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Abstract

We study fully nonlinear partial differential equations involving the determinant of the
Hessian matrix of the unknown function with respect to a family of vector fields that generate
a Carnot group. We prove a comparison theorem among viscosity sub- and supersolutions, for
subsolutions uniformly convex with respect to the vector fields.

1 Introduction

We consider fully nonlinear partial differential equations of the form

−det(D2
Xu) + H(x, u, DXu) = 0, in Ω, (1.1)

where Ω ⊆ IRn is open and bounded, DXu denotes the gradient of u with respect to a given family
of C1,1 vector fields X1, ..., Xm, DXu := (X1u, ..., Xmu), D2

Xu denotes the symmetrized Hessian
matrix of u with respect to the same vector fields

(D2
Xu)ij := (XiXju + XjXiu) /2,

and H is a given Hamiltonian, at least continuous and nondecreasing in u. Our main examples are
the vector fields that generate the homogeneous Carnot groups [18, 8, 11], and in that case DXu
and D2

Xu are called, respectively, the horizontal gradient and the horizontal Hessian.
A theory of fully nonlinear subelliptic equations was started recently by Bieske [9, 10] and

Manfredi [28, 7], and Monge-Ampère equations of the form (1.1) with H = f(x) are listed among
the main examples. For such equations on the Heisenberg group Gutierrez and Montanari [21]
proved, among other things, a comparison principle among smooth sub- and supersolutions (see
also [19] for related results).

There are several motivations for studying H depending also on DXu. One is the prescribed
horizontal Gauss curvature equation in Carnot groups, as defined by Danielli, Garofalo and Nhieu
[16]. Another is the Monge-Ampère type equation derived by Stojanovic [30] for some stochastic
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control problems in financial mathematics. Finally, equations of this kind arise in optimal trans-
portation problems between Carnot groups [2], Riemannian manifolds [34], and sub-Riemannian
manifolds [17]. As for the dependence of H on u, it arises naturally in the Monge-Ampère equations
of Riemannian geometry, see, e.g., [32, 22, 1] and the references therein.

In our paper [5] we began a study of the subelliptic Monge-Ampère-type equations (1.1)
within the theory of viscosity solutions. We announced two comparison results that extend to the
subelliptic setting a theorem of H. Ishii and P.-L. Lions for euclidean Monge-Ampère equations
[23] (i.e., the case when the vector fields are the canonical basis of Rn). For the large literature
on the euclidean case we refer to the classical paper [25], the recent surveys [12, 31], the books
[20, 33], and the references therein.

In the present paper we give the proof of one of these results, using a direct argument relying
only on some basic tools of the theory of viscosity solutions [15, 14]. The proof outlined in [5] was
different, since it transformed the PDE (1.1) into a Hamilton-Jacobi-Bellman equations and then
used the comparison principle for such equations.

The new difficulties one encounters in the study of subelliptic Monge-Ampère equations are
the following.

1. The PDE (1.1) is degenerate elliptic only on functions that are convex with respect to
the vector fields X1, ..., Xm, briefly X -convex. Following Lu, Manfredi, and Stroffolini [26] such a
function is an u.s.c. u : Ω → R such that −D2

Xu ≤ 0 in Ω in viscosity sense, that is,

D2
Xϕ(x) ≥ 0 ∀ ϕ ∈ C2(Ω), x ∈ argmax(u− ϕ). (1.2)

We refer to the nice survey in the book of Bonfiglioli, Lanconelli and Uguzzoni [11] for the recent
literature on the notions of convexity in Carnot groups. Since X -convex functions are not Lipschitz
continuous, in general, we get better results in Carnot groups, where they are Lipschitz with respect
to the intrinsic metric [26, 3, 16, 27, 29, 24].

2. The operator in (1.1) does not satisfy in general the standard structure conditions in
viscosity theory [14]. Therefore we consider equations of the form

− log det(D2
Xu) + K(x, u, Du) = 0, in Ω, (1.3)

with a continuous K strictly increasing in u, and adapt the arguments of [15, 14] to this PDE.
The main result of this paper states the comparison among uniformly X -convex subsolutions and
lower semicontinuous supersolutions of this equation. From this we get the same comparison result
for the equation (1.1). We remark that the log of a Monge-Ampère operator is a natural object: it
appears in problems arising in Riemannian geometry [1], [22], and in parabolic versions of the MA
equation [32], [36], [13].

The variants needed for the case of H not strictly increasing in u are presented in the
companion papers [5, 6]. We first observe that the comparison principle still holds in this case if
the subsolution is strict, and then perturb a X -convex subsolution to a uniformly X -convex strict
subsolution (cfr. [23, 4]). In [6] we also prove the existence of solutions to the Dirichlet problem
via the Perron-Ishii method, as well as some extensions and variants, e.g., to vector fields that are
not necessarily the generators of a Lie group.

In Section 2 we recall all necessary definitions, assumptions and preliminary results. In the
final Section 3 we state and prove the Comparison Principle for the equations (1.3) and (1.1).

2 Definitions

Let us consider the following equation

−det D2
Xu + H(x, u, DXu) = 0, in Ω, (2.1)

where the set Ω ⊆ IRn is open and bounded,

DXu := (X1u, ..., Xmu)
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is the intrinsic (or horizontal) gradient with respect of a family of C1,1 vector fields X1, ..., Xm,
and

(D2
Xu)ij =

Xi(Xju) + Xj(Xiu)
2

is the symmetrized intrinsic Hessian. The Hamiltonian H is at least continuous and nondecreasing
in the second entry.

We take the n×m C1,1 matrix-valued function σ defined in Ω ⊆ IRn whose columns σj are
the coefficients of Xj , j = 1, · · · ,m, that is, Xj = σj · ∇ and σij = σj

i . Then, for any smooth u

DXu = σT (x)Du, D2
Xu = σT (x)D2u σ(x) + Q(x, Du), (2.2)

where Q(x, p) is the m×m matrix whose elements are

Qij(x, p) =
(

Dσj(x) σi(x) + Dσi(x) σj(x)
2

)
· p. (2.3)

We can now rewrite equation (2.1) by means of the matrix σ and the Euclidean gradient and
Hessian:

−det(σT (x)D2u σ(x) + Q(x,Du)) + H(x, u, σT (x)Du) = 0, in Ω. (2.4)

Since the determinant of a matrix is increasing among positive definite matrices with the usual
partial order, this equation is (degenerate) elliptic if it is restricted to a suitable set of candidate
solutions u. Next we define such a set, within the viscosity solutions framework.

Let USC(Ω) and LSC(Ω) denote the sets of functions Ω → IR that are, respectively, upper
semicontinuous and lower semicontinuous.

Definition 2.1 If Ψ : Ω× IRn ×Sn → Sm and M ∈ Sm we say that u is a (viscosity) subsolution
of the matrix inequality

Ψ(x,Du, D2u) ≤ M, in Ω, (2.5)

if u is USC(Ω) and

Ψ(x,Dφ(x), D2φ(x)) ≤ M, (2.6)

for all φ ∈ C2(Ω) and x ∈ argmax(u− φ).

Definition 2.2 u ∈ USC(Ω) is X -convex in Ω with respect to the fields X1, · · · , Xm if it is a
viscosity subsolution of

−σT (x)D2u σ(x)−Q(x,Du) ≤ 0, in Ω, (2.7)

u is uniformly X -convex in Ω if it is a viscosity subsolution of

−σT (x)D2u σ(x)−Q(x, Du) ≤ −γI, for some γ > 0, in Ω. (2.8)

Note that, for smooth u, the inequalities (2.7), (2.8) can be written as D2
Xu ≥ 0 and D2

Xu ≥ γI,
in Ω.

The definition of (viscosity) subsolution u of 2.4 is given in a standard way, as in [23]:

Definition 2.3 A function u ∈ USC(Ω) is a (viscosity) subsolution of (2.1) if for all φ ∈ C2(Ω)
such that u− φ has a maximum point at x0 we have

−det(σT (x0)D2φ(x0)σ(x0) + Q(x0, Dφ(x0)) + H(x0, v(x0), Dφ(x0)) ≤ 0.

The definition of (viscosity) supersolution v is modified, as was done in [23] for the Euclidean case,
by restricting the test functions to the C2 functions φ with D2

Xφ(x) > 0 at points x ∈ arg min(v−φ).
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Definition 2.4 A function v ∈ LSC(Ω) is a (viscosity) supersolution of (2.1) if for all φ ∈ C2(Ω)
such that v − φ has a minimum point at x0 and

σT (x0)D2φ(x0)σ(x0) + Q(x0, Dφ(x0)) > 0, (2.9)

we have

−det(σT (x0)D2φ(x0)σ(x0) + Q(x0, Dφ(x0)) + H(x0, v(x0), Dφ(x0)) ≥ 0. (2.10)

Note that if u is a uniformly X -convex subsolution, condition (2.9) is automatically satisfied because
any φ ∈ C2 touching u from above satisfies (2.9).

The equation (2.4) is proper in the sense of the theory of the viscosity solutions [15] if it is
restricted to X -convex subsolutions. In fact the function

F (x, r, p,X) := −det(σT (x)X σ(x) + Q(x, p)) + H(x, r, σT (x)p)

satisfies the following properties

F : Ω× IR× IRn × Sn → IR is continuous;
F (x, r, p,X) ≤ F (x, r, p, Y ), ∀x, r, p,X, Y ∈ Sn such that σT Xσ + Q ≥ σT Y σ + Q ≥ 0,

F (x, r, p,X) ≥ F (x, s, p, X), ∀x ∈ Ω, r, s ∈ IR, p ∈ IRn, X ∈ Sn, if r ≥ s,

where we denote with Sn the set of the symmetric n × n matrices, and with ≥ the usual partial
order of matrices.

We recall now some definitions concerning Carnot groups. We adopt the terminology and
notations of the recent book [11]. Consider a group operation ◦ on IRn = IRn1 × ... × IRnr with
identity 0, such that

(x, y) 7→ y−1 ◦ x is smooth,

and the dilation δλ : IRn → IRn

δλ(x) = δλ(x(1), ..., x(r)) := (λx(1), λ2x(2), ..., λrx(r)), x(i) ∈ IRni .

If δλ is an automorphism of the group (IRn, ◦) for all λ > 0, then (IRn, ◦, δλ) is a homogeneous Lie
group on IRn. We say that m = n1 smooth vector fields X1, ..., Xm on IRn generate (IRn, ◦, δλ),
and that this is a (homogeneous) Carnot group, if

• X1, ..., Xm are invariant with respect to the left translations on IRn τα(x) := α ◦ x for all
α ∈ IRn,

• Xi(0) = ∂/∂xi, i = 1, ...,m,

• the rank of the Lie algebra generated by X1, ..., Xm is n at every point x ∈ IRn.

We refer to [11] for the connections of this definition with the classical one in the context of abstract
Lie groups and for the properties of the generators. We will use only the following property, and
refer to Remark 1.4.6, p. 59 of [11] for more precise informations.

Proposition 2.1 If X1, ..., Xm are generators of a Carnot group, then

Xj(x) =
∂

∂xj
+

n∑
i=m+1

σij(x)
∂

∂xi

with σij(x) = σij(x1, ..., xi−1) homogeneous polynomials of a degree ≤ n−m.
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The previous Proposition implies that σ(x) =
(

I
A(x)

)
where I is the m × m identity matrix

and A(x) is a suitable (n−m)×m matrix.
If X1, · · · , Xm are the generators of a Carnot group G, the definition (2.2) of X -convexity

coincides with the definition of convexity in G in viscosity sense (v-convexity) of Lu, Manfredi,
Stroffolini [26]. A more geometric notion of convexity in G, called horizontal convexity (or weak
H-convexity), was introduced and studied in the same seminal paper [26] and, independently, by
Danielli, Garofalo, and Nhieu [16]. The equivalence of the two notions was studied by several
authors, first in the Heisenberg groups [26], [3], and then in general Carnot groups [35], [27], [24],
see also the survey in [11].

In the special case of Carnot groups, various authors proved, under different assumptions,
the Lipschitz continuity of X -convex functions with respect to the intrinsic metric of the group
and bounds on their horizontal gradient in the sense of distributions [26], [16], [27], [29], [24]. From
those results we obtain the following gradient bound in viscosity sense.

Proposition 2.2 Let u be X -convex in Ω with respect to the generators of a Carnot group. Then,
for every open Ω1 with Ω1 ⊆ Ω, there exists a constant C such that

|σT (x) Du| ≤ C, in Ω1

in viscosity sense.

Proof. Since u is USC, it is locally bounded from above. Then X -convexity implies local Lipschitz
continuity with respect to Carnot-Caratheodory distance, by a result of Magnani [27] and Rickly
[29], see also [24]. In particular, u is continuous in Ω. We mollify u by convolution with kernels
adapted to the group structure, as in [16, 11]. The approximating uε converge to u uniformly on
compact subsets of Ω, and they are smooth and X -convex. Moreover, from the proof of Theorem
9.1 of [16] we get, for R small enough,

sup
BC(x0,R)

( m∑
j=1

(Xjuε)2
)1/2

≤ 2
R

sup
BC(x0,3R)

|u|,

where the balls BC are taken with respect to the gauge pseudo-distance and Xju denotes the
derivative of u along the trajectory of the vector field Xj . Since uε is C∞, Xjuε(x) = σj(x)Duε(x).
Therefore there is a constant C depending only on supΩ |u| and the pseudo-distance of Ω1 from
∂Ω such that

|σT (x) Duε| ≤ C in Ω1.

By letting ε → 0, we obtain that u is a viscosity subsolution of the same inequality. 2

3 A comparison principle

In this section we prove a Comparison Principle for the subelliptic Monge-Ampère equation in
Carnot groups (2.1). We assume H positive, continuous, and strictly increasing in r. More precisely,
for a suitable M > 0,

H : Ω× IR× IRm → (0,+∞) is continuous; (3.1)
H(x, r, q)−H(x, s, q) ≥ C(r − s),
for some C > 0 and all r, s ∈ [−M,M ], x ∈ Ω, q ∈ IRm.

Theorem 3.1 Suppose the vector fields X1, ..., Xm are the generators of a Carnot group on IRn.
Let u : Ω → IR be a bounded, uniformly X -convex, USC subsolution of (2.1) and v : Ω → IR be a
bounded LSC supersolution of (2.1). Assume H satisfies (3.1) with M = max{‖u‖∞, ‖v‖∞}. Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v)+.
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Remark 3.1 The same result holds without the assumption that X1, ..., Xm generate a Carnot
group if H is uniformly continuous and bounded, e.g., it does not depend on DXu, as in the
equation

λu− det(D2
Xu) + f(x) = 0 in Ω,

with λ > 0 and f ∈ C(Ω), f > 0. In fact that assumption is used only to get a gradient bound for
u that allows to treat H first as a uniformly continuous and then as a bounded function. This is
easily checked in the proof given below.

To prove Theorem 3.1 we use a general comparison result in Carnot groups for the equation

− log det(D2
Xu) + K(x, u, DXu) = 0 in Ω. (3.2)

For equation (3.2) the definition of viscosity sub- and supersolution is analogous to the case without
log.

Theorem 3.2 Assume that X1, · · · , Xm are the generators of a Carnot group. Suppose u ∈
USC(Ω) is a bounded, uniformly X -convex, i.e.,

−σT (x)D2uσ(x)−Q(x,Du) + γI ≤ 0, in Ω, for some γ > 0, (3.3)

and a subsolution of (3.2), whereas v ∈ LSC(Ω) is a bounded supersolution of (3.2). Assume K :
Ω× IR× IRm → IR is continuous and strictly increasing in r, i.e. K(x, r, q)−K(x, s, q) ≥ C(r−s),
for some C > 0 and all r, s ∈ [−M,M ], M = max{‖u‖∞, ‖v‖∞}. Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v)+.

Remark 3.2 The following proof gives the same result also for the equation

− log det(D2
Xu) + K(x, u, DXu, D2

Xu) = 0

if K is proper and satisfies the structure conditions for fully nonlinear second order operators of
the viscosity theory, see [15]. Under these conditions there is no need of the gradient bound, so the
result holds for general vector fields and not only for generators of Carnot groups. On the other
hand the structure conditions of [15] are more restrictive on the regularity of H in x, uniformly in
the other entries, than the mere continuity assumed in Theorem 3.2. See [6] for more details.

Proof. (of Theorem 3.2). For ε > 0 the function Φε(x, y) = u(x)−v(y)− 1
2ε |x−y|2 has a maximum

point (xε, yε). A standard argument gives

|xε − yε|2

ε
→ 0, as ε → 0+. (3.4)

If there is a sequence εk → 0 such that xεk
→ x̂ ∈ ∂Ω, then yεk

→ x̂, and by the upper semiconti-
nuity of u(x)− v(y)

max
Ω

(u− v) ≤ Φε(xε, yε) → max
∂Ω

(u− v), as ε → 0.

The case of yεj → ŷ ∈ ∂Ω for some εj → 0 is analogous. Therefore we are left with the case that
dist

(
(xε, yε), ∂(Ω× Ω)

)
≥ δ > 0. Then there exists Ω1 open, Ω1 ⊂ Ω such that (xε, yε) ∈ Ω1 × Ω1,

for all small ε.
We use the Theorem on Sums in [14] and get X, Y ∈ Sn such that, for pε := |xε−yε|

ε ,

u(x) ≤ u(xε) + pε · (x− xε) +
1
2
(x− xε)T X(x− xε) + o(|x− xε|2), x → xε,

v(y) ≥ v(yε) + pε · (y − yε) +
1
2
(y − yε)T Y (y − yε) + o(|y − yε|2), y → yε,
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and

−3
ε

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
. (3.5)

Assumption (3.3) implies

G(xε, pε, X) := σT (xε)X σ(xε) + Q(xε, pε) ≥ γI.

We seek a similar inequality for G(yε, pε, Y ) := σT (yε)Y σ(yε) + Q(yε, pε). To this end we multiply
on the left the second inequality in (3.5) by the m×2n matrix whose first n columns are σT (xε) and
the last n are σT (yε), and then on the right by the transpose of such matrix. Since the operation
preserves the inequality, we get

σT (xε)Xσ(xε)− σT (yε)Y σ(yε) ≤
3
ε
(σ(xε)− σ(yε))T (σ(xε)− σ(yε))

≤ 3
ε
Cσ|xε − yε|2 I, (3.6)

where Cσ is a suitable constant related to the Lipschitz constant of σ. From the definition of Q(x, p)
and σ (see (2.3) and Proposition (2.1)), taking pε := xε−yε

ε

−C1
|xε − yε|2

ε
I ≤ Q(yε, pε)−Q(xε, pε) ≤ C1

|xε − yε|2

ε
I. (3.7)

Then, by (3.6) and (3.7),

G(yε, pε, Y ) = σT (yε)Y σ(yε) + Q(yε, pε) ≥

≥ G(xε, pε, X)− 3
ε
Cσ|xε − yε|2 I + Q(yε, pε)−Q(xε, pε) ≥

≥
(
γ − 3

ε
Cσ|xε − yε|2 − C1

|xε − yε|2

ε

)
I ≥ γ

2
I, (3.8)

for ε small enough, by (3.4). Now we use the fact that u and v are sub- and supersolutions of (3.2):

− log det(σT (xε)X σ(xε) + Q(xε, pε)) + K(xε, u(xε), σT (xε)pε) ≤ 0, (3.9)
− log det(σT (yε)Y σ(yε) + Q(yε, pε)) + K(yε, v(yε), σT (yε)pε) ≥ 0.

If there is a sequence εk → 0 such that limk

(
u(xεk

)− v(yεk
)
)
≤ 0, then we conclude that

max
Ω

(u− v) ≤ lim
k

(
u(xεk

)− v(yεk
)
)
≤ 0.

Otherwise, if u(xε)−v(yε) ≥ γ1 > 0, by the strict monotonicity of K with respect to the 2nd entry
r, we get

− log det(σT (yε)Y σ(yε) + Q(yε, pε)) + K(yε, u(xε), σT (yε)pε)− Cγ1 ≥ 0. (3.10)

Now we subtract this inequality from the first of (3.9):

− log det G(xε, pε, X) + log det G(yε, pε, Y ) + K(xε, u(xε), σT (xε)pε)−
−K(yε, u(xε), σT (yε)pε) + Cγ1 ≤ 0. (3.11)

By inequalities (3.6) and (3.7) we know that

G(xε, pε, X) ≤ G(yε, pε, Y ) + (3Cσ + C1)
|xε − yε|2

ε
I.
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Hence, by the monotonicity of det over positive definite matrices,

− log det G(xε, pε, X) + log det G(yε, pε, Y ) ≥

− log det
(

G(yε, pε, Y ) + (3Cσ + C1)
|xε − yε|2

ε
I

)
+ log det G(yε, pε, Y ) =

= − log det
(

I + (3Cσ + C1)
|xε − yε|2

ε
G−1(yε, pε, Y )

)
.

Since, from (3.8), we have that

G−1(yε, pε, Y )) ≤ 2
γ

I,

by the monotonicity of det we obtain that

− log det G(xε, pε, X) + log det G(yε, pε, Y ) ≥ − log
(

1 +
2
γ

(3Cσ + C1)
|xε − yε|2

ε

)
(3.12)

and the right hand side tends to 0 as ε → 0+, by (3.4).
Next we consider the term

K(xε, u(xε), σT (xε)pε)−K(yε, u(xε), σT (yε)pε)

in (3.11). Since pε = xε−yε

ε is in the superdifferential of u at xε ∈ Ω1, with Ω1 ⊂ Ω, Proposition
2.2 gives

|σT (xε)pε| ≤ C. (3.13)

Moreover

|σT (xε)pε − σT (yε)pε| ≤ Lσ
|xε − yε|2

ε
→ 0 as ε → 0,

where Lσ is a Lipschitz constant of σ, and therefore, for ε small,

|σT (yε)pε| ≤ C + 1. (3.14)

Let ω1 be the modulus of continuity of K on Ω× [−M,M ]×B(0, C + 1). Then

|K(xε, u(xε), σT (xε)pε)−K(yε, u(xε), σT (yε)pε)| ≤ ω1(|xε − yε|+ Lσ
|xε − yε|2

ε
) → 0 (3.15)

as ε → 0. Then from (3.12) and (3.15), (3.11) becomes

0 < Cγ1 ≤ log det(1 +
2
γ

(3Cσ + C1)
|xε − yε|2

ε
)I + ω1(|xε − yε|+ Lσ

|xε − yε|2

ε
),

and we get a contradiction by letting ε → 0+.
2

Proof. (of Theorem 3.1) We rewrite (2.1) in the form

− log det(D2
Xu) + log H(x, u, DXu) = 0, in Ω. (3.16)

We follow the steps of the proof of Theorem 3.2 with K(x, r, q) := log H(x, r, q).
The only assumption that we have to check is the strict monotonicity with respect to r of

log H(x, r, q) from the strict monotonicity of H(x, r, q). In this case, to obtain estimate (3.10) for
(xε, yε) ∈ Ω1 × Ω1, we proceed as follows:

log H(yε, u(xε), σT (yε)pε)− log H(yε, v(yε), σT (yε)pε) ≥
log

(
H(yε, v(yε), σT (yε)pε) + C (u(xε)− v(yε))

)
− log H(yε, v(yε), σT (yε)pε) =

log
(

1 +
C (u(xε)− v(yε))

H(yε, v(yε), σT (yε)pε)

)
.
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From the continuity of H and (3.14) we get H(yε, v(yε), σT (yε)pε) ≤ C, for yε ∈ Ω1, and therefore

K(yε, u(xε), σT (yε)pε)−K
(
yε, v(yε), σT (yε)pε

)
≥ log

(
1 +

C

C
(u(xε)− v(yε))

)
≥ C̃

(
u(xε)− v(yε)

)
,

for a suitable C̃ > 0, for all (xε, yε) ∈ Ω1×Ω1. The rest of the proof is the same at that of Theorem
3.2.

2

Example 3.1 Consider the equation

λu− det(D2
Xu) + k(x)(1 + |DXu|2)(m+2)/2 = 0, in Ω, (3.17)

with λ ≥ 0, k(x) > 0 continuous. For λ = 0 this equation prescribes the horizontal Gaussian
curvature k(x) of the graph of u. It is classical in the euclidean case (n = m) and it was introduced
in [16] for Carnot groups. By taking log we rewrite it as

− log det(D2
Xu) + K(x, u, DXu) = 0

with

K(x, r, p) = log
(

k(x)(1 + |p|2)(m+2)/2 + λ r

)
.

For λ > 0, ∂K
∂r is positive and bounded away from 0 for bounded r ≥ 0 and bounded p. Therefore the

preceding Comparison Principle applies. In particular, for λ > 0, there is at most one uniformly
horizontally convex viscosity solution of (3.17) with prescribed boundary conditions. The case
λ = 0 is studied in the forthcoming paper [6].
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