
UNIVERSITÀ DI PISA

DIPARTIMENTO DI MATEMATICA

CORSO DI DOTTORATO IN MATEMATICA

PH.D. THESIS

Some asymptotic results
on the global shape of planar clusters

Advisor:
Prof. Giovanni Alberti

Candidate:

Giacomo Del Nin

XXXI PH.D. CYCLE

PISA, 2018



2



Abstract
In this thesis we analyze the problem of the global shape of perimeter-minimizing planar N-clusters,

which represent a model for soap bubbles. A planar N-cluster is a collection EN = (EN(1), . . . ,EN(N))

of disjoint finite perimeter sets in R2 with unit area, called bubbles or chambers (to which we add for
convenience the exterior chamber E (0) = R2 \

⋃N
i=1 E (i)), and its perimeter is given by

P(EN) =
1
2

N

∑
i=0

P(E (i)).

The problem of understanding the asymptotic global (or outer) shape of minimizing N-clusters as
N→ ∞ has been considered by various authors [CG03], [HM05], [CMG13].

We prove under some assumptions that the asymptotic global shape of the rescaled minimal clusters

E∞ := lim
N→∞

1√
N

E (0)c

exists as a finite perimeter set, and we prove the mild regularity result that the set of zero Lebesgue
density E(0)

∞ is an open set. Moreover the asymptotic perimeter density is that of a hexagonal lattice, up
to lower order terms.

We then consider some variants of this problem:

• Anisotropic perimeter. If we consider an anisotropic perimeter with cubic Wulff shape then the
asymptotic global shape is itself a cube in any dimension, with a precise rate of convergence that
is given by the quantitative anisotropic isoperimetric inequality [FMP10].

• Fixed shape of chambers. If we require all chambers to be squares (respectively hexagons) then
again the global shape is a square (respectively hexagon). In both cases the rate of convergence
to the global shape coincides with the N3/4 law already proven for crystallized configurations
of particles in either the square or the triangular lattice [Sch13], [DPS17]. This is proved again
thanks to the quantitative isoperimetric inequality, which gives also an alternative way of proving
the above cited N3/4 law for crystallized particles .

• Weighted clusters. We put different weights at different interfaces and prove that in a suitable
“repulsive” asymptotic regime minimizers converge to configurations of disjoint disks that maxi-
mize the number of tangencies among them. In other words, the weighted perimeter functionals
Γ-converge to the sticky-disk problem. This suggests that for certain choices of weights the global
shape of minimizing clusters should be close to a hexagon.

We then estimate the perimeter of the hexagonal honeycomb H contained in a disk of radius r prov-
ing the remainder estimate P(H ,Br)− 4

√
12πr2 = O(r2/3) (observe that the remainder term is smaller

than the trivial “surface” term O(r)) and proving an analogue result for any periodic measure in Rn.
Finally we consider the interface problem where we ask what is the optimal way to fill the region

contained between two honeycombs whose orientations differ by an angle θ , proving that some defects
must appear and proving that, as the size of the chambers goes to zero, we can extract a “limit BV
orientation” that describes the asymptotic orientation of the hexagonal chambers.
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Introduction

Many physical systems at rest exhibit a regular structure of some kind when there is a large number of
elements involved. Among these systems we can cite: particles interacting via some kind of repulsive-
attractive potential; soap bubbles forming foams; crystalline structures in materials.

The aim of this thesis is to study some of these pattern occurrences with a particular focus on the case
of perimeter-minimizing planar clusters (which represent a model for soap bubbles) but also to highlight
the interplay of this model with the other aforementioned physical systems.

One of the most famous results on this topic is the proof of the honeycomb conjecture by T.C. Hales
[Hal01]: the optimal partition of the plane in equal-area cells (bubbles) that minimizes perimeter is given
by the hexagonal honeycomb. Of course we have to specify what we mean by perimeter-minimizing
since the perimeter of an equal-area partition of the plane is infinite. For instance given any partition
E = (E (1),E (2), . . .) of R2 we can define its asymptotic perimeter density as

ρ(E ) := limsup
r→∞

P(E ,Br)

πr2

where
P(E ,Br) :=

1
2 ∑

i
length(∂E (i)∩Br)

is the perimeter of E contained in a disk of radius r. Then the honeycomb conjecture amounts to say that
for any partition E with Area(E (i)) = 1 we have

ρ(E )≥ ρ(H ) =
4
√

12

Figure 1: A portion of the honeycomb H .
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CHAPTER 0. INTRODUCTION vi

where H is the hexagonal honeycomb with unit areas (see Figure 1).
Hales proved that even if we consider a finite number N of bubbles we still can not beat the average

perimeter-to-area ratio of 4
√

12: for any given N-cluster EN = (EN(1), . . . ,EN(N)) (also called N-bubble)
of sets with pairwise disjoint interiors with Area(EN(i)) = 1 we have

P(EN)≥
4
√

12N (1)

where

P(EN) :=
1
2

N

∑
i=0

length(∂EN(i))

and where we have introduced for convenience the exterior chamber

EN(0) := R2 \
N⋃

i=1

EN(i).

The case of a finite number of bubbles presents however a non trivial effect of the outer boundary on the
shape of minimizing configurations: while a hexagonal interior structure is expected by the honeycomb
conjecture, the outer layer of bubbles tends to be rounder to minimize the outer unshared perimeter (see
Figure 2) and therefore there is a competition between the six-fold symmetry of the honeycomb and
the isoperimetric inequality which would yield a round outer shape. The understanding of what is the
optimal outer shape when N→ ∞ was considered by various authors [CG03], [HM05], [CMG13] and is
the main question that initiated the various topics discussed in the present thesis. We highlight it here:

Question 1. What is the asymptotic outer shape of equal-area perimeter-minimizing planar N-clusters
when N→ ∞?

In order to have a meaningful result we have to rescale the clusters so that their total area remains
fixed, and in particular given an N-cluster with unit areas we define its global shape as

EN :=
1√
N

N⋃
i=1

EN(i)

and then we ask if the limit
E∞ = lim

N→∞
EN

exists in a suitable sense (up to subsequence and rigid motions) when EN are minimizing N-clusters for
the given unit-area constraint.

Another related problem is considering optimal partitions of a given open set Ω ⊂ R2: minimize
P(EN) among all N-clusters with areas |Ω|N such that

Ω =
N⋃

i=1

E (i).

In this case the outer shape is fixed and the focus is on the creation of hexagonal patterns in the interior
of the configuration.
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Figure 2: An example of N-bubble with N = 1261, taken from [CG03]. A regularity result [Mor94]
assures that in a minimizing cluster the boundary of the bubbles is made of a finite number of
segments and circular arcs. The different grey scale indicates the number of sides of the bubble,
and more precisely the discrepancy between the expected number of sides (6 for interior bubbles,
5 for boundary bubbles) and the actual one. As the number of bubbles goes to infinity we want to
understand what is the asymptotic outer shape of equal-areas minimizing clusters.

Question 2. Both in the case of N-clusters and N-partitions can we define a notion of “orientation”
of the underlying hexagonal pattern? Can we prove a compactness result about these orientations for
minimizing configurations when N→ ∞?

The basic existence and regularity result for perimeter-minimizing planar clusters is the following
[Mor94]: for any given choice of positive numbers m1, . . . ,mN the area-constrained minimization prob-
lem

min{P(EN) : EN is an N-cluster with Area(EN(i)) = mi}

admits a solution. Moreover each chamber of a minimizer is equivalent to a (possibly disconnected) open
set whose boundary is composed by a finite number of circular arcs or straight segments; these arcs meet
in triple points forming equal angles of 120 degrees.

We now briefly summarize the content of the thesis, referring to each individual chapter for a detailed
explanation.

Existence of the global shape (Chapter 3)

The first step to confront Question 1 is proving the existence in a suitable sense of a limit global shape.
This will be the goal of Chapter 3. We will see that, under some assumptions, the limit shape exists
as a finite perimeter set. In particular we apply a standard compactness result for finite perimeter sets
(see Theorem 1.2) which is based on proving the following equiboundedness property for unit-areas
perimeter-minimizing N-clusters ĒN :

sup
N∈N

P(ĒN)<+∞
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where ĒN is the global shape defined above. This estimate, in terms of the original non-rescaled clusters
ĒN , is equivalent to

P(ĒN(0))≤C
√

N

for a constant C. We underline that this task is non-trivial due to the bulk scaling of the total perimeter:
while for unit-areas minimal N-clusters the total perimeter P(ĒN) (the quantity to be minimized) goes
like N as N→ ∞, the estimate that we want to obtain concerns a quantity (the outer perimeter) which is
of a lower order,

√
N.

The above estimate is an immediate consequence of the following two results:

• an upper bound (Lemma 3.7) for minimizing configurations

P(ĒN)≤
4
√

12N +C
√

N

obtained by constructing a simple competitor with unit-area hexagons placed in a spiral configu-
ration (but any reasonable “not too squeezed” configuration would suffice);

• a lower bound (Lemma 3.6) that holds for any unit-areas N-cluster:

P(EN)≥
4
√

12N + cP(EN(0))

for a constant c > 0. Observe that this is a refinement of the honeycomb inequality (1) which takes
into accout also the outer perimeter.

The proof of the lower bound estimate relies on an isoperimetric inequality for curvilinear polygons,
which we call Hales inequality, and which is the key tool employed in [Hal01] to prove the honeycomb
conjecture. To obtain the final result however we have to require that the area of each component of each
chamber in a minimizing N-cluster satisfies a lower bound that depends on the number of curvilinear
sides which compose its boundary, see (3.5). This assumption is satisfied if for instance we know that
each chamber is connected (which however is not known in general and is an open problem) or if we
consider a different setting where, roughly speaking, if a chamber has many connected components we
still count an infinitesimally thin interface that connects them (that is we view each chamber not as a finite
perimeter set but as the area enclosed by a closed rectifiable curve, whose length gives the perimeter).
We could avoid this additional assumption if we knew that a slightly better Hales inequality holds. We
refer to Section 3.3 for a discussion on this topic.

After having established existence of the limit global shape E∞ we prove a weak regularity result:
the measure-theoretic exterior E(0)

∞ , that is the set of points of Lebesgue density zero, is an open set
(Theorem 3.15).

Finally we prove the equipartition of the asymptotic energy density (Theorem 3.17): consider mini-
mal N-clusters ĒN whose global shape converge to E∞, and define the measures νN := 1√

N
H 1x∂ ĒN , that

is the 1-dimensional Hausdorff measures restricted to the interfaces between bubbles, suitably rescaled
to have bounded mass. Then νN weakly converge to the uniform Lebesgue measure on E∞ with density

4
√

12:
νN

∗
⇀

4
√

12L 2xE∞ as N→ ∞.
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This result tells us that the interior structure of minimal N-clusters when N is big is close, at least
energetically speaking, to a regular honeycomb.

We actually prove these last results in a slighlty different setting where we impose a relaxed constraint
on the chambers: given a parameter ε > 0 we fix the total area of the cluster E to be 1 and we require
Area(E (i))≤ ε2 for every i, then send ε → 0.

Weighted clusters (Chapter 2)

A variant of the problem of perimeter-minimizing N-clusters is given by computing the perimeter with
different weigths at different interfaces. This problem is often referred to as the immiscible fluids prob-
lem. In particular given a cluster E = (E (1), . . . ,E (N)) and given some non-negative weights ci j we
consider the following weighted perimeter

P(E ) :=
N

∑
i=0

ci j length(∂E (i)∩∂E ( j))

which counts the interface between bubbles E (i) and E ( j) with weight ci j and represents different surface
tensions between different fluids.

In Chapter 2 we analyze a special case where the weights depend on a small parameter ε > 0, which
is then sent to zero. Specifically we consider

Pε(E ) :=
N

∑
i=0

ci j(ε) length(∂E (i)∩∂E ( j)) ci j(ε) =

{
2− ε if i, j 6= 0

1 if i = 0 or j = 0

which amounts to say that interfaces between different bubbles are given almost twice the weight given
to the interfaces between a bubble and the exterior. We explain this choice: if we put weight 2 instead of
2− ε then the problem splits into N separate isoperimetric problems, since it amounts to minimize

N

∑
i=1

P(E (i))

which is minimized by any configuration of disjoint disks. If instead we put the slightly lower weight
2−ε the effect is that the bubbles tend to “repel” each other but have still interest in sharing tiny portions
of their boundary (see Figure 3).

We are then interested in the following asymptotic behaviour: instead of sending the number of
bubbles to infinity we fix their number N and fix an area constraint and we ask what happens to Pε -
minimizing N-bubbles Eε = (Eε(1), . . .Eε(N)) when ε → 0. A first simple consequence of the isoperi-
metric inequality is that each bubble converges to a disk, and in the limit we only see configurations of
disks with pairwise disjoint interiors. We expect however to see in the limit ε → 0 only certain configu-
rations of disks, and indeed the following is the main result of the chapter (see Theorem 2.2):

Theorem (Sticky-disk limit). As ε → 0 minimizers Eε of Pε converge up to subsequence and rigid
motions to a cluster of disks that maximizes the number of contact points among the disks, each contact
point counted with factor rir j

ri+r j
, where ri,r j are the radii of the touching disks.
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Figure 3: A numerical candidate for being a minimizer of the weighted perimeter Pε when ε = 0.02,
for N = 7 bubbles with equal area. This competitor was obtained by means of the Surface Evolver
developed by Ken Brakke [Bra92].

The proof of the above theorem relies on a quantitative-type isoperimetric inequality involving the
curvature of the boundary (Theorem 2.14), which can be seen as a sort of Taylor expansion of the perime-
ter functional with base point the disk. In the same way Hales inequality (3.6) can be seen as a Taylor
expansion of the perimeter with base point the hexagon, and it would be interesting to understand more
deeply the relation between the two and whether they are an instance of a more general Taylor-type
expansion of the perimeter.

The name “sticky-disk” comes from the following fact: if the radii of the disks are equal (say 1
2 ) then

maximizing the number of their contact points is equivalent to minimizing the energy

E(XN) = ∑
1≤i< j≤N

V (|xi− x j|)

among configurations XN = {x1, . . . ,xN} of N points in R2, where

V (r) =


+∞ if 0≤ r < 1

−1 if r = 1

0 if r > 1

is the so-called sticky-disk or Heitmann-Radin potential. We know that minimizers of the sticky-disk are
crystallized [HR80], that is they form a subset of the triangular lattice, and as N→∞ the global shape of
minimal configurations converges to a hexagon [AYFS12], [Sch13], [DPS16], see also Section 4.1. This
is a hint that, for a fixed but small ε , minimizers of Pε could have an almost-hexagonal limit global shape
as N→ ∞ (see Section 3.6).

In proving the theorem above we also obtain some information on the structure of Pε -minimizing
clusters for small ε (Theorem 2.7). We then discuss the extension of the above theorem to higher dimen-
sions.
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Variants on the global shape problem (Chapter 4)

We consider some variants on the asymptotic global shape problem, where we impose some constraint
on the chambers or consider special perimeters.

In the first we consider N-clusters whose chambers are regular hexagons of unit area. We prove
that minimizers are crystallized, that is they can be realized as a subset of the honeycomb H , and as a
consequence of [AYFS12], [DPS16] we obtain a hexagonal asymptotic global shape.

Then we consider anisotropic clusters, in particular with a cubic anisotropy, where to compute the
perimeter of each chamber we take into consideration the direction of its unit normals. Using the quanti-
tative anisotropic isoperimetric inequality [FMP10] we prove that in this case the global shape is a cube,
with a precise rate of convergence. In particular in Rn the global shape of minimizers with N chambers
of unit volume differs from a big cube of side N1/n by at most a volume ≈ N1− 1

2n . The same estimate
holds for discrete configurations of N points in Zn that minimize the edge-perimeter. In particular in
dimension 2 we recover the N3/4 law [Sch13]. In three dimensions this estimate is not sharp, since the
optimal rate is again N3/4 [Mai+18], and in higher dimension it is an open question.

Then we look at N-clusters whose chambers are squares of area 1
N in the plane, but this time we

are interested not only in the asymptotic global shape of minimizers (which is a square) but also on
the formation of an interior crystalline structure in low energy configurations: we prove a Γ-convergence
result that implies that if we take into account also the orientations of the square chambers then sequences
EN with low energy, i.e.

P(EN)≤ 4
√

N +C

converge in a suitable sense, up to subsequence and rigid motions (and up to a confinement assumption),
to a polycrystal with square Wulff shape.

More precisely, the first step is defining in a suitable way what we can call an orientation for any
minimizing N-cluster. In the case where all chambers are squares it is natural to define an orientation as a
vectorfield θN : EN → S1 which is constant on every square and is parallel to one of the sides (see Figure
4 for the equally natural case of hexagonal bubbles). To factor out the rotational invariance modulo π

2 we
can decide that the angle that the vectorfield makes with the x axis belongs to [0, π

2 ) (counterclockwise).
In particular this vectorfield is a piecewise constant SBV (special bounded variation) function. Then
by standard compactness results about SBV functions we ensure that there exists a limit vectorfield
θ∞ = limN→∞ θN which is still an SBV vectorfield, with values in S1, which is constant on each set
of a (countable) partition of R2 in sets of finite perimeter. This limit vectorfield describes what is the
asymptotic infinitesimal orientation of the underlying square lattice.

The second step is to obtain a variational problem for the limit vectorfields obtained in the first step,
that is to compute the Γ-limit. This is in general a more delicate issue, but in the case of square chambers
we can exactly compute it: we obtain a model for polycrystals with square anisotropy. If we write the
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Figure 4: An example of the orientation vectorfield φ in the case of hexagonal bubbles: constant on
each hexagon and parlallel to one side.

limit vectorfield as

θ∞ =
∞

∑
i=1

θ
i
∞1Ci

then the limit functional is
∞

∑
i=1

Pθ i
∞
(Ci)

where Pθ i
∞
(Ci) is the anisotropic square perimeter of Ci rotated in direction θ i

∞.
A similar compactness result (i.e. in the limit we obtain a countable collection of sets and orienta-

tions) holds also for hexagonal chambers.

Finally we consider the sticky-disk model, where we expect again a triangular pattern to appear in
low energy configurations. We define a notion of orientation that describes the underlying triangular
pattern and exploting the above cited compactness result for hexagonal chambers we prove an analogous
compactness result for low energy configurations of the sticky-disk as N → ∞. Again in the limit we
obtain a polycrystal, but again we can not compute the exact Γ-limit. In [DLNP18] the authors prove an
analogous compactness result and give some estimates on the Γ-limit.

Mass distribution of periodic measures (Chapter 5)

A natural question regarding the honeycomb partition H of the plane is the following: can we estimate
the perimeter contained in a disk of radius r when r→ ∞? The leading term is easily obtainable and
more precisely we have

P(H ,Br) =
4
√

12πr2 +o(r2).

The goal is to find estimates for the remainder term

∆(r) := P(H ,Br)−
4
√

12πr2.

More generally we can consider a lattice Λ = AZn for some invertible linear transformation A and a
Λ-periodic measure µ: we start from a measure µ0 on the fundamental cell Q = A([0,1)n), consider the



xiii

Λ-periodized measure

µ := ∑
k∈Λ

(τk)#µ0

obtained by summing the pushforward through all the translations by a vector in the lattice Λ and estimate
the remainder term

∆µ(r) := µ(Br)−‖µ0‖|Br|

where ‖µ0‖ := µ0(Q)/|Q| and | · | denotes the Lebesgue measure. We will show that

∆µ(r) = ‖µ0‖O(r(n−1) n
n+1 )

by adapting the proof by C.S. Herz [Her62b] for the Gauss Circle Problem (counting the number of lattice
points of Zn contained in Br) which can be seen as a particular case of the above setting with µ0 = δ0. In
particular the estimate is smaller than a “surface” term O(rn−1) that one could naively expect, and in the
planar case coincides with O(r2/3).

Interface problem (Chapter 6)

In order to describe the asymptotic behaviour of both N-clusters and N-partitions we would like to prove a
Γ-convergence result, of which we now give a rough outline. This outline actually works in the simplified
case considered in Chapter 4 (square chambers) but the general Γ-convergence for clusters is out of reach
for now, and that’s why we will focus on an intermediate problem. We consider for simplicity the case
of polygonal partitions, that is when all chambers are polygons.

The ideal Γ-convergence result follows these steps:

• Defining an orientation. The first step is to define a suitable notion of orientation that describes the
direction of the hexagonal chambers, which by the honeycomb inequality constitute the majority.
We can imagine for instance a vectorfield φN : EN → S1 defined on

EN =
1√
N

N⋃
i=1

EN(i)

which is ideally parallel to the sides of the hexagons.

• Compactness of orientations. The second step is obtaining a compactness result for the orientations
φN of minimizing clusters. A likely situation (that occurs in the case of square chambers) is
compactness in SBV : we thus obtain a limit vectorfield φ∞ = limN→∞ φN which describes locally
the asymptotic direction of the underlying honeycomb.

• Γ-convergence. The final step is obtaining a limit functional defined on the limit vectorfields
obtained in the previous step. Such a limit functional would have to take into account the energy
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Figure 5: The interface problem: what is the optimal way of filling the middle region with chambers
of area |Ω|N in order to minimize the total perimeter? Do we have to insert non-hexagonal chambers?
What is the energy excess with respect to the honeycomb?

of passing from one orientation to another and the effect of the boundary, and could roughly have
the following simplified form:

F(φ) =

ˆ
Ω

ψ(Dφ(x))dx+
ˆ

∂Ω

b(φ(x),νΩ(x))dH 1(x)

where Dφ is the distributional gradient of φ . b(·, ·) measures the effect on the energy of having a
specific orientation near the boundary ∂Ω, while ψ measures the effect of changing orientation.

An intermediate problem in the series of steps above is what we can call a cell problem: localize
the problem in a square and study minimal configurations with some fixed “boundary conditions”. A
particular case that we consider in this chapter is the following:

• Interface problem (also grain boundary problem). We fix a square Ω of side L, fix an angle θ and
consider all N-partitions of Ω that on two lateral zones of the square coincide with two honeycombs
whose orientations differ by an angle θ (see Figure 5) and ask what is the optimal way of filling
the middle region to minimize the total perimeter.

Hales inequality (1) tells us that optimal configurations should be hexagonal, but the impossibility of
filling the middle region with a honeycomb matching both sides makes the problem non-trivial. Also,
the possibility of using deformed hexagons or even non-hexagonal chambers, which we generically call
defects, introduces a competition between elastic and plastic effects and makes the problem much more
difficult than the rigid situations considered in Chapter 4 where we use chambers with a fixed shape
(square or hexagonal). We therefore have the following questions, with a particular focus on the limit
N→ ∞:

Question 3. Do defects (non-hexagonal chambers) necessarily appear at an interface of a minimizing
(or low energy) partition? If so, what is their total number in terms of the parameters L, θ and N?

Question 4. Can we estimate in terms of L, θ , N the energy excess created at an interface with respect
to the ideal hexagonal ground state?
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Figure 6: A numerical candidate for a local minimizer of an energy modeling block copolymers
considered in [BPT14] and given by a perimeter term of the cells plus a Wasserstein transport term.
Zones with hexagonal cells having almost constant orientation are separated by “lines” of defects
(pentagonal and heptagonal cells). Observe also that isolated pentagonal or heptagonal defects are
rare and are close to some other defect.

An answer to the last question above would give an indication also on which vectorfields φ∞ we have
to expect in the limit. Indicating by EN(θ) the energy excess with respect to a honeycomb, a superlinear
behaviour in θ

lim
θ→0

EN(θ)

θ
= ∞

would suggest that vectorfields are piecewise constant (that is their gradient Dφ has only a jump part) be-
cause a gradual change in the orientation is penalized. This is precisely what we expect, and in particular
we expect the following Read-Shockley type law:

EN(θ)≥Cθ | logθ |.

The reason behind this expectation is twofold: from an experimental viewpoint, a similar behaviour
is observed in nature for the energy of grain boundaries, that is the interface between two regular crys-
talline configurations with mismatching orientations; from a theoretical viewpoint, a similar law has been
proved in [LL16] for the energy of a grain boundary in a semidiscrete model for dislocations. Also, as
observed above the consequence of a superlinear behaviour in θ is the creation of big regular zones sep-
arated by lines of defects, and this can be witnessed in some numerical simulations for energies similar
to the perimeter (see Figure 6).

More specifically we expect defects to appear, that is non-hexagonal chambers, because putting a
stretched honeycomb (elastic competitor) would increase the perimeter by a big amount, much bigger
than the amount due to a competitor built extending the two honeycombs on both sides until they almost
touch, and filling the middle region with equispaced deformed chambers (plastic competitor; see Figure
7).
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Figure 7: It is expected that between two honeycombs with different orientations some defects (non-
hexagonal cells, here greyed out) will appear. Their number (or rather, their number per unit length
of the interface) depends on the misorientation angle θ . Figure taken from [Ge+16]

Since the emergence of defects seems to be a common feature of many different mathematical models
we decide to remain in a quite abstract framework, which can then be adapted to the specific model under
consideration. We therefore start from a graph with triangular faces, that ideally represents our model in
a simplified way. For instance:

• for perimeter-minimizing partitions we can consider the dual graph of the given partition, where
each chamber represent a vertex and two vertices are connected by an edge if the corresponding
chambers share some boundary.

• for particles interacting via a Lennard-Jones type potential with a minimum at 1 (for instance
the sticky disk) we can consider the bond graph given by all pairs of particles x,x′ such that∣∣|x− x′|−1

∣∣< α for a certain α > 0, and then triangulate it;

In both cases the expected pattern is a triangular lattice. Starting from a graph G we will therefore give
a notion of topological defect, that is a face/vertex that constitutes a non-removable type of singularity
(i.e. it has degree different from 6), and then gradually we will start introducing more metric notions that
take into account the elastic energy given by the deformation of the regular faces.

We stress again that one of the first goals is to attach a notion of orientation, and more precisely this
will be a matrix-field β : Ω(G)→R2×2 that locally represents the deformation which each face is subject
to, with respect to the ideal situation when the faces are equilateral triangles.

In order to do this we first introduce a parameter ε > 0 that represents the microscopic lengthscale
of the system. Then for each triangular face we consider an affine map u that sends the vertices into the
vertices of an equilateral triangle of side ε , and define the orientation as β := ∇u. Doing this for each
face we obtain a global matrix-field β defined on the faces of the graph. Of course β is defined on each
face up to rotations, because there is some freedom in the choice of the map u.
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We then define an energy Eε on graphs that depends on the parameter ε > 0 and which has the
following form:

Eε =
1
ε

ˆ
Ω(G)

dist(β ,SO(2))2 + ε#Vde f (G) (2)

where Ω(G) is the domain of the graph G (the union of its faces) and Vde f (G) is the number of defects,
that is vertices with degree different from 6. The first term represent an elastic energy that takes into
account the deformations of the faces and vanishes if and only if the face is an equilateral triangle of side
ε . Notice that the freedom in the definition of β has no influence on the energy. The second term takes
into account defects, each of which contributes with a fixed amount ε to the energy. The two different
scalings in ε are deduced considering the case of perimeter-minimizing N-partitions where ε ≈ 1√

N
and

where non-hexagonal chambers are considered as defects, and also considering the case of particles
interacting through an attractive-repulsive potential (see the subsection Motivating examples in Section
6.6).

The essential tool that we use at this point is the Rigidity Theorem by Friesecke, James and Müller
[FJM02] and especially the subsequent generalization by Müller, Scardia and Zeppieri [MSZ14]:

Theorem (Generalized Rigidity Estimate [MSZ14, Theorem 3.3]). Let Ω ⊂ R2 be open, bounded,
simply connected and Lipschitz. There exists a constant C = C(Ω) > 0 (scaling-invariant) with the
following property: for every β ∈ L2(Ω;R2×2) with µ := curlβ ∈Mb(Ω;R2) there is an associated
rotation R ∈ SO(2) such that

‖β −R‖L2(Ω;R2×2) ≤C(‖dist(β ,SO(2))‖L2(Ω)+‖curlβ‖).

In order to fruitfully apply the Rigidity Theorem we now have to care about the specific choce of β ,
because of the presence of the term ‖curlβ‖. We will see that in the absence of “essential defects” in the
graph (basically, isolated vertices with degree different from 6, corresponding e.g. to isolated pentagons
or heptagons) we are able to construct a matrix-field β whose curl is concentrated around defects and is
therefore directly related to the second term of the energy Eε in (2). In this case without essential defects
we can then prove the following things:

• Some defects have to appear in the interface problem, and in particular their number is at least of
order Lθ

ε
.

• The orientations converge strongly in L2 to a BV limit matrix field, with values in SO(2).

• The energy excess at an interface with mismatch angle θ is at least of order Lθ .

The presence of essential defects introduces some difficulties that are currently under study. Moreover
we expect a stronger lower bound for the energy: instead of Lθ we expect Lθ | logθ |. In the last part of
the chapter we explain why, and describe the difficulties we encounter in proving such a result.
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Chapter 1

Preliminaries

We recall without proof some basic definitions and results about finite perimeter sets, BV functions,
N-clusters and Γ-convergence. The main references are Maggi’s book [Mag12], the book by Ambro-
sio, Fusco and Pallara [AFP00] and the book by Braides [Bra02].
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1.1 Measures

Let F be a σ -algebra on X . (X ,F ) will be called a measure space. A measure µ on (X ,F ) is a σ -
additive map µ : F → [0,+∞] such that µ( /0)= 0. Given a set A∈F we denote by µxA the restriction of
µ to A, that is the measure defined by µxA(S) := µ(A∩S). Given a measurable map f : (X ,F )→ (Y,G )

between two measure spaces and a measure on (X ,F ) we denote by f#µ the pushforward measure
given by f#µ(A) := µ( f−1(A)).

We will consider Radon measures on Rn, that is measures µ on the Borel σ -algebra such that
µ(K)< ∞ for any compact set K and the regularity properties

µ(A) = inf{µ(U) : U ⊃ A,U open}
µ(A) = sup{µ(K) : K ⊂ A, K compact}

1
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hold for every Borel set A. The Lebesgue measure on Rn will be denoted by L n.
We denote by Mb(Ω) the space of bounded signed Radon measures on the Borel σ -algebra of a

given open set Ω. This space arises as the dual of the space Cc(Ω) of continuous functions with compact
support in Ω. Given µ ∈Mb(Ω) and ϕ ∈Cc(Ω) we will write

〈µ,ϕ〉 :=
ˆ

ϕ dµ.

On the space of measures we consider the weak* convergence: µk
∗
⇀ µ if and only if 〈µk,ϕ〉 → 〈µ,ϕ〉

for every ϕ ∈ Cc(Ω). Similar definitions hold for vector-valued measures. Given a (vector-valued)
measure µ we define its total variation measure |µ| as

|µ|(A) := sup

{
∑
i∈N
|µ(Ai)| : Ai is a partition of A

}
.

If µ is defined on Rn then we denote by ‖µ‖ the total mass of µ , that is |µ|(Rn). We define the flat norm
of µ as

‖µ‖F := sup
{ˆ

Rn
φ dµ : φ is 1-Lipschitz and ‖φ‖W 1,∞ ≤ 1.

}
(1.1)

Given an Rm-valued measure µ on Ω there exists a unique function f ∈ L1(Ω, |µ|)m with values in
Sm−1 such that µ = f |µ|. This is called polar decomposition.

1.2 Functions of bounded variation

Given an open set Ω⊂ Rn, a function u ∈ L1(Ω) is said to be of bounded variation in Ω, and we write
u ∈ BV (Ω), if its distributional gradient Du = (D1u, . . . ,Dnu) is a vector-valued Radon measure in Ω,
that is if ˆ

Ω

divφdx =−
ˆ

Ω

φ ·dDu(x)

for every φ ∈C1
c (Ω,Rn). We say that u is of bounded variation if u∈ BV (Rn). If u is vector valued, that

is u ∈ L1(Ω,Rm), we say that u is of bounded variation, and write u ∈ BV (Ω,Rm), if each component
of u is in BV (Ω). In this case Du is a m× n matrix of Radon measures. We also abbreviate “bounded
variation” by “BV ”. The notion of function of local bounded variation is obtained when the above
property holds for any open set compactly supported in Ω. The main kinds of convergence we consider
on BV (Ω) are the L1 (or L1

loc) and the weak* convergence: a sequence (uk) ⊂ BV (Ω) is said to weak*
converge to u ∈ BV (Ω), and we write uk

∗
⇀ u, if

uk→ u in L1 and Duk
∗
⇀ Du as Radon measures.

By the Riesz representation theorem, u ∈ BV (Ω) if and only if u ∈ L1(Ω) and

sup
{ˆ

Ω

udivφ : φ ∈C1
c (Rn,Rn), |φ | ≤ 1

}
< ∞,



3 1.2. FUNCTIONS OF BOUNDED VARIATION

and the value of the supremum coincides with the total mass of the total variation measure |Du|, that is
with ‖Du‖ := |Du|(Ω). Moreover, u 7→ |Du|(Ω) is lower semicontinuous in BV (Ω) with respect to the
L1

loc(Ω) topology.
A third equivalent approach to define BV functions is by approximation with smooth functions:

u ∈ L1(Ω,Rm) is in BV (Ω,Rm) if and only if there exists an approximating sequence (uk)⊂C∞(Ω,Rm)

such that

uk→ u in L1(Ω)

L := lim
k→∞

ˆ
Ω

|∇uk|dx < ∞.

Moreover, the least constant L coincides with |Du|(Ω).
For any BV function u the coarea formula holds: for any open set A

|Du|(A) =
ˆ
R

P({u > t})dt. (1.2)

Decomposition of BV functions, SBV

Given u ∈ L1
loc(Ω,Rm), we say that u has approximate limit at x if there exists z ∈ Rm such that

lim
r→0

 
Br(x)
|u(y)− z|dy = 0,

and the set Su where this property does not hold is called approximate discontinuity set. We say that
x ∈ Ω is an approximate jump point of u ∈ BV (Ω,Rm) if there exist a,b ∈ Rm and ν ∈ Sn−1 such that
a 6= b and

lim
r→0

 
B+

r (x,ν)
|u(y)−a|dy = 0 lim

r→0

 
B−r (x,ν)

|u(y)−b|dy = 0

where

B+
r (x,ν) := {y ∈ Br(x) : 〈y− x,ν〉> 0}

B−r (x,ν) := {y ∈ Br(x) : 〈y− x,ν〉< 0}.

The triplet (a,b,ν) is determined unniquely up to a permutation of (a,b) ad a change of sign of ν , and is
denoted by (u+(x),u−(x),νu(x)). The set of approximate jump points of u is denoted by Ju. By [AFP00,
Theorem 3.78] the set Su is countably H n−1-rectifiable and H n−1(Su \ Ju) = 0.

Given any function u ∈ BV (Ω) we can decompose its derivative Du in an absolutely continuous
part w.r.t. the Lebesgue measure Dau and a singular part Dsu. We can further decompose Dsu in a jump
part D ju := DsuxJu and a Cantor part Dcu := Dsux(Ω\Su). The jump part can be written as

D ju = (u+−u−)⊗νuH
n−1xJu.

We define the space of functions of special bounded variation in Ω, denoted by SBV (Ω), as the set of
BV functions with zero Cantor part

SBV (Ω) := {u ∈ BV (Ω) : Dcu = 0}.
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1.3 Finite perimeter sets

A finite perimeter set (also set of finite perimeter) is a Lebesgue measurable set E in Rn such that
1E ∈ BV (Rn), or equivalently if

sup
{ˆ

E
divφ : φ ∈C1

c (Rn,Rn), |φ | ≤ 1
}
< ∞ (1.3)

and the value of the supremum is called perimeter of E and denoted by P(E). We say that E is of locally
finite perimeter if for every bounded open set Ω (1.3) holds with C1

c (Rn,Rn) replaced by C1
c (Ω,Rn).

Equivalently, by the Riesz representation theorem, E is of (locally) finite perimeter if and only if the
distributional gradient of the characteristic function 1E is a (locally) finite vector valued Radon measure
(usually denoted by µE or D1E), that isˆ

E
divφ(x)dx =

ˆ
Rn

φ ·dµE for every φ ∈C∞
c (Rn,Rn).

The total variation of µE is also called the perimeter measure. Given a Borel subset A of Rn we
define the perimeter of E inside A as P(E,A) := |D1E |(A). It is easy to see that if |E∆E ′| = 0 then
P(E,A) = P(E ′,A) for every Borel set A. We thus consider on the measurable sets of Rn the equivalence
relation given by E ∼ E ′ ⇐⇒ |E∆E ′| = 0, and we usually think of a set of finite perimeter as an
equivalence class (although we can at time consider a precise representative). We introduce the distance
d(E,E ′) := |E∆E ′| among (equivalence classes of) measurable sets with finite measure. In particular we
say that Ek converge to E, and write Ek → E, if d(Ek,E)→ 0 and that Ek locally converge to E , and

write Ek
loc→ E, if for every compact set K in Rn Ek∩K→ E ∩K.

A consequence of the coarea formula (1.2) is the following property which we will use in Section
2.5:

|E ∩B(x,r)|=
ˆ r

0
H n−1(E ∩∂B(x, t))dt (1.4)

for any finite perimeter set E. We also cite the following result, which is a consequence of [Mag12,
Theorem 16.3] and which we will use in Chapter 2, Section 2.5: for any finite perimeter set E and a.e.
r > 0

P(E ∩Br) = P(E,Br)+H n−1(E ∩∂Br). (1.5)

When working on minimum problems in calculus of variations two essential tools are lower semi-
continuity and compactness.

Theorem 1.1 (Lower semicontinuity of perimeter [Mag12, Proposition 12.15]). If {Ek}h∈N is a se-
quence of finite perimeter sets in Rn such that

Ek
loc→ E, limsup

k→∞

P(Ek,K)< ∞

for every compact set K in Rn, then E is of locally finite perimeter in Rn, D1Ek

∗
⇀ D1E and for every

open set A in Rn we have
P(E,A)≤ liminf

k→∞

P(Ek,A).
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Theorem 1.2 (Compactness of finite perimeter sets [Mag12, Theorem 12.26]). If R > 0 and {Ek}k∈N
are finite perimeter sets in Rn such that

(i) sup
k

P(Ek)< ∞

(ii) Ek ⊂ BR for all k ∈ N

then there exists E of finite perimeter in Rn and a subsequence k(h)→ ∞ with

Ek(h)→ E, D1Ek(h)

∗
⇀ D1E , E ⊂ BR.

Reduced and essential boundary, De Giorgi and Federer’s theorems

We define the reduced boundary FE as the set of points x ∈ Rn where the limit

νE(x) := lim
r→0

D1E(B(x,r))
|D1E |(B(x,r))

exists and is a unit vector, called the inner normal of E at x. The following fundamental structure
theorem of finite perimeter sets is due to De Giorgi:

Theorem 1.3 (De Giorgi’s structure theorem). If E is a finite perimeter set in Rn then

D1E = νEH n−1xFE |D1E |= H n−1xFE

and therefore ˆ
E

divφ =

ˆ
FE

φ ·νEdH n−1 for every φ ∈C1
c (Rn,Rn). (1.6)

Moreover FE is countably H n−1-rectifiable, that is there exist countably many C1 hypersurfaces Mh in
Rn, compact sets Kh ⊂Mh and a measurable set F with H n−1(F) = 0 such that

FE = F ∪
⋃
h

Kh

and moreover, for every x ∈ Kh, ν⊥E (x) = TxMh, the tangent space to Mh at x.

Given θ ∈ [0,1] define the set of points of density θ of a set E in Rn by

E(θ) :=
{

x ∈ Rn : lim
r→0

|E ∩B(x,r)|
|B(x,r)|

= θ

}
. (1.7)

Then by the Lebesgue differentiation theorem, L n-a.e. point of E belongs to E(1). Given a finite perime-
ter set E, we define the essential boundary ∂ ∗E by

∂
∗E = R2 \ (E(0)∪E(1)).

The following theorem, due to Federer, implies that when working with finite perimeter sets we can use
interchangeably either FE or ∂ ∗E or E(1/2).
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Theorem 1.4 (Federer’s theorem). Given a finite perimeter set E, the reduced boundary FE, the
essential boundary ∂ ∗E and E(1/2) all coincide up to H n−1-negligible sets. More precisely, FE ⊆
E(1/2) ⊆ ∂ ∗E, and H n−1(∂ ∗E \FE) = 0.

In particular, the divergence theorem (1.6) holds with FE replaced by ∂ ∗E.

Isoperimetric inequality

For any set E ⊂ Rn of finite perimeter and finite volume the isoperimetric inequality holds:

H n−1(∂ ∗E) = P(E)≥ nω
1
n

n |E|
n−1

n

where ωn := |B1| is the volume of the unit ball in Rn. The relative isoperimetric inequality in a
(sufficiently regular) open set Ω states that for every set of finite perimeter E ⊂Ω

P(E,Ω)≥ c(Ω)min{|E|, |Ω\E|}
n−1

n .

A particular case is when Ω⊂ R2 is a half-plane, which we call Dido’s inequality:

P(E,{y > 0})≥
√

2π|E| (1.8)

for every set E ⊂ {y > 0} with finite area.
Consider now an open, bounded convex set K symmetric with respect to the origin in Rn. We define

its Minkowski functional ‖ · ‖K : Rn→ [0,∞) as

‖x‖K = inf
{

ρ > 0 :
x
ρ
∈ K

}
.

This functional defines a norm on Rn whose unit ball centered at the origin is exactly K. Then X =

(Rn,‖ ·‖K) is a Banach space, and since it is finite dimensional we can identify its dual X∗ with Rn itself
through the standard scalar product. In this way the dual norm as a Banach space becomes

‖ξ‖∗ := sup
‖x‖<1
{〈ξ ,x〉}= sup

x∈K
{ξ · x}

whose unit ball is by definition K∗, the dual of K. We have ‖x‖∗ = ‖x‖K∗ .
Given a finite perimeter set E we define the anisotropic perimeter related to K as

PK(E) :=
ˆ

∂ ∗E
‖νE(x)‖K∗dH n−1(x). (1.9)

The anisotropic isoperimetric inequality says that, among all sets E with fixed volume in Rn, up to
translations the unique minimizer of PK(E) (also called Wullf shape) is given by a rescaled copy of K,
that is by

KE :=
(
|E|
|K|

)1/n

K.
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and in particular
PK(E)≥ PK(KE) = n|K|

1
n |E|

n−1
n (1.10)

A quantitative version of this inequality was proved in [FMP10] (and earlier in [FMP08] for the isotropic
perimeter; see also [CL12]). In order to state it, let us introduce the isoperimetric deficit

δK(E) :=
PK(E)

n|K| 1n |E| n−1
n
−1

and the asymmetry index

AK(E) := inf
{
|E∆(τ +KE)|

|E|
: τ ∈ Rn

}
. (1.11)

The quantitative anisotropic isoperimetric inequality states the following.

Theorem 1.5 ([FMP10]). There is a constant C(n), depending only on the dimension, such that

AK(E)≤C(n)
√

δK(E).

1.4 N-Clusters

An N-cluster (or simply cluster) is a family E = (E (1), . . . ,E (N)) of finite perimeter sets, called cham-
bers or also bubbles, such that 0 < |E (i)| < ∞ for i = 1, . . . ,N and |E (i)∩E ( j)| = 0 for i 6= j, i, j =
1, . . . ,N. By convention E (0) := Rn \

⋃N
i=1 E (i) denotes the exterior chamber of E , while the others

are called interior chambers. We denote by E (i, j) := ∂ ∗E (i)∩∂ ∗E ( j) the common interface between
chambers i and j. The standard perimeter of a cluster is

P(E) := ∑
0≤i< j≤N

H n−1(E (i, j)) =
1
2

N

∑
i=0

P(E (i)).

The last equality is a consequence of Federer’s theorem. The distance in F ⊂Rn of two clusters is defined
as

dF(E ,E ′) :=
n

∑
i=1
|F ∩

(
E (i)∆E ′(i)

)
|

and we set d(E ,E ′) := dRn(E ,E ′). We say that Ek converges to E if d(Ek,E )→ 0 as k→ ∞, and that
locally converges to E if for every compact set K in Rn we have dK(Ek,E

′)→ 0 as k→ ∞.
We also consider the case of countably many chambers: a Caccioppoli partition is a partition E =

(E (i))i∈N of Rn such that ∑i∈N P(E (i))< ∞. We say that it is ordered if |E (i)| ≥ |E ( j)| whenever i≤ j.
We define the perimeter of a Caccioppoli partition as

P(E ) :=
1
2 ∑

i∈N
P(E (i)).

The following compactness result holds.
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Theorem 1.6 (Compactness of Caccioppoli partitions, [AFP00, Theorem 4.19]). Let (E h(i))i∈N, h∈N
be Caccioppoli partitions of Rn satisfying

sup
h∈N
{P(E h)}< ∞.

Then if the partitions are ordered there exists a Caccioppoli partition (E (i))i∈N and a subsequence
h(k) such that E h(k) locally converges in measure in Rn to Ei for any i ∈ N.

1.5 Surface energies for partitions

In the following we will also consider more general variants of perimeter, also called surface energies,
because we will introduce a weight on different interfaces and an anisotropy depending on the direction
of the unit normal. We refer to [AFP00] for a more detailed discussion. Set I := {0, . . . ,N} and consider
a function φ : I× I×Sn−1→ R. Then the perimeter associated to φ is given by

Pφ (E ) :=
1
2 ∑

i 6= j

ˆ
E (i, j)

φ(i, j,νE (i)(x))dH n−1(x). (1.12)

The two particular cases we will consider are:

(i) Weighted perimeter, where φ does not depend on the unit normal but just on i and j. In this case
we can always rewrite the perimeter as

∑
0≤i< j≤N

ci jH
n−1(E (i, j)) (1.13)

and we suppose for simplicity that ci j = c ji. See Chapter 2.

(i) Anisotropic perimeter, where φ does not depend on i and j but just on the unit normal. In
particular, the relevant functionals will be of the form

∑
0≤i< j≤N

ˆ
E (i, j)

‖νE (i)‖dH n−1 (1.14)

where ‖ · ‖ is a norm on Rn. See Section 4.2.

As for the case of finite perimeter sets, we are interested in compactness and lower semiconinuity
results. For the standard perimeter, they are an easy consequence of the corresponding theorems for
finite perimeter sets (Theorem 1.1 and Theorem 1.2). For the more general surface energy (1.12), we
need to introduce the notion of BV -ellipticity, originally introduced by Ambrosio and Braides [AB90].
We denote by Qρ(ν) any open cube with centre in the origin, side length ρ and faces either parallel
or orthogonal to ν ∈ Sn−1. We denote by ui, j,ν the function jumping between values i and j across the
hyperplane {x : x ·ν = 0}.
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Let I ⊂ Rm and φ : I× I×Sn−1→ [0,∞]. We say that φ is BV-elliptic if

ˆ
Ju

φ(u+,u−,νu)dH n−1 ≥ φ(i, j,ν)

for any bounded piecewise constant function u : Q1(ν)→ I such that {u 6= ui, j,νu}bQ1(ν) and any triplet
(i, j,ν) in the domain of φ .

We denote by BV ∗(Ω, I) the space of I-valued BV functions u such that Du is concentrated on Ju and
H n−1(Ju)< ∞. In particular BV ∗(Ω, I)⊂ SBV (Ω)m.

We have the following result:

Theorem 1.7 ([AFP00, Theorem 5.14]). Let φ : I× I×Sn−1→ [0,∞) be a bounded continuous function.
Then the functional

F (u) :=
ˆ

Ju

φ(u+,u−,νu)dH n−1

is lower semicontinuous in the space BV ∗(Ω, I) (with respect to the L1 convergence) if and only if φ is
BV -elliptic.

In particular the surface energy Pφ defined by (1.12) is lower semicontinuous in the space of N-
clusters if and only if φ is BV-elliptic. BV -ellipticity can be seen as an analogue of Morrey’s quasicon-
vexity in the setting of BV functions. As for quasiconvexity, the condition is not so easily checked in
practical examples. It is useful to have some simpler sufficient conditions that ensure lower semiconti-
nuity. With reference to the two examples (1.13) and (1.14), we have the following results.

Theorem 1.8 (Lower semicontinuity of weighted perimeter, [AFP00, Example 5.23(a)]). The weighted
perimeter given by (1.13) is lower semicontinuous in the space of N-clusters if and only if ci j = c ji are
non-negative weights satisfying

cik ≤ ci j + cik for every i, j,k.

We state the following result as a theorem even though it is a simple consequence of the lower
semicontinuity of the anisotropic perimeter on each chamber.

Theorem 1.9 (Lower semicontinuity of anisotropic perimeter). The anisotropic perimeter given by
(1.14) is lower semicontinuous on the space of N-clusters.

A more general notion which is still sufficient to ensure lower semicontinuity is joint convexity:
given K ⊂ Rm compact we say that φ : K×K×Rn→ [0,∞] is jointly convex if

φ(i, j, p) = sup
h∈N
〈gh(i)−gh( j), p〉 ∀(i, j, p) ∈ K×K×Rn

for some sequence (gh)⊂C(K)n.
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As a special case we mention the following example [AFP00, Example 5.23(b)]: let K ⊂ Rm be
compact and ψ : K×Rn→ [0,∞] a lower semicontinuous function, positively 1-homogeneous and convex
in the second variable. Then the function

φ(i, j, p) =

{
ψ(i, p)+ψ( j,−p) if i 6= j

0 if i = j
(1.15)

is jointly convex.

1.6 Γ-convergence

Given a sequence of functionals Fh : X → R∪ {+∞} defined on a metric space (X ,d), a functional
F : X → R∪{∞} is said to be the Γ-limit of Fh for the distance d if the following two conditions hold:

• liminf inequality: for every x ∈ X and every sequence xh→ x we have

F(x)≤ liminf
h→∞

Fh(xh);

• limsup inequality: for every x∈ X there exists a sequence xh→ x (called recovery sequence) such
that

F(x)≥ limsup
h→∞

Fh(xh).

We also say that Fh Γ-converge to F with respect to the distance d.
The basic property of Γ-convergence is convergence of minimizers of Fh to a minimizer of F :

Theorem 1.10 (Fundamental property of Γ-convergence). If the functionals Fh Γ-converge to F, x̄h

are minimizers of Fh and x̄h→ x̄ then x̄ is a minimizer of F.

In particular under a coercivity assumption on Fh we can ensure that every sequence of minimizers x̄h

admits a convergent subsequence: assume that Fh are equicoercive, meaning that for every real t {Fh ≤ t}
is compact; then any sequence of minimizers x̄h admits a subsequence converging to a minimizer x̄ of F .



Chapter 2

Sticky-disk limit of weighted N-clusters

We study planar N-clusters that minimize, under an area constraint, a weighted perimeter Pε depend-
ing on a small parameter ε > 0. Specifically we weight 2− ε the boundary between the interior
chambers and 1 the boundary between an interior chamber and the exterior one. We prove that as
ε→ 0 minimizers of Pε converge to configurations of disjoint disks that maximize the number of tan-
gencies, each weighted by the harmonic mean of the radii of the two tangent disks. We also obtain
some information on the structure of minimizers for small ε . Lastly, we partially extend the results
to higher dimension. The content of this chapter, except for the last Section Higher dimension, is
basically part of [DN18], with a few modifications.

Contents
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In this chapter we are interested in studying the optimal way to enclose and separate N volumes in
order to minimize a specific weighted perimeter. We restrict for the first part of the chapter to the planar
case, and in the last section prove some partial results about the higher dimensional case.

11
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We recall that an N-bubble, or N-cluster, is a family E = (E (1), . . .E (N)) of finite perimeter sets in
the plane, called bubbles or chambers, that are of finite positive volume and are essentially disjoint:

0 < |E (i)|< ∞ |E (i)∩E ( j)|= 0 for every i 6= j

The weighted perimeter of an N-bubble is given by the weighted sum of the Hausdorff measures of all
the interfaces, that is

P(E ) =
1
2 ∑

0≤i, j≤N
i6= j

ci j H
1(

∂
∗E (i)∩∂

∗E ( j)
)

(2.1)

for some fixed positive weights c ji = ci j > 0. In the following we will fix the areas m1, . . . ,mN of the
bubbles and seek the configurations that minimize the perimeter P(E ) under this constraint.

The exact characterization of perimeter minimizing N-bubbles is currently known only in very few
situations. The case N = 1 is the classical isoperimetric problem, whose well-known solution is a disk.
If N = 2 the solution is the standard weighted double bubble made of three circular arcs meeting in
two triple points forming angles which depend on the specific weights (see [Foi+93] in the case of unit
weights, [Law14] in general). If N = 3 the solution is known only for equal weights (ci j = 1), and it is
the standard triple bubble made of six circular arcs meeting in four points [Wic04]. When N = 4 and
the weights are equal the minimal configuration has a determined topology and is conjectured to be the
symmetric sandwich [PT18].

For general N only existence and regularity of minimizers is known: under the strict triangle in-
equalities ci j < cik + ck j for any distinct i, j,k, minimizers exist and their boundary is made of a finite
number of circular arcs, meeting at a finite number of singular points where they satisfy a condition on
the incidence angles [Mor98, Proposition 4.3].

The exact characterization of minimizers seems an intractable problem already for small values of
N. For this reason, in this work we consider a special asymptotic regime. Indeed for ε ≥ 0 we define

Pε(E ) =
1
2 ∑

0≤i, j≤N
i6= j

ci j(ε)H
1(∂E (i)∩∂E ( j)),

ci j(ε) =

{
1 if i = 0 or j = 0

2− ε if i, j 6= 0
.

(2.2)

Problem We want to study the asymptotic behaviour as ε → 0 of N-bubbles which minimize the
energy Pε with an area constraint |E (i)|= mi for i = 1, . . . ,N.

We denote by E ε minimizers of Pε . We call a cluster of disks any cluster made of disks with pairwise
disjoint interiors.

Proposition 2.1 (First-order behaviour). As ε → 0 minimizers of Pε converge to a cluster of disks.

At this level however we have no information on the disposition of the limit disks, since any collection
of disks with pairwise disjoint interiors is a possible candidate. On the other hand we expect to see only
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Figure 2.1: When N = 2 we know the explicit shape of the (unique) minimizers of Pε , and as ε → 0
(from left o right) they converge to two tangent disks. Depicted here is the case of equal areas.

certain configurations of disks: if we look for instance at the case N = 2 with equal areas the limit
disks must be tangent (see Figure 2.1). To obtain more information we then perform a second-order
expansion of the perimeter functional, that is we subtract the limit energy P0(B) = ∑

N
i=1 P(Bi), rescale

by the right power of ε and analyze these rescaled functionals. To find the right scaling we look again at
the completely solved case of two bubbles with equal areas |E (1)|= |E (2)|= π: an explicit computation
shows that

Pε(Eε) = 4π− 4
3

ε
3/2 +O(ε5/2) (2.3)

hence the relevant next order is ε3/2 and we are led to consider the rescaled functionals

P(1)
ε (E ) :=

Pε(E )−P0(B)
4
3 ε3/2

. (2.4)

Of course they have the same minimizers as Pε but allow us to analyze the finer behaviour at scale ε3/2.
We expect that, as in the case of the double bubble, these functionals “see” the tangency points in the
limit cluster B. Indeed, this is precisely what happens. The following is the main result of this chapter:

Theorem 2.2 (Sticky-disk limit). As ε → 0 minimizers Eε of Pε converge up to subsequence and rigid
motions to a cluster of disks that maximizes the number of contact points among the disks, each contact
point counted with factor rir j

ri+r j
, where ri,r j are the radii of the touching disks.

Remark 2.3. Theorem 2.2 selects, among all possible clusters of disks with the right area constraint,
those which maximize the number of (weighted) tangencies; equivalently, those which minimize the
following tangency functional

T (E ) =


− ∑

1≤i< j≤N
σi j

2rir j

ri + r j
if E = (B1, . . . ,BN) is a cluster of disks

+∞ otherwise
(2.5)

where ri is the radius of the disk Bi and

σi j =

{
1 if Bi and B j touch

0 otherwise
.



CHAPTER 2. STICKY-DISK LIMIT OF WEIGHTED N-CLUSTERS 14

In the case of equal radii, the tangency functional T coincides, up to a suitable rescaling, with the energy
of N particles associated to the centers of Bi and interacting by means of the sticky disk (or Heitmann-
Radin) potential

V (r) =


+∞ if r < 1

−1 if r = 1

0 if r > 1

,

hence the name of the Theorem above. Heitmann and Radin proved in [HR80] that minimizers for the
sticky disk with a fixed number of particles N are crystallized, that is they form a subset of the triangular
lattice. Moreover as N→ ∞ the global shape of minimizers converges to a hexagon [AYFS12], [Sch13],
[DPS17]. In view of Theorem 2.2 this translates in the context of N-clusters minimizing Pε in the
following information: if we first send ε → 0 and then N→ ∞ we obtain as an asymtptotic global shape
a hexagon. If it were possible to exchange the order of the limits we would obtain that, for sufficiently
small ε , the global shape of N-clusters minimizing Pε is almost hexagonal in the limit N → ∞. This
would give a partial answer in the case of weighted clusters to a question considered by Cox, Morgan
and Graner [CMG13] about the global shape of minimal N-clusters for large N, and it was actually the
initial motivation for this work. See also Chapter 3 for the global shape problem.

The main ingredient in the proof of Theorem 2.2 is the lower-bound inequality given by Theorem
2.14, which can be seen as an asymptotic quantitative isoperimetric inequality involving the “curvature
deficit” of the boundary.

Finally, as a byproduct of the proof of Theorem 2.2, we also obtain information on the structure of
minimizers Eε for small ε:

Theorem 2.4 (Structure of minimizers). Minimizing clusters Eε have the following properties: let
B = (B1, . . . ,BN) be a cluster of disks with radii r1, . . . ,rN to which Eε converge; then for small ε > 0,
in addition to the standard regularity given by Theorem 2.7, the following hold:

• each chamber is connected;

• different arcs can meet only in a finite number of triple points, and when this happens exactly one
of the chambers meeting there is the exterior one. In particular, the angles formed at a triple point
are 2θε ,π−θε ,π−θε , where θε = arccos

(
1− ε

2

)
.

• between each pair of chambers Eε(i) and Eε( j) such that Bi and B j are tangent, there is a single
arc of constant curvature κε

i j and length of respective chord `ε
i j where

κ
ε
i j =

1
2

(
1
r j
− 1

ri

)
+o(1) and `ε

i j =
4rir j

ri + r j
ε

1/2 +o(ε1/2)

while in the remaining portion of the boundaries, that is between any chamber Eε(i), i ≥ 1, and
the exterior Eε(0), there is an arc of curvature κε

i = 1
ri
(1+o(1)).
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Figure 2.2: A numerical candidate for the minimum 7-bubble of equal areas 4π and with ε = 0.02
obtained with the Surface Evolver by Ken Brakke [Bra92]. The expected second order energy by
Theorem 2.2 is Pε = 7 · 4π − 12 · 2 · 4

3 · 0.023/2 = 28π − 32 · 0.023/2 ≈ 87.8740846325. The actual

energy of the depicted configuration computed numerically is 87.8742016. The rescaled energy P(1)
ε

as defined by (2.4) is ≈ −11.9844, which agrees with the fact that the limit as ε → 0 is −12, the
(negative) total number of contacts.

Remark 2.5. Γ-convergence. We decided to state Theorem 2.2 talking about minimizers, but actually a
stronger result holds: the rescaled functionals P(1)

ε given by (2.4) Γ-converge to the tangency functional
T given by (2.5), with respect to the L1-convergence of clusters (we refer to [Bra02] for the definition
and the properties of Γ-convergence). The hard part is the liminf inequality: to prove it, given any family
Eε converging to a cluster of disks B, we can build an improved family with a higher regularity using
for instance the density of polygonal clusters among all clusters [BCG17], and then apply Theorem 2.14.
The method of looking at the second order behaviour of Pε is close in spirit to [AB93].

To conclude, we briefly outline the structure of this chapter. In Section 2.1 we introduce the notation,
recall basic facts about minimal clusters and prove preliminary results. In Section 2.2 we show the first-
order result of Proposition 2.1. In Section 2.3 we prove Theorem 2.2 and Theorem 2.4. In particular
we prove that for ε small enough each chamber of a minimizer is connected (Lemma 2.11) and that
there is at most one boundary arc between two different chambers (Lemma 2.13). Next we prove an
asymptotic version of quantitative isoperimetric inequality, where the isoperimetric deficit controls the
“curvature deficit” of the boundary (Theorem 2.14). From this result we deduce the key lower bound for
the perimeter of a given cluster converging to a cluster of disks (Proposition 2.18). Finally, we build a
recovery sequence for Theorem 2.2, that is we prove that the previous lower bound is sharp, and then
prove the main theorems. We conclude with some remarks (Section 2.4) and with some partial results on
the higher dimensional case (Section 2.5).
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2.1 Notation and preliminary results

We use the notation f (ε) = O(g(ε)) and f (ε) = o(g(ε)) to mean respectively

limsup
ε→0+

| f (ε)|
g(ε) < ∞ and lim

ε→0+
f (ε)
g(ε) = 0.

We denote the area (Lebesgue measure) of a set E ⊂ R2 by |E|. Recall the L1 convergence on clusters:
Ek→ E iff |Ek(i)∆E (i)| → 0 for every i = 1, . . . ,N, where ∆ is the symmetric difference of sets (equiv-
alently, the characteristic functions of each chamber converge in L1). With respect to this convergence,
the perimeter given by (2.1) is lower semicontinuous if and only if the following triangle inequalities are
satisfied:

ci j ≤ cik + ck j for every choice of distinct i, j,k . (2.6)

For a reference see [AB90], in particular Example 2.8 with ψ ≡ 1.
We note here for future reference that the functional Pε can be rewritten in the following equivalent

way:

Pε(E ) =
(

1− ε

2

) N

∑
i=1

P(E (i))+
ε

2
P(E (0)). (2.7)

We recall the basic existence and regularity results for minimizing clusters in the plane, which can be
found for instance in [Mor98]. The existence of minimal N-clusters for a given area constraint follows
by the direct method: by a standard compactness theorem for finite perimeter sets (Theorem 1.2) and
the lower semicontinuity of the functional Pε (which can be proved either checking that the triangle
inequalities (2.6) hold, or using (2.7) and the lower semicontinuity of the perimeter on each chamber)
we can prove the following:

Theorem 2.6 (Existence). For every ε ∈ [0,2] there is a minimizer of Pε for any given volume constraint.

Regarding regularity of minimizers, we have the following theorem:

Theorem 2.7 (Regularity [Mor98, Proposition 4.3]). Any minimizer Eε of Pε has the following proper-
ties:

• each chamber has a piecewise C1 boundary made of a finite number of arcs with constant curva-
ture;

• these arcs meet in a finite number of vertices, where they satisfy the condition

∑ci jτi j = 0 (2.8)

where τi j is the unit vector starting from the vertex and tangent to ∂E (i)∩∂E ( j), and the sum is
extended over all interfaces meeting at the vertex;

• around any vertex the weighted curvatures sum to zero.
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In the case where all weights are equal, something more can be said: namely that at each vertex
exactly three arcs meet forming 120-degree angles. In the general case of minimal weighted clusters
there could be also quadruple points (for instance consider four equal squares with a vertex in common,
with weights >

√
2 between diagonally-opposite squares and 1 otherwise; this cluster is minimizing

among clusters with the same boundary condition. Compare also with the example at the end of [AB90,
Section 2.3]). However, for our specific choice of weights given by (2.2), we are able to recover the
triple-point property: exactly three arcs meet at each vertex, as the next lemma shows. This property
should in principle be inferable from the algebraic conditions that weights have to satisfy at each vertex
given in [Mor98, Remark 4.4], however we prefer the following more geometric argument.

Lemma 2.8 (Triple-point property). For ε small enough, at every vertex of a minimizer of Pε exactly
three arcs meet. Moreover at every such vertex exactly one of the chambers is the exterior one E (0) and
the angles are given by π−θε ,π−θε ,2θε , where

θε = arccos
(

1− ε

2

)
.

Proof. We suppose that there is a vertex at which at least four arcs meet, and prove that the cluster is not
minimal since we can modify it to lower the energy. We give the proof under the simplifying assumption
that the arcs meeting at the vertex are straight edges; the proof in the general case is almost identical, it
suffices to zoom at a sufficiently small scale and apply the same argument.

First we show that there can not be any component of the exterior chamber around such a point:

• if there is only one component of the exterior chamber then, since at least one of the remaining
angles is less than 120 degrees, we could put a Steiner configuration inside a small triangle of
small lengthscale δ , fixing the area somewhere else (see Figure 2.3);

• if instead there are at least two components of the exterior chamber, then one of the remaining
portions is contained in a half-plane. We can modify all the chambers in this half-plane removing
completely a small triangle of small lengthscale δ , and fix the area somewhere else (see Figure
2.4).

In both cases, when δ is small enough, we reduce the perimeter since the reduction in perimeter due to
the first modification is of order≈ δ , while the change in perimeter due to the area-fixing variations is of
order ≈ δ 2.

We are therefore left with a configuration in which there is no exterior chamber. But then, since we
are supposing to have at least four components, at least one of the angles is less than 120 degrees, and we
can lower the energy again by putting a small Steiner configuration inside a small triangle. This proves
that there must be exactly three arcs meeting at each vertex. The same proof, as already said, holds
even if the arcs are curved, looking at a sufficiently small scale around the vertex and applying similar
variations.

Now let us prove that around any vertex exactly two interior and one exterior components meet. If the
three chambers meeting at a vertex were all interior chambers, the standard variational argument would
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Figure 2.3: If there is only one exte-
rior component, we can put a small
Steiner configuration in one of the
remaining angles which is less than
120 degrees. We have to fix the area
with a slight inflation or deflation.

Figure 2.4: If there are at least two
exterior components, one of the re-
maining portions is contained in a
half-plane. We can cut and remove a
whole triangle, again fixing the area
with a slight inflation or deflation.

imply that the angles are 120 degrees; but then we could insert a small triangular hole (a component
of the exterior chamber) around the vertex, again adjusting the area somewhere else. The reduction of
perimeter is again of order δ , plus corrections of order δ 2 for the area adjustments. The key point is that
the perimeter of an equilateral triangle is smaller than the length of its Steiner configuration multiplied
by 2− ε , for ε sufficiently small. Therefore we conclude that the only components we can have are two
interior chambers and one exterior chamber.

Finally, the computation of the angle θε comes directly from condition (2.8).

2.1.3 Isoperimetric inequality We end this section by stating the isoperimetric inequality in the fol-
lowing form:

Proposition 2.9 (Isoperimetric inequality with signed areas [MFG98]). A disk B of area m > 0 mini-
mizes length(∂B) among all oriented rectifiable curves C enclosing net signed area m.

2.2 First order analysis: convergence to disks

In this section we prove the first-order result that the limit clusters are made of disks. We begin with a
simple compactness result:

Lemma 2.10 (Compactness). Any sequence of minimizers Eε has uniformly bounded diameter, that is

diam(Eε)≤C <+∞.
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Proof. The result follows essentially from the fact that for connected sets in the plane the perimeter
controls the diameter, namely diamE ≤ 1

2 P(E). Supposing that Eε :=
⋃N

i=1 Eε(i) is connected we indeed
obtain

2diamEε ≤ P(Eε)≤ Pε(Eε)≤
N

∑
i=1

P(Bi)

which gives the desired conclusion.
Let us now prove that Eε is connected. By the regularity result of Theorem 2.7 we know that for

every ε each chamber of Eε is equivalent to an open set which has piecewise C1 boundary. If Eε were
disconnected, we could take two connected components and move them until they touch without chang-
ing the value of Pε . The cluster thus created would still be minimal but would have at least a quadruple
point, contradicting Lemma 2.8. This concludes the proof.

We can now prove the first-order result of Proposition 2.1.

Proof of Proposition 2.1. Using N disjoint disks as competitors we obtain that

P(Eε)≤ Pε(Eε)≤
N

∑
i=1

√
4πmi <+∞.

Moreover by Lemma 2.10 the sequence has uniformly bounded diameter, and thus the following uniform
bound holds for minimizers Eε :

sup
ε

P(Eε)+ diam(Eε)< ∞.

By compactness of finite perimeter sets (Theorem 1.2) this implies that minimizers Eε converge, up to
subsequence and rigid motions, to a limit cluster E0 with the same area constraint. By (2.7) we also
obtain that

P(Eε(i))≤
√

4πmi(1+O(ε)) (2.9)

and by lower semicontinuity of perimeter we obtain

P(E0(i))≤
√

4πmi.

By the isoperimetric inequality the unique minimizer of perimeter for a given area constraint is the disk
and therefore E0(i) is a disk of area mi.

2.3 Second order analysis: sticky-disk limit

We now want to obtain some more information about minimizers Eε as ε→ 0. In the last section we saw
that, up to translation, minimal clusters converge to a cluster of disks; this was a simple consequence
of the isoperimetric inequality together with a compactness result. However, as already pointed out, we
don’t expect to see in the limit every cluster of disks: for instance Lemma 2.10 suggests that at least the
limit clusters must be connected. To understand what kind of clusters can arise as limits, we will perform
a higher order expansion of the perimeter.
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Localization of contacts between different chambers

In this subsection we prove a localization result that basically says that each chamber of a minimizer is
sandwiched between two concentric disks (1− o(1))B and (1+ o(1))B, B being a disk with the same
area as the chamber. This can be seen as an improvement from the L1 convergence of Proposition 2.1 to
“uniform” convergence, or Hausdorff convergence of the boundaries. A consequence of this is that any
pair of chambers whose limit disks are not touching will eventually share no boundary. Moreover we
prove that for ε small enough each chamber of a minimizer is connected.

Lemma 2.11 (Localization Lemma). Suppose that a minimizer Eε converges to the cluster of disks
B = (B1, . . . ,BN). Then, for ε small enough, each chamber Eε(i) is connected, and moreover

(1−o(1)))Bi ⊂ Eε(i)⊂ (1+o(1))Bi.

Proof. We fix a chamber and denote it for simplicity just by E, and the disk by B. We will prove the
lemma in four steps:

(i) For ε small enough, E has only one biggest (in terms of area) connected component C0, which
carries almost all the mass, i.e.

|C0| ≥ |E|(1−o(1)).

In particular, if Eε(i) converges to a disk B as ε → 0, then |C0∆B|= o(1).

(ii) The convex hull co(C0) is sandwiched between two disks both converging to B as ε → 0:

(1−o(1))B⊂ co(C0)⊂ (1+o(1))B.

(iii) For ε small enough the biggest connected component is in fact the only one, i.e. each chamber is
connected.

(iv) The same conclusion as in (ii) holds also for C0 = E itself, namely

(1−o(1))B⊂ E ⊂ (1+o(1))B.

(i) If there is just one connected component then we are done. Otherwise, denote by C0,C1, . . . the
connected components of E (indexed by at most countably many indices i, and ordered decreasingly in
the area), and set Vi := |Ci|/|E| to be the normalized area of the connected component Ci of E . In this
way ∑iVi = 1. Set M := maxiVi. If M ≤ 1

2 , by the isoperimetric inequality

P(E) = ∑
i

P(Ci)≥ 2
√

π ∑
i

√
|Ci|= 2

√
π
√
|E|∑

i

√
Vi ≥ 4

√
π
√
|E|

where we used that, since in this case Vi ≤ M ≤ 1/2, we have
√

Vi ≥ 2Vi. But by the trivial energy
estimate (2.9) we know that P(E) ≤ 2

√
π
√
|E|(1+ o(1)), so for ε small enough M must be > 1

2 , and
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in particular there is only one component with maximum area, C0. In this case for every i ≥ 1 we have
Vi ≤ 1−M < 1

2 , and arguing as above we obtain that

P(E) = P(C0)+∑
i≥1

P(Ci)≥ 2π
√

M+∑
i≥1

2π
Vi√

1−M
= 2π

√
M+2π

√
1−M.

Again from the energy estimate we know that each chamber has an isoperimetric deficit o(1), therefore
we obtain the condition √

M+
√

1−M ≤ 1+o(1),

which together with the condition 1
2 ≤M ≤ 1 easily implies that M must be close to 1, which translates

to |C0| ≥ |E|(1−o(1)).
(ii) First we prove that co(C0) ⊃ (1− o(1))B. Indeed, given a point x ∈ B\co(C0) (if it exists,

otherwise we are done), by Hahn-Banach we can find a whole circular cap whose straigth segment
passes through x that is contained in B\co(C0). The area of this circular cap is at least as big as the area
of the circular cap whose straight segment is perpendicular to the radius through x. From point (i) this
area must be o(1), and this easily imples the desired conclusion.

Next we prove that co(C0)⊂ (1+o(1))B. We use the following two standard facts for planar sets:

(i) the convex hull of an open connected set has smaller perimeter than the original set;

(ii) among convex bodies in the plane, the perimeter is monotone increasing with respect to inclusion.

From the first fact we obtain that P(co(C0)) ≤ P(B)(1+ o(1)). Now take any point x ∈ co(C0)\B. By
convexity and since co(C0) ⊃ (1− o(1))B, we obtain that co(C0) ⊃ co

(
(1− o(1))B∪{x}

)
. From the

second fact cited above the latter set must have smaller perimeter than co(C0), and this easily implies
that x ∈ (1+o(1))B.

(iii) Suppose that E has more than one component. From point (ii) we know that all the components
except for the biggest one C0 have a total mass of at most 0 < m = o(1). Then by the isoperimetric
inequality and the subadditivity of the square root, their total perimeter is bigger than

∑
i≥1

2
√

π
√
|Ci| ≥ 2

√
π
√

m.

We now remove all the smaller components, and inflate the biggest one, and prove that for ε small
enough we find in this way a better competitor, which is incompatible with the supposed minimality
of the original cluster. The increase in perimeter due to the inflation can be taken of order of the total
removed mass m, see for instance [Mag12, Theorem 29.14]. The net change in perimeter is therefore
−2
√

π
√

m+ bm for some constant b, which for m > 0 small enough is negative; the same net change
holds also for the functional Pε . This proves that for ε small enough, and therefore m small enough, there
can be just one connected component for each chamber.

(iv) The rightmost inclusion follows immediately from C0 ⊂ co(C0) and point (ii). We now prove the
other one. From this last inclusion we know that the only obstacle would be the presence of the exterior
chamber inside B. To exclude this we argue similarly to point (iii): if there are connected components
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of the exterior chamber entirely surrounded by E, we can “fill” them with the set E, and then perform a
deflation of the set, which for m small enough results in a net decrease in the functional Pε . If instead
there are “tentacles” of the exterior chamber which come from the outside, that is components not entirely
surrounded by E, by similar considerations they must be contained in the complement of (1− o(1))B,
and we are done.

There is eventually at most one contact between any pair of chambers

Next we shall prove that when ε is small enough, there is at most one arc in common between two
different chambers.

Definition 1. Given a set E ⊂ R2, we set BE as the disk of the same area (say, centered at the origin),
rE :=

√
|E|/π as its radius and κE = 1/rE as the curvature of ∂BE .

Recall that the interface between the chambers Eε(i) and Eε( j) is Eε(i, j) := ∂Eε(i)∩ ∂Eε( j), and
that Eε denotes a minimizer for Pε .

Lemma 2.12. The curvature of the interface arcs Eε(i, j) converges up to sign as ε → 0 to:

(i) κE (i) if j = 0;

(ii) 1
2(κE (i)−κE ( j)) if i, j 6= 0.

Proof. By Theorem 2.7 (regularity) we know that the weighted curvatures sum to zero around any vertex:

(2− ε)κε
i j +κ

ε
j0 +κ

ε
0i = 0.

It is therefore sufficient to prove (i). This follows from the localization lemma 2.11: since each chamber
Eε(i) is sandwiched between two concentric disks whose radii converge to the same value as ε → 0,
contacts between different chambers can happen in a finite number of zones whose diameter converge
to zero. In the complement of these zones there will be only arcs of constant curvature, without triple
points. Since each one of these arcs is sandwiched between two concentric disks converging to the same
disk, the curvature must converge to the limit curvature κEε (i) = κB(i).

Lemma 2.13.

(i) The length of every interface between any pair of chambers goes to 0 as ε → 0, that is

lim
ε→0

H 1(Eε(i, j)) = 0;

(ii) for ε small enough, any pair of chambers of Eε share at most one arc, that is Eε(i, j) has at most
one connected component. If the two chambers converge to non-tangent disks, then they eventually
share no boundary.
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Proof. (i) This is a consequence of the localization lemma 2.11 and the lower semicontinuity of the
perimeter. If two chambers converge to two non tangent disks, then the interface is eventually empty by
the localization lemma and we are done. Otherwise, consider the case where the two limit disks have
a tangency point p, and suppose by contradiction that for a sequence εh → 0 it holds H 1(Eεh(i, j)) ≥
c > 0. Notice that again by the localization lemma, the interface is contained in a curved wedge that as
ε → 0 converges to the point p. Since Eε(i)→ Bi, for every closed neighbourhood K of p we have by
semicontinuity

P(Bi,Kc)≤ liminf
h→∞

P(Eεh(i),K
c).

Adding the inequality
c≤H 1(Eεh(i, j))≤ liminf

h→∞

P(Eεh(i),K)

we obtain

P(Bi,Kc)+ c≤ liminf
h→∞

P(Eεh(i),K
c)+ liminf

h→∞

P(Eεh(i),K)

≤ liminf
h→∞

P(Eεh(i))

= P(Bi)

which yields a contradiction by choosing the neighbourhood K small enough.
(ii) Suppose there is a component C of the exterior chamber entirely surrounded by two other cham-

bers A and B. We prove that it is more convenient to add this component to one of the chambers and
fix its total volume with a slight deflation. Call `A and `B the length of the respective interfaces with C,
and suppose `A ≤ `B. Then add C to chamber B, and slightly deflate B far from contact zones (which is
always possible for small ε). The contributions to Pε coming from C change from `A + `B to (2− ε)`A,
with a total change of `A− `B− ε`A < 0, while the deflation to fix the total volume of B can be chosen
so that the energy decreases; this results in a global decrease in the energy Pε .

An asymptotic quantitative isoperimetric inequality involving curvature

The aim of the following theorem is to prove a particular instance of quantitative isoperimetric inequality
in the plane, involving how much the curvature of the boundary of a given set E deviates on small scales
from the “ideal” curvature κE .

Theorem 2.14. Let E ⊂R2 be open, of finite area and perimeter and let κ̄ > 0 be a real number. Suppose
the boundary of E contains m∈N portions made of arcs with constant curvature κ1, . . . ,κm, with κi ≤ κ̄ ,
each arc having a corresponding chord of length `i. The curvature is signed, meaning that it is positive
if the arc is curved outwards, and negative if it is curved inwards. Then

P(E)≥
√

4π|E|+ 1
24

m

∑
i=1

`3
i (κi−κE)

2−O

(
m

∑
i=1

`5
i

)
.
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Figure 2.5: Reference figure for Lemma 2.16.

Remark 2.15. In loose terms the previous inequality can be seen as a sort of Taylor expansion of the
perimeter functional with base point the disk, in the same spirit as Hales’s inequality [Hal01, Theorem
4] can be seen as a Taylor expansion of the perimeter with base point the regular hexagon. It would
be interesting to know whether these two inequalities are a particular case of a more general Taylor
expansion of the perimeter functional.

We begin with a simple lemma, of which we omit the proof.

Lemma 2.16. Consider a segment in the plane of length ` and an arc of constant curvature κ connecting
its endpoints, and let θ and r be the related angle and radius as in Figure 2.5. Then the angle θ , the
length s of the arc and the area A of the circular section are given respectively by:

θ(`,κ) = 2arcsin
`κ

2
= `κ +

1
24

`3
κ

3 +O(`5
κ

5)

s(`,κ) =
2
κ

arcsin
(
`κ

2

)
= `+

1
24

`3
κ

2 +O(`5
κ

3)

A(`,κ) =
θr2

2
− r2 cos

θ

2
sin

θ

2
=

1
12

`3
κ +O(`5

κ
3).

We now pass to the proof of Theorem 2.14.

Proof of Theorem 2.14. We inflate or deflate each arc until it reaches curvature κE , that is we replace the
given arcs of curvature κi with an arc of curvature κE with the same endpoints, to obtain a new set Ẽ with
area A(Ẽ) = A(E)+∆A and perimeter P(Ẽ) = P(E)+∆P; then we apply the isoperimetric inequality of
Proposition 2.9 to the new set Ẽ and draw the consequences for the original set E, exploiting the explicit
fomulas given by the previous lemma. We set for simplicity `= ∑

m
i=1 `i.
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By Lemma 2.16 we can compute explicitly

∆P =
m

∑
i=1

(s(`i,κE)− s(`i,κi))

=
m

∑
i=1

1
24

`3
i (κ

2
i −κ

2
E)+O

(
`5)

∆A =
m

∑
i=1

(A(`i,κE)−A(`i,κi))

=
m

∑
i=1

1
12

`3
i (κE −κi)+O

(
`5) .

The isoperimetric inequality applied to Ẽ gives P(Ẽ)≥
√

4π|Ẽ|. Therefore

P(E) = P(Ẽ)−∆P≥
√

4π
√
|E|+∆A−∆P

=
√

4π|E|

√
1+

∆A
|E|
−∆P

=
√

4π|E|
(

1+
1
2

∆A
|E|

)
+O

(
∆A
|E|

)2

−∆P

=
√

4π|E|+κE∆A−∆P+O(`6).

Inserting now the asymptotic expansions for ∆A and ∆P we obtain

P(E)≥
√

4π|E|+
m

∑
i=1

(
κE

1
12

`3
i (κE −κi)−

1
24

`3(κe−κi)
2
)
−O

(
`5)

=
√

4π|E|+
m

∑
i=1

1
24

`3
i (κi−κE)

2−O
(
`5) .

Consequences for the N-bubble: lower-bound inequality

In this section we will derive the consequences of Theorem 2.14 in the general case of weighted clusters
with possibly different areas, obtaining the lower bound for the energy Pε given by Proposition 2.18. We
find it useful, however, to examine first the simpler case of a double bubble with equal areas, to explain
the idea behind it. In particular, we will obtain the asymptotics given by (2.3) as a lower bound, without
using the explicit shape of minimizers.

Proposition 2.17. For every 2-cluster E = (E1,E2) with both areas equal to π we have

Pε(E )≥ 4π− 4
3

ε
3/2−O(ε5/2).
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Proof. It is clearly sufficient to prove the statement when E is a minimizer of Pε under the same volume
constraint. By Lemma 2.13 we know that the chambers will have at most one single arc in common.
Suppose this arc has length s and curvature κ , and that the chord of this arc has length ` . Then writing

Pε(E ) = P(E1)+P(E2)− εs,

recalling Lemma 2.16 and applying Theorem 2.14 to both chambers we obtain

Pε(E )≥ 4π +
1

24
`3 ((1−κ)2 +(1+κ)2)− ε

(
`+

1
24

`3
κ

2 +O(`5)

)
−O(`5)

= 4π +
1

12
`3− ε`+

1
12

κ
2`3
(

1− ε

2

)
−O(`5)

≥ 4π +
1

12
`3− ε`−O(`5)

where the key fact is that the curvature κ appears in the first line once with a positive sign and once
with a negative sign, and where the last inequality follows from ε ≤ 2. We now optimize in ` ≥ 0 the
expression 1

12`
3− ε` to obtain the minimum point `= 2ε1/2, and thus obtaining

Pε(E )≥ 4π− 4
3

ε
3/2−O(ε5/2)

as wanted.

We will now perform a computation similar to the previous one, but this time for a general number
N of chambers and possibly different areas, to obtain a lower bound for the energy Pε .

Proposition 2.18. Let E = {E1, . . . ,EN} be a planar cluster whose chambers have areas |Ei| = mi =

πr2
i and therefore ideal curvature κEi = 1/ri (see Definition 1), and whose boundaries have piecewise

constant curvature. Suppose that every pair of chambers shares at most one arc. Then

Pε(E )≥
N

∑
i=1

P(BEi)−
4
3

ε
3/2

∑
1≤i< j≤N

σi j
2rir j

ri + r j
+O(ε5/2) (2.10)

where σi j is one if the chambers Ei and E j share some boundary, and zero otherwise.

Proof. Call κi j the curvature of the arc between chambers i and j, si j its length and `i j the length of the
relative chord (we omit for simplicity the dependence on ε), and set `= ∑i, j `i j. We apply Theorem 2.14
to each chamber to obtain

Pε(E ) =
N

∑
i=1

P(Ei)− ε ∑
1≤i< j≤N

si j

≥
N

∑
i=1

(
P(BEi)+

1
24 ∑

j 6=i
`3

i j(κi j−κEi)
2−O(`5)

)
− ε ∑

1≤i< j≤N
si j

=
N

∑
i=1

P(BEi)+ ∑
1≤i< j≤N

(
1
24

`3
i j
(
(κi j−κEi)

2 +(κi j +κE j)
2)

−ε

(
`i j +

1
24

`3
i jκ

2
i j

))
−O(`5).
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Now we first optimize in κi j each term in the sum, i.e. the quadratic polynomial in κi j given by

1
24

`3
i j
(
(κi j−κEi)

2 +(κi j +κE j)
2)− ε

(
`i j +

1
24

`3
i jκ

2
i j

)
=

1
24

`3
i j

(
(2− ε)κ2

i j +2(κE j −κEi)κi j +κ
2
Ei
+κ

2
E j

)
− ε`i j.

The minimum point is easily seen to be

κi j =
κEi−κE j

2− ε
(2.11)

giving the expression a minimum value of

1
24

`3
i j

(
κ

2
Ei
+κ

2
E j
+

(κEi−κE j)
2

2− ε

)
− ε`i j

=
1
24

`3
i j

(
1
2
(κEi +κE j)

2− ε

4−2ε
(κEi−κE j)

2
)
− ε`i j. (2.12)

We now optimize in `i j: setting the derivative in `i j equal to zero we find

`2
i j =

8ε

1
2(κEi +κE j)

2− ε

4−2ε
(κEi−κE j)

2

=
16ε

(κEi +κE j)
2 +O(ε2)

which implies

`i j =
4

κEi +κE j

ε
1/2 +O(ε3/2). (2.13)

Substituting this back into (2.12) and observing that by the previous computation O(`5) = O(ε5/2), we
obtain that the expression is greater than

−8
3

ε
3/2 1

κEi +κE j

+O(ε5/2)

and now summing among all pairs (i, j) we obtain

Pε(Eε)≥
N

∑
i=1

P(BEi)−
4
3

ε
3/2

∑
1≤i< j≤N

σi j
2

κEi +κE j

+O(ε5/2)

which is the desired result.

As a consequence of the previous inequality and Lemmas 2.11 and 2.13 we obtain the following:
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Corollary 2.19. Suppose minimizers Eε converge as ε → 0 to the cluster of disks B. Then

P(Eε)≥ P(B)− 4
3

ε
3/2T (B)+O(ε5/2)

where T is the tangency functional (2.5).

Remark 2.20 (Non-optimal lower bound for Pε ). Viewing an N-cluster as a “superposition” of 2-clusters
we can obtain a worse lower bound than equation (2.10), but with the same order of ε3/2 for the second
term. We notice that for N ≥ 2 we can rewrite

Pε(E ) =
1

N−1 ∑
1≤i< j≤N

Pδ (ε)

(
(E (i),E ( j))

)
where δ (ε) = (N − 1)ε and Pδ ((E (i),E ( j))) = P(E (i)) + P(E ( j))− δH 1(E (i, j)) is the weighted
perimeter of the 2-cluster (E (i),E ( j)). From the solution of the double bubble (for simplicity in the
case of equal volumes |E (i)|= π) we know that Pδ ((Ei,E j))≥ 4π− 4

3 δ 3/2 +O(δ 5/2) from which

Pε(E ) =
1

N−1 ∑
1≤i< j≤N

Pδ (ε)((Ei,E j))

≥ 1
N−1 ∑

1≤i< j≤N

(
4π−σi j(E )

4
3

δ
3/2 +O(δ 5/2)

)
= 2Nπ− 4

3

√
N−1C (E )ε3/2 +O(ε5/2)

where C (E ) = ∑i< j σi j(E ) is the number of pairs (i, j) such that Ei and E j share some boundary. This is
the estimate we are looking for, except for the factor

√
N−1 which makes the inequality worse. Observe

that we can not obtain in this way the optimal inequality we are aiming to: indeed each double-bubble
inequality is optimal when there is just one contact between two disks and the remaining portion of
boundary is circular, which can not be simultaneously true for all pairs of bubbles.

Sharpness of lower bound (recovery sequence)

We now want to show that the inequality proved in Corollary 2.19 is essentially sharp, which means that,
given a cluster of disks B = (B1 . . . ,BN), we can actually find a sequence of clusters Eε converging to B

for which the reverse inequality holds. We think that there should be a simpler way to do this other than
the way proposed in the following, analyzing the sharpness of the inequality of Theorem 2.14, which
is used to prove Proposition 2.18. However we were not able to follow this route and instead propose
in the following a quite explicit and tedious computation for the polar equation of each chamber of an
approximating sequence.

The idea is to construct between any pair of tangent disks Bi, B j in the limit cluster B an arc whose
constant curvature is 1

2(κEi−κE j) (which is the right asymptotic value given by condition (ii) in Lemma
2.12), of length `ε

i j = 4ε1/2/(κEi +κE j) (which is up to O(ε3/2) the optimal value found in (2.13)). In the
remaining portion of the boundaries of the chambers Eε(i) we can pretty much put any interface which,
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in polar coordinates w.r.t. the center of Bi, has W 1,∞ norm at most O(ε2); we achieve this by a simple
two-piece piecewise linear interpolation in the angle variable. Recall that the total area must be |Bi| to
satisfy the area constraint, hence the need for an interpolation.

We start with a couple of simple lemmas regarding the area and perimeter of small perturbations of
a circle. We parametrize S 1 by γ : [−π,π]→ R2,

γ(t) =
(

cos t
sin t

)
and consider a normal perturbation with magnitude u : [−π,π]→ (−1,∞), which gives a variation

γu(t) = γ(t)+u(t)ν(t) = (1+u(t))γ(t)

where ν(t) = γ(t) is the outer normal. Using the formula for the area in polar coordinates we obtain the
following result.

Lemma 2.21 (Variation of area).

Area(γu) = π +

ˆ
π

−π

u(t)dt +
1
2

ˆ
π

−π

u(t)2dt. (2.14)

Lemma 2.22 (Variation of perimeter). If u(t)≥−1
2 for every t and ‖u‖W 1,∞ ≤ 1, then the length L(γu)

of the curve γu satisfies

L(γu) = 2π +

ˆ
π

−π

u(t)dt +
1
2

ˆ
π

−π

u′(t)2dt +O
(
‖u‖3

W 1,∞

)
. (2.15)

Proof. We have
γ
′
u(t) = (1+u(t))γ ′(t)+u′(t)γ(t)

and by the orthogonality of γ and γ ′ we obtain

|γ ′u(t)|=
√

(1+u(t))2 +u′(t)2 =
√

1+2u(t)+u(t)2 +u′(t)2.

By the Taylor expansion with Lagrange remainder
√

1+ x = 1+
1
2

x− 1
8

x2 + r(x)

with r(x) = 1
16(1+ξ )5/2 x3 and ξ between 1 and x. Set x = 2u(t)+u(t)2+u′(t)2. From u(t)≥−1

2 we obtain

x≥−3
4 , and then also ξ ≥−3

4 , thus |r(x)| ≤C|x|3 for every x≥−3
4 . Therefore

L(γu) =

ˆ
π

−π

|γ ′u(t)|dt

=

ˆ
π

−π

(
1+u+

1
2
(u2 +u′2)− 1

8
(2u+u2 +u′2)2 + r(u)

)
dt

= 2π +

ˆ
π

−π

u+
1
2

ˆ
π

−π

u′2 +O
(
‖u‖3

W 1,∞

)
.
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Remark 2.23. In particular consider a variation u which preserves the area, that is
ˆ

u =−1
2

ˆ
u2.

Then plugging this into (2.15) we obtain that for an area-preserving variation, the perimeter is

2π +
1
2

ˆ
(u′2−u2)+O

(
‖u‖3

W 1,∞

)
.

Lemma 2.24. Consider a circle of radius r centered at the origin and given R ∈ R consider a circle
of radius |R| tangent to the first one whose center has cartesian coordinates (r+R,0), (so that if R is
positive it is on the opposite side with respect to the tangent line, if R is negative it is on the same side).
Then the polar coordinates of the second circumference in a neighbourhood of the tangency point are
given by:

ρ(θ) = (R+ r)cosθ −R

√
1−
(

1+
r
R

)2
sin2

θ ,

and the Taylor expansion for small θ is

ρ(θ) = r+
r
2

(
1+

r
R

)
θ

2 +O(θ 4).

Proof. The polar equation of a circumference of radius R whose center has polar coordinates (r0,φ) is
given by

ρ
2 + r2

0−2ρr0 cos(θ −φ) = R2.

In our case (r0,φ) = (r+R,0). Inserting this into the previous equation and solving for ρ (and choosing
the right sign) gives the desired conclusion.

Theorem 2.25 (Recovery sequence). For every cluster of disks B = (B1, . . . ,BN) with radii r1, . . . ,rN

we can construct a recovery sequence Eε , namely a sequence such that Eε →B in the convergence of
clusters and such that

Pε(Eε) =
N

∑
i=1

2πri−
4
3

ε
3/2

∑
1≤i< j≤N

σi j
2rir j

ri + r j
+O(ε5/2)

where

σi j =

{
1 if Bi and B j touch

0 otherwise
.

Proof. We build, for each disk in the limit configuration, a “dented” disk, inserting small arcs of constant
curvature κi j =

1
2

( 1
r j
− 1

ri

)
between two tangent disks Bi and B j. The length of the corresponding chord is

set to be `ε
i j =

4rir j
ri+r j

ε1/2 (these are the asymptotically optimal values given by the optimizations in (2.11)
and (2.13)).
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We describe the boundary of Eε(i) in polar coordinates w.r.t. the center of Bi by the function ρi(θ).
Around any contact point pi j = (ri,θi j), thanks to the previous lemma, the parametrization is given by

ρi(θ) = ri +
ri

2

(
1+

ri

Ri j

)
(θ −θi j)

2 +O((θ −θi j)
4)

where Ri j = 1/κi j. We now suppose for simplicity θi j = 0 (we are interested in computing only lengths,
which are rotation invariant) and compute the polar coordinates of the endpoints of the (i, j)-arc, whose
chord has length `ε

i j: they are given by (ρi(∆θi),∆θi) and (ρ(−∆θi j),−∆θi j) where ∆θi j is implicitly
given by

2ρi(∆θi j)sin∆θi j = `ε
i j.

We now invert this expression to obtain the Taylor expansion of ∆θi j in terms of `ε
i j: first insert the Taylor

expansions of ρi(θ) and sinθ to obtain

2
(

ri +
ri

2

(
1+

ri

Ri j

)
∆θ

2
i j +O(∆θ

4
i j)

)(
∆θi j−

1
6

∆θ
3
i j +O(∆θ

5
i j)

)
= `ε

i j.

Then a simple computation yields

∆θi j =
`ε

i j

2ri
+O(ε3/2).

Using Lemma 2.22 and a rescaling, setting (1+ u(θ))ri = ρi(θ), and observing that we can set the
total area to be |Bi| with ρi(θ) being piecewise linear between two consecutive arcs and having there
W 1,∞-norm bounded by a constant times ε2, we find that

P(Eε(i)) = ri

(
2π +

1
2

ˆ
(u′(t)2−u(t)2)dt +O(ε5/2)

)
= ri

(
2π +

1
2

ˆ
∆θi j

−∆θi j

u′(t)2dt +O(ε5/2)

)

= ri

(
2π +

1
2

ˆ
∆θi j

−∆θi j

(
1+

ri

Ri j

)2

t2dt +O(ε5/2)

)

= 2πri +
ri

2
(ri +Ri j)

2

R2
i j

2
3

∆θ
3
i j +O(∆θ

5
i j)

= 2πri +
1
3

riRi j

ri +Ri j
ε

3/2 +O(ε5/2)

where we used that the only relevant term up to O(ε5/2) in the integral is u′(t)2 between −∆θi j and ∆θi j.
Moreover, recalling Lemma 2.16, we have

s(`ε
i j,κi j) = `ε

i j +O(ε3/2).

Therefore summing among all the arcs of the chamber Eε(i) we obtain

P(Eε(i))−
ε

2 ∑
j

s(`ε
i j,κi j) = 2πri−

2
3

ε
3/2

∑
j

riRi j

ri +Ri j
+O(ε5/2).
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Now summing among all i’s, and recalling that 1
Ri j

= 1
2

(
1
r j
− 1

ri

)
, each arc (i, j) is counted with a weight

given by

− 2
3

ε
3/2

(
1

1
Ri j

+ 1
ri

− 1
1

Ri j
− 1

r j

)

=− 4
3

ε
3/2 2rir j

ri + r j

which is the desired result.

Proof of the main theorems

We now put together the previously obtained results to prove Theorem 2.2 and Theorem 2.4.

Proof of Theorem 2.2. Given a family of minimizing clusters Eε converging to B, by the regularity
Theorem 2.7 they have boundary of piecewise constant curvature. By Lemma 2.13 all curvatures are
bounded, and every pair of chambers Eε(i) and Eε( j) shares at most one arc, and shares no arc if the
limit disks Bi and B j are not tangent. Applying Corollary 2.19 we obtain that

Pε(Eε)≥
N

∑
i=1

P(Bi)−
4
3
T (B)ε3/2 +O(ε5/2), (2.16)

or equivalently (recalling definition (2.4)) that

P(1)
ε (Eε)≥−T (B)+O(ε).

By Theorem 2.25 we can actually find a recovery sequence, that is a sequence Eε converging to B and
such that

Pε(Eε) =
N

∑
i=1

P(Bi)−
4
3
T (B)ε3/2 +O(ε5/2),

which shows the other inequality in (2.16). In particular,

P(1)
ε (Eε) =−T (B)+O(ε),

and in order to minimize Pε for ε small enough, it is necessary that the limit cluster B maximizes T (B),
the number of weighted tangencies.

Proof of Theorem 2.4. Theorem 2.7 implies that there are a finite number of arcs of constant curvature,
meeting in a finite number of vertices. By Lemma 2.8 at every vertex exactly three arcs meet, one of
the chambers is the exterior one and the angle θε is given by θε = arccos(1− ε/2). By Lemma 2.12
the curvatures of the arcs are converging to the desired values. By Lemma 2.13 there is at most one arc
between any pair of chambers whose limit disks are tangent, and none otherwise. Moreover, it follows
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from Proposition 2.18 that in the former case, for ε small enough there is exactly one arc, otherwise
we would get a worse inequality from Proposition 2.18, that is limε→0 P(1)

ε (Eε)>−T (B). Finally, the
length `ε

i j of the arc between Eε(i) and Eε( j) must be o(ε1/2)-close to the optimal value given by (2.13),
otherwise again we would obtain a worse inequality.

2.4 Remarks

(i) Higher dimension. A natural question is whether an analogous result holds for minimizing clusters
in Rn, where the weights are given by 2.2 and the length is replaced by the Hausdorff measure
H n−1. This will be the object of the last section of this chapter. The first-order results of Section
2.2 are true in any dimension. The proof of compactness is however more subtle, as in dimension
n≥ 3 such a strong regularity result as Theorem 2.7 is not available, and moreover perimeter does
not control diameter even for connected smooth sets. The proof follows the lines of [Mag12, The-
orem 29.1]. The localization lemma 2.11 is still true but requires a different proof, see Proposition
2.32. The second-order results of Section 2.3 seem more difficult to extend, mainly because of
the lack of a strong regularity result. In the planar case we are able to make explicit computations
thanks to the fact that we are dealing with arcs of constant curvature.

(ii) The case ε → 2. The other natural asymptotic behaviour we could consider is for ε → 2, which is
the limit for the triangle inequalities (2.6) to hold. In this case for minimal clusters the union of all
chambers

⋃N
i=1 Eε(i) converges to a disk (by the isoperimetric inequality) and the cluster converges

up to subsequence and rigid motions to an optimal partition of the disk. This is much simpler
to prove than the main result of this paper: in this case, setting α = 2− ε , the relevant rescaled
functionals are

Gα(E ) =
P2−α(E )− (1−α)2π

√
N

α

which Γ-converge to P(E ).

The liminf inequality is an immediate consequence of the rewriting

Gα(E ) = P(E )+
1−α

α
(P(E (0))−2π

√
N)≥ P(E )

while the recovery sequence is given by the constant sequence.

(iii) Higher order expansion. Even though Theorem 2.2 highly restricts the class of possible clusters of
disks we can see in the limit ε → 0, it doesn’t completely characterizes them because of a general
lack of uniqueness of minimizers for the tangency functional T in 2.5: in the case of equal radii
already for N = 6 there are three distinct minimizers, see Figure 2.6; see also [DLF17] for the
characterization of those N which admit a unique minimizer for the sticky disk potential. For those
N that admit many minimizers, a way to select among them would be to go beyond the order ε3/2

and look at the subsequent order in the expansion of perimeter. However this seems quite difficult
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Figure 2.6: For N = 6 and equal radii there are three distinct minimizers of the tangency functional
T .

and apparently involves some “non-local” terms. A computation in the case of equal areas seems
to suggest that the relevant quantity to be maximized at the next order is the total number of paths
of length 2 in the bond graph associated to B, that is the graph where vertices are the centers of the
disks and edges are drawn when two disks touch (notice that the tangency functional is exactly the
number of paths of length 1, i.e. edges, in the same graph). However there are no rigorous results
in this direction. This leaves a question which could be of some interest:

Open problem (maximizing k-paths in subgraphs of the triangular lattice) Among finite sub-
graphs of order N of the triangular lattice, find those which maximize the total number of k-paths
contained in them.

Here the number of k-paths of a graph G is the total number of distinct discrete paths of length k
which at each step move from a vertex to one of its neighbours. The central limit theorem this time
suggests that, as k goes to infinity, a circular global shape could be the preferred one.

2.5 Higher dimension

We now consider tha analogue of (2.2) in general dimension. We thus consider N-clusters E =(E (1), . . . ,E (N))

in Rn, and minimize the perimeter

Pε(E ) =
1
2 ∑

0≤i, j≤N
i 6= j

ci j(ε)H
n−1(∂ ∗E (i)∩∂

∗E ( j)) (2.17)

where as in the previous sections

ci j(ε) =

{
1 if i = 0 or j = 0

2− ε if i, j 6= 0
. (2.18)

The goal is to prove a sticky-disk limit result analogous to Theorem 2.2. However we are not able to
prove a lower-bound inequality analogous to Corollary 2.19, because we lack the strong regularity results
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that are available in dimension 2. In the following we will partially extend the results of the previous
sections to gneeral dimension. In particular we will prove the analogue of the Localization Lemma 2.11.

We begin by proving the Truncation Lemma, which is then used to prove the Localization Lemma.

First variation of volume and perimeter

Given an open set Ω⊂Rn, we consider the following family of diffeomorphisms: fix a smooth vectorfield
T ∈C∞

c (Ω,Rn), and consider
Φt(x) := x+ tT (x).

Then, for t < ε with ε sufficiently small, Φt is a smooth diffeomorphism such that {x : Φt(x) 6= x} ⊂⊂Ω.
We call the family {Φt}t<ε a local variation in Ω.

Given a finite perimeter set E ⊂Rn, we now consider its first variation of volume and perimeter, that
is a formula to compute P(Φt(E)) and |Φt(E)| for small t.

Theorem 2.26 (First variation of volume [Mag12, Theorem 17.8]). Given a set of finite perimeter
E ⊂ Rn, given a local variation {Φt}t<ε as defined above, we have

|Φt(E)|= |E|+ t
ˆ

∂∗E
T ·νEdH n−1 +O(t2) = |E|+ t

ˆ
E

divT +O(t2). (2.19)

where the constants involved in O depend only on T and |E|.

Theorem 2.27 (First variation of perimeter [Mag12, Theorem 17.5]). If E is a set of finite perimeter
in Rn and {Φt}t<ε is a local variation as defined above, then

P(Φt(E)) = P(E)+ t
ˆ

∂ ∗E
div τT dH n−1 +O(t2) (2.20)

where div τT (x) = divT (x)− νE(x) · (∇T (x)νE(x)) is the tangential divergence of T , and where the
constants involved in O depend only on T and P(E).

Truncation Lemma

The Truncation Lemma could be roughly summarized as ”upgrading L1 convergence to uniform conver-
gence”, and it’s an intermediate result towards the analogue in higher dimension of Lemma 2.11. We
named it truncation lemma (instead of localization, as in the planar case) because of the different method
involved in the proof: truncation and volume-fixing variations. In particular we use a standard method
which involves writing a differential inequality that involves the function m(r) := |E ∩Br|. We reserve
the name localization lemma for Proposition 2.32, which is really the analogue of Lemma 2.11.

We begin with a simplified version of the Truncation Lemma to explain the idea behind the proof,
even though this simplified version could be proved in a much simpler way thorugh a calibration argu-
ment (see Remark 2.29); then we will prove the full version. In the simplified version the result is the
following: if a finite perimeter set E is sufficiently close (in measure) to a ball B1 with the same volume,
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then we can decrease the perimeter of E by truncating it with a ball B1+r, with r > 0 sufficiently small
depending on δ .

The idea of the proof is a more or less standard method in minimal surfaces problems: obtaining a dif-
ferential inequality that involves the volume of E inside a ball of radius r (see [Mag12, Remark 15.16]).
For instance it is similar in spirit to the following result for minimal clusters, which excludes “infiltra-
tions” of a third fluid between two main ones [Leo01]: if in a certain ball Br most of the volume is filled
by just two chambers, then in Br/2 there are no other chambers.

We begin by recalling a few results. Given a finite perimeter set E define m(r) := |E ∩B1+r|. Then
for a.e. r > 0 by (1.4) we have that

m′(r) = H n−1(E ∩∂B1+r) (2.21)

and by (1.5)

P(E ∩B1+r) = P(E,B1+r)+H n−1(E ∩∂B1+r) = P(E,B1+r)+m′(r). (2.22)

Lemma 2.28 (Truncation simplified). Let E be a finite perimeter set in Rn, with |E|= |B|= ωn. Sup-
pose |E∆B| ≤ δ . Then there exists r ∈ [0,∆r] such that

P(E ∩B1+r)≤ P(E),

where ∆r = 2
(

δ

ωn

)1/n
.

Proof. Suppose by contradiction this is not the case, and in particular that m(r)<ωn for every r ∈ [0,∆r].
Then for a.e. r in the interval, by (2.22) we have

P(E,B1+r)+m′(r) = P(E ∩B1+r)≥ P(E) = P(E,B1+r)+P(E,Bc
1+r)

and therefore m′(r)≥ P(E,Bc
1+r). Now we use that for a.e. r

P(E,Bc
1+r) = P(E ∩Bc

1+r)−H n−1(E ∩B1+r) = P(E,Bc
1+r)−m′(r)

to deduce that 2m′(r)≥ P(E ∩Bc
1+r). By the isoperimetric inequality we have that

P(E ∩Bc
1+r)≥ nω

1/n
n |E ∩Bc

1+r|
n−1

n = nω
1/n
n (ωn−m(r))

n−1
n .

If we define g(r) := ωn−m(r), putting together the last inequalities we can write

−2g′(r)≥ nω
1/n
n g(r)

n−1
n

and since g(r)> 0 we cand divide by g(r) obtaining

−
(

g(r)1/n
)′
≥ 1

2
ω

1/n
n .

Integrating between 0 and ∆r we obtain

g(∆r)1/n ≤ g(0)1/n− 1
2

ω
1/n
n ∆r ≤ δ

1/n− 1
2

ω
1/n
n ∆r ≤ 0

which is a contradiction because we assumed m(r)< ωn in the interval, that is g(r)0.
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Remark 2.29. As already pointed out the previous result follows from a simpler calibration argument
which does not need the differential inequality. We used the differential inequality to explain the method
that we will use to prove the general result. We now explain what is the aforementioned calibration
argument. The result is the following: for any set E of finite perimeter and any ball B, P(E ∩B)≤ P(E).
Actually we can obtain the same for any convex set K replacing B, see also [Mag12, Exercise 15.14]. In
particular in Lemma 2.28 we can choose any r > 0 without assummptions on the smallness of |E∆B|.

Proof. Consider for simplicity as B the unit ball centered at the origin, and consider as a calibration the
gradient of the fundamental solution of the Laplacian

η(x) :=
x
|x|n+1 .

Then divη = 0 in Rn \{0} and |η(x)| ≤ 1 for x ∈ Bc. Moreover

H n−1(E ∩∂B) =
ˆ

E∩∂B
1dH n−1 =

ˆ
E∩∂B

η ·νBdH n−1

and
P(E,Bc

) =

ˆ
∂ ∗E∩Bc

1dH n−1 ≥
ˆ

∂ ∗E∩Bc
η ·νEdH n−1.

Therefore by the divergence theorem for finite perimeter sets 1.6 we have

P(E)−P(E ∩B) = P(E,Bc
)−H n−1(E ∩∂B)

≥
ˆ

∂ ∗E∩Bc
η ·νE dH n−1−

ˆ
E∩∂B

η ·νB dH n−1

=

ˆ
E∩Bc

divη dx = 0.

We now pass to the stronger statement. Given a finite perimeter set E with |E|= |B|= ωn, and given
a 0 < r < 1, we truncate it with B1+r and fill it inside B1−r, that is we consider

Er := (E ∩B1+r)∪B1−r.

Proposition 2.30 (Truncation & volume-fixing variation). Let B⊂Rn be the ball of radius 1 centered
at the origin, and let B(x0,R) be a ball of radius R with center in x0 ∈ ∂B. Let E ⊂ Rn be a set of finite

perimeter of volume |E| = |B| = ωn, and fix a parameter λ > 0. If |E∆B| = δ ≤
(

λn
2C

)n
ωn then there

exists a radius r ∈ [0,∆r] where

∆r =
4

λω
1/n
n

δ
1/n

and a diffeomorphism φ which is the identity outside B(x0,R) such that the set Ẽr := φ(Er) satisfies
|Ẽr|= |E| and

P(Ẽr)≤ P(E,B1+r)+λP(E,Bc
1+r). (2.23)

In particular for small δ the set Ẽr is contained in B1+2∆r.
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The set Ẽr is obtained by first truncating E obtaining Er; and then by restoring the volume through a
diffeomorphism supported in the ball BR. The proposition says that we can find a value of r (sufficiently
small, depending on λ , δ and R) such that the final set Ẽr not only has less perimeter than the original
set E, but we can also gain a bit on the perimeter in Bc

1+r if λ < 1.
In order to prove the previous proposition we first prove in the following lemma that, after the trun-

cation, we can put the volume back to the original one with a change in perimeter proportional to the
change in volume. The lemma is similar to [Mag12, Lemma 17.21], but we need a constant independent
of the set E, and therefore we have to make some additional assumptions, namely that the class of sets
we consider are sufficiently close to a fixed ball B = B(0,1). Nevertheless the proof is very similar.

Lemma 2.31 (Volume-fixing variations). Let E be a finite perimeter set in Rn such that B1−ρ ⊂ E ⊂
B1+ρ . Fix R > 0. There is a constant δ = δ (n,ρ,R) such that if

∣∣|E|− |B|∣∣≤ δ then there is a diffeomor-
phism φ : Rn→ Rn which is the identity outside B(x0,R) such that

• |φ(E)|= |B|;

• |P(φ(E))−P(E)| ≤C(n,ρ,R)P(E)
∣∣|φ(E)|− |E|∣∣.

Proof. Fix a vectorfield η ∈C∞
c (Rn,Rn), and let φt(x) = x+ tη(x) be the associated family of diffeomor-

phisms for sufficiently small t. In particular ∇φt = Id + tη(x). By the volume and perimeter variations
(2.19) and (2.20) we have

|φt(E)|= |E|+ t
ˆ

∂ ∗E
η ·νEdH n−1 +O(t2)

P(φt(E)) = P(E)+ t
ˆ

∂ ∗E
div τ

η dH n−1 +O(t2)

where O(t2) depends only on η , |E| and P(E). If we choose η such that the flux

Φ(η) :=
ˆ

∂ ∗E
η ·νE dH n−1

is non zero, then for |t| small enough the function t 7→ |φt(E)| is injective and such that e.g.

∣∣|φt(E)|− |E|
∣∣≥ Φ(η)

2
|t|.

It follows that we can obtain any volume sufficiently close to |E|, and for t small enough

|P(φt(E))−P(E)| ≤ 2|t|
∣∣∣∣ˆ

FE
div τ

ηdH n−1
∣∣∣∣

≤ 2|t|P(E)‖∇η‖L∞(B1+ρ\B1−ρ )

≤ 4
Φ(η)

P(E)‖∇η‖L∞(B1+ρ\B1−ρ )

∣∣|φt(E)|− |E|
∣∣
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since ∂ ∗E ⊂ B1+ρ\B1−ρ . As of now the choice of η and the value of Φ(η) depend on the specfic set E.
Let us show that we can make a universal choice. The basic observation is that

n|E|=
ˆ

E
divxdx =

ˆ
∂ ∗E

x ·νEdH n−1

so that η(x) = x gives a positive value to Φ(η) depending only on |E|. Since we want a perturbation
supported in BR we can choose

η(x) = xψ

(
x
|x|

)
where ψ ∈C∞(Sn−1) is a positive cutoff function. If we consider the circular cone C(x0,R) with vertex
in the origin constructed over B(x0,R) we obtain

ˆ
∂ ∗E

η ·νEdH n−1 =

ˆ
∂ ∗E∩C(x0,R)

η ·νEdH n−1

=

ˆ
∂ ∗(E∩C(x0,R))

η ·νEdH n−1

=

ˆ
E∩C(x0,R)

divηdx

=

ˆ
E∩C(x0,R)

(ψdivx+ x ·∇ψ)dx

= n
ˆ

E∩C(x0,R)
ψ(x)dx

since ψ is 0−homogeneous and thus x ·∇ψ = 0. Since by assumption E ⊃ B1−ρ , the last term is positive
and bounded below by n‖ψ‖L1(B1−ρ∩C(x0,R)). We therefore conclude

|P(φt(E))−P(E)| ≤
4‖∇η‖L∞(B1+ρ\B1−ρ )

n‖ψ‖L1(B1−ρ∩C(x0,R))
P(E)

∣∣|φt(E)|− |E|
∣∣.

Proof of Proposition 2.30. Suppose by contradiction that for every r ∈ [0,∆r] the opposite inequality
holds:

P(Ẽr)> P(E,B1+r)+λP(E,Bc
1+r)

where Er = (E ∩B1+r)∪B1−r. Define the function m(r) := |E ∩Bc
1+r|+ |Ec∩B1−r|. Then m is nonin-

creasing and for a.e. r > 0

m′(r) =−H n−1(E ∩∂B1+r)−H n−1(Ec∩∂B1−r).

By the isoperimetric inequality we thus have that for a.e. r > 0

P(E,Bc
1+r)+H n−1(E ∩∂B1+r) = P(E ∩Bc

1+r)

≥ nω
1/n
n |E ∩Bc

1+r|
n−1

n
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and

P(Ec,B1−r)+H n−1(Ec∩∂B1−r) = P(Ec∩B1−r)

≥ nω
1/n
n |Ec∩B1−r|

n−1
n .

Since by the previous lemma for a.e. r we have |P(Ẽr)−P(Er)| ≤ C||Ẽr| − |Er|| = C|m(r)−ωn| we
obtain that for a.e. r ∈ [0,∆r]

P(E)+H n−1(E ∩∂B1+r)−P(E,Bc
1+r)+H n−1(Ec∩∂B1−r)−P(Ec,B1−r)

= P(Er)> P(E,B1+r)+λP(E,Bc
1+r)−C|ωn−|Er||

that is (writing P(E) = P(E,B1+r)+P(E,Bc
1+r) and erasing equal terms)

−m′(r)> λP(E,Bc
1+r)+P(Ec,B1−r)−C|ωn−|Er||.

We now observe that

|ωn−|Er||= ||E|− |Er||= ||E ∩Bc
1+r|− |Ec∩B1−r|| ≤ m(r).

Using that λ < 1 and the subadditivity of s 7→ s
n−1

n it follows that

−2m′(r)≥ λnω
1/n
n m(r)

n−1
n −Cm(r).

Since by assumption m(r)≤ m(0)≤
(

λn
2C

)n
ωn, we have that Cm(r)≤ 1

2 nω
1/n
n m(r)

n−1
n . Moreover

m(r) 6= 0 for r in [0,∆r], (2.24)

otherwise Ẽr = E and the inequality (2.23) is trivially satisfied. Therefore we obtain

d
dr

m(r)1/n <−λω
1/n
n

4

for a.e. r. We therefore obtain

m(r)1/n−m(0)1/n <−λω
1/n
n

4
r

which for r = ∆r becomes

m(∆r)1/n < m(0)1/n− λω
1/n
n

4
∆r = δ

1/n− λω
1/n
n

4
∆r ≤ 0

by the definition of ∆r, which contradicts (2.24).
Finally, we prove that Ẽr is contained in B1+2∆r if δ is sufficiently small. This is trivial because

the truncation makes the set contained in B1+∆r, while the volume-fixing variation given by Lemma
2.31 expands by a quantity (called |t| in the proof of the Lemma) of order δ (the volume to be fixed).
Therefore for δ small enough δ � δ

1
n ≈ ∆r and the claim is proved.
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Localization Lemma

The following result is the extension of Lemma 2.11 to any dimension.

Proposition 2.32 (Localization Lemma). Suppose that Eε are N-clusters in Rn, minimizing Pε given by
(2.17) with a volume constraint |Eε(i)| = mi. Suppose that Eε →B = (B1, . . .Bn), where Bi are balls.
Then for ε sufficiently small, we have that

(1− r(ε))Bi ⊆ Eε(i)⊆ (1+ r(ε))Bi (2.25)

where r(ε)→ 0 as ε → 0.

Proof. In short, we apply the Truncation Lemma given by Proposition 2.30 with λ = 1− 2ε to each
chamber, noting that we can choose the ball BRi for each chamber so that BRi stays far from the other
balls B j, j 6= i. The only care has to be taken to control the interfaces between different chambers.

We suppose that (2.25) does not hold, and we prove that the truncated and volume-fixed clusters Ẽε ,
obtained by applying Proposition 2.30 to each chamber, have lower Pε -perimeter. Consider therefore
the truncated and volume-fixed clusters Ẽε . We call for simplicity E old

ε the original cluster and E new
ε the

modified cluster. Then

Pε(E
new

ε ) =
N

∑
i=1

P(E new
ε (i))− ε ∑

1≤i< j≤N
H n−1(E new

ε (i, j)).

Applying Proposition 2.30 with λ = 1−2ε to each chamber we obtain

P(E new
ε (i))−P(E old

ε (i)) = P(E new
ε (i))−P(E old

ε (i),(1+ r)Bi)−P(E old
ε (i),((1+ r)Bi)

c)

≤−2εP(E old
ε (i),((1+ r)Bi)

c).

On the other hand the only contributions to

εH n−1(E old
ε (i, j))− εH n−1(E new

ε (i, j))

can come from pieces of E old
ε (i) outside (1+ r)Bi or pieces of E old

ε ( j) outside of (1+ r)B j. In any case
the sum of all these contributions is at most εP(E old

ε ,((1+ r)B)c), so that

Pε(E
new

ε )−P(E old
ε )≤−εP(E old ,((1+ r)B)c)< 0

by the initial assumption. This contradicts the minimality of Eε .
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Chapter 3

Global shape of planar clusters

In this chapter we prove the existence of a limit global shape E∞ for minimizing planar N-clusters
with equal areas as N→∞. We prove also some basic regularity results for E∞, and that the perimeter
density is asymtptotically uniform.
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In this Chapter our focus is the global shape of planar N-clusters EN , that is

EN :=
N⋃

i=1

EN(i) = R2 \EN(0). (3.1)

Our aim is understanding the shape of EN when EN are minimizing N-clusters with chambers of equal
area, in particular when N→∞. To avoid that the total area of the clusters goes to infinity, we rescale EN

by a factor 1√
N

.

The question of what is the limit of 1√
N

EN when N → ∞ was considered by many authors; among
them we can cite Cox, Graner, Heppes and Morgan [CG03], [HM05], [CMG13]. We quote Frank Morgan
from [Mor09, Figure 13.1.4]

43
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Figure 3.1

“For a large number N of unit bubbles (here 200 and 1000), Cox et al. conjecture that the
whole cluster will be approximately one big regular hexagon. The author, however, predicts
that for N very large, the cluster will be approximately circular.”

and also [Mor09, p. 123]

“[...] I think that for very large N the whole cluster should become circular, to minimize
the unshared outer perimeter, despite the cost of dislocations in the underlying hexagonal
structure.”

See also [HM05, 3.2 Remarks]:

We, however, conjecture that very large clusters can become roughly circular with negligible
additional internal cost [...]

and [CMG13]

For larger N, the optimal cluster is less likely to be hexagonal in shape, even for N a hexag-
onal number, and we find that for N ≥ 4447 the perfect hexagonal cluster is no longer best
even for a hexagonal number of bubbles.

We say that the clusters EN converge in shape or shape-converge to a set E∞ if 1√
N

EN → E∞ in

measure, or equivalently if the correpsonding characteristic functions converge in L1.

Disclaimer We will often omit the subscript N when it is clear from the context, writing simply E

instead of EN .

3.1 Three formulations of the problem

We begin by describing three different settings to study the asymptotic behaviour of minimal clusters. In
short, they are essentially: exact constraint on the area (area of each chamber 1

N , N→∞); loose constraint
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Figure 3.2: For problem (Pc
N) we consider connected chambers in the sense that each of them is

enclosed by a single closed Lipschitz curve. In the case depicted here the middle curve is crossed
twice and thus is counted twice in the perimeter energy.

on the area (area of each chamber ≤ ε2, fixed total area, ε → 0); relaxed problem with connectedness
constraint (area of each chamber = 1

N , N→ ∞, if two chambers disconnect in the limit we still count the
disappeared interface that connects them). More precisely we have the following problems:

(PN) We consider N-clusters EN made of chambers with area 1
N , and we put no constraint on the con-

nectedness of each chamber. We minimize the perimeter P(EN).

(Pε) We consider clusters Eε with total area 1 and whose (possibly countably many) chambers have
area ≤ ε2, and for simplicity we will count each connected component as a single chamber (this is
always possible up to a relabeling).

(Pc
N) We consider N-clusters whose chambers have area 1

N and each of which is the set enclosed by a
closed Lipschitz curve; the perimeter of a chamber is the length of the curve, which means that
in the case of a single chamber with two components as in Figure 3.2 we count the middle curve
twice.

The first problem is the classical one. The second is more suitable to apply cut and paste arguments
because we do not care about an exact area constraint for each chamber. The third simplifies the first
one.

The existence of a minimizer for each problem (for fixed N or ε) follows by the direct method. For
problem (PN) we use the compactness provided by Theorem 1.2. For problem (Pc

N) we parametrize
the boundary of each chamber as a Lispchitz curve with unit speed and use Ascoli-Arzelà (see [Mor94,
Corollary 3.3]). For problem (Pε) we use the compactness result for Caccioppoli partitions (Theorem
1.6). We omit the details.

We recall the basic regularity result given by Theorem 2.7: each minimizer for problem (PN) is
identified by a finite number of segments and pieces of circles that meet forming 120 degree angles.
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3.2 Existence of the limit global shape

In this Section we will prove the existence of a limit global shape for minimizing N-clusters, that is a
limit up to subsequence and rigid motions of 1√

N
ĒN when N → ∞. The precise convergence is the one

given by the compactness theorem of finite perimeter sets (Theorem 1.2).
We can prove the existence of the global shape for problem (Pc

N); for problem (PN) we have
a conditional result that relies on an improved version of Hales inequality (3.6), which has not been
proved. Somehow the original Hales inequality is barely insufficient to prove the existence of a global
shape, and an improved version by a tiny margin would suffice.

We will first recall Hales inequality (Theorem 3.1), which is the key tool that was employed by Hales
in [Hal01] to prove the honeycomb conjecture (to which we will refer also as honeycomb inequality),
which in one of its forms could be rephrased as follows: for every N-cluster EN with chambers of unit
area,

P(EN)≥
4
√

12N. (3.2)

A consequence of this inequality is that the regular hexagonal partition of the plane, also called honey-
comb, provides in a suitable sense the optimal partition of the plane in equal-area cells. Indeed, (3.2)
says that the average perimeter per chamber is at least 4

√
12, the semiperimeter of a regular hexagon of

area 1. We also mention [Car11, Teorema 5.10] (in italian) for a detailed exposition of Hales inequality.
Then we will see how Hales inequality can be used to prove a refined version of (3.2), in the form

P(EN)≥
4
√

12N + cP(EN) (3.3)

where c > 0 and EN =
⋃N

i=1 E (i) is the global shape of EN (see Lemma 3.6). Actually we need to assume
either that a slightly improved Hales inequality is true (Conjecture 3.4) or a lower bound on the area of
each connected component of a minimizer (which is satisfied if e.g. all chambers are connected). We
discuss this issue in the following, see in particular the Subsection An improved Hales inequality? and
Section 3.3.

Finally we will see how the inequality above, together with the trivial upper bound P(EN)≤ 4
√

12N+

O(
√

N) given by Lemma 3.7 and the compactness of finite perimeter sets, will ensure the existence of a
global shape (in the sense of finite perimeter sets) for minimizing N-clusters as N→ ∞.

Hales inequality

We recall here the setting outlined in [Hal01] in order to state Hales inequality.
Let Γ be a closed piecewise simple rectifiable curve in the plane, on which we consider the orientation

given by the parametrization, and let L(Γ) be its length. The signed area of Γ is

A(Γ) =
ˆ

Γ

xdy.

Let V := (v1, . . . ,vk), k≥ 2 be a collection of points on Γ, in the order provided by the parametrization of
Γ. We join vi and vi+1 with a directed segment fi, where vk+1 := v1. We call A(V ) the signed area of the
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polygon with vertices vi bounded by the directed chords fi. Let moreover ei be the piece of Γ between vi

and vi+1. Let x(ei) be the signed area of the region bounded by ei and f ∗i , where f ∗i is fi with the reversed
orientation. In this way we have that

A(Γ) = A(V )+∑
e

x(e)

where the sum is among e = e1, . . .ek. Let also α(Γ) := min{1,A(Γ)}. Define a truncation function
τ : R→ R by τ(x) := max{−1

2 ,min{1
2 ,x}}, and set

T (Γ) := ∑
e

τ(x(e)) (3.4)

to be the sum of the truncated areas of x(e).

Theorem 3.1 (Hales inequality [Hal01, Theorem 4]). Consider a curve Γ as above, together with a
partition with k≥ 2 points v1, . . . ,vk, and define L(Γ), A(Γ), T (Γ) as above. Assume the lower bound on
the area

A(Γ)≥ 2π
√

3
3k2 . (3.5)

Then

L(Γ)≥ 2 4
√

12α(Γ)−a(k−6)− 4
√

12T (Γ) (3.6)

where a = 0.0505. Equality is attained if and only if Γ is the boundary of a regular hexagon of area 1.

Set now α(EN) := ∑
N
i=1 α(EN(i)). Using the previous inequality, Hales is able to prove the following

honeycomb inequality:

Theorem 3.2 (Honeycomb inequality [Hal01, Theorem 2]). For every planar N-cluster EN we have

P(EN)≥
4
√

12α(EN).

In particular, for every planar N-cluster EN with chambers of area ≥ 1 we have

P(EN)≥
4
√

12N.

Remark 3.3. We stress the difference between the Hales and the honeycomb inequalities: the first one
concerns a single chamber (or rather, a single connected component) and involves the signed areas in-
cluded between the curve and the polygon associated to the partition of the boundary (we could also
call it isoperimetric inequality for curvilinear polygons); the second one instead concerns the whole N-
cluster and involves only the perimeter. To prove the honeycomb inequality we essentially have to sum
Hales inequality among all chambers, as we will see in the proof of Lemma 3.6.
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An improved Hales inequality?

In order to unconditioinally prove the existence of the global shape for problem (PN) we would need an
improved Hales inequality in the following sense: we would need the same conclusion of Theorem 3.1
but with a slightly weaker lower bound on the area enclosed by the curve Γ, namely

A(Γ)≥ 2π
√

3
3k2 (1−δ )

for any fixed δ > 0.
We state this as:

Conjecture 3.4 (Improved Hales inequality). Consider a curve Γ as above, together with a partition
with k ≥ 2 points v1, . . . ,vk, and define L(Γ), A(Γ), T (Γ) as above. Assume the lower bound on the area

A(Γ)≥ 2π
√

3
3k2 (1−δ ) (3.7)

for some fixed δ > 0. Then

L(Γ)≥ 2 4
√

12α(Γ)−a(k−6)− 4
√

12T (Γ)

for some constant a. Equality is attained if and only if Γ is the boundary of a regular hexagon of area 1.

Without this result to prove the existence of a global shape for problem (PN) we have to require
that the lower bound (3.5) is satisfied by every connected component of minimizers. The validity of this
lower bound is not known in general, but an even stronger result is conjectured:

Conjecture 3.5 (Problem 5 in [SM96]). For every N, every chamber of a minimizing N-cluster is con-
nected.

We will now carry on the proof of the existence of the global shape with the assumption (3.5). In
Section 3.3 we will discuss how we could remove this assumption if we knew that Conjecture 3.4 holds.

An improved honeycomb inequality

The following inequality was already observed by Heppes and Morgan [HM05, Theorem 3.1], but some-
how they do not take into consideration the assumption (3.5) on the lower bound on the area of each
connected component of the chambers. Since to us it is not clear how to remove this assumption we have
to assume it.

Lemma 3.6 (Improved Honeycomb inequality). Consider an N-cluster EN whose chambers have area
1, and with each connected component of every chamber having area at least 2π

√
3

3k2 , where k is the number
of distinct components of other chambers touching it. Then

P(EN)≥
4
√

12|EN |+ c1P(EN)+ c2K0 (3.8)

for positive constants c1,c2, where K0 is the number of arcs on the boundary ∂EN , that is the number of
arcs in the boundary of EN(0). In particular we can choose c1 =

1
8 and c2 =

a
2 = 0.02525.
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Proof. Up to relabeling each connected component as a separate chamber, we can assume that all the
chambers except at most for E (0) are connected, and that they satisfy the bound on the area

2π
√

3
3K2

i
≤ |E (i)| ≤ 1

where Ki is the number of distinct chambers sharing some boundary with the chamber E (i).
We sum the various Hales inequalities (3.6) for each chamber, as in the proof of the honeycomb

conjecture [Hal01], but we are slightly more careful and at the last line we save a portion of P(E0) in
Dido’s inequality. More precisely we have that

P(E ) =
1
2

N

∑
i=0

P(E (i))

≥ 1
2

P(E (0))+
1
2

N

∑
i=1

(
2 4
√

12|E (i)|−a(Ki−6)− 4
√

12T (Γi)
)

≥ 1
2

P(E (0))+ 4
√

12|E |− a
2

N

∑
i=1

(Ki−6)−
4
√

12
2

N

∑
i=1

T (Γi). (3.9)

Now the term involving the Ki’s reflects just the combinatorics of the graph, and thanks to Euler’s formula
and the regularity of minimizers we can conclude that

−
N

∑
i=1

(Ki−6)≥ 6+K0 (3.10)

Indeed, by Euler’s formula we have that

F−E +V = 1

where F is the number of faces of the graph (without the exterior one), E the number of edges and V the
number of vertices. We have that F = N, and since the degree at each vertex is 3, we also have

3V = 2E =
N

∑
i=0

Ki.

Therefore

1 = N−E +
2
3

E = N− 1
3

E = N− 1
6

N

∑
i=0

Ki =−
1
6

K0 +
N

∑
i=1

(
1− Ki

6

)
and we obtain (3.10) with equality just by rearranging terms. Note that for problem (Pc

N) the degree of
vertices could be ≥ 3, but the same proof yields (3.10).

As for the second sum of (3.9), recall from (3.4) that each term T (Γi) is the sum of the (truncated and
signed) areas enclosed between each curvilinear edge and the correspoding chord. Therefore, whenever
an edge of the graph is shared between two interior chambers, the two contributions exactly cancel out,
because one area has positive sign and the other one has negative sign. The only terms surviving in the
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sum are the signed areas that are associated to the curvilinear edges that form the boundary of E (0), that
is we are left with

∑
e⊂∂E (0)

τ(x(e))

where the sum is among all edges constituting ∂E (0). In conclusion, (3.9) becomes

P(E )≥ 4
√

12|E |+ a
2
(K0 +6)+

1
2

P(E (0))−
4
√

12
2 ∑

e⊂∂E (0)
τ(x(e)).

We now examine the last two terms, that we can write together as

1
2 ∑

e⊂∂E (0)

(
L(e)− 4

√
12τ(x(e))

)
where L(e) is the length of the edge e. We use Dido’s inequality (1.8) (that is the relative isoperimetric
inequality in a half plane) to conclude that the length of the edge L(e) and the signed area x(e) satisfy

L(e)≥
√

π|x(e)| ≥
√

π|τ(x(e))| ≥
√

π
√

2|τ(x(e))| ≥
√

2πτ(x(e)).

and therefore

1
2 ∑

e⊂∂E (0)

(
L(e)− 4

√
12τ(x(e))

)
≥ 1

2 ∑
e⊂∂E (0)

(
1−

4
√

12√
2π

)
L(e) =

1
2

(
1−

4
√

12√
2π

)
P(E (0))

and the factor before P(E (0)) is approximately 0.1287...≥ 1
8 .

In conclusion, since the total area of the cluster is N, we have proved that

P(E )≥ 4
√

12N +
a
2
(6+K0)+

1
8

P(E (0)).

Proof of the existence of the global shape

Lemma 3.7 (Upper bound for the energy). For every N ∈ N we can build a cluster E hex
N whose cham-

bers are regular hexagons of area 1 and such that

P(E hex
N )≤ 4

√
12N +C1

√
N.

In the setting of problem (Pε) there is a similar competitor such that

P(E hex
ε )≤ 1

ε

4
√

12+C1
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Proof. We could consider any configuration of N hexagonal chambers which has an outer perimeter of
order

√
N, but for simplicity we refer to the spiral configurations of Figure 4.2. A simple calculation

shows that the sidelength of a hexagon of area 1 is `0 =
1
3

4
√

12. The total number of exterior edges is
(Lemma 4.4)

2d
√

12N−3e

while the number of inner edges is
3N−d

√
12N−3e.

The total perimeter of the cluster is thus

`0(3N + d
√

12N−3e)≤ 4
√

12N +
1
3

4
√

12(
√

12N +1)

and we can choose C1 =
1
3

4
√

12(
√

12+1)≈ 2.7695....
In the case of problem (Pε) it is sufficient to set N := b 1

ε2 c and consider the rescaled competitor
εE hex

N . If 1
ε2 is not an integer we can add a spare chamber with circular shape.

A slightly better upper bound is given in [HM05], where it is proven that there is a competitor EN

such that

P(EN)≤
4
√

12N +
π

4
√

12
3

√
N +

4
√

12

and thus we can choose C1 =
4
√

12(π +1)/3≈ 2.5694.... However the specific constant is not important
for our purposes, that is to prove compactness.

We now come to the main theorem, that is the existence of a global shape for problem (PN). We can
prove it under the assumption that each connected component of each chamber in a minimizing N-cluster
satisfies the bound (3.5) (which is automatically true for problem (Pc

N)). As already stated this could be
avoided in the case we knew that the improved Hales inequality as per Conjecture 3.4 holds (see Section
3.3).

Theorem 3.8 (Existence of a global shape). Under the assumption (3.5) for the areas of each con-
nected component, up to subsequence and rigid motions minimal clusters EN shape-converge to a finite
perimeter set E∞, in the sense that the rescaled sets 1√

N
EN converge in L1 to E∞.

Proof. By Lemma 3.7 we know that there is a competitor E hex
ε such that

P(E hex
N )≤ 4

√
12N +C1

√
N

while the improved honeycomb inequality of Lemma 3.6 gives

P(EN)≥
4
√

12N + c1P(EN).

We deduce that for a minimizer P(EN)≤ C1
c1

√
N. In particular the rescaled sets 1√

N
EN have equibounded

perimeter. We conclude by the compactness theorem for finite perimeter sets (Theorem 1.2) that, up
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to rigid motions and up to subsequence, 1√
N

EN converge to a finite perimeter set E∞, and moreover

P(E∞) ≤ C1
c1

. The confinement of the supports, that is assumption (ii) of the cited theorem, comes from
the fact that minimizers are connected, and for connected sets in the plane the perimeter controls the
diameter.

3.3 Removing the lower bound on the areas

We now discuss more in detail the role of Conjecture 3.4 and how it can be used to prove the existence of
a global shape for problem (PN) without assuming the bound (3.5). In particular the aim of this Section
is to prove a conditional result: we can remove the assumption on the lower bound on the cells’ areas in
Lemma 3.6 (and therefore in Theorem 3.8), provided that a slightly better version of the Hales inequality
(3.6) holds; namely, provided that the bound on the area can be improved by any factor less than 1:

A(Γ)≥ 2π
√

3
3k2 (1−δ )

for some positive δ .

Lemma 3.9. Suppose that Hales inequality (3.6) holds under the assumption that

A(Γ)≥ 2π
√

3
3k2 (1−δ ) (3.11)

that is suppose Conjecture 3.4 holds. Then for any cluster E

P(E )≥ 4
√

12A(E )+ cP(E (0)), (3.12)

with the constant c sufficiently small depending on δ .

Proof. Define the functional F on the space of all clusters by

F(E ) = P(E )− 4
√

12A(E )− cP(E (0)).

Then equation (3.12) is equivalent to

F(E )≥ 0 for every cluster E .

If all connected components of the chambers of E satisfy the bound (3.11) then we can argue as in the
proof of Lemma 3.6 and we are done. If otherwise assumption (3.11) is not satisfied for at least one
connected component, we prove that we can “pop” an edge of this component and merge it with one of
its neighbours so that the value of F decreases. In this way we keep on merging the components until the
area bound is satisfied for all of them.

We consider for notational simplicity a cluster with connected chambers (this is always possible up to
relabeling each connected component as a standalone chamber). Consider then a cluster E and suppose
that there exists a chamber, say E (1), that touches k other chambers and such that

A(E (1))<
2π
√

3
3k2 (1−δ ).
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Then by the isoperimetric inequality we have

P(E (1))≥
√

4πA(E (1)) =

√
4π

A(E (1))
A(E (1))≥ 4

√
12

1√
1−δ

kA(E (1))

and therefore there must be a neighbouring chamber such that the common interface has length ` at least

`≥ P(E (1))
k

≥ 4
√

12
1√

1−δ
A(E (1)). (3.13)

We now remove this interface and merge E (1) with the neighbouring chamber, obtaining a new cluster
Ẽ , and prove that F(Ẽ )≤ F(E ). There are two cases:

• the neighbouring chamber is not the exterior chamber; say it is E (2).

Then the functional F decreases because P(E (0)) remains unchanged, while P(E )− 4
√

12A(E )

decreases by (3.13).

• the neighbouring chamber is E (0), the exterior one.

In this case P(E (0)) can decrease at most by `; therefore

F(Ẽ ) = P(Ẽ )− 4
√

12A(Ẽ )− cP(Ẽ (0))

≤
(
P(E )− `

)
− 4
√

12
(
A(E )−A(E (1))

)
− c
(
P(E (0))− `

)
= F(E )− `+

4
√

12A(E (1))+ c`

< F(E )

if c is sufficiently small, namely if
1− c√
1−δ

> 1.

In conclusion, we proved that if there is a component which does not satisfy the bound (3.11), then we
can merge two components and lower the value of F . Continuing in this way, we reach the case in which
each chamber satisfy the bound (3.11), and F has decreased. Therefore to prove (3.12) for all clusters,
it suffices to prove it for clusters satisfying the area bound (3.11). But this is true by the same proof of
Lemma 3.6.

As a corollary under the assumption that Conjecture 3.4 holds we can remove the assumption on the
lower bound of the areas in Theorem 3.8 (existence of a global shape).

Corollary 3.10. Suppose that Hales inequality (3.6) holds under the assumption that

A(Γ)≥ 2π
√

3
3k2 (1−δ ),

that is suppose Conjecture 3.4 holds. Then there is a limit global shape of minimal clusters EN for the
problem (PN).
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3.4 Basic regularity of the global shape

After having established existence of a global shape, the natural following is to characterize it, or at
least find some of its properties. This is a more delicate issue than it could appear at first. We will
establish a really basic regularity result for E∞, which can be stated as follows: the set of points of zero
Lebesgue density E(0)

∞ is open (see (1.7) for the definition of density). We actually expect a much stronger
regularity:

Conjecture 3.11. The global shape E∞ is a convex set.

For simplicity we consider problem (Pε), that is we consider clusters with areas ≤ ε2 and total area
1. In particular we denote the global shape by

Eε :=
m⋃

i=1

Eε(i)

and call E0 := limε→0 Eε . We also say that Eε shape-converge to E0. We again assume that either
Conjecture 3.4 holds or the lower bound (3.5) is satisfied, in which case the existence of the limit shape
E0 follows the same proof as for the problem (PN).

Lemma 3.12 (Most chambers have diameter O(ε)). There is a constant C2 such that the number of
chambers with diameter greater than C2ε is at most C2/ε:

#{i : diam(Eε(i))≥C2ε} ≤ C2

ε
. (3.14)

In particular their total area is at most C2ε .

Proof. Let Gε be the subcluster of Eε composed by the good chambers with diameter less than C2ε , and
Fε the complementary subcluster whose chambers have diameter at least C2ε . Define Σε = ∂Fε ∩∂Gε

to be the portion of boundary in common between Fε and Gε , and let M be the number of chambers of
Fε .

We first prove that P(Fε) ≥C2Mε . Indeed, since the diameter of each chamber is at least Cε , their
perimeter is at least 2C2ε . Therefore

P(Fε) =
1
2

M

∑
i=0

P(Fε(i))≥C2Mε.

We observe also that, since the chambers have area at most ε2, the total area of Fε is at most Mε2 and
therefore |Gε | ≥ 1−Mε2. Now we consider two cases:

Case I H 1(Σε)≤ 1
2 P(Fε).
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Then

P(Eε) = P(Gε)+P(Fε)−H 1(Σε)

≥ P(Gε)+
1
2

P(Fε)

≥ 1
ε

4
√

12|Gε |+
C2

2
Mε

≥ 1
ε

4
√

12+
(

C2

2
− 4
√

12
)

Mε.

From the upper bound of Lemma 3.7 we conclude.

Case II H 1(Σε)≥ 1
2 P(Fε).

Then we observe that P(Gε) ≥ H 1(Σε) ≥ C2
2 Mε and apply the improved honeycomb inequality

(Lemma 3.6) to obtain

P(Eε)≥ P(Gε)≥
1
ε

4
√

12|Gε |+ cP(Gε)

≥ 1
ε

4
√

12+
(

C2

2
c− 4
√

12
)

Mε

and we conclude again using the upper bound of Lemma 3.7. In particular we can choose C2 = 2 1+ 4√12
c .

Restriction lemma

Given an open set U ⊂ R2 with locally finite perimeter and a cluster Eε = (Eε(0), . . . ,Eε(N)), we define
the notion of “the portion of Eε inside U” in two ways:

• the truncation Eε ∩U is obtained intersecting the chambers with U , that is we consider the cluster
whose chambers are Eε(i)∩U ;

• the restriction E U
ε is obtained considering the subcluster composed by all the chambers which are

entirely contained in U . We set EU
ε =

⋃N
i=1 E U

ε (i).

We now prove in the next lemma that if a family of clusters Eε has a convergent global shape Eε→ E0

and satisfies the diameter bound (3.14), then also the restriction subclusters for any given regular open
set U shape-converge: EU

ε → E0∩U . In the following we will just need this for U equal to a disk, but the
proof works assuming that |Ir(∂U)| ≤Cr where Ir denotes the r-neighbourhood. This is true for instance
if U is a Lipschitz domain.

Lemma 3.13 (Stability of shape convergence under restrictions). Given clusters Eε that shape-converge
to E0 and satisfy the diameter bound (3.14), and given any regular open set U with locally finite perime-
ter, the restriction clusters E U

ε also shape-converge to E0∩U. The same result for the truncation clusters
Eε ∩U is also trivially true.
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Proof. Given a positive r, define

Ur := {x ∈U : dist(x,Uc)> r}

If r >Cε then by Lemma 3.12

|EU
ε | ≥ |Eε ∩Ur|−C2ε ≥ |Eε ∩U |−Cr−C2ε

because |Eε ∩U |= |Eε ∩Ur|+ |Eε ∩ (U \Ur)| ≤ |Eε ∩Ur|+Cr (here we are using the regularity of U , in
particular |U \Ur| ≤Cr). Therefore

|EU
ε ∆(Eε ∩U)|= |(Eε ∩U)\EU

ε |= |Eε ∩U |− |EU
ε | ≤Cr+C2ε

and choosing a family r(ε)→ 0 as ε → 0 and such that r >C2ε (C2 being the constant of Lemma 3.12;
e.g. to stay safe we can choose r(ε) =

√
ε) we obtain that

|EU
ε ∆(E0∩U)| ≤ |EU

ε ∆(Eε ∩U)|+ |(Eε ∩U)∆(E0∩U)|

goes to zero, which means EU
ε → E0∩U .

Corollary 3.14. Shape convergence is stable under restrictions for sequences of minimizing clusters Eε :
the restriction subclusters E U

ε converge in shape to E0∩U.

Proof. Apply Lemma 3.13. The assumption on the diameter bound is satisfied by Lemma 3.12.

We will use the previous result to prove the result of the next section (Theorem 3.17).

Basic regularity of E0

We now prove the basic regularity result for the global shape E0, namely that the measure-theoretic
exterior E(0)

0 is an open set.

Theorem 3.15 (Basic regularity of E0). The limit global shape E0 is equivalent to a closed set: more
precisely, the set E(0)

0 of points of Lebesgue density 0 is an open set.

Proof. We take a point of density 0 (wlog the origin), and prove that for a sufficiently small radius r we
have |Br ∩E0| = 0. Suppose by contradiction this is not true. In particular for any radius s, 0 < s < r,
we have that Eε ∩Bs 6= /0 for sufficiently small ε . By the density assumption for any positive η there is
r0 such that |E0 ∩Bs| ≤ ηs2 for every 0 ≤ s ≤ r0. We construct a competitor Ẽε by cutting the cluster
Eε with a ball Br and replacing the cut part somewhere else with a cluster E hex as in Lemma 3.7. Call
m(r) := |E0∩Br|. Then

P(Ẽε)≤ P(Eε)−P(Eε ,Br)+H 1(Eε ∩∂Br)+
4
√

12
ε

m(r)+C1
√

m(r). (3.15)



57 3.5. ASYMPTOTIC ENERGY DISTRIBUTION IN MINIMAL CLUSTERS

By the improved Hales inequality 3.12 we have

P(Eε)≥
4
√

12
ε

m(r)−H 1(Eε ∩∂Br)+ cP(Eε ∩Br) (3.16)

and moreover since minimizers are connected we know that for sufficiently small ε we have P(Eε ,Br)≥
r. Therefore by (3.15), (3.16) and the minimality of Eε we obtain

0≤ P(Ẽε)−P(Eε)≤ 2H 1(Eε ∩∂Br)−2cr+C1
√

m(r).

By Fubini for a.e. r > 0 we have that

H 1(Eε ∩∂Br)→H 1(E0∩∂Br) as ε → 0

and in particular for a.e. r and sufficiently small ε we have

H 1(Eε ∩∂Br)≤ 2H1(E0∩∂Br) = 2m′(r).

Therefore we obtain
4m′(r)−2cr+C

√
m(r)≥ 0.

By the density assumption we can choose η so that C
√

m(r) ≤ cr for every sufficiently small radius r.
But then

m′(r)≥ 1
2

cr

and thus
m(r)≥ m(0)+

1
4

cr2 =
1
4

cr2

which is a contradiction if we also choose η < 1
4 c. We therefore conclude by contradiction that for some

r > 0 we have |E0∩Br|= 0.

Remark 3.16. The analogous result for the measure-theoretic interior, i.e. that E(1)
0 is an open set,

can not be obtained so easily. Instead of a cut-type argument we would need a filling-type argument:
for instance find the optimal way to fill the empty region between two different honeycombs without
creating too much energy. This is a much harder task.

3.5 Asymptotic energy distribution in minimal clusters

After having extablished the existence of a limit global shape in the space of finite perimeter sets by
forgetting about the interior structure of the clusters, we now see what happens to the interior structure.
To this aim we define the measures νε := εH 1x∂Eε and the goal is to find the (weak) limit of νε as
ε → 0.

The next theorem says that the perimeter density is asymptotically uniform (and equal to the energy
of a hexagonal partition).
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Theorem 3.17 (Equipartition of the limit density). Given a family of minimizers Eε that shape-
converge to E0, the measures defined above satisfy

νε

∗
⇀

4
√

12L 2xE0.

Proof. (i) Upper bound on the total mass. The improved honeycomb inequality of Lemma 3.6 and
the upper bound given by Lemma 3.7 imply

4
√

12≤ ‖νε‖ ≤
4
√

12+O(ε)

where ‖ · ‖ is the total mass. Therefore up to subsequence νε

∗
⇀ ν and ‖ν‖ ≤ liminfε→0 ‖νε‖ =

4
√

12.

(ii) Pointwise lower bound on balls: for any ball B, ν(B̄)≥ 4
√

12|B∩E0|.

Indeed, consider the restrictions E B
ε inside B to obtain a subcluster E B

ε . By Lemma 3.13 EB
ε →

B∩E0 in L1. By the honeycomb inequality (3.2) (suitably rescaled by ε) we obtain that νε(B) ≥
εP(E B

ε )≥ 4
√

12|EB
ε |. Therefore by the weak convergence and by Lemma 3.13

ν(B̄)≥ limsup
ε→0

νε(B̄)≥ limsup
ε→0

4
√

12|EB
ε |=

4
√

12|B∩E0|.

(iii) Pointwise lower bound on open sets: for any open set U , ν(U)≥ 4
√

12|U ∩E0|.

We use a covering argument. Given any open set U we consider the fine cover given by

F := {B̄(x,r) : x ∈U,0 < r < dist(x,∂U)}.

By the Besicovitch-Vitali covering theorem [AFP00, Theorem 2.19] applied to the measure ν +

L 2 there is a subfamily F ′ ⊂F such that

(ν +L 2)
(

U \
⋃

F ′
)
= 0.

Therefore using part (ii)

ν(U) = ν

(
U \

⋃
F ′
)
+ν

(⋃
F ′
)

= ∑
B̄∈F ′

ν(B̄)

≥ ∑
B̄∈F ′

4
√

12|B̄∩E0|

=
4
√

12

∣∣∣∣∣ ⋃
B̄∈F ′

B̄

∣∣∣∣∣
=

4
√

12|U ∩E0|.
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(iv) Pointwise lower bound on Borel sets: for any Borel set A, ν(A)≥ 4
√

12|A∩E0|.

By the regularity of the measures ν and L 2, for any Borel set A we have

ν(A) = inf{ν(U) : U open,U ⊃ A}

≥ inf{ 4
√

12|U ∩E0| : U open,U ⊃ A}

=
4
√

12|A∩E0|.

Open problem (Next-order energy density) Define µε =H 1x∂Eε− 1
ε

4
√

12L 2xEε =
1
ε
(νε−L 2xEε).

Is there a limit limε→0 µε in a suitable space? Is this limit supported on the boundary ∂E0?

3.6 Relation to weighted clusters of Chapter 2

We now briefly discuss what we can say about the asymptotic global shape of weighted clusters, as those
considered in Chapter 2.

Some results of this chapter hold also in the case where we put different weights. Consider for
instance the case of the functional Pε as defined in (2.2), which we recall here for convenience

Pε(E ) =
1
2 ∑

0≤i, j≤N
i6= j

ci j(ε)H
1(∂E (i)∩∂E ( j)),

ci j(ε) =

{
1 if i = 0 or j = 0

2− ε if i, j 6= 0
.

For any ε > 1 (i.e. the weigth between bubbles is lower than the weight with the exterior) the existence of
a global shape for Pε -minimizers when N→ ∞ follows immediately, even without assuming Conjecture
3.4 or the lower bound on the areas (3.5). Indeed we can write

Pε(EN) = (2− ε)P(EN)+(ε−1)P(EN(0))≥ (2− ε)
4
√

12N +
√

N(ε−1)P(EN(0))

and use the same upper bound of Lemma 3.7 to obtain equiboundedness of 1√
N

P(EN(0)).
In the case when ε < 1 we could obtain the existence of a limit global shape assuming Conjecture

3.4, and the values of admissible ε would depend on the constant δ of the conjecture. However we can
not expect this to hold for ε > 0 small. Indeed there is a competitor which creates holes and is better
than the honeycomb as soon as 2−ε >

√
3 (it is sufficient to insert a small triangular hole at each vertex

of the honeycomb; a first variation argument shows that this improves the situation if 2− ε >
√

3). This
is in agreement with the results of Chapter 2, where for really small ε and fixed N we obtain many holes
between the bubbles, which are almost disks.

There is an issue which we mentioned already in Remark 2.3, and which consists in understanding if
we can exchange the order of the limits for ε→ 0 and for N→∞, and similarly in the case ε→ 2, which
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Figure 3.3: For a fixed number N of chambers, as ε → 0 we obtain minimal configurations for the
sticky disk (Theorem 2.2). As ε→ 2 we obtain an optimal partition of the disk (Section 2.4, Remark
(ii)). If we then send N → ∞ we obtain in the first case a hexagonal global shape ([AYFS12],
[DPS17], see also Chapter 4, Section 4.1), while in the second case a circular global shape (trivial).
This indicates that the global shape as N → ∞ for minimizers of the classical perimeter could be
intermediate and neither a hexagon nor a circle.

has been already mentioned in Section 2.4(ii). If we fix N we know that in the two cases the global shape
is respectively a hexagon and a circle. Exchanging the order of the limits would give information on the
limit global shape when ε is close to 0 or 2. We can actually do this in the case ε → 2 and prove that for
any fixed ε close to 2, the limit global shape as N→ ∞ of Pε -minimizing clusters is close to a disk. Set
for convenience α := 2− ε .

Proposition 3.18. For any fixed α suppose E N
α are minimizing N-clusters with chambers of unit area for

P2−α(E ) := αP(E )+(1−α)P(E (0)).

Then 1√
N
E N

α shape-converge (up to subsequence and rigid motions) to a finite perimeter set E∞
α which

satisfies

A(E∞
α )≤C

√
α.

Recall that A(E) is the asymmetry index introduced in (1.11) and measures the distance of E from a
disk. We put for simplicity

EN
α :=

1√
N

N⋃
i=1

E N
α (i).
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Proof. From Hales inequality (3.6) we have

P2−α(E
N)≥ αN 4

√
12+(1−α)P(E N(0)).

Moreover we can build a competitor which satisfies

Pα(E
N)≤ αN 4

√
12+Cα

√
N +(1−α)2

√
π
√

N.

Indeed it suffices to consider an (almost-)optimal partition of a disk of area N. For instance, given a disk
of radius R =

√
N/π , put a honeycomb inside the disk of radius R−10 and the on the annulus BR \BR−10

put any partition such that each chamber has perimeter bounded by a constant C.
Then we conclude that for a minimizer Ēα

N we have

P(EN
α )≤ 2

√
π +Cα

and therefore the isoperimetric deficit satisfies

δ (EN
α )≤Cα.

Since minimizers are connected we conclude by compactness of finite perimeter sets that EN
α converge

in L1 to a finite perimeter set E∞
α . By lower semicontinuity of perimeter

δ (E∞
α )≤C

√
α

and by the quantitative isoperimetric inequality (Theorem (1.5)) we conclude

A(E∞
α )≤C

√
α.
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Chapter 4

Variants

We analyze some variants of the problem of minimizing N-clusters. In the first variant (Section 4.1)
we consider clusters whose chambers are equal regular hexagons, and prove that minimizers are
crystallized, that is they lie in the same honeycomb. By known results [AYFS12], [DPS17] it follows
that in this case the asymptotic global shape is a regular hexagon. In the second variant (Section
4.2) we consider anisotropic clusters with cubic Wulff shape. Thanks to the quantitative anisotropic
isoperimetric inequality [FMP10] we prove that in this case in any dimension the asymptotic global
shape is a cube, with a precise rate of convergence. Then in Section 4.3 we look at square clusters
made of equal-area square chambers and prove a Γ-convergence result for low energy configurations
that gives rise to polycrystals. Finally in Section 4.4 we analyze the sticky-disk model and prove a
compactness result for the orientation of low energy configurations.
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4.1 Hexagonal clusters

We now consider hexagonal clusters, that is N-clusters whose chambers are regular hexagons of side-
length 1. We again look at minimizing clusters and ask what is the global shape as N→∞. The situation
here is very rigid, since any pair of hexagons with non-parallel sides share no boundary. Still, the prob-
lem of characterizing minimizers is not completely obvious, and bears a close resemblance to the sticky
disk problem: maximize the number of tangencies among N disjoint disks of unit radius in the plane. In
fact, the proof of the main result will follow the lines of the proof of the crystallization for the sticky disk
[HR80].

For this section, an admissible hexagonal N-cluster is thus a cluster EN whose chambers are closed
regular hexagons of sidelength 1. A minimal hexagonal N-cluster ĒN is a cluster that minimizes the usual
perimeter P(EN). As always, we could at times omit the subscript N.

First we will show that minimal N-clusters are oriented, that is all hexagons have the same orienta-
tion. Then we will prove that minimal hexagonal N-clusters are crystallized, that is they coincide (up to a
rigid motion) with a portion of the honeycomb (4.2). To this aim, to every hexagonal N-cluster E we as-
sociate a graph G(E ), called bond graph, where the vertices are the centers {xi} of the hexagons, and two
vertices are connected by a straight edge if and only if the corresponding hexagons have nonempty inter-
section. We prove some properties of graphs associated to N-clusters, and then obtain the crystallization
result by adapting the proof by R.C. Heitmann and C. Radin used in [HR80] to prove crystallization for
ground states of the sticky disk. A similar proof has been used by Radin in [Rad81] to prove crystalliza-
tion for a special type of potential called soft disk. At their turn, Heitmann and Radin took inspiration
from a proof by H. Harborth in [Har74], which concerned the maximum number of edges in a subgraph
of the triangular lattice with a fixed number of vertices.

Finally, having proved crystallization of minimal N-clusters, we are left with finding the least perime-
ter configurations among all subsets of fixed cardinality of the infinite honeycomb. We can also restate
this equivalently as the following minimization problem: among all subsets XN of N points of the infinite
triangular lattice A2 (the dual of the hexagonal lattice, see (4.1)), minimize the total energy

E(Xn) =
1
2 ∑

i 6= j
V (|xi− x j|)

where V : [0,∞)→ R∪{∞} is the sticky disk potential:

V (r) =


+∞ if 0≤ r < 1

−1 if r = 1

0 if r > 1

.

In this way the problem of minimizing the total perimeter of crystallized N-clusters becomes completely
equivalent to the problem of minimizing the energy of crystallized configurations of particles. As we will
see, the global shape converges to an hexagon. We can conclude this using two approaches: the first one,
from [DPS17], gives a precise estimate on the rate of convergence of minimizers to a hexagonal global
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shape; the second one, from [AYFS12] gives a weaker estimate for the convergence, but it could possibly
be adapted to more general settings (namely, to study configurations with low energy, not just minimizers,
and moreover with more general potentials instead of the sticky disk). A variant of the second approach,
using the quantitative anisotropic isoperimetric inequality for the cubic anisotropy, will be explained later
in Section 4.2.

Minimal N-clusters are oriented

Given a hexagonal N-cluster E , for every chamber E (i) consider its vertices v1
i , . . . ,v

6
i and the set Vi :=

{vk
i − xi} of the positions of the vertices relative to the center xi of E (i). We say that two hexagons

E (i),E ( j) have the same orientation, or are parallel, if Vi =Vj.

Lemma 4.1 (Minimal N-clusters are oriented). If E = {E (1), . . . ,E (N)} minimizes the perimeter
among all admissible N-clusters, then the hexagons E (i) have the same orientation, i.e. Vi =Vj for every
i, j = 1, . . . ,N.

Proof. We divide the hexagons in equivalence classes with respect to the equivalence relation of having
the same direction, i.e. E (i)∼ E ( j) ⇐⇒ Vi =Vj. The key simple point is that the perimeter is additive
with respect to these equivalence classes, since two of them can intersect only in a finite number of
points.

Suppose now that there are at least two nonempty equivalence classes. Then move all the classes far
away from each other (which preserves the perimeter by the above observation), and rotate them all in
the same direction, and then glue back two of them along the sides of two hexagons, thus decreasing the
perimeter. This shows that the original configuration was not minimal, and this shows that in a minimal
cluster there can be only one equivalence class.

The next aim is to prove that in minimal N-clusters crystallization occurs, that is all chambers are
part of the same hexagonal honeycomb. Let A2 ⊂ R2 be the triangular lattice of sidelength 1:

A2 :=
{

m
(

1
0

)
+n
(

1/2√
3/2

)
: m,n ∈ Z

}
. (4.1)

Given x ∈
√

3A2 define its Voronoi cell V (x) as the set of points whose distance from x is less or equal
than the distance from any other point of

√
3A2:

V (x) :=
{

y ∈ R2 : |x− y| ≤ |y− z| ∀z ∈
√

3A2

}
.

It is easy to check that
H2 := {V (x) : x ∈

√
3A2} (4.2)

is a family of closed regular hexagons with unit sidelength, which we will refer to as the honeycomb in
this Section. Notice the difference with the honeycomb in the other chapters, whose hexagons have unit
area.
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Figure 4.1: An oriented cluster and its bond graph.

Bond graph

We fix from now on a cluster EN of hexagons having the same orientation, and we associate to every
chamber EN(i) its center x(N)

i ∈ R2. We construct a planar graph G = G(EN) associated to EN , called
bond graph, in this way: the vertices of the graph are the centers x(N)

i of the hexagons, and two distinct
vertices x(N)

i ,x(N)
j are connected with a straight edge if and only if the two hexagons EN(i),EN( j) have

nonempty intersection (recall that interiors are disjoint by hypothesis, but boundaries can overlap since
we are considering closed hexagons). Call Edge(G) the set of all undirected edges of G (also called
bonds), that is of all unordered pairs of vertices that are connected by an edge. Call two chambers
bonded if their centers are connected by a bond. The edges identify a finite number of inner faces, that
is bounded regions surrounded by edges, and one exterior unbounded face.

Observe that, if we call Pi j = H 1(EN(i)∩EN( j)) the common perimeter between chambers EN(i)
and EN( j) (which is always ≤ 1), then we can rewrite the total perimeter as

P(EN) = 6N−∑
i< j

Pi j ≥ 6N− ∑
i< j

Pi j 6=0

1 = 6N−#Edge(G).

Therefore if we want to minimize the perimeter we may try to:

(i) maximize the number of edges in the graph G;

(ii) maximize the common perimeter Pi j between each pair of bonded cells.

As we will show it turns out that doing both things simultaneously is possible (for example with the
spiral configurations, see Figure 4.2), and this will imply that every pair of bonded chambers must share
an entire side; this in turn implies crystallization provided that the graph is connected, which can be
trivially seen to be true.

More precisely, denoting by B(N) the maximum value of #Edge(G) among all graphs G(EN), we
will show that

B(N) = b3N−
√

12N−3c (4.3)

following the proof by Heitmann and Radin [HR80], and that the maximum is attained by the spiral
(although this is not the only minimizer, see Remark 4.5).
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Maximum number of edges in the bond graph

We now first derive some properties that the bond graph G associated to an oriented cluster must satisfy
in order to maximize the number of bonds. Then we will prove the bound (4.3).

Lemma 4.2 (Properties of G(EN)). Let G(EN) be the graph associated to an oriented N-cluster with
the maximum number of bonds, N ≥ 3. Then:

• G is connected;

• the angle between every pair of edges sharing one vertex is at least π/3;

• every vertex has degree between 2 and 6;

• every edge belongs to at least one inner face.

Proof. If G had at least two connected components, we could translate on of them until it touches another
one, thus increasing the number of bonds, which contradicts the fact that G had the maximum number of
bonds.

The fact that the minimum angle between two consecutive edges is at least π/3 is self-evident from
a picture.

If a vertex has degree zero then the graph is disconnected. If a vertex has degree one, we could
slide the corresponding hexagon along the side of its neighbouring hexagon until it touches another one,
contradicting maximality of bonds. If we can make a whole 2π angle without touching another hexagon
then the hexagon must lie in a connected component of size 2, and the graph must be disconnected,
contradiction.

From the bound on the angle between consecutive edges it follows that every vertex has at most six
edges.

If there were an edge belonging to no inner face, by removing it we would disconnect the graph,
obtaining two components and lowering by one the total number of edges. Now we can always put
together the two components by creating at least two new edges, contradicting the minimality of the
original graph.

Proposition 4.3. Let G be the graph associated to an oriented N-cluster. Then the maximum number
B(N) of edges that G can have satisfies

B(N)≤ b3N−
√

12N−3c.

Proof. We prove the theorem by induction on the number N of vertices of G. The cases N = 1,2 are
true by inspection. We thus consider N ≥ 3. Take a graph of order N realizing the maximum number of
edges. Let us define the following quantities:

• F is the total number of faces excluding the external one;

• Fj is the number of faces having exactly j sides; thus F = ∑ j Fj;



CHAPTER 4. VARIANTS 68

• a is the number of vertices on the boundary of the graph, i.e. the vertices touching the external
face;

• k j is the number of vertices in the boundary with degree j; thus a = ∑ j k j.

Then:

(i) From the lower bound on the angle between consecutive edges we obtain that, for a boundary
vertex with j edges, the exterior angle is π−∑αint ≤ π− ( j−1)π/3.

Summing among all boundary vertices, the exterior angles α
j

ext add up to 2π , and so:

2π = ∑
j

α
j

ext ≤∑
j

k j

(
π− ( j−1)

π

3

)
= πa−∑

j
k j( j−1)

π

3

which can be rewritten as:
3a−6≥∑

j
k j( j−1). (4.4)

(ii) The number of edges B(N) can be also obtained by summing over the faces the number of edges
per face:

∑
j

jFj = 2B(N)−a

since every boundary edge is counted once and the others are counted twice. Now we use the fact
that every face has at least three sides and Euler’s identity F +V −E = 1 to get

∑
j

jFj ≥ 3F = 3(B(N)−N +1)

and combining this with the previous identity we obtain

N−a≥ B(N)−2N +3. (4.5)

(iii) We now remove the boundary vertices of G and all the edges connected to them, obtaining a
graph G′ of order N− a. This is equivalent to remove the boundary hexagons of the original N-
cluster and to consider the bond graph G′ of the new cluster. If a = N, then by (4.5) we obtain
B(N)≤ 2N−3≤ 3N−

√
12N−3, and we are done. If instead a < N, by definition G′ has at most

B(N−a) edges. The total number of removed edges to obtain G′ from G is at most ∑ j k j( j−1).
Therefore if a < N

B(N−a)≥ B(N)−∑
j

k j( j−1)

and from equation (4.4) we obtain the key relation

B(N)≤ B(N−a)+3a−6. (4.6)
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We are now ready to prove the induction step. Suppose that the theorem is true for every m= 1, . . . ,N−1.
From inequality (4.6), induction hypothesis and equation (4.5) we get

B(N)≤ 3(N−a)−
√

12(N−a)−3+3a−6

= (3N−6)−
√

12(N−a)−3

≤ (3N−6)−
√

12(B(N)−2N +3)−3

from which it follows √
12B(N)−36N +33≤ (3N−6)−B(N)

and squaring both sides
B(N)2−6NB(N)+(9N2−12N +3)≥ 0.

The left term is a second degree polynomial in B(N). The solutions of the associated equation are

6N±
√

36N2−4(9N2−12N +3)
2

= 3N±
√

12N−3,

but since B(N)≤ 3N (because every vertex has degree at most 6) and since B(N) is an integer we obtain

B(N)≤ b3N−
√

12N−3c.

The next lemma gives the exact number of edges in a special spiral configuration, which is built
nestling hexagons around a spiraling path and which we denote by SpN (see Figure 4.2). This construc-
tion can essentially be found in [HR80], but we reproduce it here adding the details of the computation.
The same configuration is called daisy in [DPS17].

Lemma 4.4 (Spiral configurations). The upper bound b3N−
√

12N−3c is attained by the spiral con-
figurations SpN , thus giving

B(N) = b3N−
√

12N−3c.

Proof. We follow closely the construction in [HR80], adding some details. Consider three fixed integers
s≥ 0, 0≤ k ≤ 5, and 0≤ j ≤ s. Consider a big ”hexagon of points”, with s+1 points per side, and then
place an incomplete layer of points by filling k of the six sides and by placing a further j points. We refer
to figure 4.2 for the construction, which is easier to visualize than to explain. Then it is easy to check that
the total number of points is N = (3s2 + 3s+ 1)+ (s+ 1)k+ j, and we can obtain any positive integer
with this construction. We claim that the total number H(n) of bonds in this spiraling configuration is
exactly b3N−

√
12N−3c.

To enumerate the bonds, we sum the degree of each vertex and divide by two:

H(N) =
1
2 ∑

v
ev =

1
2 ∑

v
(6−mv) = 3N− 1

2 ∑
v

mv
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Figure 4.2: A spiral configuration with s = 2, k = 2, j = 1. Both the vertices and their Voronoi cells
are pictured. In general s+1 is the ”sidelength” (i.e. the number of cells, or vertices, per side) of the
big hexagon (in red); 0 ≤ k ≤ 5 is the number of entirely filled sides on the last layer (in blue); j is
the number of remaining vertices (in green).

where v is a vertex, ev its degree and mv = 6− ev the number of missing edges (to reach a total of 6) of
v. Now, the only missing edges occur on the boundary.

If j = k = 0 then it is easy to see that for every of the three possible directions for the edges there are
2(2s+1) missing edges, giving a total of 6(2s+1) missing edges, so that

H(N) = 9s2 +3s.

If instead j 6= 0 or k 6= 0 then for each of the three possible directions for the edges, the missing edges
with that direction are the sum of: 2(2s+1) due to the hexagon of side s+1 (as before); 2(k+1) due to
the last layer. In total there are 12s+6+2(k+1) missing edges. Therefore

H(N) = 3N− 1
2 ∑

v
mv = 3(3s2 +3s+1)− 1

2
(12s+6+2k+2)

= 9s2 +3s+(3s+2)k+3 j−1.

In summary

H(n) =

{
9s2 +3s if j = k = 0

9s2 +3s+(3s+2)k+3 j−1 if j 6= 0 or k 6= 0.

The statement of the lemma can be rewritten as

H(N)−3N = b−
√

12N−3c=−d
√

12N−3e

which is equivalent to
(3N−H(N)−1)2 < 12N−3≤ (3N−H(N))2.
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The case j = k = 0 (a complete hexagon of side s+1) is simple since in this case N = 3s2 +3s+1 and
H(N) = 9s2 +3s, and thus

√
12N−3 =

√
36s2 +36s+9 = 6s+3 = 3N−H(N).

If instead j+ k > 0 we have

3N−H(N) = 3(3s2 +3s+1+(s+1)k+ j)− (9s2 +3s+(3s+2)k+3 j−1)

= 6s+ k+4.
(4.7)

and
12n−3 = (6s+3)2 +12

(
(s+1)k+ j

)
=
(
(6s+3)+ k

)2− k2 +6k+12 j. (4.8)

Putting together the last two estimates the thesis becomes then

(6s+ k+3)2 < (6s+ k+3)2− k2 +6k+12 j ≤ (6s+ k+4)2.

As for the first inequality we have

k2−6k−12 j = k(k−6)−12 j < 0

since k ≤ 5 and j ≥ 0, and they can not be both zero.
As for the second inequality, it is equivalent to

k2−4k+7+12(s− j)≥ 0

which is true since 12(s− j)≥ 0 and k2−4k+7 = (k−2)2 +3 > 0.

Remark 4.5. While for j = k = 0 the big hexagon given by the spiral configuration is the uninque
minimizer, in general the spiral configurations are not the unique minimizers. Instead, for some values
of N there is a high non-uniqueness, see [Sch13] for a construction of many minimizers, which differ
among them by≈N3/4 vertices, and also [DLF17] for a characterization of those N which admit a unique
minimizer.

Crystallization of minimal N-clusters

We now collect the results proven until now to obtain the crystallization of minimal N-clusters.

Theorem 4.6. Every minimal hexagonal N-cluster is crystallized, i.e. it coincides up to rotations and
translations with a subfamily of N cells of the hexagonal infinite honeycomb (4.2).

Proof. From Lemma 4.1 we know that a minimal cluster must be oriented. From Lemmas 4.3 and
4.4 we know that the maximum number of bonds is B(N) = b3N−

√
12N−3c, and that there exists a
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Figure 4.3: All depicted configurations are minimal for N = 6, showing non-uniqueness in minimiz-
ers.

configuration (the spiral) that not only realizes this maximum but also maximizes the common perimeter
between every pair of bonded cells. This implies that for any N-cluster EN

P(EN) = 6N−∑
i< j

Pi j ≥ 6N− ∑
i< j

Pi j 6=0

1 = 6N−#Edge(G)

≥ 6N−B(N) = P(SpN)≥minP.

In particular this is true when EN is any minimal n-cluster, for which all inequalities become equalities.
This implies that every two touching hexagons must share an entire side, and that the number of these
bonds must be B(n). The former, together with the connectedness of G, implies that the cluster is
crystallized.

Global shape of minimal N-clusters

After obtaining crystallization, we can prove that the asymptotic global shape when N→∞ is hexagonal.
We mention two approaches.

The first approach comes from a work by Davoli, Piovano and Stefanelli [DPS17], where they prove
an edge-isoperimetric inequality in the triangular lattice. Given an N-point subset CN of the triangular
lattice A2, its edge boundary Θ is the set

Θ(CN) := {(xi,x j) : |xi− x j|= 1, xi ∈CN , x j ∈A2\CN},

and the edge perimeter is its cardinality |Θ(CN)|. Call

θN := min{Θ(CN)}

where the minimum is taken among all possible N-point subsets of A2. It is easy to see that, given a
crystallized configuration XN of N particles, and considered the hexagonal N-cluster EN = E (XN) given
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by the Voronoi hexagons of each particle, the perimeter of the cluster and the edge perimeter of XN are
closely related, namely

P(EN) = 3N +
1
2
|ΘN |.

Therefore minimizing the edge perimeter of XN is the same as minimizing the perimeter of E (XN), and
minimal configurations are in correspondence. Associate to any configuration XN its empirical measure

µXN :=
1
N

N

∑
i=1

δxi/
√

N .

We now invoke the following theorem to obtain the convergence to the hexagonal shape.

Theorem 4.7 ([DPS17, Theorem 1.2]). For every sequence of minimizers MN in A2 there exists a se-
quence of suitable translations M′N such that

µM′N
∗
⇀

2√
3

χH

weakly* in the sense of measures, where χH is the characteristic function of the regular hexagon H
defined as the convex hull of the vectors{

± 1√
3

e1,±
1√
3

e2,±
1√
3
(e2− e1)

}
.

Furthermore, the following assertions hold true:

|MN\HrMN
| ≤ KN3/4 +o(N3/4) (4.9)∥∥∥µMN −µHrMN

∥∥∥≤ KN−1/4 +o(N−1/4) (4.10)∥∥∥∥µM′N −
2√
3

χH

∥∥∥∥
F
≤ KN−1/4 +o(N−1/4), (4.11)

where HrMN
is the maximal spiral configuration that can be fit inside MN , K := 2

31/4 and ‖ · ‖F is the flat
norm (1.1).

The second approach involves the work by Au Yeung, Friesecke and Schmidt [AYFS12] where they
prove that the limiting global shape as N → ∞ is a regular hexagon in the following sense: associate
again to a minimal N-cluster EN its empirical measure

µN =
1
n

N

∑
i=1

δ
x(N)

i /
√

N

where x(N)
i are the centers of the hexagons EN(i). Then up to rigid motions, µN

∗
⇀ ρχHL 2, where H is

a regular hexagon of side 1, ρ = 2/3
√

3 and L 2 is the Lebesgue measure on R2. In particular this is a
consequence of the following Γ-convergence result. Define the functionals

IN(µ) =


ˆ
R4\diag

NV (
√

N|x− y|)dµ⊗dµ if µ = 1
N ∑

N
i=1 δxi/

√
N

for some distinct xi ∈A2;
+∞ otherwise
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where V is the sticky-disk potential.

Theorem 4.8 ([AYFS12, Theorem 5.1]). The sequence of functionals IN Γ-converges, with respect to the
weak* convergence of probability measures, to the limit functional

I∞(µ) :=


ˆ

∂ ∗E
Γ(νE)dH 1 if µ = 2√

3
1E for some set

E of finite perimeter;
+∞ otherwise

where Γ is the hexagonal anisotropy explicitly given by

Γ(ν) = 2
(

ν2−
ν1√

3

)
for ν =

(
−sinφ

cosφ

)
,φ ∈ [0, 2π

6 ]

etended 2π

6 -periodically.

4.2 Anisotropic clusters

By using the anisotropic perimeter PK defined in (1.9) we can define an anisotropic version of the perime-
ter of an N-cluster E simply by

PK(E ) :=
1
2

N

∑
i=0

PK(E (i)). (4.12)

The anisotropic global shape problem is: given a convex set K, what is the global shape of N-clusters
minimizing PK as N→∞? While for general convex K the problem has at least the same difficulty as the
isotropic one, we expect some simplifications in the case when K tiles the space, that is when there is a
partition of Rn (up to a L n-negligible set) by translated copies of K. This happens for instance for the
cube in any dimension, and for the hexagon in the planar case.

Cubic anisotropy

We will see how the quantitative anisotropic isoperimetric inequality can be used to conclude that, when
K is a cube in Rn, then the global shape is itself a cube, with an estimate for the rate of convergence to
the cube. The same approach, however, does not work when K is a hexagon in the plane, essentially due
to the following key fact: while it is possible to partition a cube in many equal cubes, it is not possible
to partition a hexagon in many equal hexagons. However, if we impose a priori that all cells are exactly
hexagons, then the method works (see Section 4.1).

As a corollary we will recover an N3/4-law for the square lattice, originally proved by Schmidt in the
planar case for the triangular lattice [Sch13], and obtain its analogue in higer dimension: among subsets
S with cardinality N of the square lattice Z2 (or Zn), minimizers of the edge-perimeter Θ(S) differ from a
square (cube) at most by N3/4 points (N1− 1

2n ). Here the edge-perimeter is the total number of unit-length
segments connecting a point in S with a point in Zn \S. Actually Schmidt proves more in the planar case,
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namely the sharpness of the estimate, constructing a sequence of planar minimizers with Nk points, for a
certain sequence with Nk→ ∞, which really differ from a hexagon by ≈ N3/4

k points.
Let Q = [−1,1]n ⊂Rn, and consider the anisotropic perimeter PQ as defined above. Equivalently, we

weight the normal with the `1-norm:

PQ(E) =
ˆ

∂ ∗E
‖νE(x)‖1dH n−1(x).

Let also Q0 = [0,1]n in Rn, so that PQ(Q0) = 2n. Given an N-cluster EN , define its anisotropic perimeter
by (4.12) and define its global shape as EN :=

⋃N
i=1 E (i).

Theorem 4.9 (Cubic global shape with rate of convergence). As N → ∞, the global shape of PQ-
minimizing N-clusters ĒN converge to a cube. More precisely, for every minimizer ĒN with unit chambers’
areas there is a translation vector τ such that

1
N
|EN∆(τ +

√
NQ0)| ≤C(n)

1

N
1

2n
.

Proof. (i) Lower bound: for any competitor EN , by the anisotropic isoperimetric inequality applied
to the chambers E (1), . . . ,E (N) (but not E (0)), we have that

PQ(EN)≥
1
2
(NPQ(Q0)+PQ(EN)) .

(ii) Upper bound: we build a competitor ẼN with reasonably low energy. Write N = mn + k where
m := bN1/nc, 0 ≤ k ≤ (m+ 1)n−mn− 1. Then the competitor is made of a big cube of side m
partitioned in unit cubes, plus an additional layer of k cubes, reasonably laid. We will take for
granted that this competitor can be chosen to have perimeter at most equal to that of a big cube of
sidelength m+1, that is

PQ(ẼN)≤
1
2
(
NPQ(Q0)+2n(m+1)n−1) .

(iii) Isoperimetric deficit of ĒN : putting together (i) and (ii) we obtain that for a minimizer Ē

PQ(ĒN)≤ 2n(m+1)n−1

and therefore we can estimate the isoperimetric deficit of ĒN

δQ(ĒN) =
PQ(ĒN)

N
n−1

n P(Q0)
−1

≤ 2n(m+1)n−1

N
n−1

n 2n
−1

≤

(
N

1
n +1

N
1
n

)n−1

−1

≤ (2n−1−1)
1

N
1
n
.

because (1+ x)n−1 ≤ 1+(2n−1−1)x for 0≤ x≤ 1.
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(iv) Conclusion: by the quantitative anisotropic isoperimetric inequality [FMP10] we obtain that there
is τ ∈ Rn such that

|ĒN∆(τ +N1/nQ0)|
|N1/nQ0|

≤C(n)
√

δP(Ē0)≤C(n)
√

2n−1−1
1

N1/2n .

N3/4-law for edge-perimeter minimizers in Z2

We now obtain as a Corollary the upper N1− 1
2n -law for edge-perimeter minimizers. Given a subset S with

cardinality N of the lattice Zn, associate to each point x ∈ S its Voronoi cell V (x) := {y ∈ Rn : |y− x| ≤
|y− z|∀z ∈ Zn}, which is a unit cube. Define moreover the characteristic function fS := ∑x∈S χV (x).

Corollary 4.10 (Upper N1− 1
2n -law for edge-perimeter minimizers in Zn). Given a subset S with car-

dinality N of Zn, minimizers for the edge-perimeter differ from a big cube of sidelength N1/n by at most
≈ N1− 1

2n points, that is a translation of fS satisfies ‖ fS−χN1/nQ0
‖1 ≤CN1− 1

2n .

Proof. Associate to each point x∈ S its Voronoi cell and apply the previous theorem to the union of these
cells, noting that the edge-perimeter of S equals exactly the anisotropic perimeter of the union of the cells.
Then a suitable translation of a cube of sidelength N1/n verifies the estimate of Theorem 4.9.

Remark 4.11. The previous Corollary actually sets an upper bound for the discrepancy from a cube; it
remains to prove whether it is sharp, that is to construct a sequence of minimizers SN j , with N j → ∞,

that really differ from a cube by ≈ N
1− 1

2n
j points. As we will show next, this is possible in the planar

case. In the case of Z3, this is false: it has been proved in [Mai+18] that the same N3/4 law holds for
the dicrepancy in the cubic shape for a minimizer (and not N5/6). This is quite surprising since the same
behaviour is witnessed in two and three dimensions. However, it does not seem the case that the same
N3/4 law continues to hold in general dimension n: it is reasonable to expect at least a discrepancy of
the order of the surface area, that is N

n−1
n , which for n ≥ 5 is worse than N3/4. Anyway, the case n ≥ 4

remains open.

In order to prove the sharpness in the planar case we cite the following result :

Theorem 4.12 ([HH76]). Among planar unions of N unit squares with sides parallel to the axes and
with centers lying in Z2, the minimal perimeter is 2d2

√
Ne.

Associate as above to any subset S of Z2 the union of its Voronoi cells, and the function fS =

∑x∈S χV (x).

Lemma 4.13 (Lower N3/4-law for edge-perimeter minimizers in Z2). There exists a sequence N j→∞

and minimizers SN j of the edge-perimeter that differ from a square by at least≈N3/4
j points, that is ‖ fS−√

NQ0‖& N3/4
j for every translation of fS. In particular, we can choose N j = j4 +2 j3 +2 j2 +2 j+1.
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Proof. Observe that N j = ( j2 + j+ 1)2 + 1 = ( j2 + 2 j+ 2)( j2 + 1). We claim that a rectangle of sides
a j = j2 +2 j+2 and b j = j2 +1 is a minimizer among configurations of cardinality N j = a jb j. Indeed,
N j is of the form m2

j +1, m j = j2 + j+1, and therefore

m2
j < N j <

(
m j +

1
2

)2

2m j < 2
√

N j < 2m j +1

and the minimal cardinality given by Theorem 4.12 is 2d2
√

N je= 4m j +2 = 4 j2 +4 j+6, which coin-
cides with the perimeter of the rectangle 2(a j +b j).

In particular, the two sides differ by 2 j+1≈N1/4, and thus the area of the discrepancy from a square
is ≈ N1/2N1/4 ≈ N3/4.

By Corollary 4.10 and Lemma 4.13 we obtain:

Corollary 4.14 (Sharp N3/4-law for edge-perimeter minimizers in Z2). Minimizers for the edge
perimeter in Z2 differ from a square by at most ≈ N3/4 points, and there is a sequence N j and mini-
mizers SN j that really differ by ≈ N3/4

j points.

Remark 4.15. The same N3/4 law could be proved for the triangular lattice in a similar way, but some
care has to be taken in considering to which set the anisotropic isoperimetric inequality has to be applied.
Indeed, rather than to the union of the Voronoi cells, it has to be applied to a slightly modified polygon
that eliminates the oscillations at a microscopic level. Referring to [AYFS12] the right sets to take into
consideration are the sets called H ′N .

4.3 Square clusters: Γ-convergence to a polycrystal

We now describe a model for polycrystals that arises from perimeter-minimizing square clusters. For
every natural number N we consider all families QN = (QN

1 , . . . ,Q
N
N) composed by N squares in R2 with

area 1
N and with pairwise disjoint interiors. We consider the perimeter of their union

F(QN) := P

(
N⋃

i=1

QN
i

)

and look for sequences of configurations QN minimizing F . Observe that F as defined above does
not coincide with the perimeter of QN seen as a cluster, but it is strictly related: P(QN) =

1
2(4
√

N +

F(QN)) and thus minimizing one or the other functional is the same. Actually we will be interested in
configurations with bounded energy, that is sequences (QN)N such that

sup
N∈N

F(QN)< ∞.
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We define the space of orientations as

K := {(x,y) ∈ R2 : x2 + y2 = 1,x≥ 0∧ y≥ 0},

that is, identifying R2 wth C, K is the set of all unit vectors eiθ with θ ∈ [0, π

2 ], and we define also

K̃ := K \ e2

with e2 = (0,1) = ei π

2 . Define now a polycrystal to be a Caccioppoli partition of R2 together with an
orientation for each set in the partition, that is a collection EI = (Ei, ti)i∈I with I at most countable such
that each Ei is a finite perimeter set, ∑i∈I P(Ei)< ∞ and where ti ∈ K̃ and where moreover ∑i∈I |Ei|= 1.
Define the polycrystal perimeter as

P(EI) = ∑
i∈I

Pti(Ei)

where Pti is the perimeter having as Wulff shape a unit square with sides either parallel or perpendicular
to ti. In the notation of (1.9) this coincides with PRti Q where Q = {x ∈ R2 : ‖x‖1 ≤ 1} and Rti is the
rotation that sends (1,0) to ti.

Then we have the following result:

Theorem 4.16 (Γ-convergence, informal statement). The functionals F(QN) Γ-converge to the func-
tional P(EI) defined on polycrystals. Moreover compactness up to rearrangements of components holds
for sequences with bounded energy.

Before giving the precise statement we translate the problem into the space of SBV functions, and in
particular in the space of piecewise constant functions on Caccioppoli partitions. Let

X := {u ∈ SBV (R2,K∪{0}) : |suppu|= 1},

and
X̃ := {u ∈ SBV (R2, K̃∪{0}) : |suppu|= 1}.

For every function u ∈ X we can define ũ ∈ X̃ by replacing e2 with e1 if it appears in the image of u.
Define also

X̃N :=

{
u ∈ X̃ : u =

N

∑
i=1

ti1Q(ti)

}
where ti ∈ K̃ and Q(ti) is a square with area 1

N and with sides either parallel or perpendicular to ti. In
particular we have that X̃N ⊂ X̃ ⊂ X ⊂ SBV (R2,K∪{0}). Observe that we can associate to any u ∈ X̃N a
family of squares QN in the obvious way and conversely to any family QN we can associate a function
u ∈ X̃N . Define the functionals FN : X̃N → [0,+∞] by

FN(u) :=

{
P
(⋃N

i=1 QN(ti)
)
= F(Q) if u ∈ X̃N and u = ∑

N
i=1 ti1Q(ti)

+∞ otherwise
.
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We observe that these functionals can be rewritten as

FN(u) = H 1(Ju) =

ˆ
Ju

|νu|dH 1 =

ˆ
Ju

φ(u+,u−,νu)dH 1

where

φ(i, j, p) =

{
ψ(i, p)+ψ( j,−p) if i 6= j

0 if i = j

where ψ(i, p) = |i|
(
|i · p|+

√
1−|i · p|2

)
for p ∈ S1 and extended by 1-homogeneity. For every i ∈ S1

ψ(i, p) coincides with the “square norm in direction p”, while for i = 0 it is constantly zero. In this way
ψ is convex and 1-homogeneous in the variable p and therefore is jointly convex (recall (1.15)). We are
therefore led to define the functional F : X → [0,+∞] as

F(u) =
ˆ

Ju

φ(u+,u−,νu)dH 1.

We also define

φ̃(i, j, p) =

{
φ(i, j, p) if {i, j} 6= {e1,e2}
0 if {i, j}= {e1,e2}

and we define the corresponding functional as F̃ : X → [0,∞]

F̃(u) :=
ˆ

Ju

φ̃(u+,u−,νu)dH 1.

We recall the following lower semicontinuity result.

Theorem 4.17 ([AFP00, Theorem 5.22]). Let K ⊂Rm compact and φ : K×K×Rn→ [0,∞] be a jointly
convex function satisfying

φ(i, j, p)≥ c|p| ∀i, j ∈ K, i 6= j, p ∈ Rn

for some c > 0. Let (uh) ⊂ SBV (Ω)m be a sequence converging in L1(Ω)m to u, such that (|∇uh|) is
equiintegrable and, for any h ∈ N, uh(x) ∈ K for L n-a.e. x ∈ Ω. Then u ∈ SBV (Ω)m, u(x) ∈ K for
L n-a.e. x ∈Ω and ˆ

Ju

φ(u+,u−,νu)dH n−1 ≤ liminf
h→∞

ˆ
Juh

φ(u+h ,u
−
h ,νuh)dH n−1.

We now show the following result:

Theorem 4.18 (Γ-convergence). The functionals FN Γ-converge to the functional F̃ in the space X, with
respect to the L1 convergence of the functions.

Proof. Γ− liminf: let u ∈ X and uN ∈ X̃N such that uN → u in L1(R2,R2). Then by Theorem 4.17 we
obtain

F̃(u)≤ F(u) =
ˆ

Ju

φ(u+,u−,νu)dH 1 ≤ liminf
N→∞

ˆ
JuN

φ(u+N ,u
−
N ,νuN )dH 1 = FN(uN).
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Γ− limsup: given u ∈ X we observe that F̃(u) = F(ũ) and therefore we can suppose u ∈ X̃ and work
with F . We suppose F(u)< ∞, otherwise there is nothing to prove. Since H 1(Ju)≤ F(u) we also have
H 1(Ju)< ∞. By the density of polygonal-wise constant functions [BCG17] we can also suppose that u
is polygonal-wise constant. We are therefore left to prove the following: for each u ∈ X̃ polygonal-wise
constant and with |suppu|= 1 there is a sequence uN ∈ X̃N such that uN → u in L1(R2,R2) and such that
FN(uN)→ F(u).

To this aim, consider the lattice Qν obtained rotating Z×Z in direction ν , and let Qν
N be the family

of squares with side 1/
√

N obtainable with vertices in 1√
N

Qν . If u = ∑
k
i=1 tiχPi with Pi polygons then we

define
P′i =

⋃
{Q : Q ∈Qti

Nentirely contained in Pi}

and

vN =
k

∑
i=1

tiχP′i .

Observe that in general the support of vN has measure strictly less then 1. However it is easy to show that

0≤ 1−|suppvN |.
1√
N

H 1(∂P).

We can thus add some additional squares far away from
⋃

Pi to reach the right number of squares. By
the previous estimate we can put them in a big square configuration with side of order ≈ N−1/4, with
arbitrary orientation, obtaining a function uN ∈ X̃N . In this way

|F(uN)−F(vN)|.
1

N1/4

and
‖uN− vN‖L1 .

1√
N
.

It can now be shown that the sequence vN (and thus uN) has the required properties.

Of course the previous Γ-convergence result would be useless without a compactness result ensuring
convergence in L1 of sequences with bounded energy. Observe that this convergence could be false: even
a sequence of minimizers could go to infinity exploiting the translation invariance of the problem. But
even if we allow ourselves to translate the configurations, for sequences with bounded energy there could
be many componenets going to infinity in different ways. We therefore state the compactness result with
a confinement assumptions on the supports:

Proposition 4.19 (Compactness of bounded sequences). Let (uN) be a sequence such that supN FN(uN)<

∞. Suppose that suppuN ⊂ B(0,R) for some R > 0 and every N ∈ N. Then there exists a subsequence,
always denoted by uN , and a piecewise constant function u ∈ X such that uN → u in L1 as N→ ∞.

In order to prove the previous proposition we recall two theorems from [AFP00]. Theorem 4.8,
adapted to our case of piecewise constant functions with |∇uh| ≡ 0 and θ ≡ 1, can be stated in the
following way:
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Theorem 4.20 (Adaptation of [AFP00, Theorem 4.8]). Let Ω⊂ R2 be a bounded open set, and let (uh)

be piecewise constant functions such that

sup
h

ˆ
Juh

|u+h −u−h |dH 1 < ∞

and such that suph ‖uh‖∞ < ∞. Then there exists a subsequence (uh(k)) weakly* converging in BV (Ω) to
u ∈ SBV (Ω). In particular uh→ u in L1(Ω).

In our case the assumption of the theorem becomes simply

sup
h

H 1(Juh)< ∞

which we know to be true for sequences with bounded energy. Theorem 4.25 instead deals directly with
piecewise constant functions.

Theorem 4.21 ([AFP00, Theorem 4.25]). Let Ω be a bounded open set with Lipschitz boundary. Let
(uh)⊂ SBV (Ω)m be a sequence of piecewise constant functions such that (‖uh‖∞+H 1(Suh)) is bounded.
Then there exists a subsequence (uh(k)) converging in measure to a piecewise constant function u.

Proof of Proposition 4.19. From the first theorem above, there is a subsequence converging to u∈ SBV (Ω)

in L1(Ω). From the second theorem above, the fact that convergence in L1 implies convergence in mea-
sure and the uniqueness of the limit in measure, we obtain also that u is piecewise constant, as de-
sired.

We note that the limit function u belongs to X and not X̃ , that is in general it takes values in K and
not K̃.

We now show how the assumption on the supports, namely that suppuN ⊂ B(0,R) for some R > 0,
is not so restrictive.

Lemma 4.22. Given a sequence (uN) with bounded energy, there exist a modified sequence (vN) that
is obtained from uN just by translating the components of the support and such that the compactness
property suppvN ⊂ B(0,R) holds for a sufficiently large R > 0. Moreover, for minimizers the same
conclusion is true up to translation of the whole function.

Proof. The sum of the diameters of the components is bounded by F(uN), which are equibounded. Since
the perimeter is additive with respect to the different components, and we can translate each component
by preserving the total perimeter, the conclusion follows. Observe also that minimizers are easily shown
to be connected.

We also observe that there is a trivial minimizer for the polycrystal perimeter.

Proposition 4.23. The minimum of the functional F is attained by a constant function u supported on a
square of area 1, where the value assumed by u is parallel to a side of the square.
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Proof. This follows from the anisotropic isoperimeteric inequality (1.10) and the subadditivity of the
square root (used to deal with the case of many components).

For this reason a more appropriate setting for studying polycrystals is the one with a constrained
boundary, but we won’t treat this case here.

4.4 Limit orientation for the sticky disk

The aim of this Section is to prove that we can define a notion of “limit orientation” for (suitably rescaled)
low energy configurations XN = {x1, . . .xN} that interact by means of the sticky disk potential.

More precisely, consider the sticky disk potential V : [0,∞)→ R∪{+∞} given by

V (r) =


+∞ if 0≤ r < 1

−1 if r = 1

0 if r > 1

and consider configurations of N particles XN = {x1, . . .xN} that interact by means of V with energy

E(XN) = ∑
1≤i< j≤N

V (|xi− x j|).

It is easy to show that there are configurations satisfying E(XN) ≤ −3N +C
√

N for some universal
constant C. We therefore define

F(XN) :=
E(XN)+3N√

N

and define low energy sequences as those sequences (XN)N∈N such that supN∈N F(XN)< ∞.
We consider the subset Int(XN)⊂ XN given by those particles which have six neighbours at distance

1 and define ∂XN = XN \ Int(XN). Letting N (x) denote the set of neighbours of the particle x we can
rewrite the energy as

E(XN) =
1
2 ∑

x∈XN

−#N (x)≥−3#Int(XN)−
5
2

#∂XN =−3N +
1
2

#∂XN

since every particle has at most six neighbours and each pair of neighoburs gives energy−1. We observe
that in particular for every low energy sequence we have

#∂XN .
√

N. (4.13)

We now want to define a notion of orientation for any given low energy sequence (XN). We associate
to each particle x ∈ Int(XN) its closed Voronoi cell V (x) with respect to the whole configuration XN , that
is

V (x) := {y ∈ R2 : |y− x| ≤ |y− xi|∀i = 1, . . . ,N}.
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These Voronoi cells are regular hexagons of sidelength 1√
3
. For technical reasons we also define the

Voronoi cell of each particle in ∂XN to be the empty set. To each of the nonempty hexagonal Voronoi
cells we associate an orientation tV (x) given by the unique unit vector eiθ ∈ S1 with θ ∈ [0, π

3 ) that
is perpendicular to one of the sides of the hexagons. We then associate to each configuration XN the
following SBV function that takes into account a rescaling by a factor 1√

N
:

uXN := ∑
x∈XN

tV (x)1 1√
N

V (x)
.

In particular by (4.13) 0≤ 1−‖u‖L1 . 1√
N

. Moreover

E(Int(XN))−E(XN). #∂XN .
√

N.

Set V (XN) :=
⋃

x∈XN
V (x). Then it is easy to see that

E(Int(XN)) =−
1
2
(6#Int(XN)−

√
3H 1(∂V (XN)))

and therefore √
NH 1(JuXN

) = H 1(∂V (XN))≤ E(XN)+3N +C
√

N .
√

N

from which it follows that
sup

N
H 1(JuXN

)< ∞

for any low energy sequence (XN). Recalling theorems 4.20 and 4.21 we have thus obtained the follow-
ing:

Theorem 4.24 (Limit orientation for the sticky disk). Let (XN) be a low energy sequence. Suppose
that XN ⊂ B(0,R

√
N) for some R > 0 and every N ∈ N. Then there exists a subsequence (not relabeled)

such that the associated SBV functions uXN converge in L1 to a piecewise constant function u defined on
a Caccioppoli partition and with values in {eiθ : θ ∈ [0, π

3 ]}.

An analogous result, together with some estimates on the Γ-limit of the rescaled energies, has been
obtained in [DLNP18].

Remark 4.25. Theorem 4.24 is a prototype for a compactness result that we would like to obtain in the
case of planar perimeter-minimizing N-clusters. However in the latter case it is not completely clear how
to define an orientation, and moreover the lack of rigidity makes compactness results subtler. In the case
of the sticky disk we really exploited the fact that roughly speaking “the interaction between two different
orientations is rigid”, while in more general cases (for instance a potential V with a quadratic behaviour
around the minimum point r = 1) we expect to witness some elastic behaviour due to interactions between
particles that occur at distance sligthly different than 1.
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Chapter 5

Mass distribution of periodic measures

We estimate the total perimeter of the hexagonal honeycomb H inside a disk of radius r centered
at any point in the plane, proving that it goes as 4√12πr2 +O(r2/3) as r → ∞. In particular the
remainder term is smaller than the trivial “surface” term O(r). A similar estimate holds for any
periodic measure and in any dimension: in Rn the remainder term is O

(
r(n−1) n

n+1
)
. For some “nice”

measures whose Fourier transform is supported on lower-dimensional subspaces we can give a better
estimate.

Contents
5.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Poisson summation formula for periodic measures . . . . . . . . . . . . . . . . . . 88
5.3 Estimate of µ(Br) for a periodic measure µ . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Better estimates for better measures . . . . . . . . . . . . . . . . . . . . . . . . . . 95

In this chapter we will estimate the perimeter of the honeycomb H inside a large disk of radius r,
that is

PH (r) := P(H ,Br) =
1
2 ∑

i
P(H (i),Br)

where Br is a disk of radius r centered at any point and H is the honeycomb made of unit-area hexagons.
It is easy to see that the leading term scales like the area of the disk, that is

P(r) = 4
√

12|Br|+∆H (r) = 4
√

12πr2 +∆H (r)

where the remainder term is ∆H (r) = o(r2). It is not difficult to show that actually ∆H (r) = O(r). The
aim of this chapter is to prove that a stronger estimate holds for the remainder term, namely that

∆H (r) = O(r2/3). (5.1)

In a certain sense the truncations of the cells near the boundary compensate each other to produce a
better estimate than the trivial “surface” term O(r). In fact we will prove that the same estimate for the
(suitably defined) remainder term holds for any periodic measure.

85
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Figure 5.1: Computing the total perimeter of the honeycomb inside a disk Br or counting the integer
lattice points inside Br can be both seen as evaluating a periodic measure on 1Br .

To understand why these compensations are at least reasonable to expect, we make a brief excursus
on the famous Gauss Circle Problem (GCP), where the aim is counting the number of points with integer
coordinates that are contained in the disk of radius r centered at the origin:

N(r) := #
{
(x,y) ∈ Z2 : x2 + y2 < r

}
.

Also in this case the first term goes like the area of the disk, and the remainder term ∆(r) := N(r)−πr2

was known to Gauss to be bounded in modulus by 2
√

2πr. This estimate was improved over the years
by many authors, and it is still an active topic of research. Writing ∆(r) = O(rθ ), it has been proved
by M.N. Huxley [Hux03] that we can choose θ = 131

208 ≈ 0.6298 . . .. On the other hand it was proved
independently by Hardy [Har15] and Landau that ∆(r) 6= o

(
r

1
2 log(r)

1
4
)
, thus setting a lower bound θ > 1

2 .
It is conjectured that ∆(r) = O(r

1
2+ε) for every ε > 0. In particular, this is much smaller than the trivial

bound O(r).
While many papers about the GCP employ some heavy machinery to give finer and finer estimates

for the exponent of r in the remainder term, we found a nice paper by C.S. Herz [Her62b] which gives the
estimate ∆(r) = O(r2/3) using only a few basic facts about the Fourier transform. It is by adapting the
methods of this paper that we are able to prove the following estimate: for any measure µ in Rn which is
periodic with respect to some lattice Λ = AZn, where A is an invertible linear transformation, we have

µ(Br) =
µ(Q)

|Q|
|Br|+µ(Q)O

(
r(n−1) n

n+1

)
(5.2)

where Q = A([0,1]n) is a fundamental cell of the lattice Λ and the constants in the O depend on the
dimension and the lattice only. In particular we obtain O(r2/3) for the honeycomb in the plane, that is
for the 1-dimensional Hausdorff measure restricted to the honeycomb µ := H 1x∂H , which is periodic
with respect to the triangular lattice.

The result is almost certainly not optimal in the exponent of r. We actually may expect that the
“continuous” nature of the support of µ = H 1x∂H (as opposed to the discrete support of the measure
in the GCP) could give rise to smaller oscillations, thus making plausible a better estimate. For gen-
eral periodic measures µ we may expect that the estimate for the remainder depends on the geometric
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properties of the support of µ . Note for instance that an easy modification of the proof of Theorem 5.4
(see Remark 5.5) shows that if instead we consider the square partition Q of the plane identified by
∂Q = (R×Z)∪ (Z×R) then we obtain

∆Q(r) = O(r
1
2 ),

the key point being that in this case the Fourier transform of µ = H 1x∂Q (seen as a tempered distribu-
tion) is concentrated on the integer points of the two axes, instead of the whole integer lattice Z2 (which
is the case for a generic periodic measure). We will expand on this in the last section, where we prove
that indeed if the support of µ̂ is contained in some proper subspace then we obtain a better estimate.

The main tool in the derivation of (5.2) is a Poisson-type summation formula (Theorem 5.2) that is
a generalization of the classical Poisson summation formula (5.3). The method of proof is taken from
[Her62b].

5.1 The Fourier transform

We recall the basic definitions and results about the Fourier transform, mainly to fix the notation. We
refer to [SW71] as a reference for the basics on the Fourier transform. The Fourier transform of a
function f ∈ L1(Rn) is defined by

F ( f )(ξ ) = f̂ (ξ ) =
ˆ
Rn

e−2πix·ξ f (x)dx.

With this convention, the inversion formula reads

f (x) = F−1( f̂ )(x) =
ˆ
Rn

e2πix·ξ f̂ (ξ )dξ

for every f ∈ L1(Rn) such that f̂ ∈ L1(Rn).
When we are on the torus Tn = Rn/Zn ' [0,1)n, for a given g ∈ L1(Tn) we define its Fourier

coefficients as
ĝ(ξ ) =

ˆ
[0,1)n

g(x)e−2πix·ξ dx.

for ξ ∈ Zn. In this case the inversion formula on the torus, that is the Fourier series expansion of g, can
be stated in the following way:

Theorem 5.1 ([SW71, Chapter VII, Corollary 1.8]). Suppose g ∈ L1(Tn) is such that ĝ(ξ ) ∈ `1(Zn);
then g is equivalent to a continuous function, and

g(x) = ∑
x∈Zn

ĝ(k)e2πik·t .

Observe that we are using the hatˆ to denote both the Fourier transform of a function on Rn and the
Fourier coefficients of a function on Tn ' [0,1)n.
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The Schwartz space S (Rn) is given by all C∞ functions which decay rapidly at infinity together
with all their derivatives, that is

S (Rn) =

{
f ∈C∞(Rn) : sup

x∈Rn
|xα

∂
β f (x)|< ∞ for every α,β multi-indices

}
.

We endow this space with the topology induced by the Fréchet seminorms

pα,β ( f ) = sup
x∈Rn
|xα

∂
β f (x)|.

The topological dual of S (Rn) is the space of tempered distributions S ′(Rn).
The Fourier transform can be defined on S (Rn), on which it is an isomorphism, and by duality also

on S ′(Rn): given a tempered distribution T , its Fourier transform is the tempered distribution defined
by

〈F (T ),φ〉= 〈T,F (φ)〉

for any Schwartz function φ . In this way we can talk about for instance the Fourier transform of any
measure which grows at most polynomially at infinity.

The Poisson summation formula [SW71, Chapter VII, Corollary 2.6] is

∑
m∈Zn

f (m) = ∑
k∈Zn

f̂ (k) (5.3)

for every f ∈S (Rn). We can also write it in terms of tempered distributions:

F

(
∑

m∈Zn

δm

)
= ∑

k∈Zn

δk. (5.4)

5.2 Poisson summation formula for periodic measures

We now want to obtain an analogue of the Poisson summation formula (5.3)/(5.4), but instead of a lattice
of deltas we want to consider a generic periodic measure.

Let then µ0 be a finite measure on Q= [0,1)n⊂Rn. In particular µ0 ∈M (Q) ↪→M (Rn) ↪→S ′(Rn).
Consider the periodized measure µ = ∑m∈Zn τmµ0 where τm is the translation by the vector m and we
write τmµ0 for (τm)#µ0, the pushforward of µ0 with respect to the translation τm.

Theorem 5.2 (Generalized Poisson summation formula). Consider a function f ∈ Cc(Rn) such that
( f̂ (k))k∈Zn ∈ `1(Zn), and consider a finite measure µ0 ∈M ([0,1)n). Then

∑
m∈Zn

〈τmµ0, f 〉= ∑
k∈Zn

f̂ (k)µ̂0(−k) (5.5)

where µ̂0(ξ ) := 〈µ0,e−2πiξ ·t〉.

The same conclusion holds also for f ∈S (Rn), with basically the same proof. We stated the theorem
in this way because it’s the form in which we will use it.
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Proof. Let g be the periodized function g(t) = ∑m∈Zn f (t+m), which is Zn-periodic and continuous, and
let µ be the periodized measure as above. In particular we obtain

〈µ, f 〉= 〈 ∑
m∈Zn

τmµ0, f 〉= ∑
m∈Zn

〈µ0,τ−m f 〉= 〈µ0,g〉. (5.6)

Let us relate the Fourier coefficients of g and the Fourier transform of f : given k ∈ Zn

ĝ(k) =
ˆ
[0,1)n

g(t)e−2πik·tdt

=

ˆ
[0,1)n

∑
m∈Zn

f (t +m)e−2πik·tdt

=

ˆ
Rn

f (t)e−2πik·tdt

= f̂ (k)

where ĝ has to be understood as a Fourier coefficient while f̂ has to be understood as the Fourier trans-
form of f evaluated at k.

Since g is continuous and in L1, and by the assumption on f and the previous computation its Fourier
coefficients are summable, we can apply the inversion formula of Theorem 5.1 to g, that is we can write

g(t) = ∑
k∈Zn

ĝ(k)e2πik·t

where the series is absolutely convergent. We can plug this in (5.6) obtaining

〈µ, f 〉= 〈µ0,g〉= 〈µ0, ∑
k∈Zn

ĝ(k)e2πik·t〉= ∑
k∈Zn

ĝ(k)〈µ0,e2πik·t〉 (5.7)

and because of the above computation we can replace ĝ(k) with f̂ (k) and obtain the desired conclusion.

Remark 5.3. (i) The assumptions of the generalized Poisson summation formula can be weakened.
Identity (5.5) holds for any f such that:

(a) f coincides with its Lebesgue representative, i.e.

f (x) = lim
δ→0

 

Bδ (x)

f (y)dy;

(b) f ∈ L1(Rn,L n)∩L1(Rn,µ);

(c)
(

f̂ (k)µ̂0(k)
)

k∈Zn ∈ `1(Zn).

To prove this, we consider a mollifier η ∈C∞
c (Rn), η ≥ 0,

´
η = 1, and define ηε(x) := 1

εn η( x
ε
).

We prove (5.5) for f ∗ηε with the same proof above, and then pass to the limit when ε → 0 using
Lebesgue dominated convergence.

In particular these assumptions are satisfied for any measure µ if f ∈S (Rn).
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(ii) In the following we will only use the previous formula, but let us write explicitly what is the
Fourier transform of µ as a tempered distribution (observe that by the previous paragraph Theorem
5.2 holds also for f ∈S (Rn)): by definition and by (5.5), for any φ ∈S (Rn)

〈µ̂,φ〉= 〈µ, φ̂〉= ∑
k∈Zn

ˆ̂
φ(k)〈µ0,e2πik·t〉.

By the definition of Fourier transform and the inversion formula on Rn we have

ˆ̂
φ(k) =

ˆ
Rn

φ̂(ξ )e−2πik·ξ dξ = φ(−k)

and therefore we obtain
〈µ̂,φ〉= ∑

k∈Zn

φ(−k)〈µ0,e2πik·t〉.

More concisely, as tempered distributions

F

(
∑

m∈Zn

τmµ0

)
= ∑

k∈Zn

µ̂0(k)δk. (5.8)

We observe that in particular any periodic measure has a Fourier transform which is a measure con-
centrated on the integer lattice Zn, with uniformly bounded coefficients: indeed |µ̂0(k)| ≤ µ0(Q) =

‖µ0‖.

We obtain as a particular case the classical Poisson summation formula taking µ0 = δ0. Indeed

δ̂0(k) =
ˆ
[0,1)n

e−2πik·tdδ0(t) = 1

which gives

F

(
∑

m∈Zn

δm

)
= ∑

k∈Zn

δk.

As another example, considering µ0 = L nx[0,1)n we obtain that µ̂0(k) = 0 for any k 6= 0, while
µ̂0(0) = 1, therefore obtaining the basic relation

F (1) = δ0.

(iii) An analogous result holds if the measure µ is periodic with respect to a generic lattice Λ = AZn,
where A is an invertible linear transformation (and therefore µ0 is a measure on the fundamental
domain AQ). In this case define the dual lattice to be Λ∗ = (A−1)>Λ = (A−1)>AZn. Then, setting
µ = ∑λ∈Λ τλ µ0, we have

〈µ, f 〉= |det(A−1)| ∑
ν∈Λ∗

f̂ (ν)〈µ0,e2πiν ·t〉. (5.9)

(iv) We refer to [Sal13, Theorem 2.4.2] for a discussion about periodic tempered distributions and their
Fourier transforms. In particular there is a bijective correspondence between periodic distributions
and coefficients (ak)k∈Zn with polynomial growth.
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5.3 Estimate of µ(Br) for a periodic measure µ

We now come to the main result of this chapter. We first start with a heuristic argument, which is not
rigorous since the involved series do not converge, but we will anyway carry on the computation to show
the general method; we will see below how to modify the argument and make it rigorous.

We suppose for a moment that the generalized Poisson summation formula (5.5) holds also for f =
1Br (which is not the case for a general measure µ; compare however with Remark 5.3(i)). We then write

µ(Br) = 〈µ,1Br〉= ∑
k∈Zn

1̂Br(k)µ̂0(−k)

= ‖µ0‖|Br|+ ∑
k∈Zn\{0}

1̂Br(k)µ̂0(−k)

since 1̂Br(0) = |Br|. Therefore we can view the last sum as the remainder term ∆(r) which we have to
estimate. Unfortunately, this series is not absolutely convergent (because otherwise, by the inversion for-
mula of Theorem 5.1, we would obtain that 1Br is a continuous function), and this reasoning is not sound.
However, recalling the general fact that the smoother a function, the quicker its Fourier transform’s decay,
we approximate 1Br with a smoother function to which we can apply the Poisson summation formula
and such that the above series converges. We choose in particular, as in [Her62b], the convolution with a
rescaled copy of itself:

f (x) := 1Br ∗
(
1Bs

|Bs|

)
(x)

where s� r will be suitably chosen in terms of r. The Fourier transform of 1Br is explicitly computable
in terms of Bessel functions, and the following estimate holds [Mat15, p. 34]:

|1̂Br(ξ )|.
r

n−1
2

|ξ | n+1
2
. (5.10)

In particular the above convolution is continuous and moreover

|1̂Br(ξ )1̂Bs(ξ )|.
r

n−1
2 s

n−1
2

|ξ |n+1

so that f̂ is summable at the integer lattice, and therefore f satisfies the assumptions of the generalized
Poisson formula and we can carry on rigorously the heuristic argument above. We will actually con-
sider two slightly different versions of the function f , one to approximate 1Br from above and one to
approximate it from below.

Theorem 5.4 (Measure in the ball). Given a Zn-periodic measure µ on Rn, the following estimate
holds:

µ(Br(x)) = ‖µ0‖|Br|+‖µ0‖O
(

r(n−1) n
n+1

)
as r→ ∞ (5.11)

where the implicit constant in the O does not depend on the center x nor on the measure µ , just on the
dimension.
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Notice again that the remainder term is better than the trivial ”surface” term O(rn−1) in any dimen-
sion. The proof follows the lines of [Her62b, Theorem 1].

Proof. Let

f (x) = 1Br+s ∗
(

1
|Bs|

1Bs

)
(x).

In the end we will take s proportional to r−
n−1
n+1 , but for now we leave it as it is; we will prove in the end

that the optimal choice is that one. Then we have

f̂ (ξ ) =
1
|Bs|

1̂Br+s(ξ )1̂Bs(ξ )

and by the considerations before the statement of the theorem we can apply the generalized Poisson
formula (5.3). Observing that {

f (x) = 1 in Br

f (x)≥ 0 ∀x

we obtain

µ(Br(x))≤ 〈µ, f 〉= ∑
k∈Zn

f̂ (k)µ̂0(−k)

= ∑
k∈Zn

1̂Br+s(k)1̂Bs(k)
1
|Bs|

µ̂0(−k)

=

(
|Br+s|‖µ0‖+ ∑

′

k
1̂Br+s(k)1̂Bs(k)

1
|Bs|

µ̂0(−k)
)

where here and in the following ∑
′
k denotes the sum among all k ∈ Zn \{0}. Therefore

∆µ(r) := µ(Br(x))−‖µ0‖|Br|

≤ ‖µ0‖(|Br+s|− |Br|)+ ∑
′

k
1̂Br+s(k)1̂Bs(k)

1
|Bs|

µ̂0(−k) (5.12)

and we estimated the error term ∆µ(r) from above with the last expression. With a similar reasoning we
now estimate it from below with an analogous expression: consider this time

f (x) = 1Br−s ∗
(

1
|Bs|

1Bs

)
(x).

Then {
f (x)≤ 1 in Br

f (x) = 0 in Bc
r

and with a computation as above, using that µ(Br(x))≥ 〈µ, f 〉, we obtain

∆µ(r)≥−‖µ0‖(|Br|− |Br−s|)+ ∑
′

k
1̂Br−s(k)1̂Bs(k)

1
|Bs|

µ̂0(−k). (5.13)
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From (5.12) and (5.13) we obtain a bound on |∆(r)|. We now estimate from above the right hand side of
(5.12), the estimate from below of (5.13) being analogous.

The goal now is therefore to estimate the right hand side of (5.12) and prove that it is O(r(n−1) n
n+1 ).

The first term is bounded up to a dimensional constant by ‖µ0‖rn−1s because s� r. As for the sum, we
pass to the absolute values and we split it in the two domains {k : |k| ≤ T} and {k : |k| > T}, with T of
the order T ≈ r

n−1
n+1 . Again, as with the choice for s, we will leave the parameter T in the computations

and prove in the end that this is the optimal choice. For the first domain {k : |k| ≤ T} we will simply
estimate |1̂Bs(k)| ≤ |Bs| and use the estimate (5.10) for 1̂Br+s ; for the second domain {k : |k|> T} we will
really exploit the additional decay given by the convoltion term 1Bs and therefore use the estimate (5.10)
for both 1̂Br+s and 1̂Bs .

• Case I: sum among {k : |k| ≤ T}.

∣∣∣∣∣∑′

|k|≤T
1̂Br+s(k)1̂Bs(k)

1
|Bs|

µ̂0(−k)

∣∣∣∣∣≤ ‖µ0‖∑
′

|k|≤T
|1̂Br+s(k)|

. ‖µ0‖∑
′

|k|≤T

r
n−1

2

|k| n+1
2

. ‖µ0‖r
n−1

2 T
n−1

2

where we used that

∑
′

|k|≤T

1

|k| n+1
2
≈

ˆ

BT \B1

1

|x| n+1
2

dx≈
T̂

1

1

ρ
n+1

2
ρ

n−1dρ ≈ T
n−1

2 .

• Case II: sum among {k : |k|> T}.∣∣∣∣∣∑′

|k|>T
1̂Br+s(k)1̂Bs(k)

1
|Bs|

µ̂0(−k)

∣∣∣∣∣≤ ‖µ0‖
1
|Bs| ∑

′

|k|>T
|1̂Br+s(k)| |1̂Bs(k)|

. ‖µ0‖
1
sn ∑

′

|k|>T

r
n−1

2

|k| n+1
2

s
n−1

2

|k| n+1
2

. ‖µ0‖
r

n−1
2

s
n+1

2

1
T

where we used that

∑
′

|k|>T

1
|k|n+1 ≈

ˆ

Rn\BT

1
|x|n+1 dx≈

∞̂

T

1
ρn+1 ρ

n−1dρ ≈ 1
T
.
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Putting together the previous estimates we obtain

∆µ(r). ‖µ0‖

(
rn−1s+ r

n−1
2 T

n−1
2 +

r
n−1

2

s
n+1

2 T

)
.

Optimizing in s and T (which amounts to impose that all three terms in the brackets are of the same
order) we obtain that the optimal values are {

s≈ r−
n−1
n+1

T ≈ r
n−1
n+1

and we finally obtain
∆µ(r). ‖µ0‖r(n−1) n

n+1 .

Remark 5.5. (i) There are some particularly well-behaved measures for which we can give a better
estimate for the remainder term. Referring to Remark 5.3(i), if U is an open bounded subset of
Rn the function f = 1U satisfies assumptions (a) and (b). If we consider the square partition Q of
the plane given by ∂Q := (R×Z)∪ (Z×R), it is easy to see that the measure µ = H 1x∂Q has
a Fourier transform which is supported on the set S := (Z×{0})∪ ({0}×Z), and therefore 1Br

satisfies also assumption (c), where µ0 = µx[0,1)2. Therefore the generalized Poisson summation
formula holds in this case and we can write

µ(Br) = 〈µ,1Br〉= ∑
k∈Z2

1̂Br(k)µ̂0(−k)

= ‖µ0‖|Br|+ ∑
k∈Z2\{0}

1̂Br(k)µ̂0(−k)

and therefore recalling (5.10) the remainder term ∆Q(r) := µ(Br)−‖µ0‖|Br| satisfies

|∆Q(r)|. r1/2
∑

k∈S\{0}

1
|k|3/2 . r1/2

since, unlike for the heuristic discussion preceding Theorem 5.4, this time the series is convergent.

(ii) The same estimate holds if we replace the ball Br = rB1 by rK, where K is a convex set such that

|1̂K(ξ )|.
1

|ξ | n+1
2
.

Indeed, the proof goes through with virtually no modifications. The above estimate holds for in-
stance for any smooth convex set whose boundary has strictly positive Gaussian curvature (see
[Her62b, Remark A] and [Her62a]). Even without appealing to the reference, by a change of vari-
ables it is easy to see that the estimate holds for ellipsoids. One set for which surely the estimate
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does not hold is the cube Q1(0) = [−1,1]n, for which the Fourier transform is a product of factors of
type sin(ξk)

ξk
, with ξk coordinates of ξ . And in fact for, say, the GCP it is clear that using squares the

remainder ∆(r) is actually of order ≈ r and not smaller, because N(r) jumps abruptly of a quantity
≈ r whenever r assumes an integer value.

(iii) The estimate (5.11) actually holds in the more general form (5.2). This can be seen in two ways:
on one hand, the key point in the proof was the summability of the Fourier transform in the integer
lattice, and by using (5.9) the same proof goes through; on the other hand, we can use point (i) of
this Remark, and in particular the fact that (5.11) holds for ellipsoids, because after a linear change
of variables the measure of a ball becomes the pushforward measure of an ellipsoid.

5.4 Better estimates for better measures

Consider a measure µ0 on [0,1)n and define the periodized µ as above. We now prove that under addi-
tional assumptions on the support of µ̂ we can give a better estimate for the remainder term ∆µ(r) :=
µ(Br)−‖µ0‖|Br|. In particular we recover the result of [LP16] in the case when µ0 is the Hausdorff
measure H n−d restricted to a (n− d)-dimensional face of the unit cube, that is when µ is the (n− d)-
dimensional Hausdorff measure H n−d restricted to Zd×Rn−d .

Theorem 5.6. Suppose that µ̂0 is supported on a d-dimensional subspace H (equivalently, that µ0 is
invariant under continuous translations along the directions of H⊥). Then

∆µ(r).


r−

n−1
2 if d < n+1

2

r−
n−1

2 logr if d = n+1
2

rn− 2d
2d−n+1 if d > n+1

2

.

Proof. The proof is analogous to the one for Theorem 5.4. The only difference is in the estimates for the
series

∑
′

k
1̂Br+s(k)

1
|Bs|

1̂Bs(k)

and in particular in the comparison with the integrals. The integral estimate becomes

≈
ˆ

1

ρ
n+1

2
ρ

d−1dρ.

We again split the series between the two domains {k : |k| ≤ T} and {k : |k| > T} for some T , whose
choice will depend upon r and d.
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(i) Sum among {k : |k| ≤ T}.

∑
′

|k|≤T
k∈Zd

r
n−1

2

|k| n+1
2

. r
n−1

2

ˆ T

1

1

ρ
n+1

2
ρ

d−1dρ

.


r

n−1
2 if d < n+1

2

r
n−1

2 logT if d = n+1
2

r
n−1

2 T d− n+1
2 if d > n+1

2

(ii) Sum among {k : |k|> T}.

∑
′

|k|≤T

r
n−1

2

|k| n+1
2

s
n−1

2

|k| n+1
2

1
sn .

r
n−1

2

s
n+1

2

ˆ
∞

T

1
ρn+1 ρ

d−1dρ

≈ r
n−1

2

s
n+1

2
T d−n−1.

We thus obtain

∆µ(r).

rn−1s+
r

n−1
2

s
n+1

2
T d−n−1 +


r

n−1
2 if d < n+1

2

r
n−1

2 logT if d = n+1
2

r
n−1

2 T d− n+1
2 if d > n+1

2


Equating the three terms we obtain the optimal choicesT ≈ r

n2−1
4(n−d+1)

s≈ r−
n−1

2

if d ≤ n+1
2

{
T ≈ r

n−1
2d−n+1

s≈ r−
n−1

2d−n+1
if d >

n+1
2

and thus

∆µ(r).


r−

n−1
2 if d < n+1

2

r−
n−1

2 logr if d = n+1
2

rn− 2d
2d−n+1 if d > n+1

2

.

Actually in the case d < n+1
2 we don’t even need all these computations: we just need to apply the

generalized Poisson summation formula, which holds in this case since f̂ µ̂0 ∈ `1(Zn) (see Remark 5.3(i)).



Chapter 6

The interface problem

We consider what is the optimal way of interpolating between two regular structures with mismatch-
ing orientations, having in mind the case of perimeter-minimizing partitions (hexagonal structure
expected) and of interacting particles (triangular structure expected). In order to treat both cases to-
gether (and possibly other similar energies) we consider an energy defined on graphs that favours a
regular triangular pattern, and that takes into account an elastic energy due to the deformations of the
triangular faces and a plastic energy due to topological defects, that is vertices with degree different
from 6. Under some conditions we prove that at an interface between two triangular patterns with an
angle mismatch θ some defects must appear, in proportion to the length of the interface and to the
angle θ , and that the energy excess with respect to the rest state goes at least as θ . Moreover we prove
that the suitably defined orientation of the graph has a BV limit when the microscopic lengthscale is
sent to zero. We then argue why we expect an SBV limit, a better lower bound for the energy at an
interface with angle θ , namely θ | logθ |, and what are the difficulties in proving this result.

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 The basic construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Planar graphs and related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Displacement of a closed path: Burgers vector and rotation . . . . . . . . . . . . . . . 105

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Construction of the orientation map β . . . . . . . . . . . . . . . . . . . . . . . . . 110

Construction of β in absence of defects . . . . . . . . . . . . . . . . . . . . . . . . . 111

Construction of β in presence of defects . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Defects as singular curvature points of a locally flat surface . . . . . . . . . . . . . 113

6.6 Definition of the energy on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Definition of the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

97



CHAPTER 6. THE INTERFACE PROBLEM 98

Relation between ‖Curlβ‖ and the number of defects: the balance condition . . . . . . 121

6.7 The interface problem: number of defects, weak lower bound on the energy and
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6.1 Introduction

In order to analyze the asymptotic behaviour of N-clusters (and N-partitions of a given open set Ω) when
N → ∞, we now restrict the attention to a specific subproblem which we call the interface problem,
or also grain boundary problem, that can be seen as a sort of cell problem for a Γ-convergence result.
Instead of the total number N of chambers, we consider a parameter ε ≈ 1√

N
which represents the micro-

scopic lengthscale of chambers if we rescale the N-cluster so that the total area is fixed. The problem is
essentially the following: we fix two regular hexagonal partitions on the lateral zones of a fixed square
of side L, whose chambers have equal areas of order ε2 and whose orientations differ by a small angle
θ , and ask what is the optimal way to interpolate in between, that is to partition the middle portion with
equal-area chambers that minimize the total perimeter (see Figure 6.2). Hales honeycomb theorem 3.1
tells us that the hexagonal honeycomb is optimal, and therefore that we expect the majority of chambers
to be hexagonal, as can also be seen by numerical minimizers (Figure 6.1). Since the same interface
problem could be faced for any energy in which there is a regular expected ground state (hexagonal hon-
eycomb, triangular lattice...) we consider a more astract setting in which the admissible configurations
are suitable planar graphs with triangular faces and in which the energy favours the formation of a trian-
gular lattice. However for the rest of the introduction we fix one setting, namely the polygonal partitions
in equal-area polygons of a fixed open set Ω.

Our first goal is to prove that it is never convenient to use only (distorted) hexagons to fill the middle
region, and it is more effective to introduce some defects, that is non-hexagonal cells. Our second goal
is to give an estimate of the number of defects and of the minimal energy when defects are present. We
highlight these questions:

Question 5. Do defects necessarily appear at an interface of a minimizing (or low energy) partition?

Question 6. If so, what is their total number in terms of the parameters L (sidelength of the square
considered), θ (misorientation angle) and ε ≈ 1√

N
(microscopic lengthscale)?

Question 7. Can we estimate in terms of L,θ ,ε the energy excess created at an interface with respect to
a hexagonal ground state?

The first step to answer these questions is to attach a notion of orientation to each polygonal partition,
which describes the direction of the underlying hexagonal chambers, that constitute the majority of
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Figure 6.1: (a) A cluster with hexagonal global shape and regular honeycomb inside. (b) A clus-
ter with a rounder global shape with some defects appearing inside, colored in light or dark grey
according to the number of sides. Picture taken from [CG03].

chambers. We could naively imagine for instance a vectorfield φ with values in S1 (modulo π

3 ) that takes
into account the direction of the hexagonal chambers, as we did for the case described in Chapter 4,
Section 2 where we defined an orientation for clusters with hexagonal chambers. However a vectorfield
does not seem to be sufficient to capture the essential features in the case of general clusters, because
of the distortion that chambers could underlie. What turns out to be useful in the case of polygonal
partitions is a matrix-field (vector field with values in the 2× 2 matrices) that takes into account the
elastic deformations of the chambers. We then apply the rigidity theorems by Friesecke, James and
Müller [FJM02] and by Müller, Scardia and Zeppieri [MSZ14] to obtain information on how much this
matrix-field is close to a rotation in terms of its associated elastic energy, and consequently how close is
the partition to a hexagonal honeycomb. We will denote by βε the orientation matrix-field. We remark
that the definition of βε is already a non-trivial step, since the presence of non-hexagonal chambers
entails some branching problems.

In view of computing a Γ-limit of the (suitably rescaled) perimeter energy as ε → 0, once we have
defined a notion of orientation for polygonal partitions we want to understand what kind of compactness
we expect for these orientations, in order to obtain a limit orientation that describes asymptotically the
hexagonal chambers. A natural space, also in view of Chapter 4, is the space SBV . In that chapter we ob-
tained as limit orientations piecewise constant SBV vectorfields, essentially because different orientations
did not interact with each other and this created a lot of perimeter at the interface between two hexagonal
zones with different orientations. This prevented the formation of a slowly varying orientation in the
limit vectorfield (i.e. the absolutely continuous part of the gradient of the limit vectorfield was zero).
In the setting of polygonal partitions the situation is not so rigid, and the possibility of using deformed
hexagonal cells, or even non-hexagonal cells, makes the problem much more difficult. Nonetheless the
result we expect is again a SBV limit matrix-field β with values in the space SO(2).
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Figure 6.2: The interface problem: what is the optimal way to fill the middle region with equal-area
chambers in order to minimize the perimeter? What is the behaviour of the perimeter excess in
terms of the mismatch angle θ and the interface length L? Do we necessarily have to introduce some
defects?

The key tool we will use in the estimates is the rigidity theorem by Friesecke, James and Müller
[FJM02, Theorem 3.1] and especially the subsequent generalization [MSZ14] to incompatible (i.e. non-
curl-free) vector fields, which is essential to handle the presence of defects. We here state the latter.

Theorem 6.1 (Generalized Rigidity Estimate [MSZ14, Theorem 3.3]). Let Ω⊂R2 be open, bounded,
simply connected and Lipschitz. There exists a constant C = C(Ω) > 0 (scaling-invariant) with the
following property: for every β ∈ L2(Ω;R2×2) with Curlβ ∈Mb(Ω;R2) there is an associated rotation
R ∈ SO(2) such that1

‖β −R‖L2(Ω;R2×2) ≤C(‖dist(β ,SO(2))‖L2(Ω)+ |Curlβ |(Ω)). (6.1)

6.2 The basic construction: defects, mappings on the regular lattice and
the rigidity theorem

We now explain the main construction that will underlie all the following sections. We consider a polygo-
nal partition E of a unit square Ω in areas 1

N that coincides on the two lateral thirds with two honeycombs
with angle mismatch θ (see Figure 6.2), and seek a lower bound on the total perimeter, that is an inequal-
ity of the type

P(E )≥ 4
√

12
√

N +δ (N,θ)

where 4
√

12
√

N is the lower bound given by Hales inequality, and where δ (N,θ) is a positive function
that measures the increase in perimeter due to the misorientation of the lateral honeycombs and the
impossibility to fill the central region with a perfect honeycomb matching both sides. δ (N,θ) takes into

1The distributional curl of a matrix field β is the vector-valued distribution defined by Curlβ = (D1β12−D2β11,D1β22−
D2β21).
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Figure 6.3: A numerical candidate for a local minimizer of an energy modeling block copolymers
considered in [BPT14] and given by a perimeter-type term of each cell plus a Wasserstein transport
term. Zones with hexagonal cells having almost constant orientation are separated by “lines” of
defects (pentagonal and heptagonal cells). Observe that isolated pentagonal or heptagonal defects
are rare and are close to some other defect.

account the misorientation θ of the two lateral honeycombs and the number N of polygonal chambers.
The result we expect is the following:

δ (N,θ)≥C|θ logθ |,

that is a superlinear behaviour in the misorientation angle and an independence from N. We refer to
the above law as the Read-Shockley formula. The reason behind the expected superlinear behaviour is
twofold: firstly from a theoretical viewpoint, a similar law has been proved in [LL16] for the energy
of a grain boundary in a semidiscrete model for dislocations; secondly from an experimental viewpoint
a phenomenological consequence of the superlinear behaviour in the angle is the creation of big zones
with constant-orientation regular structures, separated by lines of defects. This can be witnessed in
some numerical simulations for energies similar to the perimeter (Figure 6.3) and a similar behaviour is
observed in nature in many occasions, as for instance in the case of the bubble raft experiment by Bragg
and Nye [BLN54] (see Figure 6.4).

More specifically we expect defects to appear, that is non-hexagonal chambers, because putting a
stretched honeycomb (elastic competitor) would increase the perimeter by a big amount, much bigger
than the amount due to a plastic competitor built extending the two honeycombs on both sides until they
almost touch, and filling the middle region with equispaced deformed chambers (see Figure 6.5).

Since the emergence of defects seems to be a common feature of many different mathematical models
we decide to remain in a quite abstract framework, which can then be adapted to the specific model under
consideration. We therefore start from a graph that represents our model in a simplified way, defined in
such a way that the expected pattern is given by equilateral triangular faces. For instance:

• for particles interacting via a Lennard-Jones type potential, with a minimum at 1, we can consider
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Figure 6.4: In the bubble raft experiment [BLN54] many air bubbles are created through an air
compressor on the surface of a soap-water solution. This allows their size to be highly uniform. The
bubbles create many regular zones forming a triangular lattice, separated by “lines” of vacancies.
This model was used to describe in a simplified way the properties and the motion of dislocations in
metals.

Figure 6.5: It is expected that between two honeycombs with different orientations some defects
(non-hexagonal cells, here greyed out) will appear. Their number per unit length of the interface
depends on the misorientation angle θ . Figure taken from [Ge+16].
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the bond graph given by all pairs of particles x,x′ such that
∣∣|x− x′|−1

∣∣< α for a certain α > 0;

• for perimeter-minimizing polygonal partitions we can consider the dual graph of the given polyg-
onal graph, or alternatively triangulate each polygon with triangles by connecting each vertex with
the barycenter of the faces it belongs to.

Starting from a graph G we will then give a notion of topological defect, that is a face/vertex that con-
stitutes a non-removable type of singularity (e.g. a vertex with degree different from 6). We will then
give a notion of orientation of the triangular faces of the graph. These notions depend essentially on the
topology of the graph, and each defect will contribute with a fixed amount to the total energy. Then we
will introduce an elastic energy E el

ε , depending on the microscopic parameter ε > 0, that really depends
not just on the topology but on the metric of the graph and favours the formation of equilateral triangular
faces of sidelength ε . E el

ε takes into account the elastic energy given by the deformation of the regular
faces, and is given by a common integrand in nonlinear elasticity theory, ‖dist(β ,SO(2))‖L2 , where β

coincides with the gradient of a function u mapping affinely the triangular face into an equilateral triangle
of side ε .

An analysis of defects on triangulated graphs arising as bond graphs of minimal configurations for
the sticky-disk has been carried out in [DLF18], but it is not clear how we could use their results in our
situation.

6.3 Planar graphs and related concepts

We will consider in the following only connected finite planar graphs G with straight edges and triangular
faces; this means that the graph is realized by a finite union of segments in R2, each of which represents
an edge, that intersect only at the endpoints where there is a vertex. Every time we will consider a planar
graph it will have these properties, unless otherwise stated. We have to begin with many definitions.
Although many of them are elementary concepts they will be necessary in the following.

Paths

Given a triangulated planar graph G in R2, let V (G) be the set of vertices of G, E(G) be the set of (di-
rected) edges and F(G) be the set of faces, that is bounded regions delimited by edges and not containing
any vertex in its interior. We will consider an edge as both an ordered pair of vertices and as a closed
segment in the plane, the distinction being clear from the context, and we can think of it as an arrow
pointing from one vertex to another. We will respectively write e = (v,w) (ordered pair) or e = [v,w]
(segment) to denote the edge e between vertices v and w. If e = (v,w) we write e := (w,v) for the edge
with opposite direction. We will assume that if e ∈ E(G) then also e ∈ E(G). By the assumptions on G
each edge contains exactly two vertices, its endpoints. We call neighbours, or neighbouring vertices,
or adjacent vertices any pair of vertices joined by an edge and given any vertex v we denote by N (v)
the set of neighbours of v. In particular the degree of a vertex v coincides with the cardinality of N (v).
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We define the domain of a graph as the open set

ΩG := Int

 ⋃
F∈F(G)

F


where Int denotes the interior.

The set of regular vertices is denoted by Vreg(G) and is the subset of V (G) of all vertices v of degree
6. The set of defects is denoted by Vde f (G) and is given by V (G)\Vreg(G). A regular face is a trianguar
face whose vertices are all regular. We associate to G the defect measure

σG := ∑
v∈V (G)

(deg(v)−6)δv. (6.2)

A path of length ` between two vertices v, w is a map γ : {0, . . . , `}→V (G) such that

• γ(0) = v;

• γ(`) = w;

• for every i = 0, . . . , `−1, (γ(i),γ(i+1)) ∈ E(G) , i.e. two consecutive distinct elements are joined
by an edge.

Observe that by definition we require that paths do not stop at a vertex, i.e. for every i = 0, . . . , `−1
we suppose γ(i) 6= γ(i+1).

A path of length ` is closed if γ(0) = γ(`). We denote the length of a path γ by `(γ). We say that
a path γ is regular if γ(i) ∈ Vreg(G) for every i = 0, . . . , `(γ). We denote a path also by (γ0, . . . ,γ`).
Given two paths γ1 : {0, . . . , `1} → V (G) and γ2 : {0, . . . , `2} → V (G) such that γ1(`1) = γ2(0), their
composition is the path γ1 ∗ γ2 : {0, . . . , `1 + `2}→V (G) given by

γ
1 ∗ γ

2(i) =

{
γ1(i) if 0≤ i≤ `1

γ2(i− `1) if `1 +1≤ i≤ `1 + `2
.

Given a path γ we denote by γ the same path walked backwards, i.e. if γ = (γ(0), . . . ,γ(`)) then γ =

(γ(`), . . . ,γ(0)).
We could also consider a path as a sequence of edges: γ = (e1, . . . ,e`) where ei = (γi−1,γi) are edges

connecting two consecutive vertices2. In this case we can write γ = (e`, . . .e1).
Given a closed path γ , its image Im(γ) is the union of all its geometric edges:

Im(γ) :=
`(γ)⋃
i=1

[γi−1,γi]

and its domain Ω(γ) is the complement of the unbounded connected component of R2 \ Im(γ).

2The notation is the same if we consider a path as a sequence of vertices or a sequence of edges, but the distinction will be
clear from the context, and moreover edges are usually denoted by the letter e.
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Displacement of a closed path: Burgers vector and rotation

We recall that the triangular lattice A2 is given by

A2 :=
{

m
(

1
0

)
+n
(

1/2√
3/2

)
: m,n ∈ Z

}
.

We view it as a graph, the vertices being its elements and the edges being each pair of points at unit
distance from each other.

We now want to define two types of displacement for every closed regular path γ in G, which say
how much translational and rotational displacement there is between the starting and the ending point
when we reconstruct γ to a path Lγ (lift of γ) with values in the regular triangular lattice A2. A version
of this displacement is usually referred to as Burgers vector, however we will need a more refined notion
that takes into account not only translational displacement but also rotational displacement.

Given a triangulated planar graph G and one of its regular vertices x, a (orientation preserving) local
embedding around x is an injective map ι : {x}∪N (x)→A2 that preserves neighbours and orientation,
i.e.

• if (x1,x2) ∈ E(G) then (ι(x1), ι(x2)) ∈ E(A2);

• for every triple of distinct pairwise neighbouring vertices x0,x1,x2, the unique affine map interpo-
lating ι in the triangle co(x0,x1,x2) is orientation preserving.

The set Vreg(G) of regular vertices can be divided in path-connected components. Given a connected
component C of Vreg(G) with at least two vertices, fix two neighbouring vertices x0,x1 ∈C (base points).
Consider the set P(x0,x1) of all regular paths γ such that γ(0) = x0 and γ(1) = x1. We can think of x0

and x1 as indicating, in addition to the starting point x0, also the “initial velocity” of the path. Denote by
P(x0,x1) the set of all closed paths in P(x0,x1).

Given a path γ ∈P(x0,x1) of length `, its lift Lγ : {0, . . . , `} →A2 is a path of length ` with values
in the triangular graph A2 such that:

• Lγ(0) =
(0

0

)
;

• Lγ(1) =
(1

0

)
=: e1;

• For i≥ 1, Lγ(i+1) is inductively defined as the unique vertex of A2 such that (γ(i−1),γ(i),γ(i+
1)) and (Lγ(i−1),Lγ(i),Lγ(i+1)) are in correspondence through a local embedding around γ(i).

For technical reasons, and with a slight abuse of notation, if γ is a closed path in P(x0,x1) we also define
Lγ(`+1) as L(γ ∗ γ)(`+1).

We are now ready to define the two types of displacement of closed paths, the translational and the
rotational one.

Given a closed path γ ∈P(x0,x1) of length γ there is a unique affine isometry (of A2 or even of the
whole plane) A = A(γ) : R2 → R2 of the form A(γ)(x) = R(γ)x+ b(γ), R(γ) ∈ SO(2),b(γ) ∈ R2 such
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Figure 6.6: On the left a path on a graph G with one defect (middle vertex). On the right the lift of
the path on the regular lattice. The two base points are marked by the vector.

that A(0) = Lγ(`) and A(e1) = Lγ(`+1). We call b(γ) the translational displacement of γ (or Burgers
vector) and R(γ) the rotational displacement (or Burgers rotation).

The purpose of the displacements b(γ) and R(γ) (or equivalently, of the associated isometry A(γ)) of
a path γ is to detect singularities in the graph G, i.e. defects: as we will see for any given closed path γ if
A(γ) is not the identity then this means that in the region contained inside γ there must be some defect.

We say that a closed regular path γ identifies a dislocation if R(γ) = Id and b(γ) 6= 0, while it
identifies a disclination if R(γ) 6= Id. We should imagine disclinations as a more essential type of
defect (e.g. an isolated pentagon inside a hexagonal configuration) and dislocations as a milder type
of singularity, typycally a pair heptagon-pentagon (see Figure 6.11). We will often refer to polygonal
partitions (instead of triangulated graphs) to explain the meaning and properties of dislocations and
disclinations, but one should keep in mind that we can obtain a triangulated graph from a polygonal
partition by either considering the dual graph or by triangulating each face connecting vertices to the
barycenter. Referring to Figure 6.11, roughly speaking we can say that the effect of a dislocation is
adding/removing a new line of hexagons, while the effect of a disclination is adding/removing a whole
wedge ( π

3 -sector) of hexagons. As an example of disclination, if a defect v has regular neighbours, and
we consider the counterclockwise path γ around v passing through all of its neighbours, then γ identifies
a disclination if and only if deg(v) is not a multiple of 6.

The tangent field of a path γ ∈P(x0,x1) is the map τγ : {0, . . . , `}→A2∩S1 given by

τγ(i) = Lγ(i+1)−Lγ(i)

where Lγ is the lift of γ . If the meaning is clear from the context the subscript will be omitted, writing
just τ .

From the definition of A(γ) it follows that A(γ ∗ γ ′) = A(γ ′)A(γ) where on the right the operation is
just the composition of isometries. We therefore obtain the following:

Lemma 6.2. The map

A : (P(x0,x1),∗)→ (Isom(A2),•)
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Figure 6.7: An example highlighting defects in a triangulated graph whose domain is a disk: green
dots represent heptagonal defects, while red dots represent pentagonal defects. All other vertices are
regular, i.e. they have degree 6. The shaded/colored areas highlight a disclination: if we take a path
that walks around the boundary of the shaded area its Burgers rotation is not the identity. Picture
taken from [MMZ11].
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is a homomorphism where (A • A′)(x) = A′(A(x)). As a consequence given two closed paths γ,γ ′ ∈
P(x0,x1) with Burgers vectors b(γ) and b(γ ′) and Burgers rotations R(γ) and R(γ ′), their composition
γ ∗ γ ′ has displacements

b(γ ∗ γ
′) = b(γ)+R(γ)b(γ ′) (6.3)

R(γ ∗ γ
′) = R(γ)R(γ ′). (6.4)

We now describe a concept of homotopy of paths. Given a regular path γ = (γ0, . . . ,γ`) we can obtain
a new path γ ′ through one of the following procedures, called basic deformations:

• by inserting a regular vertex v between two adjacent vertices γk,γk+1 whenever v is adjacent to
both:

γ
′ = (γ0, . . . ,γk,v,γk+1, . . . ,γ`);

• by removing a vertex γk whenever γk−1 and γk+1 are adjacent:

γ
′ = (γ0, . . . ,γk−1,γk+1, . . . ,γ`).

Observe that if the paths are not closed we always keep the extremes fixed, while if they are closed we
can move them. Given two paths γ,γ ′ with the same starting- and end- points a homotopy between them
is a sequence of paths γ0, . . . ,γm such that γ0 = γ , γm = γ ′ and each γ j is obtained by γ j−1 through a basic
deformation for j = 1, . . . ,m.

Properties

From here on we just consider regular paths. We will prove some preliminary results about paths, their
lifts and their Burgers vector and rotation. Many results follows directly from the definitions but we state
them as separate lemmas for an easier reference.

It is easily seen that each basic deformation preserves the endpoint of the lift of a given path, and
also its tangent vector at the endpoint. We thus obtain the following:

Lemma 6.3. Given two paths γ,γ ′ ∈P(x0,x1) with the same endpoint x, suppose that there is a homo-
topy between γ and γ ′. Then Lγ and Lγ ′ have the same endpoint. If γ,γ ′ are closed their Burgers vectors
and rotations coincide.

Lemma 6.4. Given two paths γ and γ ′ with the same starting- and end- points, suppose that the domain
Ω(γ ∗ γ

′) does not contain defects. Then there exists a homotopy between γ and γ ′.
In particular if there are no defects we can always find a homotopy between two paths with the same

starting- and end- points.

Proof. The proof is the same as Lemma 4.6 in [The06].

For any closed path γ = (γ0, . . . ,γ` = γ0), we can choose any pair of distinct consecutive vertices
γi,γi+1 as base points x0,x1, construct the lift of γ as a path belonging to P(x0,x1) and compute its
Burgers rotation. From the definition of R(γ) we have the following.
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Lemma 6.5. For any closed path γ = (γ0, . . . ,γ` = γ0) its Burgers rotation R(γ) does not depend on the
choice of base points x0,x1.

We can therefore define the Burgers rotation for any loop, that is any closed path without mention of
the base points, and by linearity also for any linear combination of closed paths, that is for any polygonal
1-chain with integer coefficients supported on the edges of G:

R

(
∑

i
niγi

)
:= ∏

i
R(γi)

ni

where we consider the sum on the left as a formal sum. Since each R is a rotation of a multiple of π

3 we
can also consider 1-chains with coefficients in Z6 = Z/(6Z).

Given a closed regular path γ , for every point x not on the image of γ define I(γ,x) as the index of γ

around x. Viewing γ as a curve in the complex plane C composed by the union of all its directed edges,
we can write the index as the complex integral

I(γ,x) =
1

2πi

˛
γ

1
z− x

dz.

This counts how many times (with sign) the curve γ circles around x, with a positive sign if it is counter-
clockwise. Define the defect measure of γ as

σγ := ∑
v∈Vde f (G)

I(γ,v)(deg(v)−6)δv.

This counts the number of defects enclosed by γ , each counted with the multiplicity of how many times
γ circles around it and multiplied by deg(v)−6. For every closed regular path γ define

θ(γ) :=
π

3 ∑
v∈Vde f (G)

I(γ,v)(deg(v)−6) =
π

3
σγ(V (G)). (6.5)

Call two paths γ and γ ′ cobordant if there exists an open set Ω not containing defects such that ∂Ω =

γ− γ ′, where we consider the oriented boundary.

Lemma 6.6. R(γ) coincides with a rotation of angle θ(γ). Moreover if two paths are cobordant then
they have the same Burgers rotation.

The proof of the previous Lemma will be given below after we introduce a different point of view,
where we associate to each graph a flat manifold with point singularities. In this new setting it will be a
simple consequence of the Gauss-Bonnet theorem.

We now define a way of creating some “cuts” on the graph G, which are a union of edges of G that
link together different defects, so that in each component of a cut the defects are balanced, that is their
sum cancel out modulo 6; equivalently, for every closed regular path avoiding the vertices in the cut its
Burgers rotation is zero.
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Figure 6.8: An example of cut. Consider the dual graph of the depicted partition, that is in each face
put a vertex (e.g. the barycenter) and draw an edge between each pair of neighbouring polygons.
Then a possible cut is shown in red (thick line). In the complement of this cut each regular closed
path encloses the same amount of pentagonal and heptagonal defects, and therefore has no rotational
displacement.

Definition 2. A cut of a triangulated straight planar graph G is a subgraph S⊂G such that the following
holds: for every closed regular path γ with values in Vreg(G) \V (S), its Burgers rotation R(γ) is the
identity.

By Lemma 6.6 this is equivalent to the following: for every connected component Si of S

σG(Si)≡ 0 (mod 6)

where
σG := ∑

v∈V (G)

(deg(v)−6)δv

is the defect measure of G (recall (6.2)).

We can also identify a cut with a 1-current T with coefficients in Z6 := Z/(6Z) such that ∂T = σG

(mod 6). An example of a cut is shown in Figure 6.8.
The motivation of creating these cuts will be clear in the following: essentially in the complement of

these cuts we will be able to define a curl-free orientation map β as explained in the following section.
The situation is similar to the possibility of defining a branch of the complex square root when we remove
a half-line from the origin.

6.4 Construction of the orientation map β

The goal of this section is to construct, given a triangulated graph G, a matrix field β : ΩG→ R2×2 that
represents in some way the orientation, or better the distortion, of the triangular faces that constitute the
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graph G. The following construction follows the idea by Theil [The06], which however dealt only with
the defect-free case. We will extend his construction also to the case with defects.

In the case there are no defects in the graph we obtain the orientation β in the following way. First
we prove that we can identify the graph G with a subgraph of A2 through a map y : Vreg(G)→A2 that is
a local embedding around every point. In particuar we can define its piecewise affine extension on every
triangular face to obtain a map u : Ω(G)→R2. Then we define simply β := ∇u. The whole point in this
case is to prove that such a map u exists. To this aim we fix two base points x0,x1 and for every regular
vertex x we consider a path γ ∈P(x0,x1) with endpoint x and define y(x) := Lγ(x) where Lγ is the lift
of γ . In words, we take any path starting from two fixed points x0,x1 and ending at x and we reconstruct
it in the triangular lattice A2 through its lift, and define y(x) as the endpoint of the reconstructed path. If
there are no defects this map is well-defined thanks to Lemma 6.3 and Lemma 6.4.

In the case there are defects, the map u could not exist. However under some circumstances the map
defined locally by β = ∇u is still well-defined. This is the case if we remove from Ω(G) a cut as per
Definition 2. Roughly speaking we can say the following: we can define u whenever for any closed path
γ we have A(γ) = Id, while we can define “β = ∇u” whenever for any closed path γ we have R(γ) = Id,
which is a weaker requirement that allows for translational dispacements. In other words, the existence
of paths with non-zero Burgers vectors is an obstruction to the construction of u but not necessarily of
β ; only the existence of paths with non-trivial Burgers rotation is an obstruction to the construction of β .
We now give some more details.

Construction of β in absence of defects

We consider the case without interior defects, that is we suppose the following:

• the subgraph of regular vertices is connected;

• there exist two base points x0,x1 such that for any closed path γ ∈P(x0,x1) the associated Burgers
isometry is the identity: A(γ) = Id.

Then by the first assumption for any regular vertex x we can find a path γ ∈P(x0,x1) with endpoint
x. We define the map y : Vreg(G)→ A2 by y(x) := Lγ(x). This is well-defined thanks to the second
assumption. We define u as the piecewise affine interpolation of y on each face. Finally, we define
β := ∇u.

Observe that in this case we are able to define u, the potential of β .

Construction of β in presence of defects

The key idea is that if there are some defects we can remove a cut S to obtain a configuration in which
any closed path has R(γ) = Id (no rotational displacement). We then define again the map β = ∇u by
constructing u locally in the complement of the cut through the lift construction. Even though the map
u is not globally well-defined, the absence of rotational displacement implies that instead β is globally
well-defined.
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Consider then any cut S, and consider a path-connected component C of Vreg(G)\V (S). Fix two base
points x0,x1, and consider any triangular face F whose vertices belong to C , and fix one of its vertices,
call it x. Let us define a map u on F with values in R2. Choose any path γ ∈P(x0,x1) (of length `) with
endpoint γ(`) = x and define the map u on the face F through the lift construction: u(x) := Lγ(`), and
u is accordingly defined on the other two vertices by adding to the path γ the only edge that is missing
to reach the vertices (and then we extend u to the whole face through the affine interpolation). Finally
define β := ∇u. Just in case, in the faces where β is not defined, and possibly in the unbounded face of
G, we put β = Id.

The above definition of u depends on the chosen path γ; however the definition of β does not. Indeed
if we choose another path γ ′ connecting x0,x1 to x, and define u′ accordingly, then the maps u and u′

differ only by a translation, thanks to the fact that on the complement of the cut every closed path has
no rotational displacement. Therefore ∇u = ∇u′ and β is well-defined. Not only this, β is curl-free in
distributional sense outside the cut S because we can always locally find a primitive u.

Observe that the above construciton of β depends on the choice of the cut S.

Remark 6.7. To define β we could also adopt a more abstract approach: define the class of admissible
orientations A (G) as the family of all maps β : Ω(G)→ R2×2 such that on every triangular face F the
map β coincides with ∇u for some map u : F → R2 which is affine and sends injectively the vertices
V (F) in the three vertices of some unit equilateral triangle of A2.

With this definition there is no attention paid to the creation of distributional curl of β . With this
viewpoint our goal in the following will be to find a “good” admissible orientation β , that is such that
‖Curlβ‖ is as low as possible, in order to obtain the most from the Rigidity Theorem 6.1. Observe
that the term involving ‖dist(β ,SO(2))‖L2 in the right hand side of (6.1) is the same for all admissible
orientations, and therefore to prove estimates about the elastic energy we can choose any admissible
orientation that we wish. Observe also that due to the rigidity of the class A (G) (piecewise affine maps)
for every β ∈A (G) we have that µβ := |Curlβ | is necessarily a finite measure which is concentrated on
a 1-dimensional set, namely the union of finitely many edges of the graph G. We can say even more: the
measure Curlβ is “quantized” in the following sense.

Lemma 6.8. For any admissible β the measure µβ := Curlβ coincides with

∑
e∈E(G)

τ(e)
1

H 1(e)
H 1xe

for a suitable function τ : E(G)→A2∩B(0,2).

In other words along every edge e = [v,w] of G the measure µβ is a constant vector multiple of the
length measure H 1, and µβ ([v,w]) is a vector of the lattice A2 with norm at most 2 (i.e. the difference
between two unit vectors in A2).

Proof. It is clear that along each edge e = [v,w] µβ is a constant multiple of H 1 since β is constant on
both sides. Call β+ and β− the value on the two sides, and let u+,u− be a primitive of β on the two sides.
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Let t = w−v
|w−v| be the unit tangent vector to e and let γ : [0,1]→ [v,w] be a constant speed parametrization

of the segment [v,w]. Then
ˆ

e
β
+ · t dH 1 =

ˆ
e
∇u+ · t dH 1 =

ˆ 1

0

d
ds

u+(γ(s))ds

= u+(γ(1))−u+(γ(0)) = u+(w)−u+(v).

But u+ is a map that in every triangular face sends the vertices of the graph into the vertices of A2, and
therefore u+(w)−u+(v) is a unit length vector in A2. The same holds for u−.

Now to compute µβ (e) we compute µβ (Iδ (e)) where Iδ (e) is a δ -neighbourhood of e, and then send
δ → 0. We have

µβ (Iδ (e)) =
˛

∂ Iδ (e)
β · t dH 1 = u+(w)−u+(v)+u−(v)−u−(w)+O(δ )

and thus sending δ → 0 we obtain µβ (e) = u+(w)− u+(v)+ u−(v)− u−(w) which is a vector of A2 ∩
B(0,2).

6.5 Defects as singular curvature points of a locally flat surface

In this section we want to briefly explain a point of view that is useful to analyze defects, namely we
see defects as points with singular Gaussian curvature inside a flat two-dimensional surface. This point
of view has been used in some works on the so-called incompatible elasticity to describe elastic de-
formations of bodies whose rest configuration is not flat [KS12], [KMS15], [KM15], [KM16]. Even
though we don’t use the results contained in the references above, which are a bit abstract for our case,
it is still useful to have this connection in mind. Besides a theoretical interest this point of view has a
practical interest in the topic of creation of graphene sheets with a controlled location of its grain bound-
aries [WC17], which can actually improve the resistence of the graphene sheet [Son+15]. We also cite a
review article about the effect of defects in graphene [Liu+15].

The starting point is the following example: the configuration in Figure 6.9 with a single pentagonal
disclination fits exactly in a cone with an appropriate angle. More precisely, construct a cone in the
following way: consider R2 without a π

3 sector starting from the origin, and identify the edges that are
formed in the obvious way. Then in the conical surface that results from this construction we could insert
a pentagon in the origin and regular hexagons outside. In other words we can realize the topological
configuration of a single pentagonal defect without creating any distortion in the surrounding hexagons.
We could see this “conical honeycomb” as a stress-free reference configuration for a pentagonal discli-
nation, like the usual honeycomb is a reference configuration for a defect-free configuration. A similar
construction works in the case of, say, a heptagonal defect. In this case we have instead to add a π

3 sector.
Similarly we can construct a reference configuration for any given distribution of defects, i.e. we can

build a two-dimensional manifold that is flat everywhere except for some singular points that correspond
to defects, and that fits exactly the original topological configuration with the only difference that with the
given metric all hexagons become regular: we just have to impose the appropriate flat metric outside the
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Figure 6.9: An isolated disclination surrounded by hexagons could fit exactly in a cone, without
distortion of the hexagons. Picture taken from [EN06].

defects. In the case of triangulated graphs, this amounts to impose that all triangular faces are equilateral
triangles of side ε .

Essentially we proceed in the following way: for any triangular face F we consider the map u that
sends F into an equilateral triangle of side ε , and define β = ∇u. Then the metric tensor on F is given by
the matrix g= β>β , with respect to the usual basis (∂x,∂y) of tangent vectors on F . This metric coincides
with the pullback metric u∗gE where gE is the Euclidean metric on R2, and therefore defines a flat metric
in which by definition F is an equilateral triangle of side ε . The only problem with this definition is
that in passing from one face to a neighbouring one the metric could change discontinuously, and thus
this does not define a smooth metric. However this is not a fundamental issue, and we can circumvent
this difficulty by defining locally the metric through charts that are a union of triangles. More precisely,
consider the fundamental open sets pictured in Figure 6.10:

• an equilateral triangle;

• two adjacent equilateral triangles (including the common edge);

• six adjacent equilateral triangles (including the common edges and the middle vertex);

Then we define the metric on Ω(G)\Vde f (G) as follows: whenever there is a local embedding φ : U →
Ω(G) that sends vertices of U to vertices of G and is affine on each face, we put on φ(U) the induced
metric φ−1

∗ gE . This is a good definition since every change of charts is a rigid motion, and therefore no
matter which embedding φ we are using we are really defining the same metric. This defines a flat metric
on the whole domain Ω(G) of the graph, except in the defects.

With this construction, to any graph G containing some defects we can associate a manifold that
represents the “unstretched” reference configuration with the same topological structure. Referring to
the elastic energy defined later on, we are in a certain sense removing the elastic part of the energy and
keeping just the one given by defects. The elastic energy of the original graph G can then be viewed as
the elastic energy required to flatten the manifold into R2.

Using Gauss-Bonnet theorem in the conical surface we can say that the curvature associated to a
pentagon is positive and the one associated to a heptagon is negative. Indeed, consider a vertex v with
degree d = deg(v) and belonging to d triangular faces. It has d edges emanating from it. Consider the
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Figure 6.10: To define a metric on the domain of the graph (minus the defects) we impose the
metric through the parametrizations shown above: whenever we can affinely embed one of the three
reference open sets into our graph (sending vertices to vertices) we put the correspondent induced
metric. If two parametrizations overlap the induced metric is the same since the change-of-chart
functions are rigid motions, and thus the metric is well defined. In particular we obtain a Riemannian
manifold which is flat outside the defects, and by Gauss-Bonnet we can identify vertices as singular
curvature points.

polygonal path γ given by traveling counterclockwise through the outer edges of the triangular faces.We
apply Gauss-Bonnet to γ , with the usual convention of counting counterclockwise angles with positive
sign and clockwise angles with negative sign. The geodesic curvature of the edges is zero, because the
metric is flat. The external angles at each turning point are π

3 , by definition of the metric. Writing K for
the gaussian curvature of the manifold we formally have

2π =

ˆ
Ω(γ)

Kdx+
ˆ

γ

κg +
d

∑
i=1

π

3
=⇒

ˆ
Ω(γ)

Kdx =
π

3
(6−d).

Since the same holds for any concentric path obtained by shrinking γ through a dilation with center v,
we obtain that in the neighbourhood of v

K =
π

3
(6−d)δv =−θ(γ)δv

where θ(γ) is given by (6.5), and therefore we can view the Gaussian curvature K as an atomic measure
supported on singular vertices. Considering all vertices we obtain that −K coincides with the defect
measure σG:

K =−σG.

In particular we can now prove Lemma 6.6, as previously anticipated.

Proof of Lemma 6.6. Consider a discrete path γ and call γ̃ its naturally associated continuous path ob-
tained traveling through the edges between consecutive vertices. The rotation R(γ) is the sum of all the
turning angles of its lift Lγ , which coincide with the exterior angles at each vertex of the continuous path
γ̃ , and therefore we conclude.
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6.6 Definition of the energy on graphs

We now introduce an energy Eε defined on a triangulated graph G that depends on an elastic part (de-
formation of regular faces) and on a singular part (number of defects), and moreover on a microscopic
parameter ε that represents the ideal length at rest of the edges. We will see how the previous construc-
tion of the orientation β together with the Rigidity Theorem 6.1 allows to find lower energy estimates
for the interface problem under some natural assumptions on the energy.

In particular for a class of energies defined on G arising from different mathematical models we
would like to be able to relate the two terms in the right hand side of (6.1) to the elastic part of the energy
(‖dist(β ,SO(2))‖L2(Ω)) and to the energy given by defects (‖Curlβ‖).

We introduce a parameter ε > 0 that represents the microscopic scale of the system. It can be seen
as a reference length for the ground state, which is ideally a triangular lattice of step ε . We consider a
triangulated graph G where each edge has length of order ε:

H 1(e)≈ ε (6.6)

that is mε ≤H 1(e) ≤ Mε for two absolute constants 0 < m ≤ M < ∞. We consider the admissible
orientations Aε(G) as the naturally rescaled counterpart of A (G): each admissible map is locally the
gradient of a function u which sends V (G) into εA2. In particular β ∈Aε(G) is a pure rotation on every
regular face which is an equilateral triangle of side ε . Moreover by Lemma 6.8 and (6.6) we have

|Curlβ | ≈H 1xspt(Curlβ ) (6.7)

and in particular
|Curlβ |. H 1xS

for any cut S.
We see the energy Eε = E el

ε +E de f
ε as a measure on Ω(G), composed by an absolutely continuous

elastic part E el
ε and a singular part E de f

ε concentrated on defects. We actually consider the energy Eε as
an energy excess with respect to some ground state, and we explain this point with two examples.

Motivating examples

1. As a first example consider configurations of N particles XN = {x1, . . . ,xN} minimizing an energy
I given by

I(XN) = ∑
1≤i< j≤N

V (|xi− x j|)

where V : (0,+∞)→ R∪{+∞} is a small elastic perturbation of the sticky-disk potential, e.g. it
satisfies

• V (1) =−1 where it has a minimum;

• V (1+ z) ≥ −1+ cz2 for |z| ≤ α and some constants c > 0 and 0 < α < 1 sufficiently small
(i.e. the potential has quadratic growth around the minimum point);
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• V (r) = +∞ if 0≤ r < 1−α;

• V (r) is identically zero for r > 1+α .

In order to deal with bounded configurations we consider the rescaled energies

Iε(XN) := ∑
1≤i< j≤N

V
(
|xi− x j|

ε

)

where N ≈ 1
ε2 , which favour a triangular lattice of step ε . Then the graph G = G(XN) associ-

ated to XN is the bond graph which connects with an edge a pair of particles xi,x j if and only if∣∣∣ |xi−x j|
ε
−1
∣∣∣< α . A suitable sequence of competitors built as subsets of the triangular lattice gives

an upper bound for the energy
Iε(Xmin

N )≤−3N +C
√

N

and therefore the rescaled energy Eε would be in this case

Eε(XN) =
1√
N
(Iε(XN)+3N).

Let us show that we can relate the elastic part of the energy to ‖dist(β ,SO(2))‖L2 , where β is an
admissible orientation for the configuration. We have that

Iε(XN) =
1
2 ∑

x∈XN

∑
x′∈N (x)

V
(
|x− x′|

ε

)

≥ 1
2 ∑

x∈XN

∑
x′∈N (x)

(
−1+ c

(
|x− x′|

ε
−1
)2
)

≥−3N +
1
2

#Vde f (G)+
c
2 ∑

x∈XN

∑
x′∈N (x)

(
|x− x′|

ε
−1
)2

and thus

Eε(XN) =
1√
N
(Iε(XN)+3N)&

1√
N

#Vde f (G)+
1√
Nε2 ∑

x∈XN

∑
x′∈N (x)

(|x− x′|− ε)2

= ε#Vde f (G)+
1
ε

∑
x∈XN

∑
x′∈N (x)

(|x− x′|− ε)2

where we used ε ≈ 1√
N

. Now a simple computation (see Lemma 4.2 in [The06]) tells us that the
last sum is related to ‖dist(β ,SO(2))‖L2 in the following sense: given a triplet of points x1,x2,x3,
let β denote the gradient of the affine function that sends x1,x2,x3 injectively to the vertices of an
equilateral triangle of side 1. Then

dist(β ,SO(2))2 ≤ K max
i6= j

∣∣|xi− x j|−1
∣∣2
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for an absolute constant K. In particular for any triangular face F , that is for any triplet of neigh-
bouring points x1,x2,x3, we have

∑
1≤i< j≤3

(|xi− x j|− ε)2 = ε
2

∑
1≤i< j≤3

(
|xi− x j|

ε
−1
)2

& ε
2
ˆ

1
ε

F
dist
(

β

( ·
ε

)
,SO(2)

)2

=

ˆ
F

dist(β ,SO(2))2

and therefore
Eε(XN)& ε#Vde f (G)+

1
ε

ˆ
Ω(G)

dist(β ,SO(2))2.

2. As a second example consider the perimeter functional for clusters with equal areas: for a (polyg-

onal) N-cluster E with areas 1
N the microscopic parameter would be ε = 1√

N
4
√

4
3 (the distance

between the centers of two adjacent hexagons in the honeycomb with areas 1
N ) and the total energy

would be
Eε(E ) = P(E )−

√
N 4
√

12.

Again we are subtracing the bulk part of the energy (in this case given by Hales theorem) in order
to obtain an energy that is equibounded on minimizing sequences. In this case we have at least
two choices to associate a graph G to the configurations: we can triangulate each polygon and
consider the graph naturally associated to the triangulation (faces are triangles; vertices and edges
are triangles’ vertices and edges) or we can consider the dual graph of the graph associated to the
original polygonal partition.

In the case of polygons we have a strong Hales-type inequality in the following form: consider a
polygon E with area 1 and k sides, with a uniform bound on the length of the sides. Then

P(E)≥ P(Π6)−a1(k−6)+a2(1−δ6,k)+a3δ6,kd(E,Π6)
2 (6.8)

for some constants a1,a2,a3 where:

• Πk is the regular polygon with k sides and with area 1;

• d(·, ·) is any reasonable distance among polygons, for instance the minimum Hausdorff dis-
tance between ∂E and an isometric copy of ∂Πk:

d(E,F) := inf
τ∈R2

R∈SO(2)

{
dH(∂E,∂ (τ +RΠ6)))

}
.

• δ6,k is the Kronecker delta, equal to 1 if k = 6 and zero otherwise.

Equation (6.8) holds for the following reason:
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• When k = 6 it reduces to

P(E)≥ P(Π6)+a3d(E,Π6)
2

for all polygons with 6 sides, area 1 and uniformly bounded perimeter, which is true by the
results of [CM16, Proposition 2.1], see also [IN15, Corollary 1.3].

• When k 6= 6 it reduces to

P(E)≥ P(Π6)−a1(k−6)+a2.

for every polygon E with k 6= 6 sides and area 1. This inequality follows immediately from
the polygonal isoperimetric inequality P(E) ≥ P(Πk) and from the strict convexity of the
function k 7→ P(Πk) = 2

√
k tan π

k .

Consider now an N-cluster EN with areas 1. Summing inequality (6.8) among all the polygonal
chambers of EN we obtain

P(EN) =
1
2

N

∑
i=0

P(EN(i))

≥ 1
2

P(EN(0))+
1
2

N

∑
i=1

(
P(Π6)−a1(ki−6)+a2(1−δ6,ki)+a3δ6,kid(EN(i),Π6)

2)
=

1
2

P(EN(0))+
4
√

12N−a1

N

∑
i=1

(ki−6)+a2#{i : ki 6= 6}+a3 ∑
i :ki=6

d(EN(i),Π6)
2.

Now we can neglect the sum of (ki−6) because by Euler’s formula for planar graphs the contribu-
tion is positive (see Remark 6.9 below). We now rescale the cluster EN by a factor 1√

N
so to obtain

a cluster ẼN with areas 1
N . The previous inequality becomes

P(ẼN)≥
4
√

12
√

N +
1√
N

#{i : ki 6= 6}+
√

N ∑
i :ki 6=6

d
(
ẼN(i), 1√

N
Π6
)2
.

Recalling that ε ≈ 1√
N

the original energy Eε therefore satisfies, for any N-cluster E with areas 1
N

Eε(E ) := P(E )−
√

N 4
√

12 & ε#Fde f (E )+
1
ε

∑
i :ki=6

d
(
E (i), 1√

N
Π6
)2

where Fde f is the family of defective faces with a number of sides different from 6. Again, as in the
first example, we can relate the last quadratic sum to ‖distβ ,SO(2))‖L2 where β is a suitable map
that sends the hexagonal face to a regular hexagon of area 1

N (for instance partition the hexagonal
face in 6 triangles and send affinely each triangle in a suitable equilateral triangle; we omit the
details). If we consider the dual graph G of the original partition, the term #Fde f (E ) becomes
exactly #Vde f (G), and thus we obtain exactly the same kind of energy as in example 1.
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Definition of the energy

Keeping in mind the previous examples we therefore impose the following assumptions on the energy
Eε :

• Eε admits a decomposition E = E el
ε +E de f

ε where E el
ε is the elastic energy due to deformations of

the regular triangular faces while E de f
ε is the energy caused by defects:

E de f
ε (G) = ∑

v∈V (G)

E de f
ε (v), E el

ε = ∑
F∈F(G)

E el
ε (F);

• Quadratic elastic energy. For any admissible β ∈Aε

E el
ε (F)≈ 1

ε

ˆ
F

dist(β ,SO(2))2. (6.9)

In particular E el
ε (F) = 0 whenever β ∈Aε(G) and F is an equilateral triangle of sidelength ε;

• Quantization of defects.

m≤ 1
ε
E de f

ε (v)≤M (6.10)

for any defect v ∈Vde f (G) and for some constants m,M.

In view of the previous discussion, the energy we consider is therefore

Eε(G) =
1
ε

ˆ
Ω

dist(β ,SO(2))2 + ε#Vde f (G) . (6.11)

Remark 6.9. The lower bound of (6.10) is verified on average if we know that a Hales-type inequality
holds for defects:
• Hales-type inequality for defects.

1
ε
E de f

ε (v)≥ a1(6−deg(v))+a2δ (deg(v)). (6.12)

for some universal constants a1,a2,M, where δ : N→ [0,∞) vanishes only when deg(v) = 6 and is
bounded away from zero otherwise: δ (k)≥ 1 for every k 6= 6.

This lower bound follows from Euler’s formula for planar graphs. Indeed, denoting by Eext the
external edges we have 2E−Eext = 3F , or

E =
3
2

F +
1
2

Eext .

From Euler’s formula F +V −E = 1 we obtain

F +V −
(

3
2

F +
1
2

Eext

)
= 1 =⇒ V =

1
2

F +1+
1
2

Eext .
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Moreover 2E = ∑v deg(v) and thus

∑
v
(deg(v)−6) = 2E−6V = (3F +Eext)−6

(
1
2

F +1+
1
2

Eext

)
=−6−2Eext . (6.13)

Therefore summing E de f
ε among all vertices we obtain

E de f
ε (Ω)≥ εa1(6+Eext)+a2ε ∑

v
δ (deg(v))≥ εa1(6+Eext)+a2ε#Vde f (G).

Even if we do not count the outer vertices as defects we still have

E de f
ε (G)≥ a2ε#Vde f (G).

Relation between ‖Curlβ‖ and the number of defects: the balance condition

We repeat that the energy that we will consider in the following is

Eε(G) =
1
ε

ˆ
Ω

dist(β ,SO(2))2 + ε#Vde f (G)

for any admissible orientation β . Observe that the value of dist(β ,SO(2)) does not depend on the specific
choice of β , since any two choices differ on each face by a rotation. For this reason we could write
interchangeably E el

ε (G), E el
ε (β ) or E el

ε (Ω) with the underlying agreement that there is a graph G that
gives rise to β and Ω.

The goal is now to apply Theorem 6.1 to the map β . While the elastic energy is naturally related
to ‖dist(β ,SO(2))‖L2 (and we put this in the definition of the elastic energy, see (6.9)), it is less clear
what is the exact role of ‖Curlβ‖ in terms of the defect part of the energy. Indeed we can say that for
admissible orientations β , ‖Curlβ‖ is related not really to the number of defects but rather to their flat
norm, i.e. to the length of a cut that connects them.

In order to obtain the most from inequality (6.1) we need to find a map β such that ‖Curlβ‖ =
|Curlβ |(Ω) is as low as possible. The point of having introduced the notion of cut in the previous
section is that we can give an upper bound on ‖Curlβ‖ in terms of the length of the cut. Indeed, by the
construction of β in presence of defects we know that we can always have ‖Curlβ‖.H 1(S) where S is
a cut. Therefore we encounter the following problem: given a set of defects, find the shortest possible cut
that connects them. We introduce here an assumption, called balance assumption: we say that defects
are balanced if there is a cut S such that

‖Curlβ‖ ≤Cε#Vde f (G) (6.14)

for a universal constant C, not depending on ε . As we shall now prove this is the case if for instance there
are only dislocations and no disclinations, or even if there are disclinations but they are balanced within a
radius of order ε . This could seem a rather strong assumption, but indeed single isolated disclinations are
hard to find because they create an enormous amount of elastic energy in the surrounding cells, compare
with Lemma 6.20 below.
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Lemma 6.10 (No disclinations imply balance). (i) Suppose there are dislocations but no disclinations,
that is for every closed path going through regular vertices the rotational displacement is zero. Then the
blance condition holds, that is we can choose β such that

‖Curlβ‖. ε#Vde f (G).

(ii) The same conclusion holds if we know that there is a cut S which is contained in
⋃

v∈Vde f (G) B(v,Cε)

for some universal constant C.

Proof. (i) From the assumption we obtain that we can create a cut S by considering the union of all edges
starting from defects, that is

S :=
⋃

v∈Vde f (G)

⋃
w∈N (v)

[v,w]

because any path with values in V (G)\S is regular and therefore by assumption must have trivial Burgers
rotation. Moreover we know from (6.7) and (6.6) that

‖Curlβ‖. H 1(S). ε ∑
v∈Vde f (G)

deg(v)

and from (6.13) we obtain that

∑
v∈Vde f (G)

deg(v)≤ 6#Vde f (G)

and therefore we conclude.
(ii) The proof is analogous. There is a uniformly bounded number of edges that could be contained

in the ball B(v,Cε) because of the assumption of “bounded distortion” (6.6).

6.7 The interface problem: number of defects, weak lower bound on the
energy and convergence to a BV orientation

We now finally consider the interface problem in a square of side L and with angle mismatch θ . Since we
are interested in small angles, we suppose |θ | ≤ π

12 . Consider all planar graphs G that on (−∞,−L
4 )×R

coincide with a translation of εRθ A2, Rθ being the rotation of angle θ around the origin, while on
(L

4 ,+∞)×R coincide with a translation of εR−θ A2. We suppose for simpicity that the graphs taken
into consideration are periodic with period L1 = L+O(ε) in the vertical direction, and call G (θ ,L,ε)
the class of all such graphs. We are then interested in G∩Ω (seen as a periodic graph in the vertical
direction) where Ω :=

(
[−L

2 ,
L
2 ]× [−L1

2 ,
L1
2 ]
)
.

From the construction of β in the case without defects we obtain the following:

Lemma 6.11. If there are no defects then we can choose a curl-free orientation β , that is ‖Curlβ‖= 0.

In particular we can now obtain a lower bound for the energy at an interface without defects.
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6.7. THE INTERFACE PROBLEM: NUMBER OF DEFECTS, WEAK LOWER BOUND ON THE

ENERGY AND CONVERGENCE TO A BV ORIENTATION

Theorem 6.12 (Energy lower bound at an interface without defects). If there are no defects at an
interface with angle mismatch equal to θ then the energy satisfies

Eε = E el
ε &

1
ε

L2
θ

2.

Proof. By the rigidity theorem 6.1 there is a rotation R such thatˆ
Ω

|β −R|2 .
ˆ

Ω

dist(β ,SO(2))2 ≈ εE el
ε (β )

and it is easy to see that the left hand side is at least θ 2L2.

Since by the previous estimate in absence of defects the energy blows up as ε → 0, we obtain the
following.

Corollary 6.13 (Defects must appear at an interface). For fixed θ and L consider a family of graphs
Gε ∈ G (θ ,L,ε) with bounded energy, that is

limsup
ε→0

Eε(Gε)< ∞.

Then for sufficiently small ε defects must appear.

The previous Corollary tells us that at an interface it is always necessary to introduce some defect to
avoid an energy that blows up, but does not tell us how many defects have to be introduced, and does not
exclude the case of a single magical defect that makes the energies equibounded. Actually we can prove
that the number of defects must go to infinity with a similar argument: we divide Ω in a finite number
of congruent horizontal stripes and apply the above estimate on each stripe, obtaining that in each one
there is eventually at least one defect. This argument however is just qualitative in that it gives no rate
for the number of defects in terms of ε (observe that the constant C(Ω) of the rigidity theorem, although
invariant under rescaling, does not behave well with respect to dilations in only one direction). Looking
at a grain boundary (see Figure 6.5) and assuming equispaced defects it is natural to conjecture that in
a square domain Ω of side L, angle mismatch θ and microscopic parameter ε we should have a precise
estimate on the number of defects:

#Vde f (G)&
Lθ

ε
.

Indeed the distance between two consecutive defects, in the depicted configuration, is approximately ε

θ
.

We are able to prove an estimate of this type under the balance assumption.

Lemma 6.14 (Number of defects and weak energy lower bound under the balance condition). Sup-
pose the balance condition (6.14) holds. Then

#Vde f (G)&
Lθ

ε

and we have the weak energy lower bound

Eε(G)& Lθ .
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Proof. Observe that from the energy bound E el
ε . L and the rigidity theorem in the formˆ

Ω

|β −R|2 ≤C(Ω)(εE el
ε +‖Curlβ‖2)

we obtain in particular that for sufficiently small ε

‖Curlβ‖& Lθ

and therefore using the balance assumption (6.14) we conclude.

Remark 6.15. The same conclusion of Lemma 6.12, Corollary 6.13 and Lemma 6.14 actually holds not
only for the interface case, where there are two well-separated regular zones, but also in the case when
the different orientations are “mixed”: it is sufficient that there is oscillation, i.e. that the lower bound
‖β −R‖L2 &C|θ | holds.

Even though the lower bound on the energy of Lemma 6.14 is not the optimal bound that we are
expecting, which is Lθ | logθ | (hence the adjective weak), it is a first indication towards a compactness
result in the space of BV orientations. To prove this we can use the following lemma taken from [LL16].

Lemma 6.16 ([LL16, Proposition 3]). Let Ω ⊂ Rn be an open, bounded, simply connected set and
consider a sequence β j ∈ L2(Ω,Mn×n) such that

lim
j→∞
‖dist(β j,SO(n))‖L2 = 0 sup

j
|Curlβ j|(Ω)< ∞.

Then up to a subsequence β j converge strongly in L2 to a matrix field β ∈ BV (Ω,SO(n)). Moreover the
set of points where β does not belong to SO(n) has Hausdorff dimension at most n−1, and finally

|Dβ |(Ω)≤C|Curlβ |(Ω)

for a dimensional constant C.

Proposition 6.17 (The limit orientation is BV ). Assume the balance condition (6.14) holds, and con-
sider a family of graphs Gε whose domain is a common open set Ω. Fix an open set Ω̃ b Ω, and suppose

limsup
ε→0

(EεxΩ̃)(Gε)< ∞.

Then up to a subsequence the orientations βε (that are well-defined up to rotations of multiples of π

3 )
converge strongly in L2 to a limit orientation β ∈ BV (Ω̃,SO(2)).

Proof. We apply the lemma above. We observe that from the upper bound on the energy Eε(G). L we
obtain ˆ

dist(βε ,SO(2))2 ≤ Lε

which implies the first assumption of the lemma. From the balance assumption ‖Curlβ‖ . ε#Vde f (G)

and inequality (6.10) we obtain

‖Curlβε‖ ≤ ε#Vde f (G)≤ 1
m

E de f
ε ≤ L

m
which implies the second assumption of the lemma, and thus we conclude.
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ENERGY AND CONVERGENCE TO A BV ORIENTATION

If instead of relying on the last Lemma above we rely on the full result of [LL16], we can almost
obtain a polycrystalline limit orientation (called microrotation in the reference above), that is a limit
matrix-field β such that Dβ = D jβ . The “almost” is because we have to assume again the balance
condition, and furthermore we have to assume that a logarithmic upper bound holds, that is

Eε(Gε)≤Cθ | logθ |. (UBlog)

This upper bound is currently not proved. Moreover the result is not about the sequence of orientations
βε , but about a slightly modified sequence.

We briefly describe their setting and explain how their results can be used in our case. Given a fixed
square Ω = [−L,L]2 and a microscopic parameter ε they consider the admissible class Aε of all maps
β : Ω→M2×2 such that Curlβ is a finite measure and such that, setting Sβ := supp(Curlβ ):

• β ∈ L1
loc(Ω,M2×2)∩L2(Ω\Bλε(Sβ ),M2×2) where λ is a fixed real parameter (describing the core

radius) and where, given a set S, Bλε(S) denotes its λε-neighbourhood;

• β coincides with a rotation Rθ of an angle θ on [−L,−L+ `]× [−L,L] and a rotation R−θ on
[L− `,L]× [−L,L], for some `� L;

• for every closed Lipschitz curve γ contained in Ω\Bλε(Sβ ) either
ˆ

γ

β · τ = 0

or ∣∣∣∣ˆ
γ

β · τ
∣∣∣∣≥ cε

for a constant c > 0. This assumption corresponds to a quantization of the dislocations.

The energy is then defined (up to constants) by

Eε(β ) =
1
ε

ˆ
Ω\Bλε (Sβ )

dist(β ,SO(2))2 +
1

λε
|Bλε(Sβ )|.

If Sβ is 1-dimensional and regular enough, as is the case for our admissible orientations defined in 6.7,
then the second term of the energy is equivalent to H 1(Sβ ), which in turn by the balance condition
is equivalent to ε#Vde f (G), and therefore the energy reduces to our energy Eε . Adapted to our case,
Corollary 12 in [LL16] reads as follows.

Proposition 6.18 (The limit orientation is a microrotation). Assume that the balance condition (6.14)
and the logarithmic upper bound (UBlog) hold, and consider a family of graphs Gε whose domain is a
common open set Ω. Fix an open set Ω̃ b Ω, and suppose

limsup
ε→0

Eε |Ω̃(Gε)< ∞.
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Then there exists another family β̃ε of admissible maps in Aε such that Eε(β̃ε)≤CEε(βε) and such that
up to a subsequence they converge strongly in L2 to a limit orientation β̃ which is a microrotation, that
is

Dβ̃ = D j
β̃ , β ∈ SO(2) a.e.

and moreover the measures
1
ε

dist(β̃ε ,SO(2))2L 2xΩ+
1
ε
L 2xBλε(Sβ )

converge to a measure µ such that

Cµ ≥ |β̃+− β̃
−| | log(|β̃+− β̃

−|)|H 1xS
β̃
.

Proof. The conclusion follows from the above discussion and from [LL16, Corollary 12].

We remark however that for now we do not have a logarithmic upper bound, that is we do not
have a sequence of competitors with a logarithmic energy in the angle θ , and moreover we would like
to conclude that the original sequence (and not a modified one) has the properties described by the
Proposition.

6.8 The ball construction

In this last Section we explain what is the result we would like to obtain, what is the path we would like
to follow and what are the difficulties that for now do not allow us to conclude.

The goal is to give a better estimate from below of the energy Eε in terms of L,θ and ε . In Lemma
6.14 we gave the estimate E el

ε & Lθ . We expect that a better estimate holds:

Eε & Lθ | logθ |, (6.15)

and we call this estimate for short logarithmic lower bound. We remark that the energy due to the single
defects is expected to be ≈ θL, much smaller than the above estimate. The extra logarithmic factor is
really coming from the elastic deformations that propagate around each defect and not to the defects
themselves. We first look at the energy around a single group of defects.

Elastic deformation around defects

We now analyze the case of a single defect or of a group of defects inside an otherwise regular config-
uration, with the goal of proving that the presence of the defects creates an elastic deformation on the
surrounding regular cells (see Figure 6.11). As we will see this deformation propagates even at long dis-
tances, and the elastic energy contained in a ball of radius ρ depends on whether the defect is a dislocation
(the energy is logarithmic in ρ) or a disclination (the energy is quadratic in ρ). The situation presents
many similarities with the Ginzburg-Landau models where analogous logarithmic estimates hold. To
pass from the estimate of the energy around a single defect to an estimate for the whole configuration we
would like to adapt a proof given by Sandier in the context of planar Ginzburg-Landau models [San98]
(a similar result was proved at the same time by Jerrard [Jer99]).
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Figure 6.11: Example of disclinations and dislocations in the case of the hexagonal lattice. The
deformation on the surrounding cells propagate even at long distance and depends on whether the
defect is a disclination or a dislocation: in the first case all cells are stretched and the elastic energy
in a certain ball is at least proportional to its area (Lemma 6.20); in the second case the defect is less
severe and the elastic energy has a logarithmic behaviour: the energy in an annulus Bρ \Br goes like
log
(

ρ

r

)
(Lemma 6.19).

Lemma 6.19 (Elastic energy around a dislocation). Suppose β : Bρ \Br→ R2×2 is curl-free and that

˛
∂Br

β · τ = ε~b.

Then we have that ˆ
Bρ\Br

dist(β ,SO(2))2 ≥C(ρ,r)
1

2π
|~b|2ε

2 log
(

ρ

r

)
(6.16)

where C(ρ,r) is the rigidity constant of the annulus Bρ \ Br, which is uniformly bounded whenever
ρ

r ≥ 1+δ for some positive δ .

Proof. We remove a cut and a hole from Bρ , obtaining the set

Bρ,r := Bρ \ (Br ∪ `)

with ` a half line starting from the origin. Then in this domain β admits a primitive, that is β = ∇u for a
map u ∈W 1,2(Bρ,r,R2), and we can apply the Rigidity estimate with a cut and a hole from [SZ12]:

ˆ
Bρ\Br

dist(β ,SO(2))2 ≥C(ρ,r)
ˆ

Bρ\Br

|β −R|2
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for some rotation R. Moreoverˆ
Bρ\Br

|β −R|2 =
ˆ

ρ

r
dt
ˆ

∂Bt

|β −R|2ds

≥
ˆ

ρ

r
dt

1
2πt

∣∣∣∣ˆ
∂Bt

(β −R) · τdt
∣∣∣∣2

=
|~b|2

2π
ε

2 log
(

ρ

r

)
and the result follows.

Lemma 6.20 (Elastic energy around a disclination). Suppose β : Bρ \Br→R2×2 is an admissible map
associated to a graph without defects in Bρ \Br and suppose the rotational defect of a path around ∂Br

is non-zero. Then we have that ˆ
Bρ\Br

dist(β ,SO(2))2 &C(ρ,r)|Bρ \Br|.

Proof. Set for simplicity Ω := Bρ \Br. We remove again a cut to obtain the set Ω1 := Ω\ `, where ` is,
say, the vertical half-line {(x1,x2) ∈ R2 : x1 = 0,x2 ≥ 0}. In this domain there exists an orientation β1

such that β1 = ∇u1 for a map u1 ∈W 1,2(Ω1,R2), and we can again apply the Rigidity estimate with a cut
and a hole from [SZ12]: ˆ

Ω1

dist(β1,SO(2))2 ≥C(ρ,r)
ˆ

Ω1

|β1−R1|2

for some rotation R1. Now we consider another cut domain, namely the one where the cut is opposite to
`: we define Ω2 := Ω \ (−`). We consider the orientation β2 defined on Ω2 which coincides with β1 in
Ω+ := Ω∩{x1 > 0} and which is continued without creating curl, and as above we apply the rigidity to
obtain a rotation R2 such thatˆ

Ω2

dist(β2,SO(2))2 ≥C(ρ,r)
ˆ

Ω2

|β2−R2|2.

Since Br contains rotational defect, on the domain Ω− := Ω∩{x1 < 0} the new map β2 differ from β1

by a constant non-trivial rotation by a multiple of π

3 , that is β2 = R0β1 on Ω−, with R0 = Rk
π/3 for some

k 6≡ 0 (mod 6). Then we obtainˆ

Ω1

|β1−R1|2 +
ˆ

Ω2

|β2−R2|2 =
ˆ

Ω+

(|β1−R1|2 + |β1−R2|2)+
ˆ

Ω−

(|β1−R1|2 + |β1−R−1
0 R2|2)

≥ 1
2

ˆ

Ω+

|R1−R2|2 +
1
2

ˆ

Ω−

|R1−R−1
0 R2|2

=
1
4
|Ω+||R2−R−1

0 R2|2 =
1
8
|Ω| |Id−R0|2

where we used twice that (a2 + b2) ≥ 1
2(a+ b)2 and the triangle inequality. The last term is clearly

bounded away from zero by a universal constant times |Ω|.
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Remark 6.21. In particular, as could be intuitively clear, the energy around a single disclination con-
tained in some ball Br is much bigger than the energy around a single dislocation contained in the same
ball: indeed for any fixed constant C we have

ρ
2 ≥Cr2 log

(
ρ

r

)
as soon as ρ ≥ c(C)r for some constant c(C) big enough (i.e. such that x2 ≥C logx for every x≥ c(C)).

Remark 6.22 (Logarithmic lower bound under the equidistance assumption on defects). In view of
Lemma 6.19 we can prove the logarithmic lower bound (6.15) if for instance we suppose a priori that
the disposition of defects at an interface is similar to the one depicted in Figure 6.5 (a), that is a pair
of pentagonal-heptagonal defects appears at regular intervals of length d ≈ ε

θ
. Indeed, for every pair of

defects we can consider a ball of radius ≈ ε

2θ
and apply the logarithmic estimate of Lemma 6.19. We

obtain

Eε =
1
ε

ˆ
dist(β ,SO(2))2 & ε#Vde f log

(
d
ε

)
≈ Lθ log

(
1
θ

)
which is exactly what we wanted.

The two main difficulties in extending this result to general configurations are the following:

• Taking into account also disclinations, or equivalently prove that the balance condition (6.14)
holds. A hint that this condition should be verified is given by Lemma 6.20: the energy around
a disclination is much bigger than the energy around a dislocation, and this suggests that even
if some disclinations exist they are close to other defects and, within some radius of order ε ,
they balance with some other disclination. The main difficulty in making this rigorous is that the
estimate of Lemma 6.20 holds in the ideal situation where there are no defects in a certain annulus
Bρ \Br, but in general this could be false and there could be many defects grouped together. That
is, the situation could not be so clean with a disclination at the center and then an annulus without
any defect. To solve this problem a way could be proving some rigidity theorems inside domains
with many holes and cuts, in the spirit of [SZ12], the key being a uniform estimate for the rigidity
constants on these domains.

• The second difficulty is that, even if we assume a priori the balance condition (6.14), we still do
not know that the dislocations are evenly spaced. As a consequence if we try to apply as above
Lemma 6.19 to some annuli surrounding dislocations, we could obtain a very poor lower bound
because if two dislocations are close to one another then the ratio between the outer and inner radii
of their annuli is close to 1. This means not only that the logarithmic factor will be close to zero,
but also that the constant C(ρ,r) of the rigidity theorem are not controlled, because they blow up
on thin annuli. Actually the second problem is the most fundamental one: as we explain below, a
ball construction in the spirit of the one given by Sandier ad Jerrard for Ginzburg-Landau models
could be used to circumvent the first problem. In particular, if the rigidity constant didn’t blow up
on thin annuli, we could really obtain the logarithmic factor.



CHAPTER 6. THE INTERFACE PROBLEM 130

A similar issue, with the rigidity constants blowing up on thin annuli, has been already faced in
[DLGP12]. They considered a core-radius approach to dislocations, and used the linearized energy

E (µ,β ) =

ˆ
Ωε

|β sym|2dx+ |µ|(Ω),

where the measure µ = ∑
N
i=1 biδxi represents dislocations, Ωε = Ω \

⋃N
i=1 B(xi,ε) is the domain

without the core-radius of each dislocation, and where the admissible maps are given by all curl-
free matrix-fields β : Ωε →M2×2 such that 

∂B(xi,ε)
β · τ = bi

and finally β sym = 1
2(β +β>) is the symmetric part of β . They circumvent the blowing up of the

constants by means of a discrete ball construction, where the annuli have a fixed ratio bigger than
1 between outer and inner radius. This construction, however, seems capable of handling at most
| logε| dislocations, while we know by Lemma 6.14 that in our case we have ≈ 1

ε
of them.

The original ball construction

We now explain the ball construction taken from Sandier [San98] and Jerrard [Jer99] which was orig-
inally used to give lower bounds for the Ginzburg-Landau energy of a map u : Ω→ S1 in terms of its
degree deg(u,∂Ω) at the boundary.

We briefly explain the original setting. It is an easy computation [San98, Lemma 1.1] to show that
given u ∈ C1(BR \Br,S1) with d = deg(u,∂BR) we have the following lower bound for the Dirichlet
energy:

E(BR \Br,u) :=
1
2

ˆ
BR\Br

|∇u|2 ≥ πd2 log
(

R
r

)
.

Indeed we can rewrite the integral in polar coordinates (s,Θ) to obtain
ˆ

BR\Br

|∇u|2 =
ˆ R

r
ds
ˆ

∂Bs

|∇u|2 ≥
ˆ R

r

ˆ 2π

0

1
s2 |uΘ|2sdsdΘ

where uΘ is the derivative of u with respect to the angle Θ. Now we have that
ˆ 2π

0
|uΘ| ≥ 2πd

and by Cauchy-Schwartz we conclude

E(BR \Br,u)≥
1
2

ˆ R

r

1
s

ds2πd2 = πd2 log
(

R
r

)
.

Consider now a function u : Ω\ω → S1 where ω ⊂Ω is a compact set, and suppose to look for a lower
bound for

E(Ω\ω,u) =
1
2

ˆ
Ω\ω
|∇u|2
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among all u with fixed degree at the boundary ∂Ω. Typically ω is made of a finite number of small
balls. The ball construction allows to start from the above estimate on annuli and extend the validity of
a similar logarithmic estimate to the whole Ω \ω in the following sense: define the radius |ω| as the
infimum of r1 + . . .+ rm over all finite families of balls with radius r1, . . . ,rm that cover ω , and suppose
ω is at distance at least 2ρ from ∂Ω. Then

1
2

ˆ
Ω\ω
|∇u|2 ≥ π|d| log

(
ρ

|ω|

)
where now d := deg(u,∂Ω). The argument starts considering some disjoint balls that cover ω . Then we
modify these balls through two phases that alternate: expansion and merging. We start by letting each
ball expand at a specified rate. When two of them touch we perform merging and replace them with a
new single ball that contains both; if this new ball touches some other ball we replace these with still
another ball that contains both, and we keep going in this way. When we obtain disjoint balls we restart
the expansion phase, and so on. At each instant, to each ball we apply the estimate on annuli proved
above. The details can be found in [San98].

The ball construction adapted to our case

We now explain how we could prove a similar estimate in our situation. The opportunity of adapting this
ball construction to our situation comes directly from the similar logarithmic behaviour of our elastic
energy on annuli around dislocations, where the degree d is replaced by the Burgers vector b. In fact one
can see the Dirichlet energy (of the symmetrized gradient) as a suitable linearization near the identity of
the non-linear energy

´
dist(I +∇u,SO(2))2.

We therefore consider an interface with angle mismatch θ and sidelength L, and we suppose that the
energy satisfies

E el
ε (Bρ \Br)& |~b|2ε log

(
ρ

r

)
whenever there are no defects in Bρ \Br and ρ ≥ r ≥ ε , and where

|~b|= |b(∂Br)|=
∣∣∣∣ˆ

∂Br

β · τ
∣∣∣∣= |Curlβ (Br)| .

The implicit assumption is that the constants involved in the inequality above do not depend on ρ and
r. This is false in the case of the rigidity theorem; however we go on and show how, assuming the
uniformity on the constants, we could obtain the wanted logarithmic lower bound (6.15). Notice that
the vector b depends on the base points which we choose to compute it, but not its modulus |b| which is
independent of the choice.

We start by covering the set of defects Vde f (G) with (closed) balls of radius ε . If two balls of radius
r1,r2 overlap we can replace them with a single ball of radius at most r1 + r2 that covers both, and we
keep going until the set of balls we end up with is disjoint. The final set is our compact ω .

Then we apply [San98, Proposition, p.385] replacing the degree d with the Burgers vector b, and
with the following key observation: if there are no disclinations then the Burgers vector b(γ) is additive
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Figure 6.12: The closed path to compute b(∂Ω) (on the left) and its lift on the regular lattice (on the
right). Instead of triangles here we consider hexagons, but the idea is the same. The two lateral paths,
when lifted, will “diverge” in opposite direction. On the other hand the blue paths, being periodic
images of each other, when lifted will result in the same path. The net result is a non zero Burgers
vector given by the discrepancy shown on the right between the two endpoints of the coloured path.
This discrepancy is of order Lθ .

with respect to path composition. This is the only property of the degree that is used in [San98]. Observe
also that since we are considering a vertical periodicity for the graph and for the set Ω, and since all
defects are concentrated on the central stripe by assumption, the distance of ω from ∂Ω is of order L. In
particular we conclude the following:

E el
ε (Ω)≥ |b(∂Ω)| log

(
L
|ω|

)
.

It is now left to relate the terms |b(∂Ω)| and |ω| to our parameters L,θ ,ε .
Let us first compute b(∂Ω). We refer to figure 6.12. We compute it in this way: fix a “horizontal”

path η that starts from a vertex vl in the leftmost regular zone and ends at a vertex vr in the rightmost
regular zone. Choose then a “vertical” regular path γ that connects vr to its periodic copy, and consider
the symmetrically defined path γ ′ that connects the copy of vl to vl . Then we compute the Burgers vector
b(∂Ω) = b(η ∗ γ ∗η ∗ γ ′) where we recall that η is the path η travelled in opposite direction. No matter
what is the lift Lη , we will have the situation pictured in Figure 6.12: the lifts Lγ and Lγ ′ will “diverge”
due to the symmetry of the initial configuration, while the lifts Lη and Lη will be translated copies one
of the other. The Burgers vector is therefore at least of order

|b(∂Ω)| ≈ L tanθ ≈ Lθ .

Regarding ω , by definition we have |ω| ≤ ε#Vde f (G). Suppose for a moment to know that the
following upper bound on the energy holds:

Eε . Lθ
α (UBα )
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for some α > 0. Then we trivially have

|ω| ≤ ε#Vde f (G). E de f
ε ≤ Eε . Lθ

α

and therefore

log
(

L
|ω|

)
& log

(
1

θ α

)
≈ log

(
1
θ

)
and we conclude that

E el
ε (Ω)& Lθ | logθ |

as we wanted. We now want to show that we can obtain the same conclusion even without the assumption
(UBα ). Let us state this as a Lemma:

Lemma 6.23. Consider the setting above and suppose that the estimate

E el
ε ≥ cLθ log

(
L
|ω|

)
holds for a certain constant 0 < c < 1 and θ sufficiently small. Then

E el
ε ≥

c
2

Lθ | logθ |

for θ sufficiently small.

Proof. Suppose this is not the case. Then

|ω| ≤ ε#Vde f (G). E de f
ε ≤ Eε ≤

c
2

Lθ | logθ |

and therefore

E el
ε ≥ cLθ log

(
1

c
2 θ | logθ |

)
≥ cLθ log

(
1

θ 1/2

)
=

c
2

Lθ | logθ |

for sufficiently small θ , and we conclude.

We have thus obtained:

Theorem 6.24 (Conditional energy lower bound). Suppose the balance condition (6.14) holds at an
interface inside a domain of side L, angle mismatch θ and parameter ε , with vertical periodicity. Sup-
pose that a logarithmic estimate (6.16) holds around any dislocation with constants C(ρ,r) uniformly
bounded. Then

Eel & Lθ | logθ |.



CHAPTER 6. THE INTERFACE PROBLEM 134



Bibliography

[AB90] Luigi Ambrosio and Andrea Braides. “Functionals defined on partitions in sets of finite
perimeter. II. Semicontinuity, relaxation and homogenization”. In: J. Math. Pures Appl. (9)
69.3 (1990), pp. 307–333.

[AB93] Gabriele Anzellotti and Sisto Baldo. “Asymptotic development by Γ-convergence”. In:
Appl. Math. Optim. 27.2 (1993), pp. 105–123.

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford
University Press, New York, 2000, pp. xviii+434.

[AYFS12] Yuen Au Yeung, Gero Friesecke, and Bernd Schmidt. “Minimizing atomic configurations
of short range pair potentials in two dimensions: crystallization in the Wulff shape”. In:
Calc. Var. Partial Differential Equations 44.1-2 (2012), pp. 81–100.

[BCG17] Andrea Braides, Sergio Conti, and Adriana Garroni. “Density of polyhedral partitions”. In:
Calc. Var. Partial Differential Equations 56.2 (2017), Art. 28, 10.

[BLN54] Sir Lawrence Bragg, W.M. Lomer, and J.F. Nye. Experiments with the Bubble Model of a
Metal Structure. 1954. URL: https://www.youtube.com/watch?v=iJIo8Nli3UY&.

[BPT14] D. P. Bourne, M. A. Peletier, and F. Theil. “Optimality of the triangular lattice for a particle
system with Wasserstein interaction”. In: Comm. Math. Phys. 329.1 (2014), pp. 117–140.

[Bra02] Andrea Braides. Γ-convergence for beginners. Vol. 22. Oxford Lecture Series in Mathemat-
ics and its Applications. Oxford University Press, Oxford, 2002, pp. xii+218.

[Bra92] Kenneth A. Brakke. “The surface evolver”. In: Experiment. Math. 1.2 (1992), pp. 141–165.

[CG03] S. J. Cox and F. Graner. “Large two-dimensional clusters of equal-area bubbles: the influ-
ence of the boundary in determining the minimum energy configuration”. In: Phil. Mag. 83
(2003), pp. 2573–2584.

[CL12] Marco Cicalese and Gian Paolo Leonardi. “A selection principle for the sharp quantitative
isoperimetric inequality”. In: Arch. Ration. Mech. Anal. 206.2 (2012), pp. 617–643.

135

https://www.youtube.com/watch?v=iJIo8Nli3UY&


BIBLIOGRAPHY 136

[CM16] M. Caroccia and F. Maggi. “A sharp quantitative version of Hales’ isoperimetric honey-
comb theorem”. In: J. Math. Pures Appl. (9) 106.5 (2016), pp. 935–956.

[CMG13] S. J. Cox, F. Morgan, and F. Graner. “Are large perimeter-minimizing two-dimensional
clusters of equal-area bubbles hexagonal or circular?” In: Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 469.2149 (2013), pp. 20120392, 10.

[Car11] Marco Caroccia. MA thesis. 2011.

[DLF17] Lucia De Luca and Gero Friesecke. “Classification of particle numbers with unique Heitmann-
Radin minimizer”. In: J. Stat. Phys. 167.6 (2017), pp. 1586–1592.

[DLF18] L. De Luca and G. Friesecke. “Crystallization in two dimensions and a discrete Gauss-
Bonnet theorem”. In: J. Nonlinear Sci. 28.1 (2018), pp. 69–90.

[DLGP12] L. De Luca, A. Garroni, and M. Ponsiglione. “Γ-convergence analysis of systems of edge
dislocations: the self energy regime”. In: Arch. Ration. Mech. Anal. 206.3 (2012), pp. 885–
910.

[DLNP18] Lucia De Luca, Matteo Novaga, and Marcello Ponsiglione. Γ-convergence of the Heitmann-
Radin sticky disc energy to the crystalline perimeter. 2018. URL: https://arxiv.org/
abs/1805.08472.

[DN18] Giacomo Del Nin. Sticky-disk limit of planar N-bubbles. 2018. URL: https://arxiv.
org/abs/1810.02439.

[DPS16] Elisa Davoli, Paolo Piovano, and Ulisse Stefanelli. “Wulff shape emergence in graphene”.
In: Math. Models Methods Appl. Sci. 26.12 (2016), pp. 2277–2310.

[DPS17] Elisa Davoli, Paolo Piovano, and Ulisse Stefanelli. “Sharp N3/4 law for the minimizers of
the edge-isoperimetric problem on the triangular lattice”. In: J. Nonlinear Sci. 27.2 (2017),
pp. 627–660.
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Γ-limit, 10
Γ-convergence, 10
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absolutely continuous part, 3
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anisotropic perimeter, 6, 8
approximate discontinuity set, 3
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approximate limit, 3

balance assumption, 121
base points, 105
basic deformations, 108
bond graph, 66
bounded variation, 2
bubbles, 7
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rotation, 106
vector, 106

BV-ellipticity, 9

Caccioppoli partition, 7
Cantor part, 3

chambers, 7
coarea formula, 3
cobordant, 109
convergence

on clusters, 7
on finite perimeter sets, 4

crystallization, 65
cut, 110

De Giorgi’s theorem, 5
defect measure

of a curve, 109
of a graph, 104

defects, 104
density, 5
Dido’s inequality, 6
disclination, 106
dislocation, 106
domain of a path, 104

edge perimeter, 72
empirical measure, 73
essential boundary, 5
exterior chamber, 7

Federer’s theorem, 6
finite perimeter set, 4
flat norm, 2
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homotopy, 108

image of a path, 104
index, 109
inner normal, 5
interface, 7
interior chambers, 7
isoperimetric inequality, 6

jointly convex, 9
jump part, 3

lattice, 90
lift of a path, 105
local embedding, 105
local variation, 35
localization lemma, 41
locally finite perimeter, 4
low energy sequences, 82

microrotation, 125

N-cluster, 7
N3/4-law, 77
neighbours, 103

path, 104
closed, 104

regular, 104
perimeter measure, 4
Poisson summation formula, 88

generalized, 88
polar decomposition, 2
polycrystal, 78

radius, 131
recovery sequence, 10
reduced boundary, 5
regular vertices, 104
rotational displacement, 106

shape-converge, 44, 54
special bounded variation, 3
sticky disk potential, x, 14, 64, 82

tangent field, 106
total variation, 2
translational displacement, 106
triangular lattice, 65
truncation lemma, 35

Voronoi cell, 65

weak* convergence, 2
on BV functions, 2

weighted perimeter, 8
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