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Abstract. The aim of this note is to study existence and main properties of direct and inverse

limits in the category of normed L0-modules (in the sense of Gigli) over a metric measure space.

Contents

Introduction 1

1. Preliminaries 3

1.1. Normed L0(m)-modules 3

1.2. Direct and inverse limits in a category 7

1.3. Direct and inverse limits of R-modules 8

2. Direct limits of normed L0(m)-modules 9

2.1. Definition 9

2.2. Main properties 10

3. Inverse limits of normed L0(m)-modules 14

3.1. Definition 14

3.2. Main properties 15

References 18

Introduction

Recent years have witnessed a growing interest of the mathematical community towards the

differential calculus on nonsmooth spaces. In this regard, an important contribution is represented

by N. Gigli’s paper [3], wherein a first-order differential structure for metric measure spaces has

been proposed. Such theory is based upon the key notion of normed L0-module, which provides

a generalisation of the concept of ‘space of measurable sections of a measurable Banach bundle’.

The main aim of the present manuscript is to prove that direct limits always exist in the category

of normed L0-modules. Furthermore, we shall report the proof of existence of inverse limits

of normed L0-modules, which has been originally achieved in [5]. Finally, we will investigate

the relation between direct/inverse limits and other natural operations that are available in this

framework, such as dual and pullback.

Overview of the content. The concept of normed L0-module that we are going to describe has

been originally introduced in [3] and then further refined in [4]. We propose here an equivalent

reformulation of its definition, which is tailored to our purposes.
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Let (X, d,m) be a given metric measure space. Consider an algebraic module M over the

commutative ring L0(m) of all real-valued Borel functions defined on X (up to m-a.e. equality).

By pointwise norm on M we mean a map | · | : M → L0(m) satisfying the following properties:

|v| ≥ 0 m-a.e. for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v|+ |w| m-a.e. for every v, w ∈M ,

|f · v| = |f ||v| m-a.e. for every v ∈M and f ∈ L0(m).

The pointwise norm | · | can be naturally associated with a distance dM on M : chosen a Borel

probability measure m′ on X that is mutually absolutely continuous with respect to m, we define

dM (v, w) :=

∫
|v − w| ∧ 1 dm′ for every v, w ∈M .

Then we say that the couple
(
M , | · |

)
is a normed L0(m)-module provided the relative metric

space (M , dM ) is complete. The crucial example of normed L0-module one should keep in mind is

the space of Borel vector fields on a Riemannian manifold (with the usual pointwise operations).

Given two normed L0(m)-modules M and N , we say that a map ϕ : M → N is a morphism

provided it is a morphism of L0(m)-modules satisfying the inequality
∣∣ϕ(v)

∣∣ ≤ |v| in the m-a.e.

sense for every v ∈ M . Consequently, we can consider the category of normed L0(m)-modules.

The scope of these notes is to analyse direct and inverse limits in such category. More in detail:

i) We prove that any direct system in the category of normed L0(m)-modules admits a

direct limit (cf. Theorem 2.1). Among other properties, we show (cf. Lemma 2.5) that

any normed L0(m)-module can be written as a direct limit of finitely-generated modules

(which is significant to the application b) we shall illustrate at the end of this introduction)

and (cf. Theorem 2.12) that the direct limit functor commutes with the pullback functor.

ii) Existence of inverse limits in the category of normed L0(m)-modules has been already

proven by the author, together with N. Gigli and E. Soultanis, in the paper [5]. In order

to make these notes self-contained, we shall recall the proof of such fact in Theorem 3.1.

We also examine several (not previously known) properties of inverse limits in this setting;

for instance, we prove that ‘the dual of the direct limit coincides with the inverse limit

of the duals’ (see Corollary 3.11). On the other hand, inverse limit functor and pullback

functor do not commute (see Remark 3.12).

It is worth to underline that the category of normed L0(m)-modules reduces to that of Banach

spaces as soon as the reference measure m is a Dirac measure δx̄ concentrated on some point x̄ ∈ X,

whence the above-mentioned features of direct and inverse limits of normed L0-modules might be

considered as a generalisation of the corresponding ones for Banach spaces.

Motivation and related works. Besides the theoretical interest, the study of direct and inverse limits

in the category of normed L0-modules is principally motivated by the following two applications:

a) Differential of a metric-valued locally Sobolev map. Any metric measure

space (X, dX,m) can be canonically associated with a cotangent module L0
m(T ∗X) and a

tangent module L0
m(TX), which are normed L0(m)-modules that supply an abstract notion

of ‘measurable 1-forms on X’ and ‘measurable vector fields on X’, respectively; we refer the

interested reader to [3, 4] for a detailed description of such objects. Moreover, there are

several ways to define Sobolev maps from (X, dX,m) to a complete metric space (Y, dY).

One of possible approaches is via post-composition with Lipschitz functions (cf. [6]). Given

any map u : X → Y that is locally Sobolev in the above sense, one can always select a

distinguished object |Du| ∈ L2
loc(X, dX,m) – called minimal weak upper gradient of u –
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which plays the role of the ‘modulus of the differential of u’. The purpose of the work

[5] was to build the differential du associated to u, defined as a linear operator between

(suitable variants of) tangent modules. More precisely, in the special case in which |Du| is
globally 2-integrable the differential of u is a map from L0

m(TX) to
(
u∗L0

µ(T ∗Y)
)∗

, where

the measure µ is defined as µ := u∗
(
|Du|2 m

)
. The precise choice of this finite Borel

measure µ on Y is due to the fact that it enjoys nice composition properties. On the other

hand, if the function |Du| is just locally 2-integrable, then the measure u∗
(
|Du|2 m

)
may

no longer be σ-finite (thus accordingly the cotangent module L0
µ(T ∗Y) is not well-defined).

The strategy one can adopt to overcome such difficulty is the following: the family F(u)

of all open subsets Ω of X satisfying
∫

Ω
|Du|2 dm < +∞ is partially ordered by inclusion,

whence the idea is to initially deal with the ‘approximating’ modules L0
µΩ

(T ∗Y) – where

we set µΩ := u∗
(
χΩ |Du|2 m

)
– and then pass to the inverse limit with respect to Ω ∈ F(u).

b) Concrete representation of a separable normed L0-module. A significant way

to build normed L0-modules is to provide some reasonable notion of measurable Banach

bundle and consider the space of its measurable sections (up to a.e. equality). Nevertheless,

it is not clear whether any normed L0-module actually admits a similar representation.

In this direction, it is proven in [8] that each finitely-generated normed L0-module can be

viewed as the space of sections of some bundle. The aim of the forthcoming paper [1] is

to extend this result to all separable normed L0-modules. One of the possible approaches

to achieve such goal is to realise any separable normed L0-module M as the direct limit

(with respect to a countable set of indices) of finitely-generated normed L0-modules Mn

and to apply the previously known result to each module Mn.

Acknowledgements. I would like to thank Danka Lučić and Tapio Rajala for their careful reading

of a preliminary version of this manuscript.

1. Preliminaries

1.1. Normed L0(m)-modules. For our purposes, a metric measure space is a triple (X, d,m),

where (X, d) is a complete and separable metric space, while m ≥ 0 is a Radon measure on (X, d).

We denote by L0(m) the space of all Borel functions f : X→ R considered up to m-a.e. equality. It

is well-known that L0(m) is both a topological vector space and a topological ring when equipped

with the usual pointwise operations and with the topology induced by the distance

dL0(m)(f, g) :=

∫
|f − g| ∧ 1 dm′ for every f, g ∈ L0(m),

where m′ is any Borel probability measure on X with m � m′ � m. Given any (not necessarily

countable) family {fi}i∈I ⊆ L0(m), we denote by ess supi∈Ifi ∈ L0(m) and ess infi∈Ifi ∈ L0(m)

its essential supremum and essential infimum, respectively.

Definition 1.1 (Pointwise norm). Let M be a module over the commutative ring L0(m). Then

we say that a map | · | : M → L0(m) is a pointwise seminorm on M provided

|v| ≥ 0 for every v ∈M ,

|v + w| ≤ |v|+ |w| for every v, w ∈M ,

|f · v| = |f ||v| for every v ∈M and f ∈ L0(m),

where all inequalities are intended in the m-a.e. sense. Moreover, we say that | · | is a pointwise

norm on M if in addition it holds that |v| = 0 m-a.e. if and only if v = 0.
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Any pointwise seminorm can be naturally associated with the following pseudometric:

dM (v, w) :=

∫
|v − w| ∧ 1 dm′ for every v, w ∈M ,

where m′ is any given Borel probability measure on X such that m� m′ � m. It holds that dM

is a distance if and only if | · | is a pointwise norm.

With this said, we can give a definition of normed L0(m)-module that is fully equivalent to the

one that has been proposed in [3, 4]:

Definition 1.2 (Normed L0(m)-module). A normed L0(m)-module is a module M over L0(m)

endowed with a pointwise norm | · | whose associated distance dM is complete.

A morphism ϕ : M → N between two normed L0(m)-modules M and N is any L0(m)-module

morphism – i.e. satisfying ϕ(f · v) = f · ϕ(v) for every f ∈ L0(m) and v ∈M – such that∣∣ϕ(v)
∣∣ ≤ |v| holds m-a.e. for every v ∈M .

This allows us to speak about the category of normed L0(m)-modules.

Example 1.3. Let us suppose that m = δx̄ for some point x̄ ∈ X. Then the ring L0(δx̄) can be

canonically identified with the field R, thus accordingly the category of normed L0(δx̄)-modules is

(equivalent to) the category of Banach spaces. �

Definition 1.4 (Generators). Let M be a normed L0(m)-module. Then a family S ⊆M is said

to generate M provided the smallest L0(m)-module containing S is dM -dense in M , i.e.{∑n

i=1
fi · vi

∣∣∣ n ∈ N, (fi)
n
i=1 ⊆ L0(m), (vi)

n
i=1 ⊆ S

}
is dM -dense in M .

Lemma 1.5 (Metric identification). Let M be an L0(m)-module with a pointwise seminorm | · |.
Consider the following equivalence relation on M : given any v, w ∈ M , we declare that v ∼ w

provided |v − w| = 0 holds m-a.e. on X. Then the quotient M / ∼ inherits an L0(m)-module

structure and the map
∣∣[v]∼

∣∣ := |v| is a pointwise norm on M / ∼.

Proof. The set N :=
{
v ∈ M : |v| = 0 m-a.e.

}
is clearly a submodule of M , thus the quotient

space M / ∼= M /N has a canonical L0(m)-module structure. Given that∣∣|v| − |w|∣∣ ≤ |v − w| holds m-a.e. for every v, w ∈M ,

the map | · | : M / ∼→ L0(m) defined by
∣∣[v]∼

∣∣ := |v| is well-posed and satisfies all the pointwise

norm axioms. This gives the statement. �

Lemma 1.6 (Metric completion). Let M be an L0(m)-module with a pointwise norm | · |. Then

there exists a unique (up to unique isomorphism) couple (M0, ι), where

i) M0 is a normed L0(m)-module,

ii) ι : M →M0 is an L0(m)-linear map preserving the pointwise norm,

such that the range ι(M ) is dense in M0 with respect to the distance dM0
.

Proof. Denote by (M0, ι) the completion of the metric space (M , dM ), which is known to be

unique up to unique isomorphism. The pointwise norm | · | : ι(M )→ L0(m) can be easily proved

to be continuous from
(
ι(M ), dι(M )

)
to
(
L0(m), dL0(m)

)
, whence it can be uniquely extended to

a continuous map | · | : M0 → L0(m). Arguing by approximation, we conclude that the extended

map | · | is a pointwise norm on M0 and that dM0(v, w) =
∫
|v − w| ∧ 1 dm′ for every v, w ∈M0.

This proves the validity of the statement. �
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Given any two normed L0(m)-modules M and N , we define the space Hom(M ,N ) as

Hom(M ,N ) :=
{
T : M → N

∣∣∣ T is L0(m)-linear and continuous
}
.

Standard arguments show that for any T ∈ Hom(M ,N ) there exists ` ∈ L0(m) such that∣∣T (v)
∣∣ ≤ ` |v| holds m-a.e. for every v ∈M . (1.1)

It turns out that the function

|T | := ess sup
{∣∣T (v)

∣∣ ∣∣∣ v ∈M , |v| ≤ 1 holds m-a.e.
}
∈ L0(m) (1.2)

is the minimal function ` (in the m-a.e. sense) for which (1.1) is satisfied. We point out that an

element T ∈ Hom(M ,N ) is a morphism between M and N (in the categorical sense) if and only

if |T | ≤ 1 holds m-a.e. on X. Furthermore, the space Hom(M ,N ) inherits a natural structure of

normed L0(m)-module if endowed with the pointwise operations

(T + S)(v) := T (v) + S(v) for every T, S ∈ Hom(M ,N ),

(f · T )(v) := f · T (v) for every f ∈ L0(m) and T ∈ Hom(M ,N )

and with the pointwise norm operator Hom(M ,N ) 3 T 7→ |T | ∈ L0(m) introduced in (1.2).

Definition 1.7 (Dual of a normed L0(m)-module). Let M be a normed L0(m)-module. Then we

define its dual normed L0(m)-module M ∗ as

M ∗ := Hom
(
M , L0(m)

)
.

(Observe that L0(m) itself can be viewed as a normed L0(m)-module.)

Let M , N be any two normed L0(m)-modules and let ϕ : M → N be a given morphism.

Then the adjoint operator ϕadj : N ∗ →M ∗ is defined as

ϕadj(ω) := ω ◦ ϕ for every ω ∈ N ∗. (1.3)

It is immediate to check that ϕadj is a morphism of normed L0(m)-modules as well.

Remark 1.8. Define L1 := L1|[0,1]
and consider a Banach space B. Then the space L0

(
[0, 1],B

)
of all (strongly) Borel maps from [0, 1] to B (considered up to L1-a.e. equality) can be easily shown

to be a normed L0(L1)-module if endowed with the following operations:

(u+ v)(t) := u(t) + v(t),

(f · u)(t) := f(t)u(t),

|u|(t) :=
∥∥u(t)

∥∥
B

for L1-a.e. t ∈ [0, 1],

for every u, v ∈ L0
(
[0, 1],B

)
and f ∈ L0(L1). By combining the results of [3, Section 1.6] with the

properties of the L0-completion studied in [4], one can deduce that L0
(
[0, 1],B′

)
is isometrically

embedded into L0
(
[0, 1],B

)∗
and that

L0
(
[0, 1],B

)∗ ∼= L0
(
[0, 1],B′

)
⇐⇒ B′ has the Radon-Nikodým property, (1.4)

where B′ stands for the dual of B as a Banach space. (We refer to [2] for the definition of the

Radon-Nikodým property and its main properties.) �

Theorem 1.9 (Pullback of a normed L0(m)-module). Let (X, dX,mX), (Y, dY,mY) be metric

measure spaces. Let f : X→ Y be a Borel map with f∗mX � mY. Then it holds that:
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i) Let M be a given normed L0(mY)-module. Then there exists a unique couple (f∗M , f∗) –

where f∗M is a normed L0(mX)-module and f∗ : M → f∗M is a linear map – such that

|f∗v| = |v| ◦ f m-a.e. for every v ∈M ,

{f∗v : v ∈M } generates f∗M .
(1.5)

Uniqueness is up to unique isomorphism: given any other couple (M0, T ) with the same

properties, there is a unique normed L0(mX)-module morphism Φ: f∗M →M0 such that

M f∗M

M0

f∗

T
Φ

is a commutative diagram.

ii) Let M , N be two given normed L0(mY)-modules. Let ϕ : M → N be a morphism of

normed L0(mY)-modules. Then there exists a unique morphism f∗ϕ : f∗M → f∗N of

normed L0(mX)-modules such that

M N

f∗M f∗N

ϕ

f∗ f∗

f∗ϕ

is a commutative diagram.

Remark 1.10. The notion of pullback of a normed L0(m)-module introduced in Theorem 1.9

above fits in the framework of category theory; we refer to [3, Remark 1.6.4] for the details. �

Example 1.11. Consider two metric measure spaces (Y, dY,mY), (Z, dZ,mZ) with mZ finite. We

endow the space X := Z×Y with the product distance dX = dZ × dY, defined as

(dZ × dY)
(
(z1, y1), (z2, y2)

)
:=
√
d2

Z(z1, z2) + d2
Y(y1, y2) for every (z1, y1), (z2, y2) ∈ X,

and the product measure mX := mZ ⊗ mY. Moreover, we call π : X → Y the natural projection

map (z, y) 7→ y, which is continuous and satisfies π∗mX = mZ(Z)mY � mY.

Given any normed L0(mY)-module M , we define the space L0(Z,M ) as the family of all

(strongly) Borel maps V : Z→M considered up to mZ-a.e. equality. It is straightforward to check

that the space L0(Z,M ) is a normed L0(mX)-module if equipped with the following operations:

(V +W )(z) := V (z) +W (z) ∈M for mZ-a.e. z ∈ Z,

(f · V )(z) := f(z, ·) · V (z) ∈M for mZ-a.e. z ∈ Z,

|V |(z, y) :=
∣∣V (z)

∣∣(y) for mX-a.e. (z, y) ∈ X,

for every V,W ∈ L0(Z,M ) and f ∈ L0(mX); this constitutes a generalisation of what has been

described in Remark 1.8. Finally, we denote by T: M → L0(Z,M ) the linear operator sending

any element v ∈M to the map T(v) : Z→M identically equal to v. We thus claim that(
L0(Z,M ),T

) ∼= (π∗M , π∗). (1.6)

In order to prove it, we need to show that the two properties in (1.5) are satisfied. For the first

one, notice that for any v ∈M it holds that∣∣T(v)
∣∣(z, y) =

∣∣T(v)(z)
∣∣(y) = |v|(y) = |v|

(
π(z, y)

)
=
(
|v| ◦ π

)
(z, y) for mX-a.e. (z, y) ∈ X.

For the second one, just observe that simple maps (i.e. Borel maps from Z to M whose range is

of finite cardinality) are dense in L0(Z,M ). Therefore the claim (1.6) is proven. �
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1.2. Direct and inverse limits in a category. The purpose of this subsection is to recall the

notion of direct/inverse limit in an arbitrary category; we refer, for instance, to [9] for a detailed

account on this topic.

Fix a directed (partially ordered) set (I,≤), which is a nonempty partially ordered set such that

any pair of elements admits an upper bound (i.e. for every i, j ∈ I there exists k ∈ I satisfying

both i ≤ k and j ≤ k). The directed set (I,≤) can be considered as a small category I, whose

objects are the elements of I and whose morphisms are defined as follows: given any i, j ∈ I, there

is a (unique) morphism i→ j if and only if i ≤ j. Let us also fix an arbitrary category C.

A direct system in C over I is any couple
(
{Xi}i∈I , {ϕij}i≤j

)
, where {Xi : i ∈ I} is a family

of objects of C, while {ϕij : i, j ∈ I, i ≤ j} is a family of morphisms ϕij : Xi → Xj satisfying the

following properties:

i) ϕii is the identity of Xi for every i ∈ I.

ii) ϕik = ϕjk ◦ ϕij for every i, j, k ∈ I with i ≤ j ≤ k.

Equivalently, a direct system in C over I is a covariant functor I → C.
We can define the direct limit of the direct system

(
{Xi}i∈I , {ϕij}i≤j

)
via a universal property.

We say that
(

lim−→X?, {ϕi}i∈I
)

– where lim−→X? is an object of C and {ϕi : i ∈ I} is a family of

morphisms ϕi : Xi → lim−→X? called canonical morphisms – is the direct limit of
(
{Xi}i∈I , {ϕij}i≤j

)
provided the following properties hold:

a)
(

lim−→X?, {ϕi}i∈I
)

is a target, i.e. the diagram

Xi Xj

lim−→X?

ϕij

ϕi
ϕj

commutes for every i, j ∈ I such that i ≤ j.
b) Given any target

(
Y, {ψi}i∈I

)
, there exists a unique morphism Φ: lim−→X? → Y such that

Xi lim−→X?

Y

ϕi

ψi
Φ

is a commutative diagram for every i ∈ I.

In general, a direct system in an arbitrary category might not admit a direct limit. Nevertheless,

whenever the direct limit exists, it has to be unique up to unique isomorphism: given any other

direct limit
(
X, {ϕ′i}i∈I

)
of
(
{Xi}i∈I , {ϕij}i≤j

)
, there is a unique isomorphism I : X → lim−→X?

such that ϕi = I ◦ ϕ′i holds for every i ∈ I.

An inverse system in C over I is any couple
(
{Xi}i∈I , {Pij}i≤j

)
, where {Xi : i ∈ I} is a family

of objects of C, while {Pij : i, j ∈ I, i ≤ j} is a family of morphisms Pij : Xj → Xi satisfying the

following properties:

i) Pii is the identity of Xi for every i ∈ I.

ii) Pik = ϕij ◦ ϕjk for every i, j, k ∈ I with i ≤ j ≤ k.

Equivalently, an inverse system in C over I is a contravariant functor I → C.
We can define the inverse limit of the inverse system

(
{Xi}i∈I , {Pij}i≤j

)
via a universal pro-

perty. We say that
(

lim←−X?, {Pi}i∈I
)

– where lim←−X? is an object of C and {Pi : i ∈ I} is a family of
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morphisms Pi : lim←−X? → Xi called natural projections – is the inverse limit of
(
{Xi}i∈I , {Pij}i≤j

)
provided the following properties hold:

a) The diagram

lim←−X?

Xj Xi

PiPj

Pij

commutes for every i, j ∈ I such that i ≤ j.
b) Given any other such couple

(
Y, {Qi}i∈I

)
– namely satisfying Qi = Pij ◦Qj for all i, j ∈ I

with i ≤ j – there exists a unique morphism Φ: Y → lim←−X? such that

Y lim←−X?

Xi

Φ

Qi
Pi

is a commutative diagram for every i ∈ I.

In general, an inverse system in an arbitrary category does not necessarily admit an inverse limit.

Nevertheless, whenever the inverse limit exists, it has to be unique up to unique isomorphism:

given any other inverse limit
(
X, {P′i}i∈I

)
, there exists a unique isomorphism I : X → lim←−X?

such that P′i = Pi ◦I holds for every i ∈ I.

1.3. Direct and inverse limits of R-modules. For the usefulness of the reader, we report here

the construction of the direct/inverse limit of (algebraic) modules over a commutative ring. The

material we are going to present can be found, e.g., in [7]. Let us fix a commutative ring R and a

directed partially ordered set (I,≤).

Let
(
{Mi}i∈I , {ϕij}i≤j

)
be a direct system of R-modules over I. We define an equivalence

relation ∼ on
⊔
i∈IMi: given v ∈Mi and w ∈Mj , we declare that v ∼ w provided there is k ∈ I

with i, j ≤ k such that ϕik(v) = ϕjk(w). Then we define the direct limit of
(
{Mi}i∈I , {ϕij}i≤j

)
as

lim−→M? :=
⊔
i∈I

Mi

/
∼ .

The R-module operations on lim−→M? are defined in the following way:

• Let v,w ∈ lim−→M? be fixed. Pick any v ∈ v ∩Mi and w ∈ w ∩Mj . Choose some k ∈ I
such that i, j ≤ k. Notice that ϕik(v) ∈ v ∩Mk and ϕjk(w) ∈ w ∩Mk. Then we define

the sum v + w ∈ lim−→M? as the equivalence class of ϕik(v) + ϕjk(w) ∈Mk.

• Let v ∈ lim−→M? and r ∈ R be fixed. Pick any v ∈ v ∩Mi. Then we define r · v ∈ lim−→M?

as the equivalence class of r · v ∈Mi.

It is easy to check that such operations are well-posed and the resulting structure
(

lim−→M?,+, ·
)

satisfies the R-module axioms. The canonical morphisms ϕi : Mi → lim−→M? are obtained by

sending each element to its equivalence class. We point out a fundamental property:

For every v ∈ lim−→M? there exist i ∈ I and v ∈Mi such that ϕi(v) = v. (1.7)

The above claim is a direct consequence of the very definition of lim−→M?.

Now let us consider an inverse system
(
{Mi}i∈I , {Pij}i≤j

)
of R-modules over I. Then we define

its inverse limit as

lim←−M? :=
{
v = {vi}i∈I ∈

∏
i∈I

Mi

∣∣∣ vi = Pij(vj) for every i, j ∈ I with i ≤ j
}
.
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The direct product
∏
i∈IMi has a natural R-module structure with respect to the element-wise

operations. It can be readily shown that lim←−M? is an R-submodule of
∏
i∈IMi. Finally, the

natural projections Pi : lim←−M? →Mi are defined as

Pi(v) := vi for every v = {vi}i∈I ∈ lim←−M?.

In particular, given any family {vi}i∈I such that vi ∈ Mi and vi = Pij(vj) hold for every i, j ∈ I
with i ≤ j, there exists a unique element v ∈ lim←−M? such that Pi(v) = vi for every i ∈ I.

2. Direct limits of normed L0(m)-modules

2.1. Definition. Unless otherwise specified, let (X, d,m) be a fixed metric measure space. The

aim of this subsection is to prove that direct limits exist in the category of normed L0(m)-modules.

Theorem 2.1 (Direct limit of normed L0(m)-modules). Let
(
{Mi}i∈I , {ϕij}i≤j

)
be a direct system

of normed L0(m)-modules. Then its direct limit
(

lim−→M?, {ϕi}i∈I
)

exists in the category of normed

L0(m)-modules.

Proof. Since
(
{Mi}i∈I , {ϕij}i≤j

)
is a direct system in the category of algebraic L0(m)-modules,

we can consider its direct limit
(
MAlg, {ϕ′i}i∈I

)
in such category (cf. Subsection 1.3). It can be

readily checked that the following formula defines a pointwise seminorm on MAlg:

|v| := ess inf
{
|v| : i ∈ I, v ∈Mi, ϕ

′
i(v) = v

}
for every v ∈MAlg. (2.1)

Clearly |v| ∈ L0(m) for every v ∈MAlg by (1.7). Consider the equivalence relation ∼ on MAlg as

in Lemma 1.5 and the metric completion
(

lim−→M?, ι
)

of MAlg/ ∼ as in Lemma 1.6. For i ∈ I we

set the map ϕi : Mi → lim−→M? as ϕi(v) := ι
[
ϕ′i(v)

]
∼ ∈ lim−→M? for all v ∈Mi. We claim that(

lim−→M?, {ϕi}i∈I
)

is the direct limit of
(
{Mi}i∈I , {ϕij}i≤j

)
as normed L0(m)-modules.

First of all, we know that lim−→M? is a normed L0(m)-module from Lemmata 1.5 and 1.6. Each ϕi
is L0(m)-linear as composition of L0(m)-module morphisms, while for every v ∈Mi it holds that

∣∣ϕi(v)
∣∣ =

∣∣ϕ′i(v)
∣∣ (2.1)

≤ |v| in the m-a.e. sense,

thus proving that ϕi is a normed L0(m)-module morphism. Given that ϕ′j ◦ϕij = ϕ′i for all i, j ∈ I
with i ≤ j, we immediately deduce that ϕj ◦ ϕij = ϕi as well. Therefore it only remains to prove

the universal property: let
(
N , {ψi}i∈I

)
be any given target. It is a target even in the category of

algebraic L0(m)-modules, therefore there exists a unique L0(m)-morphism Φ′ : MAlg → N such

that Φ′ ◦ ϕ′i = ψi for every i ∈ I. Then we are forced to define the map Φ: ι(MAlg/ ∼)→ N as

Φ
(
ι[v]∼

)
:= Φ′(v) for every v ∈MAlg. (2.2)

Observe that for any v ∈MAlg we have∣∣Φ′(v)
∣∣ =

∣∣ψi(v)
∣∣ ≤ |v| m-a.e. for every i ∈ I and v ∈Mi with ϕ′i(v) = v,

thus accordingly
∣∣Φ′(v)

∣∣ ≤ |v| holds m-a.e. in X. This grants that the operator Φ in (2.2) is well-

defined and can be uniquely extended to a normed L0(m)-module morphism Φ: lim−→M? → N .

This proves the universal property and concludes the proof of the statement. �

Remark 2.2. It follows from the proof of Theorem 2.1 that
⋃
i∈I ϕi(Mi) is dense in lim−→M?. In

particular, if I is countable and each Mi is separable, then lim−→M? is separable as well. �
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Definition 2.3 (Morphism of direct systems of normed L0(m)-modules). A morphism Θ between

two direct systems
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
of normed L0(m)-modules is a

family Θ = {θi}i∈I of normed L0(m)-module morphisms θi : Mi → Ni such that

Mi Ni

Mj Nj

θi

ϕij ψij

θj

is a commutative diagram for every i, j ∈ I with i ≤ j.

With the notion of morphism just introduced, it makes sense to consider the category of direct

systems of normed L0(m)-modules. Then the correspondence sending a direct system of normed

L0(m)-modules to its direct limit can be made into a functor, as shown by the following result.

Theorem 2.4 (The direct limit functor lim−→). Let Θ = {θi}i∈I be a morphism between two di-

rect systems
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
of normed L0(m)-modules, whose direct

limits are denoted by
(

lim−→M?, {ϕi}i∈I
)

and
(

lim−→N?, {ψi}i∈I
)
, respectively. Then there exists a

unique normed L0(m)-module morphism lim−→ θ? : lim−→M? → lim−→N? such that the diagram

Mi Ni

lim−→M? lim−→N?

θi

ϕi ψi

lim−→ θ?

(2.3)

commutes for every i ∈ I. In particular, the correspondence lim−→ is a covariant functor from the

category of direct systems of normed L0(m)-modules to the category of normed L0(m)-modules.

Proof. Let us denote by
(
MAlg, {ϕ′i}i∈I

)
and

(
NAlg, {ψ′i}i∈I

)
the direct limits (in the category of

algebraic L0(m)-modules) of
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
, respectively. We define

the map θ′ : MAlg → NAlg as follows: given any v ∈ MAlg, there exist i ∈ I and v ∈ Mi such

that ϕ′i(v) = v by (1.7), thus we set θ′(v) := (ψ′i ◦ θi)(v). It is straightforward to verify that θ′ is

well-defined and is the unique L0(m)-module morphism such that θ′ ◦ ϕ′i = ψ′i ◦ θi for every i ∈ I.

As in the proof of Theorem 2.1, let us consider the dense-range operators ι : MAlg/ ∼→ lim−→M?

and ι : NAlg/ ∼→ lim−→N? given by Lemmata 1.5 and 1.6. It can be readily checked that there

exists a unique L0(m)-module morphism θ : ι(MAlg/ ∼)→ ι(NAlg/ ∼) such that

θ
(
ι[v]∼

)
= ι
[
θ′(v)

]
∼ for every v ∈MAlg.

Its well-posedness is granted by the m-a.e. inequality
∣∣ι[θ′(v)

]
∼

∣∣ ≤ ∣∣ι[v]∼
∣∣, which is satisfied for

every v ∈MAlg as a consequence of the following observation:∣∣ι[θ′(v)
]
∼

∣∣ =
∣∣θ′(v)

∣∣ =
∣∣(ψ′i ◦ θi)(v)

∣∣ (2.1)

≤
∣∣θi(v)

∣∣ ≤ |v| holds m-a.e.

for every i ∈ I and v ∈Mi such that ϕ′i(v) = v, whence
∣∣ι[θ′(v)

]
∼

∣∣ ≤ |v| =
∣∣ι[v]∼

∣∣ holds m-a.e.

again by (2.1). This also ensures that θ can be uniquely extended to a normed L0(m)-module

morphism lim−→ θ? : lim−→M? → lim−→N?, which is the unique morphism satisfying lim−→ θ? ◦ϕi = ψi ◦ θi
for every i ∈ I. This concludes the proof of the statement. �

2.2. Main properties. In this subsection we collect the most important properties of direct limits

of normed L0(m)-modules.

Lemma 2.5. Any normed L0(m)-module can be written as direct limit of some direct system of

finitely-generated normed L0(m)-modules.
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Proof. Let M be a normed L0(m)-module. Choose any setD that generates M (possiblyD = M ).

We denote by PF (D) the family of all finite subsets of D. Now choose any subset I of PF (D) that

is a directed partially ordered set with respect to the inclusion relation ⊆ and such that
⋃
F∈I F

generates M (for instance, PF (D) itself satisfies these properties). Then let us define

MF := submodule of M generated by F,

ιFG : MF ↪→MG inclusion map,

for every F,G ∈ I with F ⊆ G. It is then clear that
(
{MF }F∈I , {ιFG}F⊆G

)
is a direct system of

(finitely-generated) normed L0(m)-modules. We claim that

M ∼= lim−→M?, (2.4)

the canonical morphisms being given by the inclusion maps ιF : MF ↪→M . First,
(
M , {ιF }F∈I

)
is obviously a target. To prove the universal property, fix another target

(
N , {ψF }F∈I

)
. Notice

that the L0(m)-module
⋃
F∈I MF is dense in M by construction. Therefore it can be readily

checked that there is a unique morphism Φ: M → N such that Φ(v) = ψF (v) holds for all F ∈ I
and v ∈MF , or equivalently Φ ◦ ιF = ψF for every F ∈ I. This proves the claim (2.4). �

Corollary 2.6. Let M be a separable normed L0(m)-module. Let (vn)n∈N be a countable dense

subset of M . Given any n,m ∈ N with n ≤ m, let us define:

i) Mn as the module generated by {v1, . . . , vn},
ii) ιn : Mn ↪→M and ιnm : Mn ↪→Mm as the inclusion maps.

Then it holds that
(
M , {ιn}n∈N

)
is the direct limit of the direct system

(
{Mn}n∈N, {ιnm}n≤m

)
.

Proof. Notice that D := (vn)n∈N generates M . Then the statement follows from the proof of

Lemma 2.5 by choosing as I the family of all subsets of D of the form {v1, . . . , vn} with n ∈ N. �

The category of normed L0(m)-modules is a pointed category, its zero object being the trivial

space {0}. Given two normed L0(m)-modules M , N and a morphism ϕ : M → N , it holds that:

i) The kernel of ϕ is the normed L0(m)-submodule ker(ϕ) :=
{
v ∈ M : ϕ(v) = 0

}
of M

(together with the inclusion map ker(ϕ) ↪→M ).

ii) The image of ϕ is the normed L0(m)-submodule im(ϕ) of N generated by the set-theoretic

range ϕ(M ) of ϕ (together with the inclusion map im(ϕ) ↪→ N ). Observe that ϕ(M ) is

an L0(m)-submodule of N , thus im(ϕ) coincides with the closure of ϕ(M ) in N .

Remark 2.7. In general, the set-theoretic range of a normed L0(m)-module morphism might be

not complete. For instance, consider the Banach spaces `∞ and c0, which can be regarded as

normed L0(m)-modules provided the measure m is a Dirac delta (as pointed out in Example 1.3).

The linear contraction ϕ : `∞ → c0, defined as

ϕ
(
(tk)k∈N

)
:= (tk/k)k∈N for every (tk)k∈N ∈ `∞,

is injective and its range ϕ(`∞) is dense in c0. The latter is granted by the following fact: the

space c00 (i.e. the space of all real-valued sequences having finitely many non-zero terms) is dense

in c0 and is contained in ϕ(`∞). On the other hand, the operator ϕ cannot be surjective, as c0 is

separable while `∞ is not. Therefore the normed space ϕ(`∞) is not complete. �

The category of direct systems of normed L0(m)-modules is a pointed category, whose zero

object is the direct system
(
{Mi}i∈I , {ϕij}i≤j

)
given by Mi := {0} for all i ∈ I and ϕij := 0 for

all i, j ∈ I with i ≤ j. Given a morphism Θ = {θi}i∈I of two direct systems
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
of normed L0(m)-modules, it holds that:
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a) The kernel ker(Θ) of Θ is given by
({

ker(θi)
}
i∈I ,

{
ϕij |ker(θi)

}
i≤j

)
.

b) The image im(Θ) of Θ is given by
({

im(θi)
}
i∈I ,

{
ψij |im(θi)

}
i≤j

)
.

Items a) and b) make sense, since ϕij
(
ker(θi)

)
⊆ ker(θj) and ψij

(
im(θi)

)
⊆ im(θj) whenever i ≤ j.

Proposition 2.8. Let Θ = {θi}i∈I be a morphism between two direct systems
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
of normed L0(m)-modules such that im(Θ) =

(
{Ni}i∈I , {ψij}i≤j

)
. Then

it holds that im
(

lim−→ θ?
)

= lim−→N?.

Proof. First of all, we know that:

• θi(Mi) is dense in Ni for every i ∈ I, as im(θi) = Ni by assumption.

•
⋃
i∈I ψi(Ni) is dense in lim−→N? by Remark 2.2.

Hence
⋃
i∈I(θ ◦ ϕi)(Mi) is dense in lim−→N? by (2.3), where θ stands for lim−→ θ?. This ensures that

the set θ
(

lim−→M?

)
⊇
⋃
i∈I(θ ◦ ϕi)(Mi) is dense in lim−→N? as well, thus getting the statement. �

Remark 2.9. The dual statement of that of Proposition 2.8 fails in general, since it is possible

to build a morphism Θ = {θi}i∈I of direct systems with ker(Θ) = 0 such that ker
(

lim−→ θ?
)
6= 0.

For instance, suppose that m = δx̄ for some x̄ ∈ X, so that we are dealing with Banach spaces

(as observed in Example 1.3). Consider the sequence space `2 and the morphism T : `2 → `2

defined as T (λ1, λ2, λ3, . . .) := (0, λ2, λ3, . . .). Moreover, let us define the sequence (an)n∈N ⊆ `2

as follows: a1 := (1/k)k∈N and an := (δkn)k∈N for all n ≥ 2. Then we set Mn := span{a1, . . . , an}
and Nn := `2 for every n ∈ N, while for every n ≤ m we define the morphisms ϕnm : Mn →Mm

and ψnm : Nn → Nm as the inclusion map and the identity map, respectively. Finally, let us

define the morphism θn : Mn → Nn as θn := T |Mn
for every n ∈ N. Therefore it is immediate to

check that
(
{Mn}n∈N, {ϕnm}n≤m

)
,
(
{Nn}n∈N, {ψnm}n≤m

)
are direct systems of Banach spaces

and that Θ := {θn}n∈N is a morphism between them satisfying ker(Θ) = 0. Obviously lim−→N? = `2,

but also lim−→M? = `2 by Corollary 2.6 and by density of the sequence (an)n∈N in `2. It also turns

out that lim−→ θ? = T . This yields the desired counterexample, as the map T is not injective. �

Lemma 2.10. Suppose that the directed set (I,≤) admits a greatest element m ∈ I. Then for

any direct system
(
{Mi}i∈I , {ϕij}i≤j

)
of normed L0(m)-modules it holds that

(
Mm, {ϕim}i∈I

)
is the direct limit of

(
{Mi}i∈I , {ϕij}i≤j

)
. (2.5)

In particular, given any morphism Θ = {θi}i∈I between two direct systems
(
{Mi}i∈I , {ϕij}i≤j

)
and

(
{Ni}i∈I , {ψij}i≤j

)
of normed L0(m)-modules, it holds that lim−→ θ? = θm.

Proof. It easily follows from the fact that m is the greatest element of (I,≤) that
(
Mm, {ϕim}i∈I

)
is a target. To prove the universal property, fix another target

(
N , {ψi}i∈I

)
. Then ψm is the

unique normed L0(m)-module morphism between Mm and N such that ψm ◦ ϕim = ψi holds for

every i ∈ I, which shows the validity of the universal property and accordingly the claim (2.5). �

Remark 2.11. The direct limit functor lim−→ is neither faithul nor full, as we are going to prove.

Suppose that I = {0, 1} and that m = δx̄ for some x̄ ∈ X. Set M0 = M1 = N0 = N1 := R2,

viewed as Banach spaces with the usual Euclidean norm (recall Example 1.3). We also define

the maps ϕ01 : M0 → M1 and ψ01 : N0 → N1 as ϕ01(x, y) := (x, y) and ψ01(x, y) := (x, 0),

respectively. We have that lim−→M? = M1 and lim−→N? = N1 by Lemma 2.10.
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i) Let us consider the morphisms Θ = {θ0, θ1} and H = {η0, η1} between the two direct

systems
(
{M0,M1}, {ϕ00, ϕ01, ϕ11}

)
and

(
{N0,N1}, {ψ00, ψ01, ψ11}

)
defined as follows:

θ0(x, y) := (x, y),

η0(x, y) := (x,−y),

θ1(x, y) = η1(x, y) := (x, 0).

Then Θ 6= H, but lim−→ θ? = lim−→ η? by Lemma 2.10.

ii) Consider the morphism θ1 : M1 → N1 given by θ1(x, y) := (x, y). Then there cannot exist

a normed L0(m)-module morphism θ0 : M0 → N0 such that θ1 ◦ϕ01 = ψ01 ◦θ0, the reason

being that the map θ1 ◦ ϕ01 is surjective while ψ01 is not. This means that we cannot

write the morphism θ1 : lim−→Mi → lim−→Ni as lim−→ θ? for some morphism {θ0, θ1} between

the direct systems
(
{M0,M1}, {ϕ00, ϕ01, ϕ11}

)
and

(
{N0,N1}, {ψ00, ψ01, ψ11}

)
.

Items i) and ii) above show that the functor lim−→ is neither faithul nor full, respectively. �

Theorem 2.12 (Pullback and direct limit commute). Let (X, dX,mX), (Y, dY,mY) be metric

measure spaces. Let f : X → Y be a Borel map with f∗mX � mY. Let
(
{Mi}i∈I , {ϕij}i≤j

)
be

a direct system of normed L0(mY)-modules, whose direct limit is denoted by
(

lim−→M?, {ϕi}i∈I
)
.

Then
(
{f∗Mi}i∈I , {f∗ϕij}i≤j

)
is a direct system of normed L0(mX)-modules. Its direct limit is

lim−→ f∗M?
∼= f∗ lim−→M? (2.6)

together with the canonical morphisms {f∗ϕi}i∈I .

Proof. It follows from Theorem 1.9 that the diagram

Mi Mj Mk lim−→M?

f∗Mi f∗Mj f∗Mk f∗ lim−→M?

ϕij

f∗

ϕjk

f∗

ϕk

f∗
f∗

f∗ϕij f∗ϕjk f∗ϕk

commutes for every i, j, k ∈ I with i ≤ j ≤ k, whence accordingly
(
{f∗Mi}i∈I , {f∗ϕij}i≤j

)
is a

direct system of normed L0(mX)-modules having
(
f∗ lim−→M?, {f∗ϕi}i∈I

)
as a target. Given any

other target
(
N , {ψi}i∈I

)
, there exists a unique morphism Φ: f∗ lim−→M? → N such that

Φ
(
f∗
(
ϕi(v)

))
= ψi(f

∗v) for every i ∈ I and v ∈Mi, (2.7)

as we are going to show. Since
⋃
i∈I ϕi(Mi) is a dense submodule of lim−→M? (cf. Remark 2.2),

we know that
⋃
i∈I
{
f∗
(
ϕi(v)

)
: i ∈ I, v ∈ Mi

}
generates f∗ lim−→M? by Theorem 1.9, whence

uniqueness follows. To prove (well-posedness and) existence, we need to show that if v ∈ lim−→M?

can be written as v = ϕi(v) = ϕj(v
′) for some v ∈Mi and v′ ∈Mj , then ψi(f

∗v) = ψj(f
∗v′) and

the inequality
∣∣ψi(f∗v)

∣∣ ≤ |f∗v| holds in the mX-a.e. sense. Indeed, given any k ∈ I with i, j ≤ k
such that ϕik(v) = ϕjk(v′), we deduce from the fact that the diagram

Mi Mk Mj

f∗Mi f∗Mk f∗Mj

N

f∗

ϕik

f∗

ϕjk

f∗

ψi

f∗ϕik

ψk

f∗ϕjk

ψj

commutes that ψi(f
∗v) and ψj(f

∗v′) coincide, thus it makes sense to define Φ(f∗v) := ψi(f
∗v).

Since
∣∣Φ(f∗v)

∣∣ ≤ |f∗v| = |v| ◦ f holds m-a.e. for every i ∈ I and v ∈Mi with ϕi(v) = v, we infer
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that
∣∣Φ(f∗v)

∣∣ ≤ |v| ◦ f = |f∗v|. Therefore there exists a (unique) morphism Φ: f∗ lim−→M? → N

satisfying (2.7), thus also Φ ◦ (f∗ϕi) = ψi for all i ∈ I. This proves the universal property and

accordingly that
(
f∗ lim−→M?, {f∗ϕi}i∈I

)
is the direct limit of

(
{f∗Mi}i∈I , {f∗ϕij}i≤j

)
. �

3. Inverse limits of normed L0(m)-modules

3.1. Definition. Let us fix a metric measure space (X, d,m). As we are going to see in this

subsection, inverse limits exist in the category of normed L0(m)-modules. This has been already

proved in [5]; for the sake of completeness, we report here the full proof of such fact.

Theorem 3.1 (Inverse limit of normed L0(m)-modules). Let
(
{Mi}i∈I , {Pij}i≤j

)
be an inverse

system of normed L0(m)-modules. Then its inverse limit
(

lim←−M?, {Pi}i∈I
)

exists in the category

of normed L0(m)-modules.

Proof. Since
(
{Mi}i∈I , {Pij}i≤j

)
is an inverse system in the category of algebraic L0(m)-modules,

we can consider its inverse limit
(
MAlg, {P′i}i∈I

)
in such category (cf. Subsection 1.3). Given any

element v ∈MAlg, we define (up to m-a.e. equality) the Borel function |v| : X→ [0,+∞] as

|v| := ess sup
i∈I

∣∣P′i(v)
∣∣ (3.1)

Then we define the L0(m)-submodule lim←−M? of MAlg as

lim←−M? :=
{
v ∈MAlg : |v| ∈ L0(m)

}
=
{
v ∈MAlg : |v| < +∞ m-a.e.

}
,

while the natural projections Pi : lim←−M? →Mi are given by Pi := P′i|lim←−M?
. We claim that(

lim←−M?, {Pi}i∈I
)

is the inverse limit of
(
{Mi}i∈I , {Pij}i≤j

)
as normed L0(m)-modules. (3.2)

First of all, we need to show that lim←−M? is a normed L0(m)-module. The only non-trivial fact to

check is its completeness: fix a Cauchy sequence (vn)n∈N in lim←−M?. Given that
∣∣Pi(vn)

∣∣ ≤ |vn|
holds m-a.e. for all i ∈ I and n ∈ N by (3.1), we deduce that the sequence

(
Pi(v

n)
)
n∈N is Cauchy

in the complete space Mi for every i ∈ I, whence it admits a limit vi ∈Mi. Since the maps Pij are

continuous for all i, j ∈ I with i ≤ j, we can pass to the limit as n→∞ in Pi(v
n) = Pij

(
Pj(v

n)
)

and obtain that vi = Pij(vj), which means that v := {vi}i∈I ∈MAlg. Moreover, it can be readily

checked that the map |·| is a pointwise norm on lim←−M?, thus the inequality
∣∣|vn|−|vm|∣∣ ≤ |vn−vm|

holds m-a.e. for every n,m ∈ N and accordingly
(
|vn|

)
n∈N is a Cauchy sequence in the space L0(m).

Calling f ∈ L0(m) its limit, we infer from (3.1) that

|vi| = lim
n→∞

∣∣Pi(vn)
∣∣ ≤ lim

n→∞
|vn| = f m-a.e. for every i ∈ I.

This grants that |v| ≤ f < +∞ holds m-a.e. in X, therefore v ∈ lim←−M?. It also holds that

|v − vn| (3.1)
= ess sup

i∈I

∣∣vi − Pi(v
n)
∣∣ = ess sup

i∈I
lim
m→∞

∣∣Pi(vm)− Pi(v
n)
∣∣ (3.1)

≤ lim
m→∞

|vm − vn|

in the m-a.e. sense. Then by letting n→∞ we conclude that |v−vn| → 0 in L0(m), or equivalently

that vn → v in lim←−M?, which proves the completeness of lim←−M?.

Furthermore, it is immediate from the construction that each map Pi is a normed L0(m)-module

morphism and that Pi = Pij◦Pj holds whenever i, j ∈ I satisfy i ≤ j, thus in order to get the claim

(3.2) it just remains to prove the universal property. To this aim, fix any couple
(
N , {Qi}i∈I

)
such that Qi(w) = (Pij ◦Qj)(w) holds for all i, j ∈ I with i ≤ j and w ∈ N . Then for any w ∈ N

there exists a unique element Φ(w) ∈ MAlg satisfying P′i
(
Φ(w)

)
= Qi(w) for every i ∈ I. Given

that
∣∣Qi(w)

∣∣ ≤ |w| holds m-a.e. for every i ∈ I, we deduce that∣∣Φ(w)
∣∣ (3.1)

= ess sup
i∈I

∣∣P′i(Φ(w)
)∣∣ = ess sup

i∈I

∣∣Qi(w)
∣∣ ≤ |w| < +∞ in the m-a.e. sense,
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whence Φ(w) ∈ lim←−M?. Therefore Φ: N → lim←−M? is the unique morphism such that Qi = Pi ◦Φ

for all i ∈ I. This proves the universal property and accordingly (3.2), thus concluding the proof

of the statement. �

Remark 3.2. The following fact stems from the proof of Theorem 3.1: if {vi}i∈I is a family of

elements vi ∈Mi satisfying vi = Pij(vj) for all i, j ∈ I with i ≤ j and ess supi∈I |vi| < +∞ in the

m-a.e. sense, then there exists a unique element v ∈ lim←−M? such that vi = Pi(v) for every i ∈ I.

Moreover, it holds that |v| = ess supi∈I |vi|. �

Definition 3.3 (Morphism of inverse systems of normed L0(m)-modules). A morphism Θ between

two inverse systems
(
{Mi}i∈I , {Pij}i≤j

)
and

(
{Ni}i∈I , {Qij}i≤j

)
of normed L0(m)-modules is a

family Θ = {θi}i∈I of normed L0(m)-module morphisms θi : Mi → Ni such that

Mj Nj

Mi Ni

θj

Pij Qij

θi

(3.3)

is a commutative diagram for every i, j ∈ I with i ≤ j.

With the above notion of morphism at our disposal, we can consider the category of inverse

systems of normed L0(m)-modules. The correspondence associating to any inverse system of

normed L0(m)-modules its inverse limit can be made into a functor, as we are going to see.

Theorem 3.4 (The inverse limit functor lim←−). Let Θ = {θi}i∈I be a morphism between two

inverse systems
(
{Mi}i∈I , {Pij}i≤j

)
and

(
{Ni}i∈I , {Qij}i≤j

)
of normed L0(m)-modules, whose

inverse limits are denoted by
(

lim←−M?, {Pi}i∈I
)

and
(

lim←−N?, {Qi}i∈I
)
, respectively. Then there

exists a unique normed L0(m)-module morphism lim←− θ? : lim←−M? → lim←−N? such that the diagram

lim←−M? lim←−N?

Mi Ni

lim←− θ?

Pi Qi

θi

(3.4)

commutes for every i ∈ I. In particular, the correspondence lim←− is a covariant functor from the

category of inverse systems of normed L0(m)-modules to the category of normed L0(m)-modules.

Proof. Pick any v ∈ lim←−M? and define wi := θi
(
Pi(v)

)
∈ Ni for all i ∈ I. By (3.3) we see that

Qij(wj) = (Qij ◦ θj)
(
Pj(v)

)
= (θi ◦ Pij)

(
Pj(v)

)
= θi

(
Pi(v)

)
= wi for every i, j ∈ I with i ≤ j.

Then there is a unique element
(

lim←− θ?
)
(v) = w ∈ lim←−N? such that Qi(w) = wi for every i ∈ I, as

observed in Remark 3.2. One can readily check that the resulting map lim←− θ? : lim←−M? → lim←−N? is

a morphism of normed L0(m)-modules. Finally, it clearly holds that lim←− θ? is the unique morphism

for which the diagram (3.4) is commutative for all i ∈ I. Hence the statement is achieved. �

3.2. Main properties. In this subsection we describe some important properties of inverse limits

in the category of normed L0(m)-modules.

Lemma 3.5. Let M 6= {0} be a given normed L0(m)-module. Call Mn := M for every n ∈ N.

For any n,m ∈ N with n ≤ m, we define the morphism Pnm : Mm →Mn as

Pnm(v) :=
n

m
v for every v ∈Mm.
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Then
(
{Mn}n∈N, {Pnm}n≤m

)
is an inverse system of normed L0(m)-modules, with inverse limit

lim←−M? = {0}.

Proof. It immediately follows from its very definition that
(
{Mn}n∈N, {Pnm}n≤m

)
is an inverse

system of normed L0(m)-modules. Moreover, its inverse limit
(
MAlg, {P′n}n∈N

)
in the category of

algebraic L0(m)-modules is given by

MAlg =
{

(nv)n∈N ∈
∏

n∈N
Mn

∣∣∣ v ∈M
}
,

P′m
(
(nv)n∈N

)
= mv for every m ∈ N and (nv)n∈N ∈MAlg.

Therefore for any element v ∈MAlg it m-a.e. holds that

|v| = ess sup
n∈N

|nv| = +∞ · χ{|v|>0},

whence lim←−M? = {0}. This proves the statement. �

The category of inverse systems of normed L0(m)-modules is a pointed category, whose zero

object is the inverse system
(
{Mi}i∈I , {Pij}i≤j

)
given by Mi := {0} for all i ∈ I and Pij := 0 for

all i, j ∈ I with i ≤ j. Given a morphism Θ = {θi}i∈I of two inverse systems
(
{Mi}i∈I , {Pij}i≤j

)
and

(
{Ni}i∈I , {Qij}i≤j

)
of normed L0(m)-modules, it holds that:

a) The kernel ker(Θ) of Θ is given by
({

ker(θi)
}
i∈I ,

{
Pij |ker(θj)

}
i≤j

)
.

b) The image im(Θ) of Θ is given by
({

im(θi)
}
i∈I ,

{
Qij |im(θj)

}
i≤j

)
.

Items a) and b) make sense, as Pij
(
ker(θj)

)
⊆ ker(θi) and Qij

(
im(θj)

)
⊆ im(θi) whenever i ≤ j.

Proposition 3.6. Let Θ = {θi}i∈I be a morphism between inverse systems
(
{Mi}i∈I , {Pij}i≤j

)
and

(
{Ni}i∈I , {Qij}i≤j

)
of normed L0(m)-modules such that ker(Θ) = 0. Then ker

(
lim←− θ?

)
= 0.

Proof. Pick v ∈ lim←−M? with
(

lim←− θ?
)
(v) = 0. This implies θi

(
Pi(v)

)
= Qi(0) = 0 for every i ∈ I

by (3.4), whence Pi(v) = 0 as ker(θi) = 0 by assumption. Then v = 0 by Remark 3.2. �

Remark 3.7. The dual statement of that of Proposition 3.6 is false, as one can build a morphism

of inverse systems Θ = {θi}i∈I with im(Θ) =
(
{Ni}i∈I , {Qij}i≤j

)
such that im

(
lim←− θ?

)
6= lim←−N?.

For instance, fix any normed L0(m)-module M 6= {0}. Let us define the inverse systems of

normed L0(m)-modules
(
{Mn}n∈N, {Pnm}n≤m

)
and

(
{Nn}n∈N, {Qnm}n≤m

)
as follows:

Mn = Nn := M for every n ∈ N,

Pnm(v) :=
n

m
v for every n ≤ m and v ∈Mm,

Qnm(w) := w for every n ≤ m and w ∈ Nm.

The morphism Θ = {θn}n∈N between
(
{Mn}n∈N, {Pnm}n≤m

)
and

(
{Nn}n∈N, {Qnm}n≤m

)
we

consider is given by

θn(v) :=
1

n
v for every n ∈ N and v ∈Mn.

Therefore lim←−M? = {0} by Lemma 3.5 and lim←−N? = M . This yields the desired counterexample,

as all the maps θn are surjective but im
(

lim←− θ?
)

= {0} 6= M . �

Lemma 3.8. Suppose that the directed set (I,≤) admits a greatest element m ∈ I. Then for any

inverse system
(
{Mi}i∈I , {Pij}i≤j

)
of normed L0(m)-modules it holds that(

Mm, {Pim}i∈I
)

is the inverse limit of
(
{Mi}i∈I , {Pij}i≤j

)
. (3.5)

In particular, given any morphism Θ = {θi}i∈I between two inverse systems
(
{Mi}i∈I , {Pij}i≤j

)
and

(
{Ni}i∈I , {Qij}i≤j

)
of normed L0(m)-modules, it holds that lim←− θ? = θm.
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Proof. Fix any couple
(
N , {Qi}i∈I

)
– where N is a normed L0(m)-module and Qi : N → Mi

are morphisms – satisfying Qi = Pij ◦Qj for all i, j ∈ I with i ≤ j. Hence Φ := Qm is the unique

morphism from N to Mm such that Qi = Pim ◦ Φ holds for every i ∈ I, which proves (3.5). �

Remark 3.9. By slightly modifying the examples provided in Remark 2.11, it can be readily

checked that the inverse limit functor lim←− is neither faithul nor full. �

Proposition 3.10. Let
(
{Mi}i∈I , {ϕij}i≤j

)
be a direct system of normed L0(m)-modules, whose

direct limit is denoted by
(

lim−→M?, {ϕi}i∈I
)
. Given any normed L0(m)-module N and i, j ∈ I

with i ≤ j, we define the morphism Pij : Hom(Mj ,N )→ Hom(Mi,N ) as

Pij(T ) := T ◦ ϕij for every T ∈ Hom(Mj ,N ).

Then
({

Hom(Mi,N )
}
i∈I , {Pij}i≤j

)
is an inverse system of normed L0(m)-modules. Moreover,

it holds that

lim←−Hom(M?,N ) ∼= Hom
(

lim−→M?,N
)
,

the natural projections Pi : Hom
(

lim−→M?,N
)
→ Hom(Mi,N ) being defined as Pi(T ) := T ◦ ϕi

for every i ∈ I and T ∈ Hom
(

lim−→M?,N
)
.

Proof. Given any i, j, k ∈ I with i ≤ j ≤ k and T ∈ Hom(Mk,N ), it holds that

Pik(T ) = T ◦ ϕik = T ◦ ϕjk ◦ ϕij = Pij(T ◦ ϕjk) = (Pij ◦ Pjk)(T ),

whence
({

Hom(Mi,N )
}
i∈I , {Pij}i≤j

)
is an inverse system. Analogously, Pi = Pij ◦Pj holds for

all i, j ∈ I with i ≤ j, thus to conclude it only remains to show that
(
Hom

(
lim−→M?,N

)
, {Pi}i∈I

)
satisfies the universal property defining the inverse limit. Fix any

(
O, {Qi}i∈I

)
, where O is a

normed L0(m)-module, while the morphisms Qi : O → Hom(Mi,N ) satisfy Qi = Pij ◦ Qj for

every i, j ∈ I with i ≤ j. Given any element w ∈ O, we consider the family
{

Qi(w)
}
i∈I . Call fw

the function χ{|w|>0}
1
|w| ∈ L

0(m) and observe that the morphisms fw ·Qi(w) : Mi → N satisfy(
fw ·Qi(w)

)
(v) = fw ·Qi(w)(v) = fw · Pij

(
Qj(w)

)
(v) = fw ·

(
Qj(w) ◦ ϕij

)
(v)

= fw ·Qj(w)
(
ϕij(v)

)
=
(
fw ·Qj(w)

)(
ϕij(v)

)
for every i, j ∈ I with i ≤ j and v ∈Mi. This shows that

(
N ,

{
fw ·Qi(w)

}
i∈I

)
is a target for the

direct system
(
{Mi}i∈I , {ϕij}i≤j

)
, whence there exists a unique morphism Φ0(w) : lim−→M? → N

such that fw · Qi(w)(v) = Φ0(w)
(
ϕi(v)

)
holds for every i ∈ I and v ∈ Mi, thus accordingly the

element Φ(w) := |w|·Φ0(w) ∈ Hom
(

lim−→M?,N
)

satisfies Qi(w)(v) = Φ(w)
(
ϕi(v)

)
= Pi

(
Φ(w)

)
(v)

for all i ∈ I and v ∈Mi. Hence Φ: O → Hom
(

lim−→M?,N
)

is the unique morphism such that

O Hom
(

lim−→M?,N
)

Hom(Mi,N )

Φ

Qi
Pi

is a commutative diagram for any i ∈ I. Then the statement is achieved. �

Corollary 3.11. Let
(
{Mi}i∈I , {ϕij}i≤j

)
be a direct system of normed L0(m)-modules, whose

direct limit is denoted by
(

lim−→M?, {ϕi}i∈I
)
. Then

(
{M ∗

i }i∈I , {ϕ
adj
ij }i≤j

)
is an inverse system of

normed L0(m)-modules (cf. (1.3) for the definition of the adjoint ϕadj
ij ). Moreover, it holds that

lim←−M ∗
?
∼=
(

lim−→M?

)∗
, (3.6)

the natural projections being given by ϕadj
i :

(
lim−→M?

)∗ →M ∗
i for every i ∈ I.

Proof. Just apply Proposition 3.10 with N := L0(m). �
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Remark 3.12 (Pullback and inverse limit do not commute). Let (X, dX,mX), (Y, dY,mY) be me-

tric measure spaces. Let f : X→ Y be a Borel map with f∗mX � mY. Let
(
{Mi}i∈I , {Pij}i≤j

)
be

an inverse system of normed L0(mY)-modules, whose inverse limit is denoted by
(

lim←−M?, {Pi}i∈I
)
.

Then
(
{f∗Mi}i∈I , {f∗Pij}i≤j

)
is an inverse system of normed L0(mX)-modules, as the diagram

lim←−M? Mk Mj Mi

f∗ lim←−M? f∗Mk f∗Mj f∗Mi

Pk

f∗

Pjk

f∗

Pij

f∗ f∗

f∗Pk f∗Pjk f∗Pij

commutes for every i, j, k ∈ I with i ≤ j ≤ k by Theorem 1.9. Nevertheless, it might happen that

lim←− f
∗M? � f∗ lim←−M?.

For instance, consider the constant map π : [0, 1] → {0}, where the domain is endowed with

the Euclidean distance and the restricted Lebesgue measure L1 = L1|[0,1]
, while the target is

endowed with the trivial distance and the Dirac delta measure δ0. Notice that trivially π∗L1 � δ0.

Moreover, by combining Example 1.11 with Example 1.3 we deduce that

π∗B ∼= L0
(
[0, 1],B

)
for every Banach space B. (3.7)

Now consider the Banach space `1, that is the direct limit of some direct system
(
{Bi}i∈I , {ϕij}i≤j

)
of finite-dimensional Banach spaces, for instance by Lemma 2.5. Since the spaces B′i have the

Radon-Nikodým property while `∞ = (`1)′ does not (cf. [2]), we know from (1.4) that

L0
(
[0, 1],Bi

)∗ ∼= L0
(
[0, 1],B′i

)
for every i ∈ I,

L0
(
[0, 1], `1

)∗ � L0
(
[0, 1], `∞

)
.

(3.8)

Therefore it holds that

π∗ lim←−B
′
?

(3.6)∼= π∗
(

lim−→B?
)′ ∼= π∗`∞

(3.7)∼= L0
(
[0, 1], `∞

) (3.8)

� L0
(
[0, 1], `1

)∗ (3.7)∼= (π∗`1)∗

∼=
(
π∗ lim−→B?

)∗ (2.6)∼=
(

lim−→π∗B?
)∗ (3.6)∼= lim←−(π∗B?)∗

(3.7)∼= lim←−L
0
(
[0, 1],B?

)∗
(3.8)∼= lim←−L

0
(
[0, 1],B′?

) (3.7)∼= lim←−π
∗B′?.

Summing up, we have found an inverse system
(
{B′i}i∈I , {ϕ

adj
ij }i≤j

)
of Banach spaces for which it

holds that π∗ lim←−B
′
? � lim←−π

∗B′?. �
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[8] D. Lučić and E. Pasqualetto, The Serre–Swan theorem for normed modules, Rendiconti del Circolo Matem-

atico di Palermo Series 2, (2018).



DIRECT AND INVERSE LIMITS OF NORMED MODULES 19

[9] S. Mac Lane, Categories for the working mathematician, vol. 5 of Graduate Texts in Mathematics, Springer-

Verlag, New York, second ed., 1998.

Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä
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