicontinuity of F. We start with the following
auxiliary extension result.

Lemma 4.8. Let P C R" and QQ D P be non-empty bounded connected Lipschitz
open sets and let £ : H'(P;R?) — HYQ;R") be the Sobolev extension map,
i.e., a bounded linear operator such that for any v € H'(P;R"™), Ev = v a.e. in
P and there exists Cp > 0 such that ||Ev|[g1(q) < Cplv]|gi(py. Consider any

{ur} € HY(P;R™) such that

sup/ le(ug)Pdz < oo (4.64)
k Jp

and up — u a.e. in P for some function u : P — R™. Then there exist a sub-
sequence {ug, }1 and v € HY(Q;R") such that v = u a.e. in P and Eup, — v in
L*(Q) and

Sup 1wk || 1) < o0

Proof. By Proposition 3.7, u € H} (P;R") N GSBD?*(P;R"). By Poincaré-Korn
inequality, there exist cp > 0 and a sequence {ax} of rigid displacements such
that

Jug + al| g1 py < cplle(ur)llr2(p (4.65)
for any k. Since up — wu a.e. in P, reasoning as in the proof of Proposition 3.7
(with P in place of B¢), up to a not relablled subsequence, ar — a a.e. in R"
for some rigid displacement a : R™ — R™. In particular, H'(P;R")-norm of ay, is
uniformly bounded independently of k, hence,

sgp [€ak| g1 (q) < oo (4.66)
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Since
1€ (uk + ar)l g (@) < Cplluk + akllgr(py < Cpeplle(ur)||L2(p)s (4.67)
by (4.64), the linearity of E and (4.66),
Sup [Eur 1 (q) < oo

Thus, by the Rellich-Kondrachov Theorem, there exists a not relabelled subse-
quence {u;} and v € H'(Q;R") such that uy, — v in L?(Q) and a.e. in Q. O

Proof of Theorems 2.8. Without loss of generality, we assume that

sup / le(ug)[*dz + H (0A}) < oo, (4.68)
k>1JAUS

The lower semicontinuity of the elastic-energy part can be shown by using con-
vexity W (z,-). Indeed, let D CC Int(A). Then by 7T4-convergence of Ay,
D ccC Int(Ag) for all large k. Since up, — u a.e. in AU S, by (4.68) and the
weak-compactness of L2(D U S), e(uy,) — e(u) in L?>(D U S). Therefore, from the
convexity of W(D,-) it follows that

W(D,u) < liminf W(D, ug) < liminf W(Ag, ug).
k—ro0 k—oc0

Now letting D " AU S we get
W(A u) < 1ign inf W(Ag, ug).
—00

Since S(E,v) = S(E, Jy;p,g9) with Jg = J, and g(z,s) = f(x)s, the lower
semicontinuity of of the surface part, follows from Proposition 4.1 provided that
for Hl-a.e. x € J, there exists r, > 0, wy € GSBD(B,,(z); R?) and relatively
open sets Ly of ¥ with H1(Lg) < 1/k such that (4.2) holds. Let

1
g = 1 min{dist(x, 00 \ ¥),dist(x,05 \ ¥)}
so that Byz(z) CC QUX U S, and choose r = 1, € (0,7§) such that
HY (0B, (z) N 0AL) =H (OB, (x) N Ju,)
=H' (0B, (z) NOA) = H (0B, (z) N J,) =0
(see [46, Proposition 2.6]) and B,.(z) NS is connected. We construct {wy} by
extending {u} in B,(z) \ (A U S) without creating extra jumps at the interface
on the exposed surface of the substrate. More precisely, we apply Lemma 4.8 with
Q := B,(x), P := B.(x)N S, and uk}P. Since ug — w a.e. in P, by Lemma 4.8,

there exist v € H'(Q;R?) and a not relabelled subsequence {u;} such that the
Sobolev extension Euy, of Uk’p to @ converges to v a.e. in ). Define

Wk 1= UEXB, (z)N(A,US) T EULXB, (2)\(4,US)-
Perturbing wy, slightly if necessary, we can assume J,,, = I' := B, N (J,, U (U
0*Ag) U (A,(cl) N 0A)) up to a H'-negligible set. In fact, by [46, Proposition 2.6]
there exist ¢ € R? with arbitrarily small |¢] > 0 for which H!({y € T': [u](y) =
&}) = 0 (with [ug](z) the size of the jump of wuy), and hence, we can perturb ug
with a W1°(B,.(z) \ T')-function with arbitrarily small norm, which is equal to &
on an arbitrarily large subset of I'. By construction,

Wk — W = UX B, (z)N(AUS) T VX B, (z)N(AUS)>

thus, by [15, Theorem 1.1], w € GSBD?*(B,(x);R?). Notice also that J, C Jy,
since w = u a.e. in By(z) N (AUS). Thus wy and w satisfy (4.2). O
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We conclude this section by proving a lower semicontinuity property of F’ with

respect to 75. Observe that if (A, uy) 3 (A,u), then A = Int(A) so that the
weak convergence of ug to w in Hﬁ)C(A U S;R?) is well-defined. However, notice
that C,, is not closed with respect to 7/-convergence.

Proposition 4.9 (Lower semicontinuity of F'). Assume (H1)-(H3). If
(Ak,u) € Cl, and (A,u) € C are such that (A, uy) X (A, u), then
likm inf F'(Ag, ug) > F' (A, u). (4.69)
—00

Proof. Consider the auxiliary functional F :C — R defined as

F(Au) =F(Au) — / (¢(x,va) + ﬁ)d?—[l.
LNAONGA

Since F does not see wetting layer energy,

IﬁauﬁaﬂGm}:é&ml:f@UEm}:L&ml (4.70)

forany Ge A, :={Aec A: AUYX € A,,}. Repeating the proof of Theorem 2.8
one can readily show that F is also 7¢-lower semicontinuous.

Now we prove (4.69). Without loss of generality we suppose that liminf is
a finite limit. Let Ej := Aj U X. By the definition of A/, and 7/-convergence,
{Ey} C Ay, and supH'(0E};) < oo, therefore by Proposition 3.3, there exist a

(not relabelled) subsequence and F € A, such that Ej -$ E. By Remark 2.2,
A = Int(F), thus, by (4.70),

lim ]:'(Ak,uk) = lim f(Ak @] Z,uk) - / Bd?‘[l
k—o0 k—o0 N

Zﬁﬂm/ﬁﬂﬂzﬁmw)
b

5. EXISTENCE

In this section we prove Theorems 2.6 and 2.9.

Proof of Theorem 2.6. We start by showing the existence of solutions of problems
(CP) and (UP).

For the constrained minimum problem, let {(Ag,ux)} C Cp, be arbitrary mini-
mizing sequence such that

sup F(Ag, u) < oo.
k>1
By Theorem 2.7, there exist (A,u) € Cp,, a not relabelled subsequence {(Ag, ur)}
and a sequence {Dy, v} C Cp, such that (Dy,vr) = (A, u) and |Bg| = |Ax] = v
and
lim inf F(Ag, ug) > likrggéf F(Dp,vg).

k—o00

By Lemma 3.2 (b), D,, — A in L'(R?) so that |A| = v. Now by Theorem 2.8

inf — liminf F(D S F(A
(V,v)eéi, |V|:v]:(v’v) pnin F(Dy,vr) > F(A,u)

so that (A, w) is a minimizer. The case of the unconstrained problem is analogous.
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Now we prove (2.7). Observe that in general
inf FMA,u) < inf  F(A,u) (5.1)
(Au)eC (Au)eC, |Al=v

and the same inequality still holds if we replace C with C,,. Moreover, any solution
(A, u) € Cp, of (UP) satisfying |A| = v solves also (CP). By Proposition A.6, there
exists a universal constant Ao > 0 with the following property: (A,u) € Cp, is a
solution of (CP) if and only if it solves (UP) for some (and hence for all) A > X.
Thus,

inf  FMNAu) = inf F(A,u) (5.2)
(A,u)ECm (A,u)ecm, |A‘:V

for any m > 1 and A\ > \g. Since C,, C Cp 1 C C, the map

m €N — inf F(A, u)
(Au)ECm, |A|l=v

is nonincreasing, and

inf F(Au) < inf F(A, u),

(Au)eC, |Al=v (Au)ECm, |Al=v
so that

in F(A,u) < lim in
Au)eC, |Aj=v M—$00 (A,u)ECrm, | Al=v

(
In view of (5.1) and (5.3) to conclude the proof of (2.7) it suffices to show that
for any € € (0,1) and A > Ao, there exist n > 1 and (E,v) € C,, such that

inf FMA, > FME, 5.4
e (A, u) +e> FHE,0) (5.4)

Indeed, by (5.4) and (5.2), given € € (0,1)

inf FMAu) +e >FNE,v)
(Au)ecC

F(A, u). (5.3)

> inf  FMNA,u)
(Au)eCn

= inf F(A, u)
(Au)ECn, | Al=v

> lim inf F(A, u).

T M50 (Au)€Cum, |Al=v

Now letting € — 0 and using (5.2) and (5.3) we get (2.7).

We construct (E,v) € C, satisfying (5.4) as follows. Fix e € (0,1) and A > Ay,
and choose (A4, u) € C such that

inf F* 4 i > FMNA, u). (5.5)
Notice that:

— removing the exterior filaments decreases the energy, i.e., F(A,u) >
F(Int(A),u), thus, we assume that A = Int(A) so that A is open;

— let {A;}ier be all open connected components of A. Since
F(Au) =Y F(Aju),
el
by the finiteness of F(A, ) and |A|, we can choose a finite set I’ C I such

that
€
< —_—
Al < Z +8)\
Jjer
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Thus, setting A" := .., 4; and v := u| ,, we get that (4’,u) € C and

Jer A

FNAu) + ¢ 2 F(AL); (5.6)
— let {F;};es be all open connected components of 2\ A’. Since dF; C

0A" U 0N and Q| + HY(OA") + H(0Q) < oo, there exists a finite set
J' C J such that

E S(Fj;uo) < <
. 16
jeJ\JT

€
o IR < =
erar 16\

and

Hence, setting A” := AU ;e o Fj and v := u'xar + UOX e o0 Fy W€
get that (A’,u’) € C and

FMA W) + fl > FMNA" ). (5.7)

Notice that for j € J\ J', the set 0A’ N OF; becomes the internal crack
for A”, and there is no elastic energy contribution in Fj;

see Figure 2.

o
\

‘
N

FI1GURE 2. We pass from the set A represented on the left to the
set A” on the right by eliminating the external filaments, removing
sufficiently small connected components of A and filling in suffi-
ciently small holes.

Hence, A” is a union _of finitely many connected open sets with finitely many
“holes” inside so that 0A” = 9* A" consists of finitely many connected sets with
finite length. Moreover, by (5.5), (5.6) and (5.7),

inf F* 4+ % > FMNA" ). (5.8)

In view of (5.5) and (5.8) it remains to show that there exists m > 1 and
(E,v) € Cyy, such that

FNA" W) + g > FNE,v). (5.9)

Let G := Int(A”) so that G is open and dG = 9*G. Since ¥ is a 1-dimensional
Lipschitz manifold, by the outer regularity of H!L Y there exists a finite union I
of subintervals of ¥ such that

Ju” g I



A UNIFIED MODEL FOR SDRI 53

and
€

6402 '
Since 012 is Lipschitz and ¢, there exists a Lipschitz open set V' C €2 such that
ovVNX=1Iand

Hl(I \ Ju//) < (5.10)

/ oz, vp)dH < /cp(m,l/g)d’Hl + = (5.11)
Qnorv I 64
and
€
V| < 732>\; (5.12)

since ¢ is uniformly continuous, basically, V' is obtained slightly translating I
inside A.

Let us consider (B,w) € C with B := A"\ V and w = u”XA”\V' Since B ¢ A",
W(B,w) < W(A" u");
since Jy, = 0, by (5.10) and (5.11)

S(B,w) < S(A" ") + % (5.13)
and by (5.12)
€
MBI = v] < 147 =] + £
Thus,
FNBw) < FMA" W) + <. (5.14)

oo

Let w € GSBD?*(Int(BU S);R?) be such that w = w a.e. in BUS. Notice
that X N Jz = 0 and Jz € BY N IB. Perturbing approximate continuity points
of w along BY) N @B (as has been done in the proof of Theorem 2.8), we may
suppose that B N @B is a jump set for @. Hence, using the Vitali class of
covering squares for Jg contained in € in the proof of [14, Theorem 1.1] we
find ¥ € SBV?(Int(B) U SUX); R?) N WL(Int(B U S UX);R?) such that J; is
contained in a union of finitely many closed connected curves in B (see [14, pp.
1353 and 1359]) and

/ e(®) — e(@)dz <
BUS

/Hl(JgAJ@) <

62

5120W(B,w) + 1)(||Clloc + 1)’

(5.15a)

320" (5.15b)
Notice that we do not need to control the boundary trace of w that’s why we can
use the approximation result [14, Theorem 1.1] only inside B U 3 U S. Moreover,
since Jz C Int(B) and we use Vitali class of covering cubes only inside 2 by the
formula [14, page 1359] for the jump of the approximating sequence, it follows
that J; C B. In particular, v € H'(S;RR?).

By the convexity of the elastic energy and the Cauchy-Schwarz inequality for
nonnegative quadratic forms,

W(z,e(v) — Ep)dx < W(z,e(w) — Ep)dx
BUS BUS
+2 C(x)[e(v) — Ep] : [e(v) — e(w)]dx
BUS
< W(z,e(w) — Ep)dx

BUS
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+ 2\/ W(z,e(v) — Eo)dl‘\/ W(z,e(v) — e(w))dz. (5.16)
BUS BUS

Since

Wz, e(T) — e(@))dz < ||C]c / 6(T) — e(@) P,
BUS BUS
and

W(zx,e(v) — Ey)dz
BUS

<2 W(x,e(v) —e(w))dz + 2 W(z,e(w) — Ey)dx
BUS BUS

< 2|y@||oo/ (D) — (@) [2dz + 2W(B, @) < 2W(B, @) + 2,
BUS
by (5.15a) and (5.16),

W (z, e(7) — Eo)dz < W (z, e(@) — Eo)dz + . (5.17)
BUS BUS 4

As J, is contained in at most finitely many closed Cl-curves, we can find finitely
many arcs of those curves whose union I' C B still contains Jz and satisfies

€

1
'\ J3 .

(5.18)

Set E := Int(B) \ T and v := ¥|,. We show that (E,v) satisfies (5.9). Note
that J, N (EUS) =0, thus, v € H. (E U S;R*) N GSBD?*(Int(E U S UX); R?).
Moreover, by construction, d*A”, I' and 9V consist of finitely many connected

components, therefore, there exists m > 1 such that (E,v) € Cp,. Notice that by
the definition of F,

|E| = [Int(B)| = |BJ, (5.19)
by the definition of v, w and (5.17),

WI(E,v) < W(B, @) + i — W(B,w) + i (5.20)
and by 0*E = 9*B, (5.18) and (5.15b) as well as (2.4) and (5.13),
S(E,v) <S(B,w) + g. (5.21)
From (5.19)-(5.21) we get
FME,v) < FN(B,w) + %
Combining this with (5.14) we obtain (5.9). O

Proof of Theorem 2.9. In view of Proposition 4.9 the assertion follows from the
direct methods of the Calculus of Variations. g

APPENDIX A.

In this section we recall some results from the literature for the reader’s conve-
nience.
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A.1. Kuratowski convergence. Let {E}} be a sequence of subsets of R?. A set
E C R? is the K-lower limit of {E}} if for every x € E and p > 0 there exists
n > 0 such that B,(z) N Ey # 0 for all k > n. A set E C R? is the K-upper limit
of {Ey} if for every x € E and p > 0 and n € N there exists k& > n such that
By(x) N Ey, # 0.

The K-lower and K-upper limits of {E}} are always exist and respectively
denoted as

K- lim inf Ej, and K-limsup Ey.
k—o0 k—o00

It is clear that both sets are closed sets and

K-liminf F C K-limsup Ej;
k—o0 k—o0

in case of equality, we say Ej converges to ¥ = IC-liminf E}, = K-limsup Fj, in
k—o0 k—o0
the Kuratowski sense and write

E=K-lim B, o ESE
k—oo

Observe that by the definition of K-convergence, Ej;, and Ej, have the same K-
upper and K-lower limits. Moreover, Kuratowski limit is always unique.

Proposition A.1. The following assertions are equivalent:

(a) By 5 B

(b) if zx € Ei converges to some x € R?, then x € E, and for every x € E
there exists a subsequence xn, € Ey,, converging to x;

(c) dist(-, Ey) — dist(-, E) locally uniformly in R?;

(d) if, in addition, {Ex} is uniformly bounded, Ex — E with respect to Haus-
dorff distance disty, where

0 if A= B =),

disty (A, B) := max { sup dist(x, B), sup dist(z, A)} otherwise.
z€A zeB

(A1)

A.2. Rectifiability in R?. Below we recall some important regularity properties
of compact connected subsets of finite H!-measure of R? most of them are taken
from [29, Chapters 2 and 3].

The image I' of a continuous injection 7 : [a,b] — R? is called curve (or Jordan

curve), and 7 is the parametrization of I'. Clearly, any curve is compact and
connected set, hence it is H#!'-measurable. The length of a curve I is defined as

sup s(7v, P),
where P = {tg,t1,...,tN} is a partition of [a,b], i.e. a =t) <t; < ... <ty =b,

N
s(v, P) ==Y [y(tic1) —(ti)l,
=1

and sup is taken over all partitions P of [a,b]. By [29, Lemma 3.2], the length of
curve I is equal to H(T).

Any curve T with finite length admits so-called arclength parametrization in
[0, H1(T")], which is a Lipschitz parametrization v, with Lipschitz constant 1.
Hence, by the Rademacher Theorem [3, Theorem 2.14] it is differentiable at a.e.
¢ € (0,HY(T")) and |7,(¢)| < 1. Hence T has an (approximate) tangent line at H!-
a.e. * € I' and we can define the approximate unit normal vr(z) of T' at H!-a.e.
zel.
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We recall the following characteristics of compact connected H!-rectifiable sets
(see [29, Theorem 3.14] and [36, Section 2]).

Proposition A.2 (Rectifiable connected sets). Every connected compact set
K c U with H'(K) < oo is arcwise connected and countably H'-rectifiable, i.e.,

K:=Nul]JTy
i>1
where N is a H'-negligible set and T'; := v;([0,1]) is a curve with finite length for
a parametrization ~y; : [0,1] — R? such that

7j—1
w0, )NJTi=0, j>2
=1

Remark A.3 (Rectifiable curve is locally Jordan). Let I' be a rectifiable
curve. Then for H'-a.e. z € T there exists r, > 0 such that B, (z) \ T has
exactly two connected components. Indeed, suppose that there exists x € T
such that 0*(T',z) = 6.(T',x) = 1 and B,(x) \ T has at least three connected

components for every r > 0 such that endpoints of I lie outside B,(z). Then
(Br(x) \ Byj2(z)) N T should have three connected components and as a result

H((Br(2) \ Byj2(x)) NT) > 3r/2 and

1 r HY(B, 5(x)NT
| = fim A B@OD) (Brp@) L) 3 _ 5
r—0 2r r—0 2r 4
a contradiction.

Proposition A.4 (Properties of regular points [3, 29, 36]). Suppose that
K C R? be a connected compact set with H'(K) < oo. Thus, it admits a unit
(measure-theoretic) normal vk (x) at H'-a.e. x € K; the map x — v (z) is Borel
measurable and if L is any connected subset of K then vp(x) = vi(x) for any
z € L for which the unit normal vi(x) to K exists. Moreover, H'Lo, ,(K) —*
HLT, and Uy, (z) N 0pz(K) LSy Uy () NTy as p — 01, where T, is the
generalized tangent line to K at x.

Note that Uy ., (z) in Proposition A.4 can be replaced by arbitrary Ug ., ().

Proposition A.5. Let A € A and x € DA be such that the measure-theoretic unit
normal v4(x) to OA exists and Ug,,, ()(2) N 0p(0A) X URwa(e) (@) VT for any
R>0asp— 0". Then:

(a) if z € A N A, then sdist(-,0,,(0A)) — —dist(-,T) uniformly in

Ul,l/A(I);
(b) ifx € AONIA, then sdist(-, 0,.(0A)) — dist(-, Ty) uniformly in Ulya(z)-

Proof. We prove only (a); the proof of (b) is analogous. Let z € A1) N JA be
such that

(x1) va(z) exists;

(x2) Ugy,(2)(x) Nop2(0A) L URa(z)(x) NT; for any R >0 as p — 0F.
Without loss of generality we assume x = 0, v4(x) = ez and T, = Ty is the
xq1-axis. For shortness we write A, and (0A), in places of o, ,(A) and 0, .(0A),
respectively. Let {px} C (0,1) be arbitrary sequence converging to 0. Consider
fr := sdist(-, (8A>Pk)‘U4 € Whe(U,). For any k > 1, f, is 1-Lipschitz and f;(0) =
0, therefore, by the Arzela-Ascoli Theorem, there exist f € W1*°(U,) and not
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relabelled subsequence {f;} such that fi — f uniformly in Uy. By (x2) applied
with R > 4, | fi| = dist(-, (0A4),,) — dist(-, Tp) uniformly in Uy, therefore, |f(z)| =
dist(z, Tp) for any x € Uy. Thus, it suffices to prove that f < 0.

Assume by contradiction that f > 0 in U] := Uy N {z2 > 0}. In addition, by
(x2) for any ¢ € (0,1) there exists ks > 0 such that UyN (90A),, C Tp x (—6,0) for
any k > ks. Therefore, sdist(-, (0A),,) > 0 in UL; := Uy N {x2 > 0}, and hence,
AN pkUZ5 = (), where 7D = {rz : x € D}. Since 0 € A1) N IA, this implies

! — lim | AN Uy, | I |(AﬂU4pk)\PkUI(;|
k—o0 |U4Pk’ k—o0 |U4Pk‘

a contradiction.

Analogous contradiction is obtained assuming f > 0 in Us N {x2 < 0}. O

A.3. Minimizers of volume-constraint and unconstraint problems. The
following proposition is an extension of [28, Theorem 1.1].

Proposition A.6. Assume (H1)-(H3). Then there exists \g > 0 (possibly de-
pending on c1, ca and ) with the following property: given m > 1, (A,u) € Cyp, is
a solution of (CP) if and only if (A,u) is also a solution to (UP) for all X > Xo.

Proof. Note that any minimizer (A4,u) € Cp, of F* with |A| = v is also minimizer
of F. Hence, it suffices to show that there exists Ag > 0 such that any minimizer
(A, u) of F* for A > )\ satisfies |A| = v.

Assume by contradiction that there exist sequences {m} C N and {\,} C R
with A, — 0o and a sequence (Ap, up,) € Cp,, minimizing F*» such that |A| # v.
Since €2 has finitely many connected components there exists an open Lipschitz
set Ag C Q with |Ag| = v such that F (A, up) < FM(Ag,up) = F(Ag,ug) for
all large h. Thus, by (2.4) and (2.5),

F(Ag, uo) + coH () + H(6Q)

sup HL(DA,) < A = : (A.2)
h C1

and Ap||An| — v| < F(Ag,up) + caHY(X) for any h. This implies |Ej,| — v as
h — oo. By compactness, there exists a finite perimeter set A C € and a not
relabelled subsequence such that x4, — xa a.e. in R2. In particular, |[A| = v.

We suppose that |A,| < v for all h; the case |Ay| > v is treated analogously.
As in the proof of [28, Theorem 1.1] given € € (0, %), there exist small » > 0 and
x, €  such that B,(x) CC Q and

7T’I”2

|AN B, ()] <er?, |AN By (z,)] > 6
For shortness, we suppose that x, = 0 we write B, := B,(z,). Since A, — A in
L'(R?), for all large h,

7T’I”2

16
Let ® : R2 — R? be the bi-Lipschitz map which takes B, into B, defined as

|Ap N By jo| < er?, |Ap, N B,| > (A.3)

(1-30)z, 2| < 3,
2
O(z) == :E—{—a(l - W)x r<z<r,

z, 2| >
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for some o € (0, 15). Recall from [28, pp. 420-422] that the Jacobian J® of ®
satisfies

JO(y) >1+0  y€DB.\Bp,
and
JP(y) <1+ 8o y € By,
and the tangential Jacobian J;T, of ® on the tangent space T, of 0A; satisfies
ST, <1+ 50, T € B, NOA,. (A4)
Set
Ep = ®(Ap)\ 0By,  wvp = urxa, \ Br + uoXE,NB,-

Note that |Ej| < v and since the bi-Lipchitz maps do not increase the number of
connected components, (Ep,vy) € Cp,. Let us estimate

F M (Ap, up)—F N (B, vp)
:/ eAh(x) QZS(JZ,I/Ah)d%l _/

BrNoAL BrNOE},

Op, (x)¢(z, I/Eh)dH1

+/ W (x,e(up) — Ep)dx — / W (x,e(vy) — Ep)dx
BrNA B.NE),
+ (1Bl = 14n]) = B+ B+ I,

where 6 (z) is 1 for H'-a.e. on 0*F, is 2 for H'-a.e. on F) U FO) N JF and is 0
otherwise. By the choice of vy, Iz > 0. Moreover, by (A.4) and the area formula
as well as from (2.4), (A.2) and equality 0, (®(y)) = 04, (y) for H'-a.e. y € DAy,

/ 01, (2)6(w, v, )M = 0.4, (2()) (D (y), va,) T, dH!
Br-NOE}, BrNOAy,

< 2¢9(1 + 50)HY (B, N9AL) < 2¢2(1 4 50)A.
Moreover, by (2.4),

/ 0, (2)p(z,vg, )dH' < 2caH (OB,) < 4rmcar,
0B,-NOE},
thus,

I > —2¢5(1 4 50)A — 4mear.

Finally, repeating the same arguments of Step 4 in the proof of [28, Theorem 1.1],
we obtain

I3 > \or?(1 — Te),
thus,
]:)\h (Ah, uh) — ]:)\h (Eh, Uh) > )\hO’I“Q(l — 76) — 202(1 + 5J)A — 4mear. (A5)

Since the dependence of the right-side of (A.5) on h is only through A, for
sufficiently large h we have F*» (A, up) > F  (E, vy,), which contradicts to the
minimality of (Ap,up). O
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