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Abstract
We provide sharp conditions for the finiteness and the continuity of multi-

marginal optimal transport with repulsive cost, expressed in terms of a suitable
concentration property of the measure. To achieve this result, we analyze the
Kantorovich potentials of the optimal plans and we estimate the distance of any
optimal plan from the regions where the cost is infinite.

1 Introduction
In recent years, a new mathematical model for the strong interaction limit of the density
functional theory (DFT) has been considered. For instance, in [6], Buttazzo, De Pascale
and Gori-Giorgi show that the model for the minimal interaction of N electrons can be
formulated in terms of a multimarginal Monge transport problem. At the same time, in
[10], Cotar, Friesecke and Klüppelberg show that an analogous optimal transportation
problem describes the semiclassical limit of DFT in the case of 2 electrons and provides
estimates from below in the general case.

In this article we prove the finiteness and continuity of multi-marginal optimal
transport with repulsive cost under the assumption that the measure does not concentrate
too much. The article is a refinement of the results presented in [5], especially from
the point of view of the assumptions, which in our work are shown to be sharp. We
aknowledge also the recent preprint [2] in which the finiteness of the cost is proved in a
similar fashion by dimension reduction.

To describe the problem, we fix a complete and separable (Polish) metric space (X, d).
We consider a repulsive interaction cost given by a symmetric lower semi-continuous
function c : X ×X → [0,∞] for which there exist two non-increasing right-continuous
(or, equivalently, lower semi-continuous) functions m,M : (0,∞)→ [0,∞) satisfying

m
(
d(x1, x2)

)
≤ c(x1, x2) ≤M

(
d(x1, x2)

)
, for all x1, x2 ∈ X. (1.1)

Moreover sometimes we will need a strong repulsion assumption, namely

c(x, x) =∞ ∀x ∈ X and lim
r→0+

m(r) = lim
r→0+

M(r) =∞. (1.2)
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Extending m(0) = M(0) =∞ for this last case, the inequality (1.1) still holds for
all x1, x2 ∈ X. The Coulomb cost fits into this framework as c(x1, x2) = 1

|x1−x2| on
X = Rd, d ∈ N and one can take m(r) = M(r) = 1

r
For every integer N ≥ 2, define the symmetric interaction cost c : XN → [0,∞] by

c(x1, . . . , xN ) :=
∑

1≤i<j≤N
c(xi, xj),

the cost of a plan C : P
(
XN

)
→ [0,∞] by

C(π) :=
∫
XN

c(x1, . . . , xN ) dπ(x1, . . . , xN ) (1.3)

and lastly the optimal transport cost C : P(X)→ [0,∞] associated to a marginal by

C (ρ) := inf{C(π) : π ∈ ΠN (ρ)}, (1.4)

where
ΠN (ρ) :=

{
π ∈P

(
XN

)
: P i#π = ρ for i = 1, . . . , N

}
denotes the set of admissible transport plans and P i : XN → X are the projections
on the i-th component for i = 1, . . . , N . The existence of a minimizer for the infimum
problem in (1.4) follows from standard methods in the calculus of variations as long as
c is lower semicontinuous (see for example [1, 30, 28]).

Besides exploring the connection with density functional theory [6, 10, 3, 19], several
authors investigated the mathematical properties of the minimizer. A natural question
is whether the optimizer is induced by a map, namely if there exists a Borel map
T : X → X such that T#ρ = ρ (where T#ρ represents the pushforward measure of
the measure ρ through the Borel map T ) and an optimizer π in the minimization
problem in (1.4) can be represented as (Id, T, T (2), . . . , T (n−1))#ρ. This question is still
widely open, though some results have been obtained in [8, 7, 9, 29] regarding the
possibility to approximate the cost of a minimizer with costs of these particular plans,
the 1-dimensional case, and the radial case (see also the survey [14]). It is important
to mention here also the negative result in [17], where they show (in the case of the
repulsive harmonic cost c(x, y) = −|x− y|2) an explicit density ρ, absolutely continuous
with respect to the Lebesgue measure, such that there is a unique optimal symmetric
plan, which is not induced by a map.

The asymptotic behavior as N →∞ for the Coulomb were presented in [11, 27] and
then more precisely (up to the first order) in [24, 12].

In [13, 5], instead, the authors prove a duality result, which shows that the value in
(1.4) can be represented via a duality argument as

sup
{
N

∫
X
ϕ dρ : ϕ(x1) + · · ·+ ϕ(xN ) ≤ c(x)

}
; (1.5)

the proof is carried out for the Coulomb cost, but adapts to the assumption that c
is lower continuous; moreover, the existence of an optimal potential ϕ in the dual
formulation (1.5) is also proved (see also [16] for a generalization to costs not necessarily
bounded from below). We remark that a general duality result has been already proven
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by Kellerer in [21], but the hypotesis on the cost function couldn’t be adapted to a
Coulomb-type cost.

Finally, we remark that in the context of multimarginal optimal transport problem
several of the questions mentioned above are open even with more classical cost functions,
such as the quadratic cost; recent developments can be found in [15, 26, 23, 18, 14].

In this paper we prove the finiteness and continuity of multi-marginal optimal
transport with repulsive cost under the assumption that the measure does not concentrate
too much. This issue was already partly addressed in [5], where the authors present
sufficient conditions for the continuity of the cost and where they analyze the Kantorovich
potentials. We improve the previous results especially from the point of view of the
assumptions, which in our work are shown to be sharp. The continuity of the optimal
cost under the sharp conditions of the present paper is useful for instance in [4] to study
the bond dissociation problem of certain molecules in density functional theory.

Our results depend on assumptions regarding the concentration of mass of the
marginal ρ, therefore we introduce two quantities measuring it. Given µ ∈P(X), we
consider the pointwise concentration of µ, namely its biggest atom

a(µ) := max
x∈X

µ({x}), (1.6)

and the concentration on balls defined as

κ(µ, r) := sup
x∈X

µ
(
B̄(x, r)

)
,

which gives a more quantitative information, since limr→0 κ(µ, r) = a(µ). In terms of
the first concentration property, we characterize the finiteness of the cost.

Theorem 1.1 (Finiteness of the cost). Let ρ ∈P(X), let C be the cost introduced in
(1.4) under the assumptions (1.1), (1.2) and (1.3), let a(ρ) as in (1.6). Then we have
that

(i) if a(ρ) < 1
N then C (ρ) <∞;

(ii) if a(ρ) > 1
N then C (ρ) =∞;

(iii) if a(ρ) = 1
N then C (ρ) <∞ if and only if∫

X\{x̄}
c(x̄, x) dρ(x) <∞ ∀x̄ : ρ({x̄}) = 1

N
. (1.7)

We acknowledge here also the recent paper [2] in which the first two parts of the
theorem above are proved by a slicing method and by induction on the number of atoms.
Our proof is considerably shorter and it is based instead on a dimension reduction
argument, which allows to reduce to a 1 dimensional problem via a suitably chosen
projection.

Next, we address in our main theorem the problem of the continuity of the cost, in
which we will also use the “enlarged diagonal” for any α > 0

Dα =
{
x = (x1, . . . , xN ) ∈ XN : d(xi, xj) < α for some i 6= j

}
.
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Theorem 1.2. Let C be the cost introduced in (1.4) under the assumptions (1.1), (1.2)
and (1.3). Let r > 0, δ ∈ (0, 1/N), and consider the set

Kr,δ := {ρ ∈P(X) : κ(ρ, r) < δ}. (1.8)

Then we have the following.

(i) If the cost c is lower semicontinuous, C is Lipschitz in Kr,δ with respect to the
strong topology on P(X).

(ii) If, in addition, the cost c is continuous, C is continuous in {ρ ∈P(X) : a(ρ) <
1/N} with respect to the weak topology, or equivalently with respect to the Wasser-
stein distance W1.

(iii) If the cost c is Lipschitz outside Dα for every α > 0, then C is Lipschitz in Kr,δ

with respect to the Wasserstein W1 distance on P(X).

A consequence of Theorem 1.2(i) is that C is locally Lipschitz on {ρ ∈P(X) : a(ρ) <
1/N} with respect to the strong topology on P(X). Similarly, under the assumptions
on the cost in Theorem 1.2(iii), C is locally Lipschitz in {ρ ∈ P(X) : a(ρ) < 1/N}
with respect to the Wasserstein distance. On the other hand, it is not true that the
cost is continuous, even with the strong topology, on the set {ρ ∈P(X) : C (ρ) <∞},
even in the case of the Coulomb cost in X = Rd. Indeed, it is clear that if a(ρ) = 1/N
for some ρ of finite cost, we can enlarge the Dirac delta of size 1/N in ρ (reducing the
mass slightly elsewhere) to obtain a sequence of measures of infinite cost which converge
strongly to ρ. On the other side, with a little bit more work we can approximate any ρ of
this type with measures of finite energy creating a discontinuity in ρ, see Proposition 3.5
below.

The result in Theorem 1.2 is based on two key ideas. First, in Theorem 1.3 we provide
quantitative bounds regarding the distance of the support from the diagonals xi = xj ,
i 6= j (where the cost is infinite). Once this result is established, the minimization
problem (1.4) becomes fully equivalent to the same problem with a cost truncated from
above (see Lemma 5.1). Under the boundedness assumption for the cost, we can refer to
more classical optimal transport results to obtain the existence of optimal potentials as
well as their estimates. Since these results might have an interest which goes beyond
the proof of Theorem 1.2, we describe them in the next two subsections.

1.1 Diagonal bounds

For α > 0 define the “enlarged diagonals”

Dα =
{
x = (x1, . . . , xN ) ∈ XN : d(xi, xj) < α for some i 6= j

}
,

D̄α =
{
x = (x1, . . . , xN ) ∈ XN : d(xi, xj) ≤ α for some i 6= j

}
.

Notice that in general D̄α is not the closure of Dα (which would be denoted by Dα if
needed), but rather contains it. We also introduce an enlarged diagonal which is more
intrinsic in terms of the cost, rather than of the distance

Dh =
{
x = (x1, . . . , xN ) ∈ XN : c(xi, xj) > h for some i 6= j

}
.
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The set Dh is a more tailored version of Dα but of course we have DM(α) ⊆ Dα ⊆ Dm(α)

and for example in the case c(x, y) = f(d(x, y)) they coincide up to a composition with
f or its inverse.

We can provide some diagonal bounds for the optimal plan, improving the corre-
sponding result in [5, Theorem 2.4]. Notice that in this Theorem we don’t require the
strong repulsion assumption (1.2); this is important since in the crucial Lemma 5.1 we
in fact apply it to a bounded cost.

Theorem 1.3 (Diagonal Bounds). Let ρ ∈P(X), r > 0; let us consider an optimal
plan π ∈ Π(ρ) in (1.4) under the assumptions (1.1) and (1.3), let κ(ρ, r) as in (1.6).
Then we have

(i) if κ(ρ, r) < 1
2(N−1) and h > 2(N − 1)M(r) then π(Dh) = 0.

(ii) if κ(ρ, r) < 1
N whenever we have h, β > 0 satisfying

h > 2(N − 1)M(β/2), m(β) > C (ρ)
1−Nκ(ρ, r) , β/2 ≤ r (1.9)

we have π(Dh) = 0. Moreover under assumption 1.2 there always exist such
h, β > 0, and they can be also chosen depending only on r,N and δ := 1−Nκ(ρ, r).

In particular in both cases we have π(Dα) = 0 whenever m(α) ≥ h.

Notice that while in (ii) the assumption on the measure is sharp, the behavior of
the estimate of h with respect to N and r is not very nice. Indeed it depends on C (ρ),
which can be avoided by using Theorem 4.1, at the cost of losing a factor

(
N
2
)
. This

is why we kept also estimate (i) which is sharper in the behavior on N and r despite
being not optimal on the assumption.

1.2 Kantorovich potentials

We recall here the existence of optimal potentials, which is the main result of [13]. In
the paper the proof is written for the Coulomb cost and for probabilities ρ with no
atoms. Using some ideas present in [5], we provide a sharper version, that works for
every ρ such that a(ρ) < 1/N .

Theorem 1.4. Let C be the cost introduced in (1.4) under the assumptions (1.1), (1.2)
and (1.3), ρ ∈P(X) with a(ρ) < 1/N . Then the duality formula holds

C (ρ) = sup
{
N

∫
X
ϕdρ : ϕ(x1) + · · ·+ ϕ(xN ) ≤ c(x)

}
and the supremum in the right-hand side is realized by a potential ϕ ∈ L1 ∩ L∞(ρ).

Proof. We deduce this theorem since by Lemma 2.1 we have ρ ∈ Kr,δ for some r > 0
and δ < 1/N ; then we use Lemma 5.1, which in turn uses the existence of optimal
potentials for bounded costs, proven in [21].

To prove the continuity of the cost in Theorem 1.2, we need to obtain uniform
estimates on these potentials when ρ varies in a set Kr,δ. Notice that in the following
theorem we do not assume the strong repulsion assumption (1.2).
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Proposition 1.5 (L∞ and Lip bounds on the Kantorovich potential). Let C be the
cost introduced in (1.4) under the assumptions (1.1) and (1.3). Let r > 0, δ ∈ (0, 1/N),
and consider the set Kr,δ introduced in (1.8).

Then we have that there exists a function h := h(r, δ) (given for example by (5.3))
such that
(i) if the cost c is lower semicontinuous, then there exist Kantorovich potentials ϕρ,

which are uniformly bounded in Kr,δ

sup
ρ∈Kr,δ

‖ϕρ‖L∞(X) <

(
N

2

)
· h(r, δ)

(ii) if the cost c is Lipschitz outside Dα for every α > 0, then there exist Kantorovich
potentials ϕρ which are uniformly Lipschitz in Kr,δ

sup
ρ∈Kr,δ

‖ϕρ‖Lip(X) < (N − 1) · ‖ch(r,δ)‖Lip(X)

where ch is defined as in (5.1).

1.3 Examples

We summarize here three particular examples that fall inside this setting:
• Coulomb in Rd,

• c = φ ◦ d,

• c = G Green function of ∆ on a manifold.

Coulomb in Rd. The model case is the Coulomb interaction in R3. This is how the
problem originated in the context of Density Functional Theory. The ambient space is
Rd and the cost c(x, y) = 1/|x− y|. In this case we have m(t) = M(t) = 1

t . Since this
is maybe the most interesting example, we provide specific and quantitative estimate
for every theorem in section 6.

Case c = φ ◦ d. A specific instance of this kind would be a cost of the form c(x1, x2) =
φ
(
d(x1, x2)

)
, where φ : [0,∞)→ [0,∞] is a lower semi-continuous function such that

• φ(0) =∞, hence limr→0+ φ(r) =∞,

• and φ|[r,∞) is bounded for every r > 0.
In this case, m and M could be given by

m(r) := min
r′∈[0,r]

φ(r′), M(r) := sup
r′∈[r,∞)

φ(r′).

From the definition follows that m and M are non-increasing and right-continuous,
m(r) ≤ φ(r) ≤ M(r) and limr→0+ m(r) = ∞. We define also the pseudo-inverse
m−1 : [0,∞)→ (0,∞] by

m−1(t) := max{r ∈ (0,∞] : m(r) ≥ t}.

Thenm−1 is non-increasing, left-continuous and satisfies the important relationm
(
m−1(t)

)
≥

t.
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Green function of ∆. Noticing that the potential 1/|x − y| is the fundamental
solution of the Laplacian in R3, the first case can be generalized to a Riemannian
manifold M where the cost is given by c(x, y) = G(x, y), the fundamental solution of
∆xG(x, y) = δy. If the manifold is compact then it is clear that c satisfies the previous
hypotheses, but they could be verified also on some non-compact manifolds, like they
are in Rd because of the translation invariance.

2 Preliminary results
For all the functions introduced so far, sometimes we will drop the N dependence,
whenever it will be clear by the context.

We will use the notation P i : XN → X to denote the projection on the i-th
coordinate and also P i1,...,ik : XN → Xk to denote the projection on the coordinates
i1, . . . , ik. Moreover, given π ∈ P(XN ) we denote by Psym(π) = 1

N !
∑

σ∈SN σ#π and
notice that C(π) = C(Psym(π)) thanks to the symmetry of the cost.

2.1 Properties of the concentration

Clearly the uniform concentration condition measured by κ is stronger than the pointwise
one encoded by a. However, thanks to a compactness argument, the next lemma shows
that the two are in fact almost equivalent.

Lemma 2.1. Let ρ ∈P(X) and assume that a(ρ) < δ. Then there exists r > 0 such
that κ(ρ, r) < δ.

Proof. Fix δ′ such that a(ρ) < δ′ < δ. Since ρ is tight, we can find a compact subset
K ⊂ X such that ρ(Kc) < δ′. Given x ∈ X, one has limr→0+ ρ

(
B̄(x, r)

)
= ρ({x}) ≤

a(ρ) < δ′, therefore for every x there exists a positive radius rx such that

ρ
(
B̄(x, 3rx)

)
< δ′.

Since K is compact, we can find a finite number of points x1, . . . , xk such that K ⊂⋃k
i=1 B̄(xi, rxi). Let r = min{rx1 , . . . , rxk}. If d(x,K) > r, then B̄(x, r) ⊂ Kc, hence

ρ
(
B̄(x, r)

)
< δ′. If d(x,K) ≤ r, then d(x, xi) ≤ r + rxi ≤ 2rxi for some i = 1, . . . , k,

therefore B̄(x, r) ⊂ B̄(xi, 3rxi), hence ρ
(
B̄(x, r)

)
< δ′. This implies κ(ρ, r) ≤ δ′ < δ.

Lemma 2.2. Assume that ρ, η ∈P(X). Then for every r, r′ > 0 we have

(r − r′) · (κ(η, r′)− κ(ρ, r)) ≤W1(ρ, η).

Proof. By symmetry we can assume r > r′. We can also assume κ(η, r′) > κ(ρ, r)
otherwise the inequality would be trivial. Let us now take x ∈ X such that η(B(x, r′)) ≥
κ(η, r′) − ε. Then we can consider an optimal plan γ between η and ρ, and let
A = B(x, r′)× (X \B(x, r)); we have that

γ(A) = γ(B(x, r′)×X)− γ(B(x, r̃)×B(x, r))
≥ γ(B(x, r′)×X)− γ(X ×B(x, r))
= η(B(x, r′))− ρ(B(x, r)) ≥ κ(η, r′)− ε− κ(ρ, r).
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In particular for ε sufficiently small we have γ(A) > 0 and so we can compute

W1(ρ, η) ≥
∫
A
d(x, y) ≥ (r − r′)γ(A) ≥ (r − r′) · (κ(η, r′)− ε− κ(ρ, r)).

and we can conclude by the arbitrariness of ε.

Lemma 2.3. Assume that ρ ∈ P(X) satisfies κ(ρ, r) < δ for some r > 0 and let
ρn ⇀ ρ. Then for every r′ ∈ (0, r) one has κ(ρn, r′) < δ for n large enough.

In particular, if a(ρ) < δ, then a(ρn) < δ definitely in n.

Proof. We can assume that the distance is bounded, considering the modified distance
dM (x, y) = min{M,d(x, y)}, for M big enough. If the distance is bounded we have that
ρn → ρ if and only if W1(ρn, ρ)→ 0. But then for r′ < r we can apply Lemma 2.2 in
order to get

lim sup
n→∞

κ(ρn, r′) ≤ lim sup
n→∞

{
κ(ρ, r) + W1(ρn, ρ)

r − r′

}
= κ(ρ, r) < δ.

Proposition 2.4 (Good projection). Let ρ ∈P(X) with a(ρ) < δ. Then there exists
P ∈ Lip1(X) such that a(P#ρ) < δ. Such a P will be called a good projection.

Proof. We start from the case where X is a finite-dimensional normed vector space,
i.e. X ' Rd. It is sufficient to show that there exists Pd ∈ Lip(Rd;Rd−1) such that
a(Pd#ρ) < δ. Then we conclude by taking P = P2 ◦ · · · ◦ Pd. The statement is true if
we are able to find a direction v ∈ Rd such that ρ(l) < δ for every line l parallel to v. In
fact, then we can write Rd ' Rd−1 ⊕ 〈v〉 and take Pd to be the projection onto the first
factor. Fix a positive ε < [δ − a(ρ)]/2. Let {xi}i be the at most countable set of atoms
of ρ. Take out a finite number of them, x1, . . . , xn, such that the mass of the remaining
ones is small, namely ∑

i>n

ρ({xi}) < ε.

The directions vij = xi − xj are forbidden. Consider the non-atomic measure

ρ̃ = ρ−
∑
i≥1

ρ({xi})δxi .

This measure is additive on finite unions of distinct lines, because the intersections are
finite sets of points, which have zero measure w.r.t. ρ̃. Therefore there is only a finite
number of lines l1, . . . , lk with ρ̃(li) ≥ ε. Let vi denote a direction parallel to li. This
procedure rules out another finite number of directions, v1, . . . , vk. Now take a direction
v which is not parallel to any of the vij or vi. If l is a line parallel to v, l can contain
at most one of the points x1, . . . , xn (otherwise v would be parallel to some vij) and
ρ̃(l) < ε (otherwise v would be parallel to some vi). Therefore

ρ(l) ≤ ρ̃(l) + max
i=1,...,n

ρ({xi}) +
∑
i>n

ρ({xi}) < ε+ a(ρ) + ε < δ.

Assume now that X = `∞ and ρ ∈P(`∞) is tight. It is well know (see for instance
[25, Lemma 5.7]) that `∞ has the metric approximation property, that is, for every
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compact set K ⊂ `∞ and every ε > 0 there is a linear operator T : `∞ → `∞ of finite
rank with operator norm ‖T‖ ≤ 1 and supx∈K‖Tx− x‖∞ ≤ ε. Since ρ is tight, there
are increasing compact sets Kn such that ρ(Kc

n) < 1/n. ρ is clearly concentrated on the
set H =

⋃
nKn. Let Tn : `∞ → `∞ be a finite-rank linear operator with ‖Tn‖ ≤ 1 and

supx∈Kn‖Tnx − x‖∞ ≤ 1/n. For every x ∈ H we have Tnx → x as n → ∞, therefore
Tn#ρ ⇀ ρ.1 But then, by Lemma 2.3, a(Tn#ρ) < δ for n sufficiently large. The measure
Tn#ρ is supported on a finite-dimensional vector subspace of `∞ (the image of Tn),
therefore we already know that there is a good projection Q for it. A good projection
for ρ itself is then given by P = Q ◦ Tn.

In the general case of a Polish space (X, d), we simply need to embed it isometrically
ι : X → `∞ by means of ι(x) = (ϕn(x))n, where ϕn(x) = d(x, xn) − d(x, x0) and
{xn}n ⊂ X is a countable dense set. By Ulam lemma ρ is tight, and so is ι#ρ ∈P(`∞).
Clearly a(ι#ρ) = a(ρ) < δ, therefore we can find a good projection Q for ι#ρ and a
good projection for ρ is given by P = Q ◦ ι.

Remark 2.5. The previous proposition remains true when ρ is a tight finite non-negative
measure on a generic metric space X. The only modification is to observe that we just
need to embed only supp(ρ) ↪→ `∞, which is σ-compact and closed, thus Polish.

Proposition 2.4 will be used to prove the finiteness of the cost under the assumption
that a(ρ) < 1/N . To deal with the other concentration condition κ(ρ, r) < 1/N , one
could hope to extend the good projection in the following way. However we have not
been able to establish the truth of the next conjecture, therefore we had to find another
way to get the bound of the cost (see Theorem 4.1). The conjecture, however, seems
interesting enough from the measure teoretic perspective, so we state it anyway.

Conjecture 2.6 (Good projection, quantitative version). Let ρ ∈P(Rd) with κ(ρ, r) <
δ. Then for every ε > 0 there exists P ∈ Lip1(Rd) such that κ(P#ρ, r

′) < δ+ ε for some
r′(r, d, δ, ε) > 0.

3 Characterization of finiteness of the cost
Lemma 3.1 (Monotone plan). Let ρ ∈ P(R). Then there exists πρ ∈ ΠN (ρ) such
that for πρ-a.e. x ∈ RN and for every i 6= j we have ρ([xi, xj ]) ≥ 1

N . In particular if
κ(ρ, r) < 1

N then πρ(D2r) = 0.

Remark 3.2. In the following proof we will consider πρ as the unique symmetric monotone
plan (which is a plan with the property that every x, y in its support are well ordered,
as defined in [7]). Since we are only interested in its final properties we will not prove
that it is monotone (even if it is obvious) nor we will discuss its uniqueness: a proof of
these properties in the case ρ atomless can be found in [7].

Proof. Let us consider F : [0, 1]→ R defined as F (t) = sup{x : ρ((−∞, x]) < t}. Then
let us define

πρ = N · Psym
((
F (t), F (t+ 1

N ), . . . , F (t+ N−1
N )

)
#L|[0, 1

N
]

)
.

1Indeed, if f ∈ Cb(`∞), one has
∫
f dTn#ρ =

∫
f ◦ Tn dρ→

∫
f dρ by dominated convergence.
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We claim that πρ is a plan with the properties we want.
It is clear to see that F is a pseudo-inverse of the cumulative distribution function

of ρ. In particular we have F#L[0,1] = ρ, and so we obtain that πρ ∈ ΠN (ρ). Moreover,
from the definition of F we deduce

ρ
(
(−∞, F (t)

)
≤ t ≤ ρ

(
(−∞, F (t)]

)
.

In particular we get immediately ρ
(
[F (t + i

N ), F (t + j
N )]
)
≥ |i−j|

N , which implies the
wanted property on πρ.

Now, if we add the hypothesis that κ(ρ, r) < 1
N , we have that that ρ([xi, xj ]) ≥ 1

N
imples |xi − xj | ≥ 2r. In fact if it was not the case then

1
N
≤ ρ([xi, xj ]) ≤ ρ

(
B
(xi+xj

2 , r
))
≤ κ(ρ, r) < 1

N
.

But then D2r ⊆
⋃
i 6=j{x : ρ([xi, xj ]) < 1

N }, and since we know that the second set is
πρ-null we have also that πρ(D2r) = 0.

We present here a simple proof of the finiteness of the cost depending on the existence
of good projections, before moving on to the more powerful, but maybe less intuitive,
Theorem 4.1. This result appears also in the recent preprint [2, Theorem 1.1], where it
is proved in a longer way using at the core a dimension reduction argument similar to
our good projection, but working always in the original ambient space and therefore
not fully exploiting the simpler structure of the one-dimensional problem.

Proof of Theorem 1.1(i). We claim that, given ρ ∈ P(X) be such that a(ρ) < 1/N ,
there exists a plan π ∈ Π(ρ) such that π(Dα) = 0 for some α > 0. In particular, the
statement follows since

C (ρ) ≤ C(π) ≤
(
N

2

)
M(α) <∞.

To show the claim, take a good projection P ∈ Lip1(X) given by Proposition 2.4
and consider the measure ν = P#ρ; in particular we have a(ν) < 1

N and, thanks to
Lemma 2.1, also that κ(ν, r) < 1

N for some r > 0. By the disintegration theorem there
are probabilities ρt ∈P(X) such that ρ = ρt ⊗ ν(t).

Let π̃ ∈ Π(ν) be a plan given by Lemma 3.1 and let π ∈ Π(µ) be any plan such that
(P, . . . , P )#π = π̃. Such a plan can be build by mapping arbitrarily the measures ρt
on one another. In particular we will have that for every (x1, . . . , xN ) ∈ supp(π) we
have (P (x1), . . . , P (xn)) ∈ supp(π̃) and so we get that π(Dα) = 0 as long as π̃(Dα) = 0,
thanks to the fact that P is 1-Lipschitz.

Since we have κ(ν, r) < 1
N , Lemma 3.1 gives that π̃(D2r) = 0 and so we can conclude

π(D2r) = 0.

Proof of Theorem 1.1(ii). We prove that every ρ ∈P(X) such that C (ρ) <∞ satisfies
a(ρ) ≤ 1/N . Let π ∈ Π(ρ) be an optimal plan. Since C (ρ) = C(π) < ∞, we infer
that π(D) = 0. Let x̄ ∈ arg max{ρ({x}) : x ∈ X}, so that ρ({x̄}) = a(ρ), and define
X∗ = {x̄}c. For every i = 1, . . . , N one has

ρ({x̄}) = P i#π({x̄}) = π
(
XN−1 ×i {x̄}

)
= π

(
XN−1
∗ ×i {x̄}

)
.
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Notice that the N sets XN−1
∗ ×i {x̄} are disjoint, therefore, adding over i = 1, . . . , N ,

we get

Nρ({x̄}) =
N∑
i=1

π
(
XN−1
∗ ×i {x̄}

)
= π

(
N⋃
i=1

XN−1
∗ ×i {x̄}

)
≤ π

(
XN

)
= 1,

from which a(ρ) ≤ 1/N .

Proposition 3.3. Let C be the cost introduced in (1.4) under the assumptions (1.1),
(1.2) and (1.3), let a(ρ) as in (1.6). Let ρ ∈P(X) and x̄ ∈ X such that ρ({x̄}) = 1

N .
Then, letting X∗ = X \ {x̄} and ρ̃ = N

N−1ρ|X∗, we have

CN (ρ) = N

∫
X∗

c(x̄, y) dρ(y) + CN−1(ρ̃). (3.1)

Proof. Let π ∈ ΠN−1(ρ̃): then we have that Psym(δx̄ ⊗ π) ∈ ΠN (ρ) and so

CN (ρ) ≤ CN (Psym(δx̄ ⊗ π)) = CN (δx̄ ⊗ π) = N

∫
X∗

c(x̄, y) dρ(y) + CN−1(π);

talking the infimum in π we obtain the first inequality.
In order to prove the other inequality, we can assume CN (ρ) <∞. Let us consider

π is a symmetric optimal coupling for CN (ρ), which is therefore concentrated outside
the diagonals, and let us define Xi = XN−1

∗ ×i {x̄}; we know that Xi are disjoint and
π(Xi) = P i#π({x̄}) = 1

N . This means that π is concentrated on
⋃
Xi.

We can define π1 through the implicit equality

π|{x̄}×XN−1 = π|X1 = 1
N
δx̄ × π1

with π1(XN−1
∗ ) = π1(XN−1) = 1 and, thanks to the symmetry of π, by considering only

permutations which fix the first coordinate, we deduce that also π1 is symmetric in its
N − 1 variables. A simple computation then shows that

π = Psym(δx̄ ⊗ π1) (3.2)

and that
P i#(π1) = ρ̃ = N

N − 1ρ|X∗ for every i = 1, . . . , N − 1. (3.3)

Indeed, for every permutation which fixes x1, we know that the measure is unchanged.
On the other side, every permutation of coordinates can be written as the composition
of one of these permutations with a pi : XN → XN which exchanges x1 and xi for some
i = 2, . . . , N and leaves all other coordinates fixed. For every i = 2, . . . , N , we know that
pi#(δx̄ ⊗ π1) goes to a nonnegative measure of total mass 1/N , concentrated on Xi and
hence orthogonal to δx̄ ⊗ π1 (and to any other permutation pj with j 6= i), which is also
a submeasure of π. Hence, we conclude that (3.2) holds. Define ρ̃ to be any marginal
of π1, so that δx̄ ⊗ π1 has all marginals equal to ρ̃ apart from one, which equals δx̄.
Symmetrizing, we find that ρ, which is any marginal of π, equals 1/Nδx̄ + (N − 1)/Nρ̃,
which proves (3.3).
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Then, thanks to (3.2) and (3.3), we can rewrite the energy of π as

CN (ρ) = CN (δx̄ ⊗ π1) = N

∫
X∗

c(x̄, y) dρ(y) + CN−1(π1)

≥ N
∫
X∗

c(x̄, y) dρ(y) + CN−1(ρ̃).

At the threshold level 1/N anything can happen: the cost can be finite or infinite,
depending on the specific distribution of the mass.
Remark 3.4. If X is a space with at least one accumulation point, C and a are as in
Proposition 3.3, then there exists ρ ∈P(X) such that a(ρ) = 1/N and supp(π)∩D 6= ∅
for every π ∈ Π(ρ) (thus π(Dα) > 0 for every α > 0). This shows that the assumption
on the concentration in Theorem 1.3 is necessary. Moreover, there is one such ρ with
C (ρ) <∞ and one with C (ρ) =∞.

Indeed, let x ∈ X be a limit point, (xn)n∈N ⊂ X \ {x} be a sequence of distinct
points converging to x, and

ρ := 1
N
δx + N − 1

N

∑
n

pnδxn ,

where (pn)n∈N ∈ `1 with pn ∈ (0, 1/N) and
∑∞

n=1 pn = 1.
With the notation of the proof of Proposition 3.3, we have

π(Dα) ≥ π
(
{x} ×XN−2

∗ ×B(x, α)
)

= π1

(
XN−2
∗ ×B(x, α)

)
= Pn−1

# π1(B(x, α)) = ρ̃(B(x, α)) > 0.

Finally, since a(ρ̃) < 1
N < 1

N−1 , we have CN−1(
∑

n pnδxn) < ∞, and so, again by
Proposition 3.3, CN (ρ) is finite if and only if∫

X∗

c(x̄, y) dρ(y) =
∑
n

pnc(x̄, xn)

is finite; one can choose the weights (pn)n appropriately, taking into account (1.2), in
order to make the cost finite or infinite.

Proof of Theorem 1.1(iii). We argue inductively on the number i of atoms in µ of mass
1/N . If µ has exactly one atom of mass 1/N at x̄, namely, if i = 1, from Proposition 3.3
we know that the cost of CN is finite if and only if condition (1.7) is in force at x̄ and
N
N−1ρ|X\{x̄} has finite CN−1 cost. On the other side, this second condition is always
verified because N

N−1ρ|X\{x̄} doesn’t have atoms of the critical mass 1/(N − 1), hence
the first part of Theorem 1.1 applies.

If we assume the statement to be true when there are i of atoms in µ of mass 1/N
and we want to prove it for i + 1, we consider µ with i + 1 atoms of mass 1/N , one
of which at x̄; next we apply Proposition 3.3 and we reduce to study the finiteness of
the cost of N

N−1ρ|X\{x̄}, which in turn has exactly i atoms of mass 1/(N − 1). Hence,
applying the inductive assumption to this measure, we conclude the proof.
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For simplicity we give the following example of discontinuity of the cost for the
Coulomb cost in Rd; of course, it can be generalized to metric spaces with costs as in
assumptions (1.1) and (1.2).

Proposition 3.5. Let c(x, y) = |x − y|−1 in Rd × Rd and consider the minimization
problem (1.4). Let ρ ∈P(Rd) be such that a(ρ) = 1

N . Then for every ε > 0 small there
exists ρ̃ such that |ρ− ρ̃|(Rd) ≤ ε and

1 + C (ρ) < C (ρ̃) <∞. (3.4)

Proof. Let x̄ ∈ X and µ ∈M+(X) be such that ρ = 1
N δx̄ + µ. Then by Proposition 3.3

we know that

N

∫
Rd
c(x̄, y) dµ(y) + CN−1

( N

N − 1µ
)

= CN (ρ) <∞. (3.5)

Let ε < 1/N and yε ∈ Rd such that ε < |x̄− yε| ≤ 2ε and µ(yε) = 0. We consider

ρε := 1
N
δx̄ + εδyε + (1− ε)µ ∈P(Rd),

we notice that |ρ− ρε|(Rd) = ε| − δyε + εµ|(Rd) ≤ 2ε, and we estimate its cost thanks
to Proposition 3.3

CN (ρε) = N

∫
Rd
c(x̄, y) d(εδyε + (1− ε)µ)(y) + CN−1

( N

N − 1(εδyε + (1− ε)µ)
)

The last term is finite because a(εδyε + (1 − ε)µ) ≤ 1−ε
N , and the first one thanks to

(3.5). On the other side, we estimate the cost from below by

CN (ρε) ≥ Nεc(x̄, yε) +N(1− ε)
∫
Rd
c(x̄, y) dµ(y) + CN−1

( N

N − 1(εδyε + (1− ε)µ)
)

≥ N

2 +N(1− ε)
∫
Rd
c(x̄, y) dµ(y) + CN−1

( N

N − 1(εδyε + (1− ε)µ)
)

(3.6)

By the lower semicontinuity of the cost CN−1, we know that the last two terms in the
right-hand side are, in the limit, greater than or equal to to the quantity in (3.5), namely
CN (ρ). Hence, for ε small enough we obtain (3.4).

4 Uniform bounds on the cost and diagonal bounds
Theorem 4.1 (Uniform bound on the cost in terms of the concentration). Let ρ ∈P(X)
be such that κ(ρ, r) ≤ 1

N for some r > 0. Let r(x) be such that ρ(B(x, r(x))) ≤ 1/N for
every x. Then we have

C (ρ) ≤
(
N

2

)∫
M(max{ r(x)

2 , r}) dρ.
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Remark 4.2. Under the assumptions of Theorem 4.1, the slightly weaker bound

C (ρ) ≤
(
N

2

)
M(r)

can be achieved in a simpler way. Indeed, this is a straightforward application of
Theorem 4.3 with the set D = {d(x, y) < r}, which guarantees us the existence of a
plan π ∈ ΠN (ρ), concentrated outside Dr; in particular we have c(xi, xj) ≤ M(r) for
every i 6= j, for π-a.e. and so we have C(π) ≤

(
N
2
)
M(r).

Proof of Theorem 4.1. Without loss of generality we can assume that r(x) is the maxi-
mum radius such that ρ(B(x, r(x)) ≤ 1/N . We first notice that r(x) is 1-Lipschitz, in
fact since B(x, r(x) + ε) ⊆ B(y, r(x) + ε+ d(x, y)) by the maximality of r(x) we deduce
that ρ(B(y, r(x) + ε+ d(x, y))) > 1

N . This is true for every ε > 0, so we get

r(y) ≤ r(x) + d(x, y).

Since we can reverse the roles of x and y, we obtain that r is 1-Lipschitz.
Let D = {2d(x, y) < max{r(x), r(y), 2r}}; since both d and r are continuous we

have that D is an open symmetric set. Moreover defining B(x) = {x′ : (x, x′) ∈ D} we
have

B(x) = B(x, r) ∪B(x, r(x)
2 ) ∪ {x′ : d(x, x′) < r(x′)

2 }

⊆ B(x, r) ∪B(x, r(x)
2 ) ∪ {x′ : d(x, x′) < d(x, x′) + r(x)

2 } = B(x, r) ∪B(x, r(x)),

where we used the fact that r is 1-Lipschitz. Clearly we thus have ρ(B(x)) ≤ 1
N ; so we

can use Theorem 4.3 in order to get a plan π ∈ ΠN (ρ) such that (xi, xj) 6∈ D for i 6= j
for π-a.e. x ∈ Xk. But this means that d(xi, xj) ≥ max{r(xi), r(xj)}/2 for π-a.e. x: we
then get

C (ρ) ≤ C(π) ≤
∫
XN

∑
i<j

M(max{r(xi),r(xj)},2r
2 ) dπ

≤
∫
X

∑
i<j

M(max{ r(xi)2 , r}) +M(max{ r(xj)2 , r})
2 dπ

=
(
N

2

)∫
X
M(max{ r(x)

2 , r}) dρ.

In graph theory, a consequence of the Hajnal-Szemerédi theorem [20, 22] is a
simplified multimarginal version of the marriage theorem (a multimarriage theorem):
let us suppose we have kN people, and everyone has a list of hated people, which has
always less than k people in it (hatred is a reciprocal sentiment, at least in this example).
Then we can form k disjoint N -tuples such that in every N -tuple we do not have people
who hate each other.

The following theorem can be seen as the continuous analogue of this multimarriage
theorem (B(x) is the list of people disliked by x).
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Theorem 4.3 (Existence of a plan outside the diagonal). Let X be a Polish space and
let D ⊂ X2 be a symmetric open set; let us denote B(x) = {x′ : (x, x′) ∈ D}. Let us
suppose that ρ(B(x)) ≤ 1/N for every x ∈ X: then there exists a plan π ∈ ΠN (ρ) that
is concentrated on Ac, where

A =
⋃
XN

⋃
i 6=j
{(xi, xj) ∈ D},

that is we have (xi, xj) 6∈ D for i 6= j for π-a.e. x ∈ XN .

Proof. The proof exploits the duality formula for bounded costs. In order to show
that there exists an admissible plan π ∈ ΠN (ρ) such that π(A) = 0, we will analyze
the minimizer of the multi-marginal optimal transport with respect to the following
bounded cost:

c̃(x1, . . . , xN ) = inf
{
d((x1, . . . , xN ), Ac), 1

}
For this cost it is known that the duality formula holds ([13]):

inf
π∈Π(ρ)

∫
XN

c̃dπ = sup
ϕ(x1)+···+ϕ(xN )≤c̃(x)

N

∫
X
ϕ dρ.

The optimal π ∈ ΠN (ρ) will satisfy π(A) = 0 if we show that∫
X
ϕdρ ≤ 0 for all admissible ϕ.

In fact, in such case the optimal value of the previous problems must be 0, therefore π
has to be supported on Ac, thanks to the fact that A is open.

Actually, the crucial constraint on ϕ that will be needed for the proof is

ϕ(x1) + · · ·+ ϕ(xN ) ≤ 0 if x ∈ Ac.

The only role that the cost c̃ on A plays is telling us that ϕ is bounded from above, in
fact Nϕ(x) ≤ c̃(x, . . . , x) ≤ 1; indeed one would like to consider the cost which takes
the value ∞ in this region, if there were not the problem of the validity of the duality
formula for such a cost and the boundedness of the potential.

After having fixed a small ε > 0, we do the following iterative construction of ηi, zi
and Bi:

η1 = sup
X
ϕ, z1 ∈ X, ϕ(z1) ≥ η1 − ε, B1 = B(z1),

η2 = sup
Bc1

ϕ, z2 ∈ Bc
1, ϕ(z2) ≥ η2 − ε, B2 = B(z2),

...
...

...
ηk = sup

(B1∪···∪Bk−1)c
ϕ, zk ∈ (B1 ∪ · · · ∪Bk−1)c, ϕ(zk) ≥ ηk − ε, Bk = B(zk).

Notice that we have the monotone sequence r/N ≥ η1 ≥ η2 ≥ . . . and so on.
At each step we check the sign of the quantity

η1 + · · ·+ ηk−1 + (N − k + 1)ηk − (k − 1)ε.
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As soon as it is non-positive we stop the process and estimate the quantity
∫
X ϕdρ.

Notice that this will surely happen by the time we reach k = N , because if z ∈
(B1 ∪ · · · ∪ BN−1)c, then (z1, . . . , zN−1, z) ∈ Ac (in fact, letting zN := z we have
(zi, zj) 6∈ D for every i 6= j), so

(η1 − ε) + · · ·+ (ηN−1 − ε) + ϕ(z) ≤ ϕ(z1) + · · ·+ ϕ(zN−1) + ϕ(z) ≤ 0

and η1 + · · ·+ ηN − (N − 1)ε ≤ 0 follows by taking the supremum over z.
Calling k the smallest integer for which this happens, by construction we have

ηk ≤ −
1

N − k + 1

k−1∑
j=1

ηj + k − 1
N − k + 1ε, (4.1)

while the preceding inequalities are reversed.
Letting B̃j = Bj \ (B1 ∪ · · · ∪Bk−1) so that they are disjoint, we can estimate

∫
X
ϕ dρ =

k−1∑
i=1

∫
B̃i

ϕdρ+
∫

(B1∪···∪Bk−1)c
ϕ dρ

≤
k−1∑
i=1

ηiρ(B̃i) + ηk

(
1−

k−1∑
i=1

ρ(B̃i)
)

≤
k−1∑
i=1

ηiρ(B̃i) +

− 1
N − k + 1

k−1∑
j=1

ηj + k − 1
N − k + 1ε

(1−
k−1∑
i=1

ρ(B̃i)
)

=
k−1∑
i=1

ρ(B̃i)

ηi + 1
N − k + 1

k−1∑
j=1

ηj −
k − 2

N − k + 1ε


︸ ︷︷ ︸

≥0

− 1
N − k + 1

k−1∑
j=1

ηj + k − 1
N − k + 1ε−

1
N − k + 1ε

k−1∑
i=1

ρ(B̃i),

≤
k−1∑
i=1

1
N

ηi + 1
N − k + 1

k−1∑
j=1

ηj −
k − 2

N − k + 1ε


− 1
N − k + 1

k−1∑
j=1

ηj + k − 1
N − k + 1ε

≤
(

1
N

+ k − 1
N(N − k + 1) −

1
N − k + 1

) k−1∑
j=1

ηj + k − 1
N − k + 1ε

= k − 1
N − k + 1ε ≤ Nε,
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where we used (4.1) in the second inequality and then

(N − k + 1)ηi +
k−1∑
j=1

ηj − (k − 2)ε

≥ (N − k + 1)ηk−1 +
k−1∑
j=1

ηj − (k − 2)ε

= (N − (k − 1) + 1)ηk−1 +
k−2∑
j=1

ηj − (k − 2)ε ≥ 0

in the next step in order to substitute ρ(Bi) ≤ 1/N . Letting ε → 0 shows that∫
X ϕdρ ≤ 0 as desired.

Proof of Theorem 1.3(ii). First of all, we can assume without loss of generality that
the plan π is symmetric, since πsym has the same cost of π and πsym(D̄α) = π(D̄α) for
every α ≥ 0.

Assume by contradiction that π(D̄α) > 0. Then there exists x ∈ supp(π) ∩Dα. We
may assume without loss of generality that |x1 − x2| ≤ α. For notational simplicity, let
γ = β/2 ≤ r. We claim that there is a point

y ∈ supp(π) \ D̄β ∩
(
B̄(x1, γ)c

)N
.

To prove that such a point exists, it is sufficient to show that

π
(
D̄c
β ∩

(
B̄(x1, γ)c

)N)
> 0.

But this is true since we can estimate the mass of the complement as

π
([
D̄c
β ∩

(
B̄(x1, γ)c

)N]c) = π
(
D̄β ∪

[(
B̄(x1, γ)c

)N]c)
≤ π(D̄β) + π

(
N⋃
i=1

XN−1 ×i B̄(x1, γ)
)

≤ C(π)
m(β) +Nρ

(
B̄(x1, γ)

)
< 1−Nκ(ρ, r) +Nκ(ρ, γ) ≤ 1.

Next we prove that there exists i ∈ {1, . . . , N} such that d(yi, xj) > γ for every
j = 1, . . . , N . Indeed, by definition of y, the set B̄(x1, γ) does not contain any of the
points yi; furthermore the N − 1 sets B̄(x2, γ), B̄(x3, γ), . . . , B̄(xN , γ) have diameter at
most 2γ = β, therefore at least one of the N points yi does not belong to any of them;
otherwise by the pigeonhole principle one of the aforementioned sets would contain two
of the points yi, which is impossible because they are pairwise spaced apart by more
than β. Since we are dealing with a symmetric plan, we may assume that d(y1, xj) > γ
for every j = 1, . . . , N .

Now we introduce the two points x̃ and ỹ obtained by swapping the coordinates x1
and y1, namely

x̃ = (y1, x2, . . . , xN ), ỹ = (x1, y2, . . . , yN ).
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Thanks to the c-monotonicity we then have c(x) + c(y) ≤ c(x̃) + c(ỹ). In this last
inequality many terms cancel out, in fact the interaction between xi and xj for i, j ≥ 2
and between yi and yj for i, j ≥ 2 are present on both sides. Thus the inequality is
equivalent to

N∑
i=2

c(x1, xi) + c(y1, yi) ≤
N∑
i=2

c(y1, xi) + c(x1, yi).

Now we can use d(x1, x2) ≤ α, d(x1, yi) > γ and d(y1, xi) > γ to get

m(α) ≤
N∑
i=2

c(x1, xi) + c(y1, yi) ≤
N∑
i=2

c(y1, xi) + c(x1, yi) ≤ 2(N − 1)M(γ),

and so we reached a contradiction.

Proof of Theorem 1.3(i). As in the proof of Theorem 1.3(ii) we can assume that π
is symmetric. Assume by contradiction that π(D̄α) > 0. Then there exists x ∈
supp(π) ∩Dα. We may assume without loss of generality that d(x1, x2) ≤ α. We claim
that there is a point y ∈ supp(π) such that

y ∈
( N⋃
i=2

B̄(xi, r)
)c
× (B̄(x1, r)c)N−1.

For notational convenience, let us denote A1 =
⋃N
i=2 B̄(xi, r) and A = B̄(x1, r). To

prove that such a point exists, it is sufficient to show that

π
(
Ac1 × (Ac)N−1) > 0.

But this is true since we can estimate the mass of the complement as

π
([
Ac1 × (Ac)N−1]c) ≤ π(A1 ×XN−1 ∪

N⋃
i=2

A×i XN−1

)
≤ ρ(A1) + (N − 1)ρ(A)

≤
N∑
i=2

ρ(B(xi, r)) + (N − 1)ρ(B(x1, r)) < 1.

Now we introduce the two points x̃ and ỹ obtained by swapping the coordinates x1 and
y1, namely

x̃ = (y1, x2, . . . , xN ), ỹ = (x1, y2, . . . , yN ).

Thanks to the c-monotonicity we then have c(x) + c(y) ≤ c(x̃) + c(ỹ). In this last
inequality many terms cancel out, in fact the interaction between xi and xj for i, j ≥ 2
and between yi and yj for i, j ≥ 2 are present on both sides. Thus the inequality is
equivalent to

N∑
i=2

c(x1, xi) + c(y1, yi) ≤
N∑
i=2

c(y1, xi) + c(x1, yi).
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Now we can use d(x1, x2) ≤ α, d(x1, yi) > r and d(y1, xi) > r to get

m(α) ≤
N∑
i=2

c(x1, xi) + c(y1, yi) ≤
N∑
i=2

c(y1, xi) + c(x1, yi) ≤ 2(N − 1)M(r),

and so we reached a contradiction.

5 Estimates on the potentials and continuity of the cost
Putting together the previous results, it is possible to show the continuity of the cost
function C under a more general hypothesis than the one assumed in [5], following the
same strategy; we sketch the short argument for completeness. Moreover, as Remark 3.4
tells us, the threshold 1/N is sharp. An important role will be played by truncated cost,
which we therefore introduce: we define

ch(x, y) := min{c(x, y), h}. (5.1)

Then, similarly to (1.3)-(1.4) we define ch(x1, . . . , xN ) =
∑

i<j c
h(xi, xj) and

Ch(π) =
∫
XN

ch dπ, C h(ρ) = min
{
Ch(π) : π ∈ Π(ρ)

}
(5.2)

The following lemma uses the diagonal bounds on the truncated cost to prove that for
h sufficiently big we have that the minimizing problems with C h and C have in fact the
same minimizers.

Lemma 5.1 (Equivalence with a truncated cost). Let us consider a cost c satisfying
assumptions (1.1) and (1.2), and let r > 0 and δ < 1

N . Then there exists h = h(r, δ)
such that for every ρ belonging to the set Kr,δ introduced in (1.8) we have

(i) π is an minimizer for C h(ρ) if and only if it is a minimizer for C (ρ).

(ii) if ϕh is an optimal potential for C h(ρ), it is also an optimal potential for C (ρ).

In particular we have that C = C h on Kr,δ.

Proof. Let us consider ρ ∈ Kr,δ.

(i) Let us consider a plan π which is optimal for the problem C (ρ) and a plan πh which
is optimal for C h(ρ). First of all we prove that we can choose β in Theorem 1.3(ii)
depending only on r, δ and not on ρ specifically. In fact we could consider β such
that

m(β) >
(
N
2
)
M(r)

1−Nδ ,

and this is sufficient in order to statisfy (1.9); in fact thanks to Remark 4.2 we
have C (ρ) ≤

(
N
2
)
M(r) and so in particular

m(β) >
(
N
2
)
M(r)

1−Nδ ≥
C (ρ)

1−Nκ(ρ, r) .
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Now, fix h > h′ > max{2(N −1)M(β/2),m(β)} and define mh(r) = min{m(r), h}
and Mh(r) = min{M(r), h}. We apply again Theorem 1.3(ii) with the cost ch,
mh(r) and M(r), which satisfy assumption (1.1) too. Nnotice that h > m(β) by
construction and in particular we have m(β) = mh(β), so we get

mh(β) = m(β) >
(
N
2
)
M(r)

1−Nδ ≥
C h(ρ)

1−Nκ(ρ, r) .

Since h′ > 2(N − 1)M(β/2), we must have πh(Dh′

ch
) = 0 for every πh optimal

plan for the problem C h(ρ). However, since h′ < h, it is clear that whenever
ch(x, y) ≤ h′ we have ch(x, y) = c(x, y). But then we have c = ch on the support
of πh and so ∫

ch dπh =
∫
c dπh ≥

∫
cdπ ≥

∫
ch π ≥

∫
ch dπh,

where all the other inequalities are true for the optimality, or from c ≥ ch. Since
the first term and the last term are equal we deduce that they are all equal and in
particular π is a minimizer also for C h and πh is a minimizer also for C , concluding
the proof.

(ii) First of all if ϕh is an optimal potential for C h(ρ), then of course is admissible
also for c ≥ ch. Moreover, by (i), we have C (ρ) = C h(ρ) =

∫
ϕh dρ, proving also

the maximality of ϕh.

We state explicitely what we can choose for h(r, δ):

h(r, δ) > 2(N − 1) ·M
(

1
2m
−1
((N

2
)
M(r)

1−Nδ

))
. (5.3)

This expression is very complicated since it is also in term of m,M ; however if, for
example, we have M(r) ≤ αm(r) for some α > 0, we can choose a more explicit form
for h(r, δ):

h(r, δ) > αN(N − 1)2

1−Nδ ·M(r).

In the following proposition we want to recall typical regularity results that the
potentials can inherit from the cost.

Theorem 5.2 (Regularity of the potential). Assume that c : X × X → [0,∞) is a
lower semicontinuous bounded cost. Then for every ρ ∈P(X) there exists an optimal
potential ϕ such that

• ϕ is bounded and

−(N − 1)2

2 ‖c‖∞ ≤ ϕ(x) ≤ N − 1
2 ‖c‖∞

• if moreover c is Lipschitz, ϕ is Lipschitz and

‖ϕ‖Lip ≤ (N − 1)‖c‖Lip
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• if X is geodesic and c is K-concave then ϕ can be assumed to be (N−1)K-concave

Proof. Let ϕ1, . . . , ϕN be admissible potentials. We will now construct new potentials
ϕ̃1, . . . , ϕ̃N which will be admissible, satisfy the regularity assumption and moreover
ϕi ≤ ϕ̃i.

First of all we have that supϕi = ti < ∞, otherwise they are not admissible
potentials; moreover we have, for the admissibility, that t1 + · · ·+ tN ≤

(
N
2
)
‖c‖∞.

We can then modify the potential ϕ1 taking

ϕ̃1(x) = inf
{
c(x, . . . , xn)−

N∑
i=2

ϕi(x)
}
.

Of course by construction (ϕ̃1, ϕ2, . . . , ϕN ) are admissible potentials, and moreover
we have ϕ1 ≤ ϕ̃1. Denoting t̃1 = sup ϕ̃1, in particular we can now say that

ϕ̃1(x) ≥ −t2 − · · · − tN = t̃1 − (t̃1 + · · ·+ tN ) ≥ t̃1 −
(
N

2

)
‖c‖∞

inf ϕ̃1 − sup ϕ̃1 ≥ −
(
N

2

)
‖c‖∞.

Notice also that if c is L-Lipschitz (respectively K-concave), then ϕ̃1 is an infimum
of (N − 1)L-Lipschitz (respectilvely (N − 1)K-concave) functions and so we have that
ϕ̃1 is (N − 1)L-Lipschitz (respectilvely (N − 1)K-concave).

We can iterate this construction in order to get ϕ̃1, . . . , ϕ̃N that are still an admissible
N -tuple of potentials such that ϕi ≤ ϕ̃i and

inf ϕ̃i − sup ϕ̃i ≤ −
(
N

2

)
‖c‖∞.

Now if we had ϕ1, . . . , ϕN were maximizing potentials (their existence is proven for
example in [21], see Proposition 2.3 and Theorem 2.21), we will have that ϕ̃i are also
maximizing potentials. We can then assume that sup ϕ̃i = t > 0 is independent of i,
implying also t ≤ N−1

2 ‖c‖∞.
Then we can consider ϕ(x) = 1

N

∑N
i=1 ϕ̃i(x) which will be a maximizing potential

with the required property (also in the Lipschiz and concave hypothesis).

Proof of Proposition 1.5. We can just apply Lemma 5.1 and then Theorem 5.2.

We are now ready to prove one of the main results.

Proof of Theorem 1.2. We deal separately with each individual point.

(i) Let ρ, µ ∈ Kr,δ and h := h(r, δ) given by (5.3). We can assume C (ρ) ≥ C (µ); let
us consider then a potential ϕµ relative to µ given by Proposition 1.5. In particular
we have

C (µ)− C (ρ) ≤
∫
ϕµ d(µ− ρ) ≤ ‖ϕµ‖∞ · ‖µ− ρ‖TV ≤

(
N

2

)
h · ‖µ− ρ‖TV.

21



(ii) If ρn ⇀ ρ, they all satisfy κ(ρn, r′) < 1/N−δ for some r′ > 0, thanks to Lemma 2.3.
But then by Lemma 5.1 there exists h > 0 such that C h coincides with C on
the whole sequence. Thanks to the fact that ch is continuous and bounded, the
corresponding functional C h is weakly continuous and so we reach the conclusion.

(iii) Let ρ, µ ∈ Kr,δ and h := h(r, δ) given by (5.3). We can assume C (ρ) ≥ C (µ); let
us consider then a potential ϕµ relative to µ given by Proposition 1.5. In particular
we have that ϕµ

(N−1)‖ch‖Lip
is 1-Lipschitz; by the duality formula for W1 we then

have

C (µ)− C (ρ) ≤
∫
ϕµ d(µ− ρ) = (N − 1)‖ch‖Lip

∫
ϕµ

(N − 1)‖ch‖Lip
d(µ− ρ)

≤ (N − 1)‖ch‖Lip ·W1(µ, ρ)

Remark 5.3. It is not necessary for the cost to be Lipschitz outside each Dα, it would be
enough to have it Lipschitz where the plans are supported, see for example subsection 6.1.

6 The case of Coulomb cost
In this section we will resume the main results of the paper in the case of X = Rd
and c(x, y) = 1

|x−y| . First of all we can take m(r) = M(r) = r−1. In particular the
assumptions (1.1) and (1.2) are satisfied. In the sequel also the gauge function g will be
useful for summarizing some estimates:

g(δ) =


2(N − 1) if δ < 1

2(N−1)
N2(N−1)
2(1−Nδ) if 1

2(N−1) ≤ δ <
1
N

+∞ otherwise
(6.1)

In this section C will be the cost introduced in (1.4) with the choice c(x, y) = 1
|x−y| .

Whenever used we will have that ρ ∈ P(Rd), r > 0, δ ∈ (0, 1/N), and Kr,δ will be
defined as in (1.8). Moreover π will denote any optimal plan for the problem (1.4)
relative to ρ. All the results of the paper concerning the Coulomb case are collected in
Table 6.

A couple of remarks are in order: the finiteness conditions of Theorem 1.1 and the
bound in Remark 4.2 are already clear. As for the diagonal bounds, when we consider
the Coulomb cost, of course we have Dr = D1/r and so we will work directly with the
more geometric Dr. The results Theorem 1.3(i) and (ii), which involve an estimate of
the cost, are unified thanks to the gauge function g defined in (6.1).

It is worthwhile to add here also a statement that goes in the opposite direction.

Lemma 6.1. Let ρ ∈P(X) and π ∈ ΠN (ρ). Then if κ(ρ, r) > 1
N we have π(D2r) 6= 0.

Proof. The same reasoning behind the proof of Theorem 1.1(ii) allows to prove the
following: whenever ρ(A) > 1

N we have π(
⋃
i 6=j{xi, xj ∈ A}) 6= 0. But then, by

hypothesis there exists x ∈ X such that ρ(B(x, r)) > 1
N and in particular there exists

(x1, . . . , xN ) in the support of π such that xi, xj ∈ B(x, r) and i 6= j; this means that
|xi − xj | < 2r and so we can conclude that π(D2r) 6= 0.
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The estimates for the potential are clear once we observe that for the Coulomb cost
c(x, y) = 1

|x−y| we have:

• ch is h2-Lipschitz.

• ch is −3
2h

3-concave.

Then it is sufficient to combine Theorem 5.2 with Lemma 5.1 to obtain the estimate
for the potential. In the summary table we present also two sharper results for the
regularity of the potential in the case supp ρ = Rd; these will be proven in subsection 6.1.

Finally, the explicit Lipschitz constants in Theorem 1.2 are found using the explicit
estimates for the potentials.

6.1 Sharper estimates for the potentials

We discuss here also a different approach for the estimates of the potentials; this
approach is tailored for Rd and the Coulomb cost, in the case where we also have
supp ρ = Rd. First of all in the proof of Theorem 1.3 we can prove the sharper estimate

N−1∑
i=2

1
|x1 − xi|

≤ g(δ)
r

for π-almost every (x1, x2, . . . , xN ).

In particular then when we consider the optimal potential ϕ (which is unique thanks
to the assumption supp ρ = Rd), since we have

ϕ(x1) + . . .+ ϕ(xN ) ≤ c(x1, . . . , xN ) ∀x1, . . . , xN ∈ Rd

ϕ(x1) + . . .+ ϕ(xN ) = c(x1, . . . , xN ) on suppπ,

letting A(x) =
{

(x2, x3, . . . , xN ) :
∑N−1

i=2
1

|x−xi| ≤
g(δ)
r

}
we can say

ϕ(x) = min
{
c(x, . . . , xN )−

(
ϕ(x2) + . . .+ ϕ(xN )

)
: (x, x2, . . . , xN ) ∈ supp(π)

}
= min

{
c(x, . . . , xN )−

(
ϕ(x2) + . . .+ ϕ(xN )

)
: (x2, . . . , xN ) ∈ A(x)

}
Now it is sufficient to study the regularity knowing this representation. In general we
could think of something like

ϕ(x) = min{fi(x) : i ∈ I} = min{fi(x) : i ∈ I(x)}.

For representations like this the idea for controlling the regularity is to consider
Iε(x) such that I(y) ⊂ Iε(x) for every y in a neighbourhood of x, then we estimate the
Lipschitz constant and the concavity of ϕ pointwise and then let ε→ 0. If the function
fi are uniformly C3 around x for i ∈ Iε(x) we could say

|∇ϕ|(x) ≤ lim
ε→0

sup
i∈Iε(x)

|∇fi|(x) D2ϕ(x) ≤ lim
ε→0

sup
i∈Iε(x)

D2fi(x)

In our case, for example, we can say

|∇ϕ|(x) ≤ lim
ε→0

sup
{
|∇xc(x, x2, . . . , xN )| :

N−1∑
i=2

1
|x− xi|

≤ g(δ) + ε

r

}
≤ g(δ)2

r2
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Cost finiteness If a(ρ) < 1
N then C (ρ) <∞

If a(ρ) > 1
N then C (ρ) =∞

If a(ρ) = 1
N then C (ρ) <∞ if and only if

1
|x− x0|

∈ L1
loc(ρ) ∀x0 ∈ Rd s.t. ρ({x0}) = 1

N
.

Cost estimate If κ(ρ, r) ≤ 1
N then C (ρ) ≤

(
N

2

)
1
r
.

Diagonal estimate If ρ ∈ Kr,δ and r′ <
r

g(δ) then π(Dr′) = 0.

Potential estimates If ρ ∈ Kr,δ there exists a potential ϕ such that

−
(
N

2

)
g(δ)
r
≤ ϕ(x) ≤ g(δ) · (N − 1)

2r ,

‖ϕ‖Lip ≤
(N − 1) · g(δ)2

r2 ,

D2ϕ ≤ 3(N − 1) · g(δ)3

2r3 Id.

If moreover we have supp ρ = Rd we can also assume:

‖ϕ‖Lip ≤
g(δ)2

r2 , D2ϕ ≤ 3g(δ)3

2r3 Id.

Continuity for C For every ρ1, ρ2 ∈ Kr,δ we have

|C (ρ1)− C (ρ2)| ≤ (N − 1) · g(δ)2

r2 ·W1(ρ1, ρ2),

|C (ρ1)− C (ρ2)| ≤ N(N − 1) · g(δ)
2r · ‖ρ1 − ρ2‖TV .

Table 1: This is a summary of results for the Coulomb cost. All the results are derived
directly from the theorems in the paper, written down directly in the case c is the
Coulomb cost. The only sharper result is for the potential estimates in the case supp ρ
is the whole Rd; those estimates are proved in subsection 6.1.
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D2ϕ(x) ≤ lim
ε→0

sup
{
D2
xc(x, x2, . . . , xN ) :

N−1∑
i=2

1
|x− xi|

≤ g(δ) + ε

r

}
≤ 3g(δ)3

2r3 Id,

where we used |∇xc(x, x2, . . . , xN )| ≤
∑

i
1

|x−xi|2 ≤
(∑

i
1

|x−xi|

)2
and a similar reasoning

for the estimate of D2ϕ.

References
[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and the

Wasserstein spaces of probability measures. Lectures in Mathematics, ETH Zurich.
Birkhäuser, 2005.

[2] U. Bindini. “Marginals with finite repulsive cost”. In: (2017). arXiv: 1702.06301
[math.OC]. url: https://arxiv.org/abs/1702.06301.

[3] U. Bindini and L. De Pascale. “Optimal transport with Coulomb cost and the
semiclassical limit of Density Functional Theory”. In: arxiv:1702.04957 ().

[4] G. Bouchitté et al. “Dissociating limit in Density Functional Theory with Coulomb
optimal transport cost”. In: (Nov. 2018). eprint: 1811.12085. url: https://
arxiv.org/abs/1811.12085.

[5] G. Buttazzo, T. Champion, and L. De Pascale. “Continuity and estimates for
multimarginal optimal transportation problems with singular costs”. In: Applied
Mathematics &amp; Optimization 78.1 (2018), pp. 185–200.

[6] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi. “Optimal-transport formulation of
electronic density-functional theory”. In: Phys. Rev. A 85 (6 June 2012), p. 062502.
doi: 10.1103/PhysRevA.85.062502. url: https://link.aps.org/doi/10.
1103/PhysRevA.85.062502.

[7] M. Colombo, L. De Pascale, and S. Di Marino. “Multimarginal optimal transport
maps for 1-dimensional repulsive costs”. In: Canad. J. Math. 67 (2015), pp. 350–
368.

[8] M. Colombo and S. Di Marino. “Equality between Monge and Kantorovich
multimarginal problems with Coulomb cost”. In: Ann. Mat. Pura Appl. (4) 194.2
(2015), pp. 307–320. issn: 0373-3114. url: https://doi.org/10.1007/s10231-
013-0376-0.

[9] M. Colombo and F. Stra. “Counterexamples in multimarginal optimal transport
with Coulomb cost and spherically symmetric data”. In: Math. Models Methods
Appl. Sci. 26.6 (2016), pp. 1025–1049. issn: 0218-2025. url: https://doi.org/
10.1142/S021820251650024X.

[10] C. Cotar, G. Friesecke, and C. Klüppelberg. “Density functional theory and optimal
transportation with Coulomb cost”. In: Comm. Pure Appl. Math. 66.4 (2013),
pp. 548–599. issn: 0010-3640. url: https://doi.org/10.1002/cpa.21437.

[11] C. Cotar, G. Friesecke, and B. Pass. “Infinite-body optimal transport with Coulomb
cost”. In: Calculus of Variations and Partial Differential Equations 54.1 (2015),
pp. 717–742.

25

http://arxiv.org/abs/1702.06301
http://arxiv.org/abs/1702.06301
https://arxiv.org/abs/1702.06301
1811.12085
https://arxiv.org/abs/1811.12085
https://arxiv.org/abs/1811.12085
https://doi.org/10.1103/PhysRevA.85.062502
https://link.aps.org/doi/10.1103/PhysRevA.85.062502
https://link.aps.org/doi/10.1103/PhysRevA.85.062502
https://doi.org/10.1007/s10231-013-0376-0
https://doi.org/10.1007/s10231-013-0376-0
https://doi.org/10.1142/S021820251650024X
https://doi.org/10.1142/S021820251650024X
https://doi.org/10.1002/cpa.21437


[12] C. Cotar and M. Petrache. “Next-order asymptotic expansion for N-marginal opti-
mal transport with Coulomb and Riesz costs”. In: arXiv preprint arXiv:1706.06008
(2017).

[13] L. De Pascale. “Optimal transport with Coulomb cost: approximation and duality”.
In: ESAIM: M2AN 49 (2015), pp. 1643–1657.

[14] S. Di Marino, A. Gerolin, and L. Nenna. “Optimal Transportation Theory with
Repulsive Costs”. In: Topological Optimization and Optimal Transport. Ed. by
M. Bergounioux et al. Vol. 9. Radon Series on Computational and Applied
Mathematics 17. RICAM. De Gruyter, 2017, pp. 204–256. arXiv: 1506.04565
[math.OC].

[15] W. Gangbo and A. Święch. “Optimal maps for the multidimensional Monge-
Kantorovich problem”. In: Comm. Pure Appl. Math. 51.1 (1998), pp. 23–45. issn:
0010-3640. url: https://doi.org/10.1002/(SICI)1097-0312(199801)51:
1%3C23::AID-CPA2%3E3.0.CO;2-H.

[16] A. Gerolin, A. Kausamo, and T. Rajala. “Duality theory for multi-marginal
optimal transport with repulsive costs in metric spaces”. In: ESAIM: COCV to
appear.arXiv:1805.00880 (2018).

[17] A. Gerolin, A. Kausamo, and T. Rajala. “Non-existence of optimal transport maps
for the multi-marginal repulsive harmonic cost”. In: arXiv preprint arXiv:1805.00417
(2018).

[18] N. Ghoussoub and A. Moameni. “A self-dual polar factorization for vector fields”.
In: Comm. Pure Appl. Math. 66.6 (2013), pp. 905–933. issn: 0010-3640. url:
https://doi.org/10.1002/cpa.21430.

[19] P. Gori-Giorgi, M. Seidl, and G. Vignale. “Density-Functional Theory for Strongly
Interacting Electrons”. In: Phys. Rev. Lett. 103 (16 Oct. 2009), p. 166402. doi:
10.1103/PhysRevLett.103.166402. url: https://link.aps.org/doi/10.
1103/PhysRevLett.103.166402.

[20] A. Hajnal and E. Szemerédi. “Proof of a conjecture of P. Erdos”. In: Combinatorial
theory and its applications 2 (1970), pp. 601–623.

[21] H. G. Kellerer. “Duality theorems for marginal problems”. In: Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 67.4 (Nov. 1984), pp. 399–432.
issn: 1432-2064. doi: 10.1007/BF00532047. url: https://doi.org/10.1007/
BF00532047.

[22] H. A. Kierstead and A. V. Kostochka. “A Short Proof of the Hajnal–Szemerédi
Theorem on Equitable Colouring”. In: Combinatorics, Probability and Computing
17.2 (2008), pp. 265–270. doi: 10.1017/S0963548307008619.

[23] Y.-H. Kim and B. Pass. “A general condition for Monge solutions in the multi-
marginal optimal transport problem”. In: SIAM J. Math. Anal. 46.2 (2014),
pp. 1538–1550. issn: 0036-1410. url: https://doi.org/10.1137/130930443.

[24] M. Lewin, E. H. Lieb, and R. Seiringer. “Statistical Mechanics of the Uniform
Electron Gas”. In: arXiv preprint arXiv:1705.10676 (2017).

26

http://arxiv.org/abs/1506.04565
http://arxiv.org/abs/1506.04565
https://doi.org/10.1002/(SICI)1097-0312(199801)51:1%3C23::AID-CPA2%3E3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0312(199801)51:1%3C23::AID-CPA2%3E3.0.CO;2-H
https://doi.org/10.1002/cpa.21430
https://doi.org/10.1103/PhysRevLett.103.166402
https://link.aps.org/doi/10.1103/PhysRevLett.103.166402
https://link.aps.org/doi/10.1103/PhysRevLett.103.166402
https://doi.org/10.1007/BF00532047
https://doi.org/10.1007/BF00532047
https://doi.org/10.1007/BF00532047
https://doi.org/10.1017/S0963548307008619
https://doi.org/10.1137/130930443


[25] E. Paolini and E. Stepanov. “Decomposition of acyclic normal currents in a metric
space”. In: Journal of Functional Analysis 263.11 (2012), pp. 3358–3390. issn: 0022-
1236. doi: 10.1016/j.jfa.2012.08.009. url: http://www.sciencedirect.
com/science/article/pii/S0022123612003059.

[26] B. Pass. “On the local structure of optimal measures in the multi-marginal optimal
transportation problem”. In: Calc. Var. Partial Differential Equations 43.3-4
(2012), pp. 529–536. issn: 0944-2669. url: https://doi.org/10.1007/s00526-
011-0421-z.

[27] M. Petrache. “Decorrelation as an avatar of convexity”. 2015.
[28] F. Santambrogio.Optimal transport for applied mathematicians. Springer, Birkäuser,

NY, 2015.
[29] M. Seidl et al. “The strictly-correlated electron functional for spherically symmetric

systems revisited”. In: arxiv:1702.05022 ().
[30] C. Villani. Topics in optimal transportation. 58. American Mathematical Soc.,

2003.

27

https://doi.org/10.1016/j.jfa.2012.08.009
http://www.sciencedirect.com/science/article/pii/S0022123612003059
http://www.sciencedirect.com/science/article/pii/S0022123612003059
https://doi.org/10.1007/s00526-011-0421-z
https://doi.org/10.1007/s00526-011-0421-z

	Introduction
	Diagonal bounds
	Kantorovich potentials
	Examples

	Preliminary results
	Properties of the concentration

	Characterization of finiteness of the cost
	Uniform bounds on the cost and diagonal bounds
	Estimates on the potentials and continuity of the cost
	The case of Coulomb cost
	Sharper estimates for the potentials

	References

