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Abstract

Local and global pointwise gradient estimates are obtained for solutions to the
quasilinear elliptic equation with measure data −div(A(x,∇u)) = µ in a bounded
and possibly nonsmooth domain Ω in Rn. Here div(A(x,∇u)) is modeled after the
p-Laplacian. Our results extend earlier known results to the singular case in which
3n−2
2n−1 < p ≤ 2− 1

n .
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1 Introduction and main results

In this paper, the quasilinear elliptic equation with measure data

−div(A(x,∇u)) = µ (1.1)

is considered in a bounded open subset Ω of Rn, n ≥ 2. Here µ is a finite signed measure
in Ω and the nonlinearity A = (A1, . . . , An) : Rn × Rn → Rn is vector valued function.
Our main goal is to obtain pointwise estimates for gradients of solutions to equation
(1.1) by means of nonlinear potentials of Wolff type. To that end, throughout the paper
we assume that A = A(x, ξ) satisfies the following growth, ellipticity and continuity
assumptions: there exist Λ ≥ 1, 1 < p < 2, s ≥ 0, and α ∈ (0, 2− p) such that

|A(x, ξ)| ≤ Λ(s2 + |ξ|2)(p−1)/2, |DξA(x, ξ)| ≤ Λ(s2 + |ξ|2)(p−2)/2, (1.2)

〈DξA(x, ξ)η, η〉 ≥ Λ−1(s2 + |ξ|2)(p−2)/2|η|2, (1.3)
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|DξA(x, ξ)−DξA(x, η)| ≤Λ(s2 + |ξ|2)(2−p)/2(s2 + |η|2)(2−p)/2×
× (s2 + |ξ|2 + |η|2)(2−p−α)/2|ξ − η|α, (1.4)

and
|A(x, ξ)−A(x0, ξ)| ≤ Λω(|x− x0|)(s2 + |ξ|2)(p−1)/2 (1.5)

for every x and x0 in Rn and every (ξ, η) ∈ Rn×Rn\{(0, 0)}. In (1.5), ω : [0,∞)→ [0, 1] is
a non-decreasing function with ω(0) = 0 = limr↓0 ω(r) and satisfies the Dini’s condition:

ˆ 1

0
ω(r)γ0

dr

r
= D < +∞ (1.6)

for some γ0 ∈
(

n
2n−1 ,

n(p−1)
n−1

)
.

A typical model for (1.1) is obviously given by the p-Laplace equation with measure
data

−∆p u := −div(|∇u|p−2∇u) = µ in Ω, (1.7)

or its nondegenerate version (s > 0):

−div((|∇u|+ s2)
p−2
2 ∇u) = µ in Ω.

In this paper, we are concerned only with singular case in which

3n− 2

2n− 1
< p ≤ 2− 1

n
. (1.8)

The case p > 2 − 1
n was considered in the work [8, 16] (see also [9, 15]) in which the

authors obtained that if u ∈ C1(Ω) solves (1.7) then it holds that

|∇u(x)| ≤ C(n, p,Λ, D)
{

[IR1 (|µ|)(x)]
1
p−1 +

 
BR(x)

|∇u(y)|dy
}

(1.9)

for every ball BR(x) ⊂ Ω with R ≤ 1. Here
ffl
E indicates the integral average over a

measurable set E, and

IR1 (|µ|)(x) =

ˆ R

0

|µ|(Bt(x))

tn−1

dt

t

is a truncated first order Riesz’s potential of |µ| at the point x. The restriction p > 2−1/n
in [8, 16] has something to do with the fact that, in general, solutions to (1.7) for a
measure µ may not belong to the Sobolev space W 1,1

loc (Ω) when 1 < p ≤ 2− 1/n. This is
well known and can be seen by taking, e.g., µ to be the Dirac mass at a point. It also
reveals that the linear potential IR1 (|µ|) used in (1.9) may no longer be the right one
when 1 < p ≤ 2 − 1

n , and new ideas must be developed in order to attack this strongly
singular case.

In this paper, under the restriction (1.8) we show that the solution gradient can be
pointwise controlled by the following (nonlinear) truncated Wolff’s potential

PR
γ (|µ|)(x) :=

ˆ R

0

( |µ|(Bt(x))

tn−1

)γ dt
t

for certain 0 < γ < 1. Note that PR
γ1(|µ|) ≤ C P2R

γ2 (|µ|) whenever γ1 > γ2 > 0, and

IR1 (|µ|) ≤ C P2R
γ (|µ|)

1
γ provided 0 < γ < 1.

Our main result is stated as follows.
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Theorem 1.1 Let 3n−2
2n−1 < p ≤ 2 − 1

n and suppose that u ∈ C1(Ω) solves (1.1) for a

finite measure µ in Ω. Then under (1.2)-(1.6) with γ0 ∈
(

n
2n−1 ,

n(p−1)
n−1

)
we have

|∇u(x)| ≤ C

{[
PR
γ0(|µ|)(x)

] 1
γ0(p−1)

+
( 

BR(x)
(|∇u(y)|+ s)γ0dy

) 1
γ0

}
(1.10)

for every ball BR(x) ⊂ Ω, where C is a constant only depending on n, p, α,Λ, D, γ0.

The proof of Theorem 1.1 is based on a new comparison estimate obtained in our
recent work [17] (see Lemma 3.2 below), and the following sharp quantitative C1,σ

regularity estimate for the associated homogeneous equation which is interesting in its
own right.

Theorem 1.2 Suppose that A0 = A0(ξ) is a vector field independent of x and satisfies
conditions (1.2)-(1.4) for some s ≥ 0, Λ ≥ 1, 1 < p < 2 and α ∈ (0, 2 − p). Given any
q ∈ (1, p+ 1), we define a vector field

Uq(ξ) := (s2 + |ξ|2)
q−2
2 ξ, ξ ∈ Rn.

Let v ∈W 1,p
loc (Ω) be a solution of divA0(∇v) = 0 in Ω. Then there exist constants C > 1

and σ ∈ (0, 1), only depending on n, p, α,Λ, such that

 
Bρ(x0)

|Uq(∇v)− [Uq(∇v)]Bρ(x0)|

≤ C
( ρ
R

)σ(q−1)
 
BR(x0)

|Uq(∇v)− [Uq(∇v)]BR(x0)| (1.11)

for every BR(x0) ⊂ Ω and ρ < R.

We notice that Theorem 1.2 generalizes the result [6] in which the case q = p was
considered in a slightly different context. In our proof of Theorem 1.1, Theorem 1.2 will

be used with q = 1 + γ0, where γ0 ∈
(

n
2n−1 ,

n(p−1)
n−1

)
. We remark that Theorem 1.2 also

holds in the case p > 2 provided the condition (1.4) is replaced by the condition

|DξA(x, ξ)−DξA(x, η)| ≤ Λ(s2 + |ξ|2 + |η|2)(p−2−α)/2|ξ − η|α

for some α ∈ (0, p − 2). For p > 2, see also [8, Theorem 3.1] where the case q = p+2
2 is

considered.
The condition u ∈ C1(Ω) in Theorem 1.1 is by no means essential. In fact, it is

enough to assume u ∈ W 1,p
loc (Ω) in which case the pointwise bound (1.9) holds for any

Lebesgue point x of the vector function (s2+|∇u|2)
γ0−1

2 ∇u. Moreover, by approximation
the pointwise bound (1.9) also holds a.e. for any distributional solution u to the Dirichlet
problem {

−div (A(x,∇u)) = µ in Ω,
u = 0 on ∂Ω,

(1.12)

provided u satisfies the following additional properties:
(P1). For each k > 0 the truncation Tk(u) belongs to W 1,p

0 (Ω), where we define

Tk(s) = max{min{s, k},−k}, s ∈ R.
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(P2). For each k > 0 there exsits a finite signed measure µk in Ω such that

−div (A(x,∇Tk(u))) = µk in D′(Ω),

and if we set |µk|(Rn \ Ω) = |µ|(Rn \ Ω) = 0 then it holds that µk → µ and |µk| → |µ|
weakly as measures in Rn.

We recall that if u is a measurable function in Ω, finite a.e., and satisfying the above
two conditions then there exists (see [2, Lemma 2.1]) a unique measurable function
v : Ω → Rn such that ∇Tk(u) = v χ{|u|≤k} a.e. in Ω for each k > 0. We define the
gradient ∇u of u by ∇u = v and accordingly ∇u in (1.12) should be understood in this
sense. Note that if v belongs to Lq(Ω)n, 1 ≤ q ≤ p, then u ∈ W 1,q

0 (Ω) and v coincides
with the distributional gradient of u (see [3, Remark 2.10]). We mention that if, e.g., u
is a renormalized solution to (1.12) (see [3]) then u satisfies the above two properties.

In fact, for solutions u of (1.12) satisfying (P1) and (P2) we can obtain pointwise
a.e. estimates up to the boundary of Ω provided ∂Ω is sufficiently flat (in the sense of
Reifenberg).

Definition 1.3 We say that Ω is a (δ,R0)-Reifenberg flat domain for δ ∈ (0, 1) and
R0 > 0 if for every x ∈ ∂Ω and every r ∈ (0, R0], there exists a system of coordinates
{z1, z2, ..., zn}, which may depend on r and x, so that in this coordinate system x = 0
and that

Br(0) ∩ {zn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {zn > −δr}.

We notice that this class of domains is rather wide since it includes C1 domains,
Lipschitz domains with sufficiently small Lipschitz constants, and even certain fractal
domains. Besides, it has many important roles in the theory of minimal surfaces and
free boundary problems. This class appeared first in the work of Reifenberg [19] in the
context of Plateau problems. Many of the properties of Reifenberg flat domains can be
found in [13, 14].

Our pointwise estimates up to the boundary of Ω read as follows.

Theorem 1.4 Let 3n−2
2n−1 < p ≤ 2 − 1

n and suppose that u is a solution of (1.12) that
satisfies properties (P1) and (P2). Then under (1.2)-(1.6) for any κ ∈ (0, 1/2), there
exits δ > 0 such that if Ω is a (δ,R0)-Reifenberg flat domain for some R0 > 0 then we
have

|∇u(x)| ≤ Cd(x)−κ
([

P2diam(Ω)
γ0 (|µ|)(x)

] 1
γ0(p−1)

+ s

)
(1.13)

for a.e. x ∈ Ω. Here γ0 is any number in
(

n
2n−1 ,

n(p−1)
n−1

)
and d(x) is the distance from

x to the boundary of Ω.

We notice that due to the potential irregularity of Ω, it is not possible to take κ = 0
in (1.13) in general.

2 Sharp quantitative C1,σ regularity estimates

This section is devoted to the proof of Theorem 1.2. We first recall the following basic
inequalities that were proved in [1, Lemmas 2.1 and 2.2]:

1 ≤
´ 1

0 (s2 + |ξ1 + t(ξ2 − ξ1)|2)γdt

(s2 + |ξ1|2 + |ξ2|2)γ
≤ 8

2γ + 1
, (2.1)
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and

(2γ + 1)|ξ1 − ξ2| ≤
|(s2 + |ξ1|2)γξ1 − (s2 + |ξ2|2)γξ2|

(s2 + |ξ1|2 + |ξ2|2)γ
≤ C(n)

2γ + 1
|ξ1 − ξ2|, (2.2)

which hold for any ξ1, ξ2 ∈ Rn, s ≥ 0, and γ ∈ (−1/2, 0).
For s ≥ 0, we let

Z(ξ) = (s2 + |ξ|2)
1
2 , ξ ∈ Rn,

and define
H(ξ) = Z(ξ)p, V (ξ) = Z(ξ)(p−2)/2ξ, ξ ∈ Rn.

Then the conditions (1.2)-(1.4) imposed on A0 in Theorem 1.2 can be restated as

A0(ξ)| ≤ ΛZ(ξ)p−1, |DA0(ξ)| ≤ ΛZ(ξ)p−2, (2.3)

〈DA0(ξ)η, η〉 ≥ Λ−1Z(ξ)p−2|η|2, (2.4)

and

|DA0(ξ)−DA0(η)| ≤ ΛZ(ξ)p−2Z(η)p−2(s2 + |ξ|2 + |η|2)(2−p−α)/2|ξ − η|α (2.5)

for some Λ ≥ 1, α ∈ (0, 2− p), and for every (ξ, η) ∈ Rn × Rn\{(0, 0)}.
It follows from (2.4) that the following strict monotonicity holds

(A0(ξ)−A0(η)) · (ξ − η) ≥ c(p,Λ)(s2 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2 (2.6)

for all (ξ, η) ∈ Rn × Rn. Moreover, by the second inequality in (2.3) we have

|A0(ξ)−A0(η)| =
∣∣∣∣ˆ 1

0
DA0(tξ + (1− t)η)(ξ − η)dt

∣∣∣∣
≤ Λ|ξ − η|

ˆ 1

0
Z(tξ + (1− t)η)p−2dt

≤ C|ξ − η|(s2 + |η|2 + |ξ − η|2)
p−2
2 ,

where we used (2.1) in the least inequality. Thus we get

(A0(ξ)−A0(η)) · (ξ − η) ' (s2 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2, (2.7)

and
|A0(ξ)−A0(η)| ' (s2 + |ξ|2 + |η|2)

p−2
2 |ξ − η|. (2.8)

Let v ∈W 1,p
loc (Ω) be a solution of divA0(∇v) = 0 in Ω, i.e.,

ˆ
Ω
A0i(∇v)Diφ = 0, (2.9)

for every φ ∈ C∞0 (Ω), where A0i is the ith component of A0. We observe that in order
to prove (1.11) for v, by a standard approximation (see, e.g., [7]), we may assume that
s > 0.

Then by [11, Theorem 8.1] and [11, Proposition 8.1], v has second derivatives D2v
and H(∇v) ∈W 1,2

loc (Ω), such that for every subset Σ b Ω, we have

ˆ
Σ
Z(∇v)p−2|D2v|2 ≤ C(Σ, s)

ˆ
Ω
H(∇v), (2.10)
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and ˆ
Σ
|∇[H(∇v)]|2 ≤ C(Σ, s)

ˆ
Ω
|H(∇v)|2.

In (2.9), taking φ = Dkϕ, ϕ ∈ C∞0 (Ω), and integrating by parts, we find

ˆ
Aij(∇v)DjkvDiϕ = 0, (2.11)

where we set

Aij(ξ) =
∂A0i(ξ)

∂ξj
, i, j = 1, . . . , n.

By (2.10), for each k ∈ {1, . . . , n}, the function ϕ(Dkv − bk), ϕ ∈ C∞0 (Ω), bk ∈ R, is
a valid test function for (2.11), and thus we find

ˆ
Aij(∇v)DjkvDikvϕ+

ˆ
Aij(∇v)Djkv(Dkv − bk)Diϕ = 0.

Now observe that Dj [H(∇v)] = pZ(∇v)p−2DjkvDkv and thus when (b1, . . . , bn) =
(0, . . . , 0) the last equality can be written as

p

ˆ
Aij(∇v)DjkvDikvϕ+

ˆ
aij(∇v)Dj [H(∇v)]Diϕ = 0,

where aij(∇v) = Z(∇v(x))2−pAij(∇v(x)), a uniformly elliptic matrix.
In view of (2.4), this gives

ˆ
aij(∇v)Dj [H(∇v)]Diϕ ≤ −c

ˆ
Z(∇v)p−2|D2v|2ϕ ≤ −c

ˆ
|DV (∇v)|2ϕ, (2.12)

for all ϕ ∈ C∞0 (Ω), ϕ ≥ 0.
In particular, H(∇v) ∈ W 1,2

loc (Ω) is a subsolution to a uniformly elliptic equation in
divergence form, which yields that H(∇v) ∈ L∞loc(Ω) with the estimate

sup
BR/2

H(∇v) ≤ C
 
BR

H(∇v), ∀BR ⊂ Ω. (2.13)

In what follows, for any ball Br(x0) ⊂ Ω we denote by Φ(x0, r) the excess functional

Φ(x0, r) :=

 
Br(x0)

|V (∇v)− [V (∇v)]Br(x0)|2.

We also set
M(r) = sup

Br(x0)
H(∇v).

With (2.12), one can now argue as in the proof of [10, Proposition 3.1] to obtain the
following result.

Lemma 2.1 There is a consntant c > 0 independent of s such that

Φ(x0, R/2) ≤ c
(
M(R)−M(R/2)

)
, (2.14)

for every BR(x0) b Ω.
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Proof. By (2.12), the function v(x) := M(R)−H(∇v(x)) is a nonnegative supersolution
in BR(x0) of the uniformly elliptic equation ∂i(aij(∇v)∂ju) = 0. Thus, by the weak
Harnack inequality, we have

 
BR(x0)

v(x)dx ≤ C inf
BR/2(x0)

v ≤ C(M(R)−M(R/2)). (2.15)

Let χ ∈W 1,2
0 (BR(x0)) be the weak solution to

ˆ
BR(x0)

aij(∇v)∂iχ∂jϕ =
1

R2

ˆ
BR(x0)

ϕdx ∀ϕ ∈W 1,2
0 (BR(x0)).

Then taking ϕ = χv as test function for the above equation, we get

1

2

ˆ
BR(x0)

aij(∇v)∂iχ
2∂jv ≤

1

R2

ˆ
BR(x0)

χvdx.

Now, taking ϕ = χ2 as test function for (2.12), we find

ˆ
BR(x0)

|∇V (∇v)|2χ2 ≤ −C
ˆ
BR(x0)

aij(∇v)∂j [H(∇v)]∂iχ
2

= C

ˆ
BR(x0)

aij(∇v)∂jv∂iχ
2 ≤ C

R2

ˆ
BR(x0)

χvdx ≤ C

R2

ˆ
BR(x0)

vdx,

where we used the fact that ‖χ‖L∞(BR(x0)) ≤ C (by homogeneity) in the last inequality.
Also, by homogeneity and the weak Harnack inequality we have that infBR/2(x0) χ ≥ c > 0

and thus combining with (2.15) we obtain

ˆ
BR/2(x0)

|∇V (∇v)|2 ≤ C

R2
(M(R)−M(R/2)) .

Finally, we use Poincaré’s inequality in the last bound to obtain (2.14). This completes
the proof of the lemma.

The following lemma can be proved by adapting the proof of [1, Lemma 2.9] to our
setting.

Lemma 2.2 Let BR(x0) b Ω and suppose that supBR(x0) |∇v|2 ≤ c(s2 + |ξ|2) for some
c > 0 and ξ ∈ Rn. Then there exist C, δ > 0 independent of s, ξ, and BR(x0) such that

 
BR/2(x0)

|∇v − ξ|2+2δ ≤ C

( 
BR(x0)

|∇v − ξ|2
)1+δ

. (2.16)

Proof. For Bρ(y0) ⊂ BR(x0) we set

ṽ = v(x)− [v]Bρ(y0) − ξ · (x− y0), (2.17)

and let ϕ be a function in C∞c (Bρ(y0)) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Bρ/2(y0) and
|∇ϕ| ≤ C/ρ. Note that

ˆ
(A0(∇v)−A0(ξ)) · ∇(ṽϕ2) =

ˆ
A0(∇v) · ∇(ṽϕ2) = 0,
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and thus ˆ
(A0(∇v)−A0(ξ)) · ∇ṽϕ2 = −2

ˆ
(A0(∇v)−A0(ξ)) · ∇ϕṽϕ.

Then by (2.6) and (2.8),
ˆ

(s2 + |∇v|2 + |ξ|2)
p−2
2 |∇ṽ|2ϕ2 ≤ C

ˆ
(s2 + |∇v|2 + |ξ|2)

p−2
2 |∇ṽ||∇ϕ||ṽ||ϕ|,

which by Hölder’s inequality yields
ˆ

(s2 + |∇v|2 + |ξ|2)
p−2
2 |∇ṽ|2ϕ2 ≤ C

ˆ
(s2 + |∇v|2 + |ξ|2)

p−2
2 |∇ϕ|2|ṽ|2.

Note that supBR(x0) |∇v|2 ≤ c(s2 + |ξ|2) implies that

(s2 + |∇v|2 + |ξ|2)
p−2
2 ' (s2 + |ξ|2)

p−2
2 ,

and thus using the property of ϕ we find
ˆ
Bρ/2(y0)

|∇v − ξ|2dx ≤ C

ρ2

ˆ
Bρ(y0)

|ṽ|2dx.

Now using Sobolev-Poincaré’s inequality (note that [ṽ]Bρ(y0) = 0) and Gehring lemma
on higher integrability, we get (2.16) as desired.

We can now use Lemma 2.2 and argue as in the proof of [1, Lemma 2.10] to deduce
the following important result. We remark this is where we use the assumption (2.5) on
A0(ξ).

Lemma 2.3 Under (2.5), there is a constant C > 0, independent of s, such that for
every τ ∈ (0, 1) there exists ε > 0, independent of s, such that

Φ(x0, R) ≤ ε sup
BR/2(x0)

H(∇v) ⇒ Φ(x0, τR) ≤ Cτ2Φ(x0, R) (2.18)

for every BR(x0) b Ω.

Proof. Take ξ ∈ Rn such that V (ξ) = [V (Dv)]BR(x0). Then by (2.13),

sup
BR/2(x0)

H(∇v) ≤ C
 
BR(x0)

H(∇v) ≤
 
BR(x0)

(
sp + |V (∇v)|2

)
≤ C

(
sp + Φ(x0, R) + |V (ξ)|2

)
.

Thus, if ε < 1/2C we deduce

Φ(x0, R) ≤ 2Cε(sp + V (ξ)|2) ≤ Cε(s2 + |ξ|2)p/2, (2.19)

and hence
sup

BR/2(x0)
|∇v|p ≤ sup

BR/2(x0)
H(∇v) ≤ C(s2 + |ξ|2)p/2. (2.20)

Let ṽ be as in (2.17), and let v0 ∈ ṽ +W 1,2
0 (BR/4) be the solution of

ˆ
BR/4

Aij(ξ)∂jv0∂iϕ = 0 ∀ϕ ∈W 1,2
0 (BR/4). (2.21)
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Since C−1Z(ξ)p−2In ≤ (Aij) ≤ CZ(ξ)p−2In, by the standard regularity we get
 
BτR

|∇v0 − [∇v0]BτR |
2dx ≤ Cτ2

 
BR/4

|∇v0 − [∇v0]BR/4 |
2dx, (2.22)

for every τ ∈ (0, 1/4).
Let ϕ ∈W 1,2

0 (BR/4). Using the relation
ˆ
BR/4

(A0(∇v)−A0(ξ)) · ∇ϕ = 0,

we can write ˆ
BR/4

ˆ 1

0
Aij(ξ + t∇ṽ)dt∂j ṽ∂iϕ = 0.

Combining this with (2.21) we have

 
BR/4

ˆ 1

0
(Aij(ξ + t∇ṽ)−Aij(ξ)) dt∂j ṽ∂iϕdx =

 
BR/4

Aij(ξ) (∂jv0 − ∂j ṽ) ∂iϕdx.

Then choosing ϕ = v0 − ṽ as a test function, we get

Z(ξ)p−2

 
BR/4

|∇(v0 − ṽ)|2dx ≤

C

 
BR/4

ˆ 1

0
| (Aij(ξ + t∇ṽ)−Aij(ξ)) |dt|∇ṽ||∇(v0 − ṽ)|dx.

On the other hand, thanks to (2.5) we find that

ˆ 1

0
| (Aij(ξ + t∇ṽ)−Aij(ξ)) |dt

≤ CZ(ξ)p−2

ˆ 1

0
Z(ξ + t∇ṽ)p−2(s2 + |ξ|2 + |ξ + t∇ṽ|2)(2−p−α)/2|t∇ṽ|αdt

≤ CZ(ξ)−α|∇ṽ|α
ˆ 1

0
Z(ξ + t∇ṽ)p−2dt (by (2.20))

≤ CZ(ξ)−α|∇ṽ|α(s2 + |ξ|2 + |∇ṽ|2)(p−2)/2 (by (2.1))

≤ CZ(ξ)p−2−α|∇ṽ|α.

Thus,  
BR/4

|∇(v0 − ṽ)|2dx ≤ CZ(ξ)−α
 
BR/4

|∇ṽ|1+α|∇(v0 − ṽ)|dx,

which by Hölder’s inequality yields 
BR/4

|∇(v0 − ṽ)|2dx ≤ CZ(ξ)−2α

 
BR/4

|∇ṽ|2+2αdx.

For any 0 < δ ≤ α, by (2.20), 
BR/4

|∇(v0 − ṽ)|2dx ≤ CZ(ξ)−2δ

 
BR/4

|∇ṽ|2+2δdx

= CZ(ξ)−2δ

 
BR/4

|∇v − ξ|2+2δdx.

9



Hence by (2.20) and Lemma 2.2, we obtain

 
BR/4

|∇(v0 − ṽ)|2dx ≤ CZ(ξ)−2δ

( 
BR/2

|∇v − ξ|2dx

)1+δ

(2.23)

for some 0 < δ ≤ α.
Note that by (2.2),

Φ(x0, τR) ≤ C
 
BτR

|V (∇v)− V ([∇v]BτR)|dx

≤ C
 
BτR

(
s2 + |∇v|2 + |[∇v]BτR |

2
) p−2

2 |∇v − [∇v]BτR |
2dx

≤ C
(
s2 + |[∇v]BτR |

2
) p−2

2

 
BτR

|∇ṽ − [∇ṽ]BτR |
2dx.

Using (2.22), for any τ ∈ (0, 1/4) we get

 
BτR

|∇ṽ − [∇ṽ]BτR |
2dx ≤ 2

 
BτR

|∇v0 − [∇v0]BτR |
2 + |∇ṽ −∇v0|2dx

≤ Cτ2

 
BR/4

|∇v0 − [∇v0]BR/4 |
2 + Cτ−n

 
BR/4

|∇ṽ −∇v0|2dx

≤ Cτ2

 
BR/4

|∇ṽ − [∇ṽ]BR/4 |
2 + Cτ−n

 
BR/4

|∇ṽ −∇v0|2dx

≤ Cτ2

 
BR/2

|∇v − ξ|2 + Cτ−nZ(ξ)−2δ

( 
BR/2

|∇v − ξ|2dx

)1+δ

,

where we used (2.23) in the last inequality.
On the other hand, by (2.2) and (2.20),

 
BR/2

|∇v − ξ|2 ≤ C
 
BR/2

(
s2 + |ξ|2 + |∇v|2

) 2−p
2 |V (∇v)− V (ξ)|2dx

≤ C(s2 + |ξ|2)
2−p
2 Φ(x0, R). (2.24)

Hence,

Φ(x0, τR) ≤ C
(

s2 + |ξ|2

s2 + |[∇v]BτR |2

) 2−p
2

×

×
(
τ2Φ(x0, R) + τ−nZ(ξ)−δpΦ(x0, R)1+δ

)
,

which by (2.19) yields

Φ(x0, τR) ≤ C
(

s2 + |ξ|2

s2 + |[∇v]BτR |2

) 2−p
2 (

τ2 + τ−nεδ
)

Φ(x0, R).

Now, we show that for ε > 0 small enough,

|ξ|2 ≤ C(s2 + |[∇v]BτR |
2). (2.25)
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Indeed,

|ξ|2 ≤ 2
(
|ξ − [∇v]BτR |

2 + |[∇v]BτR |
2
)

≤ C
( 

BτR

|∇v − ξ|2 + |[∇v]BτR |
2

)
≤ C

(
τ−n

 
BR/2

|∇v − ξ|2 + |[∇v]BτR |
2

)
≤ C

(
τ−n(s2 + |ξ|2)

2−p
2 Φ(x0, R) + |[∇v]BτR |

2
)

(by (2.24))

≤ C
(
τ−nε(s2 + |ξ|2) + |[∇v]BτR |

2
)

(by (2.19)).

Thus if Cτ−nε ≤ 1/2, we obtain (2.25). Therefore, we get (2.18) if we further restrict

ε so that ε < τ
n+2
δ .

Lemmas 2.1 and 2.3 yield the following alternative result.

Lemma 2.4 Let τ, ε ∈ (0, 1/4) be fixed as in Lemma 2.3 such that Cτ2 < τ , where C
is the constant in (2.18). There exists δ = δ(τ) ∈ (0, 1) such that either

Φ(x0, τR) ≤ τΦ(x0, R),

or
Φ(x0, R) ≥ εM(R/2) and M(R/4) ≤ δM(R/2)

provided BR(x0) b Ω.

Proof. If Φ(x0, R) < εM(R/2), then by Lemma 2.3 we get Φ(x0, τR) ≤ τΦ(x0, R). If
M(R/4) > δM(R/2) and Φ(x0, R) ≥ εM(R/2), then by Lemma 2.1,

Φ(x0, R/4) ≤ C[M(R/2)−M(R/4)]

≤ C(1− δ)M(R/2) ≤ C(1− δ)ε−1Φ(x0, R).

Thus,
Φ(x0, τR) ≤ C(τ)(1− δ)ε−1Φ(x0, R).

Now choosing δ ∈ (0, 1) such that C(τ)(1− δ)ε−1 < τ we get the result.
We next follow an alternative argument in the spirit of [10, Theorem 3.1] to derive a

decay estimate for the excess functional Φ(x0, r).

Theorem 2.5 Suppose that A0 satisfies (2.3), (2.4), and (2.5). There exist constants
C > 1 and σ1 ∈ (0, 1), both independent of s, such that

Φ(x0, ρ) ≤ C
( ρ
R

)2σ1
Φ(x0, R)

for every BR(x0) ⊂ Ω and ρ < R.

Proof. For ease of notation, we shall drop x0 and write Φ(x0, r) as Φ(r). Let τ, ε and
δ be as in Lemma 2.4. Let k, h ∈ N be such that δkε < τ and τ (h/k)−1ε−2 < τ . Also, let
rj = τ jhR and ρj = τ jR. It is enough to show that

Φ(rj+1) ≤ τΦ(rj).
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To this end, we put

Σ1 := {i ∈ N : Φ(ρi+1) ≤ τΦ(ρi)} ,

and
Σ2 := {i ∈ N : Φ(ρi) ≥ εM(ρi/2), M(ρi/4) ≤ δM(ρi/2)} .

Thanks to Lemma 2.4, we get Σ1∪Σ2 = N. We now consider the following two cases.
Case 1: [jh, (j + 1)h] ∩ Σ2 = {n1, ..., nq} contains more than k points. Then,

Φ(rj+1) ≤M(ρ(j+1)h) ≤M(ρnq/4) ≤ δM(ρnq/2) ≤ δM(ρnq−1/4)

≤ · · · ≤ δkM(ρn1/2) ≤ δkε−1Φ(ρn1) ≤ δkε−1Φ(rj).

Thus we have Φ(rj+1) ≤ τΦ(rj).
Case 2: [jh, (j+1)h]∩Σ2 contains less than k points. Then [jh, (j+1)h]∩Σ1 contains a
maximal string of consecutive integers n0, n0 +1, ..., n0 +m which has more than h/k−1
numbers. Moreover, by maximality we have n0 − 1 and n0 +m+ 1 belong to Σ2. Thus

Φ(ρn0+m+1) = Φ(τρn0+m) ≤ τ
h
k
−1Φ(ρn0). (2.26)

To estimate Φ(ρn0+m+1) from below, we consider the following possibilities:
i) If n0 +m+ 1 = (j + 1)h, then Φ(rj+1) = Φ(ρn0+m+1).
ii) If n0 +m+ 1 < (j + 1)h, then

Φ(rj+1) ≤M(ρ(j+1)h) ≤M(ρn0+m+1/2) ≤ ε−1Φ(ρn0+m+1).

Thus in both cases we have

Φ(rj+1) ≤ ε−1Φ(ρn0+m+1). (2.27)

On the other hand, to estimate Φ(ρn0) from above, we consider the following possibilities:
a) If n0 = jh, then Φ(ρn0) = Φ(rj).
b) If n0 > jh, then n0−1 ∈ [jh, (j+1)h]∩Σ2. In this case, we let m0 be the smallest

integer in [jh, (j + 1)h] ∩ Σ2 ∩ (−∞, n0 − 1]. Then we have

Φ(ρn0) ≤M(ρn0−1/2) ≤M(ρm0/2) ≤ ε−1Φ(ρm0).

Since either m0 = jh or jh, ...,m0 − 1 ∈ Σ1, we then find

Φ(ρn0) ≤ ε−1τm0−jhΦ(ρjh) ≤ ε−1Φ(rj).

Thus in both cases we have

Φ(ρn0) ≤ ε−1Φ(rj). (2.28)

Finally, combining (2.26), (2.27) and (2.28) we find that

Φ(rj+1) ≤ τ
h
k
−1ε−2Φ(rj) ≤ τΦ(rj),

which completes the proof of the theorem.
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Lemma 2.6 Under (2.3) and (2.4), there exsit C > 0 and θ ∈ (0, 1) such that for any
BR(x0) ⊂ Ω we have

 
BR/2(x0)

|V (∇v)− V (z0)|2 ≤ C

( 
BR(x0)

|V (∇v)− V (z0)|2θ
) 1

θ

,

for any vector z0 ∈ Rn.

Proof. Note that (2.7) and (2.8) can be equivalently written as

(A0(ξ)−A0(η)) · (ξ − η) ' (s2 + |η|2 + |ξ − η|2)
p−2
2 |ξ − η|2 (2.29)

and
|A0(ξ)−A0(η)| ' (s2 + |η|2 + |ξ − η|2)

p−2
2 |ξ − η|.

Also, by (2.2) we find

|V (ξ)− V (η)|2 ' (s2 + |η|2 + |ξ − η|2)
p−2
2 |ξ − η|2. (2.30)

Let ϕ : [0,∞)→ [0,∞) be the N -function defined by

ϕ(t) :=

ˆ t

0
(s2 + u2)

p−2
2 udu ' (s2 + t2)

p−2
2 t2. (2.31)

Then the complementary function ϕ∗ of ϕ is given by

ϕ∗(u) = sup
t≥0

(ut− ϕ(t)) =

ˆ u

0
(ϕ′)−1(t)dt, (2.32)

where (ϕ′)−1(t) is the inverse function of ϕ′(u) = (s2 + u2)
p−2
2 u.

By noticing that s2 + t2 ' t2 when s ≤ t and s2 + t2 ' s2 when s ≥ t, it is easy to
see that

(ϕ′)−1(t) ' (s2(p−1) + t2)
p′−2

2 t

uniformly in t ≥ 0. Thus it follows from (2.32) that

ϕ∗(u) ' (s2(p−1) + u2)
p′−2

2 u2, p′ =
p

p− 1
.

We remark that both ϕ and ϕ∗ satisfy the ∆2-condition, i.e., ϕ(2t) ≤ cϕ(t) and
ϕ∗(2t) ≤ cϕ∗(t) for all t ≥ 0. Here the constant c is independent of s, t, and a.

The bounds (2.29)–(2.30) enable us to follow the argument in the proof of [5, Lemma
3.4], using the N -function ϕ defined in (2.31) to complete the proof of the lemma.

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. For any z0 ∈ Rn, using (2.2) we have

|Uq(∇v)− Uq(z0)| ' h|z0|(|∇v − z0|),

where
h|z0|(t) = (s2 + |z0|2 + t2)

q−2
2 t.

We now let
g|z0|q−1(t) = (s2(q−1) + |z0|2(q−1) + t2)

p
2(q−1)

−1
t2.
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Then we have
g|z0|q−1(h|z0|(t)) ' (s2 + |z0|2 + t2)

p−2
2 t2,

and thus by (2.30) it holds that

|V (∇v)− V (z0)|2 ' g|z0|q−1(|Uq(∇v)− Uq(z0)|). (2.33)

Let Rm := 2−m(R/2) for m ∈ Z. To prove (1.11), it is enough to show it with
ρ = Rm for all sufficiently large m ∈ N.

By Theorem 2.5 there exists σ1 ∈ (0, 1) such that

 
BRm

|V (∇v)− [V (∇v)]BRm |
2 ≤ C2−2mσ1

 
BR/2

|V (∇v)− [V (∇v)]BR/2 |
2

≤ C2−2mσ1

 
BR/2

|V (∇v)− V (z0)|2,

where z0 is chosen so that Uq(z0) = [Uq(∇v)]BR . Thus it follows from (2.33), Lemma
2.6, and [6, Corollary 3.4] that

 
BRm

|V (∇v)− [V (∇v)]BRm |
2

≤ C2−2mσ1g|z0|q−1

( 
BR

|Uq(∇v)− Uq(z0)|
)
. (2.34)

Note that s2(q−1) + |z0|2(q−1) ' s2(q−1) + |Uq(z0)|2 and thus by [4, Corollary 26], for
any z ∈ Rn, we have

g|z0|q−1(t) ' (s2(q−1) + |Uq(z0)|2 + t2)
p

2(q−1)
−1
t2

≤ C(s2(q−1) + |Uq(z)|2 + t2)
p

2(q−1)
−1
t2

+ C(s2(q−1) + |Uq(z0)|2 + |Uq(z)|2)

p
q−1−2

2 |Uq(z0)− Uq(z)|2

≤ C(s2(q−1) + |z|2(q−1) + t2)
p

2(q−1)
−1
t2

+ C(s2(q−1) + |z0|2(q−1) + |z|2(q−1))

p
q−1−2

2 |Uq(z0)− Uq(z)|2.

Then using (2.2) we get

g|z0|q−1(t) ≤ C(s2(q−1) + |z|2(q−1) + t2)
p

2(q−1)
−1
t2

+ C(s2 + |z0|2 + |z|2)
p−2(q−1)

2 (s2 + |z0|2 + |z|2)q−2|z0 − z|2

≤ C(s2(q−1) + |z|2(q−1) + t2)
p

2(q−1)
−1
t2 + C(s2 + |z0|2 + |z|2)

p−2
2 |z0 − z|2

≤ Cg|z|q−1(t) + C|V (z0)− V (z)|2. (2.35)

We now let ξm ∈ Rn be such that Uq(ξm) = [Uq(∇v)]BRm . Then applying (2.35) with
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z = ξm and (2.33) we find

g|z0|q−1

( 
BR

|Uq(∇v)− Uq(z0)|
)

≤ Cg|ξm|q−1

( 
BR

|Uq(∇v)− Uq(z0)|
)

+ C|V (z0)− V (ξm)|2

≤ Cg|ξm|q−1

( 
BR

|Uq(∇v)− Uq(z0)|
)

+ Cg|ξm|q−1(|Uq(z0)− Uq(ξm)|)

≤ Cg|ξm|q−1

( 
BR

|Uq(∇v)− [Uq(∇v)]BR |
)

+ Cg|ξm|q−1(|[Uq(∇v)]BR − [Uq(∇v)]BRm |).

We next observe that

|[Uq(∇v)]BR − [Uq(∇v)]BRm | ≤
m−1∑
k=−1

|[Uq(∇v)]BRk+1
− [Uq(∇v)]BRk |

≤
m−1∑
k=−1

 
BRk+1

|Uq(∇v)− [Uq(∇v)]BRk |

≤ 2n
m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |.

Thus by the monotonicity of g|ξm|q−1 we get

g|z0|q−1

( 
BR

|Uq(∇v)− Uq(z0)|
)

≤ Cg|ξm|q−1

(
2n

m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

)
.

Now in view of (2.34), this yields

 
BRm

|V (∇v)− [V (∇v)]BRm |
2

≤ C2−2mσ1g|ξm|q−1

(
2n

m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

)
. (2.36)

Let ηm be such that V (ηm) = [V (∇v)]BRm . Then by (2.33) we have

 
BRm

g|ηm|q−1(|Uq(∇v)− Uq(ηm)|) ≤ C
 
BRm

|V (∇v)− [V (∇v)]BRm |
2,

which by Jensen’s inequality and the monotonicity of g|ηm|q−1 gives

g|ηm|q−1

(
1

2

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

)
≤ C

 
BRm

|V (∇v)− [V (∇v)]BRm |
2 (2.37)
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Combining (2.36) and (2.37) we get

g|ηm|q−1

(
1

2

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

)

≤ C2−2mσ1g|ξm|q−1

(
2n

m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

)
. (2.38)

Note that for any λ ∈ (0, 1) we have

g|ξm|q−1(λt) ≥ λκ g|ξm|q−1(t), whereκ = max

{
p

q − 1
, 2

}
.

Thus (2.38) yields that

g|ηm|q−1

(
1

2

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

)

≤ g|ξm|q−1

(
2nC

1
κ 2
−2mσ1

κ

m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

)
, (2.39)

provided C2−2mσ1 < 1, i.e., provided m is sufficiently large.
We now apply the inverse function of g|ηm|q−1 to both sides of (2.39) to arrive at

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm | ≤ C2
−2mσ1

κ

m−1∑
k=−1

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

≤ C2
−2mσ1

κ (m+ 1) max
−1≤k<m

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

for all sufficiently large m.
Let 0 < α < 2σ1

κ . From the above inequality we have

R−αm

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

≤ C2
−2mσ1

κ (m+ 1) max
−1≤k<m

R−αm RαkR
−α
k

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

≤ C2
−2mσ1

κ
+mα(m+ 1) max

−1≤k<m
R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

≤ 1

2
max
−1≤k<m

R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |,

provided m ≥ m0 where m0 sufficiently large so that we have both C2−2m0σ1 < 1 and

C2
−2m0σ1

κ
+m0α(m0 + 1) < 1

2 . This is possible since α < 2σ1
κ .

For any ` = 2, 3, . . . , we now apply the previous inequality with m0 ≤ m ≤ `m0 to
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deduce that

max
m0≤m≤`m0

R−αm

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

≤ 1

2
max

−1≤k<`m0

R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

≤ 1

2
max

−1≤k<m0

R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

+
1

2
max

m0≤k<`m0

R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |.

This gives

max
m0≤m≤`m0

R−αm

 
BRm

|Uq(∇v)− [Uq(∇v)]BRm |

≤ max
−1≤k<m0

R−αk

 
BRk

|Uq(∇v)− [Uq(∇v)]BRk |

≤ CR−α
 
BR

|Uq(∇v)− [Uq(∇v)]BR |,

which completes the proof of Theorem 1.2.

3 Interior pointwise gradient estimates

The main goal of this section is to prove Theorem 1.1. We shall need some preliminary
results for that purpose.

Let u ∈ W 1,p
loc (Ω) be a solution of (1.1) and suppose that B2r = B2r(x0) ⊂⊂ Ω. We

consider the unique solution w ∈ u+W 1,p
0 (B2r) to the equation{

−div (A(x,∇w)) = 0 in B2r,
w = u on ∂B2r.

(3.1)

We first recall the following version of interior Gehring’s lemma that can be found
in [11, Theorem 6.7].

Lemma 3.1 Let w be as in (3.1). There exist constants θ1 > p and C > 0 depending
only on n,Λ such that the estimate( 

Bρ/2(y)
(|∇w|+ s)θ1dxdt

) 1
θ1

≤ C

( 
Bρ(y)

(|∇w|+ s)tdx

) 1
t

, (3.2)

holds for all Bρ(y) ⊂ B2r(x0) and t > 0.

The following important comparison estimate can be found in [17, Lemma 2.2].

Lemma 3.2 Let w be as in (3.1) and assume that 3n−2
2n−1 < p ≤ 2− 1

n . Then it holds that

for any γ0 ∈
(

n
2n−1 ,

(p−1)n
n−1

)
,( 

B2r

|∇u−∇w|γ0dx
) 1
γ0

≤ C
[
|µ|(B2r)

rn−1

] 1
p−1

+ C
|µ|(B2r)

rn−1

( 
B2r

(|∇u|+ s)γ0dx

) 2−p
γ0

.

where C is a constant only depending on n, p,Λ, γ0.
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We remark that the range of γ0 was not explicitly stated in [17, Lemma 2.2] but it
can be easily seen from the proof of [17, Lemma 2.2]. Moreover, only the case s = 0 was
considered in [17, Lemma 2.2], but the proof works also in the case s > 0.

We now let v ∈W 1,p
0 (Br(x0)) be the unique solution of{
−div (A(x0,∇v)) = 0 in Br,

v = w on ∂Br.

By standard regularity, we have for any t > 0

||∇v||L∞(Br/2) ≤ C
( 

Br

|∇v|t
)1/t

. (3.3)

We also have an estimate for the difference ∇v −∇w,
 
Br

|∇v −∇w|pdx ≤ Cω(r)p
 
Br

(|∇w|+ s)pdx.

The proof of this fact can be found in [8, Equ. (4.35)]. Thus by (3.2) and Hölder’s
inequality, we get

 
Br

|∇v −∇w|γ0dx ≤ Cω(r)γ0
 
B2r

(|∇w|+ s)γ0dx. (3.4)

For a ball Bρ = Bρ(x0) ⊂ Ω, we now define

I(ρ) = I(x0, ρ) :=

 
Bρ

|Uγ0+1(∇u)− [Uγ0+1(∇u)]Bρ |dx.

Proposition 3.3 Suppose that u ∈ W 1,p
loc (Ω) is a solution of (1.1). Then there exists

α0 ∈ (0, 1/2) such that for any ε ∈ (0, 1) and B2r(x0) b Ω we have

I(εr) ≤ Cεα0I(r) + Cε

(
|µ|(B2r)

rn−1

) γ0
p−1

+ Cε

(
|µ|(B2r)

rn−1

)γ0 ( 
B2r

(|∇u|+ s)γ0
)2−p

+ Cε ω(r)γ0
 
B2r

(|∇u|+ s)γ0 , (3.5)

where Cε is a constant depending on ε, n, p,Λ, α.

Proof. Since γ0 ≤ 1, using (2.2) we have

|Uγ0+1(∇u)− Uγ0+1(∇v)| ≤ C|∇u−∇v|γ0 .

Thus by Theorem 1.2, we can find α0 ∈ (0, 1/2) such that

 
Bεr

|Uγ0+1(∇u)− [Uγ0+1(∇u)]Bεr |

≤ C
 
Bεr

|Uγ0+1(∇v)− [Uγ0+1(∇v)]Bεr |+ C

 
Bεr

|∇u−∇v|γ0

≤ Cεα0

 
Br

|Uγ0+1(∇v)− [Uγ0+1(∇v)]Br |+ Cε−n
 
Br

|∇u−∇v|γ0

≤ Cεα0

 
Br

|Uγ0+1(∇u)− [Uγ0+1(∇u)]Br |+ Cε−n
 
Br

|∇u−∇v|γ0 . (3.6)
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Moreover, by (3.4) and the fact that |ω(r)| ≤ 1, one has
 
Br

|∇u−∇v|γ0 ≤ C
 
Br

|∇u−∇w|γ0 + C

 
Br

|∇w −∇v|γ0

≤ C
 
B2r

|∇u−∇w|γ0 + Cω(r)γ0
 
B2r

(|∇w|+ s)γ0

≤ C
 
B2r

|∇u−∇w|γ0 + Cω(r)γ0
 
B2r

(|∇u|+ s)γ0 . (3.7)

We then derive from (3.6) and (3.7) that

I(εr) ≤ Cεα0I(r) + Cε

 
B2r

|∇u−∇w|γ0 + Cεω(r)γ0
 
B2r

(|∇u|+ s)γ0 . (3.8)

At this point we apply Lemma 3.2 to bound the second term on the right-hand side
of (3.8). This yields (3.5) as desired.

We are now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. We shall prove (1.10) at x = x0 and BR(x0) ⊂ Ω. Let
U(x) := Uγ0+1(∇u(x)) and choose ε < 1/4 small enough so that Cεα0 ≤ 1

4 , where C is
the constant in (3.5).

Set Rj = εjR, Bj := B2Rj (x0), Ij = I(Rj) and Tj :=
ffl
Bj

(|∇u| + s)γ0dx. Applying

(3.5) yields

Ij+1 ≤
1

4
Ij + C

(
|µ|(Bj)
Rn−1
j

) γ0
p−1

+ C

(
|µ|(Bj)
Rn−1
j

)γ0
T 2−p
j + Cω(Rj)

γ0Tj .

Summing this up over j ∈ {j0, j0 + 1, 2, ...,m− 1}, we obtain

m∑
j=j0

Ij ≤ C Ij0 + C

m−1∑
j=j0

(
|µ|(Bj)
Rn−1
j

) γ0
p−1

+ C
m−1∑
j=j0

(
|µ|(Bj)
Rn−1
j

)γ0
T 2−p
j + C

m−1∑
j=j0

ω(Rj)
γ0Tj . (3.9)

Since
m∑
j=j0

Ij ≥ C
m∑
j=j0

| [U ]Bj+1
− [U ]Bj | ≥ C| [U ]Bm+1

− [U ]Bj0
|,

we see that (3.9) implies

| [U ]Bm+1
|+

m∑
j=j0

Ij ≤ C Ij0 + | [U ]Bj0
|+ C

m−1∑
j=j0

(
|µ|(Bj)
Rn−1
j

) γ0
p−1

+ C
m−1∑
j=j0

(
|µ|(Bj)
Rn−1
j

)γ0
T 2−p
j + C

m−1∑
j=j0

ω(Rj)
γ0Tj . (3.10)

By (1.6), there is j0 = j0(ε, C,D) > 1 large enough such that

ε−nC

∞∑
j=j0

ω(Rj)
γ0 ≤ 1

10
, (3.11)
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where C is the constant in (3.10).
Note that

m∑
j=j0

(
|µ|(Bj)
Rn−1
j

)γ0
≤ C

ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ
, (3.12)

and since p < 2 we also have

m∑
j=j0

(
|µ|(Bj)
Rn−1
j

) γ0
p−1

≤ C
(ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

) 1
p−1

. (3.13)

Moreover, since γ0 ≤ 1 we have |U | ≤ |∇u|γ0 , and thus to prove (1.10) at x = x0 it
is enough to show that

|U(x0)| ≤ CTj0 + C

(ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

) 1
p−1

. (3.14)

To prove (3.14) we consider the following possibilities:

Case 1: If |U(x0)| ≤ Tj0 , then (3.14) trivially follows.

Case 2: If
Tj ≤ |U(x0)| ∀j0 ≤ j ≤ j1 and |U(x0)| < Tj1+1, (3.15)

then since γ0 ≤ 1 we have

|U(x0)| <
 
Bj1+1

(|∇u|+ s)γ0dx

≤
 
Bj1+1

|∇u|γ0dx+ sγ0 ≤ Ij1+1 + | [U ]Bj1+1
|+ sγ0

≤ ε−nIj1 + | [U ]Bj1+1
|+ sγ0 .

Now applying (3.10) with m = j1 and using (3.12), (3.13) and (3.15) we get

|U(x0)| < Cε Ij0 + Cε | [U ]Bj0
|+ Cε

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

] 1
p−1

+ Cε

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

]
|U(x0)|2−p

+ ε−nC
m−1∑
j=j0

ω(Rj)
γ0 |U(x0)|+ sγ0 .

Hence using (3.11) and Young’s inequality we find

|U(x0)| ≤ CεIj0 + Cε| [U ]Bj0
|+ Cε

(ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

) 1
p−1

+
1

5
|U(x0)|+ sγ0 .

This implies (3.14) as desired.
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Case 3: If Tj ≤ |U(x0)| for any j ≥ j0, then from (3.10) we have for any m > j0,

| [U ]Bm+1
| ≤ CIj0 + | [U ]Bj0

|+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

] 1
p−1

+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

]
|U(x0)|2−p + C

m−1∑
j=j0

ω(Rj)
γ0 |U(x0)|

≤ CIj0 + | [U ]Bj0
|+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

] 1
p−1

+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

]
|U(x0)|2−p +

1

10
|U(x0)|.

Here we used (3.11) in the last inequality. Letting m→∞ we get

|U(x0)| ≤ CIj0 + |[U ]Bj0 |+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

] 1
p−1

+ C

[ˆ 2Rj0−1

0

(
|µ|(Bρ(x0))

ρn−1

)γ0 dρ
ρ

]
|U(x0)|2−p +

1

10
|U(x0)|.

Then using Young’s inequality we deduce (3.14). The proof is complete.

4 Global pointwise gradient estimates

We shall prove Theorem 1.4 in this section. As discussed earlier, by a standard approximation
we may assume that u ∈ W 1,p

0 (Ω) is a solution of (1.1). We shall prove (2.1) for any

x = x0 ∈ Ω, a Lebesgue point of (s2 + |∇u|2)
γ0−1

2 ∇u.
By Theorem 1.1 we have

|∇u(x0)| ≤ C
[
P2diam(Ω)
γ0 (|µ|)(x0)

] 1
γ0(p−1)

+ C
( 

Bd(x0)(x0)
|∇u(y)|γ0dy

) 1
γ0 + C s. (4.1)

Recall that by a standard estimate (see, e.g., the proof of [17, Lemma 2.2]), we have

ˆ
Ω
|∇u|γ0 ≤ C (diam(Ω))

n− γ0(n−1)
p−1 |µ|(Ω)

γ0
p−1 + C diam(Ω)nsγ0 . (4.2)

Thus we may assume that d(x0) ≤ r1/2 for any sufficiently small r1 > 0. Recall
that Ω is a (δ,R0)-Reifenberg flat domain for some R0 > 0. Therefore, we may further
assume that d(x0) ≤ r1/2 ≤ R0/100 ≤ diam(Ω)/1000.

Let x1 ∈ ∂Ω be such that |x1 − x0| = d(x0). For any r ∈ (0, r1] we consider the
unique solution w ∈W 1,p

0 (Ω2r(x1)) + u to the following equation{
−div (A(x,∇w)) = 0 in Ω2r(x1),

w = u on ∂Ω2r(x1),
(4.3)

where we write Ωr(x1) = Ω ∩Br(x1).
We have the following boundary counterpart of Lemma 3.2 (see [17, Lemma 2.5]).
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Lemma 4.1 Let w be as in (4.3) and γ0 be as in Lemma 3.2. Then it holds that( 
B2r(x1)

|∇u−∇w|γ0dx

) 1
γ0

≤ C
[
|µ|(B2r(x1))

rn−1

] 1
p−1

+ C
|µ|(B2r(x1))

rn−1

( 
B2r(x1)

(|∇u|+ s)γ0dx

) 2−p
γ0

.

Next, we let v ∈ w +W 1,p
0 (Ωr(x1)) be the unique solution of{

−div (A(x1,∇v)) = 0 in Ωr(x1),
v = w on ∂Ωr(x1).

In what follows, we shall tacitly extend u by zero to Rn \Ω. Then extend w by u to
Rn \ Ω2r(x1) and v by w to Rn \ Ωr(x1). As in (3.4), we also have an estimate for the
difference ∇v −∇w : 

Br(x1)
|∇v −∇w|γ0dx ≤ Cω(r)γ0

 
B2r(x1)

(|∇w|+ s)γ0dx. (4.4)

We will need the following boundary counterpart of (3.3). But here, due to the
possible irregularity of Ω, we only have Lq-estimates for the gradient of v for any large
exponent q < +∞. We shall use the idea from [18] to obtain such a result.

Lemma 4.2 Let q > p and x1 ∈ ∂Ω, 0 < r ≤ r1 ≤ R0/50, and v be as above. There
exists δ = δ(q) > 0 such that if Ω is a (δ,R0)-Reifenberg flat domain then( 

Br/800(x1)
|∇v|q

)1/q

≤ C

( 
Br(x1)

(|∇v|+ s)γ0

) 1
γ0

. (4.5)

Here the constant C does not depend on r. In particular, for any ε ∈ (0, 1/800),
 
Bεr(x1)

|∇v|γ0 ≤ Cε−
γ0n
q

 
Br(x1)

(|∇v|+ s)γ0 .

To prove Lemma 4.2, we use the following lemma (see [20, Theorem 3]).

Lemma 4.3 Let 0 < ε < 1 and BR be a ball of radius R in Rn. Let E ⊂ F ⊂ BR be two
measurable sets with |E| < ε|BR| and satisfy the following property: for all x ∈ BR and
ρ ∈ (0, R], we have Bρ(x)∩BR ⊂ F provided |E ∩Bρ(x)| ≥ ε|Bρ(x)|. Then |E| ≤ Bε|F |
for some B = B(n).

Proof of Lemma 4.2. Assume that Ω is a (δ,R0)-Reifenberg flat domain and 0 <
r ≤ r1 ≤ R0/50.
Step 1. Let M be the standard Hardy-Littlewood maximal function and write 1E to
denote the characteristic function of a set E. Set ρ = r/800 and for λ > 0 let

Eλ =
{

(M(1B8ρ(x1)|∇v|γ0))1/γ0 > λ
}
∩Bρ(x1).

In this step, we show that for any ε > 0 one can find constants δ1 = δ1(n, p,Λ, ε) ∈
(0, 1), δ2 = δ2(n, p,Λ, ε) ∈ (0, 1) and Λ0 = Λ0(n, p, γ0,Λ) > 1 such that if δ ≤ δ1, we have

|EΛ0λ| ≤ Cε|Eλ| (4.6)
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for any λ ≥ T0, where we define

T0 := δ−1
2

( 
B800ρ(x1)

(|∇v|+ s)γ0dx

) 1
γ0

.

Since M is a bounded operator from L1(Rn) into L1,∞(Rn), we have for λ ≥ T0,

|EΛ0λ| ≤
C(n)

(Λ0λ)γ0

ˆ
B8ρ(x1)

|∇v|γ0dx ≤ C(n)(δ2/Λ0)γ0 |B800ρ(x1)| ≤ ε |Bρ(x1)| , (4.7)

provided δ2 ≤ (800−nε/C(n))1/γ0Λ0.
Next we verify that for any x ∈ Bρ(x1), ρ1 ∈ (0, ρ] and λ ≥ T0 we have

|EΛ0λ ∩Bρ1(x)| ≥ ε |Bρ1(x)| =⇒ Bρ1(x) ∩Bρ(x1) ⊂ Eλ, (4.8)

provided δ and δ2 are small enough depending on n, p,Λ, γ0, ε. Therefore, using (4.7)-
(4.8) and applying Lemma 4.3 with E = EΛ0λ and F = Eλ we get (4.6).

To prove (4.8), take x ∈ Bρ(x1), ρ1 ∈ (0, ρ], and λ ≥ T0, and by contradiction, let us
assume that Bρ1(x) ∩ Bρ(x1) ∩ (Eλ)c 6= ∅, i.e., there exists x2 ∈ Bρ1(x) ∩ Bρ(x1) such
that

(M(1B8ρ(x1)|∇v|γ0)(x2))1/γ0 ≤ λ. (4.9)

We need to prove that

|EΛ0λ ∩Bρ1(x)| < ε |Bρ1(x)| . (4.10)

Clearly, for any y ∈ Bρ1(x)

(M(1B8ρ(x1)|∇v|γ0)(y))1/γ0 ≤ max

{(
M
(
1B2ρ1 (x)|∇v|γ0

)
(y)
) 1
γ0 , 3

n
γ0 λ

}
,

and thus for all λ ≥ T0 and Λ0 ≥ 3
n
γ0 ,

EΛ0λ ∩Bρ1(x) ⊂
{(

M
(
1B2ρ1 (x)|∇v|γ0

)) 1
γ0 > Λ0λ

}
∩Bρ(x1) ∩Bρ1(x). (4.11)

Now to prove (4.10) we separately consider the case B4ρ1(x) ⊂⊂ Ω and the case

B4ρ1(x) ∩ Ωc 6= ∅.

1. The case B4ρ1(x) ⊂⊂ Ω: Since div (A(x1,∇v)) = 0 in B4ρ1(x), by the standard
regularity estimate, we have

||∇v||L∞(B3ρ1 (x)) ≤ C

( 
B4ρ1 (x)

(|∇v|+ s)γ0

) 1
γ0

≤ C1

( 
B5ρ1 (x2)

(|∇v|+ s)γ0

) 1
γ0

.

Thus, using (4.9) and s ≤ δ2λ ≤ λ, we find

||∇v||L∞(B3ρ1 (x)) ≤ C1 (λ+ s) ≤ 2C1λ.

Then for Λ0 ≥ max{3
n
γ0 , 4C1}, we have ||∇v||L∞(B3ρ1 (x)) ≤ 1

2Λ0λ and so by (4.11)
EΛ0λ ∩Bρ1(x) = ∅. In particular, we have (4.10).
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2. The case B4ρ1(x) ∩ Ωc 6= ∅: Let x3 ∈ ∂Ω be such that |x3 − x| = dist(x, ∂Ω). We
have

B2ρ1(x) ⊂ B6ρ1(x3) ⊂ B600ρ1(x3) ⊂ B605ρ1(x2).

Thanks to [17, Proposition 2.6], (see also [18, Corollary 2.13]), for any η > 0 there exists
δ1 = δ1(n, p,Λ, η) be such that the following holds. If δ ≤ δ1, there exists a function
ṽ ∈W 1,∞(B6ρ1(x3)) such that

‖∇ṽ‖L∞(B6ρ1 (x3)) ≤ C0

( 
B600ρ1 (x3)

(|∇v|+ s)γ0

)1/γ0

,

and ( 
B6ρ1 (x3)

|∇(v − ṽ)|γ0
) 1

γ0

≤ η

( 
B600ρ1 (x3)

(|∇v|+ s)γ0

)1/γ0

.

Note that if ρ1 ≤ ρ/100, then( 
B600ρ1 (x3)

(|∇v|+ s)γ0

)1/γ0

≤ 2
n
γ0 (M(1B8ρ(x1)|∇v|γ0)(x2))1/γ0 + s ≤ 2

n
γ0

+1
λ,

and if ρ1 ≥ ρ/100, then since ρ1 ≤ ρ,( 
B600ρ1 (x3)

(|∇v|+ s)γ0

)1/γ0

≤ 10
3n
γ0

( 
B800ρ(x1)

(|∇v|+ s)γ0

)1/γ0

≤ 10
3n
γ0 δ2λ.

Hence,

‖∇ṽ‖L∞(B2ρ1 (x)) ≤ 10
3n
γ0C0λ,

and ( 
B2ρ1 (x)

|∇(v − ṽ)|γ0
) 1

γ0

≤ 10
4n
γ0 ηλ.

Choosing Λ0 = max{3
n
γ0 , 4C1, 2

1
γ0 10

3n
γ0C0}, we have

|EΛ0λ ∩Bρ1(x)| ≤
∣∣∣∣{(M

(
1B2ρ1 (x)|∇(v − ṽ)|γ0

)) 1
γ0 > 2

− 1
γ0 Λ0λ

}∣∣∣∣
≤ C(n)(

2
− 1
γ0 Λ0λ

)γ0 ˆ
B2ρ1 (x)

|∇(v − ṽ)|γ0

≤ 2C(n)

(Λ0λ)γ0

(
10

4n
γ0 ηλ

)γ0
|B2ρ1(x)|

< ε |Bρ1(x)| ,

for η =
(
ε/(105nC(n))

)1/γ0 . This gives (4.10).
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Step 2. Thanks to (4.6), we have that for λ0 = Λ0T0,
ˆ
Bρ(x1)

(M(1B8ρ(x1)|∇v|γ0))q/γ0dx

= q

ˆ ∞
0

λq−1
∣∣∣{|(M(1B8ρ(x1)|∇v|γ0))1/γ0 > λ

}
∩Bρ(x1)

∣∣∣ dλ
≤ q

ˆ λ0

0
λq−1|Bρ(x1)|dλ

+ Cqε

ˆ ∞
λ0

λq−1
∣∣∣{|(M(1B8ρ(x1)|∇v|γ0))1/γ0 > λ/Λ0

}
∩Bρ(x1)

∣∣∣ dλ
≤ λq0|Bρ(x1)|+ CΛq0ε

ˆ
Bρ(x1)

(M(1B8ρ(x1)|∇v|γ0))q/γ0dx.

Thus letting ε = 1
2CΛq0

, we get 1

 
Bρ(x1)

|∇v|qdx ≤ C T q0 = C

( 
B800ρ(x1)

(|∇v|+ s)γ0dx

) q
γ0

.

Now recall that ρ = r/800 and hence (4.5) follows. This completes the proof of the
theorem.

The following technical lemma can be found in [12, Lemma 3.4].

Lemma 4.4 Let φ be a nonnegative and nondecreasing functions on (0, D]. Suppose
that there are nonnegative constants A,B, α, β with α > β such that

φ(ρ) ≤ A [(ρ/R)α + η]φ(R) +BRβ,

for all 0 < ρ ≤ R ≤ D. Then for any γ ∈ [β, α), there exits positive η0 = η0(α, β, γ,A)
such that if η ≤ η0 we have

Φ(ρ) ≤ C(ρ/R)γΦ(R) + CBρβ,

for all 0 < ρ ≤ R ≤ D. Here C = C(α, β, γ,A).

We are now ready to finish the proof of Theorem 1.4. Let κ ∈ (0, 1/2) be fixed. By
Lemma 4.2, there exists δ = δ(κ) > 0 such that if Ω is a (δ,R0)-Reifenberg flat domain
then ˆ

Bεr(x1)
|∇v|γ0 ≤ Cεn−γ0κ/2

ˆ
Br(x1)

|∇v|γ0

for all r ≤ r1 and ε ∈ (0, 1/800). Writing Br = Br(x1), we thus haveˆ
Bεr

|∇u|γ0

≤ c
ˆ
Bεr

|∇v|γ0 + c

ˆ
Bεr

|∇v −∇w|γ0 + c

ˆ
Bεr

|∇u−∇w|γ0

≤ c εn−γ0κ/2
ˆ
Br

|∇v|γ0 + c

ˆ
Br

|∇v −∇w|γ0 + c

ˆ
Br

|∇u−∇w|γ0

≤ c εn−γ0κ/2
ˆ
Br

|∇u|γ0 + c

ˆ
Br

|∇v −∇w|γ0 + c

ˆ
Br

|∇u−∇w|γ0 . (4.12)

1A limiting argument can be used to justify that
´
Bρ(x1)

(M(1B8ρ(x1)|∇v|γ0))q/γ0dx is finite.
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At this point, we use Lemma 4.1 to bound the last term in (4.12) and use (4.4) to
bound the seccond to last term in (4.12). This gives for any ε, η ∈ (0, 1/800),

ˆ
Bεr

|∇u|γ0 ≤ C
(
εn−γ0κ/2 + ω(r)γ0

)ˆ
B2r

(|∇u|+ s)γ0 + Crn
[
|µ|(B2r)

rn−1

] γ0
p−1

+ Crn(p−1)

(
|µ|(B2r)

rn−1

)γ0 (ˆ
B2r

(|∇u|+ s)γ0dx

)2−p

≤ C
(
εn−γ0κ/2 + ω(r)γ0 + η

) ˆ
B2r

(|∇u|+ s)γ0 + Cη r
n

[
|µ|(B2r)

rn−1

] γ0
p−1

.

Here we use Young’s inequality in the last inequality. Note that this holds for any
r ∈ (0, r1] and by enlarging C if necessary it also holds for any ε ∈ (0, 2). Thus we find

ˆ
Bρ(x1)

|∇u|γ0 ≤ C
(

(ρ/R)n−γ0κ/2 + ω(r1)γ0 + η
)ˆ

BR(x1)
|∇u|γ0

+ Cη R
n−γ0κrγ0κ1

([
P2diam(Ω)
γ0 (|µ|)(x0)

] 1
p−1

+ sγ0
)
,

for all 0 < ρ ≤ R ≤ 2r1.
Now applying Lemma 4.4 to φ(r) =

´
Br(x1) |∇u|

γ0 , r ∈ (0, 2r1), we obtain

ˆ
Bρ(x1)

|∇u|γ0 ≤ C(ρ/R)n−γ0κ
ˆ
BR(x1)

|∇u|γ0

+ C ρn−γ0κrγ0κ1

([
P2diam(Ω)
γ0 (|µ|)(x0)

] 1
p−1

+ sγ0
)
,

provided that ω(r1) and η are small enough. In particular, for R = 2r1 and ρ = 2d(x0)
we find  

B2d(x0)
(x1)
|∇u|γ0

≤ C
(

r1

d(x0)

)γ0κ( 
B2r1 (x1)

|∇u|γ0 +
[
P2diam(Ω)
γ0 (|µ|)(x0)

] 1
p−1

+ sγ0

)
.

This implies
 
Bd(x0)(x0)

|∇u|γ0

≤ C
(

r1

d(x0)

)γ0κ( 
B2r1 (x1)

|∇u|γ0 +
[
P2diam(Ω)
γ0 (|µ|)(x0)

] 1
p−1

+ sγ0

)

≤ C(r1) d(x0)−γ0κ
([

P2diam(Ω)
γ0 (|µ|)(x0)

] 1
p−1

+ sγ0
)
,

where we used (4.2) in the last inequality.
Now applying this result to (4.1) we arrive at (1.13). This completes the proof of

Theorem 1.4.

Remark 4.5 Our argument works also in the case p > 2− 1
n provided we use the local

interior pointwise gradient estimates obtained in the work [8, 16]. In this case, of course

the truncated Riesz’s potential I
2diam(Ω)
1 (|µ|) is used in placed of P

2diam(Ω)
γ0 (|µ|)1/γ0.
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