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Abstract. We consider the Wulff problem arising from the study of the Heitmann-Radin en-
ergy of N atoms sitting on a periodic lattice. Combining the sharp quantitative Wulff inequality
in the continuum setting with a notion of quantitative closeness between discrete and continuum
energies, we provide very short proofs of fluctuation estimates of Voronoi-type sets associated
with almost minimizers of the discrete problem about the continuum limit Wulff shape. In the
particular case of exact energy minimizers, we recover the well-known, sharp N3/4 scaling law
for all considered planar lattices, as well as a sub-optimal scaling law for the cubic lattice in
dimension d ≥ 3.
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1. Introduction

The crystallization problem amounts to prove that, in the limit of low temperatures and long
time, the ground state configurations of certain atoms or molecules exhibit crystalline order.
More precisely one considers N identical particles occupying the positions x1, x2, . . . , xN ∈ Rd
and looks for the minimum of the energy

EN (x1, x2, . . . xN ) =
∑
i<j

V2(|xi − xj |), (1.1)

where V2 is an interatomic two-body interaction potential. Physically meaningful potentials V2

are repulsive at short range and attractive at long range, a paradigmatic example being the class
of (p, 2p) Lennard-Jones potentials. Up to a normalization procedure which sets to 1 the optimal
interatomic distance and to −1 the associated minimal energy, such a potential can be written as
Vp,2p(r) = r−2p − 2r−p. When V2 = Vp,2p the minimizers of EN are very difficult to characterize
and numerical simulations suggest that, up to surface relaxation effects, they sit on a periodic
lattice (see for instance [26]). The problem can be highly simplified if instead one considers as
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interaction potential VHR(r) = limp→+∞ Vp,2p(r). The latter, known as the Heitmann-Radin
sticky-disk potential, takes the form

VHR(r) =


+∞ , 0 < r < 1

−1 , r = 1

0 , r > 1,

(1.2)

and it has been studied in the context of crystallization by Heitmann and Radin in [19]. With the
choice V2 = VHR the crystallization problem becomes an optimal packing problem. In fact the
infimum of EN is attained when the particles sit at the centers of hard spheres of radius 1/2 which
maximize their mutual tangency. In [19] the authors prove that, in the two-dimensional case, the
absolute minimizers of EN are subsets of the triangular lattice, up to rotation and translation
(an alternative proof of this statement which makes use of discrete geometry arguments can
be found in the recent paper by De Luca and Friesecke [8]). When not only two-body, but also
three-body interactions (their role is that of favoring special bond angles) are taken into account,
EN takes the form

EN (x1, x2, . . . xN ) =
∑
i≤j

V2 (|xi − xj |) +
∑
i≤j≤k

V3 (xi − xj , xj − xk). (1.3)

If for instance V3 favours either 2π/3 or both π/2 and π angles between consecutive bonds, it
has been proved (under additional non-degeneracy conditions on V3) that the system crystallizes
on the honeycomb [20] or on the square lattice [21], respectively.

Finer geometric properties of the ground states of EN have been proved for instance in [9, 20, 21].
In particular, if L denotes the lattice on which the system crystallizes, it has been well understood
that for configurations of particles sitting on a subset of L, the energy EN can be written as
a sum of bulk and surface contributions. In particular, if all the particles of a configuration
X are sitting on the lattice L, i.e., X ⊂ L, observing that the energy per particle at a point
x ∈ X is minimal if all the nearest neighbors sites of x belong to the configuration X, one can
easily derive that at leading order EN (X) ≥ −CLN , where CL is the coordination number of
the lattice L (i.e., the number of nearest neighboring sites of L), which we here suppose to be
independent of the site. This estimate can be easily proven to be optimal by computing EN at a
configuration X which is maximally packed, that is such that it contains the maximal possible
number of nearest neighbors. This argument suggests that finer properties of the minimizers of
EN can be detected by studying the Gibbs excess energy of the system, that is the energy

EN (X) := EN (X) + CLN. (1.4)

As not all the particles have the maximal amount of neighbors, the energy above is non-negative.

Moreover, again computing EN at maximally packed X one can see that EN scales as N
d−1
d , a

result that has been rigorously exploited for the first time in [1] (for d = 2 and L the triangular
lattice) and has led the authors to recognize EN as a surface energy and then to prove that
EN Γ-converges (in an appropriate topology which makes the functionals equi-coercive) to an
anisotropic perimeter functional of the type

FH(A) =

ˆ
∂∗A
‖νA‖H dH1, (1.5)

where H is a regular hexagon with unit area, ∂∗A denotes the reduced boundary of A on which
a measure-theoretic normal νA is defined, and

‖ν‖H := sup{x · ν : x ∈ H}, ν ∈ S1. (1.6)
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As a corollary of this result the authors show that, as N → +∞, any minimizing sequence of EN
converge (after being properly scaled and translated) to the unique minimizer H of FH with unit-
area constraint. The set H is the Wulff shape associated with (1.6) and the convergence can be
understood as follows: one associates with each minimizing configuration X = {x1, x2, . . . , xN}
the measurable set V (X) ⊂ R2 given by the union of the Voronoi cells centered at the points of
X and takes the convergence in the sense of the L1 distance between the characteristic functions
of V (X) and of H.
In contrast to the uniqueness of the Wulff shape (see [14, 24]) which minimises the macroscopic
energy for fixed volume, the minimizers of the microscopic energy EN present a generic non-
uniqueness. Specifically one can prove the existence of a universal constant K > 0, of a diverging
sequence of natural numbers (Nj)j∈N and of a microscopic minimizer Xj with Nj particles which

differ from the largest Wulff shape Hj , such that Hj ∩ L ⊂ Xj , by at most N
3/4
j particles, i.e.

|Xj 4 (Hj ∩ L)| ' K N
3/4
j

Such a maximal asymptotic deviation, also known as maximal fluctuation estimate, has been
first conjectured in [1] in the case of the crystallization on the triangular lattice and later proved
in [23] and [6]. The same estimate has been proved in [21] and [5] for the square and the honey-
comb lattices, respectively.

The maximal fluctuation estimate can be seen as a quantitative version of a combinatorial
isoperimetric-type inequality known as the edge isoperimetric inequality (EII). The relation
between crystallization problems and EII has been first pointed out in [21]. In that paper the
authors proved the maximal fluctuation estimate on the square lattice by finding, for each N ∈ N
the solutions of the EII on that lattice. The same approach, based on the proof of the EII on
the triangular and honeycomb lattices, has led to the proof of the N3/4 law on those lattices.

Our approach to the proof of the maximal fluctuation inequality is different. The idea is that the
asymptotic behavior for N large of the quantitative edge isoperimetric inequality can be obtained
from its continuum counterpart, i.e., the quantitative version of the anisotropic isoperimetric
inequality proved by Figalli, Maggi and Pratelli in [11] (see also [17, 4, 2]). In [11] the authors
prove a quantitative stability for the anisotropic perimeter functional FW given by

FW (D) =

ˆ
∂∗D
‖ν‖W dHd−1, (1.7)

where W is a convex set containing the origin and, for all ν ∈ Sd−1, ‖ν‖W := sup{x ·ν : x ∈W}.
The set which minimizes the functional FW among all measurable sets of volume v > 0 (up to
translations) is called the Wulff shape associated with ‖ν‖W . This is the set Wv obtained from
W by an homothety which gives |Wv| = v. The quantitative isoperimetric inequality in [11]
states the existence of a dimensional constant C > 0 such that for every measurable set D ⊂ Rd
with volume v > 0 it holds that

inf
x∈Rd

|D 4 (x+Wv)| ≤ v
(
FW (D)−FW (Wv)

FW (Wv)

) 1
2

. (1.8)

Roughly speaking an inequality like (1) can be obtained from (1.8) via a two step procedure.
In the first step one identifies the discrete configuration X = {x1, x2, . . . , xN} with a continuum
measurable set ζ(X) chosen in such a way that |X 4 (x+WN ∩ L)| . |ζ(X) 4 (x+WN )|. In
the second step one looks for lower and upper bounds of EN (X) − EN (ζ(X)). This procedure,
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described with more details in Section 2, leads for d = 2 and in the case of the triangular, square
and honeycomb lattice, to an estimate of the type

inf
x∈R2

|ζ(X) 4 (x+WN ∩ L)| ≤ C N3/4(1 + EN (X)−min EN )1/2. (1.9)

It is worth noticing that our proof of the N3/4 law neither produces the best constant, that
can otherwise be found solving the EII, nor provides (or even relies on) any classification of
the minimizers at a fixed N . However the estimate above is more general than the maximal
fluctuation inequality as it generalises that to non ground state configurations and agrees with
the N3/4 law in for X ∈ arg min EN . Furthermore its proof is very elementary and avoids as
much as possible the difficulties coming from the microscopic nature of the system. Our method
can be generalised to any dimension. In Section 3.1 we show in the case of the lattice Zd the

asymptotic law N1− 1
2d for minimizers. We remark that this scaling law has been independently

obtained by Del Nin in his forthcoming PhD thesis [7].
Interestingly enough, our technique recovers the optimal asymptotic behaviour of the EII in
dimension d = 2, while it only provides a suboptimal estimate in dimension d = 3 (and, quite
likely, for any larger d). Indeed, it has been recently proved in [22] that the optimal estimate in

dimension d = 3 is, again, the N3/4 law. The “loss of resolution” of our method can be explained,
roughly speaking, as follows.
On the one hand, the minimizers of the discrete energy for any given N are very rigid. In all
known cases, they are obtained as relatively small perturbations of “discrete Wulff shapes” that
arise in connection with special values of N . The smallness of these allowed perturbations is one
of the outcomes of EII, and is reflected in the sharp N3/4 law.
On the other hand, the gap between the infima of the discrete and of the continuum energies
allows larger shape fluctuations in the continuum setting, as estimated by the sharp quantitative
Wulff inequality. This is the point where our method is mostly inaccurate.
In order to overcome this inaccuracy, we would need a lattice-based version of the sharp quan-
titative Wulff inequality. This seems to be an interesting question to be investigated in the
future.
We finally remark that the results discussed in this paper pave the way to other stability results
for functionals defined on points (lattices, stochastic lattices, graphs, data sets, etc.). Such results
can be proven as a consequence of the already known stability for coarse grained continuum
functionals and a specific approximation step that below takes the name of quantitative closeness.

2. Setting of the problem and preliminary results

We denote by M the collection of all Lebesgue measurable subsets of Rd. Given E ∈ M we
denote by |E| its d-dimensional Lebesgue measure. Given X a countable set, we denote by #(X)
the cardinality of X.
For x ∈ Rd and r > 0 we denote by Br(x) the open ball of radius r centred at x. We set
Br := Br(0) and denote by Sd−1 = ∂B1 the set of unitary vectors in Rd. Throughout the paper
we shall denote by C a positive constant whose value may change from line to line.

We denote by L ⊂ Rd the set of vertices of a periodic tessellation of Rd. Given x ∈ L we denote
by V (x) := {y ∈ Rd : |y − x| ≤ |y − z|, ∀z ∈ L} the Voronoi cell associated to L centred at x
and by V(L) = {V (x), x ∈ L}. Given X ⊂ L we set V (X) =

⋃
x∈X V (x) and µL(X) = |V (X)|

and we notice that the measure µL is discrete and non-degenerate, in the sense that µL({x})
takes only a finite number of positive values for all x ∈ L. We denote by X the collection of all
subsets X ⊂ L and for N ∈ N we further set XN := {X ∈ X : #(X) = N} . If E : X → [0,+∞]
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denotes an energy functional, we define the constrained energy EN : X → [0,+∞] as

EN (X) =

{
E(X) if X ∈ XN ,
+∞ otherwise,

(2.10)

and assume that EN is not identically +∞.

Consider the functional F :M→ [0,+∞] and assume that for any v > 0 there exists a unique,
up to null sets and translations, Wv ∈ M such that |Wv| = v and F(Wv) = min{F(D) : D ∈
M, |D| = v} > 0. Given ϕ : [0,+∞) → [0,+∞) a modulus of continuity (i.e. a continu-
ous, strictly increasing function such that ϕ(0) = 0), we say that F satisfies a ϕ-quantitative
inequality if it holds that

inf
x∈Rd

|D4(x+Wv)| ≤ v ϕ
(
F(D)−F(Wv)

F(Wv)

)
for all D ∈M with |D| = v, (2.11)

for all v > 0.

The following sharp quantitative isoperimetric inequality for anisotropic perimeters has been
proved in [11]:

Theorem 2.1. Let W ⊂ Rd be an open, bounded, convex set containing the origin and let

‖ν‖W := sup{x · ν : x ∈W}, ν ∈ Sd−1.

Then the functional

F(E) =

ˆ
∂∗D
‖ν‖W dHd−1,

satisfies a ϕ-quantitative isoperimetric inequality with Wv = v
1
dW and ϕ(x) = C

√
x.

2.1. Quantitative closeness. We say that the functional EN in (2.10) is quantitatively close
or Q-close to F with respect to the map ζ : XN →M and the parameters αN , βN , γN ≥ 0 if for
every X ∈ XN such that

EN (X) ≤ inf
Y ∈X
EN (Y ) + αN , (2.12)

the following two inequalities hold:

F(ζ(X)) ≤ EN (X) + βN , (2.13)

inf
Y ∈X
EN (Y ) ≤ inf

|D|=|ζ(X)|
F(D) + γN . (2.14)

Proposition 1. Let EN be Q-close to F , assume that F satisfies (2.11) and let X ∈ XN be
nonempty and such that (2.12) holds. Then, setting v = |ζ(X)|, the following estimate holds

inf
x∈Rd

|ζ(X)4(x+Wv)| ≤ v ϕ
(
αN + βN + γN
F(Wv)

)
. (2.15)

Proof. The proof of (2.15) is immediate, as

inf
x∈Rd

|ζ(X)4(x+Wv)| ≤ v ϕ
(
F(ζ(X))−F(Wv)

F(Wv)

)
≤ v ϕ

(
EN (X) + βN − inf EN (X) + γN

F(Wv)

)
≤ v ϕ

(
αN + βN + γN
F(Wv)

)
.
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�

3. Maximal fluctuation estimates

In this section we prove that in the case of the square, honeycomb and triangular lattices
the Heitmann-Radin excess energy EN of N particles is Q-close to an appropriate (and lattice
dependent) anisotropic perimeter functional. According to Theorem 2.1, such functional satisfies
a quantitative isoperimetric inequality which allows us to apply Proposition 1 and derive the
maximal fluctuation estimate as a stability inequality for the functionals EN .
Before proceeding we set some notation that will be used later. Given a lattice L with unitary
edge length, a set X ⊂ L and x ∈ X, we define the valence of x with respect to X as

val(x,X) = #{y ∈ L \X : |y − x| = 1} . (3.16)

3.1. The d-dimensional cubic lattice. We call X and M, respectively, the set of all finite
subsets of points of the d-dimensional cubic lattice L = Zd and the collection of measurable
subsets of Rd, as we have introduced in the previous section. For each X ∈ X we define

ζ(X) =
⋃
x∈X

x+ [−1/2, 1/2]d .

The Heitmann-Radin excess energy of X takes the form

E(X) =
∑
x∈X

val(x,X) .

We consider the functional F :M→ [0,+∞] to be finite only on sets D of bounded perimeter
where it takes the form of an anisotropic perimeter functional, namely

F(D) = P1(D) =

ˆ
∂∗D
‖ν‖1 dH1 ,

where ‖ · ‖1 denotes the L1-norm in Rd. According to the notation of Theorem 2.1, this norm
coincides with the norm ‖ν‖W associated with the unitary cell of the lattice W = (−1/2, 1/2)d.
It is well-known (see for instance [24, 14]) that for any v > 0 the Wulff problem

min
|D|=v

P1(D)

has a unique (up to translations and null sets) solution Wv = v
1
d [−1/2, 1/2]d. Hence

min
|D|=v

P1(D) = P1(Wv) = 2dv(d−1)/d .

Moreover, by Theorem 2.1 the quantitative inequality

inf
x∈Rd

|D4(x+Wv)| ≤ c1v

(
P1(D)− P1(Wv)

P1(Wv)

) 1
2

(3.17)

holds for all D ∈ M with finite perimeter and |D| = v. Fix N ∈ N and let EN be as in (2.10).
We clearly have|ζ(X)| = #(X) and F(ζ(X)) = EN (X) whenever X ∈ XN . Moreover, (2.13) and
(2.14) trivially hold with βN = 0 and

γN = inf
Y ∈X
EN (Y )− inf

|D|=N
F(D). (3.18)
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This shows that EN is Q-close to F with parameters βN = 0 and γN as in (3.18), and both are
independent of αN . By Proposition 1 with ϕ(s) = c1

√
s and v = N we get

inf
x∈Rd

|V (X)4(x+WN )| ≤ c1N

√
αN + γN
2dN1−1/d

= c1

(
αN + γN

2d

) 1
2

N
d+1
2d . (3.19)

We now proceed to estimate γN . Let k ≥ 0 be the unique integer such that kd ≤ N < (k + 1)d.
It is not difficult to check that one can build a configuration XN , such that

ζ(XN ) = N and E(XN ) ≤ 2d(k + 1)d−1 ≤ 2dkd−1 + Cdk
d−2 ,

where Cd is a dimensional constant. The configuration XN is obtained by removing (k+1)d−N
points from a cubical configuration made of (k + 1)d points, in such a way that the energy
does not increase. The algorithm for removing points starts from the point with coordinates all
equal to k + 1, then it removes points with d− 1 coordinates equal to k + 1 (and following the
reverse order for the remaining one), then it removes points with d−2 coordinates equal to k+1
(following the reverse lexicographic order for the two remaining coordinates), and so on. It is not
difficult to check that this procedure does not increase the energy of the resulting configuration
of points. Hence we find

γN ≤ CdN1−2/d . (3.20)

By plugging (3.20) into (3.19) we finally obtain

inf
x∈Rd

|V (X)4(x+WN )| ≤ c1

(
αN + CdN

1−2/d

2d

) 1
2

N
d+1
2d

≤ cd
(
αNN

d+1
d +N2−1/d

) 1
2
.

In particular, in the case αN = 0 we get

inf
x∈Rd

|V (X)4(x+WN )| ≤ cdN1− 1
2d .

Let us observe that, in dimension 2, we obtain the optimal fluctuation estimate N3/4. However,

in dimension d ≥ 3 our method provides a sub-optimal fluctuation estimate N1− 1
2d . Indeed, we

point out that the N3/4 law has been proved for the lattice Z3 in [22].

3.2. The honeycomb lattice. We prove a fluctuation estimate for the Heitmann-Radin excess
energy on the honeycomb lattice L, that is,

L = (Zv1 ⊕ Zv2) ∪ (e2 + Zv1 ⊕ Zv2) ,

where v1 = (
√

3, 0), v2 = (−
√

3/2, 3/2), and e2 = (0, 1). Note that each element of L has exactly
three neighbors at distance 1. The Voronoi cell V (x) associated with L and centered at x ∈ L
is an equilateral triangle of side length ` =

√
3 and area |V (x)| = 3

√
3

4 , whose vertices belong

to a dual hexagonal lattice of side length
√

3. This implies that µL({x}) = 3
√

3
4 for all x ∈ L.

We define the valence val(x,X) of a point x belonging to X ⊂ L as in (3.16). We introduce the
energy

E(X) =
√

3
∑
x∈X

val(x,X).

and note that ut coincides with the Heitmann-Radin excess energy, up to the normalizing factor√
3. In this section the functional F :M→ [0,+∞] is finite only on those sets D ⊂ R2 of finite
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perimeter on which it takes the form

F(D) = PH(D) =

ˆ
∂∗D
‖νD‖H dH1 .

Here we use the notation ‖ · ‖H to denote, as in Theorem 2.1, the norm associated with the
regular hexagon H having vertices on the six complex roots of the unity. For the functional F ,
Theorem 2.1 holds true. We also set ζ(X) = V (X) for all X ⊂ XN . As before, given v > 0 we
have

min
|D|=v

PH(D) = v
1
2 PH(

1

2
√

3
H),

and we denote by Hv =
√
v

2
√

3
H the solution of the problem above having |Hv| = v. Since

µL({x}) = 3
√

3
4 , we have for X ∈ XN

|ζ(X)| = 3
√

3

4
#X =

3
√

3N

4

and

F(ζ(X)) = E(X) .

As in the case of the square lattice, we immediately obtain (2.13) with βN = 0. Let us set

γN = inf
Y ∈X
EN (Y )− inf

|D|=3
√

3N/4
F(D) .

We observe that EN is Q-close to F with parameters αN , βN = 0, and γN given in the formula
above. Thus we can apply Proposition 1 with ϕ(s) = c1

√
(s) and v = 3

√
3N/4 to obtain that

inf
x∈R2

|V (X)4(x+H3
√

3N/4)| ≤ 3
√

3N

4

(
αN + γN
F(H3

√
3N/4)

) 1
2

= c2
3

4

(
αN + γN√

2

) 1
2

N3/4 . (3.21)

Next we observe that ζ(X) coincides with Hv when N = #X = 6k2, for some integer k ≥ 1 and
for v = 9

√
3k2/4, and note that in this case Hv is a regular hexagon such that F(Hv) = 6

√
3k.

In the case N ≥ 6 we take k as the integer such that 6k2 ≤ N < 6(k + 1)2 and we estimate

γN ≤ 6
√

3(k + 1)− 6
√

3k = 6
√

3 .

Thanks to this estimate and to (3.21) we finally have

inf
x∈R2

|V (X)4(x+H3
√

3N/4)| ≤ c1
3
√

3N

4

(
αN + 6

√
3

F(Hv)

) 1
2

= c1
3

4

(
αN + 6

√
3√

2

) 1
2

N3/4 ,

which proves the N3/4 law when there exists α > 0 such that 0 ≤ αN ≤ α for all N .

3.3. The triangular lattice. We define the triangular lattice as L = Ze1 ⊕ Ze2, with e1 =
(0, 1) and e2 = (1/2,

√
3/2). For each x ∈ L, the Voronoi cell V (x) is the translated hexagon

x+ 1√
3
H, where H denotes the honeycomb lattice unitary cell already considered in the previous

subsection. We thus have |V (x)| =
√

3/2. In order to define the map ζ, it is convenient to
construct a suitable “tent-like” function fX associated with each set X ⊂ X , as follows. Given
x ∈ L we consider the piecewise linear function ϕx : R2 → R such that ϕx(x) = 1, ϕx(y) = 0 for
all y ∈ L \ {x}, and ϕ is affine on every closed equilateral triangle with vertices on L and side
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length = 1. In other words, ϕx is the generic basis function of the P 1 finite elements defined on
the triangular mesh. Then, for any X inf X we set

fX(y) =
∑
x∈X

ϕx(y) .

In the triangular lattice case, the Heitmann-Radin excess energy is given by

E(X) =
1

2

∑
x∈X

val(x,X), ∀X ∈ X .

We also define the map ζ as

ζ(X) = {y ∈ R2 : fX(y) > 1/2} ,
for every X ∈ X . We have the following proposition.

Proposition 2. For every X ∈ X it holds

E(X) = ‖∇fX‖L1 = PH(ζ(X)) . (3.22)

Proof. Let us introduce the following notation: given x, y ∈ L with d(x, y) = 1, we denote by Txy
the equilateral triangle in the mesh with vertices x, y, z, such that the segment xz is obtained
by counterclockwise rotating the segment xy by 60 degrees around x. By the definition of fX ,
one can easily check that ‖∇fX‖L1(Txy) = 1/2 if x ∈ X and y /∈ X. Therefore, for all X ∈ XN
we have

E(X) =
1

2

∑
x∈X

#{y ∈ L \X : d(x, y) = 1} =
∑
x∈X

∑
y∈L\X
d(x,y)=1

‖∇fX‖L1(Txy) = ‖∇fX‖L1 , (3.23)

Some explanation about the previous identities is in order. We remark that ∇fX is different from
zero if and only if we consider the function fX restricted to an equilateral triangle whose vertices
are not all contained in X, or in the complement of X. On such a “boundary triangle”, we have
|∇fX | = 2√

3
. Moreover, this collection of boundary triangles is in a one-to-one correspondence

with pairs (x, y) ∈ L × L such that x ∈ X and y /∈ X, via the map (x, y) 7→ Txy. This explains
the validity of the last two equalities and shows the first equality in (3.22). The second equality
then follows from the fact that on every boundary triangle T , ‖∇fX‖L1(T ) = PH(ζ(X), T ). �

We are now going to check the assumptions of Proposition 1. It is convenient to represent ∂ζ(X)
as a 1-dimensional polyhedral chain, that is, as a finite union of oriented polygonal closed curves
defined by ordered lists `h = (mh,1, . . . ,mh,jh), h = 1, . . . , h̄ and mh,jh+1 = mh,1, where mh,j is
a midpoint of an edge of L connecting a point of X with a point of L\X in the 1-neighborhood
of x (i.e., of an edge that “contributes” to the Heitmann-Radin energy of X) and each pair of
consecutive points belongs to the same triangle of L. We consider the discrete curvature measure
associated with ∂ζ(X) and defined as a weighted sum of Dirac’s deltas concentrated on the set
M = {mh,j : h = 1, . . . , h̄ and j = 1, . . . , jh}. The weight of the curvature measure at every
point mh,j ∈ M is the angle formed by the two vectors mh,j+1 −mh,j and mh,j −mh,j−1, that
we denote from now on by κ(mh,j). The possible values of κ are −π/3, 0, π/3. The following
proposition holds true.

Proposition 3. Let γ be the oriented, closed polygonal curve associated with a J-tuple ` =
(m1, . . . ,mJ) of points, with the following properties:

(i) J ≥ 6;
(ii) mj is the midpoint of an edge of the triangular lattice L, for all 1 ≤ j ≤ J ;
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Figure 1. On the triangular lattice (small black discs), X (big black discs),
V (X) (light grey region), ∂V (X) (black line), ∂ζ(X) (black dotted line).

(iii) mj 6= mj′ for all 1 ≤ j < j′ ≤ J and, with the convention mJ+1 = m1, for all j = 1, . . . , J
the points mj and mj+1 belong to the same closed equilateral triangle of L;

(iv) with the further convention m0 = mJ , the angle formed by the two vectors mj+1 −mj

and mj −mj−1 belongs to {−π/3, 0, π/3}.

Then
J∑
j=1

κ(mj) = ±2π, where the sign is the one corresponding to the orientation of γ.

Proof. We observe that the polygonal γ is necessarily simple, thanks to (iii) and (iv). Moreover,
taking into account (iv), the property (i) is actually a necessary condition for γ to be closed.
The last statement then follows from the Gauss-Bonnet theorem. �

By Proposition 3, assuming X ∈ X connected, we have

h̄∑
h=1

jh∑
j=1

κ(mh,j) = 2π
(
1−#holes of ζ(X)

)
.

The area of an equilateral triangle whose height is 1/4 equals 1
16
√

3
, so that if we define κ̃(m) =

3κ(m)/π we obtain κ̃(m) ∈ {−1, 0, 1} and

|V (X)| − |ζ(X)| = 1

16
√

3

h̄∑
h=1

jh∑
j=1

κ̃(mh,j)

=

√
3

16π

h̄∑
h=1

jh∑
j=1

κ(mh,j) =

√
3

8

(
1−#holes of ζ(X)

)
.

Note that the above decomposition is an immediate consequence of the fact that the signed area

of the two triangles associated with a point mh,j (see Figure 2) is given by
κ̃(mh,j)

16
√

3
.
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mh,3

mh,7

mh,9

Figure 2. A single contribution to the area difference |V (X)| − |ζ(X)| is given
by pairs of triangles insisting on points mh,j . The triangles are counted with
positive sign if they are contained in V (X) (red color) and with negative sign if
they are contained in the complement of V (X) (blue color).

Taking into account that |V (X)| =
√

3
2 N we find

|ζ(X)| =
√

3

2
N −

√
3

8

(
1−#holes of ζ(X)

)
≥
√

3

2
N −

√
3

8

We now set vN =
√

3
2 N −

√
3

8 and define

γN = inf
Y ∈X
EN (Y )− inf

|D|=vN
PH(D) .

Then by the monotonicity of v 7→ inf |D|=v PH(D), for every X ∈ XN we have

γN ≥ inf
Y ∈X
EN (Y )− inf

|D|=|ζ(X)|
PH(D) .

Gathering together the results above, we have proved that the functional EN is Q-close to PH
with parameters αN , βN = 0 (by Proposition 2). We can apply Proposition 1 to deduce that

inf
x∈Rd

|V (X)4(x+H|ζ(X)|)| ≤ |ζ(X)|
(

αN + γN
PH(H|ζ(X)|)

)1/2

(3.24)

where H|ζ(X)| denotes the Wulff hexagon with area |ζ(X)|.

In order to estimate γN we now proceed as in the previous section. Let us set for any integer
k ≥ 0

Nk = 1 + 6 + 6 · 2 + · · ·+ 6 · k = 3k2 + 3k + 1 .

Given N ∈ N, there exists a unique k ≥ 0 such that

Nk ≤ N < Nk+1 .
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Moreover, regular hexagons of side length k + 1 can be obtained as the ζ-image of suitable
configurations of exactly Nk points of the lattice. Hence we get the estimate

inf
Y ∈X
EN (Y )− inf

|D|=vN
PH(D) ≤ inf

Y ∈X
ENk+1

(Y )− inf
|D|=vN

PH(D) (3.25)

= 6(k + 2)−
√

24vN/
√

3 (3.26)

≤
√

12N − 3 + 9−
√

12N − 1/8 (3.27)

≤ 9 (3.28)

We now combine (3.24) and (3.25) with the trivial estimate |ζ(X)| ≤ CN and we obtain

inf
x∈R2

|V (X)4(x+H|ζ(X)|)| ≤ c(αN +N
3
4 (
√
αN + 1)). (3.29)

where c > 0 is a fixed constant. This shows the N3/4 law as soon as one takes αN ≤ α and
X ∈ XN connected.
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