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Abstract. Existence and uniqueness of solutions for nonlocal Cahn-Hilliard equations
with degenerate potential is shown. The nonlocality is described by means of a symmet-
ric singular kernel not falling within the framework of any previous existence theory. A
convection term is also taken into account. Building upon this novel existence result, we
prove convergence of solutions for this class of nonlocal Cahn-Hilliard equations to their
local counterparts, as the nonlocal convolution kernels approximate a Dirac delta. Even-
tually, we show that, under suitable assumptions on the data, the solutions to the nonlocal
Cahn-Hilliard equations exhibit further regularity, and the nonlocal-to-local convergence
is verified in a stronger topology.
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1. Introduction

The Cahn-Hilliard equation was originally introduced in [13] in order to model the so-called
“spinodal decomposition” phenomenon occurring during the phase separation processes in
binary metallic alloys. Since then it has acquired fundamental importance in several diffuse-
interface models in different fields, ranging from physics and engineering to biology.
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This nonlinear parabolic PDE exhibits a gradient-flow structure (in the H−1-metric) in
terms of the free energy functional given by, cf. [13],

ECH(u) =

ˆ
Ω

(τ2

2
|∇u(x)|2 + F (u(x))

)
dx, (1.1)

where Ω is the d-dimensional flat torus, F is a double-well potential, and τ is a small
positive parameter related to the thickness of the transition region. The choice of the set
Ω is classical in the literature, and corresponds to imposing periodic boundary conditions.
The corresponding evolution problem reads as follows

∂tu+ div JCH = 0,

JCH = −m(u)∇µCH ,

µCH =
δECH(u)

δu
= −τ2∆u+ F ′(u),

(1.2)

where µCH is the chemical potential associated to the energy ECH , and the symbol div(·)
denotes the divergence operator. The function m(·) in (1.2) is known as mobility.

The mathematical literature on the classical Cahn-Hilliard equation has been widely devel-
oped in the last decades, in terms of well-posedness of the system with possibly degenerate
potentials, viscosity terms and dynamic boundary conditions, but also in the direction of
regularity, long-time behaviour of solutions, and optimal control problems. Among the
extensive literature, we mention the works [14, 15, 16, 18, 19, 21, 37] dealing with existence-
uniqueness of solutions, [20, 27, 38] for studies on the asymptotic behaviour of solutions, and
[9, 46, 51] for analyses of the system incorporating possibly nonlinear viscosity terms. As far
as optimal control problems are concerned, we point out the contributions [17, 22, 23, 28, 40].

In the early 90’s in [36] G. Giacomin and J. Lebowitz considered the hydrodynamic limit of
a microscopic model describing a d-dimensional lattice gas evolving via a Poisson nearest-
neighbor process. In this seminal paper, the authors rigorously derived a nonlocal energy
functional of the form

ENL(u) =
1

4

ˆ
Ω

ˆ
Ω
K(x, y)(u(x)− u(y))2dxdy +

ˆ
Ω
F (u(x))dx, (1.3)

where K(x, y) is a positive and symmetric convolution kernel, and proposed the correspond-
ing gradient flow as a model for binary alloys undergoing phase change.
The associated evolution problem, providing a nonlocal variant of the Cahn-Hilliard PDE,
is given by the following system of equations:

∂tu+ div JNL = 0,

JNL = −m(u)∇µNL,

µNL =
δENL(u)

δu
= (K ∗ 1)u−K ∗ u+ F ′(u),

(1.4)

where (K ∗ 1)(x) :=
´

ΩK(x, y)dy and (K ∗ u)(x) :=
´

ΩK(x, y)u(y) dy, for x ∈ Ω.

The study of such nonlocal Cahn-Hilliard equations has recently been the subject of an
intense research activity (see, e.g. [1, 5, 33, 35, 39] and the references therein). All the
available results in the literature dealing with nonlocal evolution of phase interfaces require
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the kernel K to be symmetric and of class W 1,1. Such requirements are usually met by
checking a condition in the following form

|K(x, y)| ≤ C|x− y|−α with 0 < α <
3

2
(1.5)

(see [25, Remark 1]).

The interest in this nonlocal model is motivated by its atomistic justification and its gen-
erality. A further motivation for the study of models in the form (1.4) is the observation
that, at least formally, when the interaction kernel K is of the form K(x, y) = K(|x − y|)
and concentrates around the origin, then the behavior of the nonlocal interface evolution
problems approaches that of the standard local Cahn-Hilliard equation.
This formal argument is enforced by the rigorous theory involving the variational conver-
gence of nonlocal energies of the form (1.3) to local integral functionals as in (1.1). Building
upon the seminal papers by J. Bourgain, H. Brezis, and P. Mironescu [10, 11], and of V.
Mazy’a and T. Shaposhnikova [43, 44], a whole nonlocal-to-local framework has been devel-
oped for singular nonlocal kernels associated to fractional Sobolev spaces. This study has
been complemented by the Γ-convergence analysis and Poincaré inequalities obtained by
A. C. Ponce in [48, 49]. More specifically, considering the following family of convolution
kernels, identified by a small positive parameter ε,

Kε(x, y) =
ρε(|x− y|)
|x− y|2

, (1.6)

where (ρε)ε is a suitable sequence of mollifiers, A. C. Ponce showed the variational conver-
gence

1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)(u(x)− u(y))2dxdy → 1

2

ˆ
Ω
|∇u(x)|2 dx.

The first positive result towards rendering the formal nonlocal-to-local convergence of the
Cahn-Hilliard models rigorously has been achieved in [45], where the authors have focused
on convergence of weak solutions of the nonlocal Cahn-Hilliard equation (1.4) to weak
solutions of its local counterpart (1.2), as the convolution kernel K approximates a Dirac
delta centered in the origin. In the aforementioned paper, the convergence is studied in the
case of constant mobility, with a non-singular double-well potential satisfying a bounded-
concavity assumption of the form

F ′′ ≥ −B1,

for a positive constant B1 small enough, (see [45, Assumption H3]).

Due to the above-mentioned variational convergence result, kernels in the form (1.6) are the
most natural choice in the study of nonlocal phase transition problems. However, in general
it is not true that these kernels enjoy a W 1,1 regularity, so that the available existence results
in the literature do not apply. In addition, the usual condition (1.5) is not satisfied by Kε

as in (1.6). This observation renders the analysis of this class of problems very delicate
and several nontrivial difficulties arise. For example, the definition and regularity of the
chemical potential µNL in (1.4) relies on the properties of the linear unbounded operator
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(B, D(B)), defined as

D(B) := {v ∈ L2(Ω) : (K ∗ 1)v − (K ∗ v) ∈ L2(Ω)} ,
B(v) := (K ∗ 1)v − (K ∗ v) , ∀v ∈ D(B) ,

whose domain D(B) is, a priori, not explicitly characterizable and not even necessarily con-
taining H1(Ω) (see Subsection 2.2). Such endeavours are further enhanced when turning to
the analysis of nonlocal diffusions driven by degenerate potentials.

The first contribution of this paper (see Theorem 2.1) is the development of a well-posedness
theory for nonlocal Cahn-Hilliard equations having singular kernels Kε (for ε > 0 being
fixed) defined as in (1.6).

In our analysis, we remove the small-concavity assumption on the potential that was re-
quired in [45], and include possibly degenerate double-well potentials F defined on bounded
domains. Indeed, while the classical choice for F is the fourth-order polynomial Fpol(r) :=
1
4(r2 − 1)2, r ∈ R, with minima in ±1 (corresponding to the pure phases), it is well-known
that, in view of the physical interpretation of the model, a more realistic description is given
by the logarithmic double-well potential

Flog(s) =
θ

2
((1 + s) log(1 + s) + (1− s) log(1− s)) +

θc
2
− cs2

for 0 < θ < θc and c > 0, which by contrast is defined on the bounded domain (−1, 1) and
possesses minima within the open interval (−1, 1). Another interesting example of F which
is included in our treatment is the so-called double-obstacle potential (see [7, 47]), having
the form

Fob(s) = I[−1,1](s) +
1

2
(1− s2), I[−1,1](s) :=

{
0 if s ∈ [−1, 1]

+∞ otherwise .

In this latter case, the derivative F ′ob is not defined in the usual way, and has to be in-
terpreted as the subdifferential ∂Fob in the sense of convex analysis (see [4]). Analogously
the equations defining the chemical potential must be read as a differential inclusion instead.

A further extension provided by our work is to consider a nonlocal Cahn-Hilliard equation
augmented by a convection term in divergence form, i.e.

∂tu+ div JNL + div(βu) = 0,

JNL = −∇µNL,

µNL =
δENL(u)

δu
= (K ∗ 1)u−K ∗ u+ F ′(u).

(1.7)

Here, β = β(t, x) denotes the velocity field, depending on time and space, which may be
acting on the particular system in consideration. As a common choice in the literature, we
considered constant mobility equal to one.

The interest in additional convective contributions is connected with applications in mixing
and stirring of fluids, as well as in biological realizations of thin films via Langmuir-Blodgett
transfer [6, 42]. We mention in this direction the contributions [8, 26, 31, 52] on the local
Cahn-Hilliard with convection, [29, 30, 50] dealing with the nonlocal Cahn-Hilliard with
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local convection, and [32, 41] on the nonlocal case with nonlocal convection. A nonlocal
convective Cahn-Hilliard type system modelling phase-separation has been analyzed in [24,
25]. Relevant studies in coupling the Cahn-Hilliard equation with a further equation for the
velocity field have been the subject of [2, 3, 12, 34].
From a mathematical viewpoint, the presence of convection terms (i.e. when β 6≡ 0) destroys
the gradient-flow structure of the equation, causing the analysis to be even more delicate.

The proof strategy for Theorem 2.1 relies on three main ingredients: (1) a suitable approxi-
mation of the nonlinearity and an existence analysis for the approximating equations based
on a fixed point argument (see Subsection 3.1); (2) the establishment of uniform estimates
by ad-hoc multiplication of the equations with suitable test functions (see Subsection 3.2);
(3) a passage to the limit relying on nontrivial compactness and monotonicity arguments,
falling outside the framework of classical Aubin-Lions embedding results (see Lemma 4 and
Subsection 3.3). A delicate point is the proof of a uniform H1-estimate, which strongly
relies on the choice of periodic boundary conditions.

Our second contribution is established in Theorem 2.2, where we show convergence of solu-
tions for the nonlocal convective Cahn-Hilliard equation with singular kernel to solutions of
the associated local one. Our analysis extends the work in [45] to a wider class of double-
well potentials, satisfying no bounded-concavity assumptions and being possibly degenerate.
The nonlocal-to-local convergence in Theorem 2.2 relies in an essential way on the uniform
a-priori estimates established in the proof of Theorem 2.1, and on showing the independence
of the identified upper bounds from the non-locality parameter ε.

The third and fourth main results of the paper are a regularity analysis for solutions to
(1.4). In particular, in Theorem 2.3 we show that, if the initial datum and the convection
velocity satisfy additional integrability and differentiability assumptions, then solutions to
the nonlocal Cahn-Hilliard equations exhibit further regularity. In Theorem 2.4 we prove
that they also converge to their local counterparts in stronger topologies. The regularity
analysis in Theorems 2.3 and 2.4 is the byproduct of a time-differentiation of the nonlocal
Cahn-Hilliard equation, and of the use of higher-order-in-time test functions.

The paper is organized as follows. Section 2 contains a description of the mathematical
setting of the paper, the definition of weak solutions for the nonlocal and local convective
Cahn-Hilliard equations, and the precise statements of the four main results. Sections 3
and 4 are devoted to the proof of Theorems 2.1 and 2.2, respectively. Eventually, in Section
5 we prove Theorems 2.3 and 2.4.

2. Setting and main results

2.1. Hypotheses. Throughout the paper we will assume the following:

H1: Ω is the d-dimensional (d = 2, 3) flat torus and T > 0 is a fixed final time.
H2: The kernel Kε : Ω× Ω→ R is defined as in (1.6):

Kε(x, y) :=
1

|x− y|2
ρε(|x− y|) , for a.e. (x, y) ∈ Ω× Ω
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where (ρε)ε>0 ⊂ L1
loc(0,+∞) is a family of radial mollifiers on R, satisfying

ρε(r) ≥ 0 ∀ r ∈ R, ∀ ε > 0 ,

supp(ρε) ⊂ [0, diam(Ω)] ∀ ε > 0 ,

1

2

ˆ +∞

0
ρε(r)r

d−1 dr = 1 ∀ ε > 0 ,

lim
ε↘0

ˆ +∞

δ
ρε(r)r

d−1 dr = 0 ∀ δ > 0 .

H3: γ : R → 2R is a maximal monotone graph such that 0 ∈ γ(0). This implies that
γ = ∂γ̂, where γ̂ : R → [0,+∞] is a proper, convex and lower semicontinuous
function. The map Π : R → R is a Lipschitz-continuous function with Lipschitz
constant CΠ > 0. The double-well potential F will be represented by γ̂ + Π̂, where

Π̂(t) :=
´ t

0 Π(r) dr for every t ∈ R. Without restriction we will assume that F is
nonnegative.

H4: The velocity β depends on space and time, and satisfies β ∈ L2(0, T ;L∞(Ω;Rd)).
We point out that all assumptions collected in H2 correspond to the requirements in [49, 48].

For every ε > 0, we consider the nonlocal Cahn-Hilliard equation with local convection

∂tuε −∆µε + div(βuε) = 0 in (0, T )× Ω , (2.1)

µε ∈ (Kε ∗ 1)uε −Kε ∗ uε + γ(uε) + Π(uε) in (0, T )× Ω , (2.2)

uε(0) = u0,ε in Ω , (2.3)

and its local counterpart

∂tu−∆µ+ div(βu) = 0 in (0, T )× Ω , (2.4)

µ ∈ −∆u+ γ(u) + Π(u) in (0, T )× Ω , (2.5)

u(0) = u0 in Ω . (2.6)

2.2. Notation, preliminaries and comments. In the sequel we will identify L2(Ω) with
its dual, so that (H1(Ω), L2(Ω), (H1(Ω))∗) will be a classical Hilbert triplet. We will use
the symbol (v)Ω for 1

|Ω|〈v, 1〉(H1(Ω))∗,H1(Ω) for every v ∈ (H1(Ω))∗. Note that for v ∈ L2(Ω),

(v)Ω coincides with the usual average. We recall that the operator

(−∆)−1 : {v ∈ (H1(Ω))∗ : (v)Ω = 0} → {w ∈ H1(Ω) : (w)Ω = 0}

is defined as the map assigning to every v ∈ (H1(Ω))∗ with null mean the unique element
w ∈ H1(Ω) such that

(w)Ω = 0 , and

ˆ
Ω
∇w(x) · ∇ϕ(x) dx = 〈v, ϕ〉(H1(Ω))∗,H1(Ω) ∀ϕ ∈ H1(Ω) .

It is well known that (−∆)−1 is a linear isomorphism.
In this paper C indicates a generic positive constant, possibly varying from line to line,
depending only on the setting H1–H4. The dependence of constants on a specific parameter
will be indicated explicitly through a subscript.
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We collect here some useful properties of the nonlocal term. We define the operator
(Bε, D(Bε)) on L2(Ω) in the following way:

D(Bε) := {v ∈ L2(Ω) : (Kε ∗ 1)v − (Kε ∗ v) ∈ L2(Ω)} ,
Bε(v) := (Kε ∗ 1)v − (Kε ∗ v) , ∀v ∈ D(Bε) .

It is clear that Bε is a linear unbounded operator in L2(Ω), and that for every v ∈ D(Bε)
we have the representation

Bε(v)(x) =

ˆ
Ω
ρε(|x− y|)

v(x)− v(y)

|x− y|2
dy for a.e. x ∈ Ω .

We point out that the domain D(Bε) is non-trivial. More specifically, we have the following
result.

Lemma 1. For every ε, σ > 0, there holds C0,σ(Ω) ⊂ D(Bε). Additionally, there exists a
constant Cε,σ > 0 (only dependent on ε and σ) such that

‖Bε(v)‖L2(Ω) ≤ Cε,σ‖v‖C0,σ(Ω) ∀ v ∈ C0,σ(Ω) . (2.7)

In particular, for every s > 3
2 , Hs(Ω) ⊂ D(Bε) and there exists Cε,s > 0 such that

‖Bε(v)‖L2(Ω) ≤ Cε,s‖v‖Hs(Ω) ∀ v ∈ Hs(Ω) . (2.8)

Proof. A direct computation shows that for every v ∈ C0,σ(Ω) and for almost every x ∈ Ω,

|Bε(v)(x)| ≤
ˆ

Ω
ρε(|x− y|)

|v(x)− v(y)|
|x− y|2

dy ≤ ‖v‖C0,σ(Ω)

ˆ
Ω

ρε(|x− y|)
|x− y|2−σ

dy,

where

Cε,σ :=

ˆ
Ω

ρε(|x− y|)
|x− y|2−σ

dy < +∞

thanks to H2. The second part of the Lemma follows by the Sobolev embedding Hs(Ω) ↪→
C0,σ(Ω) for every s > 3

2 and σ ∈ (0, s− 3
2). �

The operator (Bε, D(Bε)) has been defined as a linear unbounded operator on L2(Ω). Note
that it is not necessarily true that H1(Ω) ⊂ D(Bε). Nevertheless, we now show that actually
(Bε, D(Bε)) can be extended, uniformly in ε, to a linear bounded operator from H1(Ω) to
its dual.

Lemma 2. For every ε > 0 the operator (D(Bε),Bε) can be uniquely extended to a linear
continuous operator Bε : H1(Ω)→ (H1(Ω))∗. Additionally, there exists a positive constant
C, independent of ε, such that

‖Bε(v)‖(H1(Ω))∗ ≤ C‖∇v‖L2(Ω) ∀ v ∈ H1(Ω) . (2.9)

In particular, the family (Bε)ε is uniformly bounded in L (H1(Ω), (H1(Ω))∗) and there exists
B ∈ L (H1(Ω), (H1(Ω))∗) and an infinitesimal sequence (εn)n such that

lim
n→∞

〈Bεn(v), ψ〉(H1(Ω))∗,H1(Ω) = 〈B(v), ψ〉(H1(Ω))∗,H1(Ω) ∀ v, ψ ∈ H1(Ω) .



8 ELISA DAVOLI, HELENE RANETBAUER, LUCA SCARPA, AND LARA TRUSSARDI

Proof. By the Hölder inequality and [10, Theorem 1], we infer that

〈Bε(v), ψ〉(H1(Ω))∗,H1(Ω) =
1

2

ˆ
Ω

ˆ
Ω
Kε(x, y)(v(x)− v(y))(ψ(x)− ψ(y))dydx

≤ 1

2

(ˆ
Ω

ˆ
Ω
Kε(x, y)|v(x)− v(y)|2dydx

)1/2(ˆ
Ω

ˆ
Ω
Kε(x, y)|ψ(x)− ψ(y)|2dydx

)1/2

≤ C‖∇v‖L2(Ω)‖∇ψ‖L2(Ω)

for every v, ψ ∈ H1(Ω). This implies that (D(Bε),Bε) can be extended uniquely as required
(the uniqueness follows Lemma 1, and from the density of C0,σ(Ω) in D(Bε)). The second
part of the lemma follows by observing that (2.9) implies the uniform boundedness of (Bε)ε
in L (H1(Ω), (H1(Ω))∗), and hence its precompactness in the weak operator topology of
L (H1(Ω), (H1(Ω))∗). �

In what follows, a crucial role is also played by the nonlocal energy contribution

Eε(v) :=
1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)(v(x)− v(y))2dydx ∀v ∈ H1(Ω) .

Owing to [10, Theorem 1], we have that Eε is well-defined, convex, and its differential
DEε : H1(Ω)→ (H1(Ω))∗ is given by

DEε = Bε.

Moreover, by [10] the asymptotic behavior of Eε as ε→ 0+ can be characterized as follows

lim
ε→0+

Eε(v) =
1

2

ˆ
Ω
|∇v(x)|2dx ∀ v ∈ H1(Ω) . (2.10)

As a corollary, we deduce the following identification of the operator B in Lemma 3.

Lemma 3. Let (D(Bε),Bε)ε and B be as in Lemma 2. Then,

lim
ε→0
〈Bε(v), ψ〉(H1(Ω))∗,H1(Ω) = 〈−∆v, ψ〉(H1(Ω))∗,H1(Ω),

where

〈−∆v, ψ〉(H1(Ω))∗,H1(Ω) :=

ˆ
Ω
∇v(x) · ∇ψ(x) dx ∀v, ψ ∈ H1(Ω) .

Proof. By the characterization of the differential of Eε, we have that

Eε(v1) + 〈Bε(v1), v2 − v1〉(H1(Ω))∗,H1(Ω) ≤ Eε(v2)

for every v1, v2 ∈ H1(Ω). Hence, for every subsequence (εn)n as in Lemma 2, letting n→∞,
by (2.10) we conclude that

1

2

ˆ
Ω
|∇v1(x)|2dx+ 〈B(v1), v2 − v1〉(H1(Ω))∗,H1(Ω) ≤

1

2

ˆ
Ω
|∇v2(x)|2dx,

from which B = −∆. In particular, this implies that the convergence holds along the entire
sequence ε. �

We conclude this section with a lemma providing two fundamental compactness inequalities
involving the family of operators (Bε)ε. Such results are nontrivial, since they do not
fall in the classical framework of the Aubin-Lions lemmas. The next lemma is a uniform
counterpart to [45, Lemma 1].

Lemma 4. For every δ > 0 there exist constants Cδ > 0 and εδ > 0 with the following
properties:
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(1) For every sequence (fε)ε ⊂ H1(Ω) there holds

‖fε‖2H1(Ω) ≤ δ
ˆ

Ω

ˆ
Ω
Kε(x, y)|∇fε(x)−∇fε(y)|2dydx+ Cδ‖fε‖2L2(Ω) (2.11)

for every 0 < ε < εδ.
(2) For every sequence (fε)ε ⊂ L2(Ω) there holds

‖fε‖2L2(Ω) ≤ δEε(fε) + Cδ‖fε‖2(H1(Ω))∗ (2.12)

for every 0 < ε < εδ.

Proof. Assume by contradiction that (2.11) is false. Then, there exists δ̄ > 0 having the
following property: for every n ∈ N we can find a sequence (fnε )ε ⊂ H1(Ω) and a parameter
εn <

1
n such that

‖fnεn‖
2
H1(Ω) > δ̄

ˆ
Ω

ˆ
Ω
Kεn(x, y)|∇fnεn(x)−∇fnεn(y)|2dydx+ n‖fnεn‖

2
L2(Ω) .

Noting that ‖fnεn‖H1(Ω) > 0 for every n and setting

gn :=
fεn

‖fεn‖H1(Ω)
,

we have

δ̄

ˆ
Ω

ˆ
Ω
Kεn(x, y)|∇gn(x)−∇gn(y)|2dydx+ n‖gn‖2L2(Ω) < 1 ∀n ∈ N .

Hence, gn → 0 strongly in L2(Ω) and the family (∇gn)n is relatively strongly compact in
L2(Ω;Rd) by [48, Theorem 1.2]. We deduce that gn → 0 strongly in H1(Ω), but this is a
contradiction since by definition we have ‖gn‖H1(Ω) = 1 for all n. The argument for (2.12)
is entirely analogous. �

2.3. Main results. Before stating our main results, let us recall the notion of weak solu-
tions to both the nonlocal as well as the local Cahn-Hilliard equation with local convection.

Definition 1 (Solution to the nonlocal Cahn-Hilliard equation). Let ε > 0 and T > 0 be
fixed. A solution to the nonlocal Cahn-Hilliard equation (2.1)–(2.3) on [0, T ], and associated
with the initial datum u0,ε ∈ L2(Ω), is a triplet (uε, µε, ξε) with the following properties

uε ∈ H1(0, T ; (H1(Ω))∗) ∩ L2(0, T ;H1(Ω)) ,

µε ∈ L2(0, T ;H1(Ω)) , ξε ∈ L2(0, T ;L2(Ω)) ,

µε = Bε(uε) + ξε + Π(uε) , ξε ∈ γ(uε) almost everywhere in (0, T )× Ω,

satisfying uε(0) = u0,ε, and such that

〈∂tuε(t), ϕ〉(H1(Ω))∗,H1(Ω) +

ˆ
Ω
∇µε(t, x) · ∇ϕ(x) dx =

ˆ
Ω
β(t, x)uε(t, x) · ∇ϕ(x) dx (2.13)

for all ϕ ∈ H1(Ω), and for almost every t ∈ (0, T ).
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Definition 2 (Solution to the local Cahn-Hilliard equation). Let T > 0 be fixed. A solution
to the local Cahn-Hilliard equation (2.4)–(2.6) on [0, T ], and associated with the initial datum
u0 ∈ H1(Ω), is a triplet (u, µ, ξ) with the following properties

u ∈ H1(0, T ; (H1(Ω))∗) ∩ L2(0, T ;H2(Ω)) ,

µ ∈ L2(0, T ;H1(Ω)) , ξ ∈ L2(0, T ;L2(Ω)) ,

µ = −∆u+ ξ + Π(u) , ξ ∈ γ(u) almost everywhere in (0, T )× Ω,

satisfying u(0) = u0, and such that

〈∂tu(t), ϕ〉(H1(Ω))∗,H1(Ω) +

ˆ
Ω
∇µ(t, x) · ∇ϕ(x) dx =

ˆ
Ω
β(t, x)u(t, x) · ∇ϕ(x) dx (2.14)

for all ϕ ∈ H1(Ω), for almost every t ∈ (0, T ).

Our first result is the well-posedness of solutions to the nonlocal Cahn-Hilliard equation.

Theorem 2.1. Let assumptions H1–H4 be satisfied, and for every ε > 0 let

u0,ε ∈ L2(Ω) , γ̂(u0,ε) ∈ L1(Ω) , Eε(u0,ε) < +∞ , (u0,ε)Ω ∈ IntD(γ) . (2.15)

Then, there exists ε0 > 0 having the following property: for every ε < ε0 there exists a
unique solution (uε, µε, ξε) to (2.1)–(2.3) associated with the initial datum u0,ε, according to
Definition 1. Furthermore, if (β1, u1

0,ε) and (β2, u2
0,ε) are two sets of data satisfying H4 and

(2.15), with (u1
0,ε)Ω = (u2

0,ε)Ω, then there exists a positive constant Mε, depending only on

the setting H1–H3 and on the norms of the data (β1, u1
0,ε) and (β2, u2

0,ε) appearing in H4

and (2.15), such that, for any respective solution (u1
ε, µ

1
ε, ξ

1
ε ) and (u2

ε, µ
2
ε, ξ

2
ε ) to the nonlocal

equation (2.1)–(2.3),

‖u1
ε − u2

ε‖2C0([0,T ];(H1(Ω))∗) + ‖Eε(u1
ε − u2

ε)‖L1(0,T )

≤Mε

(
‖u1

0,ε − u2
0,ε‖2(H1(Ω))∗ + ‖β1 − β2‖2L2(0,T ;L3(Ω))

)
.

The second result concerns nonlocal-to-local convergence.

Theorem 2.2. Let assumptions H1–H4 be satisfied. Let u0 ∈ H1(Ω), and for every ε > 0
let u0,ε satisfy (2.15) and be such that

sup
ε∈(0,ε0)

(
‖u0,ε‖2L2(Ω) + ‖γ̂(u0,ε)‖L1(Ω) + Eε(u0,ε)

)
< +∞ , (2.16)

∃ [a0, b0] ⊂ IntD(γ) : a0 ≤ (u0,ε)Ω ≤ b0 ∀ ε ∈ (0, ε0) , (2.17)

u0,ε ⇀ u0 in L2(Ω) as ε→ 0+ . (2.18)

Let (uε, µε, ξε) be the unique solution to (2.1)–(2.3) associated to u0,ε given by Theorem 2.1,
and let (u, µ, ξ) be the unique solution to the local equation (2.4)–(2.6) associated to u0,
according to Definition 2.
Then, as ε↘ 0,

uε → u strongly in C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) ,

∂tuε ⇀ ∂tu weakly* in L2(0, T ; (H1(Ω))∗) ,

µε ⇀ µ weakly in L2(0, T ;H1(Ω)) ,

ξε ⇀ ξ weakly in L2(0, T ;L2(Ω)) .
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The last two results that we present deal with regularity of solutions to the nonlocal equa-
tion. In particular, we show that if the data are more regular, then the solution to the
nonlocal equation inherits a further regularity, and the convergences to the local equation
are obtained in stronger topologies.

Theorem 2.3. Let assumptions H1–H4 be satisfied, and suppose also that

β ∈ H1(0, T ;L3(Ω;Rd)) . (2.19)

For every 0 < ε < ε0 let u0,ε satisfy (2.15) and

u0,ε ∈ L6(Ω) , Bε(u0,ε) + ξ0,ε + Π(u0,ε) ∈ H1(Ω) ∀ ξ0,ε ∈ γ(u0,ε) . (2.20)

Then the unique solution (uε, µε, ξε) to the nonlocal equation (2.1)–(2.3) with respect to the
initial datum u0,ε also satisfies

uε ∈W 1,∞(0, T ; (H1(Ω))∗) ∩H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) .

If also

β ∈ L∞(0, T ;L∞(Ω;Rd)) , (2.21)

then in addition

µε ∈ L∞(0, T ;H1(Ω)) , ξε ∈ L∞(0, T ;L2(Ω)) .

If also

div β ∈ L∞(0, T ;L3(Ω)) , (2.22)

then in addition

µε ∈ L2(0, T ;H2(Ω)) .

Theorem 2.4. Let assumptions H1–H4 be satisfied. Let u0 ∈ H1(Ω), and for every ε > 0
let u0,ε satisfy (2.15), (2.16)–(2.18), (2.20) and

sup
ε∈(0,ε0), ξ0,ε∈γ(u0,ε)

(
‖u0,ε‖L6(Ω) + ‖Bε(u0,ε) + ξ0,ε + Π(u0,ε‖H1(Ω)

)
< +∞ . (2.23)

Denoting by (u, µ, ξ) the unique solution to the local equation (2.4)–(2.6), if (2.19) holds
then

uε → u strongly in C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) ,

uε ⇀ u weakly* in W 1,∞(0, T ; (H1(Ω))∗) ∩H1(0, T ;L2(Ω)) .

If also (2.21) holds, then

µε ⇀ µ weakly* in L∞(0, T ;H1(Ω)) ,

ξε ⇀ ξ weakly* in L∞(0, T ;L2(Ω)) .

If also (2.22) holds, then

µε ⇀ µ weakly in L2(0, T ;H2(Ω)) .

3. Proof of Theorem 2.1

This section contains the proof of existence of a solution (uε, µε, ξε) to the nonlocal con-
vective Cahn-Hilliard equation. We subdivide it in different steps. In this section, ε > 0 is
fixed.
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3.1. Approximation. For every λ > 0, let γλ : R→ R be the Yosida approximation of γ,
having Lipschitz constant 1/λ, and set γ̂λ(s) :=

´ s
0 γλ(r) dr for every s ∈ R. We consider

the approximated problem

∂tu
λ
ε −∆µλε + div(βλu

λ
ε ) = 0 in (0, T )× Ω , (3.1)

µλε = −λ∆uλε + Bε(u
λ
ε ) + γλ(uλε ) + Π(uλε ) in (0, T )× Ω , (3.2)

uλε (0) = uλ0,ε in Ω , (3.3)

where βλ := Pλβ, Pλ : Rd → Rd is the projection on the closed ball of radius 1
λ , and the

initial datum uλ0,ε satisfies

uλ0,ε ∈ H1(Ω) , uλ0,ε → u0,ε in L2(Ω) , (3.4)

sup
λ∈(0,λ0)

(
λ‖uλ0,ε‖2H1(Ω) + ‖γ̂(uλ0,ε)‖L1(Ω) + Eε(u

λ
0,ε)
)
< +∞ (3.5)

for a certain λ0 > 0 (possibly depending on ε). The existence of an approximating sequence
(uλ0,ε)λ satisfying (3.4)–(3.5) is guaranteed by (2.15): for example, one can check that the
classical elliptic regularization given by the unique solution to the problem

uλ0,ε − λ∆uλ0,ε = u0,ε

is a possible choice. In this subsection, we show existence of an approximated solution
(uλε , µ

λ
ε ) for every λ > 0 fixed. The proof strategy relies on the use of a fixed-point argu-

ment.

For every w ∈ L2(0, T ;Hs(Ω)) with s ∈
(

3
2 , 2
)
, Lemma 1 ensures that

Bε(w) ∈ L2(0, T ;L2(Ω)) ,

so that we can study the auxiliary problem

∂tv −∆µv + div(βλv) = 0 in (0, T )× Ω , (3.6)

µv = −λ∆v + Bε(w) + γλ(v) + Π(v) in (0, T )× Ω , (3.7)

v(0) = uλ0,ε in Ω , (3.8)

which can be seen as a local convective Cahn-Hilliard equation with an additional source
term in the definition of the chemical potential. It is well-known (see [26] for example) that
such problem admits a unique weak solution (v, µv) with

v ∈ H1(0, T ; (H2(Ω))∗) ∩ L2(0, T ;H2(Ω)) , and µv ∈ L2(0, T ;L2(Ω)) ,

satisfying (3.6)–(3.8) for example in the sense of distributions. Hence, the map

Γλε : L2(0, T ;Hs(Ω))→ H1(0, T ; (H2(Ω))∗) ∩ L2(0, T ;H2(Ω))

associating to every w ∈ L2(0, T ;Hs(Ω)) the solution v to (3.6)–(3.8) is well-defined. We
proceed by showing that Γλε has also some continuity properties. For i = 1, 2 let wi ∈
L2(0, T ;Hs(Ω)), and set vi := Γλε (wi). Then taking the difference of the corresponding
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equations (3.6) and (3.7) for i = 1, 2, we obtain

∂t(v1 − v2)−∆(µv1 − µv2) + div(βλ(v1 − v2)) = 0 in (0, T )× Ω , (3.9)

µv1 − µv2 = −λ∆(v1 − v2) + Bε(w1 − w2)

+ γλ(v1)− γλ(v2) + Π(v1)−Π(v2) in (0, T )× Ω , (3.10)

v1(0)− v2(0) = 0 in Ω . (3.11)

Noting that (v1− v2)Ω = 0 by integrating (3.9), testing (3.9) by (−∆)−1(v1− v2), equation
(3.10) by v1 − v2, and taking the difference, estimate (2.9) and assumption H4 yield

‖v1 − v2‖2C0([0,t];(H1(Ω))∗)∩L2(0,T ;H1(Ω))

≤ Cε,λ
{ˆ t

0
‖w1(s, ·)− w2(s, ·)‖2H1(Ω) ds+

ˆ t

0
‖γλ(v1(s, ·))− γλ(v2(s, ·))‖2L2(Ω) ds

+

ˆ t

0
‖Π(v1(s, ·))−Π(v2(s, ·))‖2L2(Ω) ds+

ˆ t

0
‖v1(s, ·)− v2(s, ·)‖2(H1(Ω))∗ ds

}
,

for every t ∈ [0, T ].
Testing (3.9) by v1 − v2, equation (3.10) by −∆(v1 − v2), taking the difference, and using
Lemma 1, a similar argument yields

‖v1 − v2‖2C0([0,t];L2(Ω)) + ‖∆(v1 − v2)‖2L2(0,t;L2(Ω))

≤ Cε,λ
{ˆ t

0
‖w1(s, ·)− w2(s, ·)‖2Hs(Ω) ds

+

ˆ t

0
‖γλ(v1(s, ·))− γλ(v2(s, ·)) + Π(v1(s, ·))−Π(v2(s, ·))‖2L2(Ω) ds

+

ˆ t

0
‖v1(s, ·)− v2(s, ·)‖2H1(Ω) ds

}
.

Hence, summing the two inequalities, using the Lipschitz-continuity of γλ and Π, together
with Gronwall’s Lemma, we deduce that there exists a positive constant Cε,λ such that

‖v1 − v2‖C0([0,T ];L2(Ω))∩L2(0,T ;H2(Ω)) ≤ Cε,λ‖w1 − w2‖L2(0,T ;Hs(Ω)) . (3.12)

In particular, Γλε is continuous from L2(0, T ;Hs(Ω)) to L2(0, T ;Hs(Ω)).
Fix T0 > 0. By repeating the argument leading to (3.12) we deduce the estimate

‖v1 − v2‖C0([0,T0];L2(Ω))∩L2(0,T0;H2(Ω)) ≤ Cε,λ‖w1 − w2‖L2(0,T0;Hs(Ω)) ,

for every w ∈ L2(0, T0;Hs(Ω)), and v = Γλε (w). Now, since s ∈ (3
2 , 2), if ϑ ∈ (0, 1) is such

that

s = (1− ϑ) · 0 + ϑ · 2 , i.e. ϑ :=
s

2
∈
(

3

4
, 1

)
,

by interpolation we get that

‖v1(t, ·)− v2(t, ·)‖Hs(Ω) ≤ ‖v1(t, ·)− v2(t, ·)‖s/2
H2(Ω)

‖v1(t, ·)− v2(t, ·)‖1−s/2
L2(Ω)

a.e. in (0, T ) ,
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which in turn yields that

‖v1 − v2‖L4/s(0,T0;Hs(Ω)) ≤ ‖v1 − v2‖s/2L2(0,T0;H2(Ω))
‖v1 − v2‖1−s/2L∞(0,T0;L2(Ω))

≤ s

2
‖v1 − v2‖L2(0,T0;H2(Ω)) +

(
1− s

2

)
‖v1 − v2‖L∞(0,T0;L2(Ω))

≤ Cs‖v1 − v2‖C0([0,T0];L2(Ω))∩L2(0,T0;H2(Ω)) .

Consequently, we have that

‖v1 − v2‖L4/s(0,T0;Hs(Ω)) ≤ Cε,λ,s‖w1 − w2‖L2(0,T0;Hs(Ω)) ,

where 4
s > 2 since s < 2. Hence, we infer that

‖v1 − v2‖L2(0,T0;Hs(Ω)) ≤ T
1
2
− s

4
0 ‖v1 − v2‖L4/s(0,T0;Hs(Ω)),

and we can choose T0 sufficiently small such that T
1
2
− s

4
0 Cε,λ,s < 1. Thus,

‖v1 − v2‖L2(0,T0;Hs(Ω)) ≤ T
1
2
− s

4
0 Cε,λ,s‖w1 − w2‖L2(0,T0;Hs(Ω)).

Banach fixed point theorem ensures the existence of a unique weak solution (uλε , µ
λ
ε ) to the

approximated problem (3.1)-(3.3) in (0, T0)× Ω, with

uλε ∈ H1(0, T0; (H2(Ω))∗) ∩ L2(0, T0;H2(Ω)), and µλε ∈ L2(0, T0;L2(Ω)).

Since the choice of T0 is independent of the initial time, using a standard patching argument
in time allows to extend the solution to the whole interval (0, T ).

3.2. Uniform estimates. In this subsection we show that there exists ε0 > 0 independent
of λ, and such that for ε < ε0 the approximated solutions fulfill some uniform estimates
independently of λ and ε. In what follows we will always assume that λ ∈ [0, 1].
Step 1. We start by fixing t ∈ [0, T ], testing (3.1) with µλε , (3.2) with ∂tu

λ
ε , taking the

difference, and integrating the resulting equation on (0, t). We obtain
ˆ t

0

ˆ
Ω
|∇µλε (s, x)|2 dx ds+

λ

2

ˆ
Ω
|∇uλε (t, x)|2 dx+ Eε(u

λ
ε (t, ·)) +

ˆ
Ω

(γ̂λ + Π̂)(uλε (t, x)) dx

≤
ˆ t

0

ˆ
Ω
βλ(t, x)uλε (t, x) · ∇µλε (t, x) dx dt+

λ

2

ˆ
Ω
|∇uλ0,ε(x)|2 dx

+ Eε(u
λ
0,ε) +

ˆ
Ω

(γ̂λ + Π̂)(uλ0,ε(x)) dx.

Note that such estimate is formal, since the regularity of the solutions would not allow us to
perform the above computation. However, the estimate can be proved in a classical way, by
further approximating the problem at ε fixed. For example, one can apply the regularizing
operator (I − δ∆)−1 to the equations (3.1)–(3.2) for every δ > 0, noting that −∆ and Bε

commute, obtaining thus the required regularity for the further approximated solutions for
every δ > 0. For such regularized solutions uλε,δ the estimate is then rigorous, and one
concludes by passing to the limit as δ ↘ 0. From the fact thatˆ

Ω
γ̂λ(uλ0,ε(x)) dx ≤

ˆ
Ω
γ̂(uλ0,ε(x)) dx for everyλ > 0,
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using assumption H3, the uniform bound (3.5) and as well as Young’s inequality, we getˆ t

0

ˆ
Ω
|∇µλε (s, x)|2 dx ds+ Eε(u

λ
ε (t, ·)) +

λ

2

ˆ
Ω
|∇uλε (t, x)|2 dx

≤ Cε +
1

2

ˆ T

0

ˆ
Ω
|∇µλε (t, x)|2 dx dt+

1

2

ˆ T

0

ˆ
Ω
|βλ(t, x)uλε (t, x)|2 dx dt (3.13)

for every t ∈ [0, T ].
We point out that, due to the periodic boundary conditions, and the fact that Ω is the
d-dimensional torus, we formally haveˆ

Ω
∇Bε(u

λ
ε (s, x)) · ∇uλε (s, x) dx =

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (s, x)−∇uλε (s, y)|2 dx dy

for almost every s ∈ [0, T ]. Testing (3.1) with uλε and (3.2) with −∆uλε , by considering the
difference between the two resulting equation and by integrating in the time interval (0, t),
from H3 we deduce the estimate

1

2

ˆ
Ω
|uλε (t, x)|2 dx+ λ

ˆ t

0

ˆ
Ω
|∆uλε (s, x)|2 dx ds+

ˆ t

0

ˆ
Ω
γ′λ(uλε (s, x))|∇uλε (s, x)|2 dx ds

+

ˆ t

0

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (s, x)−∇uλε (s, y)|2 dx dy ds

≤ 1

2

ˆ
Ω
|uλ0,ε(x)|2 dx+

1

2

ˆ t

0

ˆ
Ω
|βλ(s, x)uλε (s, x)|2 dx ds+

(
CΠ +

1

2

)ˆ t

0

ˆ
Ω
|∇uλε (s, x)|2 dx ds

≤ 1

2

ˆ
Ω
|uλ0,ε(x)|2 dx+

1

2

ˆ t

0

ˆ
Ω
|βλ(s, x)uλε (s, x)|2 dx ds

+
1

4

ˆ t

0

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (s, x)−∇uλε (s, y)|2 dx dy ds+ C

ˆ t

0
‖uλε (s, ·)‖2L2(Ω) ds,

where the latter inequality holds for ε smaller than a suitable constant ε0 in view of
Lemma 4. Noticing that the third term in the left-hand side of the above estimate is
positive owing to the monotonicity of γλ, by [48, Theorem 1.1] we infer the bound

‖uλε (t, ·)‖2L2(Ω) + ‖uλε‖2L2(0,t;H1(Ω)) +

ˆ t

0

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (s, x)−∇uλε (s, y)|2 dx dy ds

≤ C
(ˆ

Ω
|uλ0,ε(x)|2 dx+

ˆ t

0

ˆ
Ω
|βλ(s, x)uλε (s, x)|2 dx ds+

ˆ t

0
‖uλε (s, ·)‖2L2(Ω) ds

)
. (3.14)

By the continuous embedding of H1(Ω) into L6(Ω), we deduce the estimateˆ t

0

ˆ
Ω
|βλ(s, x)uλε (s, x)|2 dx ds ≤

ˆ t

0
‖βλ(s, ·)‖2L∞(Ω)‖u

λ
ε (s, ·)‖2L2(Ω)) ds. (3.15)

Thus, summing (3.13), (3.14), and (3.15), recalling H4 we obtain

‖uλε (t, ·)‖2L2(Ω) + ‖uλε‖2L2(0,t;H1(Ω)) +

ˆ t

0

ˆ
Ω
|∇µλε (s, x)|2 dx ds

+ Eε(u
λ
ε (t, ·)) +

ˆ t

0

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (s, x)−∇uλε (s, y)|2 dx dy ds

≤ Cε + C‖uλε‖2L2(0,t;L2(Ω)) + C‖uλε‖2L2(0,t;H1(Ω))‖β‖
2
L2(0,T ;L∞(Ω;Rd)).

(3.16)
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Recalling assumption H4 and applying Gronwall’s lemma, from the arbitrariness of t ∈ [0, T ]
we deduce that there exists a constant Cε such that

‖∇µλε‖L2(0,T ;L2(Ω)) ≤ Cε, (3.17)

‖uλε‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) + λ1/2‖uλε‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)) ≤ Cε, (3.18)∥∥∥Eε(uλε )
∥∥∥
L∞(0,T )

+

∥∥∥∥ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uλε (·, x)−∇uλε (·, y)|2 dx dy

∥∥∥∥
L1(0,T )

≤ Cε. (3.19)

Testing equation (3.1) with a function ϕ ∈ L2(0, T ;H1(Ω)), integrating in time, and using
(3.17)–(3.19) gives

‖∂tuλε‖L2(0,T ;(H1(Ω))∗) ≤ Cε. (3.20)

Step 2. In order to obtain an L2(0, T ;H1(Ω))-estimate on the chemical potential µλε , we
need a bound on the L2(0, T )-norm of the spatial mean of µλε . Thanks to the symmetry of
the kernel K, the mean of the convolution terms vanishes, i.e.

(Bε(u
λ
ε ))Ω = 0 .

Since also (∆uλε )Ω = 0, owing to (3.18) and the Lipschitz continuity of Π, we get

(µλε )Ω = (γλ(uλε ) + Π(uλε ))Ω ≤ Cε +
1

|Ω|
‖γλ(uλε )‖L1(Ω). (3.21)

Hence {(µλε )Ω}ε is uniformly bounded in L2(0, T ) if {γλ(uλε )}ε is uniformly bounded in
L2(0, T ;L1(Ω)). We test (3.1) by (−∆)−1(uε− (uλ0,ε)Ω) and (3.2) by uε− (uλ0,ε)Ω, obtaining

〈∂tuλε (t), (−∆)−1(uλε (t, ·)− (uλ0,ε)Ω)〉(H1(Ω))∗,H1(Ω) + λ

ˆ
Ω
|∇uλε (t, x)|2 dx︸ ︷︷ ︸

=:I1

+

ˆ
Ω

Bε(u
λ
ε )(t, x)(uλε (t, x)− (uλ0,ε)Ω) dx︸ ︷︷ ︸

=:I2

+

ˆ
Ω

(γλ + Π)(uλε (t, x))(uλε (t, x)− (uλ0,ε)Ω) dx︸ ︷︷ ︸
=:I3

−
ˆ

Ω
βλ(t, x)uλε (t, x) · ∇(−∆)−1(uλε (t, x)− (uλ0,ε)Ω) dx︸ ︷︷ ︸

=:I4

= 0.

We proceed by estimating each integral in the left-hand side of the above equation separately.
It is readily seen that I1 is uniformly bounded in L2(0, T ) due to (3.18), (3.20) and (3.5).
Regarding I2, since (Bε(u

λ
ε ))Ω = 0 we have that

I2 = Eε(u
λ
ε ),

which is clearly bounded in L2(0, T ) by (3.19).
To estimate I3 we observe that in view of (2.15) and (3.4) there exist constants M1,M2 > 0
depending only on the position of (u0,ε)Ω in IntD(γ), such that

γλ(uλε )(uλε − (uλ0,ε)Ω) ≥M1|γλ(uλε )| −M2,
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cf. for example [21, p. 984] and the references within, while

ˆ
Ω

Π(uε(x))(uε(x)− (uλ0,ε)Ω) dx

is bounded in L∞(0, T ) thanks to (3.18).
Eventually, I4 can be estimated as follows

‖βλuλε · ∇(−∆)−1(uλε − (uλ0,ε)Ω)‖2L2(0,T ;L1(Ω)) ≤
ˆ T

0
‖βλuλε‖2L2(Ω)‖(u

λ
ε − (uλ0,ε)Ω)‖2(H1(Ω))∗ dt,

where the right-hand side is bounded due to H4 and (3.18).

Combining this information, we conclude by difference that {γλ(uλε )} is uniformly bounded
in L2(0, T ;L1(Ω)). Thus, from (3.17) and (3.21) we infer that

‖µλε‖L2(0,T ;H1(Ω)) ≤ Cε. (3.22)

Step 3. We proceed by proving that {γλ(uλε )} is uniformly bounded in L2(0, T ;L2(Ω)).
We test (3.2) with γλ(uλε ). This gives

ˆ T

0

ˆ
Ω
|γλ(uλε (t, x))|2 dx dt+ λ

ˆ T

0

ˆ
Ω
|∇uλε (t, x)|2γ′λ(uλε (t, x)) dx dt

+

ˆ T

0

ˆ
Ω

Bε(u
λ
ε )(t, x)γλ(uλε (t, x)) dx dt

=

ˆ T

0

ˆ
Ω

(µλε (t, x)−Π(uλε (t, x)))γλ(uλε (t, x)) dx dt.

We observe that the second term on the left-hand side is nonnegative owing to the mono-
tonicity of γλ. Analogously, the third term on the left-hand side can be rewritten as

ˆ T

0

ˆ
Ω

ˆ
Ω
Kε(x, y)(uλε (t, x)− uλε (t, y))

(
γλ(uλε (t, x))− γλ(uλε (t, y))

)
dx dy dt,

which is also nonnegative due to the monotonicity of γλ. Applying Young’s inequality we
deduce the bound

ˆ T

0

ˆ
Ω

(µλε (t, x)−Π(uλε (t, x)))γλ(uλε (t, x)) dx dt

≤
ˆ T

0

ˆ
Ω

[ |µλε (t, x)−Π(uλε (t, x))|2

2
+
|γλ(uλε (t, x))|2

2

]
dx dt,

which, together with H3, (3.18) and (3.22), implies the following estimate

‖γλ(uλε )‖L2(0,T ;L2(Ω)) ≤ Cε. (3.23)

3.3. Passage to the limit as λ↘ 0. We perform here the passage to the limit as λ↘ 0,
with 0 < ε < ε0 still fixed. In view of the uniform bounds identified in Section 3.2 and
the Aubin-Lions lemma, up to the extraction of (not relabeled) subsequences we have the
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following convergences:

uλε → uε strongly in L2(0, T ;L2(Ω)) ∩ C0([0, T ]; (H1(Ω))∗) , (3.24)

uλε ⇀ uε weakly* in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) , (3.25)

λuλε → 0 strongly in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) , (3.26)

∂tu
λ
ε ⇀ ∂tuε weakly* in L2(0, T ; (H1(Ω))∗) , (3.27)

µλε ⇀ µε weakly in L2(0, T ;H1(Ω)) , (3.28)

γλ(uλε ) ⇀ ξε weakly in L2(0, T ;L2(Ω)), (3.29)

for some

uε ∈ H1(0, T ; (H1(Ω))∗) ∩ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ,

µε ∈ L2(0, T ;H1(Ω)) , ξε ∈ L2(0, T ;L2(Ω)) .

The strong convergence (3.24), the weak convergence (3.29) and the strong-weak closure
of the maximal monotone graph γ readily implies that ξε ∈ γ(uε) almost everywhere in
(0, T )× Ω. The Lipschitz continuity of Π yields also

Π(uλε )→ Π(uε) strongly in L2(0, T ;L2(Ω)) . (3.30)

Furthermore, for every ϕ ∈ L2(0, T ;H2(Ω)) by the triangle inequality we have that∣∣∣∣ˆ T

0

ˆ
Ω
βλ(t, x)uλε (t, x) · ∇ϕ(t, x) dx dt−

ˆ T

0

ˆ
Ω
β(t, x)uε(t, x) · ∇ϕ(t, x) dx dt

∣∣∣∣
≤
ˆ T

0

ˆ
Ω
|βλ(t, x)− β(t, x)||uλε (t, x)||∇ϕ(t, x)| dx dt

+

ˆ T

0

ˆ
Ω
β(t, x)(uλε (t, x)− uε(t, x)) · ∇ϕ(t, x) dx dt .

By the Hölder inequality, the fact that βλ → β strongly in L2(0, T ;L3(Ω)) and the embed-
ding H1(Ω) ↪→ L6(Ω), for the first term on the right-hand side we have

ˆ T

0

ˆ
Ω
|βλ(t, x)− β(t, x)||uλε (t, x)||∇ϕ(t, x)|dx dt

≤ ‖uλε‖L∞(0,T ;L2(Ω))‖ϕ‖L2(0,T ;L6(Ω)‖βλ − β‖L2(0,T ;L3(Ω)) → 0 .

For the second term on the right-hand side note that β · ∇ϕ ∈ L1(0, T ;L2(Ω)) thanks to
assumption H4, the fact that ϕ ∈ L2(0, T ;H2(Ω)) and the inclusion H1(Ω) ↪→ L6(Ω), so
that from (3.25)

ˆ T

0

ˆ
Ω
β(t, x)(uλε (t, x)− uε(t, x)) · ∇ϕ(t, x) dx dt→ 0 .

Hence, we conclude that

−div βλu
λ
ε ⇀ −div βuε weakly* in L2(0, T ; (H2(Ω))∗) .

From (3.25) and the fact that Bε ∈ L (H1(Ω), (H1(Ω))∗), it is readily seen that

Bε(u
λ
ε ) ⇀ Bε(uε) weakly* in L2(0, T ; (H1(Ω))∗) .
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By (3.28)–(3.29) and (3.30), by comparison it follows that the sequence (Bε(u
λ
ε ))λ is bounded

in L2(0, T ;L2(Ω)), hence we also conclude that Bε(uε) ∈ L2(0, T ;L2(Ω))

Bε(u
λ
ε ) ⇀ Bε(uε) weakly in L2(0, T ;L2(Ω)) .

Now, passing to the limit in (3.1)–(3.2) as λ↘ 0, we obtain, in the sense of distributions,

∂tuε −∆µε = −div(βuε)

and
µε = Bε(uε) + ξε + Π(uε) .

Finally, the strong convergence (3.24) implies also that uε(0) = u0,ε, so that (uε, µε, ξε)
is a solution to the nonlocal Cahn-Hilliard equation (1.7) according to Definition 1. This
completes the proof of the first assertion of Theorem 2.1.

3.4. Continuous dependence. Let (β1, u1
0,ε) and (β2, u2

0,ε) satisfy H4 and (2.15), with

(u1
0,ε)Ω = (u2

0,ε)Ω, and let (u1
ε, µ

1
ε, ξ

1
ε ) and (u2

ε, µ
2
ε, ξ

2
ε ) be any corresponding solutions to the

nonlocal equation (2.1)–(2.3). Then we have

∂t(u
1
ε − u2

ε)−∆(µ1
ε − µ2

ε) = −div(β1u1
ε − β2u2

ε) ,

µ1
ε − µ2

ε = Bε(u
1
ε − u2

ε) + ξ1
ε − ξ2

ε + Π(u1
ε)−Π(u2

ε) .

Noting that (u1
ε −u2

ε)Ω = 0 by the assumption on the initial data, we test the first equation
by (−∆)−1(u1

ε−u2
ε), the second by u1

ε−u2
ε, and take the difference: by performing classical

computations we get

1

2
‖(u1

ε − u2
ε)(t)‖2(H1(Ω))∗ +

ˆ t

0
Eε(u

1
ε − u2

ε)(s) ds+

ˆ t

0

ˆ
Ω

(ξ1
ε − ξ2

ε )(s, x)(u1
ε − u2

ε)(s, x) dx ds

=
1

2
‖(u1

0,ε − u2
0,ε)‖2(H1(Ω))∗ −

ˆ t

0

ˆ
Ω

(Π(u1
ε)−Π(u2

ε))(s, x)(u1
ε − u2

ε)(s, x) dx ds

+

ˆ t

0

ˆ
Ω
β1(s, x)(u1

ε − u2
ε)(s, x) · ∇(−∆)−1(u1

ε − u2
ε)(s, x) dx ds

+

ˆ t

0

ˆ
Ω

(β1 − β2)(s, x)u2
ε(s, x) · ∇(−∆)−1(u1

ε − u2
ε)(s, x) dx ds .

By the Lipschitz-continuity of Π we haveˆ t

0

ˆ
Ω

(Π(u1
ε)−Π(u2

ε))(s, x)(u1
ε − u2

ε)(s, x) dx ds ≤ C‖u1
ε − u2

ε‖2L2(0,t;L2(Ω)) ,

while the Hölder and Young inequalities yieldˆ t

0

ˆ
Ω
β1(s, x)(u1

ε − u2
ε)(s, x) · ∇(−∆)−1(u1

ε − u2
ε)(s, x) dx ds

≤ ‖u1
ε − u2

ε‖2L2(0,t;L2(Ω)) +

ˆ t

0
‖β1(s, x)‖2L∞(Ω)‖(u

1
ε − u2

ε)(s)‖2(H1(Ω))∗ dx ds

and ˆ t

0

ˆ
Ω

(β1 − β2)(s, x)u2
ε(s, x) · ∇(−∆)−1(u1

ε − u2
ε)(s, x) dx ds

≤ ‖β1 − β2‖2L2(0,T ;L3(Ω)) +

ˆ t

0
‖u2

ε(s, ·)‖2L6(Ω)‖(u
1
ε − u2

ε)(s)‖2(H1(Ω))∗ ds.
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The continuous-dependence property stated in Theorem 2.1 follows from Lemma 4 and the
Gronwall lemma.

4. Proof of Theorem 2.2

In this section we perform the limit as ε↘ 0.
First of all, going back to the arguments performed in the previous section to obtain esti-
mates (3.17)–(3.23), we observe that assumptions (2.16)–(2.17) guarantee that the sequence
of constants (Cε)ε is uniformly bounded for every ε ∈ (0, ε0). Consequently, we deduce that
there exists C > 0 such that

‖uε‖H1(0,T ;(H1(Ω))∗)∩L2(0,T ;H1(Ω)) ≤ C ,

‖Eε(uε)‖L∞(0,T ) +

∥∥∥∥ˆ
Ω

ˆ
Ω
Kε(x, y)|∇uε(x)−∇uε(y)|2 dx dy

∥∥∥∥
L1(0,T )

≤ C , (4.1)

‖µε‖L2(0,T ;H1(Ω)) ≤ C ,
‖ξε‖L2(0,T ;L2(Ω)) ≤ C .

Hence, by comparison

‖Bε(uε)‖L2(0,T ;L2(Ω)) ≤ C .

By Aubin-Lions compactness results we infer that, up to the extraction of (not relabeled)
subsequences,

uε → u strongly in L2(0, T ;L2(Ω)) ∩ C0([0, T ]; (H1(Ω))∗) , (4.2)

uε ⇀ u weakly* in L∞(0, T ;L2(Ω)) , (4.3)

∂tuε ⇀ ∂tu weakly* in L2(0, T ; (H1(Ω))∗) , (4.4)

Bε(uε) ⇀ η weakly in L2(0, T ;L2(Ω)) , (4.5)

µε ⇀ µ weakly in L2(0, T ;H1(Ω)) , (4.6)

ξε ⇀ ξ weakly in L2(0, T ;L2(Ω)) (4.7)

for some

u ∈ H1(0, T ; (H1(Ω))∗) ∩ L∞(0, T ;L2(Ω)) ,

µ ∈ L2(0, T ;H1(Ω)) , ξ, η ∈ L2(0, T ;L2(Ω)) .

We proceed by showing in addition that

uλε → uε strongly in C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) . (4.8)

Indeed, Lemma 4 implies that for every δ > 0, there exist Cδ > 0 and εδ > 0 such that

‖uε − u‖2L2(0,T ;H1(Ω))

≤ δ
ˆ T

0

ˆ
Ω

ˆ
Ω
Kε(x, y)|∇(uε − u)(t, x)−∇(uε − u)(t, y)|2 dx dy dt+ Cδ‖uε − u‖2L2(0,T ;L2(Ω))

for every 0 < ε < εδ. Thanks to (4.1), we infer that

‖uε − u‖2L2(0,T ;H1(Ω)) ≤ Cδ + Cδ‖uε − u‖2L2(0,T ;L2(Ω))
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for a constant C > 0. Similarly, using the second inequality in Lemma 4 and (4.1), the
same argument ensures also that

‖uε − u‖2L∞(0,T ;L2(Ω)) ≤ δ‖Eε(uε − u)‖L∞(0,T ) + Cδ‖uε − u‖2C0([0,T ];(H1(Ω))∗)

≤ Cδ + Cδ‖uε − u‖2C0([0,T ];(H1(Ω))∗) .

The strong convergence (4.8) follows then from the arbitrariness of δ, and from (4.2).

From the strong convergence of (uε)ε and the strong-weak closure of maximal monotone
graphs it is readily seen that ξ ∈ γ(u) and that

Π(uε)→ Π(u) strongly in L2(0, T ;L2(Ω)) .

Let us now identify the limit η as −∆u. As DEε = Bε, we have that

Eε(z1) + 〈Bε(z1), z2 − z1〉(H1(Ω))∗,H1(Ω) ≤ Eε(z2), (4.9)

for all z1, z2 ∈ H1(Ω). Hence, for all z ∈ L2(0, T ;H1(Ω)) we deduce thatˆ T

0
Eε(uε(t, ·)) dt+

ˆ T

0

ˆ
Ω

Bε(uε(t, x))(z(t, x)− uε(t, x)) dx dt ≤
ˆ T

0
Eε(z(t, ·)) dt. (4.10)

The results in [10] and the dominated convergence theorem yieldˆ T

0
Eε(z(t, ·)) dt→ 1

2

ˆ T

0

ˆ
Ω
|∇z(x, t)|2dx dt .

Owing to the convergences (4.8) and (4.5), we have thatˆ T

0

ˆ
Ω
Bε(uε(t, x))(z(t, x)− uε(t, x)) dx dt→

ˆ T

0

ˆ
Ω
η(t, x)(z(t, x)− u(t, x)) dx dt.

Finally, following the exact same steps as in [45], there holdsˆ T

0
Eε(uε(t, ·)) dt→ 1

2

ˆ T

0

ˆ
Ω
|∇u(t, x)|2 dx dt.

Hence, letting ε→ 0 in (4.10), we obtain the inequality

1

2

ˆ T

0

ˆ
Ω
|∇u(t, x)|2 dx dt+

ˆ T

0

ˆ
Ω
η(t, x)(z(t, x)−u(t, x)) dx dt ≤ 1

2

ˆ T

0

ˆ
Ω
|∇z(t, x)|2 dx dt

for every z ∈ L2(0, T ;H1(Ω)), so that η = −∆u ∈ L2(0, T ;L2(Ω)). By elliptic regularity we
infer that u ∈ L2(0, T ;H2(Ω)).
Finally, Hölder’s inequality, the Sobolev embedding H1(Ω) ↪→ L6(Ω), and the strong con-
vergence (4.8) yield

‖βuε − βu‖L2(0,T ;L2(Ω)) ≤
ˆ T

0
‖β(t, ·)‖L∞(Ω)‖(uε − u)(t, ·)‖L2(Ω) dt

≤ ‖β‖L2(0,T ;L∞(Ω))‖uε − u‖L∞(0,T ;L2(Ω)) → 0 .

Thus, letting ε↘ 0 in Definition 1 (of solution for the nonlocal Cahn-Hilliard) we obtain

∂tu−∆µ = −div(βu)

in the sense of distributions, as well as

µ = −∆u+ ξ + Π(u) .
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This implies that u is a solution to the local Cahn-Hilliard equation (2.4)–(2.6), and con-
cludes the proof of Theorem 2.2.

5. Proof of Theorems 2.3–2.4

We show first that under the additional assumption (2.20), the solution (uε, µε, ξε) to the
nonlocal equation is more regular. Note that here ε ∈ (0, ε0) is fixed.
The idea is to argue in a classical way, performing some additional estimates on the ap-
proximate solutions (uλε , µ

λ
ε ) constructed in Section 3. To this end, note that by (2.20), the

approximating sequence (uλ0,ε)λ of initial data satisfying (3.4)–(3.5) can be chosen with the
additional property

sup
λ∈(0,λ0)

{
‖uλ0,ε‖L6(Ω) + ‖ − λ∆uλ0,ε + Bε(u

λ
0,ε) + γλ(uλ0,ε) + Π(uλ0,ε)‖H1(Ω)

}
< +∞ . (5.1)

First of all we need some preparatory work. Note that the elliptic problem corresponding
to (3.1)–(3.3) at time 0, i.e.{

u′0,ε,λ −∆µ0,ε,λ = −div(β(0)uλ0,ε) ,

µ0,ε,λ = −λ∆uλ0,ε + Bε(u
λ
0,ε) + γλ(uλ0,ε) + Π(uλ0,ε) ,

admits a unique solution (u′0,ε,λ, µ0,ε,λ) ∈ (H1(Ω))∗ ×H1(Ω). Testing the first equation by

µ0,ε,λ, the second by u′0,ε,λ and taking the difference yields

ˆ
Ω
|∇µ0,ε,λ(x)|2 dx = −〈u′0,ε,λ,−λ∆uλ0,ε + Bε(u

λ
0,ε) + γλ(uλ0,ε) + Π(uλ0,ε)〉(H1(Ω))∗,H1(Ω)

+

ˆ
Ω
β(0, x)uλ0,ε(x) · ∇µ0,ε,λ(x) dx.

From the first equation it is readily seen that

‖u′0,ε,λ‖(H1(Ω))∗ ≤ ‖∇µ0,ε,λ‖L2(Ω) + ‖β(0)uλ0,ε‖L2(Ω)

with

‖β(0)uλ0,ε‖L2(Ω) ≤ ‖β(0)‖L3(Ω)‖uλ0,ε‖L6(Ω) ≤ C‖β‖H1(0,T ;L3(Ω))‖uλ0,ε‖L6(Ω) .

Hence the Young inequality, (2.19), (3.4)–(3.5), and (5.1) imply that

‖u′0,ε,λ‖(H1(Ω))∗ + ‖∇µ0,ε,λ‖L2(Ω) ≤ Cε . (5.2)

We are now ready to perform the additional estimate on the approximated solutions. Again,
we proceed formally in order to avoid heavy notations and since everything can be proved
rigorously through a further regularization on the problem. The idea is to (formally) test
the time derivative of (3.1) by (−∆)−1(∂tu

λ
ε ), the time derivative of (3.2) by ∂tu

λ
ε and then
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to take the difference: the resulting inequality is

1

2
‖∂tuλε (t)‖2(H1(Ω))∗ + λ

ˆ t

0

ˆ
Ω
|∇∂tuλε (s, x)|2 dx ds+

ˆ t

0
Eε(∂tu

λ
ε (s, ·)) ds

+

ˆ t

0

ˆ
Ω
γ′λ(uλε (s, x))|∂tuλε (s, x)|2 dx ds+

ˆ t

0

ˆ
Ω

Π′(uλε (s, x))|∂tuλε (s, x)|2 dx ds

=
1

2
‖u′0,ε,λ‖2(H1(Ω))∗ +

ˆ t

0

ˆ
Ω
∂tu

λ
ε (s, x)β(s, x) · ∇(−∆)−1(∂tu

λ
ε )(s, x) dx ds

+

ˆ t

0

ˆ
Ω
uλε (s, x)∂tβ(s, x) · ∇(−∆)−1(∂tu

λ
ε )(s, x) dx ds.

Now, note that by Hölder’s inequality and (2.19) we haveˆ t

0

ˆ
Ω
∂tu

λ
ε (s, x)β(s, x) · ∇(−∆)−1(∂tu

λ
ε )(s, x) dx ds

≤
ˆ t

0
‖∂tuλε (s, ·)‖L2(Ω)‖β(s, ·)‖L∞(Ω)‖∇(−∆)−1(∂tu

λ
ε )(s, ·)‖L2(Ω) ds

≤ 1

2
‖∂tuλε‖2L2(0,t;L2(Ω)) +

1

2

ˆ t

0
‖β(s, ·)‖2L∞(Ω)‖∂tu

λ
ε (s)‖2(H1(Ω))∗ ds

and ˆ t

0

ˆ
Ω
uλε (s, x)∂tβ(s, x) · ∇(−∆)−1(∂tu

λ
ε )(s, x) dx ds

≤
ˆ t

0
‖uλε (s, ·)‖L6(Ω)‖∂tβ(s, ·)‖L3(Ω)‖∇(−∆)−1(∂tu

λ
ε )‖L2(Ω) ds

≤ 1

2
‖uλε‖2L2(0,t;H1(Ω)) +

1

2

ˆ t

0
‖∂tβ(s, ·)‖2L3(Ω)‖∂tu

λ
ε (s)‖2(H1(Ω))∗ ds.

Thanks to Lemma 4 there holds

‖∂tuλε (s)‖2(H1(Ω))∗ ≤ δ
ˆ t

0
Eε(∂tu

λ
ε )(s) ds+ Cδ‖∂tuλε‖2L2(0,T ;(H1(Ω))∗)

for δ sufficiently small. Hence, putting this information together, using the Lipschitz-
continuity of Π, the monotonicity of γλ, condition (5.2) and the already proved estimates
(3.18) and (3.20), we are left with

‖∂tuλε (t)‖2(H1(Ω))∗ +

ˆ t

0
Eε(∂tu

λ
ε (s, ·)) ds

≤ Cε +

ˆ t

0

(
‖β(s, ·)‖2L∞(Ω) + ‖∂tβ(s, ·)‖2L3(Ω)

)
‖∂tuλε (s)‖2(H1(Ω))∗ ds .

Since s 7→ ‖β(s, ·)‖2L∞(Ω) and s 7→ ‖∂tβ(s, ·)‖2L3(Ω) belong to L1(0, T ) due to (2.19) and H4,

using the Gronwall lemma and recalling [49, Theorem 1.1] we infer that

‖∂tuλε‖L∞(0,T ;(H1(Ω))∗)∩L2(0,T ;L2(Ω)) ≤ Cε . (5.3)

Now, if (2.21) holds, we also have

‖ div(βuλε )‖L∞(0,T ;(H1(Ω))∗) ≤ ‖βuλε‖L∞(0,T ;L2(Ω)) ≤ ‖β‖L∞(0,T ;L∞(Ω))‖uλε‖L∞(0,T ;L2(Ω)) ,
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yielding by (3.18) and by comparison in (3.1),

‖∇µλε‖L∞(0,T ;L2(Ω)) ≤ Cε . (5.4)

At this point, going back to the proof of Theorem 2.1, we repeat exactly the same arguments
of Step 2 and Step 3: using the additional estimates (5.3)–(5.4), we deduce

‖µλε‖L∞(0,T ;H1(Ω)) + ‖γλ(uλ)‖L∞(0,T ;L2(Ω)) ≤ Cε . (5.5)

Furthermore, if also (2.22) holds we have

‖div(βuλε )‖L2(0,T ;L2(Ω)) ≤ ‖div(β)uλε‖L2(0,T ;L2(Ω)) + ‖β · ∇u‖L2(0,T ;L2(Ω))

≤ ‖div β‖L∞(0,T ;L3(Ω))‖uλε‖L2(0,T ;L6(Ω))

+ ‖β‖L∞(0,T ;L∞(Ω))‖∇uλε‖L2(0,T ;L2(Ω)) ,

so that from (3.20) and by comparison in (3.1) we infer that

‖∆µλε‖L2(0,T ;L2(Ω)) ≤ Cε . (5.6)

Hence, (5.3)–(5.6) ensure that the limit solution (uε, µε, ξε) inherits the additional regular-
ity stated in Theorem 2.3.

The proof of Theorem 2.4 follows now as in Section 4, noting that the assupmption (2.23)
implies that the family (Cε)ε appearing in (5.3)–(5.6) is uniformly bounded in ε.
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